
Towards a Multidisciplinary Framework

for the Design and Analysis of Security

Ceremonies

Marcelo Carlomagno Carlos

Thesis submitted to

Royal Holloway, University of London

for the degree of

Doctor of Philosophy

2014

Declaration

I, Marcelo Carlomagno Carlos, hereby declare that this thesis and the work presented

in it is entirely my own. Where I have consulted the work of others, this is always

clearly stated.

Signed: .

(Marcelo Carlomagno Carlos)

Date: .

2

Acknowledgements

I would like to thank my supervisor, Geraint Price, for all the support and guidance

provided during my PhD. I truly appreciate his advices and his always insightful point

of view of the research presented. I am grateful to my advisor, Chris Mitchell, whose

wisdom, knowledge and enthusiasm I truly admired since our initial chats back in 2008.

I am thankful to the Information Security Group and the Mathematics department

at Royal Holloway which provided me with all the support I needed during these years.

I will candidly miss the warm and pleasant environment I had the pleasure to work in.

I would like to express immense gratitude to my many fellow graduate students and

colleagues for providing a fun, friendly and stimulating environment in which I was able

to learn a lot from both academical and social perspectives. To my office colleagues,

the “355” guys, and to all other colleagues and friends I have in the department, I

would like to express my thankfulness.

A special thanks to my great friend Jean Martina, who played a fundamental role

since the beginning of this journey started in 2008. He was the person who gave me a

ride to RHUL and introduced me to Chris and Geraint. Throughout this years, his role

became even more important, turning into a mix of an important collaborator, advisor

and listener who always gave attention to my most varied, and sometimes flawed, ideas

and helped me extract the real relevance from them.

I would also like to thank my examiners, Professor Allan Tomlinson and Professor

Colin Boyd, who provided encouraging and constructive feedback. Reviewing a thesis

is a complex task and I am grateful for their thoughtful and detailed comments.

To my former supervisor, Ricardo Custódio, who always supported me in all imag-

inable ways. He has always been the greatest supporter of all stages of my PhD, from

the initial idea of applying for it, to the end.

To Vania, for the all the moments we shared during this period. Thank you for

your support, patience and care.

I cannot end without a very special thanks to my family, to my brother Thiago,

who assisted me in many and equally important ways, to my sister Paula, and my

loving partner, Ana. My family has always been an endless source of support during

my entire life. Without them I would certainly have not accomplished nearly as much

as I have. My partner Ana deserves my deep gratitude. Her presence has always been

a source of love, encouragement and peace during this period.

My final thanks go to my parents. My father, despite short period I had the pleasure

of sharing my life with, has always been my greatest example. My mother, and her

3

unconditional support, took me to the position where I am now. I am extremely

thankful for everything she did, and for the several times she put her life and needs

aside to support my plans.

4

Abstract

In today’s networked society, security protocols are widely used by the majority of

people. From web browsing and instant messaging to cash machines, we are all, directly

or indirectly, using protocols in order to ensure that certain security properties, such as

integrity or confidentiality, hold. However, a significant number of real world attacks on

the implementation of security protocols are against the surrounding components, such

as the users, and not directly against the protocol itself. In a protocol specification, the

human actions are usually included in the design assumptions, without being explicitly

described in the protocol flow. When implemented, these assumptions are then replaced

by dynamic user-interactions. It is often the case that these assumptions do not hold

in practice. If this happens, the implementation can fail to deliver the security goals

that the protocol has been designed to provide.

Security ceremonies, introduced by Ellison, can be described as an extension of se-

curity protocols which includes whatever was originally left out-of-band. In a ceremony

the node types may include devices and humans, and the communication channels may

vary, including not only the traditional network channels, but also human commu-

nication (e.g. speech) and human-device communication (e.g. user-interfaces). The

increased coverage that ceremonies allow means that assumptions, which previously

provided relatively static input to protocol design, are now a more explicit part of

the model. This allows a more detailed analysis of their influence on the ceremony’s

security goals.

In this thesis, we provide a thorough review of security ceremonies and what we can

achieve through including them in the design and analysis of a security implementation.

First, we propose a taxonomy of human-protocol interaction weaknesses. This is impor-

tant because the human elements of a ceremony are very hard to model. We outline a

taxonomy of the most common human-interaction difficulties that can potentially result

in successful attacks against protocol implementations. We then map these weaknesses

onto a set of design recommendations aimed at minimising those weaknesses. Such

a taxonomy and recommendations are important when modelling the user interaction

in a ceremony to prevent an unrealistic expectation of the user’s actions. Next, we

describe a framework for designing and analysing security ceremonies. We provide a

description of the agent types, communication channels, events and an adaptive threat

model, designed to accurately reflect real world scenarios. We then analyse existing

ceremonies using our framework and present the results. Finally, we discuss how all of

our findings are related and could be used and developed further.

5

Contents

1 Introduction 12

1.1 Security Protocols in the Real World . 12

1.2 Contributions . 14

1.3 Thesis Outline . 15

2 Preliminaries 17

2.1 Security Ceremonies . 17

2.2 Ceremonies versus Protocols . 19

2.3 Notation . 21

2.3.1 Ceremony and Protocol Notation 21

2.3.2 Logical Notation . 22

2.4 Protocols Studied . 22

2.4.1 Bluetooth Pairing . 22

2.4.1.1 Legacy Pairing Protocol 23

2.4.1.2 Simple Secure Pairing 27

2.4.2 WhatsApp Messenger Registration 30

2.4.2.1 Registration Protocol 30

3 Understanding the Human-Protocol Interaction 34

3.1 Introduction . 35

3.2 Overview . 36

3.3 Frequently Overlooked Components of Human-Protocol Interaction . . . 38

3.3.1 User Knowledge . 38

3.3.2 Authentication Capabilities . 40

3.3.3 Decision Making Influencing Factors 42

3.3.4 Bounded Attention . 44

3.3.5 Inherent Limitations . 47

3.4 Minimising the Weaknesses in the Interaction 49

6

Contents

3.4.1 User Knowledge . 50

3.4.2 Authentication Capabilities . 51

3.4.3 Decision Making Influencing Factors 52

3.4.4 Bounded Attention . 52

3.4.5 Inherent Limitations . 53

3.5 Design Recommendations . 54

3.5.1 Respect User Faculties . 55

3.5.2 Do Not Rely on User Authentication Capabilities 57

3.5.3 Integrate Security Into the Main Workflow 59

3.5.4 Consider that the Expected Behaviour Might Change Under Dif-

ferent Circumstances . 61

3.5.5 Design Should Prevent User From Performing an Inappropriate

Interaction . 62

3.6 Associations Between Interaction Weaknesses and Design Recommenda-

tions . 63

3.7 Summary . 64

4 A Framework for Designing and Analysing Ceremonies 66

4.1 Introduction . 67

4.2 Overview . 68

4.3 Communication Channels and Agents 71

4.4 A Threat Model for Security Ceremonies 75

4.4.1 Abstract Threat-Models for Protocols 76

4.4.2 Premises for Ceremony Threat Modelling 78

4.4.3 An Adaptive Threat Model for Ceremonies 80

4.4.4 Case Study: Bluetooth Pairing Protocol 84

4.5 Summary . 88

5 Designing and Analysing Ceremonies 90

5.1 Introduction . 91

5.2 The Ceremony Design Process . 92

5.3 Bluetooth Legacy Pairing Ceremony . 93

5.3.1 Threat Model . 94

5.3.2 Informal Analysis . 96

5.3.3 Formal Analysis . 98

5.4 Bluetooth Simple Secure Pairing Ceremony 101

5.4.1 Threat Model . 102

5.4.2 Informal Analysis . 104

7

Contents

5.4.3 Formal Analysis . 108

5.4.4 Fixing the Simple Secure Pairing Ceremony 111

5.5 WhatsApp Registration Ceremony . 116

5.5.1 Threat Model . 118

5.5.2 Informal Analysis . 120

5.5.3 Formal Analysis . 123

5.6 Gains by Analysing Security Ceremonies 125

5.7 Summary . 127

6 Conclusions and Future Work 129

6.1 Future Work . 130

Bibliography 132

A Proverif Source Code of the Bluetooth Legacy Pairing Ceremonies 144

A.1 Bluetooth Legacy Pairing - scenario i . 144

A.2 Bluetooth Legacy Pairing - scenario ii 147

A.3 Bluetooth Legacy Pairing - scenario iii 150

A.4 Bluetooth Legacy Pairing - scenario iv 153

B Proverif Source Code of Bluetooth SSP Ceremonies 156

B.1 Bluetooth SSP - scenario i . 156

B.2 Bluetooth SSP - scenario ii . 160

B.3 Bluetooth SSP - scenario iii . 164

B.4 Bluetooth SSP - scenario iv . 168

B.5 Bluetooth SSP - scenario iv . 172

B.6 Bluetooth SSP - scenario vi . 176

C Proverif Source Code of Bluetooth SSP Ceremonies - Amended Ver-

sion 180

C.1 Bluetooth SSP amended version - scenario i 180

C.2 Bluetooth SSP amended version - scenario ii 184

C.3 Bluetooth SSP amended version - scenario vi 188

D Proverif Source Code of WhatsApp Ceremonies 192

D.1 WhatsApp Registration Ceremony - scenario i 192

D.2 WhatsApp Registration Ceremony - scenario ii 194

D.3 WhatsApp Registration Ceremony - scenario iv 196

D.4 WhatsApp Registration Ceremony - scenario i 199

8

List of Figures

1.1 Desire Path . 12

1.2 Another Desire Path . 13

2.1 Protocol and Ceremony association . 18

2.2 Example of protocol notation . 21

2.3 Example of ceremony notation . 22

2.4 Sequence diagram for the legacy mode pairing - part 1 (Initialisation) . 24

2.5 Sequence diagram for the legacy mode pairing - part 2 (authentication) 25

2.6 Sequence diagram for the legacy mode pairing - part 3 (Link key calcu-

lation) . 26

2.7 Protocol description for Bluetooth legacy mode pairing 27

2.8 Protocol description the SSP - phase one 28

2.9 Sequence diagram for the SSP - phase one 28

2.10 Protocol description for the SSP - phase two 29

2.11 Sequence diagram for the SSP - phase two 29

2.12 Sequence diagram for the general WhatsApp registration protocol . . . 31

3.1 Human-protocol interaction layers . 36

3.2 Minimising user knowledge issues . 51

3.3 Minimising authentication capabilities issues 51

3.4 Minimising decision making influencing factors issues 53

3.5 Minimising bounded attention issues . 54

3.6 Minimising inherent limitations issues 54

3.7 Mapping overlooked components into design recommendations 64

4.1 Ceremony communication overview . 69

4.2 Ceremony communication channels and agents 72

4.3 Protocol description for Bluetooth SSP phase two under the Numeric

Comparison mode . 85

9

List of Figures

5.1 The ceremony design process . 92

5.2 Ceremony description for the legacy mode pairing 94

5.3 Sequence diagram for the legacy mode pairing ceremony (Initialisation) 95

5.4 Brute-forcing PIN in the legacy pairing 100

5.5 Ceremony description for the SSP ceremony phase two 102

5.6 Sequence diagram for phase two of the ceremony of SSP under the NC

mode . 103

5.7 Sequence diagram for an MITM attempt in the SSP in NC mode 105

5.8 Sequence diagram for an MITM attack in the SSP in NC mode 107

5.9 Sequence diagram for an MITM attack in the SSP in NC mode when A

and B always confirm the pairing . 110

5.10 Sequence diagram for an MITM attack in the SSP in NC mode when

HDA is under a DY attacker . 112

5.11 Sequence diagram for our fix to the SSP in NC mode 113

5.12 Sequence diagram of a MITM attempt against our fix to the SSP in NC

mode . 114

5.13 Ceremony description for WhatsApp registration 117

5.14 Sequence diagram of the WhatsApp registration ceremony using the sms

method . 118

5.15 Sequence diagram of the WhatsApp registration ceremony using the self

method . 119

5.16 Sequence diagram of the WhatsApp registration ceremony without an

alternative channel verification . 119

5.17 Sequence diagram of the attack on the WhatsApp registration ceremony

using the sms method . 125

10

List of Tables

2.1 Logical Notation . 22

4.1 Threat models and SSP modes . 85

11

Chapter 1

Introduction

Contents

1.1 Security Protocols in the Real World 12

1.2 Contributions . 14

1.3 Thesis Outline . 15

1.1 Security Protocols in the Real World

Security is very important to today’s network based communications. Cryptogra-

phy, a very active research area, is an essential component for secure communica-

tions. However, cryptography alone is not enough. Security protocols, which define

sequences of operations and rules among agents, must be correctly defined and im-

plemented to make a communication secure. By secure, we mean achieving relevant

Figure 1.1: Desire Path1

security properties within a given con-

text. Security properties are quite var-

ied, normally being integrity, confiden-

tiality and authentication, but not lim-

ited to only those services. We all, di-

rectly or indirectly, use security protocols

on a daily basis. Web browsing, instant

messaging, payments using credit cards,

cash machines, and many other services

that are part of our daily routine rely on

security protocols to ensure that certain

security properties, hold.

1image by Alan Stanton - http://flic.kr/p/bNU5cF

12

1.1. Security Protocols in the Real World

Security protocols (also called cryptographic protocols) are widely researched, and

methods for verifying whether protocols achieve their claimed security goals are well

developed and mature [69, 16]. However, a significant number of real world attacks on

the implementation of security protocols are against the surrounding components, such

as the users, and not directly against the protocol itself. In a protocol specification, the

human actions are usually included in the design assumptions, without being explicitly

described in the protocol flow. When implemented, these assumptions are then replaced

by dynamic user-interactions. It is often the case that these assumptions do not hold

in practice. If this happens, the implementation can fail to deliver the security goals

that the protocol has been designed to provide.

A good ‘real-world’ example of such misalignment between design and practice,

which all of us are likely to see very often, is the desire path. Desire paths are those

unpaved paths created over time by human and animal footsteps. As we can see in

Figure 1.1, they show that the designed path is not aligned with the users’ desired

path. Therefore, even though there is a paved sidewalk in place, which is likely to be

more comfortable, safe, etc., humans tend to use the path where they can easily achieve

their goals.

Figure 1.2: Another Desire Path 2

Such misalignments may happen for

several reasons and under different con-

ditions and scenarios, as we will see in

this thesis. In security protocols, these

misalignments also happen, usually when

protocols’ assumptions are implemented.

As we might expect, predicting human

behaviour is a very complex and difficult

task. However, leaving human interaction

out-of-bounds may increase the chances

of incorrect expectations about the user

behaviour, and therefore introduce secu-

rity flaws in practice. As we can see in

Figure 1.2, security mechanisms designed to prevent certain actions may be simply

ignored or misused by humans when put into practice and easier alternatives are avail-

able.

The idea of extending security protocols to include whatever was originally left

out-of-bounds was introduced by Ellison [47]. One of the main additions in ceremonies

is that now, human interaction is more explicit in the design and specification. In a

2image by Will S. - http://flic.kr/p/6o7HAZ

13

1.2. Contributions

ceremony, the node types include (but are not limited to) devices and humans, and the

communication channels may vary, including not only the traditional network channels,

but also human communication (e.g. speech) and human-device communication (e.g.

user-interfaces). The increased coverage that ceremonies allow means that assumptions,

which previously provided relatively static input to protocol design, are now a more

explicit part of the model. This allows a more detailed analysis of their influence on

the ceremony’s security goals.

In this thesis we demonstrate that by extending protocol analysis to ceremony

analysis, we can potentially find and solve security flaws that were previously not

detectable.

1.2 Contributions

The high-level contribution of this thesis is to reduce the gap between security and

human-computer interaction by tackling the problem using security ceremonies. We

provide a thorough review of security ceremonies and what we can achieve by including

them in the design and analysis of a security implementation. The thesis is structured

to sequentially represent all the steps we performed in order to reach a point where

we can design and analyse security ceremonies. We used a multidisciplinary approach

where we make use of concepts and ideas from different areas such as computer science,

social sciences, psychology, web design and HCI design, to be able to develop a com-

prehensive model for the design and analysis of security ceremonies. We begin with a

taxonomy of human-protocol interaction weaknesses. Such a taxonomy highlights the

most common human-interaction difficulties that can potentially result in successful

attacks against protocol implementations. Then, we map these weaknesses onto a set

of design recommendations aimed at minimising their impacts. The development of a

taxonomy and recommendations are important when modelling the user interaction in

a ceremony. By considering them, we are able to minimise an unrealistic expectation

of the user’s actions.

After developing the taxonomy and creating a set of recommendations, the natural

next step was to move to the design and analysis of security ceremonies. Then we

developed a framework for designing and analysing security ceremonies. We provide

a description of agent types, communication channels, events and an adaptive threat

model, designed to accurately reflect real world scenarios. With this framework, we can

start modelling security ceremonies and analyse the outcomes. We then analyse existing

ceremonies, such as Bluetooth’s legacy pairing ceremony and Simple Secure Pairing,

as well as the WhatsApp messenger registration ceremony, using our framework and

14

1.3. Thesis Outline

present the results. Finally, we discuss how all of our findings are related and could be

used and developed further.

Part of the contents of this thesis presents revised and updated versions of the

following papers:

1. J. E. Martina and M. C. Carlos. Why should we analyse security ceremonies?

First CryptoForma workshop, May 2010.

2. M. C. Carlos and G. Price. Understanding the weaknesses of human-protocol

interaction. In Proceedings of the 16th international conference on Financial

Cryptography and Data Security, FC’12, pages 13–26, Berlin, Heidelberg, Mar.

2012. Springer-Verlag.

3. M. C. Carlos, J. E. Martina, G. Price, and R. F. Custodio. A proposed framework

for analysing security ceremonies. In P. Samarati, W. Lou, and J. Zhou, editors,

Proceedings of the 7th International Conference on Security and Cryptography,

SECRYPT 12, pages 440–445. SciTePress, July 2012.

4. M. C. Carlos, J. Martina, G. Price, and R. F. Custodio. An updated threat model

for security ceremonies. In Proceedings of the 28th Annual ACM Symposium on

Applied Computing, SAC ’13, pages 1836–1843, New York, NY, USA, Mar. 2013.

ACM.

1.3 Thesis Outline

The structure of the thesis represents the sequence of steps we performed in order to

reach the point where we could design and analyse security ceremonies and discuss the

results achieved.

We start, in Chapter 2, by introducing the description of the basic concepts that

are used throughout the thesis, as well as fixing the notation used in this work. We also

provide a general description of the main protocols, which are extended to ceremonies

throughout the thesis, that are relevant for the following chapters.

In Chapter 3 we present our proposed taxonomy of the most common characteris-

tics and behavioural patterns involved in human-protocol interaction. In addition to

the taxonomy, we propose a set of design recommendations aimed at minimising the

security inherent problems in the human-protocol interaction.

The contents of this chapter are the starting point of our research. The study we

conducted led us to better understand why some protocols fail when implemented, and

15

1.3. Thesis Outline

provided grounds that allowed us to analyse and discuss mechanisms to address some

of the existing problems.

In Chapter 4 we present a framework that allows us to design and analyse security

ceremonies. We present new agent types, communication channels, events and an

adaptive threat model designed to accurately reflect real world scenarios.

Then, in Chapter 5, making use of the taxonomy and the framework we proposed,

we modelled and analysed ceremonies based on existing and well known protocols.

We analyse each scenario by discussing the ceremonies and their possible variations.

For each setting, we propose a realistic threat model, informally analyse the possible

outcomes and prove the properties of the ceremonies discussed by using an automatic

cryptographic protocol verifier (ProVerif). We then discuss the results of the analysis

performed and highlight the gains obtained by analysing ceremonies.

Finally, in Chapter 6 we conclude the thesis by providing final remarks and dis-

cussing our achievements followed by a discussion of how our ideas could be used and

developed further.

16

Chapter 2

Preliminaries

Contents

2.1 Security Ceremonies . 17

2.2 Ceremonies versus Protocols 19

2.3 Notation . 21

2.3.1 Ceremony and Protocol Notation 21

2.3.2 Logical Notation . 22

2.4 Protocols Studied . 22

2.4.1 Bluetooth Pairing . 22

2.4.2 WhatsApp Messenger Registration 30

In this chapter we introduce the basic concepts that will be used throughout this

thesis, as well as the notation which has been used in this work. We describe of

the main ceremonies we analyse in this thesis and are relevant to the following

chapters.

