
The Combinatorics of Generalised Cumulative Arrays1

Keith Martin, Siaw-Lynn Ng,
Information Security Group, Royal Holloway, University of London.

Abstract

In this paper we present a combinatorial analysis of generalised cumulative arrays. These
are structures that are associated with a monotone collections of subsets of a base set and have
properties that find application in areas of information security. We propose a number of basic
measures of efficiency of a generalised cumulative array and then study fundamental bounds
on their parameters. We then look at a number of construction techniques and show that the
problem of finding good generalised cumulative arrays is closely related to the problem of finding
boolean expressions with special properties.

1 Introduction

A generalised cumulative array (GCA) is a collection of functions that satisfy a specific property
with regard to a monotone collection of subsets of a set. Generalised cumulative arrays are natural
generalisations of structures known as cumulative arrays and, like cumulative arrays, have applica-
tions with respect to certain problems arising in the theory of information security. In this paper
we present a combinatorial analysis of GCAs.

We begin in Section 2 with formal definitions and a look at simple examples. We will also discuss
prior work and the motivation for the study of GCAs. In Section 3 we look at measures of efficiency
of GCAs and discuss some fundamental bounds on the parameters of a GCA. In Section 4 we discuss
the relationship between GCAs and boolean expressions and look at some construction techniques.

2 Generalised cumulative arrays

We begin this section with basic definitions and notation.

2.1 Definitions and notation

Let P = {P1, . . . , Pn} be a finite set and let Γ be a collection of subsets of P. We say that Γ is
monotone if for any pair of subsets A,B of P, if A ∈ Γ and A ⊆ B then B ∈ Γ. If Γ is monotone
then it can be described uniquely by the collection Γ− of minimal sets of Γ, that is, the subsets A
such that A ∈ Γ but A\Pi /∈ Γ for all Pi ∈ A. We say that Γ is connected if every member of P
belongs to some minimal set. In this paper we will refer to a pair (P,Γ) as a defining structure and
will only consider defining structures that are monotone and connected. When convenient we will
often simply denote a defining structure (P,Γ) by Γ.

A generalised cumulative array G = (f1, . . . , fl;K1, . . . ,Kl) for (P,Γ) is a set of l > 0 functions
f1, . . . , fl and l disjoint sets K1, . . . ,Kl with

fi : P → 2Ki , where Ki = {ki1, . . . , kivi}, vi > 0,

such that, for all A ⊆ P,

1This is the peer-reviewed version of the paper “The combinatorics of generalised cumulative arrays”. K. Martin
and S.-L. Ng. Journal of Mathematical Cryptology, Vol 1, 13-32, 2007, DOI: 10.1515/JMC.2007.002. The final
publication is available at www.degruyter.com.

1

(D1) if A ∈ Γ then for some iA ∈ {1, . . . , l},⋃
Q∈A

fiA(Q) = KiA ;

(D2) if A /∈ Γ then for all i ∈ {1, . . . , l}, ⋃
Q∈A

fi(Q) 6= Ki.

In other words, if A is a member of the defining structure Γ of G then there exists at least one
function fiA such that the image of A under fiA is KiA . On the other hand, if A is not a member of
the defining structure Γ of G then there is no function fi such that the image of A under fi is Ki.

For convenience of notation we will say that a generalised cumulative array as defined above
is an example of a GCA(P,Γ; l, {v1, . . . , vl}). We will also, when appropriate, refer to it is an
example of a GCA(P,Γ) (and implicitly associate GCA(P,Γ) with the set of all GCAs for (P,Γ)).
If v1 = · · · = vl = v then we say that G is v-uniform and denote this more simply by GCA(P,Γ; l, v).

One special class of defining structures are those for which Γ is all the subsets of P of at least
some fixed size t. We refer to such defining structures as (n, t)-threshold structures and use the
simpler notation GCA(n, t; l, {v1, . . . , vl}) in this case.

Generalised cumulative arrays are referred to as arrays because they are often most conveniently
represented as a set of arrays. More precisely, a GCA(P,Γ; l, {v1, . . . , vl}) can be represented as a
collection {M1, . . . ,Ml} of n× vi arrays, where for each 1 ≤ h ≤ l:
• Mh has rows indexed by members of P and columns indexed by members of Kh;

• Entry (i, j) of Mh is 1 if khj ∈ fh(Pi), and 0 otherwise.

We illustrate the notation and representation in the following example.

Example 2.1 Let P = {a, b, c, d, e} and the minimal sets of a defining structure Γ be:

Γ− = {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}} .

In other words, Γ is a (5, 3)-threshold structure. We give five examples of a GCA(5, 3) as follows:

(a) G1 is the following GCA(5, 3; 10, 3):

M1 M2 M3 M4 M5

k1
1 k1

2 k1
3 k2

1 k2
2 k2

3 k3
1 k3

2 k3
3 k4

1 k4
2 k4

3 k5
1 k5

2 k5
3

a
b
c
d
e

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

M6 M7 M8 M9 M10

k6
1 k6

2 k6
3 k7

1 k7
2 k7

3 k8
1 k8

2 k8
3 k9

1 k9
2 k9

3 k10
1 k10

2 k10
3

a
b
c
d
e

1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

2

For clarity we will omit further labelling of the arrays.

(b) G2 is the following GCA(5, 3; 1, 10):

a 1 1 1 1 1 1 0 0 0 0
b 1 1 1 0 0 0 1 1 1 0
c 1 0 0 1 1 0 1 1 0 1
d 0 1 0 1 0 1 1 0 1 1
e 0 0 1 0 1 1 0 1 1 1

(c) G3 is the following GCA(5, 3; 3, 3):

a
b
c
d
e

1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

1 0 0
1 0 0
1 0 0
0 1 0
0 0 1

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

(d) G4 is the following GCA(5, 3; 2, {3, 6}):

a
b
c
d
e

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 0 0 0 0 1

(e) G5 is the following GCA(5, 3; 2, {4, 6}):

a
b
c
d
e

1 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 0

0 0 0 0 0 1
0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

2

Example 2.1 illustrates that for a particular defining structure Γ there are many different types
of GCA that can be found for Γ. In Section 3 we will propose a number of measures of efficiency
that will help us to recognise when a GCA has properties that might be desirable.

