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Abstract 

At various times during the Quaternary, north-eastern England was a zone of confluence between dynamic 

ice lobes sourced from the Pennines, northern Scotland, the Cheviots, and Scandinavia. The region thus has 

some of the most complex exposures of Middle to Late Pleistocene sediments in Britain, with both 

interglacial and glacial sediments deposited in terrestrial and marine settings. We investigated sedimentary 

sequences exposed on the coastline of County Durham at Warren House Gill, and present a new model of 

British and Fennoscandian Ice Sheet interaction in the North Sea Basin during the Middle Pleistocene.  

The stratigraphy at Warren House Gill consists of a lower diamicton and upper estuarine sediments, both 

part of the Warren House Formation. They are separated from the overlying Weichselian Blackhall and 

Horden tills by a substantial unconformity. The lower diamicton of the Warren House Formation is 

re-interpreted here as an MIS 8 to 12 glaciomarine deposit containing ice-rafted lithics from north-eastern 

Scotland and the northeast North Sea, and is renamed the ‘Ash Gill Member’. It is dated by lithological 

comparison to the Easington Raised Beach, Middle Pleistocene Amino Acid Racemisation values, and 

indirectly by optically stimulated luminescence. The overlying shallow subaqueous sediments were 

deposited in an estuarine environment by suspension settling and bottom current activity. They are named 

the ‘Whitesides Member’, and form the uppermost member of the Warren House Formation. During 

glaciation, ice-rafted material was deposited in a marine embayment. There is no evidence of a grounded, 

onshore Scandinavian ice sheet in County Durham during MIS 6, which has long been held as the accepted 

stratigraphy. This has major implications for the currently accepted British Quaternary Stratigraphy. 

Combined with recent work on the Middle Pleistocene North Sea Drift from Norfolk, which is now suggested 

to have been deposited by a Scottish ice sheet, the presence of a Scandinavian ice sheet in eastern England 



Quaternary Science Reviews 44 (2012), 180-212 

 

2 
 

at any time during the Quaternary is becoming increasingly doubtful.  

 

1. Introduction  

Recent glacial models have questioned the timing and dynamic nature of the interaction between the 

British-Irish Ice Sheet (BIIS) and the Fennoscandian Ice Sheet (FIS) in eastern England. The onshore 

glacial/interglacial history of the British Isles is complex and fragmentary, and building a coherent 

chronostratigraphy is challenging. Some models have dated the oldest glacial deposits in East Anglia to MIS 

16 (Lee et al., 2004b; Hamblin et al., 2005), while others have suggested the same deposits are MIS 12 in age 

(Preece et al., 2009; Westaway, 2009b). The provenance of these Norfolk tills has been reported as 

Scandinavian and British (Perrin et al., 1979; Lunkka, 1994), entirely British (Lee et al., 2002, 2004a), or 

British with (possibly reworked) Scandinavian erratics (Pawley et al., 2004; Hoare and Connell, 2005).  

In northern England, sediments in Yorkshire and Durham have been interpreted as indicating the onshore 

presence of the FIS in eastern England during MIS 6 (Catt, 1991b, 2001a, 2007). However, the Warren House 

Formation, at Warren House Gill, County Durham (Fig. 1, Trechmann, 1915, 1931, 1952; Francis, 1972), 

reportedly contains Scandinavian erratics but pre-dates a raised beach dated to MIS 7 (Davies et al., 2009a), 

thus questioning that model. As Warren House Gill has previously provided evidence of multiple glaciations, 

including evidence of a Scandinavian ice sheet, it is a key site to test evolving theories of British and 

Fennoscandian ice sheet interactions during the Quaternary. The northerly position of the Warren House 

Formation enables the independent testing of chronological models proposed for Norfolk and Yorkshire (cf. 

Hamblin et al., 2005). It is therefore important in understanding European Quaternary stratigraphy, as it has 

the potential to clarify the western extent of the FIS and its interaction with the BIIS during the Middle 

Pleistocene.  

This paper aims to determine the processes of deposition of the glacigenic sediments at Warren House 

Gill, to determine an event stratigraphy (including provenance and chronostratigraphy), and finally to use 

this information to create a model of north-eastern England ice sheet history during the Middle Pleistocene. 

This work therefore tests the hypotheses that the oldest glacial sediments at Warren House Gill represent a 

subglacial till that is stratigraphically older than the MIS 7 age Easington Raised Beach, and that the till was 

deposited by a Scandinavian ice sheet. The focus here is on the Warren House Formation (Lithofacies 

Associations (LFAs) 1 and 2), which includes potentially the earliest Middle Pleistocene glacial deposits in 

north-eastern England, and which are pivotal in understanding the pre-LGM signal.  

 

2. Previous research  

2.1. European Middle Pleistocene glaciations  

There is extensive evidence of large-scale glaciation in Fennoscandia and in the North Sea during each of 

the main glacial stages (Ehlers et al., 1984; Kleman and Stroeven, 1997; Sejrup et al., 2005, 2009). 

Coalescence of the FIS and the BIIS in the North Sea Basin has been suggested during the MIS 12, MIS 6 and 

the MIS 5d to 2 glaciations (Boswell, 1916; Perrin et al., 1979; Catt and Digby, 1988; Bowen, 1999; Catt, 
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2001a; Carr et al., 2006), with Scandinavian ice possibly reaching the eastern British landmass during MIS 6 

(Catt, 2007) and MIS 12 (Perrin et al., 1979; Bowen et al., 1986; Ehlers and Gibbard, 1991). Others have 

argued that there is no evidence of the FIS in eastern England during MIS 12 (Lee et al., 2002, 2004a). The 

Elsterian (MIS 10 or 12) is considered to have been the most significant and extensive glaciation in Germany, 

where there is evidence of at least two substages, each resulting in a large-scale re-advance (Eissmann, 

2002). The age of the tills is constrained by river terrace chronology (Bridgland et al., 2004), and the 

sediments are overlain by interglacial lake sediments, and then by Saalian (MIS 6) glacial sediments 

(Eissmann, 2002).  

The Anglian glaciation in the North Sea Basin resulted in the deposition of the Swarte Bank Formation, 

which lies in the base of tunnel valleys, indicating extensive glaciation (Cameron et al., 1992; Laban, 1995; 

Praeg, 2003; Kristensen et al., 2007). A two-stage glacial signature during MIS 12 in Norfolk has been 

suggested (Lunkka, 1994; Roberts and Hart, 2005). Evidence for FIS and BIIS coalescence has been suggested 

in Norfolk in the form of the Briton’s Lane Formation, also dated to MIS 12 (Pawley et al., 2004), which 

contains very rare Scandinavian erratics, and which overlies the Anglian, Scottish-sourced, Lowestoft 

Formation (Lunkka, 1994; Hamblin et al., 2005). Alternative suggestions include the reworking of older 

Scandinavian erratics (Pawley et al., 2004). There is also evidence for European glaciation in MIS 8, although 

it is controversial (see, for reviews, Bridgland et al., 2004; White et al., submitted). The best evidence for MIS 

8 glaciation is the type-Saalian of central–eastern Germany, attributed to MIS 8 on the basis of the relation 

of its outwash with the well-dated terrace sequence of the River Wipper (a Saale tributary) at Bilzingsleben, 

Thuringia (Mania, 1995; Bridgland et al., 2004). There is also evidence of MIS 8 glaciation in Germany from 

the sequence in the open-cast lignite mine at Schöningen (Schreve and Bridgland, 2002), although this dating 

is contradicted by Urban (1995). Nearer to the research area, Beets et al. (2005) and Meijer and Cleveringa 

(2009) reported an MIS 8 glaciation in the Netherlands sector of the North Sea, based on borehole evidence 

of till overlain by temperate-stage deposits assigned to MIS 7 from amino acid analysis.  

The Bridlington Member (previously the Basement Till) of east Yorkshire is thought to be MIS 6, and 

reportedly contains rare Scandinavian erratics (Catt and Penny, 1966; Catt, 1991b; Lewis, 1999). The 

Bridlington Member is overlain by the Sewerby Raised Beach, dated to MIS 5e (Bateman and Catt, 1996; 

Catt, 2001b), but the age of these glacial deposits remains poorly constrained, as it may overly a shell bed at 

Speeton (Lamplugh, 1891), dated to either MIS 5e or MIS 7 (Knudsen and Sejrup, 1988; Wilson, 1991). For a 

more detailed review see Catt (2007).  

There is evidence for coalescence of the BIIS and FIS in the central North Sea during MIS 6 in the Cleaver 

Bank Formation, which occurs beneath the Dogger Bank Formation. This is a partly marine, partly 

glaciomarine diamicton of eastern provenance, that laterally grades into the subglacial, Saalian, Borkumriff 

Formation, east of 4E(Gatliff et al., 1994; Rijsdijk et al., 2005). Langford (2004) suggested that a significant 

glaciation had reached the English Wash Basin during MIS 10 or 8, and that it might have been related to the 

same ice advance that deposited the outwash delta at Tottenhill, near Kings Lynn, although these deposits 

were dated to MIS 6 by Gibbard et al. (1992).Based on evidence from the relation between glacigenic 

deposits and the palaeo-Trent terraces in the Witham valley downstream of Lincoln, White et al. (submitted) 

have attributed this glaciation to MIS 8.  

The MIS 6 glaciation in the Netherlands and Germany is widely acknowledged to have been particularly 
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extensive, with ice sheets extending southwards and eastwards from Norway (Ehlers et al., 1984; Baumann 

et al., 1995; Eissmann, 2002; Houmark-Nielsen and Gibbard, 2004). A large ice sheet is supported by the 

presence of tunnel valleys offshore (Huuse and Lykke-Andersen, 2000; Praeg, 2003). In summary, 

pre-Devensian Scandinavian ice could have reached eastern England in MIS 12, 8 or 6.  

2.2. Warren House Gill, County Durham  

Trechmann (1915) named the basal deposit in the buried palaeovalley at Warren House Gill the 

‘Scandinavian Drift’, and inferred that it was a subglacial till deposited by a Scandinavian ice sheet (Table 1). 

Boulders of larvikite, rhomb porphyries, nordmarkite and nepheline syenite were reported in situ and on the 

modern beach by Trechmann (1931). He argued that the deposit was overlain by a reworked loess and that it 

pre-dated the Easington Raised Beach, at 33 m O.D. in Shippersea Bay (Fig. 1), on the basis that the raised 

beach contained Norwegian igneous erratics, supposedly derived from the Scandinavian Drift (Woolacott, 

1900; Trechmann, 1952). Beaumont (1967) described the basal diamicton at Warren House Gill as a grey, 

sandy clay with rounded Scandinavian metamorphic erratics, low abundances of Magnesian Limestone (less 

than 6.5%), and no Carboniferous Limestone. However, there has been no quantitative heavy-mineral, 

clast-lithological or palynomorph analysis, which could provide detailed provenance information. Recently, 

this basal deposit was renamed the Warren House Formation (Table 1, Thomas, 1999).  

