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Posets and Protocols—Picking the Right
Three-Party Protocol

Siaw-Lynn Ng

Abstract—In this paper, we introduce a framework in which
we can investigate the possibility of adapting a security protocol
in order to obtain optimal efficiency according to the communica-
tion channels available. This method is based on the observation
that there is a partial order imposed upon the actions of the var-
ious parties involved in a protocol. We define operations permitted
on the partially ordered set associated with the protocol and ob-
tain transformations of the original protocol while preserving the
security properties. Performing these operations on the protocol
we enumerate the options available to a system.

Index Terms—Authentication protocols, partially ordered sets,
strand space model.

I. INTRODUCTION

T HE FOCUS of research in authentication protocols has
predominantly been on security. There has not been much

work published on the analysis of protocol efficiency in terms
of communications. In [1], Gong proved lower bounds on the
number of messages and the number of rounds for a protocol
in a collection of different settings and goals. This serves as a
useful reference for system and protocol designers. An example
given in the paper is that a protocol version which has more
messages and fewer rounds (hence, faster to complete) may be
suitable in the case where a client needs immediate authentica-
tion, while in the situation where the network is unreliable the
client may wish to run the version with fewer messages.

There are situations, however, where even in an unreliable
network, a protocol with fewer but longer messages may not be
a good choice. For example, in a channel where errors occur in
bursts it may be more efficient to send shorter messages so that
on one hand the possibility of errors occurring while transmit-
ting is minimized, and on the other hand if a message has to be
sent again at least it is short. Another example where short mes-
sages are required is the short message service (SMS), where a
single short message is restricted to a maximum length of 140
bytes. In another scenario, the channels available between each
pair of the participants in a three-party protocol may be dif-
ferent. For example, a home user may have a slow link to the
service provider, who may have a fast link to a third party. In
such situations, a round or message-optimal version of a pro-
tocol may not be the most suitable version.

In this paper, we introduce a framework in which we can in-
vestigate the possibility of adapting a security protocol in order
to obtain optimal efficiency according to the communication
channels available. This method is based on the observation that
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there is a partial order imposed upon the actions of the various
parties involved in a protocol. We define operations permitted
on the partially ordered set associated with the protocol and ob-
tain transformations of the original protocol while preserving
the security properties. Performing these operations on the pro-
tocol we enumerate the options available to a system. We will
describe our method in detail in Section II. In Section III, we
discuss the security implications of our operations. We will use
the strand space model [2] for this purpose. We conclude with a
discussion of possible extensions to our work.

II. A M ETHOD FORADAPTING PROTOCOLS

In an authentication protocol, messages are exchanged be-
tween parties, and some messages must necessarily be sent be-
fore others. For example, in a handshake, the session key must
be received before a handshake message can be sent. Hence,
there is a natural partial order imposed upon the actions of the
various parties involved.

We may view these actions and the order imposed on them
in a particular protocol as a partially ordered set (poset) with
a strict partial order “ ” defined as follows: for all , ,

action must be performed before actioncan be.
We will give a more precise definition of action in

Section II-A. A poset may be repre-
sented as , where or as a
Hasse diagram, which is a graph with vertices corresponding to
elements of , and the vertices, are joined by an edge with

“below” if and there are no vertices “in between.”
We will use both representations. We say that two elements,
arecomparableif or . Otherwise, they areincom-
parable. A poset where every pair of element is comparable is a
chain. The basic definitions of posets and Hasse diagrams may
be found in [3]. In addition, to each element ofwe assign a
label ( , ) if it corresponds to a message sent fromto .

Now, we have made the observation that, intuitively, an au-
thentication protocol has an associated poset consisting of the
protocol actions. This is not a new idea: in [4], Lamport de-
fined a partial ordering of events in a distributed system using
a “happened-before” relation. This idea is further developed by
Yahalom [5], who used the notion of “verifiable causality” to
prove bounds on the number of messages in a protocol. Here,
we consider a refinement, in some sense, of the partial ordering
described by Yahalom: we consider a partial ordering of the
“atomic actions” of sending and receivingcomponentsof mes-
sages. We will give a definition of the relevant concepts in the
following and describe how, given a protocol, we may obtain
this associated poset. Then, we define certain operations that
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can be performed on this poset to obtain chains which will cor-
respond to different versions of the protocols. These protocols
can then be analyzed for their suitability to the communication
channels available to the system. It will be shown in Section III
that the security properties are preserved to some extent under
these transformations.