2.1 Security Ceremonies

We all, directly or indirectly, use security protocols nowadays. From web browsing to

cash machines, we all rely on the implementation of protocols to provide assurance that

certain security properties, such as integrity or confidentiality, hold in practice. Proto-

cols have been thoroughly analysed since Needham and Schroeder [71] first introduced

the idea and several methods and tools have been developed in order to prove protocols’

goals. Therefore, we can say that protocol design and analysis is a well established and

mature research field.

17

2.1. Security Ceremonies

Nevertheless, during the last decade, the awareness that information security is

much more than just a technical issue has been consolidated [15]. Recent research

[57, 41, 76, 56, 64] shows that even the most widely analysed and deployed protocols

can exhibit security flaws when put into practice. This usually happens when a user

of an implemented protocol acts in an unexpected, although plausible, way. This

reinforces the claim made by Bella and Coles-Kemp that accomplishing a security goal

in practice requires heterogeneous and combined efforts from computer scientists, social

scientists, experimental psychologists, cognitive scientists, and web and HCI designers

[15].

The technical side of a protocol focuses on the computer level, and therefore, pro-

tocols tend to focus on interaction between computers. However, protocols are usually

built to facilitate or accomplish a human task and thus we should design and verify

such protocols by also focusing on human interaction. The idea of ceremonies was

introduced in 20031 [46], and elaborated upon further in 2007 [47], extends the concept

of a security protocols by including humans as nodes in the network. Ellison states

that a ceremony is like a network protocol, but some of its nodes may be human and

the network links are not limited to traditional communications channels.

In general terms, a ceremony is an extension of a protocol, where the nodes types

include devices and humans, and the communication channels may vary, including not

only the traditional network channels, but also human communication (e.g. speech)

and human-device communication (e.g. user-interfaces). Figure 2.1 gives a general

overview of the association between ceremony and protocol.

Figure 2.1: Protocol and Ceremony association

Such a detailed level of description introduces interesting characteristics to cere-

mony descriptions. A protocol leaves some components (e.g. human-device interaction)

1Ellison mentions in that document that the term “ceremony” for such a purpose was defined by
Jessie Walker.

18

2.2. Ceremonies versus Protocols

as ‘out-of-bounds’ and does not define nor clarify how they should work in practice,

leaving them as assumptions. When the assumptions are unrealistic, it becomes ex-

tremely difficult to translate the protocol assumption into an implementation that still

provides the expected security properties. That is one of the main reasons why we

still have practical attacks on well stablished protocols. A ceremony, due to its more

detailed description, inherently contain more fine-grained assumptions when compared

to protocols. When designing a ceremony, the user interaction (e.g. messages that the

user inputs or receives) needs to be explicitly described.

The inclusion of humans into the specification introduces a considerable complexity

into the analysis. Humans are a more error prone and unpredictable node. The non-

deterministic behaviour of humans is hard to model and analyse. The state machine of

a human, their knowledge, skills, strategies and limitations are very complex structures

to deal with. We obviously cannot model a human node that matches an exact human

being but we can learn some common characteristics empirically (as we see in Chapter

3) and use them in order to develop a more robust ceremony.

In this thesis, we consider that a ceremony has two possible node types: humans

and devices. Human nodes represent human beings that are part of the ceremony, and

devices could be a device of any type, such as a computer, smart phone, etc. We also

consider that a ceremony has three possible communication channels to represent the

human-human, human-device, and device-device communication (we will discuss node

types and communication channels in more details in Chapter 4).

2.2 Ceremonies versus Protocols

Both security ceremonies and security protocols can be defined as a sequence of inter-

actions among agents to achieve a certain security goal, such as entity authentication,

key distribution, confidentiality and anonymity. The difference between ceremonies

and protocols is that, as we can see in Figure 2.1, ceremonies are a superset of se-

curity protocols. As a result, we can say that all security protocols are ceremonies.

However, ceremonies based on the same protocol, due to the extended coverage and

context added to its description, are different from each other. In other words, and as

described by Radke et al., a ceremony is a (set of) protocol(s) in its context of use [80].

As we have mentioned earlier, ceremonies can potentially include everything that

has been left as assumptions in a protocol, such as additional node types, communica-

tion channels, internal assumptions and operations which were previously considered

out-of-bounds. As examples of these out-of-bounds operations we have user interaction

via human-device interface, human knowledge and capabilities, and key provisioning.

19

2.2. Ceremonies versus Protocols

A protocol runs among two or more nodes and each node has its own state, its

set of possible messages and a state machine. The communication channel (network)

between the nodes can be analysed against very powerful attackers that might control

the whole channel. Ceremonies, as opposed to protocols, do not necessarily require a

(classic) network. We may have additional channels to represent human-human and

human-device communication. To analyse and verify security protocols there are several

techniques and methods, and all of this analytical power is available to ceremonies

[47]. We just need to adapt the threat model to each new channel and verify them

accordingly. As we will discuss in Chapter 4, the threats to the new channels can be

different to the classic network channel that is used for protocols. Additionally, we may

have ceremonies that do not make use of a network channel at all. A ceremony that

covers only communication between devices and humans, or only between humans, is

an example of a ceremony which does not include traditional communication protocols.

Another relevant difference between ceremonies and protocols is the level of details

included in the assumptions. While in a protocol specification we define assumptions to

represent out-of-bounds operations, ceremonies turn assumptions into realistic design

parameters. The inclusion of the human nodes, and their interaction with the ceremony,

enriches the detail and coverage of the analysis. In security protocols we include several

assumptions for operations that are considered out-of-scope, such as human-device

interaction, human-human interaction, key provisioning, human knowledge, etc.; in

security ceremonies we explicitly include such interactions. By including a human node,

we have to define and use additional communication channels such as user-interfaces,

for human-device interaction, and a human channel, to represent speech, gestures, etc.,

for human-human interaction. Nevertheless, security ceremonies still require the use

of certain assumptions. For example, some initial knowledge regarding the human

agent, but the assumptions tend to be more precisely described, fine grained and more

realistic.

It is important to emphasize that the gains from designing and analysing security

ceremonies are directly linked to the quality and accuracy with which we describe the

additional components of a ceremony when compared to protocols. In protocols, it

is relatively simple to predict the agents’ behaviour and expect a deterministic set of

possible outcomes. The communication channel is usually a network channel and it

follows the same rules regarding the threat model it is subject to. In ceremonies, we

have to deal with the challenge of adding human nodes into the specification. This

brings additional communication channels, such as the human-device channel and the

device-device channel and the human agent type in addition to the already existing

device (or computer) type. All of these new additions have their own possible set of

20

2.3. Notation

threats, nuances and complexity, making ceremony design and analysis a challenging

process.

2.3 Notation

In this section, we describe the basic notation that we will adopt in this thesis. The

notation we chose for describing security protocols and ceremonies is very similar to

the notation that is commonly used for describing protocols.

2.3.1 Ceremony and Protocol Notation

The notation we use for protocol description consists of describing each step of the

protocols in a line identified by a sequential number. Each step is divided into three

main blocks: the first block is composed by a step number followed by a dot (“.”); the

second block contains the name of the sender on the left side, an arrow that indicates

the flow of the message in the center (usually from left to right), followed by the name

of the receiver and a delimiter, indicated by a colon (“:”), that represents the end of the

second block; the third block contains the message. The components in the message are

delimited by a comma (“,”) and may be grouped using braces “{” and “}” to indicate

the use of a cryptographic function over the grouped message components. Figure 2.2

shows an example of the notation we use.

1. A −→ B : A,Na
2. B −→ A : {B,Nb,Na}Kab

Figure 2.2: Example of protocol notation

This protocol consists of two steps, where in the first agent A sends to agent B a

two component message composed of his identity A concatenated with a nonce Na.

The second describes a message from agent B to the agent A. In this message we have

the concatenation of B’s identity, a nonce Nb and the nonce Na, encrypted with a key

Kab. In other words, B sends a encrypted message to A, using the key Kab, containing

its identity, Nb and Na.

The notation for ceremonies is very similar to the one used in protocols. The

difference exists because of the different communication channels (which may be subject

to different threat models), hence the need to differentiate over which channel the

message is being sent. To do that, we add a label below the arrows (in the second

block) to specify the name of the channel. Figure 2.3 shows an example of the notation

being used.

21

2.4. Protocols Studied

1. B −−→
DD

A : B,Nb

2. A −−→
HD

U : B

Figure 2.3: Example of ceremony notation

Similar to the protocol described earlier, this ceremony consists of two steps, where

in the first agent B sends to agent A, via the network channel identified by DD, a two

component message composed of his identity B concatenated with a nonce Nb. The

names used to differentiate the channels and that we will adopt throughout this thesis

will be defined in Chapter 4. The second step describes a message from agent A to the

agent U via the HD channel. In this message we have B’s identity being sent.

2.3.2 Logical Notation

This thesis also contains a few logical expressions, hence in Table 2.1 we present the

logical symbols we used, followed by how they are read in English.

Symbol Logical Context Reads as

∧ conjunction “and”

∨ disjunction “or”

∪ union “the union of”

¬ negation “not”

= equality “is equal to”

∈ set membership “is in”

/∈ negation of set membership “is not in”

Table 2.1: Logical Notation

2.4 Protocols Studied

In this section, we describe the protocols we will discuss and analyse in this thesis. The

focus of the description at this moment is only at the protocol level. In Chapter 5 we

then model ceremonies based on these protocols and analyse these ceremonies in more

detail.

2.4.1 Bluetooth Pairing

Bluetooth is a short-range communication system intended to replace the cables con-

necting portable and/or fixed electronic devices [21]. The establishment of such com-

munication has a momentary nature, created for data exchange between the devices.

22

2.4. Protocols Studied

Bluetooth has been designed with robustness, low power consumption, and low cost in

mind.

Bluetooth devices work under two modes of operation, namely, discoverable and

non-discoverable. When operating in the discoverable mode, the device responds to in-

quiries made by other (unknown) devices. On the other hand, when in non-discoverable

mode, a device only responds to enquiries from devices with whom it has previously

set up communication.

When two devices are communicating for the first time, they do not have a common

link key. Therefore, such a key shall be created. To create a new key, a procedure called

“pairing” is used. Pairing allows devices to mutually authenticate themselves and

create a shared symmetric key, which will provide the basis for all security transactions

between those devices. There are two procedures for pairing. The first is currently

known as the Legacy Pairing Protocol and the second is the Secure Simple Pairing.

The legacy pairing protocol, in use from Bluetooth’s version 1.0 to 2.0+EDR (En-

hanced Data Rate), generally makes use of a user input to establish the connection.

User(s) of both devices in the pairing are asked to type a PIN code into each device

which is used as part of the connection establishment. For devices with limited input

capabilities (e.g. headsets), a fixed PIN number is used (e.g. 0000), whereas for ad-

vanced devices, such as mobile phones or computers, a numeric or alpha-numeric PIN

may be used.

For recent versions of Bluetooth, a different pairing mechanism is defined. This

new pairing procedure is called Secure Simple Pairing (SSP) and is available from ver-

sion 2.1+EDR and above. SSP was designed to solve several problems found in earlier

versions of the pairing protocol. First, it simplifies the pairing process from the user’s

perspective, offering different pairing options and requiring fewer and simpler interac-

tions. In addition to the usability improvements, it adds increased protection against

passive (eavesdropping) and active (man-in-the-middle) attacks. This additional pro-

tection solves flaws found in earlier versions that allowed attackers to perform offline

attacks and deploy man-in-the-middle (MITM) attacks [24, 25, 57, 92, 34].

2.4.1.1 Legacy Pairing Protocol

The legacy pairing protocol, which is the pairing mechanism used from Bluetooth

version 1.0 to 2.0+EDR aims to allow devices to create a shared symmetric key called

Kinit, authenticate one device to the other (mutually in most cases), and generate a

link key, which is a key that will provide the basis for all security transactions between

these pairing devices.

The pairing process includes several steps. First, a personal identification number

23

2.4. Protocols Studied

(PIN) must be set for the both pairing Bluetooth devices. The way that the PIN can

be set varies. It can be variable, and therefore be defined via user input (if the devices

support such a feature) or it can be fixed (in devices with limited input capabilities,

such as headsets). Entering a PIN in to both devices is recommended according to the

specification and should be used whenever possible [23]. The PIN must be the same

for both devices involved in the pairing process. For most applications, the PIN is a

short string of numbers, consisting usually of four digits, but it can be up to 16 octets.

In addition to sharing the same PIN , each device has its own (unique) Bluetooth device

address.

The protocol is composed of 8 messages that can be divided in three different parts.

The initial assumption is that both agents involved initiate the protocol run with the

same initial knowledge, which is composed by PIN and each others bluetooth addresses

(BD ADDRA and BD ADDRB).

In Figure 2.4 we present the first part of the protocol, which we call initialisation

phase. The main goal of this phase is to allow both peers to generate the initialisation

key Kinit. To do that, both peers, which already share a common PIN and know

each others bluetooth device addresses (BD ADDRA and BD ADDRB), initiate a

communication by A sending a 128-bit random number IN RAND to agent B, which

replies with an ACCEPTED message. With these values, both sides can now calculate

Kinit by using the algorithm e22, which is based on the SAFER+ cipher2 [67]. The

inputs for this function are BD ADDR, PIN and IN RAND. In order to define which

Bluetooth address should be used (BD ADDRA or BD ADDRB), the following rule

is applied: if one device has a fixed PIN the BD ADDR of the other device should be

used. If both devices have a variable PIN the BD ADDR of the device that received

IN RAND (B in our example) should be used.

Device A Device B

Generate IN RAND
IN RAND

ACCEPTED

Calculate: Kinit =
e22(BD ADDRB , P IN, IN RAND)

Calculate: Kinit =
e22(BD ADDRB , P IN, IN RAND)

Figure 2.4: Sequence diagram for the legacy mode pairing - part 1 (Initialisation)

2The algorithms e21 and e1 used in this protocol are also based on the SAFER+ cipher.

24

2.4. Protocols Studied

After calculating Kinit, the next part is the authentication phase (Figure 2.5). The

goal is to mutually authenticate the devices using a challenge-response mechanism.

First, to authenticate B, A generates a 128-bit random number AU RANDA and sends

it to B. On the other side, B calculates the authentication response SRES1 using the

e1 algorithm with Kinit, BD ADDRB and AU RANDA as inputs3 and sends it to

A. Then A is able to verify if SRES1 sent by B matches the value expected by A. If

it does, the protocol continues and the other side and B repeats a similar process to

authenticate A.

Device A Device B

Generate AU RANDA

AU RANDA

Calculate: SRES1 =
e1(Kinit, BD ADDRB , AU RANDA)

SRES1

Verify if: SRES1 =
e1(Kinit, BD ADDRB , AU RANDA)

Generate AU RANDB

AU RANDB

Calculate: SRES2 =
e1(Kinit, BDADDRA, AU RANDB)

SRES2

Verify if: SRES2 =
e1(Kinit, BDADDRA, AU RANDB)

Figure 2.5: Sequence diagram for the legacy mode pairing - part 2 (authentication)

Finally, the last part is calculating the link key KAB, as we show in Figure 2.6.

To generate this key, A generates a 128-bit random number LK RANDA, xors it

with Kinit and sends the resulting value (E LK RANDA) to B. The other peer, B,

obtains LK RANDA by xoring E LK RANDA with his Kinit generated in part 1, and

repeats the same process as A. It generates a 128-bit random number LK RANDB,

xors it with Kinit and sends the resulting value (E LK RANDB) to A, who obtains

3Note that if the link key generation part is run before the authentication, Kinit shall be replaced
by KAB as input for the e1 function.

25

2.4. Protocols Studied

LK RANDB by using Kinit. Since both devices know Kinit, each device now holds

both random numbers LK RANDA and LK RANDB. At this point, both parties

have the information they need to calculate KAB by using the e21 algorithm twice and

xoring the results.

Device A Device B

Generate LK RANDA

Calculate: E LK RANDA =
LK RANDA ⊕ Kinit

E LK RANDA

Obtains LK RANDA =
E LK RANDA ⊕Kinit

Generate LK RANDB

Calculate: E LK RANDB =
LK RANDB ⊕ Kinit

E LK RANDB

Obtains LK RANDB =
E LK RANDB ⊕Kinit

Calculate: KAB =
(e21(LK RANDA, BD ADDRA) ⊕
e21(LK RANDB , BD ADDRB))

Calculate: KAB =
(e21(LK RANDA, BD ADDRA) ⊕
e21(LK RANDB , BD ADDRB))

Figure 2.6: Sequence diagram for the legacy mode pairing - part 3 (Link key calculation)

As we can see, the protocol relies on the PIN . It is clear that if an attacker is

capable of obtaining the PIN value, then the protocol properties of confidentiality

and authentication are violated. Confidentiality is violated because, by knowing the

value of PIN , the attacker will have all the required information to calculate Kinit.

Authentication is also violated because an attacker can successfully impersonate a

device by knowing Kinit and the device’s Bluetooth address. Additionally, the PIN

is a low entropy input (usually 4-digit long) susceptible to offline attacks, as discussed

and presented in related papers [57, 92, 34].

For clarity and simplification, Figure 2.7 presents the full protocol using protocol

notation.

26

2.4. Protocols Studied

1. A −→ B : IN RAND
2. B −→ A : ACCEPTED
3. A −→ B : AU RANDA

4. B −→ A : SRES1 = e1(Kinit, BD ADDRB, AU RANDA)
5. B −→ A : AU RANDB

6. A −→ B : SRES2 = e1(Kinit, BD ADDRA, AU RANDB)
7. A −→ B : E LK RANDA = LK RANDA ⊕Kinit

8. B −→ A : E LK RANDB = LK RANDB ⊕Kinit

Figure 2.7: Protocol description for Bluetooth legacy mode pairing

2.4.1.2 Simple Secure Pairing

Bluetooth’s new pairing procedure, called “secure simple pairing” (SSP), was presented

in version 2.1+EDR and, at the time of writing, it is still the current pairing mechanism

in use. SSP was designed to mitigate several problems found in the legacy pairing

protocol. The two main focuses of this protocol are on improving usability by offering

different pairing options and simplifying user interactions, and on mitigating security

problems against passive and active attacks.

SSP presents four distinct association modes designed to cover most device types.

The just works (JW) mode is designed for devices with limited display and input

capabilities, possibly without them. In this mode, the associating devices exchange

public keys, nonces and a commitment value but nothing is displayed for the user,

except in some implementations where the user might be asked whether to accept

the connection or not. The numeric comparison (NC) association mode, which

is our main focus in this thesis, makes use of the same protocol as the just works

mode. The difference between them is that the numeric comparison mode is designed

for devices capable of displaying digits (a 6-digit number) and accepting user inputs

(“yes” or “no”). Due to the additional capability of the device, the protocol includes

an additional authentication step, which is performed by the user. Both devices display

a number (based on the nonces and public keys shared between the devices) and the

users have to check whether the numbers shown are the same for both devices. If they

are equal, the pairing is successful. The third association mode is the out of band

(OOB) and it is designed for scenarios where an out of band mechanism is used for

discovering devices as well as exchanging the cryptographic information required for

the pairing process. For example, when using two devices that support Near Field

Communication (NFC), the user(s) would touch the two devices together to perform

the pairing. The last mode is the passkey entry (PE), which is designed for situations

where the pairing devices have different input and display capabilities. For example,

where one device has only input capabilities, such as a keyboard, and the other has

27

2.4. Protocols Studied

only displaying capabilities, for example, a screen [24].

The SSP protocol is divided into five phases, and phases one, three, four and five

are the same for all modes/protocols. Phase two, which focuses on achieving mutual

authentication between the devices, is unique for each association mode. Our focus in

this thesis is on the SSP protocol under the numeric comparison mode. Therefore, we

will concentrate on phases one and two of the SSP protocol using the NC mode and

assume that all following phases are correct.

Phase one, called Public Key Exchange, is presented in a protocol description in

Figure 2.8. Prior to the beginning of this phase, each device generates its own Elliptic

Curve Diffie-Hellman (ECDH) key pair. Note that this key pair is required to be

generated only once per device and could be generated at any point prior to the pairing

or during the first pairing of the device.