A recent geochronological analysis (OSL and AAR) found that the Easington Raised Beach was deposited 

during MIS 7, and that it contains significant percentages of flint and igneous erratics not found in the 

overlying Devensian tills, and potentially derived from the Warren House Formation (Davies et al., 2009a). 

Catt (1991a) correlated the Warren House Formation with the Bridlington Member (Basement Till) of East 

Yorkshire due to the similar ostracod assemblage, and assigned it to MIS 6; therefore, its age and the 

stratigraphy remain controversial. The Warren House Formation is overlain by the Devensian Blackhall and 

Horden members (Bridgland and Austin, 1999; Thomas, 1999), equivalent to tills at Whitburn Bay to the 

north, where they are described in more detail (Davies et al., 2009b). The lithostratigraphy is illustrated in 

Figs. 2 and 3.  

 

3. Methods  

3.1. Lithological analysis  

Stratigraphic analysis followed Jones et al. (1999), Evans and Benn (2004), and Eyles and Lazorek (2007). 

Sediment characteristics were noted using standard facies codes (Kru¨ ger and Kjaer, 1999; Evans and Benn, 

2004). Lithological logging, sedimentological descriptions and clast macro-fabrics were conducted according 

to standard methodologies (Bridgland, 1986, Benn 1994, 2004a, 2004b; Evans and Benn, 2004; Hoey, 2004; 

Walden, 2004, Benn 2007). Thin sections were prepared and interpreted according to standard procedures 

(Menzies and Maltman, 1992; van der Meer, 1993; van der Meer, 1997; Menzies, 2000; Carr, 2004; Menzies 

et al., 2006).  

A range of independent, quantified lithological techniques must be applied in order to quantitatively and 

robustly identify ice accumulation areas, ice flow pathways and lithological correlations (cf. Passchier, 2007). 

Samples were collected from open field sections, allowing the full variability of the stratigraphy to be 
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sampled. The sampling strategy aimed to collect several bulk samples from each facies at each site. Where 

possible, samples were collected from a vertical profile, demonstrating vertical lithological variation. Where 

pragmatically possible, a series of vertically spaced samples was collected, to ensure each facies is sampled 

in a representative fashion (Walden, 2004). Due to the spatial variability of glacigenic diamictons, multiple 

samples were taken from several vertical profiles to ensure that inter-facies variation is accounted for and 

that representative samples are taken. Multiple sample collection is important to show replicability and 

robustness of data, and to determine errors (Hoey, 2004).  

We used three principal quantitative techniques to achieve these goals: particle-size, clast-lithological, 

and heavy-mineral analyses, conducted according to standard methodologies. The sub-2 mm fraction was 

analysed using a Coulter counter. The greater than 2 mm fraction was determined using wet sieving of large 

bulk samples (ideally greater than 10 kg where possible) (cf. Bridgland, 1986; Gale and Hoare, 1991, 1992; 

Hoey, 2004). Over 300 pebbles greater than 4 mm and less than 32 mm diameter were sampled from a 2 m
2 

area per site to give a statistically significant, representative sample (Bridgland, 1986). Pebbles were 

carefully washed in water and separated into phi size fractions (4–8 mm, 8–16 mm, 16–32 mm, and over 32 

mm) by sieving. Rock samples were broken open and observed under a standard binocular microscope 

(model ‘Motic SMZ-168’). They were compared to a reference collection collected at outcrop, and standard 

rock identification criteria (Gale and Hoare, 1991; Walden, 2004). A geological hammer was used to break 

open the stones to open a fresh surface for identification (Bridgland, 1986). A steel probe was used to test 

for hardness, and 10% 1M HCl was used for the identification of carbonates (cf. Bridgland, 1986). However, 

thin sections were not used to identify the rock samples.  

Heavy-minerals were separated using density separation (using sodium polytungstate) and the 

full-freezing (liquid nitrogen) technique (Davies, in press). Mineral species were identified using a 

petrological microscope, reference criteria, and photographs (Mange and Maurer, 1992; MacKenzie and 

Adams, 2001; Walden, 2004). Minerals in the size range 63–250 mm were counted and analysed, as this 

range allows easier mineral identification.  

The data were analysed by multivariate statistical methods to identify trends and correlations objectively 

(following Davis, 1986; Morton and Hallsworth, 1994, 2007; Kovach, 1995; Ryan et al., 2007; Thamo´-Bozso´ 

and Kova´cs, 2007). Standard descriptive statistics, such as mean and skew, were conducted first, and where 

applicable, data was square rooted to reduce skew. Multivariate statistical analysis of the heavy-mineral and 

stone lithology counts allowed simplification of variables in the dataset. Ordination techniques attempt to 

represent the relationships of the objects of study in a continuum of one or more dimensions. Numerous 

variables, such as numbers of different heavy-mineral species, give a multidimensional dataset. The main 

objective of ordination techniques therefore is to reduce the number of dimensions necessary for depicting 

the major trends in a dataset (Kovach, 1995). Principal Components Analysis (PCA) is an ordination technique 

that performs linear transformations on multidimensional data to extract axes that summarise as much of 

the data as possible. It is a method of displaying several correlated variables so that the maximum variation 

is displayed. This simplifies the numerous variables, highlighting similarities or differences between 

litho-logical units.  

Care must be taken in the analysis of heavy-mineral assemblages, as waterlain sediments may be subject 

to hydrological sorting of minerals. This can be minimised by using a smaller size fraction. Less dense, platy 
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minerals such as micas might remain in suspension longer than denser, cubic or prismatic minerals such as 

zircon or garnet (Lee, 2003). Processes of deposition may therefore account for some differences in mineral 

suites (Briggs et al., 1962). Analysis of stable minerals with similar hydraulogical properties can therefore 

provide additional provenance-specific data (cf. Morton and Hallsworth, 1994, 2007). This study used the 

minerals zircon, monazite, apatite, and tourmaline. Although apatite can be susceptible to weathering 

(Morton, 1985), it is relatively stable when compared to the entire mineral suite. The combined use of 

descriptive statistics, the PCA and cluster analysis, and the use stable heavy-minerals indices, allows a 

comprehensive comparison of the different lithofacies at Warren House Gill.  

3.2. Chronostratigraphical analysis  

The independent dating techniques used included amino acid racemisation (AAR) of shell fauna and 

optically stimulated luminescence (OSL). The analysis of intracrystalline proteins were performed according 

to Penkman et al. (2007a, 2007b, 2008). OSL samples were collected by hammering opaque plastic tubes 

into sand beds. Sample preparation occurred under subdued light conditions and sand-sized quartz was 

extracted from the bulk samples using standard laboratory techniques (Aitken, 1985, 1998; Pawley et al., 

2008). Heavy-minerals were removed by density separation (using sodium polytungstate) and the remaining 

grains were etched in 40% HF solution for 50 min. Feldspar was dissolved in fluorosilicic acid for 5 days, 

followed by an HCl wash for 1 h. External dose rates were calculated from the concentration of radioactive 

isotopes determined by ICP-MS and in-situ gamma-ray spectrometry. The beta dose attenuation and cosmic 

ray contributions were accounted for using standard factors (Mejdahl, 1979; Prescott and Hutton, 1994). 

After drying at 110 C for 24 h, saturated water contents were assessed from the volume/density of the 

material within the OSL sampling tubes. Water contents were placed at 0.5 0.3 of the saturated value and 

dose rates were corrected for water attenuation (Aitken, 1985). The Single Aliquot Regeneration (SAR) 

protocol was used to estimate sample De values and all luminescence measurements were performed for 50 

s with the sample held at 130 C to prevent retrapping in the 110 C trap (Murray and Roberts, 1997; Murray 

and Wintle, 2000).  

 

4. Sedimentology and stratigraphy  

4.1. Facies architecture  

Warren House Gill is a contemporary stream valley, incised into older Quaternary deposits that infill a 

deep, buried palaeovalley (Figs. 2 and 3). The bedrock is a collapse-breccia of Roker Dolomite, a facies of the 

Permian Magnesian Limestone. The sediments vary laterally across the buried palaeovalley, with a number 

of different facies exposed in each vertical profile. Following standard hierarchical practise (Evans and Benn, 

2004), these facies were grouped into lithofacies (LF) due to similar sedimentological, provenance and 

genetic properties. Ultimately, these lithofacies were grouped into five lithofacies associations (LFAs; Fig. 3) 

with similar age, process and provenance characteristics.  

LFA 1, the ‘Warren House Formation’ (as defined by Thomas, 1999), comprises LF 1a (a massive, grey 

diamicton); LF 1b (stratified diamicton); and LF 1c (deformed association of interbedded grey shelly 

diamicton and pink silts (LFA 2)), which was observed in Exposure E2. LFA 2, interpreted by Trechmann 
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(1952) as loess, overlies bedrock at the southern end of the palaeovalley (see Exposure B, Fig. 3), LFA 1 in the 

centre (Exposure F and G, Fig. 3), and pinches out to the north (Exposure H). LF 2a comprises well-sorted, 

laminated and deformed silts. Rounded cobbles occur at the bedrock/LF 2a interface (Exposure B). LF 2b 

occurs in Exposure D1, and consists of red, interstratified clays, silts and sands, which have been upturned. 

They are separated from LF 2a by large clay augen structures. LF 2c is a deformed diamicton interbedded 

with LFA 3, seen in Exposure D2 (Fig. 3).  

The Devensian sediments comprise LFA 3, the Blackhall Member; LFA 4, the Peterlee Sands and Gravels; 

and LFA 5, the Horden Member, which all crop out above the Magnesian Limestone cliffs along the Durham 

coast (Smith and Francis, 1967; Francis, 1972; Bridgland and Austin, 1999; Thomas, 1999). They are not 

discussed in detail in this paper. LFA 3 unconformably overlies LFAs 1 and 2. It is macroscopically 

heterogeneous and comprises LF 3a, a dark brown diamicton; LF 3b, gravelly, deformed, bedded sands 

occurring at around 10 m O.D. in many exposures; and well-sorted, planar bedded sands (Exposure E1, LF 

3c), inter-bedded with LF 3a. LFA 3 is overlain by LFA 4, comprising red, bedded sands and silts (LF 4a) and 

associated cobble gravel in Exposure K (LF 4b). LFA 5 (the Horden Member) is a massive, stone-rich 

diamicton, which unconformably overlies LFA 4.  