2.2 Some constructions

We show first three simple constructions. We assume in each case that P = {P1, . . . , Pn}.

Construction 2.2 (a) Suppose Γ is an (n, 1)-threshold structure on P. Let K = {k}, and f(Pi) =
{k} for i = 1, . . . , n. It is then straightforward to verify that G(n,1) = (f ;K) is a GCA(n, 1; 1, 1).

(b) Suppose Γ is an (n, n)-threshold structure on P. Let K = {k1, . . . , kn} and f(Pi) = {ki} for
i = 1, . . . , n. It is then straightforward to verify that G(n,n) = (f ;K) is a GCA(n, n; 1, n).

3

(c) Suppose Γ is an (n, 2)-threshold structure on P, and let (b[i]1b[i]2 . . . b[i]l) be the binary rep-
resentation of i, 1 ≤ i ≤ n, and l = dlog2 ne.
Let Kj = {kj0, k

j
1}, 1 ≤ j ≤ l. Define fj : P → Kj , 1 ≤ j ≤ l as fj(Pi) = {kjb[i]j}.

Now, for any pair of participants Pi, Pj , since i 6= j, the binary representations of i and j
must differ in some position, say the hth position. Then fh(Pi) ∪ fh(Pj) = Kh. For any
single participant Pi, however, fj(Pi) 6= Kj for all 1 ≤ j ≤ l, by definition. Hence G(n,2) =
(f1, . . . , fl;K1, . . . ,Kl) is a GCA(n, 2; dlog2 ne, 2).

2

It is clear that both G(n,1) and G(n,n) are the smallest possible in terms of the number of arrays,
the size of the arrays, and the number of kij assigned to each participant. We will see in Section 3
that G(n,2) also meets the lower bounds for the number and size of arrays.

We now mention two known constructions for GCAs.

Construction 2.3 [[12]]
Let Γ+ = {B1, . . . , Bv} be the set of all maximal subsets that are not members of a defining

structure (P,Γ). Then G = (f,K) with f : P → 2K, K = {k1, . . . , kv} and

f(Pi) = {kj | Pi /∈ Bj , 1 ≤ j ≤ v},

is a GCA(P,Γ; 1, v). 2

A GCA constructed using the method in Construction 2.3 is more commonly referred to as a cu-
mulative array. Cumulative arrays were first defined and studied in [12] and, as Construction 2.3
indicates, they exist for all defining structures. Example 2.1(b) is a GCA constructed using this
method, and is thus a cumulative array for (P,Γ).

The second construction is based on perfect hash families. A perfect hash family PHF (l;n, t, t),
is a set of l functions H = {h1, . . . , hl} with

hi : P = {P1, . . . , Pn} → {1, . . . , t}

such that for all X ⊆ P, |X| = t, there is a hi ∈ H which is bijective when restricted to X.

Construction 2.4 [[8]]
LetH = {h1, . . . , hl} be a PHF (l;n, t, t). LetK1, . . . ,Kl be l disjoint sets of size t, Ki = {ki1, . . . , kit},
i = 1, . . . , l. Let fi : P → 2Ki , i = 1, . . . , l, be defined as follows:

fi(Pj) =
{
kihi(Pj)

}
.

Then, for any set A ⊆ P, |A| = t, there exists an iA ∈ {1, . . . , l} such that hiA is bijective on A,
that is, ⋃

P∈A
hiA(P) = {1, . . . t}.

Hence we have ⋃
Q∈A

fiA(Q) =
⋃
Q∈A

{
kiAhiA

(Q)

}
=
{
kiA1 , . . . , kiAt

}
= KiA .

On the other hand, if A < t then ∪P∈Ahi(P) 6= {1, . . . , t} for all i, so we have ∪P∈Afi(P) 6= Ki for
all i. Hence G = (f1, . . . , fl;K1, . . . ,Kl) is a GCA(n, t; l, t). 2

Note that Construction 2.2(c) is an example of Construction 2.4.
As we will see in Section 3, Construction 2.4 provides efficient GCAs for threshold structures.

This construction does not, however, apply to general defining structures.

4

2.3 Motivation and prior work

Generalised cumulative arrays are a generalisation of cumulative arrays, a class of objects studied
in relation to secret sharing schemes in [12]. A secret sharing scheme is a way of protecting a secret
value amongst a set of participants by generating shares of the secret in such a way that only certain
qualified groups (identified by the access structure) of participants can reconstruct the secret jointly
from the shares that are allocated to them.

Cumulative arrays were defined in [12] as a combinatorial representation of a construction tech-
nique for secret sharing schemes for general access structures that was first proposed in [6]. As
shares need to be kept secure in such a scheme, it is important to keep shares as small as possible.
Translated into requirements for a cumulative array, this means that it is important to keep both
|f(Pi)| and v as small as possible.

In [12] it was shown that the cumulative array generated by Construction 2.3 is essentially the
unique minimal cumulative array, in the sense that no cumulative array exists for Γ in which any
of the values |f(Pi)| or v are smaller than those of Construction 2.3. Some other applications of
cumulative arrays have subsequently been studied in [9, 15].

Generalised cumulative arrays arose from the problem of distributing computation for symmetric
cipher systems. As symmetric encryption mechanisms explicitly avoid having underlying algebraic
structure, in [3] a combinatorial technique of distributing the computation was proposed. In [8]
it was pointed out that this approach was another application of cumulative arrays. It was also
observed that significantly beneficial tradeoffs between the amount of information that participants
needed to securely store and the amount of communication data (reducing the former at the expense
of increasing the later) could be achieved through a generalisation of the techniques in [3]. The
underlying combinatorial structure behind this generalisation was isolated in [8] and defined to be
a generalised cumulative array.

We note that a GCA gives rise to a special type of secret sharing scheme. Let

G = (f1, . . . , fl;K1, . . . ,Kl)

be a GCA(P,Γ; l, {v1, . . . , vl}), where Ki = {ki1, . . . , kivi}.