1. A −→ B : PKA

2. B −→ A : PKB

Figure 2.8: Protocol description the SSP - phase one

As shown in the sequence diagram presented in Figure 2.9, in order to start the

pairing process, the initiating device, sends its public key PKA to the receiving de-

vice. The responding device then replies by sending its own public key PKB. At this

point, both devices have the necessary information to calculate DHKey, using a P192

function that computes a FIPS approved P-192 elliptic curve, which will be used to

generate the link key later in the protocol.

Device A Device B
PKA

PKB

Calculate:
DHKey = P192(SKA, PKB)

Calculate:
DHKey = P192(SKB , PKA)

Figure 2.9: Sequence diagram for the SSP - phase one

Phase two starts as soon as phase one is concluded. In NC mode, considering

that Na and Nb are nonces and the function f1 is a function to generate the 128-bit

commitment value Cb, the protocol in phase two is presented in Figure 2.10.

As we can see in the protocol description, there are only 3 steps in phase two in the

NC mode. However, there are important steps which are not explicitly described. Fig-

ure 2.11 presents a detailed sequence diagram of phase two. After exchanging nonces

28

2.4. Protocols Studied

1. B −→ A : Cb = f1(PKB, PKA, Nb, 0)
2. A −→ B : Na

3. B −→ A : Nb

Figure 2.10: Protocol description for the SSP - phase two

with B, A verifies if the value of Cb sent by B matches the value A calculates. Addi-

tionally, there are two confirmation values that must be calculated by the devices A and

B. The confirmation values are Va and Vb which are generated via a known function g

using the values PKA, PKB, Na, Nb, that were shared between the devices during the

previous protocol messages, as parameters. Va and Vb are values that will be shown

on devices A and B’s displays respectively. Finally, the users of these two devices will

then compare whether Va and Vb are equal and confirm by (usually) pressing a button

on the device. Without this user verification of Va and Vb, the authentication goal does

not hold for this protocol, making it vulnerable to MITM attacks for example.

Device A Device B

Generate: Na Generate: Nb

Calculate :
Cb = f1(PKB , PKA, Nb, 0)

Cb

Na

Nb

Verify if:
Cb = f1(PKB , PKA, Nb, 0)

Calculates:
Va = g(PKA, PKB , Na, Nb)

Calculates:
Vb = g(PKA, PKB , Na, Nb)

Figure 2.11: Sequence diagram for the SSP - phase two

In the following phase, called Authentication Phase 2, a new message exchange is

used to confirm that both devices have successfully completed all the steps until this

moment. A new confirmation value is computed by using the previously exchanged

values and this value is exchanged between the devices. Both devices then check if

the exchanged values match with the expected value. If these checks fails, it means

29

2.4. Protocols Studied

that the pairing has not been confirmed. Phase four involves the link key calculation.

There is no message exchange between peers at this point. Finally, in Phase five, the

encryption keys are calculated.

Although major attacks against the protocol have not yet been found, therefore we

could consider that the SSP protocol is secure, we still find attacks based on a forced

change from a strong association mode to a weaker one [51], or a user’s misinterpretation

of concurrent pairing sessions [34]. Both attacks focus on possible real-world uses (and

on specific association modes) of the protocol rather than its specification. That is,

they focus on the Bluetooth SSP ceremony rather than the SSP protocol.

As we can see, there is more involved in this protocol than a classic protocol analysis

covers. There is human verification and interaction with the devices and humans

communicating with each other. This makes the SSP protocol (and even the legacy

mode) an excellent case study for ceremonies.

2.4.2 WhatsApp Messenger Registration

WhatsApp Messenger is a messaging application for mobile devices that allow users

to exchange text, images, audio and video messages. It is available for several mobile

operating systems such as Android, iOS, Blackberry, Windows and Symbian. It is an

extremely popular and fast growing messaging service. According to statistics published

by their account on Twitter, in August 2012 the number of messages sent and received

via WhatsApp in a day was around ten billion [108]. In June 2013, this number went

to twenty seven billion [109] per day, with a database of 300 million of active users [75].

The registration and the communication protocols used by WhatsApp are propri-

etary. Despite not being available as a public protocol, there are several attacks that

exploit the message exchange during the registration process between the application

(client) and the server based on reverse engineering the registration and communication

protocols.

2.4.2.1 Registration Protocol

WhatsApp user registration uses the user’s mobile phone number as basis for identifi-

cation. The basic registration scenario begins with the user choosing his country and

entering his phone number in to the application. Here we note the first curious part of

the process. Rather than detecting the phone number, the application asks the user to

insert the number. After some investigation, we found that Apple’s iOS SDK does not

allow applications to access the device’s phone number. Android SDK, on the other

hand, grants access to the phone number, but this feature is not currently in use by

30

2.4. Protocols Studied

WhatsApp. There are some potential benefits by asking the user to input the phone

number. Firstly, by keeping the user registration process homogenous across different

operating systems, it improves usability and user experience. Secondly, it allows the

user to register his account using a device which does not have a phone number (e.g.

tablet) as long as the user has access to mobile phone capable of receiving SMS during

the registration process.

For obvious reasons, asking the user to insert a phone number comes with a security

risk. If a user inserts someone else’s phone number, he could hijack or create a user

account for a number he does not own. To prevent such a problem from happening,

an SMS verification mechanism is implemented. After receiving the user input phone

number, the application then sends the information entered to the registration server.

In response, the server returns an acknowledgement. Additionally, when receiving the

request, the server sends an SMS message containing a PIN code to the phone number

that requested the registration. The SMS is sent via an alternative channel (separate

from the network channel used during the rest of the process) and it is used to verify the

possession of the phone number by the device making the request. The PIN received

via SMS is then entered by the user in to the application, which is then sent to the

server and the registration is confirmed by binding the phone number to the device.

Figure 2.12 gives an overview of the registration process. Note that alternatively, in

case the SMS verification fails, a method based on an automated phone call to the user

is used. The process is the same, the user receives an automated phone call to the

number he entered and the recording spells the PIN code that the user has to insert

in to the application.

Device A Server S

Phone Number

Confirmation

PIN (V ia SMS)

PIN

Registration Confirmation

Figure 2.12: Sequence diagram for the general WhatsApp registration protocol

Although the general registration process presented in Figure 2.12 seems to rep-

resent the expected protocol specification, we found that the real implementation, at

least for earlier versions of the protocol, had some variations and presented serious

31

2.4. Protocols Studied

security flaws.

The first relevant difference is that in earlier versions, the PIN was generated by

the application and sent to the server along with the phone number through a HTTPS

connection [91, 105]. An important issue to note is that the phone number and PIN

sent to the server are not used for registration at this point. These values are only

used to allow the server to send an SMS. This SMS is sent to the phone number

received and contains the PIN code informed [61]. All the information received at

this point is simply discarded after the SMS is sent. This introduces a security flaw

where an attacker could simply intercept the HTTPS request sent from the device to

the server and read the PIN that was supposed to be delivered via SMS. Despite the

fact the communication is SSL-protected, the attacker would only have to intercept the

connection between his own device and the server. This can easily be performed using

a proxy server and tools such as SSLSniff [65]. By doing that, the attacker can insert

any phone number he wants and easily obtain the PIN generated by the application

to successfully perform the registration. The attacker could even prevent the request

from being sent to the server (this is not necessary for the attack to succeed, but it is

useful to prevent the user from receiving an unexpected SMS). According to some tests

we performed using Whats-API [102], which allows us to send and receive requests to

the server and manipulate the parameters, this flaw seems to be solved now and the

PIN is generated on the server side.

As an attempt to fix the problem, the following versions changed the registration

and removed the verification of the PIN from the application. Instead of just contact-

ing the server to ask for an SMS to be sent, the application sends a request including

the device’s phone number and the server responds with a confirmation message. How-

ever, rather than just acknowledging that the message has been received, the response

message includes the verification PIN code [105]. The most probable reason for that

is because the SMS message with the PIN code is not always sent from the server to

the device. There are two variations for sending the SMS. The first, called self, is de-

signed for Android devices and the device sends an SMS to its own number to confirm

the ownership of the number. The application then keeps monitoring incoming SMS

messages waiting for the SMS containing the PIN and, when it is received, it auto-

matically reads the number and completes the registration. The second, called sms, is

the method where the SMS is sent by the server in order to verify the ownership of the

phone.

However, both self and sms methods were still vulnerable to attacks. Since the

PIN can be discovered prior to the reception of the SMS, an attacker could use a

simple variation of the attack presented above, and sniff the SSL connection between

32

2.4. Protocols Studied

his own device and the server to get the PIN . Then, for the self method he could

simply spoof an SMS sent from his own device, using the PIN he captured and complete

the registration. For the sms method, it would be even simpler, we could just enter

the PIN in to the application and complete the registration.

The latest version of Whatsapp changed the registration process. It is now similar

to that we present in Figure 2.12. According to some tests we performed using Whats-

API [102], the PIN is no longer displayed when the registration is performed using the

sms method. However, the PIN , which is now a longer code, is still returned when

the self method is requested. Although we could not test whether the attack described

above would work in this new version, we believe that the attack is still possible, since

the attacker would still have access to the PIN in advance when requesting the self

method.

In Chapter 5, we will discuss more details of some of the scenarios above from a

ceremony point of view.

33

Chapter 3

Understanding the

Human-Protocol Interaction

Contents

3.1 Introduction . 35

3.2 Overview . 36

3.3 Frequently Overlooked Components of Human-Protocol

Interaction . 38

3.3.1 User Knowledge . 38

3.3.2 Authentication Capabilities 40

3.3.3 Decision Making Influencing Factors 42

3.3.4 Bounded Attention . 44

3.3.5 Inherent Limitations . 47

3.4 Minimising the Weaknesses in the Interaction 49

3.4.1 User Knowledge . 50

3.4.2 Authentication Capabilities 51

3.4.3 Decision Making Influencing Factors 52

3.4.4 Bounded Attention . 52

3.4.5 Inherent Limitations . 53

3.5 Design Recommendations . 54

3.5.1 Respect User Faculties . 55

3.5.2 Do Not Rely on User Authentication Capabilities 57

3.5.3 Integrate Security Into the Main Workflow 59

3.5.4 Consider that the Expected Behaviour Might Change Under

Different Circumstances . 61

34

3.1. Introduction

3.5.5 Design Should Prevent User From Performing an Inappropri-

ate Interaction . 62

3.6 Associations Between Interaction Weaknesses and Design

Recommendations . 63

3.7 Summary . 64

In this chapter we propose a taxonomy of the most common characteristics

and behavioural patterns involved in human-protocol interaction. Along with

the taxonomy, we present a set of design recommendations to minimise the

problems inherent in the human-protocol interaction. This was the starting

point of our research, which led us to understand why some protocols fail in

practice and how we can address some of the existing problems. The content

of this chapter is a revised and updated version of the paper “Understanding

the weaknesses of human-protocol interaction” by the author and Geraint Price

published in the proceedings of the 16th international conference on Financial

Cryptography and Data Security [33].

3.1 Introduction

The volume of data that flows through modern networks is immense. People use

many different applications and tools to store, process and manipulate this data on

a daily basis. Among this intensive data flow lies sensitive information. To ensure

that this sensitive information is adequately protected, different security mechanisms

and protocols have been developed to provide security services such as confidentiality,

integrity and authenticity.

There is a wide range of protocols, each one with its own goals and characteristics.

To check whether those protocols are correct or not, that is, they provide the properties

they claim, verification techniques have been developed. However, there are situations

where even some of the most secure and robust protocols are vulnerable to attacks when

implemented. A significant number of these attacks are against the non-cryptographic

components, such as the human-protocol interaction.

In protocol design and analysis, the human interaction is usually part of the as-

sumptions and not specifically included in the description (e.g. an assumption that

a user is able to verify a digital certificate, or will generate strong passwords). How-

ever, user behaviour is often unpredictable, making the assumptions not precise enough

[47, 66]. Despite that unpredictable nature, there are some common design errors and

weak assumptions that can be avoided if taken into account.

35

3.2. Overview

We conducted a thorough study of the existing work, among different areas, to

identify and understand the most common characteristics and behavioural patterns

involved in the human-protocol interaction. Based on the results of this study, we

propose a unified set of often overlooked human-protocol interaction components that

merges the findings from different research areas into a harmonised taxonomy. In

particular, we focus on human characteristics that are usually overlooked during the

protocol design process.

Based on the proposed taxonomy, we then discuss ways in which we can factor

in these weaknesses and minimise their impacts. Our analysis is based partly on re-

lated research findings, but is also based on our own proposals which evolved from our

taxonomy of weaknesses. Ultimately, this allows us to present a set of design recom-

mendations to address the problems inherent in human-protocol interaction. What is

interesting is that this set is not simply a linear evolution of the taxonomy of weak-

nesses. What we can see is that a second independent layer of structure emerges when

we separately consider the categorisation of solutions to the problems we collate and

identify in the taxonomy of weaknesses.

3.2 Overview

Human computer interaction is a topic which spans several different areas, including

computer science, sociology and psychology. A large portion of research in this subject

is related to design and usability of security systems. Each of these research areas inde-

pendently address different layers of systems security. Figure 3.1 gives us an overview

of the layers involved. The specification layer (I), represents the protocol specification;

the application layer (II) contains the implementation of the specified protocol in an

application; the interface (III) brings a point of interaction between the application

and user layers; finally, the user layer (IV) represents a user of the application.

Figure 3.1: Human-protocol interaction layers

Software engineering is focused on the application’s design and implementation

36

3.2. Overview

(application layer); humancomputer interaction (HCI) focuses on the interface and

usability aspects (interface and user layers); computer security design focuses on the

design and implementation level (specification and application). Most of the existing

research within these areas focuses on a specific layer rather than the whole set. This

creates a gap, particularly between the specification and application layers where the

human-protocol interaction involved has received little attention. The human interac-

tion within a ceremony context, which we focus on this work, crosses all the layers,

such as specification, application, interface and user.

Within the scope of human-protocol interaction we consider any type of action

performed by a user that might impact on the security properties of a system. Since

the interaction is usually made via a software interface, we have to consider usability

issues. Additionally, we need to look at the implementation and specification levels. In

a protocol specification, the human-protocol interaction is usually part of the design

assumptions, that is, static components where actions are assumed to happen without

being explicitly included in the specification. When implemented, these static choices

are then replaced by dynamic user-interactions. It is often the case where the assump-

tions are inaccurate, as a result, it is very unlikely that an implementation can provide

the expected security properties. Our work focuses on detecting patterns of problems

that occur during the human-protocol interaction and highlight human characteristics

that are often overlooked during protocol design and implementation. We explore the

findings of research within these layers to construct a broader point of view.

As mentioned above, different research fields address security issues in different

ways. However, we were able to observe overlaps in the way those issues are dealt with.

These overlaps occur due to the use of different terminologies and distinct research

goals. For example, there have been studies of phishing attacks [56, 76, 111, 40, 39];

users’ susceptibility to attacks [44, 87]; factors exploited to allow an attack to be

successful [99, 41, 48, 88] amongst others. The findings from these experiments are

a very good source of analysis and comprehension of users’ weaknesses. Among this

wealth of studies, we found that similar findings are labelled in different ways. We also

found that some findings, applied to a specific context, can be extended to different

contexts. Each of these existing areas of research independently contributed to the

construction of the set of human-protocol interaction weaknesses and recommendations

we propose.

37

3.3. Frequently Overlooked Components of Human-Protocol Interaction

3.3 Frequently Overlooked Components of

Human-Protocol Interaction

The interaction between computers is relatively easy to define and the results are,

in general, predictable. However, defining or predicting human characteristics or be-

havioural patterns is a challenging task. It requires a more subtle approach, commonly

based on empirical results [66]. Despite this complicating factor, we can create a generic

(but not perfect) human-protocol interaction model by using empirical and statistical

information to improve the human-protocol interaction process.

Therefore, it is necessary to study and analyse the most common characteristics and

behavioural patterns regarding human-protocol interaction. As we will see throughout

this Section, there is a significant amount of research which maps human character-

istics (or principles, weaknesses, etc.). This existing body of work offers important

and relevant insights that constitute the basis of the set of overlooked components of

human-protocol interaction we discuss during this section. By analysing existing work

and detecting the common components among them, we define our list of five main

overlooked components of human-protocol interaction: user knowledge, authentication

capabilities, decision making influencing factors, bounded attention, and inherent char-

acteristics.

The taxonomy we present here is necessarily incomplete, simply because new tech-

nologies, new attacking tactics and new human-computer interaction methods may

arise. Nevertheless, this taxonomy reflects the current situation for overlooked compo-

nents of human-protocol interaction.

3.3.1 User Knowledge

We define knowledge as familiarity, awareness, experience or understanding of a certain

subject. Within the human-protocol interaction context, users’ knowledge certainly is

an important factor to be considered. We have seen several situations where this factor

(or the lack of it) is exploited by attackers. In general, most users do not have extensive

knowledge of how computers, operating systems and software work. Furthermore,

even users who are familiar with computing do not necessarily have knowledge about

computer security, cryptography or security protocols. Therefore, a secure human-

protocol interaction should carefully consider users’ knowledge.

Phishing attacks provide a very interesting case study from which we can evaluate

human-protocol interaction. The main reason is that, in many cases, the user has to

interact with the implementation of the SSL/TLS protocol [42]. Dhamija et al. [41]

developed a usability study to understand how phishing attacks work. In their research,

38

3.3. Frequently Overlooked Components of Human-Protocol Interaction

a set of hypotheses was developed and tested. Within this set, they identified that,

indeed, users are not familiar with computer systems, security, security indicators and

risks (such as web frauds). Similar findings are presented by Wu et al. [111], Downs et

al. [44], Sasse et al. [87] and Jakobsson [56], among several others.

The obvious approach to minimise problems related to untrained users is training

them. It does, indeed, improve some aspects of user practices, such as strong password

generation [101] and not revealing private information in phishing websites [60]. How-

ever, there are also side effects, such as a greater likelihood of writing down passwords

due to human memory limitations (related to the component we describe in Section

3.3.5) [101] and falling for spoofs of security indicators [44] because of human limited

authentication capabilities (see Section 3.3.2).

When an attacker is able to perceive a weakness in the victim’s level of knowledge,

it is relatively easy to manipulate and exploit it to successfully attack a protocol. In

phishing attacks, for example, the attacker exploits the victim’s lack of knowledge

of computer systems (e.g. inability to recognise URLs and redirections [111, 41]),

security risks (e.g. many users do not know that websites can be cloned [41]) and lack

of knowledge in computer security (e.g. when they erroneously decide to trust a website

solely on the fact that they see the picture of a padlock [56]).

In summary, we can list the knowledge-related issues that are most commonly

exploited by attackers:

Lack of knowledge of computing – Despite the fact of being computer users, many

people do not (and probably should not be required to) have a proper under-

standing of how operating systems, networks and protocols work [41, 44, 111].

Techniques and attack methods such as web site redirections, URL masking, mal-

ware and others are often used by attackers to exploit this fact. Systems often

have security failures because they are too difficult to be used. Even educated

and careful users sometimes cannot understand security-relevant user interfaces

[94].

Lack of knowledge of security – Most users do not have knowledge and under-

standing about digital certificates, encryption mechanisms and most of security

technologies [41, 111, 56, 44]. In a test that required users to detect phishing

websites, 95% of users did not know the meaning of the browser warning about

an untrusted server certificate [41]. Additionally, users often do not know how

to identify a spoofed website or email, and do not understand the meaning of

security indicators [111].

Lack of knowledge of security threats – Many users do not know they can be

39

3.3. Frequently Overlooked Components of Human-Protocol Interaction

attacked or attacks such as spoofing websites are even possible [41, 111]. Fur-

thermore, even those with a better understanding of the risks, are not usually

familiar with many techniques used by attackers.

Inaccurate mental models – There are many indicators that people are likely to

construct their own concepts about computing and security. Jakobsson [56] ob-

served that people judge relevance of content before checking for indicators of

authenticity. We have also seen situations where users create their own (and fre-

quently inaccurate) concepts about how the authentication process works [4], and

about the likelihood and impacts of attacks (“They could not do much damage

anyway” [87]).

Human-protocol interaction cannot rely on users’ computing/security knowledge

and awareness. A secure human-protocol interaction must consider users knowledge

and, preferably not require higher training levels. Taking into account the level of

knowledge and understanding relevant to the target users is very important to avoid

security flaws due to an overlooked target audience. Also, the more generic the audi-

ence, the lower level of understanding should be required. It is a design flaw to assume

that the users are knowledgeable in something they are not. Thus, when designing a

human-protocol interaction, giving tasks to users where they might have insufficient

knowledge to perform that task should always be avoided.