A. Deconstructing a Protocol

We consider only three-party authentication protocols, where
there are two clients, the protocol initiator and the responder,
and an authentication server via which the clients agree on a
session key. We also assume that the underlying cryptographic
mechanisms used in the protocols guarantee message integrity.
Further assumptions on the relationships between the parties are
specific to individual protocols but will have no effect on our
method.

Using the terminology of [2], the set ofmessages(called
terms) are generated from two disjoint sets, the setrepre-
senting texts such as nonces or names, and the setrepre-
senting keys, by means of concatenation and encryption. Acom-
ponentis defined to be a term which is not a concatenation of
terms. We define anactionto be the sending of a term from one
party to another, and we use the notation “ ” to de-
note the action of sending term from to . An action is
atomicif the term sent is a component.

A protocol can be decomposed into the associated poset of
its atomic actions as follows.

(D1) An action “ ”, where is a message with
components , is decomposed into actions

, where , , is the action “ .”
(D2) By inspection, we identify actions corresponding to the

sending of a component to the receiving party via a third party,
and modify the label of the action accordingly, that is, if there
are pairs of actions and , where

such that is simply passed on to by , we may replace
(and perhaps, if is not intended for as well) by

This will allow us to examine the possibility of sending in
other ways in the reconstruction process.

The partial order on is determined based
on the following simple observations.

1) The responder and the server cannot send out any message
before the protocol initiator has sent out a first message.

2) A participant cannot send out a message containing a
nonce generated by another participantbefore has
received the nonce.

3) A participant cannot send out a message encrypted using
a new key before it has received either the key or all the
partial keys needed to generate the key.

Based on these observations, pairs of actionsand

are examined and the relationships determined. We call
the initial poset associated with the protocol, and we may
refer to as the original protocol. The initial poset consists of
atomic actions.

We illustrate this deconstruction process with an example.
The Guttman–Thayer protocol was given in [2] as an example

of a design process which concentrates on the method of estab-
lishing authentication results proposed in the paper. There are
three parties involved: and achieve mutual authentication,
and the session key established between and is gener-
ated by a trusted server, who shares a secret key with
and a secret key with . We use to denote encrypting

using the key , and we use to denote a nonce generated
by . The protocol is as follows.

Protocol 1A:

Applying (D1) to the protocol, we obtain the actions

(Note that for simplicity, we treat , , and , as single
components, since the namesand are merely practical ne-
cessities so that recipients know to whom messages should be
sent.)

Applying (D2), we see that may be modified to ,
, and , may be replaced by .

Relabeling the actions and examining pairs of actions, we obtain
the initial poset
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B. Reconstructing Protocols

Given the initial poset associated with a protocolwe
define two operations (M1) and (M2), that may be performed on

while preserving the partial order on the atomic actions. Let
, and . Let

the protocol initiator be , the responder and the server .
Every element of has a label , which is one
of , , , , , . Operations
(M1) and (M2) are defined as follows.

(M1) Two elements of may be merged if they have the same
label and they are incomparable. More precisely, let

and . Then we identify with if
and . We replace , with

to indicate the merging, where ,
and define a new poset

with the following partial order:

if in

if or in

if or in

Let . This corresponds to
merging two terms if they are not dependent on each other.

(M2) The element may be merged with and if
has label , , and the pairs ,

are not comparable, and . More precisely, if

and , , , and
, then, we replace , , with , ,

where

We then define the new poset

with the following partial order:

if in

if or in

if or in

if or in

if or in

Let . This corresponds to
sending a term from to via a third party .

It is clear that the process of deconstructing a protocol (D1)
and (D2) correspond to the inverses of (M1) and (M2). Having
defined the permitted operations, we describe the procedure for
reconstructing protocols from the initial poset of a pro-
tocol.

1) Given , if has elements, then is a

chain and this corresponds to a version of the original
protocol.

2) If has less than elements, then, we identify the

possible operations of types (M1) and (M2) which can be
performed on .

3) Apply one of the possible operations and establish
.

4) Repeat the procedure starting from step 1), using
instead of .

These steps are performed either using all the possible combi-
nations of valid operations, or until a suitable protocol is found.
A variation of the original protocol is produced each time we
obtain a chain. Since is finite, this procedure will terminate
at some point. We illustrate this using the Guttman–Thayer pro-
tocol described previously.