 

4.2. LF 1a and LF 1b: massive to stratified and deformed diamicton  

At the base of Exposure G (Fig. 4) is a very dark grey, massive, fissile, stone-poor diamicton (LF 1a), 

containing broken fragments of marine bivalve and gastropod shells. The stone content increases with 

height in the trial pit. At 2 m height (13 m O.D.), there is a conformable contact with an overlying diamicton 

(LF 1b), with a colour change to yellowish brown and then to dark olive brown. The amount of gravel 

increases and deformed sand laminations appear (Figs. 4 and 5). A clast macro-fabric taken from this 

location shows little clustering along the a-axis, with a wide range of dip angles. The pebbles are mostly 

sub-angular in shape, with significant numbers of angular and sub-rounded varieties. Far-travelled lithologies 

include chalk, flint, red marl, igneous lithics (granite, rhyolite, diorite, porphyry), schist, quartz and 

orthoquartzite. The clast lithology is dominated by Magnesian Limestone. This facies is overlain by coarse, 

gravelly sand with an incised, unconformable, convex lower contact (LF 3b), then by the diamicton LF 3a (Fig. 

3), with a significantly higher stone content, and finally by red sands at the cliff top (LF 4a).  

A micromorphological sample, WHG TS Gi, was taken from LF 1a in Exposure G, at 9 m O.D. (Fig. 4). 

Although massive at exposure, the thin section shows a diamicton interbedded with deformed and folded 

beds of sand with graded contacts (Fig. 6). There are common fine gravel clasts, including soft sediment 

pebbles, red marl, igneous fragments, quartz grains, shell fragments and marine microfossils. The graded 

sand beds consist of a moderately to poorly-sorted fine sand matrix, with sub-angular skeleton grains. The 

microfabric is horizontal in the clay matrix, sub-parallel to the beds. There are planar, bedding-parallel voids 

and occasional laboratory-induced vugh voids. The graded sedimentary laminations show soft sediment 

deformation. Dropstones deforming underlying laminations and with overlying draped bedding are clearly 

apparent (Fig. 7A and C). The bedding has subsequently been boudinaged and is cross-cut by clay-lined 

microfaults (Fig. 7C). There is a well-developed masepic plasmic fabric (Fig. 7A–C) and some manganese 

oxide staining. Within the diamicton, there are lineations of grains with associated plasmic fabric 

development, rare rotations (Fig. 7A), a rotated intraclast with a tail (Fig. 7D and E). Fig. 7F shows a 
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lamination which has been faulted downwards. The association with a grain lineation demonstrates the 

effects of shear.  

Thin section WHG TS Gii was sampled from LF 1b at Exposure G at 11 m O.D. (Table 2). It is a dark olive 

brown, iron-stained diamicton with large vugh voids. It is mostly fine-grained with one large irregular 

schistose skeleton grain. There is poor impregnation in one part of the slide. Texturally, the diamicton is a 

fine sand or silt with some fine material. The skeleton grains are sub-rounded to sub-angular, with numerous 

angular fine skeleton grains, predominantly composed of quartz and plagioclase feldspar, red marl, 

sandstone, basalt, and other igneous fragments. Soft sediment intraclasts are present. There are rare 

microfossils, including ostracoda and foraminifera (Table 2), and shell fragments. Structural analysis reveals 

banded matrix material, associated with masepic plasmic fabrics. There are abundant grain lineations 

associated with rotational structures, both with and without a core stone, again associated with masepic 

plasmic fabrics. There are lineations of grains, with aligned long axes.  

In Exposure F (NZ 44713 42320), two diamictons are superposed (Fig. 3). The basal diamicton, LF 1b, is a 

stone-poor, dark grey, fissile diamicton with sheared and deformed laminations and broken marine bivalves. 

A bed of coarse, poorly-sorted, bedded sand with a scoured, convex basal contact (LF 3b), overlies LF 1b, and 

is in turn overlain by LF 3a.  

WHG TS F was taken from LF 1b, Exposure F, at 13 m O.D. Macroscopically, the sample is a massive, 

dense, brown, matrix-supported diamicton (Table 2). There are occasional red marl grains, fine gravel grains, 

marine microfossils and shell fragments. The sub-angular to sub-rounded skeleton grains are poorly sorted, 

but are mostly less than 100 mm. There is some highly deformed graded bedding within the diamicton. 

Structural analysis reveals stratification, occasional rotational structures with associated necking structures, 

soft sediment pebbles with their own internal plasmic fabric, multiple clay domains, and rare grain 

lineations. There are rare crushed grains with fragments separated by plasma. The matrix is banded, and the 

plasmic fabric reveals a moderately developed skelsepic and cross-cutting varieties of masepic plasmic 

fabric.  

4.3. LF 1c: deformed diamicton  

Exposure E2 (Fig. 8), on the southern side of the current stream, exposes the contact between LFAs 1 and 

2. This is the northern limit of LFA 2. Here, LF 1c is a stone-poor grey diamicton bearing fragments of bivalve 

shells, chalk and flint gravel, and red marl pebbles. Folded into this diamicton are narrow laminae of 

yellowish-brown silt (LFA 2), which are extended, faulted, folded and deformed, with stringers extending 

from the silt into the diamicton. Coarse sands and gravels (LF 3b) overlie LF 1c, and are in turn overlain by 

diamicton (LF 3a), within which is a large pod of crudely bedded, overturned, gravelly sand (LF 3b).  

4.4. LF 2a: massive to laminated silts  

LF 2a in Exposure B shows 1.3 m of stratified, deformed silts on bedrock (Figs. 9 and 10), overlain by a 

stratified diamicton (LF 3a). LF 2a is yellowish-brown sandy silt with deformed, folded silt and clay stratified 

beds (Fig. 9A). Black beds are interbedded within the silts (Fig. 9B), but they contain no pollen or other 

discernible organics, and may well be manganese. The bottom contact is complex, undulating and uneven. 

The soft Magnesian Limestone bedrock is brecciated, the limestone set in a silt matrix (Fig. 9C). Stringers of 

limestone also extend upwards into the silts. At the bedrock interface, there are several well-rounded exotic 
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cobbles, including Carboniferous Limestone and sandstones (Fig. 10). Towards the top of LF 2a in Exposure B, 

the sediment is increasingly stratified. There are discontinuous planar beds of gritty sand interbedded within 

the silts, which pinch and swell. These grade into a 10 cm shear zone below LF 3a, which pinches out towards 

the northern end of the section (Fig. 10).  

LF 2a in Exposure C (Fig. 3) rests on a grey diamicton bearing shell fragments (LFA 1) on bedrock (observed 

in a borehole). Above this is over 5 m of a fine-grained, well-sorted silt, mostly massive with some fluidised 

sand and clay laminations, overlain by a stone-rich brown diamicton (LF 3a). Within LF 2a, flecks of coal and 

rounded cobble-sized calcium carbonate concretions (race nodules) are present in situ. The deformation 

increases upwards towards LF 3a, with strongly fluidised sand and clay beds with numerous rounded clay 

intraclasts towards the top. Water escape, pipe, ball and pillow, and flame structures are abundant in LF 2a. 

The contact with the diamicton above is sharp and sheared.  

Exposure D1 is in the deepest part of the palaeovalley (Fig. 3). Excavations revealed over 5 m of LF 2a, and 

did not reach the contact with either bedrock or LFA 1 (Figs. 11 and 12). At the base of the trial pit, LF 2a is 

exposed, with well-sorted silty sands showing fluidisation and disturbed laminations, including tightly 

overturned folds (Fig. 12). The intensity of deformation increases upwards. Micromorphological sample 

WHG TS Di was taken from LF 2a at 1.3 m height (Fig. 13 and Table 2). The silt is well-sorted with occasional 

deformed clay laminations. On macroscopic inspection, it has a variable texture showing extensive 

deformation of primary fluvial bedding structures. The skeleton grains mostly consist of well-sorted silt, 

predominantly quartz, and are angular to well-rounded in shape. Rare larger sand grains are sub-angular to 

sub-rounded in shape. The thin section has two large vugh (laboratory-induced) voids, which may be related 

to manganese staining of the sediments (Fig. 13A). Skeleton grains are typically aligned north–south. 

Structural analysis reveals graded bedding structures including the foresets of a climbing ripple. This 

conformable, graded bedding has been extensively fluidised under saturated, loaded conditions (cf. Phillips 

et al., 2007). Cutting through the deformed bedding are a series of faults (Fig. 13A). A sheared and 

attenuated clay intraclast is associated with lineations of micro-fabric and small skeleton grains. This 

deformation is emphasised by the clear lattisepic and masepic plasmic fabric.  

4.5. LF 2b: upturned, interbedded sand and clay  

In Exposure D1, LF 2a is capped by a bed of clay that dips downwards to the north. It swells sharply into 

two distinct clay pods (augens) with internal sub-vertical, deformed laminations (Figs. 11 and 12). The 

sediment above the clay augens (LF 2b) in Exposure D1 is significantly different from that below, consisting 

of incoherent, interbedded sand and clay with a distinct sub-vertical nature (Fig. 11C). These complex 

interstratified sediments are heavily deformed and contain rare shell fragments. Towards the contact with 

the overlying diamicton, the sedimentary beds become increasingly sub-horizontal to horizontal, resulting in 

more coherent laminations (Fig. 11B). This is overlain by a narrow, discontinuous bed of poorly-sorted gritty 

sand with some internal stratification, which grades into a 10 cm thick bed of clay. There is evidence of 

incorporation of the sediments below in the form of soft sediment pebbles, and the clay extends in places as 

stringers into the diamicton above. The clay bed contains rare pebbles similar to those in the diamicton 

above. The upper contact is sharp and undulatory (Fig. 11B).  

WHG TS Dii was sampled from LF 2b, Exposure D1, from the heterogeneous sediment above the clay 

augen structures (Figs. 11 and 13B). The sand shows deformation structures, and the clay laminations are 
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deformed and disjointed. The slide constitutes mostly well-sorted silt with some sand grains. There are also 

soft sediment pebbles visible, with coherent internal plasmic fabric (van der Meer, 1997). Iron staining along 

grain boundaries is apparent. Thin-section study indicates that the silt grains are predominantly angular to 

sub-angular in shape, while the larger sand grains are more rounded (Table 2). The matrix is composed of silt 

skeleton grains with some clay. The voids are vugh-type, with some bedding-parallel voids, probably caused 

during packing. The laminations indicate primary deposition in water, followed by strong deformation. There 

has been ‘flow’ of the bedding (Menzies et al., 2006). This deformation is related to the development of a 

common latti/skelsepic plasmic fabric within the clay matrix.  

WHG TS Diii was taken from the contact between LF 2b and LF 3a, Exposure D1 (Fig. 11 and Table 2). It is a 

macroscopically homogeneous, moderately well-sorted, massive silt with numerous large round clay 

intraclasts, sometimes with their own plasmic fabric. Angular to sub-angular silt skeleton grains are evenly 

distributed across the slide. There are some indications of crude primary bedding. The matrix displays a 

weakly developed latti/ skelsepic plasmic fabric.  

4.6. LF 2c: deformed and interbedded diamicton  

The contact between LFA 2 and LFA 3 is poorly exposed but is visible in Exposure D2 (Fig. 13), where they 

are complexly inter-bedded. LF 2a is well exposed in the base of the trial pit, and is overlain sharply and 

unconformably by a dark brown diamicton (LF 3a). The silts show evidence of shear, loading and soft 

sediment deformation. Above this, the diamicton is interbedded and mixed with coarse, poorly-sorted sands 

(LF 3b; Fig. 13).  

