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Abstract. We investigate the incentives behind investments by compet-
ing companies in discovery of their security vulnerabilities and sharing
of their findings. Specifically, we consider a game between competing
firms that utilise a common platform in their systems. The game con-
sists of two stages: firms must decide how much to invest in researching
vulnerabilities, and thereafter, how much of their findings to share with
their competitors. We fully characterise the Perfect Bayesian Equilib-
ria (PBE) of this game, and translate them into realistic insights about
firms’ strategies. Further, we develop a monetary-free sharing mecha-
nism that encourages both investment and sharing, a missing feature
when sharing is arbitrary or opportunistic. This is achieved via a light-
handed mediator: it receives a set of discovered bugs from each firm and
moderate the sharing in a way that eliminates firms’ concerns on losing
competitive advantages. This research provides an understanding of the
origins of inefficiency and paves the path towards more efficient sharing
of cyber-intelligence among competing entities.

1 Introduction

Businesses across different sectors of the economy, from telecommunication and
finance to energy, healthcare and transportation, increasingly rely on cyberspace
and IT services. Past incidents of cyber-attacks and consequent damages have
left little doubt in the minds of business managers and policy makers about
the importance of investment in cybersecurity. Gathering and exchange of se-
curity intelligence are identified as key factors in enhancing the effectiveness of
cybersecurity measures. Steps have been taken by governments to provide the
environments to galvanise and coordinate the exchange of cybersecurity infor-
mation: UK launched the “Cyber Security Information Sharing Partnership” [1]
after a pilot program in 2011/12 as a “joint, collaborative initiative between
industry and government to share cyber threat and vulnerability information
in order to increase overall situational awareness of the cyber threat”. In the
US, the “National Coordinating Center for Communications (NCC)” acts as the
“Information Sharing and Analysis Center (ISAC)” for telecommunication [2].

While “Information Sharing and Analysis Centers (ISACs)” – such as Infor-
mation Technology (IT)-ISAC and Financial Services (FS)-ISAC – can provide
the platform for exchange of cyber-intelligence, the role of incentives must not be



ignored. Providing the means of communication in the presence of strategic and
competing profit-maximizing entities does not necessarily lead to exchange of
their cybersecurity information. In order to understand the incentives of firms in
creating and sharing information security knowledge, it is important to identify
the distinct nature of the security information being shared. Some example cat-
egories of the type of cyber-intelligence to be shared are: (a) steps, protocols and
measures a firm has taken to improve its security; (b) past incidents of success-
ful or unsuccessful attacks and the resulting privacy, intellectual property and
financial losses; and (c) discovered security vulnerabilities. Sharing each of these
types of information have specific incentive implications. For instance, “public
disclosure” of security breach incidents can harm the consumers and investors’
confidence and lead to a statistically significant decreases in the market value of
firms [3–5]. In this paper, we particularly focus on the third type of information:
sharing discovered security vulnerabilities, or bugs for short.

From the societal point of view, sharing knowledge of security vulnerabilities
among firms is a positive move: it improves the overall efficiency of bug discovery
efforts. It moreover enhances the cyber protection of an entire industry against
future attacks by reducing the common exploitable threats. It is often the case
that different organizations of an economic sector bear similar vulnerabilities
in their information systems [6]. This is partly due to the adoption of common
implementations, libraries or operating systems. For instance, the Heartbleed

bug (formally, CVE-2014-0160), a buffer-over-read vulnerability in the OpenSSL

cryptographic library exposed in April 2014, affected around half a million cer-
tificates issued by trusted certificate authorities [7]. Another reason why different
technological companies face common threats is the incorporation of discovered
vulnerabilities into hacking toolkits which enables even less sophisticated users
to configure the same malware to attack across different organizations [6].

Recognizing the need for cyber-protection, companies may invest in finding
their security vulnerabilities. These can be “bugs” for example in their applica-
tion level software, operating system or implementation of a network protocol,
which we will hence generically refer to as the common platform. No company
knows exactly how many bugs there are in a software they are using. More
investment and effort in security research increases the chances of discovering
them, but there is always a factor of luck involved. Each company patches and
rectifies the vulnerabilities it finds, which is usually the much easier part than
finding them in the first place. Each bug that is not discovered by a company,
and hence not rectified, is potentially exploitable by cyber-attackers.

When a bug is indeed successfully exploited, the victim suffers direct losses.
These can include outage of their services, recovery costs, losses of important
data, user compensation, legal fines, etc. However, a company may also be af-
fected by incidents of cyber-attacks on other companies in that economic sector:
On one hand, the whole sector of the economy may suffer a blow: as customers
may lose confidence in the whole “service” and seek alternative “safer” means.
For instance, if one or a few major online banking companies fall victim to a
cyber-attack, then some customers may lose confidence in the whole sector and
switch to traditional banking altogether. Moreover, investors and stock holders



may too lose confidence in the whole industry in favour of alternative options for
investment. These two effects translate to a net market value loss of the whole
sector, which bites all of the companies upon a successful attack on anyone of
them. However, on the other hand, if (and once) a bug is exploited in competi-
tor(s) that a company has discovered before (and has hence taken care of), it
can have the opposite effect of boosting the confidence of customers as well as
the investors: customers may switch to use and investors redirect their capital
to the “safer” company. In other words, discovering a bug in a common software
may give a company a “competitive edge” compared to others.

The two effects work in the opposite direction of each other in terms of incen-
tives for sharing the found vulnerabilities. The sharing strategies, in turn, affect
the investment decisions to discover the bugs in the first place: On the one hand,
sharing information translates to a more effective discovery process and hence
encourages investment, as the findings of one company is fortified by another’s
since the process of finding the bugs is probabilistic in nature. But on the other
hand, there can be a tendency of free-riding on the discovery investment of other
companies and hence get away with less investment. Further complicating the
problem is the presence of uncertainty and information asymmetry: companies
ought to make their discovery investment decisions in the face of uncertainties
about the total number of bugs, and they need to make decision about sharing
of their findings not knowing the number of findings of the other company.