1. Let s denote a secret that is chosen from Zm (for some suitably large m).

2. For each i = 1, . . . , l associate each value kij , j = 1, . . . , vi − 1, with a random element r(kij) ∈
Zm. Let r(kivi) = s−

∑vi−1
j=1 r(kij).

3. Let P be issued with the share {r(kij) : kij ∈ fi(P)}.

This gives rise to a secret sharing scheme with participant set P and access structure Γ, since
any set A ∈ Γ can compute s =

∑vi
j=1 r(k

i
j) for at least one array i, but any set A /∈ Γ is missing at

least one value r(kij) amongst its collective shares.

3 Efficiency of GCAs

From Example 2.1 it is clear that many different GCAs can be found for a given defining structure.
In this section we consider efficiency of GCAs. We will propose a number of appropriate efficiency
measures and then establish some fundamental bounds on these measures.

5

3.1 Measures of efficiency

Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ). The discussion in Section 2.3 motivates the fol-
lowing three measures of efficiency of a GCA.

(a) The storage σ(G) is defined as:

σ(G) =
max

P ∈ P

l∑

j=1

|fj(P)|

 .

In terms of the application mentioned in Section 2.3, σ(G) corresponds to the largest number
of values that any participant would need to securely store. We further define the optimal
storage for (P,Γ) to be:

σ∗(P,Γ) =
min

G ∈ GCA(P,Γ)
{σ(G)} .

Thus σ∗(P,Γ) denotes the smallest storage of any GCA(P,Γ).

(b) The weight τ(G) is defined as:

τ(G) =

l∑
i=1

vi.

In terms of the application mentioned in Section 2.3, τ(G) corresponds to the total number of
values that appear in G (and is thus related to the amount of information it takes to represent
any one of these values). We further define the optimal weight for (P,Γ) to be:

τ∗(P,Γ) =
min

G ∈ GCA(P,Γ)
{τ(G)} .

Thus τ∗(P,Γ) denotes the smallest weight of any GCA(P,Γ).

(c) The dimension l(G) of G is defined to be l. In terms of the application mentioned in Section 2.3,
l(G) is a measure of communication bandwidth cost. We do not formally define a notion of
optimal dimension, since the existence of a cumulative array for any defining structure indicates
that such a measure would always be 1.

When the defining structure is an (n, t)-threshold structure then we will represent the optimal storage
and optimal weight by σ∗(n, t) and τ∗(n, t) respectively.

Example 3.1 We apply the above efficiency measures to the various GCAs in Example 2.1:

(a) For G1: σ(G1) = 6, τ(G1) = 30 and l(G1) = 10.

(b) For G2: σ(G2) = 6, τ(G2) = 10 and l(G2) = 1.

(c) For G3: σ(G3) = 3, τ(G3) = 9 and l(G3) = 3.

(d) For G4: σ(G4) = 4, τ(G4) = 9 and l(G4) = 2.

(e) For G5: σ(G5) = 5, τ(G4) = 10 and l(G5) = 2.

From these values we can see that σ∗(5, 3) ≤ 3, and τ∗(5, 3) ≤ 9. 2

6

Example 3.2 Recall the known constructions from Section 2.2.

(a) The GCAs G defined by Construction 2.3 have τ(G) = |Γ+|, 1 ≤ σ(G) ≤ |Γ+| and l(G) = 1. In
the case where Γ is an (n, t)-threshold structure, Construction 2.3 yields GCAs with σ(G) =(
n−1
t−1

)
, τ(G) =

(
n
t−1

)
and l(G) = 1.

(b) The GCAs G defined by Construction 2.4, based on a PHF (l;n, t, t), have σ(G) = l, τ(G) = tl
and l(G) = l. From [16] explicit constructions for PHF (l;n, t, t)s are provided with l = C log n,
where C is a constant dependent on t but independent of n. Hence we have σ∗(n, t) ≤ C log n
and τ∗(n, t) ≤ Ct log n.

2

It should be evident from the examples looked at so far that it is not possible to find GCAs that
have minimum storage, weight and dimension. While storage and weight are normally closely related,
they generally need to be traded off against dimension. The cumulative arrays of Construction 2.3
have large storage and weight but minimum dimension. On the other hand Construction 2.4 provides
a significant reduction in both storage and weight at the expense of an increase in dimension. The
main challenge is thus to find GCAs that have “low” (as opposed to minimal) values for all of these
parameters. This can be broken down into either:

1. seeking constructions with small dimension for some fixed storage and/or weight;

2. seeking constructions with small storage and/or weight for some fixed dimension.

We return to these challenges in Section 4.

3.2 Reducing and tightening a GCA

Since we wish to construct GCAs that have low weight and dimension, we observe that it is possible to
ensure that a GCA does not contain any “redundancy”. Here we introduce the notion of irreducibility
and tightness:

Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ). We say that G is irreducible if we require all
the Ki; more precisely, if for each 1 ≤ i ≤ l there exists Ai ∈ Γ such that Ki = ∪Q∈Aifi(Q) and for
any j 6= i, Kj 6= ∪Q∈Aifi(Q). If G is not irreducible then there exists a set Ki that we can discard
and still have a GCA(P,Γ).

We say that a GCA G = (f1, . . . , fl;K1, . . . ,Kl) is tight if for every kij ∈ Ki there exists a P ∈ P
and an A ∈ Γ containing P such that

1. kij ∈ fi(P),

2.
⋃
Q∈A fi(Q) = Ki but

⋃
Q∈A fi(Q) \ {kij} 6= Ki, and

3.
⋃
Q∈A fh(Q) 6= Kh for any h 6= i.

In other words, in a tight GCA it is not possible to reduce the weight by deleting some element kji
without rendering G invalid. Note that tightness necessarily implies irreducibility.

The next two theorems indicate when certain types of redundancy can be removed from a GCA.

Theorem 3.3 Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ; l, {v1, . . . , vl}) such that either:

(a) Some array Ki with vi ≥ 2 has a column kir of 1s;

7

(b) Some array Ki has two identical columns kir, k
i
s.

Then there exists G′ a GCA(P,Γ; l, {v1, . . . , vi−1, . . . , vl}) with σ(G′) ≤ σ(G) and τ(G′) = τ(G)−1.