The initial poset of the Guttman–Thayer protocol is
with corresponding labels ,

, , , , ,
, , and

We see that . The only possible

(M1) operation is merging and , while the possible (M2)
operations are

i) merge with and ;
ii) merge with and ;
iii) merge with and ;
iv) merge with and ;
v) merge with and ;
vi) merge with and .
Suppose we apply operation (i). This gives us

, with corresponding labels
, , , ,

, , , and

This gives . There is now no pos-

sible (M1) operation, while the two possible (M2) operations
are merging with and , and merging with and .
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Suppose we apply the first operation (mergingwith and
). This gives us

, with corresponding labels ,
, , , ,

, and

At this stage, we see that . Hence, is

a chain. Expanding , we get the following protocol.
Protocol 1B:

On the other hand, applying the following operations: merge
and to get , merge with , , and merge
with , gives the original protocol, Protocol 1A.
Repeating the process using other combinations of the pos-

sible operations, we obtain, in addition to Protocol 1A and Pro-
tocol 1B, the following two protocols.

Protocol 1C:

Protocol 1D:

This example illustrates what can be achieved in this method.
We may choose to implement Protocol 1A, 1B, 1C, or 1D, ac-
cording to the type of communication channels that are available
between each pair of participants. For example, in Protocol 1A
there is no direct communication betweenand , in Protocol
1B there is no direct communication betweenand , while
both and communicate with in Protocols 1C and 1D.

In Section III, we show that the security properties of the
derived protocols are not significantly different from the original
protocol. We will also show how an authentication proof in the
strand space model can be derived from the authentication proof
of the original protocol.

III. SECURITY IMPLICATIONS

We discuss the security implications of our operations using
the strand space model [2]. We give an informal description of
the model here and refer the reader to [2] for formal definitions
and details.

The strand space model is a model in which cryptographic
protocols may be analyzed. In this model, the order in which the
penetrator applies the operations available to him is restricted.
There are certain components of messages which the penetrator
cannot modify. These components are, therefore, a kind of au-
thentication test: if the contents are later received in a modi-
fied form then a legitimate participant must have transformed
them. Using this idea, authentication tests are developed which
establish the extent of participation of the principals in a given
protocol.

The model consists ofparticipants, messagesandstrandsas
defined below.

Participants are either legitimate (calledregularparticipants),
or attackers, calledpenetrators. The set of messages is the set
of elements that can be sent between principals. This set is freely
generated from two disjoint sets, the setrepresenting texts
such as nonces or names, and the setrepresenting keys, by
means of concatenation and encryption. The members ofare
calledterms. A componentis a term which is not a concatenation
of terms. A strand is a sequence of message transmissions and
receptions, where the transmission and reception of a term
is represented by and , respectively. A strand element is
called anode. If is a strand, is the th node on . The
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notation is used to mean that and
for some . Theheightof a strand is the number of

nodes in the strand. A termoriginatesat a node
if the sign of is positive, and is a subterm of but not of
any other earlier node. Similarly, a componentis newat if

is a component of a term at and not a component of any
earlier nodes. When a component occurs new at a node but was
a subterm of some previous node then the participant executing
that strand must have done some cryptographic work to extract
it as a new component. Astrand spaceis a set of strands.

A strand represents the local view of a participant in a run of a
protocol. For a legitimate participant it represents the messages
that participant would send or receive as part of a run of his side
of the protocol. Such a strand is called aregular strand.

The correctness of a protocol is analyzed as follows.
First, safe keysand penetrable keysare established. Intu-

itively, safe keys are keys that are not known to the penetrators
and keys that never occur in any node unless encrypted under a
safe key, while penetrable keys are either keys that are already
known by a penetrator or keys that occur in some node in
plaintext or encrypted under penetrable keys.

Then, using certaintests, which are segments of regular
strands whose presence will guarantee the existence of other
regular strands, the extent of involvement of the participants
are established. The use of tests are embodied in three lemmas
(called Authentication Tests) which we describe informally as
follows.

1) Authentication Test 1: Suppose a component, which
does not occur earlier in a protocol run and which is en-
crypted under a key not accessible to the penetrator, is
transmitted and is later received in a new form (anout-
going test), then there must be a regular participant who
can receive and transmit it back transformed.

2) Authentication Test 2: Suppose a component, which
does not occur earlier in a protocol run, is transmitted and
is later received encrypted under a keynot accessible
to a penetrator (anincoming test), then there must be a
regular participant who can receiveand send it back
encrypted.

3) Authentication Test 3: If a component is received which
cannot be generated by a penetrator (anunsolicited test),
then a regular participant must have generated and sent it.

Using these tests, a regular participant may establish the ex-
tent to which the other regular participants have participated in
the run of a given protocol. This gives a guarantee of the fol-
lowing form.

If there is a regular strand of some height
with a particular set of parameters, then

there exists another regular strandof
some height with some set of parameters.