Contributions of this paper are as follows: In Section 2, we model the in-
terdependent vulnerability research investment and information sharing deci-
sions of two strategic and competing firms as a two stage Bayesian game. We
fully determine the Perfect Bayesian Equilibria of the game in closed-form in
Section 3. Specifically, in Subsection 3.1, we derive the Bayesian equilibrium
strategies of the firms about sharing of their finding for a given investment pair,
and given their findings. In particular, we establish that the sharing strategies
are unique and dominant, and are in the simple forms of “full-sharing” or “no
sharing”, completely determined by the competitive nature of the security find-
ings. In Subsection 3.2, we derive the investment strategies of the firms know-
ing their subsequent sharing strategies. We show how “full sharing” leads to
free-riding and inefficiently low investments. Also how “no sharing” is socially
inefficient by preventing mutual benefit of sharing, double-efforts and potential
over-investment. Finally, in Section 4, we provide a light-weight mediation mech-
anism free of monetary-transfers that enable (partial) sharing of the information
when the firms fail to achieve any sharing on their own.

Comparison to Literature: Information sharing in the context of cybersecurity is
investigated in papers like [8–15]. These works build on microeconomic models of
information sharing in a general oligopoly (e.g. [16–18]) where the effect of infor-
mation sharing is captured as improvement in the efficiency of production, i.e.,
reducing the marginal cost, or improving demand, or both. A common feature
of the models is that there is no specification of the type of security information
to be shared. The decision of how much information to share is modelled as a
normalized continuous variable between zero and one, zero corresponding to no



sharing and one corresponding to full sharing. In contrast, we specifically model
the information as the discovered security vulnerabilities by each player, and
hence, the sharing decisions in our model is the “number” of bugs to be shared.
In addition, the relation between security investments and information sharing
is rather loose in the previous literature. For instance, the effective amount of
shared information is heuristically chosen as the product of the investment de-
cision and sharing decision. In contrast, we specifically model the process of
investment for “generation” of security information and subsequently, sharing of
them. Moreover, we develop a mediation monetary-free mechanism that enables
sharing in the face of competition as a novel contribution. More distantly, this
work is related to research on R&D rivalries, e.g. [19], with at least one major
difference that vulnerability discoveries are inherently not patentable.

2 Model

Our model considers a game between firm i and firm j where each decides how
much to invest in security research on a common “platform”, and subsequently
how many of their found security vulnerabilities to share with the other. The
platform has an unknown number of security vulnerabilities, or “bugs”, which, if
not discovered and rectified, may be exploited with ramifications for both firms.
Before the game starts, the nature determines the total number of bugs follow-
ing some distribution. Let the random variable representing the total number of
bugs be B with the sample space of N+1 and known mean value λ. The reali-
sation of B is not observed by any of the firms. The game play consists of two
stages: investment and sharing, as described in the following:
1- Investment: In this stage, the players, while unaware of the total number
of bugs in the platform, “simultaneously” decide how much to invest in bug
discovery, and make it publicly known. Note that simultaneous move in the con-
text of game theory just implies that neither one of the players can assume
pre-commitment to a decision by the other players. A player’s investment c de-
termines the probability p ∈ [0, 1) that each bug is discovered. For simplicity,
we assume that the bugs are homogeneous, in that they are equally difficult to
discover. Moreover, we assume discovery of each bug is independent across the
bugs and across the firms. The research investment c and discovery probability p
are related through function π as p = π(c), with limc→∞ π(c) = 1. We naturally
assume that dπ(c)/ dc > 0, as well as d2π(c)/ dc2 ≤ 0: The chance of finding
bugs should be improved with more investment, and it is increasingly more dif-
ficult to improve the success of bug discoveries. In general we assume that the
two firms have distinct cost-probability relations, denoted as πi(c) and πj(c).
Because we assume both πi and πj are strictly incising, there is a one-to-one
mapping between investment and discovery probability. Indeed, ci = π−1i (pi)
and cj = π−1j (pj). Hence, we can equivalently represent each player’s strategy
in this stage by its choice of discovery probability, i.e., pi and pj .

1 We adopt the convention that random variables are denoted by capital letters and
their realisations by lower case. Also, N+ := N ∪ {0}.



2- Sharing: After investments are made, each player privately and indepen-
dently “discovers” some bugs in the platform. Subsequently, each decides how
many of its findings to share with the other. Note that the discoveries are not
part of the strategies of the players and is rather determined probabilistically
–by “nature”– once the investments are made. Since the discoveries are private,
they cause an “incompleteness of information” of players about each other. We
therefore model this sharing decisions as a Bayesian game. Firms i and j re-
spectively discover Ni and Nj bugs in the platform, which are random variables
with the common sample space of {0, 1, . . . , B}.2 The set of discovered bugs
may have an overlap, i.e., some identical bugs may be discovered by both firms.
We denote the number of common bugs by Nij . The sample space of Nij is
{0, 1, . . . ,min(Ni, Nj)}. Given the total number of bugs B and investment levels
ci and cj , the nature determines the number of bugs discovered by each firm
and the number of commonly discovered bugs Ni, Nj and Nij . The quadruple
(B,Ni, Nj , Nij) is the random variable over the set of possible “states of the
world” Ω. Note that due to the revelation of investments at the end of the first
stage, the probability distribution of (B,Ni, Nj , Nij) over Ω is publicly known.
For each nature state (b, ni, nj , nij) ∈ Ω, firm i (resp. j) observes ni (resp. nj),
i.e., the number of bugs it has discovered, as its “type”. For each realisation of the
number of found bugs and announced investments, a firm must decide how many
of its found bugs to share with the other. Due to the homogeneity assumption
of bugs, the bugs to be shared can be assumed to be picked uniformly randomly.
A (pure) strategy of firm i is thus a mapping si(pj , ni) : [0, 1]× N+ → N+ such
that si(pj , ni) ≤ ni.

3 Let σi = (pi, si) denote the pure strategies of player i for
the whole game. After both σi and σj are decided, the the overall utilities of each
player is determined as the result of its investment together with the expected
losses/gains from security incidents.

In what follows, we describe the expected utility of the two players after two
stages of actions. We assume risk-neutral players, that is, the players care equally
about their utility of expected outcome and their expected utility. Hence, the
utilities are linear sums of the (negative of the) expected costs per each bug minus
the investment cost for discovery of the bugs. Note that at the time of taking
the decision about sharing the discovered bugs, the investments for discovering
the bugs are “sunk” costs, i.e., they are already spent and will not affect the
cost to go of different actions to take. Each bug, if not discovered by or informed
to a player, will be successfully exploited on that player by attackers with a
probability, which without loss of generality, we take to be one. We assume
that the exploitation probabilities and the severity of bugs are homogeneously
distributed. For each bug there are three types of losses/damages:4

- Direct loss l > 0 : affecting only the compromised firm (e.g. outage/denial
of its services, compromise/corruption of its data, etc.).