Proof: It is straightforward to verify that in either case G is not tight and that the GCA

G′ = (f1, . . . , f
′
i , . . . , fl;K1, . . . ,K′i, . . . ,Kl),

where K′i = Ki \ {kir} and f ′i : P → K′i with f ′i(P) = fi(P) \ {kir} is a GCA(P,Γ; l, {v1, . . . , vi −
1, . . . , vl}). 2

Theorem 3.4 Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ; l, {v1, . . . , vl}) such that either:

(a) Some array Ki has a column kir of 0s.

(b) Some array Ki such that for any A ∈ Γ with ∪Q∈Afi(Q) = Ki, we have ∪Q∈Afi(Q) = Kr for
some r 6= i.

Then there exists G′ a GCA(P,Γ; l − 1, {v1, . . . , vi−1, vi+1, . . . , vl}) with σ(G′) ≤ σ(G) and τ(G′) =
τ(G)− vi.

Proof: It is straightforward to verify that in either case G is not irreducible and that the GCA

G′ = (f1, . . . , fi−1, fi+1, . . . , fl;K1, . . . ,Ki−1,Ki+1, . . . ,Kl)

is a GCA(P,Γ; l − 1, {v1, . . . , vi−1, vi+1, . . . , vl}). 2

We say that G′ is a tightening of G if G′ is obtained from G by applying Theorem 3.3 and we say
that G′ is a reduction of G if G′ is obtained from G by applying Theorem 3.4.

3.3 Bounds on efficiency measures

In this section we consider some fundamental bounds on the efficiency measures identified in Sec-
tion 3.1. We treat each of these in turn.

3.3.1 Bounds on weight

In this section we will show some lower bounds on the weight of a GCA. We begin with a useful set
of observations.

Lemma 3.5 Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ) and let A ∈ Γ−. If ∪P∈Afi(P) = Ki
for some 1 ≤ i ≤ l then:

(a) For each Q ∈ A, it follows that fi(Q) ∩ Ki 6= ∅.

(b) For any distinct Q,R ∈ A, it follows that fi(Q) 6⊆ fi(R).

(c) vi ≥ |A|.

Proof:

(a) If fi(Q)∩Ki = ∅ then ∪P∈(A\{Q})fi(P) = Ki. Thus (A\{Q}) ∈ Γ, contradicting the minimality
of A.

(b) If fi(Q) ⊆ fi(R) then ∪P∈(A\{Q})fi(P) = Ki, contradicting the minimality of A as in part (a).

8

(c) If vi < |A| then by (a) and (b) there must exist B ⊂ A such that ∪P∈Bfi(P) = Ki, again
contradicting the minimality of A.

2

The following lower bound on the weight of a GCA follows immediately from Lemma 3.5(c).

Theorem 3.6 Let G be a GCA(P,Γ) with dimension l and let aΓ = min{|A| : A ∈ Γ−}. Then
τ(G) ≥ laΓ.

As an immediate corollary to Theorem 3.6 we see that Construction 2.4 generates GCAs for
threshold structures of optimal weight.

Corollary 3.7 Let G be a GCA(n, t) with dimension l. Then τ(G) ≥ lt.

The next result that we show is not strictly a bound on the weight of a GCA. Instead it establishes
a bound on the product of the values vi (the weight is the sum).

Theorem 3.8 Let Γ+ = {B1, . . . , Bv} be the set of all maximal subsets that are not members of a
defining structure (P,Γ). Then for any GCA(P,Γ; l, {v1, . . . , vl}) we have

l∏
i=1

vi ≥ |Γ+|.

Proof: We count the size of following set in two different ways:

F =

{
(B, (k1, . . . , kl) | B ∈ Γ+, ki ∈ Ki, ki /∈

⋃
P∈B

fi(P) for all i

}
.

1. There are |Γ+| subsets B ∈ Γ+. Since B is not a member of Γ, there must be at least one
l-tuple (k1, . . . , kl) such that ki /∈

⋃
P∈B fi(P), 1 ≤ i ≤ l. Hence |F | ≥ |Γ+|.

2. Consider an l-tuple (k1, . . . , kl), ki ∈ Ki. Suppose there are distinct B1, B2 ∈ Γ+ such that
ki /∈

⋃
P∈B1

fi(P) and ki /∈
⋃
P∈B2

fi(P) for all i. Then ki /∈
⋃
P∈B1∪B2

fi(P) for all i. Hence
B1 ∪ B2 contains B1, B2 and is not a member of Γ, contradicting the maximality of B1, B2.
Hence for each l-tuple (k1, . . . , kl), there is at most one B ∈ Γ+ such that ki /∈

⋃
P∈B fi(P)

for all i, and there are
∏l
i=1 vi l-tuples. Hence we

∏l
i=1 vi ≥ |F |.

2

Note that the case l = 1 in Theorem 3.8 corresponds to a known result ([12]) about the weight
of cumulative arrays:

Corollary 3.9 Let Γ+ = {B1, . . . , Bv} be the set of all maximal subsets that are not members of a
defining structure (P,Γ). If G is a GCA(P,Γ; 1, v) then we have

v = τ(G) ≥ |Γ+|.

9

3.3.2 Bounds on storage

Here we will prove some upper bounds on the storage of a GCA. We first establish a useful lemma.

Lemma 3.10 Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ) and let A ∈ Γ−. If ∪P∈Afi(P) = Ki
then |fi(P)| ≤ vi − |A|+ 1 for all P ∈ A.

Proof: By Lemma 3.5(a) it follows that for every Q ∈ A we have fi(Q) ∩ Ki 6= ∅. Further by
Lemma 3.5(b) it follows that for any pair Q, R ∈ A we have fi(Q) 6⊆ fi(R). If fi(Q) > vi − |A|+ 1
for some Q ∈ A then there are at most |A|−2 values of Ki left to be distributed amongst the members
of A \ {Q}. Hence some R ∈ A must be such that fi(R) ⊆ ∪P∈A\{R}fi(P). Thus (A \ {R}) ∈ Γ,
contradicting the minimality of A. 2

The following upper bound on the storage of a GCA now follows.