3.3.2 Authentication Capabilities

An authentication performed by a user is a task where the user verifies that the authen-

ticating party is whom it is expected to be. People frequently make use of visual cues

as an important authentication tool. However, there are studies [98, 99, 41, 111, 56]

that show that this visual authentication mechanism is weak and unreliable in some

cases. Stajano and Wilson [98, 99] performed several experiments as attempts to detect

common exploited patterns in scam scenarios. The limited authentication capabilities

inherent in populations of users was often an important (if not the most important)

factor to the success of their attacks. Their study demonstrated that people are usu-

ally very good at recognising people they already know, however they are not good at

authenticating strangers (someone they do not know) or objects. The more visually

equivalent to the original a spoofed element is, the more likely it is to be accepted as

authentic.

Other research [41, 111, 56] achieved similar outcomes, corroborating Stajano’s

results. Many additional techniques were used to deceive users, such as fake email

messages, spoofed websites and untrusted certificates. In most cases users were fooled,

40

3.3. Frequently Overlooked Components of Human-Protocol Interaction

and consequently attacked, because they failed to authenticate objects. Therefore,

human authentication should be avoided for authenticating strangers or objects (either

real or digital).

In a human-protocol interaction scenario, the attacker may exploit the user’s lim-

ited authentication capabilities to make the victim believe the messages haven been

exchanged with a trusted party. Once the user authenticates the attacking party as

valid (by accepting the attacker’s digital certificate, or simply ignoring security indica-

tors), the attacker is extremely close to achieve their objectives.

In general, we found four different users’ authentication skills that are well known

by attackers, but not always correctly addressed by designers:

Users are good at authenticating people they know – In general, users are very

good and efficient at authenticating people they know [98]. Indeed, facial recog-

nition for computer systems still faces several challenges, while the human visual

system works very well at recognising other people. Even when not in person,

humans can accurately recognise familiar faces displayed in computer displays or

photos (even in low-resolution images) [93, 52].

Users are not good at authenticating objects – Users usually have problems au-

thenticating objects [98, 39, 111]. Objects are easy to spoof, with it often being

possible for an attacker to produce exact copies of objects. When facing a spoofed

object, it is very likely that the spoofed copy will be perceived by the user as orig-

inal. A fake card reader machine given to a user in a restaurant, for example, is

likely to be unnoticed by the user who will type his PIN in to the machine.

Users are not good at authenticating strangers – People are not usually good

at recognising unfamiliar people or people they do not know [93]. Bruce et al.,

for example, demonstrated that humans perform poorly when matching different

photographs of an unfamiliar person [27]. Additionally, people are not good at

establishing whether someone belongs to a designated class (e.g. confirm whether

a person dressed as a police officer belongs indeed to a police squad) [98]. When

authenticating strangers, users have to make use of other authenticating factors,

such as documents or references given by someone else (e.g. physical attributes).

This shifts the authentication type to an object-based authentication, which, as

we have seen, is not precise enough to be used in security protocols. In addition

to that, other factors, such as social conditioning and time pressure (discussed in

Section 3.3.3) may be used to weaken user’s authentication capacity even further.

Users are not good at authenticating digital objects – In the same way as real

41

3.3. Frequently Overlooked Components of Human-Protocol Interaction

objects, digital objects, such as websites, software and email are not easily au-

thenticated by users. Also, the use of deceptive texts (exploiting similar drawing

patterns of some characters to avoid users from detecting relevant information)

and masking information (using images or windows on top of legitimate text or

other elements) are successfully used by attackers [41]. By creating visually iden-

tical (or very similar) copies of the original source, attackers can fool users into

believing they are contacting the entity they trust. Finally, personalised content

increases the chance of a spoofed virtual object being accepted as real [44, 56].

Directly or indirectly, most scams and/or attacks exploit the false acceptance of

spoofed content by users and almost all scams are forms of deception [99]. Asking a

user to authenticate an object (e.g. an online banking website) by checking its elements

(e.g. digital certificates, padlocks, etc.) does not represent a proper translation from

the authentication design goal to its implementation. In fact, it is very likely that

the authentication task, despite technically feasible, will not be performed properly,

introducing a security breach.

3.3.3 Decision Making Influencing Factors

There are different factors that need to be taken into account when considering users’

decision making capability and its influencing factors. These aspects include personal

and environmental issues. Despite the differences, the core concept behind this com-

ponent is that users can be influenced to make different (and potentially damaging)

decisions to those they would usually make. Thus, when designing human-protocol in-

teraction, security engineers must be aware of which factors may influence the user’s de-

cisions and check whether this decision under influence can introduce security breaches

or not.

The most common influencing factors are:

Social conditioning – When people receive commands from strangers, they are un-

likely to follow that command without questioning the request. However, when

the command comes from a recognised authority (or someone mimicking an au-

thority), people are very likely to obey such a command. This happens because

people are trained to accept commands from certain people, such as police officers,

their bosses, etc., without further rationalisation [99, 87, 79]. An attacker can

make use of social conditioning to force people to behave in a predictable manner

and use it to deploy a successful attack. Nevertheless, before using social com-

pliance, an attacker needs to make the victims believe they are receiving orders

from an authority figure. The manipulation of decision making is often exploited

42

3.3. Frequently Overlooked Components of Human-Protocol Interaction

in conjunction with another component we discussed previously: users’ authen-

tication capabilities. Therefore, an authentication failure is often a pre-requisite

for exploiting social conditioning.

User’s principles – Victims’ principles such as guilt, dishonesty, need and/or greed,

when exploited by an attacker, are powerful ingredients to increase the effective-

ness of an attack. People’s needs and desires make them vulnerable because the

attacker can use them to force the victim to behave in a predictable manner. Once

attackers know what the victim wants, they can easily manipulate the victim’s

behaviour [99, 79]. One classical example of an attack exploiting this principle is

the 419 scam (or Nigerian fraud) where a significant amount of money is offered

to the victim, but before receiving the money, they are persuaded to advance a

certain sum of money in the hope of receiving a significantly larger gain after-

wards. In this attack, victims’ greed, need and also dishonesty are manipulated

(not necessarily all of them), making the victims more vulnerable than they usu-

ally are. Another example is related to guilt. An attacker could manipulate the

victim’s feelings by approaching the target and pretending that they desperately

need some help. In such a scenario, it is very hard to refuse the request, oth-

erwise the victim will feel guilty for not helping someone who desperately needs

help [79]. These violations (deviations from safe operating practices, procedures,

standards, or rules) are different from user errors (discussed in Section 3.3.5).

Errors arise from informational problems (inattention, lack of knowledge), while

violations are motivational, the actions - despite being unsafe - are intended [82].

Time constraints – The main idea behind this factor is to push the victim into mak-

ing a decision without sufficient time to rationalise the decision. Consequently,

the actions taken by the victim tend to be more predictable and easier to ma-

nipulate [99]. In attacks that exploit time constraints, the victims believe they

must act quickly, otherwise they might lose the opportunity. Also, the decision

strategies used under time pressure are typically based on affective and intuitive

heuristics, rather than on a reasoned examination of all the possible options [48].

Shared risk – This aspect can be easily seen in real-world situations where someone

is worried about taking a certain action but accepts the risk because there are

many others sharing the same risk [99]. An attacker can exploit this by including

other people (other attackers) faking that they accept the risk. When the victims

see other people accepting the risk, they tend to accept the risk, allowing the

attacker to be successful. In online reputation services, we can see an example

where shared risk can be used. The attacker can create fake profiles and insert

43

3.3. Frequently Overlooked Components of Human-Protocol Interaction

as many reviews as he wants to improve the ‘reliability’ of the service or product

offered. Additionally, offering additional ‘verification’ options (such as a customer

service number or chat in a website) also creates trust. Subjects stated that they

would not call the number to verify the authenticity, but “someone else would”

[56, 79].

Fear – Many techniques such as scareware are effectively used by attackers to scare

people and make them fall into attacks. Warnings presenting scary messages that

your computer is infected, or that you might be attacked by a hacker, etc., makes

users act without proper rationalisation to solve the problem (e.g. Mac defender

malware1). Fear changes the decision strategies of the users, making them more

likely to behave in a predictable manner. Another type of fear exploited by an

attacker is the fear of getting into trouble. For example, the fear of receiving

a negative reaction from their superiors because a routine security check was

applied (even though it should be applied) to an important user and that person

(boss, or an important visitor) felt offended [79]. This second type is related to

social conditioning since, in addition to the fear of having problems with their

bosses, the victim is dealing with an important person or authority.

Users’ decision making factors involve many different factors that should be carefully

analysed. Even trained users might have their decision strategies manipulated under

certain circumstances. People will make errors and will eventually make wrong deci-

sions. To prevent an attacker from exploiting this, it is important to identify potential

situations where this component might be exploited and make the system insensitive

to them. Alternative methods to avoid unreasonable decisions by users should be con-

sidered. These possibilities may include extra security checks, additional verifications,

or a reduction in the impact that the user interaction has on the security properties of

the protocol.

3.3.4 Bounded Attention

Users focus on their main task, and consequently, most of their attention is bound to

the activity of performing that task. According to Stajano [99], people tend to forget

the task of protecting themselves when it is not their main activity at a given moment.

Security protocols are frequently used as part of a computational system or software.

Consequently, from the users’ perspective the protocol used and the security aspects

of the protocol are a secondary concern. As a result, they may not notice security

indicators and warnings.

1http://support.apple.com/kb/ht4650

44

3.3. Frequently Overlooked Components of Human-Protocol Interaction

The users’ bounded attention can potentially be exploited in the case of lack of

attention to security indicators, or even in the lack of attention to the absence of

security indicators [41]. Wu [111] conducted an experiment to check the efficiency of

security toolbars when trying to prevent phishing attacks. About 45% of users who

were spoofed said that the reason was they were focused on finishing their main task

(i.e. dealing with email requests). Some of the spoofed users explicitly mentioned that

reason, and even having noticed the security warnings, they decided to take some risks

to complete their task.

Users have a tendency to notice only what they are interested in and ignore the

fact those security mechanisms were created to protect them from attacks [99, 41]. For

example, in the SSL/TLS protocol implementation in web browsers, when an untrusted

server certificate is sent to the client’s browser, the user is asked whether to trust

the certificate presented or not. In this case, users’ bounded attention principle can

be successfully exploited because users tend to dismiss the security warning of the

untrusted server certificate presented by the server. In this case, the security decision

is presented in a context were the focus is on accessing a website. Consequently, a

warning informing users that an untrusted certificate had been presented and asking

whether to continue or not is very likely to be quickly dismissed since it is stopping

the users from completing their main tasks. In other research, Herley [53] argues

that users rejection of warnings and security messages is entirely understandable and

rational from a economical point of view. He states that it is necessary to prioritize

the important security messages and remove the others that do not do much to address

security threats. By doing that, it is possible to improve the cost-benefit tradeoff that

currently exists regarding security advice.

If a warning is required to be presented to a user, this should implemented using an

active interruption. Egelman et al. [45] conducted an investigation into the effectiveness

of passive and active warnings. Active interruptions, that is, indicators that stop users

from performing their tasks and only allow them to proceed after certain steps are

executed, were far more efficient than passive warnings. The trade-off between usability

and security must also be considered. An excessive number of interruptions may train

users to dismiss all security warnings without proper rationalisation.

We found four main factors which can potentially weaken the security aspects of

human-protocol interaction:

Lack of attention to security – The user’s focus is not on the security aspects of the

system, and consequently, the security checks tend to be executed less carefully.

Using the SSL/TLS protocol as example, users who are aware of the security

indicators of an SSL connection in the web browser, despite the fact that they

45

3.3. Frequently Overlooked Components of Human-Protocol Interaction

understand the need to look for security indicators, may simply look for the image

of a padlock on the webpage. We have seen examples of attacks that exploit such

a factor [41, 44, 64, 63]. In this case, the users were fooled by a spoofed icon

appearing in the body of the web page rather than in the browser’s chrome. This

is closely related to the user knowledge, users that are knowledgeable of security

may still fall for such attack if they are not aware of the security threats (e.g.

spoofing a security indicator).

Lack of attention to the absence of security – Another factor is the lack of at-

tention to the absence of security indicators. In the same way that security checks

and indicators are not the users’ main focus, they are likely to be ignored [41].

Attacks such as SSLStripping, presented by Marlinspike, exploit the fact that

most requests to HTTPS websites are performed via links or redirections (HTTP

response status code 302) [64, 63]. With that, an attacker could just switch url

links and/or location that contains https to http. The indicators in the web

browser (usually a padlock) are not shown to the user in this case. However,

the lack of such indicators are very likely to go unnoticed. Even some additional

tricks exploiting users’ knowledge can be employed to make the attack even more

efficient (e.g. sending a image of a padlock as a favicon, which mimics a security

indicator in the address bar). Additionally, in some cases, users might not even

know that security is a relevant part of the interaction [107].

Security in a secondary workflow – Users are more likely to finish their main task

rather than stop it due to a security warning. Therefore, security should not

be part of a secondary workflow. Security checks that occur outside of the main

task, interrupt the user’s focus, and are more likely to be dismissed without much

consideration. Usually, users’ primary goal when using a computer is not security

per se, but communicating with friends, using online services, etc. Users will try

to finish their main tasks if they believe they are more important than the security

tasks, even if there are potential risks [111, 35].

Conditioning – An excessive number security interruptions ends up training users to

dismiss warnings, pop-up boxes and any other security interruption in a insecure

way because this is the only (or the simplest) way to finish their tasks. Some at-

tacks successfully exploit this factor because it is known that people will have this

behaviour even when they know they should not [6]. We have several examples

of an excessive number of warnings. Older versions of the web browser Internet

Explorer, for example, used to warn users for every change in the security con-

text, even when successfully changing from an insecure to a secure context. This

46

3.3. Frequently Overlooked Components of Human-Protocol Interaction

excessive number of warnings can make users become less inclined to take them

seriously in the future [73, 35].

Security tasks are more effective when they are included in the main workflow.

Simply warning users by stating that something is wrong is not sufficient: they need to

be provided with a safe alternative to achieve their goals [111]. Additionally, security

activities should be designed to disrupt user’s workflow as little as possible to minimise

the impact of these additional tasks on the user’s motivation to perform the security

activity [35]. Finally, bounded attention may also be affected by user’s knowledge. For

example, a user may not know what security cues they should look for or whether the

operation being performed is insecure or not.

3.3.5 Inherent Limitations

Human skills are vast and vary significantly. It includes proficiency or ability that is

acquired or developed through training or experience. Overlooked inherent character-

istics encompasses situations where human skills might not be sufficient to perform

an activity or task as intended. It also includes particularities of human behaviour.

We cannot expect that humans behave in a similar manner to a computer, nor be-

lieve they share similar skills. By equating these two different components during the

human-protocol interaction, a series of security threats may arise.

A usable and secure design must consider human abilities and check what people

can, and more importantly, what they cannot do well [40]. We cannot expect people

to store large amounts of data, as well as we cannot assume they will ‘erase’ data from

their memories once that information is not needed anymore [87]. In the same way,

we cannot expect a human-protocol interaction to be performed in the same way, or

under the same timing constraint on every run. Thus, skill limitations should always

be considered within the scope of human-protocol interaction. There are several skills

we should consider when designing secure systems:

Memory limitations – Sasse et al. listed the most important issues related to hu-

man memory (focusing on password memorability) [87]. From her list, we must

highlight that human capacity for working memory is limited and decays over

time, meaning that they may may not be able to recall information when needed

or not recall it accurately. Items used often (such as passwords you use on a

daily basis) are easier to remember than those that are rarely used. Addition-

ally, people cannot ‘forget on demand’, so even undesired items will remain in

memory even when they are no longer needed. Finally, Sasse et al. highlight

meaningful items (e.g. words) are easier to recall than non-meaningful ones (e.g.

47

3.3. Frequently Overlooked Components of Human-Protocol Interaction

randomly generated passwords). Other research corroborates Sasse’s list, showing

that users cannot remember large and random keys or recall dozens of different

passwords [35, 112]. Dhamija and Perrig [38] also pinpoint that precise recall

is not a strong point of human cognition. They state that the main weakness

of knowledge-based authentication is that it relies on precise recall of the secret

information. An authentication process does not allow variations on the secret,

therefore, it fails even if the user makes a small mistake when entering the secret

(e.g. password).

Lapses, Slips and Mistakes – Lapses, slips and mistakes are very common human

error types. A lapse happens when the plan to achieve a certain goal is correct

but an error happens when a required action is forgotten [82, 35] (e.g. a required

step in a sequence of actions is skipped). A slip, in the same way as a lapse,

occurs when the plan is correct, but in this case, an action is performed incorrectly

[82, 35]. For example, when a user wants to type “password”, but instead of typing

the correct word, a slip happens and the word “passwprd” is typed because the

wrong key was accidentally pressed. A mistake, on the other hand, occur when

the plan to achieve a certain goal is inadequate, that is, even if the the actions

performed go as planned, it will not achieve the desired goal [82, 35] (e.g. a user

checking if he/she trusts a website by looking for a picture of a padlock in its

contents).

Problem solving limitations – Some problems can be easily solved by some users

but the same problem can be a complex task for others. This limitation can

be influenced by many of the previously presented weaknesses, such as lack of

knowledge or bounded attention. Even in the case of the user being capable of

understanding the task received, knowing how and when it should be applied, a

failure may still happen if the user does not have the capability to perform the

appropriate actions [35].

Task termination – A user may decide to terminate the interaction. When users

finish their main task, they might leave the subsidiary tasks incomplete. For

example, a user accessing a webmail, after reading the messages, may leave the

computer without logging out. This is acceptable on private computers, but it is

a security risk in public environments. In a similar manner, users may terminate

the interaction if they assume there is no alternative to proceed due to a fault or

an unexpected system state [84].

Non-deterministic behaviour – As opposed to the previous limitations, this issue

48

3.4. Minimising the Weaknesses in the Interaction

is not related to a limited set of capabilities, in fact it is the opposite situation.

According to Ruksenas [84], in any situation, any one of several cognitively plau-

sible behaviours might be taken. It cannot be assumed that any specific plausible

behaviour will be the one that a person will follow where there are alternatives.

We cannot expect that users have skills or abilities they do not have. Human-

protocol interaction should be designed taking the user’s inherent characteristics into

account and checking whether the task given to the user is feasible or not. Even edu-

cated users may fail when performing a security task if their capabilities (e.g. physical

skills) are not properly considered [35]. For example, despite understanding the im-

portance of creating strong passwords, a policy that requires a password length of 10

or more random characters is not feasible for most users due to memory limitations.

Also, limitations on the number of password length and attempts (e.g. a maximum 3

attempts before blocking the account), despite being important to prevent password

guessing attacks, might overload the user’s memory and reduce compliance with secu-

rity rules.

3.4 Minimising the Weaknesses in the Interaction

After merging several research findings into a harmonised and limited set of often

overlooked human-protocol interaction components, a set of design recommendations

to minimise the impact of these components is an obvious next step. Despite the wide

range of users’ characteristics and behavioural patterns, we were able to propose a

taxonomy of frequently overlooked characteristics of human-protocol interaction, and

from these characteristics, we can develop a set of design recommendations.

To construct a set of recommendations on how to reduce the effectiveness of attacks

exploiting these human-protocol interaction weaknesses, we initially attempted to make

a one-to-one association between a weakness and a corresponding recommendation

where, for each weakness, we proposed a recommendation. We independently analysed

each component of the taxonomy presented in Section 3.3, and by making use of our

findings and results from related work we drew a recommendation aiming at minimising

the impact of that specific component on the security of the human-protocol interaction.

What we found was that some factors, even those belonging to the same taxon-

omy item, have to be treated in different ways. However, the opposite situation was

also found, when factors from different taxonomy items could be handled in a similar

manner.

The correspondence between the taxonomy of human-protocol interaction weak-

nesses that we proposed and the design recommendations is not linear. There is a

49

3.4. Minimising the Weaknesses in the Interaction

separate layer of abstraction that makes the associations between our taxonomy to the

set design recommendations. In this section, we discuss how we tackled each weakness

and its subdivisions and we highlight their associations to the design recommendations

we will outline in Section 3.5.