2 By {0, 1, . . . , B}, it is meant that given the realisation B = b, the set is {0, 1, . . . , b}.
3 Since pi is part of player i’s strategy, it needs not be included as an argument to si.
4 For simplicity of exposition, we assume the losses and damages are symmetrical; it

is straightforward to generalise the results to non-symmetric cases.



Table 1: List of main notations
Parameter Definition

B, b Random variable for the total number of bugs, and a realisation
Ni, ni Random variable for the number of bugs discovered by i, and a realisation
Nij Random variable for the number of common bugs discovered by both
ai Action of player i: how many discovered bugs to share
λ Expected number of the total number of bugs

pi, pj Probability that each bug is discovered by player i,j
ui, uj Expected utilities of player i, j
ci, cj Discovery investment cost of player i,j
l Direct loss upon exploitation of an (undiscovered) bug by attackers
δ Loss (gain) in utility of the player who is the only one attacked (not

attacked) – capturing the market competition effect
τ Loss in utility of both players if a bug is exploited in either one of them

– capturing the total market section shrinkage effect
p = π(c) The relation relating the level of investment c to the discovery probability

of a bug p. In this paper, we use p = π(c) = 1− e−θc.

- Market shrinkage τ ≥ 0 : the common loss as a result of a successful attack
that affects both, even the firm that is not compromised. This is the effect of the
market shrinkage after a successful attack as a result of a portion of both demand
and investment moving away from (abandoning) the whole service/technology
in favour of “safer” alternatives, or simply relinquishing that sector altogether.

- Competitive loss δ ≥ 0 : when only one firm is compromised by attackers,
the compromised firm loses δ while the other gains δ. This represents the shifting
of demand and/or public investment (stocks) upon a successful attack.

Given the notions described above, there are four possibilities of net cost for
each bug that a player may incur: (a) The bug is known by both players (either
through own discovery or through the information shared by the other firm). In
this case, the utility of the players is (0, 0), as neither one of the players loses
anything.5 (b) The bug is known by player i, but not player j. In this case, the
utility pair is (δ−τ,−δ−τ − l): the bug will be exploited at firm j, which causes
its direct loss l and a competitive advantage δ for firm i, while both of them will
lose τ due to market shrinkage. (c) The bug is known by player j, but not player
i. This is the mirror situation to case-b: the utility pair is (−δ − τ − l, δ − τ).
(d) The bug is known by neither one of the players. Here, there is no competitive
advantage of one over the other, but there is still the market shrinkage effect,
besides the direct losses to both. Hence, the utilities are (−τ − l,−τ − l).

To facilitate the computation of the expected utilities, we define the following
auxiliary random variables (as also depicted by a Venn diagram in Fig. 1): Let
Bi,j , Bi,¬j , B¬i,j and B¬i,¬j represent the number of bugs that, respectively,
both players, only player i, only only player j, and neither player knows about.
Let the (expected) utility of players be denoted by u, which is a function from
the strategy profile of the players and the state of the world to the set of real

5 The assumption is that once the bug is discovered, its “fix” is immediate and costless.
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Fig. 1: Venn diagram illustration of the sets of bugs.

numbers. The expectation is taken with respect to the realisation of Bi,j , Bi,¬j ,
B¬i,j and B¬i,¬j given B, Ni, Nj and Nij , and the sharing strategies. We are
now ready to compute the expected utility of player i given a realisation of the
state of the world ω = (b, ni, nj , nij), and σi = (pi, si), σj = (pj , sj):

ui(ω, σi, σj) = −ci(pi) + 0 · E(Bi,j) + (δ − τ) · E(Bi,¬j)

+ (−δ − τ − l) · E(B¬i,j) + (−τ − l) · E(B¬i,¬j) (1)

In what follows we analyse further the structure of this utility function and
derive the “outcome” of the game and study its properties.

3 Analysis of the Game

When dealing with strategic entities with inter-dependent utilities, investigat-
ing equilibria, most notably Nash Equilibria, is a method of predicting their
decisions. Our game contains sequential moves, and thus an ordinary Nash equi-
librium concept would potentially cause the problem of “non-credible threats”.
Also note that our game contains simultaneous actions in each stage, and hence is
of “imperfect information”. We therefore examine possible perfect Bayesian equi-
libria (PBE), a solution concept that effectively eliminates non-credible threats
in sequential games with incomplete and imperfect information.

Informally, a PBE is a profile of strategies such that, given any belief about
the game history that is consistent with that profile, the induced strategy profile
must be a Nash equilibrium for the induced subgame (the game from the belief
in an information Set onward). To find the set of PBEs, we notice that since the
investment decisions are announced before sharing, each Bayesian game in the
second stage is a proper subgame of the whole game. This means that we can use
backward induction and first construct ((pi, si), (pj , sj)) such that si and sj form
a Bayesian Nash equilibrium (BNE) of the Bayesian game of sharing induced by
choices of pi and pj . This in turn determines the utility of the players for each
choice of (pi, pj), which allows us to build a simple strategic-form game with
actions pi and pj corresponding to the first stage of the game. The remaining



task will be to find a Nash equilibrium for this game, which will lead to a proper
PBE for the whole two-stage game. We thus proceed by studying the second
stage of the game (information sharing), and then proceed to analyse players’
investments given their equilibrium sharing strategies.