Theorem 3.11 Let G be a GCA(P,Γ; l, {v1, . . . , vl}) and let aΓ = min{|A| : A ∈ Γ−}. Then:

σ(G) ≤
l∑
i=1

vi − l(aΓ − 1).

Proof: By Lemma 3.10 it follows that |fi(P)| ≤ vi − aΓ + 1 for all P ∈ P. Thus for any P ∈ P,∑l
i=1 |fi(P)| ≤

∑l
i=1 vi − laΓ + l. The result follows. 2

The following immediate corollary to Theorem 3.11 sums up the case when Γ is a threshold
structure.

Corollary 3.12 Let G be a GCA(n, t; l, {v1, . . . , vl}). Then:

(a) σ(G) ≤
∑l
i=1 vi − l(t− 1);

(b) if G is also v-uniform then σ(G) ≤ l(v − t+ 1).

We can now use Corollary 3.12 to show that the existence of certain GCAs corresponds precisely
to the existence of certain perfect hash functions.

Theorem 3.13 There exists a GCA(n, t; l, t) if and only if there is a PHF (l;n, t, t).

Proof: The existence of a GCA(n, t; l, t) follows the existence of a PHF (l;n, t, t) by Construc-
tion 2.4. Suppose now that G = (f1, . . . , fl;K1, . . . ,Kl) is a GCA(n, t; l, t), with Ki = {ki1, . . . , kit}.
From the proof of Theorem 3.11 we have that |fi(Pj)| ≤ 1. For each i, if fi(Pj) = ∅ for any Pj then
let fi(Pj) = {ki1}, say, without loss of generality. Now define hi as follows: if fi(Pj) = {kiα} then
hi(j) = α. It follows that {h1, . . . , hl} is a PHF (l;n, t, t), since for any A = {i1, . . . , it} ⊆ {1, . . . , n},
∪tj=1fiA(Pij) = {kiA1 , . . . , kiAt } for some iA. Hence ∪tj=1hiA(ij) = {1, . . . , t}, so hiA must be a bijec-
tion. 2

3.3.3 Bounds on the dimension

We now establish some bounds relating to the dimension of a GCA. We first observe an upper bound
on the dimension of an irreducible GCA.

Theorem 3.14 If G is an irreducible GCA(P,Γ) then l(G) ≤ |Γ−|.

10

Proof: Let G = (f1, . . . , fl;K1, . . . ,Kl) be an irreducible GCA(P,Γ), where Γ− = {A1, . . . , Am}.
Consider the m× l matrix (aij), with

aij =

{
1 if ∪Q∈Ai fj(Q) = Kj ,
0 otherwise.

As G is irreducible, for every column j there must be at least one row i with a 1 in column j and 0
everywhere else. Hence there must be at least as many rows as columns, so m = |Γ−| ≥ l. 2

The next bound on the dimension applies to v-uniform GCAs for threshold defining structures.

Theorem 3.15 If G is a GCA(n, t; l, v) then l ≥
⌈
log
(
n
t−1

)
/ log v

⌉
.

Proof: By Theorem 3.8 it follows that

vl ≥
(

n

t− 1

)
,

and hence l ≥ log
(
n
t−1

)
/log v . 2

The bound of Theorem 3.15 can be met when l = 1 and when t = 2. When l = 1 this is
the bound of cumulative arrays (see Example 3.2). When t = 2, Construction 2.2(c) provides a
GCA(n, 2; dlog2 ne, 2) that meets the bound, with storage σ = dlog2 ne and weight τ = 2dlog2 ne.
We now use the proof of Theorem 3.8 to construct a further example of a GCA meeting the bound
of Theorem 3.15. This is a generalisation of Construction 2.2(c).

Construction 3.16 Let Γ be an (n, 2)-threshold structure on P = {P0, . . . , Pn−1}. Suppose v
and l are positive integers such that l = dlogv ne. Let Ki = {ki0, ki1, . . . , kiv−1}, i = 1, . . . , l. Let
(v[j]1v[j]2 . . . v[j]l) be the base-v representation of j. Let fi, i = 1, . . . l be defined as

fi(Pj) = {kih | h 6= v[j]i}.

Now, for any pair of participants Pi, Pj , their base-v representation must differ in some position,
say the hth position. Then khv[i]h

∈ fh(Pj) and khv[j]h
∈ fh(Pi), so fh(Pi) ∪ fh(Pj) = Kh. For any

single participant Pi, fh(Pi) 6= Kh for all 1 ≤ h ≤ l, by definition. Hence G = (f1, . . . , fl;K1, . . . ,Kl)
is a GCA(n, 2; dlogv ne, v) with storage σ(G) = (v − 1)dlogv ne and weight τ(G) = vdlogv ne.

For example, a GCA(9, 2; 2, 3) constructed using this method is as follows:

P1

P2

P3

P4

P5

P6

P7

P8

P9

0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0

0 1 1
1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1
1 0 1
1 1 0

In general, this construction gives GCAs of higher weight and storage but lower dimension than
those of Construction 2.2(c). 2

11

4 Finding efficient GCAs

In this section we consider the problem of contructing efficient GCAs. We will begin by considering
the close relationship between GCAs and boolean functions. Using this relationship we then look at
some techniques for constructing GCAs recursively.

4.1 GCAs from boolean expressions

We now observe an important relationship between GCAs and boolean expressions. Recall that a
boolean expression in n variables X1, . . . , Xir is said to be an elementary disjunct if it is a sum
of boolean variables of the form Xi1 + · · · + Xir and is said to be a elementary conjunct if it is a
product of boolean variables of the form Xj1 . . . Xjs . Further, a boolean expression is said to be in
disjunctive normal form (DNF) if it is written as a disjunct (sum) of elementary conjuncts and is
said to be in conjunctive normal form (CNF) if it is written as a conjunct (product) of elementary
disjuncts. Any boolean expression has a unique disjunctive and conjunctive normal form.