(*)

By examining the height of the strands and the sets of pa-
rameters, the regular participant may then establish the extent
of the responder’s participation and the actual achievement of a
protocol. We refer the reader to [2] for a demonstration of how
weaknesses of some protocols are uncovered using this method.
In the remainder of this section, we will examine the effects
of the deconstruction and reconstruction processes (operations

(M1), (M2), and their inverses) on the authentication guarantees
of a protocol.

First, we will show in Section III-A that an authentication
guarantee of the form is preserved to some extent. Then, we
will see in Section III-B that secrecy properties and tests are al-
ways preserved, and this allows us to obtain in a straightforward
way authentication theorems of derived protocols from the au-
thentication theorems of the original protocol.

A. Preservation of Authentication Guarantees

Let be a three-party authentication protocol and let
be the initial poset associated withas defined in Section II-A.
Let be the set of protocols obtained from

by performing operations (M1) and (M2) in various
orders. Then, is one of . Every has the
same associated initial poset , and is obtained from

by performing a combination of operations (M1), (M2), and
their inverses.

We make the assumption that all regular participants are es-
sential to the protocol , in the sense that no participant acts as
a sink (only a recipient) or a source (only a transmitter). This
means that every regular strand inhas height at least two, and
has at least one term of positive sign and one of negative sign.

Now, suppose that there is a regular strandof some reg-
ular participant , with a particular set of parameters in .
Consider the effect of a single operation of (M1) or (M2) on the
height of .

1) The operation (M1) merges the actions
and if they are incomparable.

If then the terms , (which are part
of two different positive terms) in becomes part of a
single positive term . This decreases the height
of by at most one. Since must have at least an-
other term of negative sign, the height of the strand after
a single such operation is still at least two. Since the com-
ponents of the terms are not changed by the operation, the
parameter set remains the same.

Similarly, if , the height of the strand after a
single such operation is still at least two and the parameter
set remains the same.

2) The operation (M2) merges the action
with the actions and if

and is not comparable with either or .
By the same argument as above, the height of the strand

after a single (M2) operation is still at least two and the
parameter set remains the same for all the cases ,

and .
It is also clear that the inverses of operations (M1) and (M2)

either preserve or increase by one the height ofwhile leaving
the parameter set unchanged. We conclude, therefore, that if

has a regular strand with a particular set of parameters
and height at least two, then any protocolbelonging to

distinct from also has a regular strand
of the same participant with height at least two and the same
parameter set.

Now let be any other protocol in
distinct from . Applying the same reasoning as above,
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also has a regular strand of the same participant, with the
same parameter set and height at least two. Sinceis one of

, we have the following.
Lemma III.1: For any distinct , in the set

, has a regular strand of participant
with parameter set and height at least two if and only if
has a regular strand of the same participant with parameter

set and height at least two.
Suppose now that the following holds in.

If there is a regular strand with parameter
set and height at least two, then there is
a regular strand with parameter set
and height at least two.

(**)

Let be a protocol in distinct from and
suppose that there is a regular strandwith parameter set
and height at least two in . By Lemma III.1, this implies that
there is a regular strand with the same parameter set and
height at least two in . Since holds in , there is a regular
strand with parameter set and height at least two in .
This in turn implies the existence of the regular strandin .
Hence, the following holds.

Theorem III.1: If the existence of a regular strand with
a particular parameter set and height at least two implies
the existence of a regular strand with parameter set and
height at least two in , then the existence of a regular strand

with parameter set and height at least two of the same
participant in implies the existence of the regular strand

with parameter set and height at least two.
This shows that if participant has a guarantee of involve-

ment of participant in an execution of the original protocol,
then has a guarantee, to some extent, of the involvement of

in any other version of the protocol. Section III-B describes
how the exact guarantee may be obtained.

B. Derivation of Authentication Theorems

We will examine the effect of (M1), (M2) and their inverses
on the secrecy and authentication properties of a protocol, and
see how an authentication result of a protocol can be modified
to be an authentication result of a protocol derived using these
operations.

Firstly, consider the effects of (M1), (M2), and their inverses
on secrecy properties. Since neither (M1), (M2), nor their in-
verses modifies a component, a safe (or penetrable) key remains
so under the operations.

Secondly, consider the effects of (M1), (M2), and their in-
verses on the existence and signs of a component. It is straight-
forward to verify that operations (M1), (M2), and their inverses
preserve both existence and sign of a component in a strand.

Now, we consider the effects of (M1), (M2), and their inverses
on outgoing, incoming, and unsolicited tests.