3.1 Second stage: Sharing the bug discoveries

To study the Bayesian game of the second stage, we first compute the utility
functions of the players from the basic description in (1). Since E(Bi,j) is mul-
tiplied by zero, we can safely ignore it. For the rest, we have:

E[Bi,¬j |ω, σi, σj ] = (ni − nij)(1−
si(pj , ni)

ni
) (2a)

E[B¬i,j |ω, σi, σj ] = (nj − nij)(1−
sj(pi, nj)

nj
) (2b)

E[B¬i,¬j |ω, σi, σj ] = b− ni − nj + nij (2c)

In (2a),(2b), we have in part used the fact that the bugs to be shared are chosen
uniformly randomly across the discovered bugs. Replacing in (1), we obtain:

ui(ω, σi, σj) = −ci(pi) + (δ − τ)(ni − nij)(1−
si(pj , ni)

ni
)+

(−δ − τ − l)(nj − nij)(1−
sj(pi, nj)

nj
) + (−τ − l)(b− ni − nj + nij) (3)

We are looking for strategy profiles (strategy pairs (si, sj) in our two-player
context) that are simultaneous best responses to each other, given the informa-
tion that each player has, notably including its number of discovered bugs. In
the Bayesian Nash equilibria of the game, each candidate strategy for a player
must be a maximizer of its expected utility given the strategy of the other player
and given its observed type (number of discovered bugs).6 Formally, for a given
pi and pj , we are looking for the strategy pairs (s∗i , s

∗
j ), such that:

∀ni∈N+, s∗i (pj , ni) ∈ arg max
si(pj ,ni)

E[ui(ω, (pi, si(pj , ni)), (pj , s
∗
j (pi, nj)))|ni] (4)

and simultaneously vice versa for j. Such pairs constitute the (pure) Bayesian
Nash Equilibria of the second stage of our game. The pair (s∗i , s

∗
j ) is further, a

Dominant (pure) Bayesian Nash Equilibrium iff:

∀ni∈N+,∀sj , s∗i (pj , ni)∈arg max
si(pj ,ni)

E[ui(ω, (pi, si(pj , ni)), (pj , sj(pi, nj)))|ni] (5)

and simultaneously vice versa for j. We are now ready to express the main result
of this section:
6 To analyse the game, each player must specify its actions for all of its possible types,

and not just the realised (and observed) type. This is because, the expected utility of
each player depends on the possible actions of the other player(s) weighted against
their potential types, since the type of other player(s) are not directly observed.



Proposition 1. Suppose pi, pj < 1. If δ < τ , the unique dominant pure Bayesian
Nash Equilibrium of the second stage of the game is (s∗i (pj , ni), s

∗
j (pi, nj)) =

(ni, nj), i.e., sharing all the discovered bugs. If δ > τ , it is (s∗i (pj , ni), s
∗
j (pi, nj)) =

(0, 0), i.e., sharing no information at all. When δ = τ , any strategy pair becomes
a Bayesian Nash Equilibrium. This proposition holds irrespective of the distri-
bution of the total number of bugs.

Proof. According to (5), a pair (s∗i , s
∗
j ) constitutes a Dominant Bayesian Equi-

librium if, for each type of a player, its corresponding action is the best (provided
the knowledge of its type), irrespective of the strategy of the other player. From
(3), the only term in the the expression of ui(ω, σi, σj) that involves si is the
second term: (δ− τ)[(ni−nij)(1−si(pj , ni)/ni)]. Hence, with the assumption of
pj < 1 in mind, the maximization of E[ui(ω, σi, σj)|ni] with respect to si(pj , ni)
reduces to maximizing (δ − τ)(1− si(pj , ni)), which yields the proposition.7 ut

Discussion The proposition makes intuitive sense: when δ > τ , each bug that is
only known by a player wins it a strictly positive (expected) competitive gain of
(δ− τ), as the competitive shift in the demand and public investment outweighs
the overall drop in the demand and fall in the stock market of the whole market
section. Hence it rather not share any of its findings, irrespective of what the
other player chooses. This is because the players have no means of making their
decisions “contingent” on the decision of the other.8 Similarly, when δ < τ , the
competitive shift in the demand and capital, falls short of the whole market
section shrinkage. Therefore, the players prefer to share all their findings to
(selfishly) keep themselves from being hurt. Perhaps the surprising result is that
the dominant strategy of the players turned out to be completely determined
by the relative values of only two parameters δ and τ . This proposition fully
determines the sharing strategy of the firms. Notably, aside from the special case
of δ = τ , the equilibrium is unique and hence, there is no ambiguity in selection
of the equilibrium. Next, we investigate how each firm invests for discovering the
bugs knowing the subsequent sharing strategies.

3.2 First stage: Investment for bug discovery

In the first stage of the game, each player decides about its investment amount
for the discovery of bugs, heeding the strategy of the other player in the second
stage. To obtain closed-form results, we need to model the relation between

7 Although the proposition leaves out the cases in which the condition pi, pj < 1
are not satisfied, they are not difficult to analyse: suppose pj = 1, then E[(ni −
nij)(1 − si(pj , ni)/ni)|ni] = 0, and hence the expression for E[ui(ω, σi, σj)|ni] will
not depend on si at all. Hence, in any Bayesian Nash Equilibria, the choice of si
becomes arbitrary. Similar situation happens for sj when pi = 1. Intuitively, if the
other player “knows every bug for certain”, then a player cannot affect its utility
through its action: it cannot gain any competitive advantage if δ > τ , or help prevent
market shrinkage when δ > τ . Note that realistically, we can safely assume pi, pj < 1,
as no practical amount of investment leads to absolute certainly of finding all bugs.

8 We will see in §4 how this situation can be altered in the presence of a mediator.



investment decision and the chance of finding bugs. A simple candidate for such
relation is the following: p = π(c) = 1 − e−θc, where θ represents a measure of
the efficiency of the investment: a larger θ corresponds to a higher efficiency of
the investment. As the level of investment increases to infinity, the probability
of discovery of each bug asymptotically approaches unity. The two firms may
be different in how “efficient” they are in their investment. A firm with more
prepared talents can expect higher chances of discovery with less investment. To
capture the potential heterogeneity in the investment efficiencies, we consider two
potentially different θi and θj . Our investment-discovery probability relation has
the extra property that the relative efficiency of the investment stays constant for
all investment values, specifically: (∂πi/∂c)/(∂πj/∂c) = θi/θj . This relation can
also be equivalently represented in its inverse form: ci(pi) = − ln(1 − pi)/θi for
pi ∈ [0, 1), and likewise for j. Note that the condition of Proposition 1 pi, pj < 1
is automatically satisfied when limp→1 c(p)→∞, as is the case in our example.

To analyse this stage, we note that Proposition (1) fully determines (s∗i , s
∗
j )

for each profile of (pi, pj). This allows us to treat the first stage as a “one-shot”
game of investment with action profiles of the form (pi, pj).