WHG TS D2 was taken from LF 2c, the interbedded, tectonised layer between LFA 3 and LFA 2 in Exposure 

D2 (Fig. 14). It captures the contact between the beds of LFA 2 and LFA 3. Bright red sand stringers dissect 

the brown, poorly-sorted diamicton (Fig. 15). Within the diamicton, larger fine gravel skeleton grains are 

sub-rounded and irregularly dispersed, and the matrix is unevenly distributed across the slide. Skeleton 

grains include limestone, sandstone, quartz, feldspar, basalt, shell fragments, and soft sediment pebbles. The 

contact between the sand stringers and diamicton varies between sharp and diffuse. The diamicton beds are 

characterised by boudinaged and banded matrix material, displaying unistrial plasmic fabrics, grain 

lineations and turbate structures, including rotated, augen-shaped intraclasts, necking structures with 

plasma squeezed between skeleton grains, pressure shadows and some limited skelsepic plasmic fabric.  

 

5. Lithology, petrology, biostratigraphy and chronostratigraphy  

5.1. Sediment description and grain size analysis  

LFA 1 grades from a dark grey (10YR 4/1) clay with rare gravel to a dark olive brown (2.5YR 3/3) diamicton 

with increasing stone content and tectonised sand laminations. Fig. 16A shows the separate particle-size 

envelopes LFA 1, 2 and the other lithofacies associations at Warren House Gill. LF 1a has a bi-modal 

particle-size distribution, peaking in fines and in gravel (Table 3). The amount of coarse sand and gravel 

increases in LF 1b (Table 4; Fig. 16B). Sedimentological analysis clearly shows the increase in sand and 

pebbles in LF 1b. However, this fine-grained diamicton has very little coarse sand and gravel compared to 

LFAs 3 and 5. The LF 3a diamicton samples WHG G4 and F3 are presented for comparison and obviously have 
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far more gravel and substantially less sand. LFA 2 is a yellowish-brown (10YR 5/6) well-sorted silt (Fig. 15A) 

with a vigorous reaction to HCl.  

5.2. Heavy-mineral analysis  

LFA 1 has lower percentages of opaque minerals (39%) and non-opaques such as zircon (3%), kyanite 

(2%), apatite (2%), and relatively high proportions of garnet (17%), actinolite (9%), epidote (8%), hornblende 

(4%), hypersthene (4%), and monazite (6%), when compared to LFAs 3, 4 and 5 (Table 5). The presence of 

rare minerals such as pumpellyite and piedmontite is unusual in eastern British glacigenic deposits. The 

heavy-mineral suite of LFA 2 closely reflects that of LFA 1 (Table 5). To explore and to simplify the 

heavy-mineral dataset, the mineral species were divided into six groups: phyllosilicates, metasedimentary 

and detrital epidotes, pyroxenes, amphiboles, carbonates and phosphates. A correlation matrix showed that 

carbonates, amphiboles, pyroxenes and phosphates are related and explain much of the variance in the 

dataset. In a ternary diagram of the relative proportions of these groups of minerals, LFA 1 forms a tightly 

clustered group, with high proportions of amphiboles and pyroxenes, but with low proportions of 

phosphates. LFA 2 plots very close to LFA 1, but is differentiated by high percentages of pyroxene (Fig. 17A). 

The apatite-monazite and apatite-tourmaline indices, which are independent of settling velocities or 

instability, also clearly demonstrate the uniqueness of LFA 1 (Fig. 17B). Sample WHG F3 consistently plots 

close to LFA 1. This sample was taken close to the contact between the lithofacies, and may therefore 

contain minerals derived from the lower facies.  

In a PCA covariance, the first two components explain 66% of the total variance, and their plot is 

therefore an accurate representation of the whole dataset (Fig. 17C). The sediments of LFA 1 and LFA 2 plot 

in a well-defined envelope, due to their comparatively high proportion of amphiboles. One LFA 3 sample 

(WHG F3) plots within the LFA 1 envelopes in Fig. 17B and C. In a cluster analysis performed in parallel to the 

PCA (Fig. 17D), LFA 1 again forms a tight, well-defined cluster, illustrating its uniqueness at Warren House 

Gill. However, the cluster dendrogram and PCA do not discriminate between the other lithofacies, which are 

well scattered.  

5.3. Clast-lithological analysis  

The pebble lithologies of LF 1b differ profoundly from those of LF 3a, LF 4b and LFA 5 (Table 6). LF 1b is 

significantly lower in Magnesian Limestone (53%) and Carboniferous Limestone (3%), but is comparatively 

enriched in igneous, metamorphic, Cretaceous and Triassic pebbles. LF 1b has few locally derived lithologies 

but a strong component of far-travelled igneous erratics. There is a relatively high percentage of granite 

(3.7%), andesite (2.1%) and vein quartz.  

In the PCA (Fig. 18A), the first two components account for 68% of the variation in the dataset, and are 

acceptably the best representation of the variation. Component 1 (52% of the variation) is determined 

principally by Cretaceous and quartzose lithologies on the positive axis, and Southern Uplands material 

(Carboniferous sandstones and limestones, Old Red Sandstone, quartzite, greywacke) on the negative axis. 

Component 2 is mainly determined by Permian and Jurassic lithologies, and accounts for 16% of the 

variation. The third component accounts for 11% of the dataset, and is mostly related to the amount of 

sandstone. The PCA clearly distinguishes three groups: the Easington Raised Beach, LFA 1 and the three 

other lithofacies, predominantly differentiated by the presence of Cretaceous, igneous and quartzose 
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lithologies. The raised beach is principally separated as it contains only highly durable and largely local 

lithologies, less durable lithologies being rapidly eradicated in the high-energy beach environment. Cluster 

analysis also differentiated between LFA 1 and the raised beach gravel, but failed to distinguish between 

LFAs 3, 4 and 5 (Fig. 18B).  

 

5.4. Palaeontological results 

LFA 1 yielded Chlamys sp., Hiatella sp., and Balanus sp. bivalve fragments, which were too broken to and 

poorly preserved to identify beyond species level. Samples WHG F1 (89 specimens counted) and WHG G2 

(221 specimens counted), both from LFA 1, contained well preserved benthic arctic foraminifera species (Fig. 

19), with high percentages of Elphidium excavatum f. clavata. Subsidiary species include Cassidulina 

reneforme, Cibicides lobatus, Haynesina germanica, and planktonic forms. Unidentified forms accounted for 

12%. These species are typical of cold, turbid, open-marine environments. 

Sample WHG C2 from LF 2a yielded small foraminifera (82 well-preserved calcareous benthic arctic 

foraminifera species specimens counted), which consisted primarily of unidentified planktonics and the 

benthic calcareous species Elphidium sp., Haynesina germanica and Brizalina variabilis. There are very rare 

examples of C. lobatulus and Cassidulina sp. Some of these species suggest similar environmental conditions 

to those in LFA 1, but others (H. germanica and B. variabilis) are characteristic of temperate inter-tidal 

environments. The LFA 2 fauna are in good condition and show little sign of reworking.  

Sample WHG F1 (LF 1b) was analysed for palynomorphs and kerogen (Riding, 2007; Table 7). Wood 

fragments are common. Carboniferous spores in WHG F1 (2.3%) are rare when compared to LF 3a (c. 99%), 

and are largely Densosporites spp. and Lycospora pusilla. Jurassic palynomorphs (0.1%) and the 

characteristic Early Cretaceous genera Cicatricosisporites spp. (spore) and Cribroperidinium (dinoflagellate 

cyst) were observed in low numbers (0.3%). Significant numbers of Eocene dinoflagellate cysts are present, 

including Areosphaeridium diktyoplokum (Ypresian-Priabonian), Deflandrea oebisfeldensis (Late 

Palaeocene–Early Eocene), Eatonicysta ursulae (Ypresian-Lutetian), undifferentiated chorate 

(process-bearing) forms, and Homotryblium spp. (ages defined by Powell, 1992). Large amounts of typical 

Quaternary pollen and spores, including Alnus, Corylus, Filicales, Pinus, Sphagnum-type, and The extent of 

protein diagenesis was measured within the Tilia, are also present in LF 1b (Riding, 2007). 

  

5.5. Chronostratigraphy 

The extent of protein diagenesis was measured within the intracrystalline fraction, isolated, for the first 

time, from bivalve fragments tentatively identified as Hiatella from LFA 1. This genus has been analysed 

previously for AAR of the whole shell (Goodfriend et al., 1996; Manley et al., 2000) but, as the 

intra-crystalline protein fraction is different, the results are not as yet comparable (Penkman et al., 2008). 

The intracrystalline proteins of some mollusc shells have been shown to behave as a closed system during 

diagenesis and can therefore provide more reliable age determination than the total shell protein (Penkman 

et al., 2008). In LF 1a, the shells may not be in situ, but could have been derived from earlier deposits. As 
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such, shells of a range of ages may be incorporated; the age of the youngest shell defines the maximum age 

of the sediment (Bowen et al., 2002).  

L-and D-enantiomer pairs of multiple amino acids were separated on an automated RP-HPLC system, 

using a modified method of Kaufman and Manley (1998). Both the Total Hydrolysable Amino Acids (THAA) 

and the Free Amino Acid (FAA) fractions were analysed. Within a closed system, these two parameters 

display a high degree of correlation (Penkman et al., 2008). The limited data from Hiatella displayed this 

closed system behaviour for all the eight samples considered in this study (NEaar 4688-4895). Each sample 

was analysed in duplicate (Fig. 20 and Table 8).  

However, different molluscan genera are characterised by different amino acid signatures, even within 

the closed system (the ‘‘species effect’’) (Penkman et al., 2007b, 2008). As a consequence, independently 

calibrated chronological frameworks have to be developed for each genus. Unfortunately such a database 

has yet to be developed for Hiatella and an absolute age for WHG F1 (LFA 1) could not be obtained at this 

stage.  

The degradation patterns in Hiatella were compared with available data from the terrestrial genus 

Bithynia, for which a calibrated framework has been established (Penkman et al., 2007b). Multiple amino 

acids were considered as diagenesis indicators, in order to obtain independent validation of the data 

(Penkman et al., 2008). Note that during preparative hydrolysis, both Asparagine (Asn) and Glutamine (Gln) 

undergo rapid irreversible deamination to aspartic acid (Asp) and glutamic acid (Glu) respectively. It is 

therefore not possible to distinguish between the acidic amino acids (Asp and Glu) and their derivatives (Asn 

and Gln), and they are reported together as Asx and Glx.  