3.4.1 User Knowledge

To perform a task correctly, users need to have a certain level of understanding of the

key components that make up the task. If they do not have sufficient understanding, one

or more sub-tasks are likely to fail. Within the context of human-protocol interaction,

there are some fields of knowledge which are pre-requisites in most cases, such as

computing and security. When the user’s understanding of computing and security

is weak, other problems may also arise, such as the lack of knowledge about security

threats, and also, the construction (by users) of inaccurate concepts.

To minimise problems related to the lack of knowledge in computing human-

protocol interaction should not require tasks that require advanced knowledge about

computing, such as configuration or filesystem management tasks. The same idea

should be applied to the lack of knowledge of security problem. Users should not

have to understand how encryption works, how to verify a digital signature, or how a

certificate chain is built. We should only rely on security tasks which are feasible for

ordinary users.

On the other hand, to address the issues related to the lack of knowledge of

security threats and inaccurate mental models, it is necessary to make use of

methods to prevent users from making incorrect decisions. We cannot expect users to

be aware of potential threats, or that they understand the risks of making incorrect

decisions. Additionally it is dangerous to assume that users will have an accurate idea

of the protocol’s workflow (e.g. authentication processes).

Training users, although recommended and effective if used correctly [101, 60, 112,

4], is mostly feasible in smaller environments, such as companies and other institutions.

A protocol designed to be used by the general public within different environments

should not rely on training users.

As we can see in Figure 3.2, there are three main types of approaches to min-

imise problems related to users’ knowledge. The first is keeping realistic and low user

knowledge requirements (as we will discuss in Section 3.5.1). The second is making

use of methods to prevent users from performing unsafe actions, which we will discuss

in Section 3.5.5. Finally, there is training, which we will not focus on in our design

recommendations, since we will assume that we should not design protocols that rely

on training users.

50

3.4. Minimising the Weaknesses in the Interaction

User Knowledge

Low knowledge
requirements

Protect against
unsafe actions

Training

Figure 3.2: Minimising user knowledge issues

3.4.2 Authentication Capabilities

In the previous section, we highlighted that users have limited authentication capabil-

ities. That is, they can easily make mistakes when asked to authenticate objects (real

or virtual) and unknown people. Attackers make use of several techniques to fool users

by using spoofed objects, such as identities, text, documents, and by doing that they

are able to deploy their attacks.

It is necessary to understand and acknowledge that users are not good at au-

thenticating objects (real and digital) or strangers. Consequently, objects and

text, which are easy to spoof, should not be used as a component in a authentica-

tion process. By reducing the relevance of objects and text as authentication factors,

masking information would become less effective for attackers. However, when an au-

thentication performed by a user is a required component in the protocol workflow, this

task should be designed to be feasible by ordinary users, that is, the user can perform

the task accurately.

As we can see in Figure 3.3, there are two main types of approaches to tackle the

limitations of users’ authentication skills. First, we need to recognise the limitations of

users’ authentication skills and should not rely on such skills when designing protocols

(as we will discuss further in Section 3.5.2). Second, we need to respect user faculties

and provide them with feasible tasks, such as authenticating people they know or

images they are familiar with (presented in Section 3.5.1).

Authentication
Capabilities

Do not rely on user
authentication capabilities

Respect user faculties

Figure 3.3: Minimising authentication capabilities issues

51

3.4. Minimising the Weaknesses in the Interaction

3.4.3 Decision Making Influencing Factors

When a user has to make a decision during the interaction with the protocol, it is

important to identify whether this decision might be affected when the user is under

external influencing factors. In the Section 3.3.3, we listed social conditioning, user’s

principles, time constraints, shared risk and fear as the most relevant factors of influ-

ence during human-protocol interaction. Each one of them should be considered as a

potential threat to the interaction’s security.

Users influenced by social conditioning, by the manipulation of their principles,

sharing risk with others or afraid of some kind of threat, change their perception of

risk making their decision strategies different (and often less careful). Attackers exploit

these factors by manipulating users’ perception of risk, weakening the reliability of their

decisions. When time is a limiting factor of an activity, users once again change their

decision strategy making them more vulnerable. Additionally, when security is not the

main activity, the decisions under timing constraints tend to be performed even more

carelessly.

All five factors are exploited by attackers to change users’ decision strategies. How-

ever, we found that for some factors, such as timing constraints, bounded attention is

another determining factor that should be dealt with. To avoid that, security features

should always be part of the main task. Furthermore, users’ limited authentication

capabilities are also often used by attackers when exploiting all of the five factors. A

spoofed authority or entity that inspires some level of trust is often a pre-requisite

for the attacker to be able to successfully deploy an attack based on decision making

influencing factors.

As we can see in Figure 3.4, by considering that users’ decision strategies are likely

to change under different situations (as we will discuss in more detail in Section 3.5.4),

making use of methods to prevent users from performing unsafe actions (which will

be discussed in Section 3.5.5) and bringing security into the main workflow (discussed

in Section 3.5.3), we can minimise the effects of decision making influencing factors

on protocols. Since users’ limited authentication capabilities are closely related to the

decision making factor, we represented the approaches to tackle this factor by using

dotted rectangles and arrows in the Figure 3.4.

3.4.4 Bounded Attention

Users are focused on their main activity, leaving secondary tasks in low priority. There-

fore, protocols’ implementation might present weaknesses during the users’ interaction

due to the lack of attention to the security features, lack of perception of absence

52

3.4. Minimising the Weaknesses in the Interaction

Decision making
influencing factors

Integrate security into
the main workflow

Protect against
unsafe actions

Expect different de-
cisions from users

Do not rely on user
authentication capabilities

Respect user faculties

Figure 3.4: Minimising decision making influencing factors issues

of security, the fact of security is treated as a secondary task in the workflow, and

conditioning.

To minimise the problems related to the lack of attention to security, it is

necessary to make use of mechanisms to change the priority of the security activities

within the users’ main task. An effective way to deploy it is by bringing security

activities into the users’ main task [111]. In this way, we can bring the users’ focus to

the security aspects of the activity. This solution might also minimise the problems

related to lack of perception to absence of security, since users will be more likely

to detect the lack of a feature that was part of their main task. Changing the relevance

of security activities in the main task also changes users’ perception of the relevance of

security. Since security is in the main workflow, security will not be a secondary

activity anymore. Ultimately, by differentiating warnings and avoiding unnecessary

security messages, we can minimise the effects of conditioning users to ignore security

interruptions.

As we present in Figure 3.5, to minimise the impacts of user’s bounded attention,

we need to focus on integrating security into the main workflow. Including security

actions as part of the users’ main workflow rather than just notifying and warning in a

secondary flow is a good way to approach the problem (we will discuss the integration

of the security concerns into the main workflow in more details in Section 3.5.3).

3.4.5 Inherent Limitations

Inherent limitations, such as memory, lapse, slips, mistakes and problem solving

skills are often underrated. In the same way that we have discussed the users’ lack of

knowledge, we cannot give users a task that they are not capable of performing, whether

by physical or cognitive limitations. We cannot overload humans’ memory by requiring

users to ‘store’ large amounts of data, especially when it is random. Users might also

53

3.5. Design Recommendations

Bounded
Attention

Integrate security into
the main workflow

Figure 3.5: Minimising bounded attention issues

make mistakes due to motor issues (press the wrong key by accident). Additionally, if

a problem is given to users to solve, we should also consider humans’ problem solving

limitations. All these issues should be considered before being added as part of the

protocol design or implementation, and if this type of task is relevant to the protocol’s

scope, it should be feasible to general users.

Thus, tasks given to users should be feasible considering humans’ limitations. There

are other factors that influence the human limitation weakness, such as human’s

unpredictable behavior and task termination. Protocol implementations cannot

assume that a task given to user will be completely performed (a user can potentially

leave a task incomplete) or that a user will always make the correct decision (user

decision is non-deterministic). In these situations it is necessary to use mechanisms to

prevent incorrect decisions from being made.

As we can see in Figure 3.6, there are two main types of approaches to minimise

problems due the inherent human limitations. First, we need to respect user faculties

and provide them with feasible tasks (which we discuss in more details in Section 3.5.1).

Second, it is necessary to make use of methods to prevent users from performing unsafe

actions (that we will discuss in Section 3.5.5)

Inherent
Limitations

Respect user faculties Protect against
unsafe actions

Figure 3.6: Minimising inherent limitations issues

3.5 Design Recommendations

By analysing the human-protocol interaction weaknesses we presented in Section 3.3

and by exploring related research findings, we were able to discuss ways to tackle these

54

3.5. Design Recommendations

weaknesses and minimise their impacts. The associations among the weaknesses and so-

lutions to minimise their impact were a key factor that allowed us to identify the design

recommendations we discuss in this section. By proposing a set of design recommen-

dations, we introduce guidelines to help designers overcome the problems presented in

Section 3.3. In the following we describe each of our five design recommendations.

3.5.1 Respect User Faculties

Humans have different levels of knowledge and skills in a wide range of areas. Some

people have stronger abilities in subjects such as logic or mathematics, others are better

dealing with human sciences and so on. Some protocols might be expected to be used

only by specialists and consequently could require a higher level of skill or knowledge.

However, there are other protocols that are designed for general purpose use and,

consequently, used by people that have different levels of skill and areas of expertise.

In both cases, protocols should be designed and implemented keeping in mind the level

of knowledge and skills of the people who will interact with it. In this recommendation

we are merging two approaches we described in Section 3.4 that are related to human

skills and knowledge: “low knowledge requirements” and “respect user faculties”.

The SSL/TLS protocol implementation in web browsers, for example, is designed

to be used by a wide range of people. In this protocol, which we will use as example

throughout this Chapter, advanced knowledge about security technologies should not

be required. During the protocol handshake, there is an assumption that the server

certificate is previously known and trusted. However, there are situations where the cer-

tificate is unknown, untrusted, or does not match some requirement (e.g. the certificate

content’s “common name” field does not match the server’s name). In these situations,

when the server certificate is sent to the client, the browsers’ implementations often

ask the user whether to accept the certificate or not.

Taking a university’s webmail service as an example, there are several cases where

self-signed digital certificates are used to setup the SSL Server. Consequently, this

certificate will not be initially included as a trusted certificate in the web browser’s

certificates lists, and subsequently the user will be asked whether to accept the server’s

certificate or not. Most users do not know what the decision presented to them means.

Additionally, most of them do not know what a digital certificate is (and they probably

should not have to know). Thus, the decision given to the user is an example of an

infeasible task. It is necessary to create alternatives when tasks that require higher

levels of knowledge are required. By simply leaving users unassisted, security flaws

might be introduced.

Another example of a task that, depending on the context, may be considered

55

3.5. Design Recommendations

unfeasible, is to require the user to generate input data to be used as part of the

protocol workflow (e.g. random passwords). Certain inputs can represent fundamental

elements of the whole system security and should be carefully analysed. For example,

in Bluetooth Legacy Pairing (presented in Section 2.4.1.1), as well as in Kerberos [72]

protocol, a user input (password) represents a fundamental part of the protocol security.

A key that is used to encrypt some of the protocol’s messages is derived from the

user generated password in these examples. If we simply allow the user to create

a password, a weak password might be generated and consequently compromise the

protocol security [18]. On the other hand, defining password policies (e.g. minimum

length, use of special characters, etc.) can also generate other types of problems such

as information disclosure [55].

Humans don’t have strong memorisation capabilities when dealing with random

information, especially when dealing with various different sets of random information

(e.g. a user that has many passwords). To deal with this memorisation issue, humans

tend to disclose this information by using notes, which might allow other users to

discover this data and use it for impersonation attacks. Thus, it is necessary to find

alternatives to produce input data to a protocol which has sufficient quality to be used

as a trustworthy source, as well as make its generation and use feasible to ordinary

humans. Interesting results in password generation are described in [112], where they

performed an experiment with 288 participants and concluded that training users to

produce mnemonic phrases make them as easy to remember as the naively selected

passwords and significantly improve security. Additionally, they showed that although

educating users is important, it does not dramatically improve the compliance rate if

not accompanied by monitoring and enforcement. Therefore, training users on how to

produce random and/or mnemonic phrases and enforcement of (adequate) policies are

equally important.

The recommendations about not giving users an unfeasible task can be summarised

in the following list:

• Identify where the security conditions of the protocol relies on a task performed

by users and identify the level of knowledge of the target audience.

• Check whether the task requires specific types of knowledge or skills. If it does

require, check whether the target audience attend/possesses the pre-requisites.

The more generic the audience, the lower level of understanding and skills should

be required.

• Avoid using user input as a main part of the establishment of security proper-

ties of the protocol. If user input is unavoidable, check if user training and/or

56

3.5. Design Recommendations

enforcement policies, to guarantee the quality of the input, are necessary.

• Focus on reducing the chance of mistakes, lapses, and slips. Always minimise the

number of steps necessary to complete the task [35].

Perceiving the knowledge level of the target users is very important to avoid security

flaws due to an overlooked target audience. Also, the more generic the public, the lower

level of understanding should be required. It is a design flaw to assume that the users

are knowledgeable in something they are not. Thus, when designing a human-protocol,

giving tasks to users where they might have insufficient knowledge to perform that task

should always be avoided.

Even educated users may fail when performing a security task if their capabilities

(e.g. physical skills) are not properly considered [35]. For example, despite the im-

portance of creating strong passwords, a policy that requires a password length of 12

random characters may not be feasible even for trained users due to their memory

limitations. The same applies for policies that limit the number of password attempts

before blocking a user’s account. Despite being an important security feature to pre-

vent password-guessing attacks, such a feature is likely to increase administrative costs,

user’s mental load, as well as decrease productivity and reduce compliance with secu-

rity rules, as shown by Brostoff and Sasse [26]. In their work, they demonstrated that

by simply adjusting the policy to a more feasible alternative (i.e. 10 attempts before

blocking the account), all these negative effects are significantly reduced.

3.5.2 Do Not Rely on User Authentication Capabilities

People are very good at recognising people they already know, but they are not good

when authenticating strangers or objects [99, 93, 52]. Thus, except for particular cases,

such as human-human interaction between people that know each other, we cannot rely

on a user’s authentication capabilities and consequently should not include this task in

the human-protocol interaction.

In the same example presented earlier during the SSL/TLS protocol handshake,

when an unknown server certificate is presented to the client’s browser, users are asked

whether they trust that certificate or not. By being asked that question, users are

receiving an authentication task. However, asking users to authenticate an object (a

digital certificate in this case) is not recommended because humans are not capable of

authenticating digital objects properly, and therefore, this authentication process be-

comes insecure. In this specific cause, user’s knowledge is also not properly considered,

since this authentication task requires a high level of knowledge.

57

3.5. Design Recommendations

In the university’s webmail example, an attacker could easily create a spoofed copy

of the webmail’s website, maintaining the same visual attributes. To detect the spoofed

webmail service, users would have to notice the difference in the URL (which might

also be spoofed by a DNS poisoning attack, being the same as the original in this case)

or deny the spoofed server’s certificate when presented by the browser.

As we discussed in Section 3.3, users can be easily fooled by deceptive text, and

more importantly, users are not good at authenticating objects, especially if the au-

thentication task requires technical knowledge. In our example, authenticating a digital

certificate is a task that includes these two problems. It requires an authentication of

digital objects (digital certificates and security indicators), and also, knowledge about

how to differentiate a real from a spoofed certificate. Thus, this task cannot be given

to users, it is necessary to find alternative ways to obtain the required result.

The designer, to avoid security failures due to authentication mistakes, should:

• identify where the security conditions of a protocol relies on an authentication

task performed by humans.

• check whether the authentication task includes authenticating unknown people

or objects.

• verify if the authentication task given to the user is feasible for a ordinary verifier,

not requiring specific technical knowledge [99].

There have been some attempts to provide more feasible authentication methods

for users. Dhamija and Tygar [40, 39] presented an idea of dynamic security skins,

which allows a remote web server to prove its identity to a user in a verifiable manner,

and at the same time is difficult to spoof. The main idea is to provide users with a way

of authenticating a server without requiring additional technical knowledge. They only

need to compare two images, one that they already know and have already associated

to their authentication task, and another which is presented by the server. Since the

image is customised (and previously defined) for each user, it is easy for the user to

detect whether the server is spoofed or not. This is an example of where we can rely on

users authenticating objects, and at the same time, have a good level of security since

humans are good at recognising and remembering images [100, 38]. A similar approach

has been proposed by Gajek et al. [49, 50] focusing on the SSL/TLS protocol, again

using images to provide feasible server authentication for users.

58

3.5. Design Recommendations

3.5.3 Integrate Security Into the Main Workflow

The idea that the user’s protection goals must match the security mechanisms imple-

mented, has been discussed for a long time. Saltzer and Schroeder [86], for example,

state that it is essential that the human interaction with a protocol is designed for

ease of use. In this way, users will routinely and automatically apply the protection

mechanisms correctly. If the translation of the security goals to the actual interaction

is not clear, the chance of inaccurate human interactions is likely to increase.

When security is a secondary activity for the user, it tends to be ignored or un-

derrated. Warnings, messages and prompts asking users whether to accept a certain

change in the security context are likely to be ignored by users, compromising the

protocol security [88, 111]. Moreover, most current implementations are plug-ins or

amendments to existing designs which are attempts to overcome inherited design prob-

lems (such as the dozens of browsers toolbars to provide additional security). Security

concerns about human-protocol interaction should be part of the design and included

into the main path of the protocol’s flow.

The following recommendations summarise considerations to be used during the

protocol design:

• If a decision is critical to the security of the protocol, integrate the security

concerns into the critical path of their tasks. By doing it, users will be forced to

interact with it, and will not be able to ignore it. Additionally, asking users to

switch to a safe mode other then just reminding them has been found to be more

effective [111].

• Use active interruption other than passive warnings. This change can produce

more effective results. However, it is necessary to consider the usability impact

of the new design. An excessive use of warnings or employment of unnecessary

prompts and interruptions reduce the usability and consequently reduce the at-

tention given to the them over time [111].

• Incorporating security decisions into the users’ workflow, and, whenever possible,

infer authorisation from acts that are already part of their primary task [113]

(e.g. when a user types the URL in the web browser, we can assume that if there

is an SSL connection, server certificates issued to a different domains should be

rejected).

• Respect user intentions. Warning users that something is wrong and advising

them not to proceed (but still giving them the option to continue) is not the right

approach. They will accept the risks if they believe it is worthwhile. Warnings

59

3.5. Design Recommendations

that propose an alternative path allowing users to finish the task safely would

probably be more effective [111].

In the SSL/TLS protocol implementation, we could apply these recommendations

by changing the message presented to the user regarding the untrusted server certificate.

Although the protocol’s specification does not explicitly consider the user-computer

interaction, the SSL/TLS protocol implementation in web browsers has to include the

communication between these nodes. Currently, a message from the browser to the

user is sent via an active warning (a window asking whether the user wants to accept

the certificate). Despite some recent changes in the implementation of these warnings

(which made them more effective [45]) we still believe that once users learn how to

dismiss these warnings, the efficiency of this type of warning is likely to be reduced.

Thus, a third warning type might be needed. We call “interactive warning” a new type

of warning that instead of informing or interrupting users, it makes the user interact

with the protocol.

If we analyse the webmail example, the user will always receive the warning and

then decide whether to proceed afterwards. If an attack occurs, the passive warning

will be ineffective, especially because users are already conditioned to dismiss these

warnings. In this case, a change to an interactive interruption could be a replacement

of the warning message with a question to the user containing an input for the web

address confirmation. The users would be required to type the web address they want

to have access. After typing the URL, the system would check if the “Common Name”

field in the server’s certificate matches the address typed by the user, and, based

on that, decide whether to continue or not. By making this change, attacks that

exploits users’ bounded attention, or even users under influence of external factors,

would be less effective. Additionally, the effects of deceptive URLs and also, the limited

authentication problems would be reduced in this example. This solution needs further

analysis, including user testing. However, the idea behind it, is to remove the security

decision (presented as a passive interruption) from the user’s responsibility and replace

it by a request for a piece of information (using an interactive interruption) that allows

the system to infer the appropriate security decision. By doing that, the security will

be integrated in to the main path of the protocol’s flow. Finally we will be converting

a complex activity into a task that an ordinary user can perform (making the task

feasible).