3.3 The case of δ < τ

For the case of δ < τ , from Proposition 1, the dominant strategy of both players
is to share all of their findings, i.e., si(pj , ni) = ni and sj(pi, nj) = nj for all
ni, ni ∈ N+. Then, the second and third terms in (3) become zero, and we get:

E[ui(ω, (pi, s
∗
i ), (pj , s

∗
j ))] = −ci(pi) + (−τ − l)E[B −Ni −Nj +Nij ]

= −ci(pi) + (−τ − l)λ(1− pj)(1− pi)

The best response pBRi as a relation over pj is hence:

pBRi (pj) = [c′−1i (κ(1− pj))]+, 9 where κ := λ(τ + l). (6)

Note that when pBR > 0, ∂pBRi /∂pj = −κ/c′′i (pBRi ) < 0, i.e., more investment
by the other player leaves less incentive for a player to invest. Similarly, we
have: E[ui(ω, (pi, s

∗
i ), (pj , s

∗
j ))] = −cj(pj) + (−τ − l)(1− pi)λ(1− pj), and hence:

pBRj (pi) = [c′−1j (κ(1 − pi))]+. The fixed points of the best response correspon-

dence (pi, pj) ⇒ ([c′−1i (κ(1−pj))]+, [c′−1j (κ(1−pi))]+) constitute the outcome of
the first stage. For our example cost function c = − ln(1−p)/θ, the simultaneous
best response must hence satisfy the following (Fig. 2a):

pBRi (pj) = [1− 1

θiκ(1− pj)
]+, pBRj (pi) = [1− 1

θjκ(1− pi)
]+.

This, together with Proposition 1, lead to the following result:10

10 The exact values of the investments depend on the cost function adopted, however,
the qualitative observations hold for a wide class of such functions.
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Fig. 2: (a) Example best response curves for the case of δ < τ , investigated in
§3.3. In the figure θi > θj . The intersection gives the simultaneous best response
pair in the first stage of the game as: (p∗i , p

∗
j ) = ([1− (κθi)

−1]+, 0). The param-
eters used are: λ = 100, τ = 0.5, l = 1, θi = 0.04, θj = 0.02. (b) Example best
response curves for the case of δ < τ and different θis and θjs.

Proposition 2. If δ < τ and θi > θj, the Perfect Bayesian Equilibrium (PBE)

of the two-stage game is ((p∗i , s
∗
i (pj , ni)), (p

∗
j , s
∗
j (pi, nj))) = (([1− 1

κθi
]+, ni), (0, nj))

for all ni, nj ∈ N+ and all pi, pj ∈ [0, 1), where κ := λ(τ + l). That is, only the
more efficient firm invests in discovery of the bugs – to achieve discovery prob-
ability of [1− (κθi)

−1]+ – and all the findings are then shared.11

Discussion The less efficient firm free-rides on the bug discovery investment
of the more efficient company, knowing that all the findings will be shared.
This might leap the reader to the conclusion that the PBE outcome is socially
inefficient simply because of the existence of “free-riding”. However, a social
planner may also prefer that the investment is done by the more efficient firm
as opposed to distributing the investment among both, hence garnering a higher
social return on the aggregate investments. In what follows, we will evaluate the
social utility and the socially efficient outcome and compare the two.

Investigating social welfare: LetW represent the expected (utilitarian) social
utility, defined simply as the sum of the expected utilities of the two firms, i.e.,
W := ui+uj .

12 First off, it is straightforward to argue that in the socially optimal
outcome, all the findings are shared (the social utility can only be improved by
sharing the findings, as the investment decisions are now disentangled from the

11 When θi = θj = θ, i.e., the two firms are homogeneous in terms of their efficiencies
of bug discovery investments, the equilibrium point is not unique and becomes the
set: {(p∗i , p∗j ) ∈ [0, 1]2, p∗i = [1− (θκ(1− pj))−1]+}.

12 Other notions of social welfare exist, e.g., the egalitarian objective W := min(ui, uj).



sharing decisions). The expected social utility is hence as follows:

EW =−ci − cj − 2(τ + l)EB¬i,¬j=−ci(pi)− cj(pj)− 2κ(1− pi)(1− pj) (7)

For our example cost function, maximizing EW hence yields: (p̂i, p̂j) = ([1 −
(2κθi)

−1]+, 0). Comparing the socially optimal solution with the PBE outcome,
we have p̂j = p∗j = 0, and when 2κθi > 1, we have: p̂i > p∗i . That is, to maximize
the social utility (sum of the expected utilities of the two firms), the less efficient
firm, as in the PBE outcome, makes no investment free-rides on the investment
of the more efficient firm. However, compared to the PBE outcome, the more
efficient firm invests more. This makes intuitive sense: the less efficient firm
offers a lower return on investment (offers less “return” in turning investment
into probability of bug discovery) and hence should not invest at all. Instead,
the investments must be made by the more efficient firm and all the findings
be shared. Moreover, the more efficient firm must consider the aggregate losses
and invest more carrying the burden of the two, compared to the PBE, where it
only considers the effect of its investment on its own losses. Note that even when
the players are homogeneous in terms of their efficiencies, i.e., when θi = θj , the
socially optimal investment turns out to choose only one of the firms to invest.
This is because it will prevent from discovery of the same bugs by both players.
The value of the optimum social welfare is:

W (p̂i, p̂j) = − ln(2κθi)/θi − 1/θi for κθi > 1/2, and: − 2κ for κθi ≤ 1/2. (8)

The social welfare that is achieved at the equilibrium outcome of the game is:

W (p∗i , p
∗
j ) := − ln(κθi)/θi − 2/θi for κθi > 1, and: − 2κ for κθi ≤ 1. (9)

An example comparison between the two is depicted in Fig. 3a.
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Fig. 3: (3a): Example depiction of the optimal and achieved social welfare (3a)
and security utility (3b) for the case of δ < τ as functions of κ = λ(τ + l).

Here, we define another metric of social welfare in the context of economics
of network security. Let the security utility uS of a player be the negative of the



costs of security attacks. Security utility, such defined, is related to the utility
of a player as uS = u+ c: it includes all the secueity damages but excludes the
investment cost. Now, let the security welfare S, as a metric of the aggregate
security of the two firms, be the sum of their security utilities: S := uSi + uSj .
The security utility is related to the utilitarian social welfare in the following
way: S = W + ci(pi) + cj(pj). The optimal S is achieved by picking pi = 1 and
sharing all the findings, which yields S = 0. Fig. 3b illustrates a comparison
between the achieved security utility at the equilibrium and the optimal S.