The amino acid Asx and Glx yielded results which were comparable with the reference genus, with D/L 

values, measured on both the total hydrolysable amino acid (THAA) and the free amino acid (FAA) fractions, 

consistent with the ratios obtained for terrestrial shells with an age of MIS 9 – MIS 11 (Fig. 20). On the 

contrary, Alanine (Ala) and Valine (Val) displayed a much higher extent of degradation, with D/L values which 

would indicate an age older than the Cromerian for the terrestrial reference genus (Fig. 20). This indicates 

that diagenesis follows different pathways in Hiatella and the terrestrial shells. As a consequence, the two 

datasets cannot be compared in order to obtain age information and AAR alone cannot yield conclusive age 

estimates at this stage. However, this will become possible as more, independently calibrated, Hiatella 

samples are analysed and the diagenesis patterns investigated in more detail. The extent of AAR suggests 

only a Middle Pleistocene or older age for LFA 1.  

Samples were collected from LFA 2 and LFA 3 for OSL dating and their suitability for the SAR protocol was 

assessed from the characteristics of the luminescence signal, pre-heat De dependence, and dose recovery 

tests. The samples collected from LFA 2 proved to be unsuitable for dating as their natural OSL signals were 

found to be very close to saturation (>500 Gy) and the samples failed to recover a known laboratory dose of 

400 Gy administered after a 1 ks bleach, overestimating it by 1.42 0.26. In contrast, three samples taken 

from the fold nose in Exposure E1 (LF 3c, Fig. 3) showed good dose recovery values (1.01 0.03) and no 

dependence of De on preheating conditions between 160 and 260 C. However, the samples produced ages 

that are highly scattered between 82 and 124 ka (Table 9) and it is possible that complete resetting of the 

OSL signal did not occur. Unfortunately, the intensity of the OSL emissions in these samples was also 

relatively low which precludes making single-grain measurements to test for mixed-grain populations. The 



Quaternary Science Reviews 44 (2012), 180-212 

 

14 
 

dates are therefore considered to represent maximum ages with LFA 3 mostly likely dating to the Early 

Devensian or younger.  

 

6. Interpretation and discussion  

6.1. Processes of deposition  

The basal facies at Warren House Gill, LF 1a, has the macroscale and microscale hallmarks of a 

glacially-influenced waterlain deposit subsequently subjected to glaciotectonism. The evidence includes 

graded Type 2 laminations (cf. Roberts and Hart, 2005), far-travelled lithics, conformable contacts, 

dropstones, weak plasmic fabrics, turbid water foraminifera, fossil shell fragments, and stratification (cf. 

Boulton and Deynoux, 1981; Domack, 1984; Powell, 1984; Eyles et al., 1985; Hart and Roberts, 1994; Merritt 

et al., 1995; Carr, 2001; O Cofaigh and Dowdeswell, 2001). The microscopic deformed graded bedding, 

dropstones, stratification and the lack of plasmic fabric development also indicate that this is a glaciomarine 

diamicton, deposited by mass flow and rainout from a glacier terminus. The boudinage, rotation, deformed 

beds, faulting and folding in LFA 1 (Table 2) suggest that it was subjected to post-depositional soft sediment 

deformation and glaciotectonism (Powell, 1984; Eyles et al., 1985; Powell and Molnia, 1989; Hart and 

Roberts, 1994; Carr, 2001; Hiemstra, 2001).  

The foraminifera E. excavatum forma clavata and C. reneforme are typically found in turbid arctic 

environments and are associated with glaciomarine conditions (Hald and Korsun, 1997). C. lobatulus is 

usually found more distal to the ice margin. H. germanica lives in open-water conditions (Hald and Korsun, 

1997; Jennings et al., 2004). The variety of species with the dominance of E. excavatum suggests that the 

sediment was deposited in cold marine water some distance from the ice margin. The well-preserved nature 

of the foraminifera tests suggests limited reworking. It is noteworthy that glaciomarine rainout diamictons 

typically have paired in-situ marine bivalves (Eyles et al., 1989). However, no in situ paired bivalves were 

observed in LF1. Combined with the evidence for waterlain sedimentation, the broken fragments imply that 

the shells have been reworked, and may be derived from pre-existing sediments.  

LF 1a grades into the more proximal LF 1b (reflected by upwards coarsening; Fig. 16B), dominated by 

suspension settling with increasing inputs of ice-rafted debris as the ice front advances. The deformed 

graded laminations in LF 1b are related to remobilisation and subsequent resettling of material by 

subaqueous traction currents, which are typical processes in glaciomarine environments (cf. Eyles and Eyles, 

1983). They were subsequently glaciotectonised, as shown by the faulting, shearing and folding observed in 

the thin sections. The clast macro-fabric from LF 1b (Exposure G, Fig. 4) shows very little clustering along the 

a-axis and a high but variable dip angle, which is typical of glaciomarine diamictons (Powell, 1984; Domack 

and Lawson, 1985; Powell and Molnia, 1989; McCabe et al., 1993; Hart and Roberts, 1994). LFA 1 is therefore 

interpreted as being deposited by the rapid rainout of material from dense sediment-laden underflows (cf. 

Lee and Phillips, 2008); the coarsening upwards particle-size distribution (Fig. 15) being related to the 

increasing proximity to the glacier terminus.  

Increased shear and deformation is apparent in LF 1b, and the sediment is increasingly homogenised. 

WHG TS F exhibits deformed primary depositional features such as graded bedding. The lack of strong 

turbates, grain lineations, and a strong plasmic fabric, despite the high clay content, indicates a low stress 
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signal and unlikely derivation as a subglacial till (Carr, 2001; Khatawa and Tulaczyk, 2001). Deformation was 

induced post-depositionally by ice push, dewatering, and increase in ice-overburden pressure, resulting in 

ductile deformation, fluidisation of laminations, grain rotation and shear (Phillips et al., 2002). Brittle faulting 

cutting across the fluidised soft-sediment deformation occurred during the final phase of glaciotectonic 

deformation, probably induced by lowered porewater pressure (Hart et al., 2004; Phillips et al., 2007). The 

increasing deformation signal with height in the sediment pile is therefore related to increasing secondary 

glaciotectonism induced during glacier override.  

The pink silts in LF 2a contain microfossils, graded bedding and Type A climbing ripples (as defined by 

Allen, 1963), signifying that LF 2a was deposited in a shallow subaqueous environment (see Fig. 13). The 

heterogeneity of grain size suggests that it could be reworked loess, as originally defined by Trechmann 

(1952). The foraminifera assemblage is distinct from that of the underlying LFA 1(Fig. 19) and suggests a 

temperate, shallow, inter-tidal to estuarine zone (cf. Horton and Edwards, 2006). Thin-section samples WHG 

TS Di and Dii from Exposure D1, LF 2a, show abundant evidence of soft-sediment deformation (Fig. 13). 

Liquefaction and fluidisation are related to vertical loading, in this case either the weight of ongoing 

sedimentation or loading by ice-overburden pressure (Mills, 1983; Phillips et al., 2002, 2007). As porewater 

pressure decreased the sediments were faulted and fractured through brittle deformation (Hart et al., 2004).  

The clay augen structures in Exposure D (Fig. 11) are ‘clast and tail’ features, with the narrow clay beds 

extending out to form the augens’ ‘tails’. The non-graded clay laminations, the rotated, augen-shaped clay 

clasts, and the lack of lateral continuity of the clay laminations are similar to structures observed in Norfolk 

and elsewhere (e.g., McCarroll and Harris, 1992; Roberts and Hart, 2005; Hart, 2007; Ó Cofaigh et al., 2008), 

where they are indicative of compression, longitudinal extension and rotational shear through subglacial 

deformation (Hart and Boulton, 1991; Piotrowski and Kraus, 1997; Hart, 2007). The augen structures are 

overlain by LF 2b, where evidence of loading, soft-sediment deformation, fluidisation and dewatering (as 

defined by 1983) are apparent. The upward-turned fan shapes of these sediments are characteristic of water 

escape induced by loading (potentially ice-overburden pressure related to the emplacement of LFA 3 above). 

Micromorphological analysis of the contact between LF 2b and LF 3a (WHG TS Diii) shows that the 

homogenised silt with clay and silt intraclasts has been subjected to shear stress, resulting in the minor 

plasmic fabric development, hindered by a lack of fines.  

In Exposure E2, LF 1c clearly shows mixing between LFA 1 and 2, with rooted structures, stringers 

extending southwards, attenuated folds, deformed inclusions, and boudinage (Fig. 8). These penetrative 

structures are typical of subglacial glaciotectonic deformation (cf. Evans et al., 1995; Roberts and Hart, 2005; 

Hart, 2007; Lee and Phillips, 2008; Phillips et al., 2008), and typically occur beneath grounded subglacial ice 

at the shear zone (van der Wateren, 1995; Benn and Evans, 1996). The sandier facies of LFA 2 would have 

resulted in a decrease in shear strength through a comparative increase in porewater content (Evans et al., 

2006), and deformation could therefore occur even at low shear strains (as discussed by van der Wateren et 

al., 2000). The lack of lateral continuation of this glaciotectonite highlights the intensely localised ductile 

deformation. This deformation probably occurred during emplacement of LFA 3 above.  

Additional evidence of glaciotectonic deformation is also visible in LF 2c, in Exposure D2 (Figs. 13 and 14). 

Structures typical of subglacial deformation include stringer initiation (Roberts and Hart, 2005), attenuation 

of folds (Lee and Phillips, 2008), deformed inclusions and intraclasts (Berthelsen, 1979; Evans et al., 1995; 
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Hicock and Fuller, 1995), and mixing in the lower parts of the till with rooted structures, shear lenses, till 

wedges and attenuated folds (van der Wateren, 1995; Hart, 2007). The thin section of the contact (WHG TS 

D2) shows stringer initiation into LF 3a, due to subglacial ductile deformation under water-saturated 

conditions. The sharp contacts of the ungraded red sand beds confirm that these are the initiation point of 

Type 1 laminations (cf. Roberts and Hart, 2005). This glaciotectonite was therefore formed through 

low-strain subglacial shearing (van der Wateren, 1995; Phillips et al., 2002; Hiemstra et al., 2007).  

6.2. Event stratigraphy at Warren House Gill  

LFA 1 and LFA 2 therefore include a variety of facies, from those exhibiting minimal soft sediment 

deformation and fluidisation (LF 1a and LF 2a) to those with extensive evidence for glaciotectonic processes 

(LF 1c and LF 2c). A five-phase event stratigraphy can be identified (Fig. 19). In Phase 1, LFA 1 was deposited 

as a glaciomarine rainout diamicton and experienced syn-depositional soft-sediment deformation. During 

Phase 2, LFA 1 was overridden by the ice mass that deposited it and underwent extensive glaciotectonic 

deformation (Fig. 19B), as observed in Exposure G (Fig. 5). Increasing deformation is apparent higher in the 

sediment pile, explained by the decreasing transmission of stress downwards (van der Wateren, 1995; 

Phillips et al., 2002)(Fig. 21A). This was followed by the recession of the ice sheets and the conformable 

deposition of LFA 2 (Phase 3, Fig. 21B).  