The edge is anoutgoing testfor in the compo-
nent if

a) is a positive node where first occurred and is trans-
mitted. In addition, is a component of and not a
proper subterm of a component of any regular node in the
strand space, andis a subterm of that does not occur
in any component of other than ;

b) is a negative node where there is a new component
in such that is a subterm of ;

c) The inverse of the key is not a penetrable key.
The edge is anincoming testfor in the compo-

nent if

a) is a positive node where first occurred and is trans-
mitted;

b) is a negative node whereis a new component of
and not a subterm of any component of any regular node
in the strand space, andis a subterm of;

c) is not a penetrable key.
A negative node is anunsolicited testfor the component

if

a) is not a penetrable key;
b) is not a subterm of any component of any regular node

in the strand space.
We show that the existence of these tests is preserved under (M1)
and (M2).

Lemma III.2: Let be a three-party authentication protocol
and let be the partially ordered set associated with it. Let
be a protocol obtained by applying (M1), (M2) on. Consider
a regular strand in the strand space belonging to.

If there is an outgoing test for in the compo-
nent in the protocol , then there is an outgoing test

for in the component in the protocol
.

Proof: Suppose is an outgoing test for in
in . Then first occurred and is transmitted as a subterm of
and no other component. So for any actions

such that is a component of , and contains as a sub-
term, we must have .

Let be the positive node wherefirst occurred and is trans-
mitted in . Such a node exists since (M1) and (M2) preserves
a component and its sign. It also follows thatis a subterm of

and is not a proper subterm of any component of any reg-
ular node in the strand space of. Since the partial order is
preserved, is also the first positive node wherefirst oc-
curred and is transmitted. Since any other component containing

must occur after, does not belong to any other component
in other than .

Let be the earliest node in the strand space corresponding
to containing the component. Since (M1), (M2) preserves
signs and components, is a negative node and contains
as a subterm. Since partial order is preserved,cannot occur
before . Hence, .

Since secrecy properties are preserved, the inverse ofre-
mains inaccessible to the penetrator. Hence, is an
outgoing test for in in .

Using a similar argument, we have the following.
Lemma III.3: Let , be defined as before. If there is an

incoming test for in the component in
the protocol , then there is an incoming test for
in the component in the protocol .

Lemma III.4: Let , be defined as before. If there is an
unsolicited test for the component in the protocol
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, then there exists an unsolicited testfor the component
in the protocol .

Finally, we consider the effects of (M1) and (M2) on authen-
tication properties. From above we see that outgoing, incoming
and unsolicited tests are preserved under (M1) and (M2). From
the proof of Lemma III.2, the nodes in the strand space corre-
sponding to containing the relevant test components can be
easily identified. Hence, any authentication theorem about pro-
tocol is easily modified to be a theorem about protocol.

As an example, authentication results for Protocol 1B can be
obtained from the authentication results for Protocol 1A, with
only a slight modification of the proofs. They are as follows,
with the results for Protocol 1B in brackets.

a) If there is an initiator strand of height 2 (4) with param-
eters , , , and , then there is a server strandof
height 2 (2) with the same parameters.

b) If there is a responder strand of height 3 (3) with pa-
rameters , , , and , then there is a server strand

of height 2 (2) with the same parameters.
c) If there is an initiator strand of height 2 (6) with param-

eters , , , and , then there is a responder strand
of height 4 (4) with the same parameters.

d) If there is a responder strand of height 5 (3) with pa-
rameters , , , , and , then there is an initiator
strand of height 3 (5) with the same parameters.

IV. CONCLUSION

We have given a framework in which to analyze the possi-
bility of adapting a given protocol to suit a specific communi-
cation channel. We are, however, not advocating switching be-
tween the various protocols according to the behavior of the net-
work at the time. For example, if the channel betweenand
is down we might choose to use Protocol 1B which does not re-
quire communication between and . Such flexibility would
seem to be practical in the less-than-ideal world of communi-
cation networks. However it is not clear if this lays the system
open to attacks by penetrators interleaving different versions of
a protocol. More work is needed in this area of mixing proto-
cols.

There are possible extensions to our method. One possibility
is to generalize the method to protocols involving more than

three parties. Another possibility is to extend the method to in-
clude computations. In this paper, we have only concentrated on
one level, that is, we dealt with only the higher level of sending
and receiving messages rather than the computational level. We
could extend the definition of an action to include computations
such as generating a random number, encrypting or decrypting
a message, as well as sending a message. This may help us in
identifying critical actions, and in deciding whether to generate
and store items, or generate at the last minute before sending,
according to what sort of resources we have. On the other hand,
we could assign weights on actions which depends on the com-
ponents or the channels (the labels), for example, a weight could
be a pair (time, money). We may then choose a protocol that is
optimal according to our measure.
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