Comparative statics 13 Recall from Proposition (2), that for δ < τ , in part
we have: (p∗i , p

∗
j ) = ([1 − 1/(κθi)]

+, 0). Hence, as long as δ < τ , θi > θj and
p∗i > 0 (i.e., for 1 < κθi), we have the following straightforward observations:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂θi

> 0,
∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂θj

= 0.

We also have ∂p∗i /∂θj = 0, and perhaps most interesting of all ∂p∗i /∂δ = 0;
intuitively, player i shares all of its findings and thus removes any dependence
of its utility (and hence its best strategy) on δ. Also, note that even though
∂p∗i /∂θi > 0, i.e., more efficiency in investment means higher choice of probability
of discovery, this does not necessarily translate to higher choice of investment. In
fact, we have: ∂ci(p

∗
i )/∂θi < 0 for 1 < κθi < e, and ∂ci(p

∗
i )/∂θi > 0 for κθi > e.

Moreover, from (9), for p∗i > 0 we have: W ∗ := W (p∗i , p
∗
j ) = − ln(κθi)/θi − 2/θi

and S∗ := S(p∗i , p
∗
j ) = −2/θi. Hence, when δ < τ , θi > θj and 1 < κθi, we have:

∂W ∗

∂τ
,
∂W ∗

∂l
,
∂W ∗

∂λ
< 0,

∂W ∗

∂θi
> 0,

∂S∗

∂τ
,
∂S∗

∂l
,
∂S∗

∂λ
= 0,

∂S∗

∂θi
> 0.

3.4 The case of δ > τ

Following Proposition 1, the dominant strategy of the players in the second stage
is to share none of their findings, i.e., si(pj , ni) = 0 and sj(pi, nj) = 0 for all
ni, ni ∈ N+ and all pi, pj ∈ [0, 1). Then from (3), we obtain:

E[ui(ω, (pi, s
∗
i ), (pj , s

∗
j ))] = −ci(pi) + (δ − τ)λpi(1− pj)

+ (−δ − τ − l)pjλ(1− pi) + (−τ − l)(1− pj)λ(1− pi) (10)

The best response relation for player i is therefore:

pBRi (pj) = [c′−1i (λ(δ + l + pjτ))]+.

A point to observe is that for pBRi > 0, we have: ∂pBRi /∂pj = λτ/c′′i (pBRi ) > 0,
i.e., more investment by the other player leads to more investment by a player.
This is in sharp contrast to the the previous case of δ < τ . Similarly: pBRj (pi) =

13 In economics, comparative statics is the study of the change in the “equilibrium”
outcome when a change in a parameter is/would be introduced.



[c′−1j (λ(δ + l + piτ))]+. For our example cost function, the simultaneous best

response is therefore the solution the following system (Fig. 2b):

pBRi (pj) = [1− 1

θiλ(δ + l + pjτ)
]+, pBRj (pi) = [1− 1

θjλ(δ + l + piτ)
]+. (11)

Straightforward algebraic investigation reveals that the solution is unique and
given as follows:

If ∆ ≥ 0:


p∗i =

[
−λθiθj((δ + l)2 − τ2) + τ(θi − θj) +

√
∆
]+

2τθiθj(δ + l + τ)

p∗j =

[
−λθiθj((δ + l)2 − τ2)− τ(θi − θj) +

√
∆
]+

2τθiθj(δ + l + τ)

, (12)

and if ∆ < 0: (p∗i , p
∗
j ) = (0, 0), where ∆ :=

(
τ(θi + θj)− λθiθj(δ + l + τ)2

)2 −
4τ2θiθj . This, along with Proposition 1, fully determines the PBE:

Proposition 3. When δ > τ , the Perfect Bayesian Equilibria (PBE) of the
security information sharing game is unique, in which (p∗i , p

∗
j ) are provided in

(12), and (s∗i (pj , ni), s
∗
j (pi, nj)) = (0, 0) for all ni, nj ∈ N+ and all pi, pj ∈ [0, 1).

That is, both of the firms may invest – to achieve discovery probabilities as given
in (12) – and none of the consequent findings are shared.

Discussion When δ > τ , the competitive gain outweighs the market shrinkage
of not sharing the found bugs. Knowing that the found bugs will not be shared,
both players, notably even the less efficient player, invest in discovery of the bugs
on their own. This is because of two facts: 1- Since the findings are not shared,
the firm would be exposed in its bugs if it does not discover and rectify them if
it does not invest. 2- Since the other firm invests and expectedly discovers some
bugs, the firm will further suffer through the competitive effect of being the sole
victim of such bugs if it does not invest.

Comparison to socially optimal outcome: The social optimal outcome cer-
tainly shares the found bugs. Compared to the case of δ < τ , both players invest
strictly more in discovery of the bugs. The social inefficiency of the outcome for
the case of δ < τ was due to underinvestment. Here, it is primarily due to lack
of sharing of the found bugs: if a player would receive information of a bug that
has not discovered itself, the social utility would have improved by preventing
the potential direct losses in that player as well as the market shrinkage losses in
both players. Another source of social inefficiency is the fact that “both” players
make discovery investment: there is a positive probability that the same bug
can be discovered independently by both firms. The investment could have been
more efficient by preventing such cases of “duplicate effort”, if directed to only
one player and the subsequent findings are shared. Anther source of social ineffi-
ciency, which is again rooted in lack of information sharing of the players, is the
possibility of “over-investment” in bug discovery. The optimal expected social



utility is the same as was computed in (8). Note in particular that it does not
depend on the value of δ. Sharing the information in the social optimal removes
the competitive effect of δ. However, in the case of δ > τ , the investment value of
both players increases with δ. This means that the threat of competitive losses
due to being the sole victim of a security attack can drive both firms to invest
inefficiently large values in bug discovery, when they know the discoveries, as
competitive advantages, will not be shared. A combination of all of these three
effects is responsible for a high social inefficiency in this case.

Comparative Statics Given δ > τ and our example cost functions, we note
that players’ best response functions as in (11) are increasing and concave. In-
vestigating the best-response expressions in (11) further reveals:

∂pBRi
∂τ

,
∂pBRi
∂l

,
∂pBRi
∂λ

,
∂pBRi
∂θi

,
∂pBRi
∂δ

> 0,
∂pBRj
∂τ

,
∂pBRj
∂l

,
∂pBRj
∂λ

,
∂pBRj
∂θj

,
∂pBRj
∂δ

> 0.

