Search for contact interactions and large extra dimensions in the dilepton channel

using proton-proton collisions at $\mathrm{Vs}=8 \mathrm{TeV}$ with the ATLAS detector

Abstract
A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions [1](ATLAS-COM-CONF-2014-041) The full LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to $20 \mathrm{fb}^{-1}$ at $\mathrm{Vs}=8 \mathrm{TeV}$.
The invariant mass spectrum is used as a discriminating variable alongside forward-backward asymmetry where relevant to increase the search sensitivity.
A Bayesian approach is used to set lower limits on the new physics parameters of interest at the 95% credibility level.

Theory

Contact Interactions

Large Extra Dimensions (ADD)

Introduced to explain the vast hierarchy between the electroweak and Planck scales.
Arkani-Hamed, Dimopoulos, and Dvali (ADD) postulated n additional large flat spatial dimensions of size R compactified on an n-dimensional torus [3].
The fundamental Planck scale M_{D} and the observed $M_{P 1}$, related by $M_{P 1}{ }^{2} \sim M_{D}{ }^{n+2} R^{n}$.
Only the gravitons propagate into the extra dimensions.
CI Lagrangian [2]
$\mathcal{L}=\frac{g^{2}}{\Lambda^{2}}\left[\eta_{\mathrm{LL}}\left(\bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}\right)\left(\ell_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}}\right)+\eta_{\mathrm{RR}}\left(\bar{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}}\right)\left(\ell_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}}\right)+\eta_{\mathrm{LR}}\left(\bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}\right)\left(\ell_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}}\right)+\eta_{\mathrm{RL}}\left(\bar{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}}\right)\left(\bar{\ell}_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}}\right)\right]$
where: energy scale Λ corresponds to the binding energy between fermion constituents η_{ij} defines the chiral structure of the interaction where i and j are L or R (left or right) Sign of η dictates if interference is constructive (-) or destructive (+).

Cl cross-section:

$$
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{DY}}-\eta_{i j} \frac{F_{\mathrm{I}}}{\Lambda^{2}}+\frac{F_{\mathrm{C}}}{\Lambda^{4}}
$$

has a Drell-Yan (DY) component, interference $\left(F_{1}\right)$ and pure $\mathrm{Cl}\left(\mathrm{F}_{\mathrm{C}}\right)$ terms.
Cross-section:

$$
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{DY}}+\mathcal{F} \frac{F_{\mathrm{int}}}{M_{S}^{4}}+\mathcal{F}^{2} \frac{F_{G}}{M_{S}^{8}}
$$

has DY, interference and pure Graviton terms.
The interaction strength is characterized by $F^{\prime} / \mathrm{M}_{\mathrm{s}}{ }^{4}$, where F^{\prime} depends on formalism: Giudice-Rattazzi-Wells (GRW) [4], Hewett [5] and Han-Lykken-Zhang (HLZ) [6].
$\mathcal{F}=1, \quad$ (GRW)
$\mathcal{F}=\frac{2 \lambda}{t}=\boldsymbol{F}=\log \left(\frac{m}{s}\right)$ forn-2, (HLZ)
$\mathcal{F}=\frac{2 \lambda}{\pi}=\frac{ \pm 2}{\pi}, \quad$ (Hewett) $\mathcal{F}=\frac{2}{n-2}$ for $n>2$. (HLZ)

Dielectron \& Dimuon Analyses

Search Regions

Contact Interactions

Discriminating variables: Search Region:
 $\mathrm{M}_{\mathrm{ee}} / \mathrm{M}_{\mu \mu}$ \& Forward/Backward CosTheta* 6 mass bins: in range $400-4500 \mathrm{GeV}$

CosTheta*

The dilepton decay angle, θ^{*}, defined in the Collins-Soper frame [7].
θ^{*} : angle between the outgoing lepton and the incoming quark direction in the dilepton rest frame. Then the initial quark direction is chosen to be the dilepton boost direction.

$$
\cos \theta^{*}=\frac{p_{z}\left(\ell^{+} \ell^{-}\right)}{\left|p_{z}\left(\ell^{+} \ell^{-}\right)\right|} \frac{2\left(p_{1}^{+} p_{2}^{-}-p_{1}^{-} p_{2}^{+}\right)}{m\left(\ell^{+} \ell^{-}\right) \sqrt{m\left(\ell^{+} \ell^{-}\right)^{2}+p_{T}\left(\ell^{+} \ell^{-}\right)^{2}}} .
$$