By doing that, we should be able to reduce the problems related to the lack of

attention to security, as well as the problems with the lack of attention to the absence

security, since users will be more likely to detect the lack of a feature that was part of

their main task (e.g. inserting a card in a ATM and not having to type the PIN).

60

3.5. Design Recommendations

3.5.4 Consider that the Expected Behaviour Might Change Under

Different Circumstances

Human behaviour is likely to change under different circumstances (as we have seen

in Section 3.3). The ability to influence the users’ decision making, includes several

factors that might influence users’ behaviour. Factors such as social conditioning,

user’s principles, time constraints, shared risk and fear are efficiently exploited by

attackers. It is necessary to avoid situations where a user interaction might be made

under influenceable conditions. The recommendations for protocol designers are:

• check whether external and internal changes might influence user decisions.

• avoid asking users for decisions when they might be under influence.

• support the users’ goal in making a predictable choice, based on the goal of their

task.

An example of an implementation that does not provide proper mechanisms to

deal with user’s change of behaviour is the web browser implementation of SSL/TLS

protocol. In this implementation, the dialog that asks the users whether they want

to accept an unknown server certificate does not include an effective protection to

user’s change of decision strategies. If the users are under time pressure, for example,

they are more likely to dismiss warnings and informative messages, making them more

vulnerable. In this case, the server’s certificate authentication message, is more likely

to be ignored.

Returning to the webmail example, if a student has just a few minutes to check his

email before going to a class, his decision strategy would potentially change consider-

ably. All the warnings and messages would be dismissed as fast as possible to allow

him to check his email. A spoofed webmail service would be quickly (and carelessly)

accepted as real by the student. The certificate verification, or even the URL would be

ignored due to the time pressure. To avoid this situation, the warnings should require

further checks, such as the domain name confirmation presented in the Section 3.5.3.

By implementing those changes, the student would be forced to ‘authenticate’ the URL,

and by doing that, avoiding some attacks. An attack exploiting time pressure, in this

case, would be less effective.

We should also take into consideration situations where a user generates input that

affects the system’s security. A change of decision strategy, in this case, might also

impact the security properties of the system. Using the Kerberos protocol example, if

the user has to generate a password under time pressure, the quality of input is likely

61

3.5. Design Recommendations

to be lower than in a ‘normal’ situation. Additionally, it is likely to increase the chance

of re-using passwords.

It is important to identify potential situations where this component might be

exploited and make the system insensitive to them. Alternatives should be created to

avoid unreasonable decisions by users. These possibilities may include extra checks,

additional verifications, or a reduction in the impact that the user interaction has on

the security properties of the protocol.

3.5.5 Design Should Prevent User From Performing an Inappropriate

Interaction

The system should prevent the user from performing an inappropriate interaction.

Norman [74] introduced the concept of a “forcing function”, which aims to prevent

a user from behaving in any other way than the correct way. Basically, the forcing

function prevents users from progressing with their task until they perform an action

which must be taken to avoid a failure. Additionally, the forcing function will only

enable the safe options when an action is being performed.

Forcing functions prevent errors where a user skips an important step and condition

users to progress with the correct (safe) behaviour. To be effective, efforts (cognitive

and physical) required to follow the forcing function must be less than the effort required

to circumvent it [59]. Thus, protocol designers should:

• attempt to provide only safe options to users, and avoid giving unnecessary (and

unsafe) options when not needed.

• avoid drastic changes in the usability due to use of forcing functions. If the

impacts are too high, users will try to find ways to avoid the ‘safe paths’.

Following the previous examples, in the web browsers’ implementation of SSL/TLS

protocol, the way that the decision of accepting a certificate is implemented does not

protect users from making an inappropriate decision.

In the case of a spoofed website presenting a certificate, the invalid option (accepting

the fake certificate) is still available. On the other hand, predicting users’ intentions is,

for obvious reasons, unfeasible. However, it is possible to ‘ask’ users for their intentions

and then check if the actions match the intentions (Brustolini and Salomon implemented

such mechanism in [28]) before proceeding. The domain name confirmation presented

in the Section 3.5.3 is an example of a forcing function in this case. The user would

only be able to proceed if the certificate presented by the server matches with the server

the user wants to have access.

62

3.6. Associations Between Interaction Weaknesses and Design Recommendations

Another example of preventing the user from making an inappropriate interaction

can be seen in cash machines (ATMs). When the user is withdrawing cash, for example,

the sequence of operations performed prevents the user from forgetting his card in the

machine. In this case, the cash is not given to the user until he removes the card from

the machine. That is, the only way for the user to achieve its main goal (withdrawing

money) is by clearing a security step, which is removing the card from the machine.

As we can see, forcing functions are very useful. However, we must take care

with the usability impacts and trade-offs, otherwise users will attempt to find ways of

dismissing this feature whenever possible.

3.6 Associations Between Interaction Weaknesses and De-

sign Recommendations

The associations among the weaknesses and the design recommendations show us that,

to minimise the problems of human-protocol interaction, we sometimes have to consider

multiple safeguards to prevent a single weakness from being exploited.

Figure 3.7 represents how the set of weaknesses can be mapped in to the design

recommendations. As we can see, to reduce problems related to users’ knowledge in

a protocol implementation, we have to consider not only that user faculties must be

respected, but also make use of mechanisms to prevent inappropriate interactions from

being performed. The same recommendations should be applied to deal with problems

related to human inherent limitations. Despite being different types of weaknesses,

users’ lack of knowledge and human limitations present similarities when we attempt

to minimise the threats that arise from them.

Decision making influencing factors are linked to three recommendations, which

reinforces our impression that this is a complex weakness to handle. For this weakness,

it is necessary to make use of techniques to prevent inappropriate decisions from being

performed by users, to integrate security into protocols’ implementation main workflow,

and also, to maintain the predictability of the workflow, that is, minimise the impacts

of the users’ changes of behaviour.

To deal with users’ limitations regarding authentication, we first have to consider

that we cannot rely on the accuracy level of an authentication task performed by an

user. However, when this task is unavoidable, it should respect the capabilities of

ordinary users.

Users’ bounded attention deals with users’ scant regard for security tasks. The

main reason for the lack of attention to security is because security activities are usually

secondary concerns in users’ activities. The recommendation connected to this issue

63

3.7. Summary

represents advice to change the focus of security tasks, and bring them to the main

workflow. Consequently, users’ focus will also include security as a component of the

main activity.

User knowledge

Inherent limitations

Decision making

Authentication
capabilities

Bounded Attention

Respect user faculties

Prevent inappropriate inter-
actions from being performed

Consider that the expected
behaviour might change

Do not rely on users’ au-
thentication capabilities

Integrate security into
the main workflow

Figure 3.7: Mapping overlooked components into design recommendations

It is crucial to consider the importance of not relying on user authentication ca-

pabilities for objects and unknown people. Directly or indirectly, most components

presented in our taxonomy are related to this factor. Most attacks exploit the false

acceptance of a spoofed content by users.

3.7 Summary

In this chapter, we have shown that there are many factors that should be taken into

account when considering human-protocol interaction. At the same time, there is a

wealth of research involving human behaviour analysis and detecting human charac-

teristics that might be exploited by attackers in specific contexts, such as phishing

scams and authentication systems. However, despite the existence of similar findings,

there is a lack of harmonisation regarding the definitions of human characteristics and

weaknesses. We have not found a broad and general taxonomy of human-protocol in-

teraction weaknesses. Therefore, we proposed our own unified set of human weaknesses

that merges different research findings into a well defined set of weaknesses.

From this set of weaknesses, we built a set of recommendations to assist designers in

the complex task of minimising security threats from user interaction. The recommen-

dations are based on our findings, recommendations found in related works, empirical

analysis, and extrapolation from the set of weaknesses presented earlier.

64

3.7. Summary

A better understanding of users’ characteristics and behaviour should lead to more

reliable protocol design and reduce the number of threats found in the human-protocol

field. In this chapter, we highlighted those characteristics and proposed ways to deal

with them. From a ceremony perspective, the taxonomy and design recommendations

we presented are even more relevant. In a ceremony, the human interaction is a more

explicit part of the design. The lessons learnt from analysing human interaction in

existing implementations of security protocols are of great use to provide guidelines for

designing and analysing the interaction that will be performed between users and other

agents in a ceremony. A user interaction in a ceremony should be designed to comply

with the recommendations we presented and take into account the components of the

taxonomy we presented.

65

Chapter 4

A Framework for Designing and

Analysing Ceremonies

Contents

4.1 Introduction . 67

4.2 Overview . 68

4.3 Communication Channels and Agents 71

4.4 A Threat Model for Security Ceremonies 75

4.4.1 Abstract Threat-Models for Protocols 76

4.4.2 Premises for Ceremony Threat Modelling 78

4.4.3 An Adaptive Threat Model for Ceremonies 80

4.4.4 Case Study: Bluetooth Pairing Protocol 84

4.5 Summary . 88

In this chapter we present the foundations of a framework for designing and

analysing security ceremonies. We describe the communication channels and

agent types involved and their respective characteristics. We also present a

threat model tailored for security ceremonies. Part of the content of this chapter

appears in two papers: “A Proposed Framework for Analysing Security Cere-

monies” by the author, Jean Everson Martina, Geraint Price and Ricardo Felipe

Custódio published in the Proceedings of the 7th International Conference on

Security and Cryptography [32]; and “An Updated Threat Model for Security

Ceremonies”, by the same authors, published in the Proceedings of the 28th

Annual ACM Symposium on Applied Computing [31].

66

4.1. Introduction

4.1 Introduction

Security ceremonies, as well as security protocols can be seen as sequences of steps that

its peers must take to establish a secure communication amongst themselves. In each

step, a message is transmitted between peers. Each message can be sent in clear (not

encrypted) or encrypted. The contents of these messages may vary according to the type

of channel used. For a traditional protocol channel (network) the contents may include

(but not limited to) names, random numbers, ciphertexts and cryptographic keys. For

other channels, such as those used for expressing human-computer or human-human

communications, message contents can be user input via keyboards, touch screens or

speech. Additionally, a message may be formed by more than one component, for

example, in a single message we may have the concatenation of a random number,

an identity and a key. At its completion, a ceremony as well as a protocol, attempts

to achieve certain goals, usually composed of a set of security properties. A security

ceremony is considered flawed if it fails to provide its claimed goals.

Protocols have been designed and analysed for a long time and several methods

have been developed to prove protocols’ claims. Since Needham and Schroeder [71]

introduced the idea of using encryption to achieve authenticated communication in

computer networks, we have seen a lot of research in the security protocols area. Par-

ticularly in developing formal methods and logics to check and verify protocols’ claims.

We must cite Burrows et al. [29] for giving a formal representation to describe the

beliefs (and its derivations) of the parties involved in the protocol during its execution;

Bellare and Rogaway [17] for the provable security, that allows for probabilistic study

of the confidentiality goals; Lowe [62], Meadows [68], Schneider [89] and Ryan [85] for

works on state enumeration and model checking; Abadi [1, 2] for extending π-calculus

[70] for the description and analysis of cryptographic protocols and thefore creating

the spi-calculus; Paulson and Bella [78, 12] for their inductive method to verifying

protocols, that allows proving the existence of security properties over an inductively

defined set of traces (communication events). We have also seen the creation of a

number of tools to verify and check security protocols automatically such as ProVerif

[19] and Scyther [37]. These techniques and tools have evolved in such a way that

nowadays we can check and analyse complex and extensive protocols.

Meadows [69] and Bella et al. [16] in their area survey gave us a broad coverage of

the maturity in this field of protocol verification. They also point to trends followed

by methods, pinpointing their strong and weak features. They give propositions for

research ranging from open-ended protocols, composability and new threat models;

something that has changed very little since Dolev and Yao’s proposal [43]. These

67

4.2. Overview

problems seem very well covered. Current research is, in general, aimed at optimising

the actual methods in speed and coverage. An important issue regarding these works is

that they do not discuss the extension of protocol verification and description to encom-

pass better assumptions as a valid way of extending research in this area. Therefore,

extending protocol verification and description to include fine-grained assumptions and

derivations is a new and unexplored research path.

Although Ellison [47] proposes the possibility of using formal methods for security

protocol analysis, no major work is found today in the ceremony formal-analysis field.

Most existing research on human-protocol interaction is focused on the human aspects,

based on empirical analysis, which is very important at a design level, but can be

difficult and error-prone during analysis, as the history of protocol analysis shows us.

An advance in the reasoning about ceremonies was introduced by Rukšėnas et al.

[83, 84]. They developed a human error cognitive model, initially applied to interaction

on interfaces. They show that, normally, security leaks come from mistakes made when

modelling interfaces, not taking into account the cognitive processes and expectations

of human beings behind the computer screen. They successfully verify problems on

an authentication interface and a cash-point interface. They showed that the normal

lack of consideration in the human peers cognitive processes is one of the weakest

factors in these systems. Their proposal comes with a powerful implementation using

a model-checker.

Our approach is different, we do not focus on a specifically difficult to describe

limitation of human beings, but on giving to the protocol and ceremony designers a

better way to define human actions in a ceremony. By making the assumptions more

explicit, and requiring a description of the ceremony’s security, we can enable designers

to experiment with different ceremony techniques. By stating fine-grained assumptions

and analysing their absence, we can get insights in to potential break points for security

ceremonies. The extension we propose aims to be richer in details than what we cur-

rently have, and compatible with established protocol analysis techniques we currently

have.

To try to achieve this complex task of verifying security ceremonies we need to first

understand what we cover with our framework, then we discuss the communication

channels and agents involved and finally the threats such channels are subject to.

4.2 Overview

In traditional protocol specifications we have one communication channel. When mov-

ing to ceremonies we add additional agent types into the specification. Consequently,

68

4.2. Overview

there is a need for new communication channels. By adding human agents, we need

to create channels to represent human-computer interaction (e.g. user interfaces) and

another to symbolise human-human interaction (e.g. speech). Figure 4.1 gives an

overview of the agents and the types of communication channels involved. The area

bounded by the dotted line represents the traditional protocol overview, while the

complete figure represents the point of view from a ceremony perspective.

Figure 4.1: Ceremony communication overview

As we can see, in a protocol design and specification, the human-protocol and

human-human interaction are assumed to happen out-of-band, and therefore become

part of the design assumptions. All the actions outside the dotted area are not included

as messages in a protocol specification. As we will see in Section 4.3, in our framework,

the human agents and the additional communication channels are explicitly included

and the messages exchanged are now part of the ceremony specification.

The idea of having different channel types is not necessarily new. In fact, especially

in ad-hoc networks and ubiquitous computing, we have seen some relevant ideas on

using special channels that are used by devices and humans to solve existing issues (e.g.

authenticating devices that do not pre-share a secret). One of the first references to the

idea of using additional channels was presented by Stajano and Anderson where they

use secret data exchanged over a contact-triggered channel to initiate an authentication

and key exchange protocol [96, 95, 97]. Once the secret data is exchanged, this data

is used for subsequent authentication of the parties on regular network communication

channel. This approach already makes some assumptions on the channels’ properties.

First, it requires that the channel is location-limited, that is, it is physically restricted

to a certain space (e.g. a room). Second, is that the channel is authenticated, meaning

that the attacker cannot transmit data on the channel. Finally, the channel also requires

confidentiality, therefore the attacker cannot eavesdrop this restricted channel.

Balfanz et al. [11] further developed Stajano and Anderson’s idea by removing the

requirement for the additional channel to be secret. They do that by making use of

public key cryptography. The agents use the location-limited channel for exchanging

their public keys. In this case, the attacker can eavesdrop the channel and still will

not be able to do anything with the information obtained. The participants authenti-

69

4.2. Overview

cate each other over the network channel by proving possession of their corresponding

private keys. Since the attacker does not have access to those private keys, he cannot

impersonate any of the participants. Creese et al. [36] also describe the use of different

channels where the attacker has a limited set of capabilities. They describe the use of

a regular network channel with the addition of a low-bandwidth channel, which can

either be uni or bi-directional. An interesting contribution of their work is that they

consider human-interaction with the protocol. Although they do not explicitly define

a human agent in the protocol, they consider that the user might need to input some

information during the protocol run using the low-bandwidth channel.

Hoepman [54] also comes up with the idea of using a low bandwidth communication

channel over which two agents can exchange a limited amount of information. This ex-

tra channel is either authenticated, meaning that (although an attacker can eavesdrop)

the receiver can be sure that a message he received was by the sender he expects; or

private, meaning that only the receiver will be able to read the message (however the

sender is not authenticated). In other words, the attacker is capable of eavesdropping

on the authentic channel (but not insert or modify messages) or insert and modify

messages on the private channel. Vaudenay [106] describes commitment schemes and

makes use of authentication channels with stronger authenticity properties, such as

stall-free transmission, transmission with acknowledgment by the receiver and listener-

ready transmission (in this last one the sender can check if the receiver is currently

listening to the authenticated channel). Such properties are relevant for us because

they are all present in face-to-face (human-human) conversations. In phone conversa-

tions, only the last two properties are achieved. Other less interactive communications,

such as voice mail messages do not provide these properties [106]. Ĉagalj and Ĉapkun

[30] also make use of humans when tackling the problem of key agreement over a radio

link. They use the human’s ability of authenticating each other by visual and verbal

interaction. They base their proposal on three different techniques: on visual compar-

ison of short strings; on distance bounding (where the distance between the devices

is displayed to the user); and on integrity codes. They do not explicitly include the

human nodes in the protocol specification, but they do include some human-performed

tasks into the design assumptions (such as the comparisons of strings).

Wong and Stajano [110] propose protocols which make use of the multichannel ap-

proach and present a practical implementation for such protocols. By making use of

a visual channel, users possessing camera phones would take pictures of short nonces

embedded in QR Codes. With information shared using a radio channel (suscepti-

ble to an attacker who can intercept, stop, modify, and insert messages at will) and

making use of a low-capacity channel that provides data-origin authentication, they

70

4.3. Communication Channels and Agents

describe a protocol for mutual authentication that does not assume confidentiality and

resists eavesdropping on the auxiliary channel. They also propose another protocol

that resists a more powerful attacker by assuming a unidirectional visual channel and

a one-bit-per-message data-origin authenticated channel. In fact, this variation of the

protocol makes use of two low-capacity channels. One from the receiver to the sender

(who sends/displays an image) and another one from the sender to the receiver, which

consists of a button that is pressed (in this case, the button would be physically part

of the receiver, but pressed by the sender).

Kainda et al. [58] performed a comparative usability study of the application of

similar methods to those presented above. They argue that most of these proposals

fail to take into account factors that may seriously harm the security and usability

of a protocol. They performed a usability study of pairing methods and outlined

recommendations for designing user interfaces that minimise human mistakes. They

also discuss security failures that such methods might be subject to, such as the users

not performing a string verification properly, or choosing an incorrect option when

checking an authentication string, image or sound. In summary, they show that the

methods of comparing and typing short strings into devices are still preferable despite

claims that new methods (such as using QR codes) are more usable and secure. Finally,

they state that the interface design alone is not sufficient for mitigating human mistakes

on the additional channels.

Our approach focuses on a more generic context than those presented. Most existing

work focuses on a specific problem (e.g. authentication is most cases). We, on the other

hand, focus on building the basis for tackling a wider range of different problems. With

the additional channels we propose, along with the new agent types and a dynamic

threat model, we will be able to approach a larger set of problems from a ceremony

point of view. In Section 4.3, we describe the channels and agents we use. Next, in

Section 4.4, we present a threat model that can be adapted to reflect several different

real world scenarios.

4.3 Communication Channels and Agents

One of the main characteristics that differentiates a ceremony from a protocol is the

additional number of channel and agent types. By extending protocol analysis to cere-

mony analysis, we can potentially find and solve security flaws that were previously not

detectable. However, the design and verification of ceremonies requires the definition

of additional communication channels, nodes, and consequently new threat models.

With the addition of humans to the specification, we also have to consider human

71

4.3. Communication Channels and Agents

skills and capabilities. They are different from computers in a number of ways. There-

fore, we need a new agent type which we call human. By adding such an agent, the

communication between this agent and other agents in the ceremony must also be de-

scribed. Thus, new communication channels must also be included to represent the

exchange of messages between the human amongst themselves and with the already

existing device agent (also known as computer). In Figure 4.2, we have two new commu-

nication channels called human-device and human-human channel. The first represents

the communication between the human agents and devices. The second denotes the

communication between humans. The area bounded by the dotted line represents the

classic protocol overview, where we have the device agent type, that represents general

devices (e.g. computers, smartphones, etc.) and a device-device channel which is the

traditional network channel.