In Phase 4, LFA 2 was liquefied, fluidised, sheared and tectonised during the emplacement of LFA 3 above 

(Fig. 21A). In Exposure D1 (Fig. 11), water escape, fluidisation and shear stress resulted in the formation of LF 

2b, the augen structures, and the shear zone contact with LFA 3 (Fig. 11B). In Exposure B, shear stress was 

transmitted to bedrock, as can be seen by the brecciation of the Magnesian Limestone (Figs. 9 and 10). The 

amount of deformation increases in a continuum to Phase 5, where penetrative deformation in a thin 

sediment pile tectonised LFA 1 with LFA 2 (to form LF 1c, Fig. 8). Where the pile was thicker, as in Exposure 

D2, LFA 2 and LFA 3 were tectonised together, and LFA 1 was left undisturbed. In Exposure D1, with a much 

greater thickness of LFA 2, sediments near the base were subjected to only minor disturbance (LF 2a), 

whereas sediments higher up in the pile experienced shearing, dewatering, and glaciotectonism (LF 2b), due 

to the increase in penetrative stress upwards through the sediment pile towards the ice/bed interface (cf. 

Evans et al., 2006).  

6.3. Chronostratigraphy  

LFA 2 has an open-marine, temperate fauna, suggesting deposition during an interglacial period. It is 

overlain by an Early Devensian till (Table 9), indicating that LFA 2 is at least MIS 5e or older. This provides an 

upper age limit on LFA 1 of MIS 6. LFA 1 contains a Middle Pleistocene shell fauna, dated by amino acid 

racemisation.  

Lithological analysis of the nearby Easington Raised Beach (Fig. 1) clearly indicates crystalline and 

Cretaceous elements present within both the raised beach and LFA 1 (Fig. 16). These components are not 

present in the Devensian sediments in the vicinity (Table 6). The only current known and thus the most likely 

source of the rare Cretaceous and quartzose erratics within the raised beach is LFA 1 (cf. Davies et al., 

2009a). The Easington Raised Beach has been well constrained by OSL and AAR to MIS 7 (Bowen et al., 1991; 

Davies et al., 2009a), which dates LFA 1 to older than MIS 7. It is not possible for the raised beach to have 
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been deposited first and then to have been reworked, providing the far-travelled erratic component to LFA 

1. The raised beach, being a high-energy environment, contains only durable lithologies, whilst LFA 1 

contains a number of soft, non-durable lithologies such as granite, red marl, chalk, schist and slate (Table 6), 

which are not present either in the Easington Raised Beach or in the younger glacial sediments at Warren 

House Gill.  

If there was an earlier, separate glaciation, bringing Cretaceous rocks from the North Sea floor and 

igneous erratics from Scotland/ Scandinavia, the resulting glacial deposit could be the source for the erratics 

in the Easington Raised Beach, and the raised beach could therefore be irrelevant to the age of LFA 1. 

However, this is unlikely as there is no evidence for such a glaciation on the coast of northern England. The 

most probable solution is that LFA 1 was the source of the far-travelled erratics within the raised beach.  

Therefore, the simplest explanation is that the erratics within the raised beach were derived from LFA 1, 

which is currently the only existing source of eastern-provenance lithologies, and that LFA 1 therefore 

pre-dates the Easington Raised Beach. Combined with the amino acid evidence, this strongly suggests an age 

range of MIS 8 or older for LFA 1. This is discussed in more detail in Davies et al. (2009a). An MIS 8 age is 

possibly more likely than MIS 10 or 12, as if it was deposited in the base of a palaeovalley during MIS 12, this 

palaeovalley would have had to have been impossibly deep, due to a long and sustained period of tectonic 

uplift since the Cenozoic (refer to uplift discussion below and to Westaway, 2009a), although this is 

speculative. In addition, note new and emerging evidence from the Trent valley and Tottenhill, which 

indicates clearly that there was a large post-Anglian, pre-Devensian glaciation of eastern England to the 

south of County Durham (Gibbard et al., 1992; Langford and Briant, 2004; Carney, 2007). Due to the lack of 

directly dateable material, the chronostratigraphy at this time remains uncertain and LFA 1 probably dates 

to between MIS 12 and 8, and it is highly likely to be older than MIS 6, as stated by previous workers.  

6.4. Provenance  

Eocene marine palynomorphs are rare in tills from eastern England (Lee et al., 2002; Riding et al., 2003), 

so the Eocene dinoflagellate cysts in LFA 1 are highly significant. There are no onshore outcrops of Eocene 

rocks in the Durham area or to the north. Hence, these must have been derived from the North Sea Basin to 

the north or northeast, where post-Cretaceous sedimentary rocks are present at, or close to, the sea bed. By 

contrast, the dominance of Carboniferous spores in LF 3a suggests that the majority of the material was 

derived locally from the Northumberland and Durham coalfield.  

LFA 1 contains Late Cretaceous chalk, flint, and microfossils from the north-eastern North Sea, and the 

Triassic Red Marl, which outcrops in the near offshore region, and rarely in fissures in the limestone bedrock 

onshore. The gravel lithology of LFA 1 includes Magnesian Limestone and a significant number of 

metamorphic quartzose lithologies. There is relatively little local or Pennine input, reflected in the low 

proportions of Carboniferous Limestone, sandstone, coal, and shale (Table 6). No rhomb porphyries or 

larvikites from southern Norway were found, though these have previously been reported (Trechmann, 

1915, 1931). A single large boulder of alkali K-feldspar granite with quartz, plagioclase, minor biotite and no 

muscovite was recovered from LFA 1. Alkali-feldspar granites do not occur widely in north-eastern Scotland, 

and this source is excluded by the absence of muscovite (cf. Stephenson and Gould, 1995). A possible source 

for this granite is the Permian Drammensgranit from the Oslofjord region of Norway (cf. Oftedahl, 1960; 
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Smed and Ehlers, 1994). 

Various other lithologies within LFA 1 are probably derived from Scotland or northern England. These 

include Cheviot andesite, which crops out in north-eastern England, and a typical Aberdeenshire alkali 

K-feldspar granite with muscovite and hornblende (Stephenson and Gould, 1995). Several syenites were 

found; these are variable and wide-ranging, and could be derived from either Norway, the Scottish 

Basement or the Grampian Highlands (Oftedahl, 1960; Smed and Ehlers, 1994; Stephenson and Gould, 

1995). WHG C1 includes a single low-grade mafic-rich metamorphic erratic, typical of those from 

Aberdeenshire.  

The metamorphic mineral assemblage includes significant amounts of ferroactinolite, which are 

associated with low-grade schists and meta-igneous pelitic rocks, such as the Dalradian of Scotland or 

Caledonides of Norway (Bryhni and Andre´ asson, 1985; Strachan et al., 2002). The mineral assemblage of 

chlorite, ferroactinolite, and biotite is diagnostic of the Greenschist Facies of the Caledonide rocks of 

southeast Norway or Scotland (Bryhni and Andre´ asson, 1985). They are associated with epidote, chloritoid, 

albite, muscovite, calcite and dolomite. Calcite and dolomite are not durable and were therefore locally 

sourced. Chloritoid is present in Scottish metamorphic rocks. Epidote and hornblende occur in comparatively 

high percentages in LFA 1, in comparison to the other tills in eastern England. Epidote is most likely to be 

derived from the Greenschist mineral assemblage. Hornblende is associated with higher temperature 

metamorphism and igneous rocks (Hubert, 1971). This could potentially be sourced from the 

Epidote-Amphibolite facies, which underlies the Greenschist Facies in southern Norway (Bryhni and Andre´ 

asson, 1985). Outcrops of epidote-amphibolite rocks also occur in the Southwest Highlands (Strachan et al., 

2002), amphibolite facies metamorphic rocks occur in the Central Highlands, and there are granodiorite 

intrusions in Scotland and northern England.  

The presence of rare minerals such as piedmontite also distinguishes LFA 1. Piedmontite is associated with 

low-grade schists, manganese ore deposits and hydrothermal metamorphism. The most likely source for this 

mineral is around Glen Coe (Strachan et al., 2002), although it is difficult to get this mineral across the ice 

divide into eastern Britain. This may have occurred over multiple glacial cycles, although it is not a 

particularly durable mineral, so this is unlikely. Piedmontite also occurs in schists in Scandinavia, and 

therefore this is an alternative source.  

There are high percentages of monazite and hypersthene in LFA 1. Monazite is typical of acid igneous 

rocks and also occurs as a detrital phase in some sandstones (Hubert, 1971), and could be from Scotland or 

Scandinavia. Hypersthene is found in basic igneous rocks and gneisses, such as the Carboniferous basalts of 

Scotland or the Permian basaltic lavas of Oslofjord (Oftedahl, 1960; Stephenson and Gould, 1995). The 

pyroxenes and olivine minerals could be derived from Scottish mafic igneous rocks, although these minerals 

are not durable and are likely to have been derived from nearby sources, such as the Whin Sill Dolerite and 

Carboniferous volcanics in the Southern Uplands. The combination of the metamorphic minerals chloritoid, 

staurolite and garnet is indicative of Stonehavian metamorphism from northeast Scotland, close to the 

Highland Boundary Fault (Stephenson and Gould, 1995; Trewin, 2002).  

The mixed lithological, mineralogical, and microfossil assemblages within LFA 1 suggest ice-rafting from a 

number of different regions. Trechmann’s observations of a major Norwegian input into the Warren House 

Formation were not replicated in this study (cf. Trechmann, 1931), although the possible presence of 
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Drammensgranit and a strongly metamorphic mineral presence supports a Norwegian influence. There is 

strong evidence of a northeasterly North Sea detrital material with Eocene palynomorphs, Triassic red marl, 

chalk and flint erratics. The Eocene palynomorphs are strong evidence of widespread erosion of Eocene 

strata adjacent to the central graben within the North Sea. These are the most easterly-derived lithologies 

found in LFA 1 and would logically have had to have involved the presence of the FIS in the nearby region.  

There is strong evidence of north-eastern Scottish material, with slate, schist, and Grampian granites. 

There is a substantial component of syenite and granite, which could be derived from either Norway or 

Scotland. The low percentages of erratics typical of the Midland Valley of Scotland, such as Old Red 

Sandstone, and the low percentages of Carboniferous lithologies and fossils, imply that the ice did not 

extend very far to the south, and that the single Cheviot dolerite erratic could be recycled.  

Mineralogically, LFA 2 strongly resembles LFA 1. This sediment was probably derived by erosion and 

re-deposition of LFA 1 by coastal and marine processes. The rounded cobbles within Exposure B have a 

Pennine and local origin, and are probably reworked fluvial cobbles from inland Durham.  