This means that player i is willing to invest more as any of the following param-
eters increases: τ , l, λ, θi, and similarly for player j (with θi replaced by θj).
Investigating the effect on the equilibrium point is a bit trickier. For simplicity
of exposition, we illustrate the “shift” in the equilibrium pair pictorially. In Fig.
4, the effect of increasing δ is depicted. Note that, on the “pi–pj” plane, pBRi (pj)
shifts “up” and pBRj (pi) shifts “right” as the value of δ increases. Hence, the
intersection, which indicates the equilibrium, moves towards up and right. The
algebraic details of the analysis is removed for brevity. Analysing the effect of
each parameter in turn reveals:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂δ

,
∂p∗i
∂θi

,
∂p∗i
∂θj
≥ 0,

∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂δ

,
∂p∗j
∂θj

,
∂p∗j
∂θi
≥ 0.

In words, the above inequalities indicate that if any of the following parame-
ters increases, then firms would invest more: τ , l, λ, and δ. Indeed, the higher
these parameters, the more severe impacts of security incidents would be, and
thus both firms have to secure themselves, especially when they receive no aid
from the other. An interesting result is the effect of improvement in the invest-
ment efficiency of the competitor: If θj is improved, then firm i invests more in
vulnerability research. Intuitively, this is due to the fact that an improvement
in the discovery probability of the competitor firm j means more competitive
pressure on firm i. This is because each bug that is discovered exclusively by
firm j brings it a net advantage of δ − τ at the cost of firm i. Thus the increase
in efficiency of firm j forces firm i to also improve its probability of discovery,
which happens by increasing its investment. This means that the utility of player
i decreases as the result of an improvement in player j’s efficiency. Specifically,
∂ui(p

∗
i , p
∗
j )/∂θj < 0. This is while, ∂uj(p

∗
i , p
∗
j )/∂θj > 0. Due to these opposing

effects of efficiencies on individual utilities, in general, the equilibrium social
welfare, W (p∗i , p

∗
j ), which is the sum of the two utilities at the equilibrium, may

increase or decrease as θi or θj is improved. Note, however, that the equilibrium
security welfare, S(p∗i , p

∗
j ), always improves when θi or θj increases.
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Fig. 4: Example illustration of the comparative statics for the case of δ > τ . The
parameters used are λ = 1.5, l = 0.5, θi = 1, θj = 0.9, τ = 0.9, and the value of
δ is increased from δ = 1 to δ′ = 1.2. Notice the shift in the equilibrium value
towards “up” and “right” as a result.

4 Mediation: Encouraging Information Sharing

Our analysis in the previous section characterized the players’ behaviour in equi-
libria. For the case of δ < τ , which pertain to a the case where security acts
effectively as a “common good”, sharing of security findings becomes inevitable,
and exactly because of that, free-riding emerges, which in turn leads to un-
derinvestment. In contrast, when δ > τ , which represents cases where security
effectively becomes a “competitive advantage”, firms would individually strive
for their security and refrain from sharing their findings. We observed that none
of these outcomes are in line with desirable social planning.

In this section, we make a preliminary attempt to remedy one of the sources of
social inefficiency, specifically, failure in information sharing in the “competitive
advantage” case. We develop a mediation mechanism that partially removes the
negative incentives of sharing the information while allowing the players to gain
from its positive effects. Informally put, our mediation plan states that if a firm
wants to be informed about n bugs that it failed but the other firm succeeded to
discover, it must reveal in exchange n bugs that the other firm is not aware of.
Note that this was not possible in the previous sections, as there was no means
of making the sharing actions of a firm “contingent” on the action of the other.
The mediator effectively ensures that no net “competitive advantage” is lost by
sharing the vulnerability findings, as any leakage of an “exclusive” discovery is
matched by an “exclusive” discovery of the competitor. We will hence refer to
our mediation plan as “matched sharing”.

Matched sharing operates in two steps: (i) each player/firm submit its set
of found bugs to the mediator, along with a specification of a “threshold” as



the maximum number of bugs it is willing to exchange with the other firm.
(ii) Subsequently, based on the reported sets and the players’ thresholds, the
mediator moderates the exchange of as many bugs as possible in the following
manner: the mediator marks the bugs that are exclusive to each player, i.e.,
that the other player has not discovered them. Then the information of a bug
is transferred from player i to player j iff a) there is an exclusive bug to match,
i.e., to transfer from player j to i, and b) if the total number of bugs transferred
so far does not exceed either one of the players’ requested maximum threshold.
Note that the mediator is not a strategic player, and its behaviour is known to
and trusted by both players.

From the above description, a sharing action of a player entails the selection
of the threshold on exchange number. Note specifically, that we can without
loss of generality assume that both players submit all of their findings to the
mediator.14 This is because the players can restrict the sharing of their findings
by specifying the threshold. For instance, no sharing corresponds to requesting
a threshold of “zero”. Note that due to the nature of the Bayesian game, each
player must pick this bound for every realisation of bugs it discovers (given
the investment decisions). Formally, we can reuse the notations si(pj , ni) and
sj(pi, nj) to represent the sharing strategies, with the different interpretation
that si and sj denote the threshold, i.e., the maximum number of their bugs to
be shared by the mediator to the other player. Hence, the expressions in (2) in
the presence of the mediator and the new interpretation of the strategies become:

E[Bi,¬j |ω, si, sj ] = ni − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}
E[B¬i,j |ω, si, sj ] = nj − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}

and, as before, E[B¬i,¬j |ω, si, sj ] = b− ni − nj + nij . In words, the term repre-
sented by the min function determines the number of bugs that are exchanged
between the players, which should be no more than the bounds set by both firms,
as well as what each firm individually has to offer. This in turn gives:

ui(ω, σi, σj) =− ci(pi) + δ(ni − nj)− τ(b− nij)− l(b− ni)
+ (2τ + l) min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij} (13)

As we can see, the only term that involves si(pj , ni) is the last term. Maximiza-
tion of the expected utility of player i given the strategy of player j therefore
translates to maximizing min{si(pj , ni), sj(pi, nj), ni−nij , nj −nij}. Hence, we
have the following result:

Proposition 4. Suppose pi, pj < 1. The weakly dominant pure Bayesian Nash
Equilibrium of the second stage of the game is (s∗i (pj , ni), s

∗
j (pi, nj)) = (ni, nj)

for all ni, nj ∈ N+ and pi, pj ∈ [0, 1), i.e., asking the mediator to share the
maximum number of exclusive bugs. This proposition holds irrespective of the
distribution of the total number of bugs, or correlation in the discovery of bugs.