We also recall that a convenient way of representing a defining structure (P,Γ) is to consider it
as a (monotone) boolean function where the elements of P are boolean variables and the function Γ
is true for A = {Pi1 , . . . , Pir} if and only if A ∈ Γ. The following observation was made in [12]:

1. If Γ is expressed in disjunctive normal form then the elementary conjuncts correspond to the
minimal sets in Γ;

2. If Γ is expressed in conjunctive normal form then the elementary disjuncts correspond to the
maximal sets not in Γ (and hence by Construction 2.3 the number of such elementary disjuncts
is equal to the weight of the corresponding cumulative array).

We will now show that GCAs correspond precisely to boolean expressions written in a particular
form. We say that a boolean expression is in DCD form if it is written as a disjunct of conjuncts
of elementary disjuncts. For example, the boolean function f(a, b, c, d) = (a + bc)d is not in DCD
form. However, it can be written as (a + b)(a + c)d, which is in DCD form. Both disjunctive and
conjunctive normal forms are also examples of DCD form.

Theorem 4.1 Let G = (f1, . . . , fl;K1, . . . ,Kl) be a GCA(P,Γ; l, {v1, . . . , vl}). Then G corresponds
precisely to a boolean expression of the boolean function Γ written in DCD form.

Proof: We recall that G can be represented as a collection {M1, . . . ,Ml} of n× vi arrays, where for
each 1 ≤ h ≤ l:

• Mh has rows indexed by members of P and columns indexed by members of Kh;

• Entry (i, j) of Mh is 1 if khj ∈ fj(Pi), and 0 otherwise.

We associate each array Mh with a conjunct of our boolean expression and each column kj of Mh

with an elementary disjunct. More precisely, we write Mh = Z1
h . . . Z

vh
h , where Zjh is the elementary

disjunct consisting of all boolean variables Pi, where entry (i, j) of Mh is 1. We then represent G
by the sum of the conjuncts Mh. It is easy to see that the resulting boolean expression is in DCD
form. Further, this expression is true if and only if one of the conjuncts Mh is true. By definition,
this happens if and only if a set of variables A ∈ Γ and hence this boolean expression represents the
boolean function Γ.

It should be clear that the reverse process can be applied to any boolean expression for the boolean
function Γ in DCD form to produce a set of arrays that in turn corresponds to a GCA(P,Γ). 2

12

We illustrate Theorem 4.1 by returning to Example 2.1 and providing the equivalent DCD boolean
expressions.

Example 4.2 Let (P,Γ) be the (5, 3)-threshold structure defined on P = {a, b, c, d, e}. The five
examples of a GCA(5, 3) provided in Example 2.1 correspond precisely to the following boolean
expressions for Γ in DCD form:

(a) G1 = abc+ abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde+ cde, which is the disjunctive normal
form for Γ;

(b) G2 = (a+b+c)(a+b+d)(a+b+e)(a+c+d)(a+c+e)(a+d+e)(b+c+d)(b+c+e)(b+d+e)(c+d+e),
which is the conjunctive normal form for Γ;

(c) G3 = ab(c+ d+ e) + (a+ b+ c)de+ (a+ b)c(d+ e);

(d) G4 = (a+ b)(c+ d)e+ (a+ b+ e)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d+ e);

(e) G5 = a(b+ c)(b+ d+ e)(c+ d+ e) + (a+ b+ c)(b+ d)(b+ e)(c+ d)(c+ e)(d+ e).

2

Note that in the correspondence shown in Theorem 4.1 the storage of a GCA is equivalent to the
maximum occurrence of a variable in the boolean expression, the weight corresponds to the total
number of elementary disjuncts in the boolean expression and the dimension corresponds to the
number of conjuncts of elementary disjuncts in the expression. Hence we may attempt to construct
a GCA with particular properties by trying to find a boolean expression for the boolean function
corresponding to the defining structure that has a particular DCD form.

In general, efficient GCAs will correspond to DCD boolean expressions in which

1. each variable does not appear too frequently;

2. the number of elementary disjuncts is small;

3. the number of conjuncts of elementary disjuncts is small.

Consider for a moment an n × v array M with rows indexed by {1, . . . , n} and columns by
{1, . . . , v}. Consider how one might assign 0 or 1 to the entries mij of M , with exactly one 1 in
every row, so that the number of subsets A ⊆ {1, . . . , n} satisfying⋃

i∈A
{j | mij = 1} = {1, . . . , v}

is maximal. This is the problem of determining the maximum possible number of sets of size v that
can be separated by a fixed partition of n points into v parts. This problem was discussed in [5],
and it is clear that the maximal is achieved when the numbers of 1 in each column are as uniform
as possible.

Interpreted in terms of GCAs, this indicates that the function fi should assign each kij to roughly
the same number of participants, thereby making sure that as many sets as possible belonging to
the defining structure has image Ki under fi. This in turn will help to reduce the dimension and
weight of the GCA. Reinterpreted in terms of the boolean expression for a GCA in DCD form, this
indicates that to achieve efficiency, each elementary disjunct in a conjunct should have roughly the
same number of variables. Hence the DCD form should be a disjunct of conjuncts of “linear factors”
consisting of roughly the same number of variables.

13

On the other hand, once a set belonging to the defining structure has image Ki under fi, it does
not need to have any other image Kj under fj , j 6= i. The elimination of such duplications will go
towards reducing the storage as well as the dimension of the GCA. In terms of boolean expressions,
this indicates that when the expression is expanded into disjunctive normal form, each disjunct
should not be repeated too many times.

We illustrate this with an example:

Example 4.3 Consider the defining structure

Γ = P1P2 + P1P3P4 + P2P3P4 + P1P3P5P6 + P2P3P5P6 + P1P4P5P6 + P2P4P5P6 + P3P4P5P6.

This is in disjunctive normal form (hence in DCD form) and corresponds to a GCA with l(Γ) = 8,
τ(Γ) = 28, and σ(Γ) = 5. We may express Γ in a DCD form that is closer to the description above,
that is, as a disjunct of conjuncts of “linear factors” with roughly the same number of variables, as
follows:

Γ1 = P1P2 + (P1 + P2)P3(P4 + P5)(P4 + P6) + (P1 + P2 + P3)P4P5P6.