6.5. Revised formal stratigraphic terminology for sediments at Warren House Gill  

The Warren House Formation of Thomas (1999) therefore requires redefinition. The name ‘Ash Gill 

Member’ is proposed here for the basal deposit of the ‘Warren House Formation’ (Thomas, 1999), 

interpreted here as a glaciomarine rainout diamicton subsequently overridden and subjected to 

glaciotectonic deformation. It contains primarily Scottish and North Sea detrital material. The Ash Gill 

Member is overlain by temperate–climate estuarine silts (LFA 2). They are also part of the Warren House 

Formation, and are here formally named the ‘Whitesides Member’ after the nearby minor valley, Whitesides 

Gill (see Fig. 2). The proposed stratigraphical scheme is summarised in Table 10.  

6.6. Wider implications for northwest European ice sheet history  

The occurrence of LFA 2 at 6–10 m above present sea level indicates a marine transgression at Warren 

House Gill, with subsequent uplift. Long-term uplift of the whole sequence has been proposed by other 

workers (Westaway, 2009b, 2009a), and the proposed Middle Pleistocene age suggests that there has been 

significant uplift since the palaeovalley was formed. Rapid uplift in northern England, in comparison to 

southern England as far north as Yorkshire, is suggested due to the greater mobility of the crust as a result of 

its younger thermal age and the heating effects of Palaeozoic granites, and isostatic uplift of the crust in 

response to Quaternary erosion. Westaway (2009a) argued that an MIS 7 age for the Easington Raised 

Beach, which has a height of 33 m O.D., means an uplift rate of 0.19 mm
a1 

(Westaway, 2009a). This would 

normally mean that the older Ash Gill Member would be considerably higher in the landscape than the 

Easington Raised Beach. However, the landscape position of the Ash Gill Member can be reconciled as it was 

deposited in the base of a deep palaeovalley. Uplift of 81.7 m since MIS 12 (0.19 mm
a1 

for 430,000 years; cf. 

Westaway, 2009a) would mean that the Ash Gill Member would now rest at sea level, and that the Easington 

Raised Beach would be at 33 m O.D. This is shown in Fig. 22.  

Catt (1991b) suggested that the Warren House Formation could be correlated with the MIS 6 Bridlington 

Member (Basement Till) of Yorkshire, based on the presence of Scandinavian lithologies, the similar marine 
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ostracods within the Bridlington Crag of the Bridlington Member and the Ash Gill Member, and an inferred 

pre-Ipswichian age (Trechmann, 1915; Catt and Penny, 1966; Francis, 1972; Catt, 2007). This is now viewed 

as unlikely, given an inferred MIS 8 to 12 age for the Ash Gill Member. It is also dangerous to assume that 

sediments of similar affinity would not have been deposited in most glaciations, meaning that the Ash Gill 

Member cannot be dated based on lithostratigraphic correlation alone.  

During the initial English lowlands ice advance ice sheets sourced in Britain and Norway were calving into 

a glaciomarine embayment in the modern North Sea Basin. The buried palaeovalley of Warren House Gill 

was flooded with marine waters during advance of this ice sheet and the Ash Gill Member was deposited, 

with detrital material from Scotland, the North Sea Basin and Norway. Upward coarsening within the Ash Gill 

Member reflects the advancing ice margin. LF 1b reflects glaciotectonic deformation by the advancing ice 

sheets. There is evidence of glaciomarine conditions in the North Sea Basin during MIS 6 or 8 in the Fisher 

Formation (Gatliff et al., 1994), and other workers have suggested evidence of glaciation in the North Sea 

during MIS 8 (Beets et al., 2005). There is widespread evidence of large-scale lowland glaciation in Britain 

during MIS 12 (Lunkka, 1994; Lewis et al., 1999; Fish and Whiteman, 2001; Lee et al., 2006), and if the Ash 

Gill Member was deposited during MIS 12, it could easily have occurred during an early phase and later been 

overridden by advancing ice sheets.  

The overwhelmingly British and eastern North Sea provenance of the Ash Gill Member indicates that 

there is no evidence of an FIS in County Durham during MIS 6. The concept of a Scandinavian ice sheet 

reaching onshore eastern England prior to the British ice sheet, which would have had far less distance to 

travel, is difficult to uphold in the face of this new evidence. It is likely that the British Ice Sheet, advancing 

over the site at Warren House Gill as it continued to grow, would have quickly deflected the Scandinavian ice 

sheet, possibly coalescing in the low lying area of the North Sea. The FIS is thought to have interacted with 

the BIIS in the North Sea multiple times during the Quaternary, possibly deflecting the North Sea Lobe during 

MIS 2 (Davies et al., 2009b), the glaciation that deposited the Ash Gill Member (MIS 8 to 12), and during MIS 

12, with evidence of (reworked) Scandinavian erratics in glacial deposits in Norfolk (Pawley et al., 2004; 

Hoare and Connell, 2005).  

 

7. Conclusions  

 The ‘Warren House Formation’ is redefined as comprising a glaciomarine rainout diamicton, defined 

here as the ‘Ash Gill Member’, overlain by pink estuarine silts (possibly reworked loess), the 

‘Whitesides Member’. The Ash Gill Member was subsequently overridden by at least the ice sheet 

which deposited it, and possibly again during later glaciations. The ‘Whitesides Member’ overlies the 

Ash Gill Member and was glaciotectonised at least during the Devensian glaciation. The Ash Gill 

Member is MIS 12 to MIS 8 in age.  

 The Ash Gill Member formed in a deep palaeovalley, and was deposited in a glaciomarine 

environment by iceberg rafting and suspension settling from calving ice sheets situated in the North 

Sea Basin and onshore northern Britain, producing detrital material sourced from northeast Scotland 

and the northeast North Sea.  
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 This research has therefore provided substantial new information regarding British lowland Middle 

and Upper Pleistocene glaciations during the Quaternary. The new scheme updates that proposed 

by Thomas (1999). This research supports recent work in Norfolk, which also suggests that is was no 

evidence of a Scandinavian ice sheet onshore in eastern England during MIS 6 or 12, although it may 

have frequently been active in the near offshore area (Lee et al., 2002, 2004b; Preece et al., 2009).  

 Fennoscandian ice has interacted with the BIIS in the North Sea, close to eastern England, possibly 

multiple times during the Quaternary, though it is unlikely to have reached onshore Britain. Though 

a precise chronostratigraphical framework for these sediments is still under development, the 

interpretation of the Warren House Formation ‘Ash Gill Member’ as a Middle Pleistocene 

glaciomarine deposit, derived primarily from Scottish and North Sea sources, is significant. The 

overlying silts, the Whitesides Gill Member, are marine or estuarine, and reflect an ameliorating 

climate.  
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Tables 

 

Table 1. Research through time of the basal deposit at Warren House Gill. 

Name of 
Sediment Age Process Author 

Scandinavian 
Drift 

‘Older 
Glaciation’ 

Scandinavian 
subglacial till 

Trechmann, 1915, Trechmann, 1931 and Trechmann, 
1952 

Scandinavian 
Drift MIS 6 

Scandinavian ice 
shelf Beaumont 1967 

Warren House 
Till MIS 6 

Scandinavian 
Subglacial till Smith and Francis 1967 

Warren House 
Formation MIS 6 

Scandinavian 
Subglacial till Thomas 1999 

 

Table 2. Micromorphological summary of thin sections of LFAs 1 and 2 at Warren House Gill.  
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Table 3. Particle-size analysis of sediments at Warren House Gill.  

Particle diameter LFA 1 LFA 2 LF 3a LF 4a LF 4b LFA 5 

% Clay (>3.9 μm) 27.06 11.58 17.51 4.3 1.9 9.55 

% Silt (3.9 - 63 μm) 40.22 77.97 33.5 27.63 4.22 8.91 

% Fine sand (63 - 500 μm) 26.46 9.33 26.41 68.08 7.04 26.45 

% Coarse sand (500 μm - 2 mm) 6.42 1.12 9.05 0 8.27 12.65 

% Fine gravel (2 mm - 8 mm) 0.72 0 8.32 0 28.49 17.5 

% Coarse gravel (8 mm - 31.5 mm) 1.11 0 6.21 0 50.08 24.94 

 

Table 4. Particle-size analysis of LFA 1 at Warren House Gill, with some LF 3a sample included for comparison 

Particle diameter WHG 
G1LF 1a 

WHG 
G2LF 1a 

WHG 
G3LF 1b 

WHG F1LF 
1b 

WHG F3LF 
3a 

WHG 
G4LF 3a 

WHG C3LF 
3a 

Sample height (metres O.D.) 8.5 10 11 12.5 15 18.5 31 

Original sample weight (g) 8580 10 195 4380 16 730 6280 6740 6500 

% Clay (>3.9 μm ) 26.74 26.96 28.45 27.09 17.77 14.65 24.67 

% Silt (3.9 - 63 μm) 49.25 42.61 43.37 26.67 29.21 29.91 37.6 

% Fine sand (63 - 500 μm) 18.6 21.56 21.02 40.68 31.04 32.84 18.23 

% Coarse sand (500 μm - 2 
mm) 

4.35 8.24 6.89 1.57 1.63 6.88 5.11 

% Fine gravel (2 mm - 8 mm) 0.61 0.73 0.89 0.98 6.61 7.55 6.43 

% Coarse gravel (8 mm - 31.5 
mm) 

0.44 0.91 0.38 4.01 14.75 9.17 7.97 
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Table 5. Average percentage (non-opaques) heavy-minerals at Warren House Gill, 63–250 μm fraction. The 

means of multiple samples from the same lithofacies are shown. The minerals are grouped with minerals of 

a similar chemical nature and of a similar provenance. 

 

Heavy-mineral phase LFA 1 LFA 2 LFA 3 LFA 4 LFA 5 

n 4646 1204 21276 6346 2058 

% Opaques 38.7 44.3 78 73.8 76.2 

% Non-opaques 61.3 56.8 22 26.2 24.8 

% Heavy-minerals 0.8 0.4 1.3 0.7 1.7 

Ferromagnesian minerals 

 
Olivine 2.7 1 1.7 1.6 2.5 

Pyroxene Group 

Enstatite 1.3 1.1 1.1 0.5 0.2 

Hypersthene 4.4 1.5 1.2 0.2 0.5 

Clinopyroxene 4.6 9.9 4.8 1.5 1.3 

Amphibole Group 

Tremolite 0 0 0 0.1 0 

Ferroactinolite/actinolite 9 0.4 1.5 0 0 

Hornblende 3.6 3 0.7 0.6 0 

Phyllosilicate minerals 

 

Muscovite 4.1 3.2 7.5 6.8 4.5 

Glauconite 0.9 0 0.2 0.1 0 

Biotite 4 16.1 9 11.2 2.3 

Chlorite 1.4 6.1 4.1 4.2 0.5 

Metasedimentary index minerals 

 

Garnet 16.9 17.1 12.7 14.2 28.7 

Staurolite 1.1 0.2 0.5 0.6 0 

Chloritoid 2.8 0.1 0.6 0.2 0 

Aluminium silicates 

Sillimanite 2 1.1 1.6 0.1 1.4 

Andalusite 2 1.5 6.3 4.9 0.7 

Kyanite 2.2 1.1 7 7.3 4.1 

Epidote Group minerals 

 

Zoisite/Clinozoisite 4.5 6.1 6.3 8.7 7.4 

Piedmontite 0.1 0 0 0 0 

Epidote 8.2 14.4 4.4 1.2 2.3 

Axinite 1.5 2 0.1 0.1 0 

Other detrital minerals 

 

Zircon 2.5 0.5 4.3 4 16 

Titanite 7.6 6.6 2.1 0.5 3.4 

Tourmaline 2 1.6 1.8 3.6 4.3 

Pumpellyite 0 0 0.5 0 0 

Oxides 

Rutile 0.8 0.3 2 1.8 4.6 

Brookite 0.8 0.8 1.6 4 6.8 

Spinel 0.1 0 0.2 0.2 0.2 

Anatase 0.3 0 0.2 0.5 0 

Carbonates Dolomite/Calcite 1.7 3 16.6 19.4 4.6 

Sulphates Baryte 0 0 0 0.3 0 

Phosphates 
Apatite 2.3 2.6 1.9 2.7 4.5 

Monazite 7 0.8 1.1 0.3 0.2 
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Table 6. Clast-lithological analysis of sediments at Warren House Gill and the Easington Raised Beach (please 

refer to Davies et al., 2009a for more detail on the Easington Raised Beach). 