Forward-Backward Asymmetry
where $N_{F}: \operatorname{Cos} \theta^{*}>0$ and $N_{B}: \operatorname{Cos} \theta^{*}<0$

$$
A_{\mathrm{FB}}=\frac{N_{\mathrm{F}}-N_{\mathrm{B}}}{N_{\mathrm{F}}+N_{\mathrm{B}}}
$$

References:

[2]: E. Eichten, I. Hinchliffe, K. D. Lane, and C. Quigg, Rev. Mod. Phys. 56 (1984) 579-707
[3]: N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998) 263-272, arXiv:hep-ph/9803315 [hep-ph] [4]: G. F. Giudice, R.Rattazzi, and J. D. Wells, Nucl. Phys. B 544 (1999) 3-38, arXiv:hep-ph/9811291 [hep-ph]. [5]: J. L. Hewett, Phys. Rev. Lett. 82 (1999) 4765-4768, arXiv:hep-ph/9811356 [hep-ph]. [6]]:T. Han, J. D. Lykken, and R.-J. Zhang, Phys. Rev. D 59 (1999) 105006, arXiv:hep-ph/9811350 [hep-ph].
[7] . C. Coll. [7]: J. C. Collins and D. E. Soper, Phys. Rev. D 16 (1977) 2219.

Systematic Uncertainties

Mass-dependent systematic uncertainties can affect the shape of the discriminating variables. For Cl search: these are as a function of invariant mass for forward and backward events.

At relevant

 invariant masses of $1(2) \mathrm{TeV}$:| Source | Dielectrons | | Dimuons | |
| :---: | :---: | :---: | :---: | :---: |
| | Signal | Backround | Signal | Background |
| Normalization | 4.0\% (4.0\%) | N/A | 4.0\% (4.0\%) | N/A |
| PDF Variation | <0.1\% (0.2\%) | 5.0\% (11.0\%) | <0.1\% (<0.1\%) | 5.0\% (12.0\%) |
| PDF Choice | N/A | 1.0\% (7.0\%) | N/A | 1.0\% (6.0\%) |
| ${ }_{\text {as }}{ }^{\text {a }}$ | N/A | 1.0% (3.0\%) | N/A | 1.0\% (3.0\%) |
| EW Corrections | N/A | 1.0\% (2.0\%) | N/A | 1.0\% (3.0\%) |
| Photon-Induced | N/A | 7.0% (12.0\%) | N/A | 6.5\% (9.5\%) |
| Efficiency | 1.0\% (2.0\%) | 1.0% (2.0\%) | 3.0\% (6.0\%) | 3.0\% (6.0\%) |
| Scale/Resolution | 1.2\% (2.4\%) | 1.27 (2.4\%) | 1.0\% (4.0\%) | 1.0\% (4.0\%) |
| Multi-Jet \& $W+$ Jets | N/A | ${ }^{3.0 \%}(5.0 \%)$ | N/A | |
| | 1.0% (3.0\%) | | 1.0\% (3.0\%) | 2.0\% (3.0\%) |
| Charge Misidentification MC Statistics | $\begin{array}{ll} 1.2 \% & (2.0 \%) \\ 3.0 \% & (3.0 \%) \end{array}$ | $\begin{array}{ll}1.2 \% & (2.0 \%) \\ 0.5 \% & (0.5 \%)\end{array}$ | 3.0\% (3.0\%) | 0.5\% (0.5\%) |
| Total | 5.5\% (6.9\%) | 9.5\% (19.4\%) | 6.0\% (9.3\%) | 9.2\% (18.7\%) |

Results

- A Bayesian approach is used using a uniform positive prior as a function of the parameter of interest to quantify any observed excess.
-In the absence of signal, 95% Credibility Level lower exclusion limits are set on these parameters.
Most significant deviation from the expected background:
CI search: $\mu \mu$: p-value of 8% (LL model, destructive interference, $1 / \Lambda^{2}$ prior) ADD search: $\mu \mu$:p-value of 24% (GRW formalism, $1 / \mathrm{M}_{\mathrm{s}}{ }^{4}$ prior)