Figure 4.2: Ceremony communication channels and agents

In the same way as devices, a human agent is capable of sending and receiving

messages on a channel, but in this case, such a channel must comply to human ca-

pabilities and constraints. This human agent should be capable of storing knowledge

and sending messages on the mediums it is capable of operating. The agent should

also be able to use knowledge conversion functions to be able to operate its devices.

Humans can also be related to devices they operate or own, and some of the physical

constraints existent in the real world can also be present in this relation. For example,

for a one-time-password generator token, the relationship between the human and the

one-time-password generator device is based on the device’s uniqueness.

In addition to the human agent, we create two communication channels, one for the

interaction between humans and devices and another for interaction between humans

themselves. To represent the new human-device interaction, we create a channel called

human-device channel. This channel represents the message exchange between humans

72

4.3. Communication Channels and Agents

and devices. Such an interaction is usually performed via a user interface. A device

usually displays (or emits) and receives messages, whereas the human reads (or hears)

and inputs messages.

To represent human-human interaction, we define a channel called human-human.

This channel represents the message exchange between humans. Such an interaction

is usually performed via speech, chats, user interface. This is a very complex channel

which includes a large set of possible actions and virtually impossible to translate into

a finite set of actions. However, we consider a limited set of basic actions and analyse

a ceremony against them. The taxonomy we present in Chapter 3 is important to give

us insights in to what we can, and what we cannot, expect from that interaction. The

recommendations given in the same chapter can provide clues to how to avoid incorrect

and unsafe expectations from the human interaction. Merging this with a simplistic,

but formal definition of the human-human and human-device communication, we can

achieve interesting findings as we will see in Chapter 5.

The addition of humans to the specification brings interesting properties to the

ceremony. Human communication can be performed in different ways, as for example,

in person, via phone or even via some type of recorded material. Each one of them

providing different properties. The four main properties we found (which corroborates

with some ideas proposed by Vaudenay [106]) are:

Authentication – The channel involving humans is usually authenticated, meaning

that the recipient of a message is able to be sure of who sent the message.

Stall-free communication – Human communication can not be stalled, that is, from

the time an authenticated message is released, it is treated by the receiver imme-

diately.

Communication with acknowledgment – In communication in human-related

channels the sender is capable of checking whether the receiver has received the

message or not.

Listener-ready communication – The sender can check whether the receiver is cur-

rently listening to the channel.

It is important to highlight that such properties are not always achievable. We may

find scenarios and communication types that may achieve a subset of these properties,

or even not achieve any. For example, face-to-face conversations usually achieve all

these properties. As a counter-example, as we have seen in Chapter 3, if one of the

parties is unknown (e.g. an unfamiliar person), we may not achieve authentication.

73

4.3. Communication Channels and Agents

There will still exist assurance of the sender in this communication (the recipient can

easily spot the sender of the message), but the recipient might not be sure whether the

sender is the person (or authority) he claims to be (e.g. a real police officer). Telephone

conversations usually achieve the last two properties and possibly authentication. If an

agent starts communicating with another one, the first is aware that second is listening,

and subtle human senses assure her that the latter has heard her message [106]. In

addition to that, familiarity with the sender may allow the receiver to authenticate the

sender by their voice. Other communication types, such as voice mail and recordings,

do not provide these properties. There is no immediate reception, no confirmation of

reception and no insurance that the message was recorded in the first place. There

still may be some form of authentication. If there is familiarity with the sender, there

might be authentication of the sender by their voice.

After discussing the human agent and its channels and messages, we have to discuss

knowledge distribution. In a classic protocol framework, knowledge distribution deals

with the contents of the message flow. Whatever goes through the network media, the

sender may learn the messages and also break the messages into their subcomponents

and learn them. The attacker may also learn (depending on the threat model) the con-

tents. With the additional channels and agents, we keep the knowledge distribution the

same. Whatever flows on the human-device and human-human channels is susceptible

to be learned by the attacker, again depending on the threat model.

With the inclusion of new agents and channels, another point that needs to be

covered is the need for a tailored threat model. We need a model that encompasses

active threats, as we have in protocols, as well as passive threats. The classic threat

model for security protocols, as we will show, is not realistic for our human-device

and human-human channels. The presence of an omnipotent and omnipresent being in

human interactions is not always realistic in practice and may imply some unnecessary

and complex solutions to prevent attacks from such a powerful entity. Therefore,

before starting analysing ceremonies, we need to review the possible threats we have

on each channel we propose. The existence of a single worst-case scenario threat model

is justifiable in security protocols. However, the same cannot be said for security

ceremonies. Human agents executing security ceremonies are constrained by the laws

of physics and usual capacities expected from human beings. The existence of such

a powerful agent in a setting involving human-human communication is not plausible

and is likely to demand solutions that are not tailored to reality.

74

4.4. A Threat Model for Security Ceremonies

4.4 A Threat Model for Security Ceremonies

A realistic analysis of security protocols must account for a realistic threat model, and

the protocols’ goals must hold against it [12]. Security protocols are generally secure

against passive attackers who eavesdrop the communication medium. However, since

Needham and Schroeder introduced the notion of an active attacker [71] a lot of research

has been conducted in this area in order to prove protocols’ security against active

attackers. Needham and Schroeder’s attacker model assumed that the attacker could

alter, copy, replay and create messages (or parts of messages) in all communication

paths. Dolev and Yao [43] further developed this attacker model by formalising it and

adding new assumptions. In general, we can say that the Dolev-Yao threat model

defines the most hostile environment for protocols, and that the attacker has complete

control of the network but is not able to perform cryptanalysis [12].

Currently, the Dolev-Yao threat model is the most widely accepted model to analyse

security protocols [12]. Consequently, there are several security protocols considered

secure against Dolev-Yao’s assumptions. In general, we assume that if a protocol is

secure against such a powerful attacker, it is secure against less powerful variations.

When we move to ceremonies, however, a realistic threat model may not be Dolev-

Yao anymore since its focus is only on a networked environment. In ceremonies we

have new communication channels, new nodes, and consequently possible new attacker

variations. For that reason, an appropriate threat model must be designed to fit into

this new architecture. We argue that, even though Dolev-Yao’s threat model can

represent the most powerful attacker in a ceremony, the attacker in this model is not

realistic in certain scenarios.

As we discussed earlier, one of the reasons that certain protocols fail when imple-

mented is because their assumptions are either not well specified or not realistic, forcing

implementations to create mechanisms to circumvent these problems. Consequently,

these workarounds may introduce security problems, making the implementation of the

protocol, in certain contexts, flawed. In this case, despite the fact that the problem was

created during the implementation, the flaw was caused by an inaccurate assumption

at design level. Therefore, we must revisit Dolev-Yao’s threat model so we can have a

tailored threat model for ceremonies, allowing more aligned design and implementation

components for ceremonies.

The definition of a threat model for security ceremonies is not a straightforward

process. In the same way that a ceremony allows a more detailed analysis of a protocol,

the threats, or the capabilities of an attacker under a ceremony scope requires finer

granularity in their description. Even though the assumptions made by Needham

75

4.4. A Threat Model for Security Ceremonies

and Schroeder [71] and extended by Dolev and Yao [43] are the current standard for

protocol analysis, for ceremonies they are not always consistent with real world threats.

For example, an attacker capable of modifying (or replaying) a ‘speech’ packet in a

human-human medium is unrealistic if this communication happens in person.

By specifying and verifying security ceremonies we will be able to encompass a more

human-centric security view. The definition of a realistic threat model for ceremonies

will help us to design ceremonies which will assist the human peers to assess the threat

level they are subject to. By not overstating assumptions we inherently make them

plausible and achievable.

4.4.1 Abstract Threat-Models for Protocols

Security protocols were initially designed to be safe in the presence of a passive attacker.

That is, an attacker able to eavesdrop the communication channels and try to make use

of its contents [43]. The idea of the existence of an active attacker, also called intruder,

saboteur or spy, was first mentioned in the classic Needham-Schroeder paper [71].

They assumed that an attacker can intervene between parties in all communication

channels. Such an attacker is capable of altering, copying, replaying and creating

messages. Needham and Schroeder claim that, although it is a very pessimistic scenario,

the only way an authentication protocol can be considered safe is if it resists against

such a powerful attacker. In the following years, this definition became widely accepted

and applied when discussing whether a protocol is correct or not. In summary, assuming

that the machines involved in the protocol are safe and that cryptography cannot be

broken by brute force or cryptanalysis, Needham and Schroeder assume that an attacker

can:

• obtain any message that goes through the communication channel;

• modify messages and its subcomponents;

• copy messages and its subcomponents;

• replay messages;

• create messages.

In the following years, Dolev and Yao [43] formalised Needham-Schroeder’s attacker

and described the attacker capabilities in more details, in order to allow protocols to

be analysed more precisely, with less assumptions on the attacker’s behaviour. They

added the following assumptions to the attacker capabilities:

76

4.4. A Threat Model for Security Ceremonies

• The attacker is a valid agent of the network, and therefore can initiate commu-

nication with any other agent.

• The attacker can prevent the receiver from receiving a message.

• The attacker, despite the fact that he cannot read the content of an encrypted

message (to which he does not know the key), can forward its contents to another

agent.

• The attacker can perform any operation over a message except cryptanalysis. For

example, he can encrypt and decrypt messages using a key he knows.

The threat model we present above, known as Dolev-Yao, is a de facto standard

for symbolic protocol analysis at present [12]. In summary, in this model, the attacker

controls the communication channel. From the Dolev-Yao threat model, we have seen

the development of two lines of research. The first considers that the Dolev-Yao model

should be extended because such an attacker cannot perform cryptanalysis. They take

a probabilistic-reasoning based approached, which has been described by Bellare and

Rogaway [17]. This research thread has evolved during the years in parallel with the

Dolev-Yao research line [8], although there are a few efforts in reconciling them [3, 10].

The second follows the idea that if a protocol is secure against a Dolev-Yao attacker, it

is secure against a less powerful variation. Furthermore, the latter argues that subtleties

of protocol attacks can still be found even after a protocol is proved correct against

Dolev-Yao. By adjusting the powers of the attacker to adhere to the real world and

using the symbolic approach, such subtleties may be discovered [8].

Our main focus is on the second line of research. A first example of a threat model

that consider variations of Dolev-Yao’s attacker capabilities is BUG [14]. In BUG, the

agents are no longer classified as attacker/non-attacker. In this model, the agents of

the protocol are partitioned in three groups: Bad, Ugly and Good. Bad agents may

(or may not) collude with each other in an attempt to break the protocol for their own

(illegal) benefits. Ugly agents have an intermediate type of behaviour. They may follow

the protocol or may deliberately not, letting the Bad principals exploit them. Good are

principals who follow the protocol and its rules. The BUG threat model is interesting

because of its novelty in having attackers that may not share their knowledge and may

change their behaviour during the protocol run, depending on the risks of retaliation.

A direct derivation from BUG is the Rational Attacker [13]. The rational attackers

model drops the triple distinction of the agents’ types (due to its complexity) and

simplifies BUG by considering that any principal makes cost/benefit decisions at any

time whether to behave according to the protocol. The attacker must decide if the gain

77

4.4. A Threat Model for Security Ceremonies

outweighs the risks of being caught. The Rational Attacker was followed up by the

General Attacker [8]. In this model, the cost/benefit function is removed, but still, any

agent may behave as a Dolev-Yao attacker. In fact each peer is a potential attacker that

can use the information lawfully acquired to subvert the protocol. This threat model

is more realistic than the BUG and the Rational Attacker in an Internet scenario and

has the benefit of not having to deal with the gain/loss function.

Finally, we have a refinement to the General Attacker model, called Multi-Attacker

[9]. In this model, each principal may behave as a Dolev-Yao attacker but will never

reveal his long-term secrets to other agents. The Multi-Attacker adds some rationality

to the General Attacker in a way that it avoids trivial impersonation attacks.

The BUG family of threat models can be seen as a relevant attempt to represent

protocols’ execution environments in a more accurate manner. On the human-centric

security and ubiquitous computing area we see works from Stajano [96], Balfanz [11]

and Creese et al. [36] as interesting starting points where we can see variations of the

Dolev-Yao attacker applied to the analysis of human-interactive security protocols. As

mentioned in Section 4.2, their models include two different communication channels to

encompass different threats and environments. In general, they consider a traditional

network channel which is susceptible to a Dolev-Yao attacker and a restricted channel

where a weakened version of the attacker is used to represent the threat model involving

human agents and devices. These examples are relevant because they introduce the

idea that communication channels involving human peers and human communication

need to be analysed against realistic attacker actions.

In our work, we will discuss how to re-arrange the attacker capabilities to analyse

security ceremonies under a realistic threat model. Although initially simple, such a

threat model hides subtleties that can validate (or invalidate) claims regarding the

achievement of security goals. Attacks can be seen as the marriage between weak goal

achievements and the misunderstanding of the correct threat model and therefore, the

definition of a realistic and accurate threat model is extremely important.

4.4.2 Premises for Ceremony Threat Modelling

It seems obvious that developing a ceremony that is secure against a Dolev-Yao attacker

will imply that the same ceremony will be secure against any weaker real-world attacker.

However, it is often the case that, to guarantee that a certain ceremony is secure

against a such powerful attacker, we have to include very complex mechanisms which

may degrade usability. By doing that, a new threat is introduced, which is the fact

that the user will try to circumvent the security mechanisms in order to accomplish

his/her tasks. If we consider a more realistic threat model, where the attacker might

78

4.4. A Threat Model for Security Ceremonies

not be as powerful as the Dolev-Yao attacker, but such an attacker is powerful enough

to encompass realistic threats, we can prevent the user from being overloaded, and

consequently make the ceremony more usable and secure.

Since the focus of ceremonies is not only on the network channel, we need to define

a set of premises for threat models that involve human agents. One important premise

for a reasonable threat model is that no being is omnipotent in human-human

channels. This premise is easily verifiable by humans. The detection of powers beyond

usual human capability is straightforward in the setting of security ceremonies. The

impact of such a premise is that, depending on the situation, the presence of an active

attacker is not realistic. For example, in a network channel, it is realistic to consider

that the attacker may block and replay messages, as defined by Dolev-Yao. However,

in a human-human channel, an attacker with such power is not reasonable. Replaying

or blocking ‘speech’ in human communication certainly involves the use of powers that

are not feasible for a human peer.

Following a similar aspect, we have a premise that omnipotency in the human-

device channel is not always realistic. Although we have scenarios where we

expect that an attacker has full control over the human-device channel (therefore a

Dolev-Yao attacker), in some situations such a powerful attacker is not consistent with

the real threats. For example, if we assume that the operating system (OS) might

be corrupted, we should then analyse the human-device channel against a Dolev-Yao

attacker. However, if we assume the OS is safe, we may consider that the attacker does

not have all capabilities that the Dolev-Yao attacker has. Another example is when

a ceremony makes use of single-purpose devices (e.g. one-time-password generators).

When these devices are used, the capabilities of the attacker over the human-device

channel is very limited. Thus, the threat model used on such a channel is ceremony

and context-specific.

The next premise we have is that a threat model including human peers

should be constrained by the laws of physics. In several cases, it is unrealistic

to assume an omnipresent attacker in human-human channels. In public locations, we

may need to consider that an attacker (or several attackers working together) is present

during the human-human and human-device communication. However, if we consider

that some ceremonies are executed in a suitable location that takes into account the

verifiable presence of a potential attacker, we have to respect these physical restric-

tions. For instance, there are ceremonies that run in a physical context where human

peers have strict physical access control. A real world example of such a premise is

the execution of security ceremonies for PKIs in safe rooms. These rooms have very

strict physical and electromagnetic controls that prevent attackers from being physi-

79

4.4. A Threat Model for Security Ceremonies

cally present in the environment.

Another important premise for a security ceremony threat model is that humans

are capable of performing basic information recall or mathematical opera-

tions. As we discussed in Chapter 3, some security protocols and their related security

ceremonies are designed to encompass unrealistic human capabilities regarding the re-

call of information or the execution of mathematical operations. In a realistic threat

model, human peers are required to recall just fresh information and to execute basic

mathematical operations. This premise impacts on how the personification of the at-

tacker in the human-human channel behaves. Without support from a device, a human

peer has limited memory and limited mathematical capability. The presence of exter-

nal aids is detectable and can be used to verify an expected behaviour. An example of

such a premise is the verification of possession of a device in an authentication scenario

to generate one-time-passwords.

Finally, we have the premise that one should never use more crypto than

needed. Using more crypto than it is necessary often impacts on usability problems

or may introduce inaccurate assumptions from a human-device interaction perspective.

Although this is not a ceremony specific problem, encryption should be used only

when it is necessary and for clear purposes. Just because a protocol uses encryption,

for example, it does not mean it is secure [7]. Additionally, the inclusion of extra layers

of crypto, that do not address the threat model, may induce the human who is taking

part in the ceremony to misunderstand the threat level he is subject to. An example

of such an extra layer not addressing the threat model is the use of one-time-password

devices by banks. The extra layer of crypto may induce users into believing that an

attacker could not access his account without the device. However, the use of this

device does not address the active man-in-the-middle attacks [90], although establishes

a strong device possession premise.

With the premises above in mind we propose a threat model that encompass the

characteristics of each specific channel. For every channel, we analyse the threat model

looking at Dolev-Yao’s premises, but we dynamically add and remove capabilities in

order to define an attacker model that matches real-world threats.

4.4.3 An Adaptive Threat Model for Ceremonies

A proposition for a new threat model for security ceremonies is justified because no

protocol is executed without context. It is known that even if a protocol is proven

secure against a powerful attacker (e.g. Dolev-Yao), it might still fail due to some

reasons, which may include:

80

4.4. A Threat Model for Security Ceremonies

• Usability problems – despite the fact that user interaction is usually part of a

protocol’s assumptions (and not an explicit part of the specification), in some

cases, when these assumptions are implemented, they may require an unrealistic

set of user capabilities to achieve the expected goals. Therefore, a user may not

be able to perform his tasks correctly and/or not even able to execute them at

all.

• The assumptions are too big/strong or generic – it is often necessary to assume

that previous steps were successfully performed, or that the user is capable of

performing some kind of operation. However, in some scenarios, converting an

assumption into an implementation that achieves the same (expected) security

properties might be extremely challenging.

While those reasons are not directly related to the network channel, and therefore

one could state that the protocol achieves its security goals, we cannot make the same

statements when the protocol is implemented. When put in practice, assumptions that

involve human-device and human-human interaction have to be implemented somehow.

These assumptions must be replaced by dynamic user-interactions. By doing that, we

introduce two new possible communication channels, as we have shown in Figure 4.2.

In this case, we cannot be certain that the expected security properties assumed in the

protocol design will hold in the ceremony.

Another important issue regarding threat models for security ceremonies is that hu-

mans make different decisions, regarding their security, based on a dynamic evaluation

of the environmental threat level that they are subject to [77]. An example of such an

embodied decision making strategy is the evolutionary pressure humans suffered when

deciding the trade-offs between whether to engage in attacks and become hunters or to

keep a way of life as gatherers, and thus being exposed to less risk [5]. This inherent

faculty of human nature is usually not taken into account when we always assume the

worst case scenario as in a Dolev-Yao setting. Some attacks may be thwarted by using

a very pessimistic threat model, but inherently this action may provoke human nature

into acting and finding an easier and plausible solution if the user does not see the

alternative path as risky.

With the above in mind we stress that for a security ceremony, the threat model

must be adaptive. Even the same protocol might need to run under distinct threat

models and achieve its goals in different but still reasonable ways. Considering the

worst case is not always the best option since it can degrade usability. The adaptive

model we propose applies mostly for the human-device and human-human channels.

For network communication (device-device channel), in the majority of cases, we will

81

4.4. A Threat Model for Security Ceremonies

assume a Dolev-Yao attacker since it is the de facto standard. This is important since

it is very well studied and developed.

In addition, having different threat models for different environments can poten-

tially ‘teach’ users to be more aware of threats and to better (more intuitively) un-

derstand the threat model for each circumstance. For example, a user pairing two

Bluetooth devices at home is under a different threat to when in an airport. The same

may happen for an ATM cash withdrawal ceremony in America and Europe, or even

when the ceremony takes place in the same location but at different times of the day.