 
Lithofacies Association 

Warren House Gill Easington 
Raised Beach LF 1b LF 3a LF 4b LFA 5 

n 710 3212 677 263 2743 

Igneous 

Diorite 0.5 0 0 0 0 

Granite 3.7 0.5 0.6 0 1 

Gabbro 0 0 0 0 0 

Rhyolite 1.4 0.5 0.3 0 0.9 

Andesite 2.1 0.2 0.2 0.4 0.1 

Basalt 0.2 0 0 0 0 

Porphyry 1.2 0.2 1.3 0.4 5 

Felsite 0.3 0.1 0 0 0 

Metamorphic 

Gneiss 0.3 0 0 0 0 

Slate 0.3 0 0 0 0 

Schist 0.2 0 0 0 0 

Sandstone, Siltstone 
and Breccia 

Sandstone (undifferentiated) 2 11 4.7 1.9 0.1 

Quartzitic Sandstone 1.5 1.7 2.2 3 0 

Siltstone 0.2 0.7 0 0 0 

Breccia 0.1 0 0 0 0 

Old Red Sandstone 0 0.3 0.3 0 0 

Greywacke 0.8 6.8 4.9 4.2 0.1 

Quartzite 

Brown orthoquartzite 2 1.3 0.2 0.8 0.3 

Red orthoquartzite 0.5 0.2 0 0 1.3 

White orthoquartzite 7.5 0.3 1.2 0 3.4 

Brown Vein Quartz 0.9 0.1 0 0 0.2 

Red Vein Quartz 0.5 0 0 0 0.1 

White Vein Quartz 7 0.5 0.9 0 4.1 

Cretaceous 
Flint 3.9 0 0 0 2.2 

Chalk 2.5 0 0 0 0.1 

Jurassic 
Ironstone 0 0.3 0 0.8 0 

Mudstone 0.1 1.2 0.6 0 0 

Triassic Red Marl 3.3 0.2 0 0 0 

Permian 

Magnesian Limestone 52.6 68.3 70.3 76.8 80.9 

Yellow Sands 0.1 1.1 0 0 0.4 

Whin Sill Dolerite 1.1 0.7 1.9 1.1 0.1 

New Red Sandstone 0 0 0 0 0 

Carboniferous 

Carboniferous Limestone 3 3.4 10.6 9.9 0.7 

Chert 0.1 0 0 0 0 

Coal 0.2 1.2 0 0.8 0 

Shale 0 0.1 0 0 0 
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Table 7. Age-diagnostic palynomorph analysis of LF 1b and LF 3a (from Riding, 2007). 

Sample LF 1b LF 3a 

Carboniferous spores 33 (2.3%) c. 99% 

Jurassic dinoflagellate cysts 1 (0.1%) - 

Late Cretaceous palynomorphs 4 (0.3%) - 

Eocene dinoflagellate cysts 168 (11.8%) - 

Quaternary spores and pollen 1045 (73.4%) c. 1% 

Non age-diagnostic palynomorphs 172 (12.1%) - 

 

Table 8. Amino acid data on Hiatella shells from Warren House Gill. Error terms represent 1 S.D. about the 

mean for the duplicate analyses for an individual sample. Each sample was bleached (b), with the free amino 

acid fraction signified by ‘F’ and the total hydrolysable fraction by ‘H*’. 

NEaar n° Sample name Asx D/L Glx D/L Ala D/L Val D/L [Ser]/[Ala] 

4688bF WHG09Hi01bF 0.730 ± 0.007 0.552 ± 0.003 0.824 ± 0.006 0.561 ± 0.011 0.067 ± 0.002 

4688bH* WHG09Hi01bH* 0.550 ± 0.001 0.364 ± 0.009 0.652 ± 0.003 0.433 ± 0.018 0.181 ± 0.002 

4689bF WHG09Hi02bF 0.845 ± 0.003 0.566 ± 0.012 0.847 ± 0.024 0.568 ± 0.005 0.064 ± 0.000 

4689bH* WHG09Hi02bH* 0.671 ± 0.005 0.419 ± 0.004 0.738 ± 0.002 0.355 ± 0.005 0.101 ± 0.003 

4690bF WHG09Hi03bF 0.777 ± 0.004 0.533 ± 0.002 0.806 ± 0.013 0.495 ± 0.008 0.100 ± 0.000 

4690bH* WHG09Hi03bH* 0.630 ± 0.001 0.372 ± 0.006 0.679 ± 0.002 0.303 ± 0.005 0.180 ± 0.003 

4691bF WHG09Hi04bF 0.734 ± 0.005 0.551 ± 0.004 0.829 ± 0.003 0.571 ± 0.009 0.066 ± 0.006 

4691bH* WHG09Hi04bH* 0.550 ± 0.003 0.377 ± 0.007 0.640 ± 0.010 0.320 ± 0.002 0.170 ± 0.001 

4692bF WHG09-4Hi01bF 0.794 ± 0.009 0.624 ± 0.002 0.856 ± 0.008 0.595 ± 0.005 0.060 ± 0.001 

4692bH* WHG09-4Hi01bH* 0.576 ± 0.003 0.385 ± 0.002 0.639 ± 0.017 0.258 ± 0.003 0.241 ± 0.008 

4693bF WHG09-4Hi02bF 0.776 ± 0.002 0.556 ± 0.009 0.827 ± 0.025 0.511 ± 0.007 0.102 ± 0.007 

4693bH* WHG09-4Hi02bH* 0.643 ± 0.001 0.393 ± 0.003 0.672 ± 0.005 0.326 ± 0.004 0.194 ± 0.011 

4694bF WHG09-4Hi03bF 0.855 ± 0.008 0.447 ± 0.009 0.822 ± 0.000 0.526 ± 0.001 0.139 ± 0.010 

4694bH* WHG09-4Hi03bH* 0.683 ± 0.004 0.308 ± 0.002 0.635 ± 0.005 0.288 ± 0.006 0.235 ± 0.008 

4695bF WHG09-4Hi04bF 0.870 ± 0.014 0.443 ± 0.004 0.823 ± 0.015 0.527 ± 0.003 0.161 ± 0.007 

4695bH* WHG09-4Hi04bH* 0.709 ± 0.000 0.324 ± 0.001 0.651 ± 0.004 0.294 ± 0.004 0.211 ± 0.002 

 

Table 9. Summary of sample details, dosimetry, equivalent doses, and sample ages. Dose rates are based on 

the conversion of the radioisotope concentrations, gamma dose rate from NaI spectrometry, cosmic dose 

rate calculated from the depth of the samples and an internal dose to quartz of 0.06 ± 0.02 Gy/ka. The grain 

size for all samples was 180–250 μm. Burial depth was 34 m ± 2 m. 

Sample N K (%) U (ppm) Th (ppm) 
Water 
Content 

Cosmic dose 
rate (Gy/ka) 

Total dose 
(Gy/ka) De (Gy) Age (ka) 

WHGE1 01 11 0.86 2 5.25 18% 0.06 ± 0.02 1.37 ± 0.15 113 ± 19 82 ± 17 

WHGE1 02 20 0.73 1.83 4.08 18% 0.06 ± 0.02 1.19 ± 0.13 120 ± 16 101 ± 17 

WHGE1 03 21 0.53 1.79 2.52 18% 0.06 ± 0.02 0.93 ± 0.10 116 ± 11 125 ± 18 
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Table 10. Revised lithostratigraphy of County Durham. 

 
Name Stratotype Sedimentology Genesis Provenance Chrono-stratigraphy 

Regional 
Correlatives 

The East 
Durham 
Formation 

The 
Horden 
Member 

Upper 
diamicton 
at Warren 
House Gill 

LFA 5 
Upper 
stone-rich 
diamicton,  
massive 

Subglacial till 

Scotland 
and 
northern 
Britain 

MIS 2 
Skipsea 
Member 

   
Late Weichselian 

Bolders 
Bank Fm 

The 
Peterlee 
Member 

Middle 
gravels at 
Blackhall 
Rocks 

Poorly to 
well-sorted 
sands and 
gravels 

Proglacial 
outwash 

Scotland 
and 
northern 
Britain 

MIS 2; Late 
Weichselian  

  

Red sands at 
Warren House 
Gill (LF 4a) 

    

The 
Blackhall 
Member 

Lower 
diamicton 
at 
Blackhall 
Rocks 

LFA 3 
Lower 
stone-rich 
diamicton, 
massive to 
laminated, 
containing 
tectonised 
sand beds. 

Ice-marginal 
subglacial 
traction till 

Scotland 
and 
northern 
Britain 

80 to 40 ka BP 
Middle till 
at Warren 
House Gill 

The Easington 
Formation 

Calcreted 
gravels in 
Shippersea 
Bay 

Well-sorted, 
bedded, 
rounded sands 
and gravels 

Interglacial 
beach 

Local and 
from 
underlying 
sediments 

MIS 7  -  

The 
Warren 
House 
Formation 

Whitesides 
Member 

Beige Silts 
at Warren 
House Gill 

LFA 2 
Beige silts,  
some 
deformed 
laminations,  
foraminifera 
present. 

Estuarine 
silts 

Local and 
from 
underlying 
sediments 

 -   -  

Ash Gill 
Member 

Basal 
diamicton 
at Warren 
House Gill 

LFA 1 
Grey 
stone-poor 
diamicton,  
sand 
laminations,  
bivalve 
fragments 

Glaciomarine 
rainout 
diamicton 

Mixed 
Scottish,  
English,  
and North 
Sea 

MIS 8 to 12 

Briton's 
Lane Sand 
and Gravels 
or 
Bridlington 
Member? 

 

 

 