This gives a more efficient GCA with l(Γ1) = 3, τ(Γ1) = 10 and σ(Γ1) = 3. 2

The criteria for a “good” boolean expression of an efficient GCA for general defining structures
cannot be formulated exactly, since it is not always clear, as discussed in Section 3.1, what the
“best” GCA is. For example, it is not clear which of G3, G4 from Example 4.2 is the “better” GCA.
It would appear then that any method of producing efficient DCD forms would be heuristic. The
difficulty of producing efficient circuits for boolean functions in general ([17]) would indicate that
this too is a difficult problem.

In the next section we exploit the relationship between GCAs and boolean expressions in the
recursive construction of GCAs.

4.2 Some recursive constructions

It is clear that one may construct GCAs for general defining structures by simply splitting the
defining structure into subsets and constructing GCAs (by using cumulative arrays or other means)
for each subset. Since a defining structure can be written in disjunctive normal form a trivial
example of such a construction would be to construct a GCA for each elementary conjunct. (The
GCA G1 in Example 2.1 is such a construction.) This will give a GCA with as many arrays as
there are minimal sets. Splitting the defining structure in different ways will give different GCAs
with differing efficiency. For instance, splitting the defining structure of Example 2.1 into Γ1 =
abc+ acd+ ade+ bce+ cde and Γ2 = abd+ abe+ ace+ bcd+ bde and constructing cumulative arrays
for each of Γ1, Γ2 using Construction 2.3 would yield a GCA(5, 3; 2, {5, 6}) with σ = 5, τ = 11 and
l = 2, compared with G1 which has σ = 6, τ = 30 and l = 10.

This observation motivates the following constructions of new GCAs from old GCAs. We first
recall some terminology from [4, 7] that we can apply to defining structures of a GCA.

Let (P1,Γ1) and (P2,Γ2) be two defining structures and let P = P1 ∪ P2.

1. The sum of (P1,Γ1) and (P2,Γ2) is the defining structure (P,Γ1 +Γ2) such that for all A ⊆ P,

A ∈ Γ1 + Γ2 ⇐⇒ A ∩ P1 ∈ Γ1 or A ∩ P2 ∈ Γ2.

2. The product of (P1,Γ1) and (P2,Γ2) is the defining structure (P,Γ1Γ2) such that for all A ⊆ P,

A ∈ Γ1Γ2 ⇐⇒ A ∩ P1 ∈ Γ1 and A ∩ P2 ∈ Γ2.

14

Using the correspondence between GCAs and boolean expressions, it is clear that a GCA for
the sum of defining structures Γ1, Γ2 can be derived by a disjunct of Γ1, Γ2 expressed as boolean
functions. Similarly a GCA for the product of Γ1, Γ2 can be constructed by a conjunct of Γ1, Γ2

expressed as boolean functions. Hence the following theorem:

Theorem 4.4 Let G1 be a GCA(P1,Γ1) and let G2 be a GCA(P2,Γ2). Then there exists:

(a) GΓ1+Γ2
, a GCA(P,Γ1 + Γ2) with l(GΓ1+Γ2

) ≤ l(G1) + l(G2), τ(GΓ1+Γ2
) ≤ τ(G1) + τ(G2) and

σ(GΓ1+Γ2) ≤ σ(G1) + σ(G2) (if P1 ∩ P2 = ∅ then σ(GΓ1+Γ2) = max(σ(G1), σ(G2))).

(b) GΓ1Γ2
, a GCA(P,Γ1Γ2) with l(GΓ1Γ2

) ≤ l(G1)l(G2), τ(GΓ1Γ2
) ≤ l2τ(G1)+l1τ(G2) and σ(GΓ1Γ2

) ≤
l2σ(G1) + l1σ(G2) (if P1 ∩ P2 = ∅ then σ(GΓ1Γ2

) = max(l2σ(G1), l1σ(G2))).

We will refer to the GCA GΓ1+Γ2
constructed as in Theorem 4.4 as the sum of G1, G2 and write

GΓ1+Γ2
= G1 + G2. Similarly we will refer to GΓ1Γ2

as the product of G1, G2 and write GΓ1Γ2
= G1G2.

Now we consider some applications of Theorem 4.4.

Construction 4.5 As an example of how these constructions may be combined, we consider a
recursive construction of GCAs for threshold defining structures using the binomial identity(

n

t

)
=

(
n− k
t

)
+

k∑
i=1

(
k

i

)(
n− k
t− i

)
.

Let P = {P1, . . . , Pn}, and let Γ(n,t) denote an (n, t)-threshold structure defined on P. We may
construct a GCA(n, t) from existing GCA(n − k, t)s, GCA(n − k, t − i)s and GCA(k, i)s for any
1 ≤ k < t, 1 ≤ i ≤ k.

Let k be any integer such that 1 ≤ k < t. Let G(n−k,t) be a GCA({P1, . . . , Pn−k},Γ(n−k,t)).
For each 1 ≤ i ≤ k, let G(n−k,t−i) be a GCA({P1, . . . , Pn−k},Γ(n−k,t−i)), and let G(k,i) be a
GCA({Pn−k+1, . . . , Pn},Γ(k,i)). Then we may construct a GCA(n, t), G, using Theorem 4.4 by
observing that:

G = G(n−k,t) +

k∑
i=1

G(n−k,t−i)Gk,i.

2

Since there are constructions using perfect hash families which will give GCA(n, t)s with both l
and σ in the order of log n, such a construction will produce GCAs with l and σ about

C1 log(n− k) + C2k log k log(n− k)

for some C1, C2 dependent on t. In general, these will not be as efficient as those constructed directly
from a perfect hash family. However, in some cases, it may allow the choice of some components
that may be more suitable for an application which are not constructed from a perfect hash family
(for example, using Construction 3.16 which has lower dimension than Construction 2.2(c)), and it
may also allow the reuse of some existing components.

We now show that recursive constructions can be used to build GCAs for defining structures that
are not threshold structures. As an example we consider the quasi-threshold multipartite defining
structures that were first described in [11].