Proof. First, note that irrespective of the choice of sj , si(pi, ni) = ni maxi-
mizes the expression min{si(pj , ni), sj(pi, ni), ni − nij , nj − nij}, and likewise

14 Assuming that both parties have established trust with the mediator.



for sj(pi, nj) = nj . Hence (si(pj , ni), sj(pi, nj)) = (ni, nj) for all ni, nj ∈ N+

and pi, pj ∈ [0, 1) belongs to the set of pure Bayesian Nash equilibria of the
second stage of the game. To see the weak dominance, consider the cases where
nj > ni > 0 and nij = 0. Note that Pr[Nj > ni ∧ Nij = 0 | Ni = ni] > 0.
Consider the strategy of player j as sj(pi, nj) = nj for all nj ∈ N+. Then
ui(ω, (pi, ni), (pj , sj)) > ui(ω, (pi, s

′
i), (pj , sj)) for any s′i(pj , ni) < ni, because:

min{ni, sj(pi, nj), ni−nij , nj−nij} > min{s′i(pj , ni), sj(pi, nj), ni−nij , nj−nij}
for any s′i(pj , ni) < ni when nj > ni, nij = 0 and sj(pi, nj) = nj .

4.1 Game’s first stage: Investment in the presence of the Mediator

Given the weakly dominant equilibrium in Proposition 4, min{s∗i (pj , Ni), s∗j (pi, Nj), Ni−
Nij , Nj −Nij} = min{Ni, Nj} −Nij . Hence, utility of player i in (13) becomes:

Eui(ω, pi, pj , s∗i , s∗j ) = −ci(pi) + δE[Ni −Nj ]− τE[B −Nij ]− qlE[B −Ni]
+ (2τ + l)(E[min{Ni, Nj}]− E[Nij ])

= −ci(pi)+λδ(pi−pj)−λτ(1−pipj)−λl(1−pi)+(2τ+ l)(E[min{Ni, Nj}]−λpipj)

The term E[min{Ni, Nj}] depends on the specific distribution of the total num-
ber of bugs. A good candidate is the Poisson distribution. The presence of this
term in the utility function prevents a closed-form solutions for the best responses
and the equilibrium points. Instead, we pictorially illustrate in Fig. 5 the poten-
tial usefulness of the mediator when δ > τ , i.e., when players are motivated more
by competition than aggregate security. Fig. 5a depicts the equilibrium points of
players’ investments in two cases: sharing in the absence of the mediator (which
leads to no sharing) and our “matched sharing”. These are set in the context of
low security damage (l) compared to competitive advantage (δ) and inefficient
investment (θi = θj = 0.1). The end result is that with matched sharing, both
players invest more in finding vulnerabilities, which guarantee a a better security
for both. However, the social welfare, as well as the individual utilities of both
players, worsens with the introduction of the matched sharing, as it exacerbates
the already inefficiently high investments of the players in this example.

In contrast, Fig. 5b shows the effect of our mediator plan in situations with
either a significant security damage value (large l) or efficient investments (high
θi, θj), or both. In such scenarios, equilibrium points of the two cases are rel-
atively close to each other, i.e., they make similar levels of investments. With
the help of the mediator, players would share their intelligences and thus gain
extra value in security, making mediation a superior solution to opportunistic
sharing. This suggests the potential of our matched sharing mediation scheme,
and that it should be in the interest of the social planner to monitor environment
parameters and establish trusted mediation among firms whenever appropriate
for players/societal benefits.

5 Conclusion

In this work, we focused on the problem of sharing cybersecurity information,
as an envisioned pillar of cybersecurity planning for a more secure infrastruc-
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Fig. 5: Illustration of opportunistic sharing vs. matched sharing when δ > τ ,
with δ = 10, τ = 1, θi = θj = 0.1, with (a) l = 1 and (b) l = 10.

ture. We analysed the strategic decisions of two competing firms with regards to
investment for discovery of security vulnerabilities (generating valuable cyber-
intelligence) and subsequently, to share their findings. We showed that sharing
becomes a dominant strategy when security tends to behaves as a common good,
i.e., when the common losses as a result of security attacks outweigh the compet-
itive gains of being protected. We analysed how in turn this leads to free-riding
of less efficient firm and the under-investment of the more efficient firm. We
also established that when security effectively becomes a competitive advantage,
i.e., when there is a net positive gain when a competitor is a sole victim of an
attack, then sharing no information becomes the dominant strategy, with neg-
ative implication on the social efficiency. Finally, we provided a monetary-free
light-weight mediation mechanism that (partially) enables sharing of the found
vulnerabilities in cases where they fail to achieve any sharing on their own.

Future Research This work has the potential to be extended in many directions.
We have already made some grounds in extending our results to the multi-
player situation. An interesting addition is considering “features” for the found
bugs, such as severity (seriousness of the potential damage), sophistication (ex-
ploitability), etc., and hence letting the sharing strategies depend on the type
of the found bug as well. Investigating the behaviour of risk-averse players –
as opposed to risk-neutral in this work – is another problem. Identifying other
types of “security information” to share is another interesting direction, for in-
stance, revealing past incidents of successful attacks and resultant losses carries
some market implications that sharing merely discovered security vulnerabilities
does not. Also, we assumed that both firms use a common implementation (the
“platform”). If instead, for instance, the firms are using a common protocol but
with their private implementations of it, then “some” of the discovered bugs
may be just exclusive to that party’s implementation. Sharing found bugs now
requires a modified analysis. Investigating other means of encouraging sharing
is another important direction. An example is “bargaining”: A player starts by



sharing one bug, then the other player matches with a bug of its own findings,
and so on, until one stops. Another example is a generalisation of the “matched
sharing” mechanism in this work by allowing unequal number of matching that
may involve some randomisation as well. An exchange market of vulnerabilities
is another idea, although it may suffer from adverse selection and moral hazard.
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