15

Construction 4.6 Let P1, . . . ,PN be disjoint participant sets with |Pi| = ni, 1 ≤ i ≤ N . Let
P = P1 ∪ · · · ∪ PN and let n = |P|. Let t1, . . . , tN be integers such that 1 ≤ ti < ni, and let
1 ≤ T ≤ N −1. Then Γ is a quasi-threshold ((n1, t1), . . . , (nN , tN);T)-multipartite defining structure
if Γ consists of sets A ⊆ P such that

either A ⊆ P1 with |A| ≥ t1,
or |A ∩ P1| ≥ t1 − 1 and |A ∩ Pj | ≥ tj for all j ∈ S

where S is a T -subset of {2, . . . , N}.
In other words, sets in the defining structure contains either t1 or more members of P1, or at

least t1 − 1 members of P1 together with a threshold number (tj) of members from a minimum
number (T) of the remaining N − 1 classes P2, . . . ,PN .

We can construct a GCA(P,Γ) from existing “smaller” GCAs as follows. Writing in terms of
sums and product of defining structures, we have, in fact, that

Γ = Γ(n1,t1) + Γ(n1,t1−1)

 ∑
S⊆{2,...,N}
|S|=T

∏
j∈S

Γ(nj ,tj)

 .

Hence a GCA(P,Γ), G, may be constructed correspondingly: Let Gi be a GCA(Pi,Γ(ni,ti)), 1 ≤
i ≤ N , and let G′1 be a GCA(P1,Γ(n1,t1−1)). Then

G = G1 + G′1

 ∑
S⊆{2,...,N}
|S|=T

∏
j∈S
Gj

 .

Since there are GCA(n, t) with dimension and weight in the order of log n, this construction gives
GCAs of quasi-threshold multipartite defining structure with dimension and weight in the order of

log

(
n1 +

∑
S⊆{2,...,N}
|S|=T

ni

)
. 2

Example 4.7 Let Γ be the quasi-threshold ((3, 2), (5, 2); 1)- multipartite threshold defining struc-
ture on P = {a, b, c} ∪ {d, e, f, g, h}, so

Γ = Γ(3,2) + Γ(3,1)Γ(5,2)

= (ab+ ac+ bc) + (a+ b+ c)(de+ df + dg + dh+ ef + eg + eh+ fg + fh+ gh)

= (a+ c)(a+ b)(b+ c) + (a+ b+ c)(d+ e+ f + g)h

+(a+ b+ c)(f + g)(d+ e+ h) + (a+ b+ c)(d+ f + h)(e+ g).

This gives a GCA with l = 4, σ = 5, τ = 12. A cumulative array would have given l = 1, σ = 11
and τ = 16. 2

5 Conclusions

We have presented a combinatorial analysis of general cumulative arrays and proposed measures of
efficiency corresponding to various properties of GCAs that might be of consideration in applications.
We have also provided bounds on these measures. We then showed an important relationship between
GCAs and boolean expressions. While there is a construction using perfect hash families which gives
efficient GCAs for threshold defining structures, there is no known efficient construction for general

16

defining structures. Using this correspondence with boolean expressions, however, we are able to
provide a description of desirable properties of boolean expressions in DCD form corresponding
to efficient GCAs. This correspondence also provides a convenient tool for constructing GCAs
recursively.

References

[1] M. Atici, S. S. Magliveras, D. R. Stinson and W. D. Wei. Some recursive constructions for
perfect hash families. Journal of Combinatorial Designs, 4(353–363), 1996.

[2] S. R. Blackburn, M. Burmester, Y. Desmedt and P. R. Wild. Efficient multiplicative sharing
schemes. Advances in Cryptology - Eurocrypt ’96, LNCS, 1070(107–118), 1996.

[3] E. Brickell, G. Di Crescenzo and Y. Frankel. Sharing Block Ciphers. ACISP’00, 457-470.

[4] E. Brickell and D.R. Stinson. Some improved bounds on the information rate of perfect secret
sharing schemes. Journal of Cryptology, pp 153–166, Vol 5, 1992.

[5] M. L. Fredman and J. Komlós. On the size of separating systems and families of perfect hash
functions. SIAM Journal of Algebraic and Discrete Mathematics, pp 61–68, Vol 5, No 1, 1984.

[6] M. Ito, A. Saito and T. Nishizeki. Secret sharing scheme realsing general access structures.
Journal of Cryptology, pp 15–20, Vol 6, 1993.

[7] K. Martin. New secret sharing schemes from old. Journal of Comb. Mathematics and Comb.
Computing, pp 65–77, vol 14 1993.

[8] K. Martin, R. Safavi-Naini, H Wang and P. R. Wild. Sharing the encryption and decryption of
a block cipher. To appear in Designs, Codes and Cryptography.

[9] K. Martin, J. Peiprzyk, R. Safavi-Naini, H Wang and P. R. Wild. Threshold MACs. ICISC02,
5th international conference on information security and cryptography. Lecture Notes in Com-
puter Science, Vol 2587, pp 237–252, 2003.

[10] K. Mehlhorn. On the program size of perfect and universal hash functions. Proceedings of the
23rd Annual IEEE Symposium on foundations of Computer Science, 1982.

[11] S. -L. Ng. Ideal secret sharing schemes with multipartite access structures To appear in IEE
Proc. Communications.

[12] G. J. Simmons, W. A. Jackson and K. M. Martin. The Geometry of shared secret schemes.
Bull. Inst. Combin. Appl. 1: 71–88, 1991.

[13] D. R. Stinson, R. Wei and L. Zhu. New constructions for perfect hash families and related struc-
tures using combinatorial designs and codes. To appear in Journal of Combinatorial Designs.

[14] K. Tochikubo, T. Uyematsu and R. Matsumoto. Efficient secret sharing schemes based on
authorised subsets. IEICE Trans. Fundamentals, Vol E88-A, No. 1. January 2005.

[15] H. Wang and J. Peiprzyk. Shared generation of pseudo-random functions with cumulative maps.
CT-RSA’03, Lecture Notes in Computer Science, Vol 2612, pp 281–294, 2003.

17

[16] H. Wang and C. Xing. Explicit constructions of perfect hash families from algebraic curves over
finite fields. Journal of Combinatorial Theory A, 93(112–124), 2001.

[17] I. Wegener. The complexity of boolean functions. Wiley-Teubner, Stuttgart, 1987.

18