All of these scenarios are subject to different threats.

Based on that, the most challenging step in designing and analysing ceremonies is to

define the threats and the conditions where the ceremony will be used. A threat model

for ceremonies must be ceremony and context-dependent. However, we can define a

limited set of threats that encompasses the great majority of those cases. The existence

of a standardised threat model scenario is paramount to the establishment of security

goals of ceremonies and for the comparison between the efficacy of different ceremonies.

Therefore, our proposal for a threat model for ceremonies is based on Dolev-Yao’s

attacker set of capabilities. We enlist and describe each capability and we dynamically

add and remove them from the threat model we define. For example, we can have a

threat model where the attacker may have the eavesdrop and initiate capabilities only

to enable the fulfilment of our premises stated in Section 4.4.2. Our final goal is to

measure the security of ceremonies against a realistic attacker, whose capabilities may

be a subset of Dolev-Yao’s attacker capabilities. This approach will also help us to

reuse some of the abstract verification techniques and tools already in use for security

protocols.

To describe our threat model approach, we first enlist a set of attacker’s capabilities

based on the Dolev-Yao attacker. By using this set and defining a threat model, we will

be able to design and verify ceremonies that are secure against a realistic attacker with

different capabilities under different channels (e.g. Dolev-Yao attacker on the network

channel, while an attacker with eavesdrop, initiate and block on the human-device

channel, and finally a passive attacker, who only eavesdrops, on the human-human

channel).

To describe the powers of the attacker on a specific channel, we will use a simple

notation. We start with no threat model, or simply, a model where the attacker has

‘no capabilities’. From that point on we add to the attacker the desired capabilities,

such as E for eavesdrop only, or EB for eavesdrop and block only. Another way of

approaching the notation is by presenting a weakened version of Dolev-Yao’s attacker

model instead of using a composition of capabilities. We would consider that “DY”

82

4.4. A Threat Model for Security Ceremonies

is a Dolev-Yao attacker, and everything followed by a “–” symbol will represent the

capabilities removed from this attacker. For example, a “DY-BR” means a Dolev-Yao

attacker without the blocking and replaying capabilities. We would like to stress that

this is more a denotational problem and using both strategies we will always achieve

an equivalence. However, before making use of the secondary notation, we would need

a formal and precise definition of Dolev-Yao’s set of capabilities, which we will not

include here. We will therefore use only the first type of notation in this thesis.

Using the same initial assumptions of Dolev and Yao about the attacker, that is, that

the attacker is a valid agent of the network and that he cannot perform cryptanalysis,

we list below the attacker’s set of capabilities which we include in our adaptive threat

model. All the capabilities we list are based on Dolev-Yao’s attacker and their informal

definitions are shown below:

Eavesdrop (E) – Represents the capability of the attacker to passively listen to the

communication media. That means that the attacker will learn the contents of

any message M that is sent through the communication channel. Even if the

message is not intended for the attacker, he is able to capture and learn M .

Initiate (I) – Another important capability of an attacker is the capacity to initiate

a communication with another peer using the knowledge the attacker possesses.

The definition of initiate is that the attacker can use any information he knows

(from his initial knowledge or learnt during the ceremony run) to initiate a com-

munication with an agent A by sending message M , the contents of which are

part of, or derived from, the attacker’s knowledge.

Block (B) – Is the attacker’s capability to block messages, that is, preventing the

receiver from learning the contents of a message sent to them. Its definition is

that when A sends a message M to an agent B, the content of the message will

not be learnt by B.

Atomic Break Down (A) – Defines the capability that allows the attacker to break

down messages in to its subcomponents. This capability is relevant so that the

attacker can use atomic components of previously learned messages to produce

new ones. The definition for Break Down is that for all pairs composed by some

X and Y elements in the knowledge of the attacker I, the element X and Y are

also in the knowledge of the attacker I individually.

Derive (D) – An important capability for the attacker is the usage of publicly known

functions to produce new messages. Examples of such functions can be crypto-

graphic hashes, encryption and decryption, or any other function publicly avail-

83

4.4. A Threat Model for Security Ceremonies

able to the execution of the ceremony. Derive may be an n-ary function. The

capability of deriving messages can be described as for all messages X that are

part of the set of knowledge of the attacker I, the result of the application of

a publicly available function F is also part of the set of messages known by the

attacker I.

Some of the well known attacker’s capabilities (based on Dolev-Yao threat model)

are not directly shown here, since they can be achieved by the combination of our

definitions. For example, the capability of Modifying (M) messages on the commu-

nication channels could be defined as the use of Block + Initiate, while Replaying

(R) messages can be represented as Eavesdrop + Initiate. It is important to remem-

ber that the list we presented is necessarily incomplete, simply because new attacks

and/or attacking tactics can be discovered or exist under different scenarios that we

initially do not cover. Nevertheless, our dynamic and adaptive threat model inherently

allows additions to the set of attacker’s capabilities.

The adaptive threat model we propose here can be applied on all the communication

channels in a ceremony. Although we recommend that the device-device channel should

be verified in the majority of cases against a Dolev-Yao attacker, it is important to

always consider whether the Dolev-Yao attacker is realistic for every channel, even for

device-device communication. In Chapter 5 we will present and discuss some real-world

examples and the threat model for each channel in more details.

4.4.4 Case Study: Bluetooth Pairing Protocol

To demonstrate how the threat model for security ceremonies we proposed may be

used in the ceremony analysis, we will use the Bluetooth pairing protocol as a case

study. Considering the Bluetooth Legacy Pairing (described in Section 2.4.1.1) and

Bluetooth Simple Secure Pairing (SSP) (described in Section 2.4.1.2) as examples,

when we thoroughly analyse the protocol specifications, we find that the association

modes are designed under assumptions that imply a weaker threat model for the pairing

protocol. In this Section, we focus on showing the impacts of changing the threat model

of the communication channels. We demonstrate that an unrealistic threat model may

lead us to find impractical attacks. In Chapter 5, we provide a more thorough analysis

of the Bluetooth ceremony, using additional tools, results from our taxonomy and set

of recommendations, and additional granularity of the threat model.

In the legacy pairing, the device-device channel (DD) is designed considering a

DY attacker, while the human-device (HD) and human-human channels (HH) are

assumed to have no attackers. Although there are other flaws in this protocol [57, 51],

84

4.4. A Threat Model for Security Ceremonies

a relevant, simple and effective passive attack can be found if we add the capability of

eavesdropping to the attacker on either HD or HH channels. In this case, the attacker

would learn the PIN by just eavesdropping those channels (hearing the PIN value) and

with that, he could decode all messages. This works similarly to the attack described

in [92], but without the need of deploying a brute force attack on the PIN . This attack

would easily be captured when verifying this protocol as a ceremony.

In the case of the SSP protocol, which is the main focus of our case study, each

association mode needs to be analysed under a different threat model, and more impor-

tantly, each implementation should respect the specified threat model. In our examples,

we will use the numeric comparison against a Dolev-Yao attacker and also under

other variations of the attacker capabilities. The following specification describes phase

two of the SSP protocol using the numeric comparison mode specified as a ceremony.

A and B represent the devices used and UA and UB represent the users of each device

respectively. The notation follows the format discussed in Chapter 2, and the functions

f1 and V a are the same as presented in Section 2.4.1.

1. B −−→
DD

A : Cb = f1(pkB, pkA, Nb, 0)

2. A −−→
DD

B : Na

3. B −−→
DD

A : Nb

4. A −−→
HD

UA : Va = g(pkA, pkB, Na, Nb)

5. B −−→
HD

UB : Vb = g(pkA, pkB, Na, Nb)

6. UA −−→
HH

UB : Va

7. UB −−→
HH

UA : Vb

Figure 4.3: Protocol description for Bluetooth SSP phase two under the Numeric Com-
parison mode

In our analysis, we considered the ceremony using the numeric comparison (NC)

mode under different variations of the threat model. Table 4.1 presents a summary of

threat models and association modes we use.

Channel NC + DY NC + ATM V1 NC + ATM V2

DD DY DY DY

HD DY E E

HH DY DY E

Table 4.1: Threat models and SSP modes

As we can see, we created three different scenarios. In the first, we consider a Dolev-

Yao (DY) attacker for all three channels. In the second, we use an Adaptive Threat

85

4.4. A Threat Model for Security Ceremonies

Model (ATM V1) that changes the threat model for the human-device (HD) channel

by having an attacker capable of eavesdrop only. Finally, in the third (ATM V2), we

have a DY attacker only for the device-device (DD) channel. For the HD channel and

for the human-human (HH) channel, we have an attacker capable of eavesdrop only.

Given the notation presented in Section 2.3.2, knows(Y) representing the set of

knowledge of Y , Mn symbolising the message n of the ceremony, DY as the Dolev-Yao

attacker, E a threat model where the attacker possesses only the eavesdrop capability,

and ∅ representing that no attacks have been found, we present the theorems below

that describe the results of our analysis.

Theorem 1 (Numeric Comparison + Dolev-Yao). If the ceremony messages M1 to

M7 are run against a DY attacker, the attacker can prevent UA from learning Va or Vb

and UB from learning Vb or Va, forcing them to learn Vi instead.

M1...7 ∪DY
Va ∧ Vb ∧ Vi ∈ knows(I)∧

Va /∈ knows(UA) ∧ Vb /∈ knows(UA)∧

Vb /∈ knows(UB) ∧ Va /∈ knows(UB)∧

Vi ∈ knows(UA) ∧ Vi ∈ knows(UB)

Proof. Assuming that the attacker I, acting as a man-in-the-middle, initiated two

parallel pairing sessions with A and B during Messages M1 to M3. The authentication

from A to B starts on M4 where the value Va is sent to UA. The equivalent message

from B to UB occurs in M5. A DY attacker I, by using his block (B) and initiate (I)

capabilities, can prevent the message M4 and M5 from being delivered to UA and UB

respectively, and instead, send them any chosen value Vi. In M6 and M7, A and B

would complete the protocol by sending Vi to each other, successfully concluding the

pairing and allowing the man-in-the-middle attack to be deployed.

Using an alternative threat model, which we term the Adaptive Threat Model V1,

we assume the attacker can only eavesdrop the HD channel. In the specific case of

Bluetooth pairing, the assumption is that the device is free from malware and the

display is presenting the correct information.

Theorem 2 (Numeric Comparison + Adaptive Threat Model V1). If the protocol

messages M1 to M3 are run against a DY attacker; the messages M4 to M5 are run

against an E attacker; and messages M6 to M7 are run against a DY attacker, the

attacker can prevent UA from learning Vb and UB from learning Va, forcing them to

86

4.4. A Threat Model for Security Ceremonies

learn the repetition (replay) of Va and Vb (respectively) instead.

(M1...3 ∪DY) ∧ (M4...5 ∪ E)∧)(M6...7 ∪DY)

Va ∧ Vb ∈ knows(I) ∧ Va /∈ knows(UB) ∧ Vb /∈ knows(UA)

Proof. Again, assuming that the attacker I, acting as a man-in-the-middle initiated two

parallel pairing sessions with A and B during Messages M1 to M3. The authentication

from A to B starts on M4 where the value Va is sent to UA. The equivalent message

from B to UB occurs in M5. In this case, the E attacker can only learn the values Va and

Vb. In M6 and M7, A and B complete the protocol by sending Va and Vb respectively,

to each other. A DY attacker in messages M6 and M7 can perform a similar attack

to the one described in Theorem 1. By preventing Va from being delivered from UA

to UB in M6 and Vb from UB to UA in M7, and then replaying the values Vb and Va

(respectively) instead, the protocol run would be successfully finished and would allow

a man-in-the-middle attack to be deployed.

Finally, when using another variation of the threat model, which we call the Adap-

tive Threat Model V2, the attacker can eavesdrop both the HD and the HH channels,

that is, the attacker can eavesdrop on any communications in the pairing process that

involve the humans.

Theorem 3 (Numeric Comparison + Adaptive Threat Model V2). If the protocol

messages M1 to M3 are run against a DY attacker and the messages M4 to M7 are

run against an E attacker, the attacker cannot produce any relevant attack.

(M1...3 ∪DY) ∧ (M4...7 ∪N + E)

∅

Proof. Once again, assuming that the attacker I, acting as a man-in-the-middle, ini-

tiated two parallel pairing sessions with A and B during Messages M1 to M3. The

authentication from A to B starts on M4 where the value Va is sent to UA. The equiv-

alent message from B to UB occurs in M5. In this case, the E attacker can only learn

the values Va and Vb. In M6 and M7, A and B complete the protocol by sending Va

and Vb respectively, to each other. In messages M6 and M7, the E attacker can only

learn the values Va and Vb. Therefore, Va received by UB in M6 and Vb received by UA

in M7 would not match the Vb and Va in knows(B) and knows(A) respectively, not

allowing the attack to succeed.

Although the attack described in Theorem 1 is plausible in real world scenarios, it

is very difficult to deploy. An attacker would have to corrupt both devices as well as

start parallel sessions with both users during a short period of time. This is a good

87

4.5. Summary

example of a technically feasible attack but highly unlikely to happen in practice. By

removing capabilities B and I of the attacker, we can analyse the protocol further, and

possibly find other (more) relevant attacks. In Section 5.4, we implement variations

of this scenario using an automatic cryptographic protocol verifier tool (ProVerif) and

discuss each variation in more detail.

The second attack, demonstrated in Theorem 2 is utterly unrealistic. To be de-

ployed in practice, the attacker would have to block a communication between two

humans and then replay some data over a channel where the user would easily notice

if some other party wanted to spoof the identity of the sender. In this case, the attack

does not exist in practice.

In theorem 3, which we found to be free of attacks, will be further discussed in

Section 5.4. We will demonstrate that even when a protocol is proven to be free of

attacks, inaccurate assumptions on the human components may introduce security

problems.

The idea is similar for the other association modes. Each one of them must consider

the real-world scenario and define the threat model. In addition to that, it should not be

possible to use an association mode under a different threat model to the one specified.

4.5 Summary

Protocols are, by design, implemented to attend to human demands. The method we

propose approaches real world concerns on the design level. It is impossible to represent

all possible human characteristics in a limited set of operations, but by including the

human node in the specification and adjusting the threat model to represent realistic

threats to every communication channel we use, we can thoroughly study interactions

and factors which were previously included in the set of assumptions for each protocol.

As we can see, a ceremony adds some complexity to the analysis due to the addi-

tional agents and channels. On the other hand we do not want to change the way we

analyse protocols today, since the formal methods available are mature and powerful

for their intended purposes. Our framework approaches the problem from an extended

point of view. The extensions we propose allow adding support to ceremony analysis in

existing methods and tools (as we will see in Chapter 5). Our objective with this model

is to extend the coverage from the verification of security protocols to ceremonies. Hu-

man behaviour is indeed unpredictable, but by including humans in the formal models

we can, at least, predict what happens if some action is performed by the user in an

incorrect manner.

Our approach for describing a threat model for security ceremonies is based on a

88

4.5. Summary

well established model for security protocols. In our approach we weaken the attacker

to conform to the premises governing human-device interaction and human-human

interaction. This strategy seems plausible because it will help security protocols and

ceremony designers to develop ceremonies with reasonable assumptions and tailored to

the real capacities of the attacker.

89

Chapter 5

Designing and Analysing

Ceremonies

Contents

5.1 Introduction . 91

5.2 The Ceremony Design Process 92

5.3 Bluetooth Legacy Pairing Ceremony 93

5.3.1 Threat Model . 94

5.3.2 Informal Analysis . 96

5.3.3 Formal Analysis . 98

5.4 Bluetooth Simple Secure Pairing Ceremony 101

5.4.1 Threat Model . 102

5.4.2 Informal Analysis . 104

5.4.3 Formal Analysis . 108

5.4.4 Fixing the Simple Secure Pairing Ceremony 111

5.5 WhatsApp Registration Ceremony 116

5.5.1 Threat Model . 118

5.5.2 Informal Analysis . 120

5.5.3 Formal Analysis . 123

5.6 Gains by Analysing Security Ceremonies 125

5.7 Summary . 127

In this chapter we present examples of the design and analysis of security cer-

emonies. We make use of existing real world protocols that require user inter-

action and model their ceremony versions. Furthermore, we analyse each cer-

emony presented and prove its properties by using an automatic cryptographic

90

5.1. Introduction

protocol verifier (ProVerif). We then discuss our findings and highlight the

achievements obtained by analysing these ceremonies. Part of the content of

this chapter appears in the paper “An Updated Threat Model for Security Cere-

monies”, published in the Proceedings of the 28th Annual ACM Symposium on

Applied Computing [31].

5.1 Introduction

The next step to confirm the benefits of designing and analysing security ceremonies

and evaluate the results, is to analyse real world situations where protocols that involve

human interaction are used. In this chapter we start by describing the ceremony design

process we consider ideal. Next, we present three examples of such protocols and we

demonstrate how we could analyse them as ceremonies. We develop different scenarios

and use different threat models in order to dissect possible outcomes.

First, we design and analyse the Bluetooth Legacy Pairing ceremony. Although

legacy pairing is deprecated and has been replaced by Simple Secure Pairing (SSP), the

analysis of the Bluetooth Legacy Pairing ceremony is relevant due to the authentication

mechanism used, which is based on user input. Such a mechanism and its analysis could

then be extended to other ceremonies and therefore it is worth analysing. We describe

the threat model for the ceremony and provide both informal and formal analysis of

the ceremony.

Our second ceremony is SSP, which replaces Legacy Pairing in recent versions of

Bluetooth. In our analysis we focus on the Numeric Comparison (NC) pairing mode,

which represents an interesting case study for ceremonies due to the user interaction

involved. We again describe the threat model for the ceremony and provide both

informal and formal analysis of the ceremony. Furthermore, we propose a variation of

the ceremony, which relies on the same protocol with an additional comparison that

should be performed on the device after the user interaction. This new ceremony

improves the authentication process of SSP under the NC mode by changing a task

that the user might not perform adequately to another that makes use of a forcing

function, preventing the user from performing the incorrect interaction.

Finally, we analyse a ceremony that involves the registration process of a very

popular messaging application called WhatsApp. We present different registration

ceremonies and use different registration methods. The threat model for each ceremony

is discussed and we provide both informal and formal analysis of the ceremonies.

The formal analysis we perform uses a cryptographic protocol verifier tool called

ProVerif [19]. This tool is used for automatically analysing security protocols. ProVerif

91

5.2. The Ceremony Design Process

handles different languages as input types. The most commonly used, and considered

to be state-of-the-art is the language known as typed pi calculus [20], which is the

language we use for our implementations. Cryptographic primitives, such as symmet-

ric and asymmetric encryption, digital signatures and hash functions are supported

and ProVerif is capable of proving reachability properties, correspondence assertions,

and observational equivalence. Such capabilities allow the analysis of confidentiality

and authentication properties, which are our goals in the examples we provide in this

chapter.

By default, ProVerif’s communication channels are assumed to be controlled by a

Dolev-Yao attacker. It also provides support for private channels, where the attacker

has no capabilities. A passive attacker, who is only able to eavesdrop the communica-

tion channel is also supported. However, once the attacker is set as passive, the whole

threat model is switched to such a threat model. At the moment, there is no direct

support for modelling both Dolev-Yao and passive attackers on different channels in

the same protocol. In our ceremony framework, we need such a feature, and we can

simulate such attacker behaviour by using some implementation tricks. We describe in

this chapter how we implemented this feature.

5.2 The Ceremony Design Process

The ceremony design process is more complex than the protocol design process. It

involves more agents, more channels, different threats, more variables and more steps.

A more thorough ceremony analysis can be achieved by evaluating ceremonies in a

loop, as presented in Figure 5.1.

Taxonomy

AnalysisExperiments

Figure 5.1: The ceremony design process

The analysis component involves the process of formal and/or informal analysis,

similar to the work we presented in Chapter 5. Every human interaction must be

modelled to respect the taxonomy components we presented in Chapter 3 and follow the

design recommendations. User experiments may also be relevant to evaluate whether

the expected interaction happens in practice and whether the assumptions regarding the

92

5.3. Bluetooth Legacy Pairing Ceremony

human agent capabilities are accurate. In this thesis, the experiment phase was based

on related work that performed experiments similar to those required for the ceremonies

we analysed. It is important to highlight that every step in this cycle generates new

information that might help to refine the other steps performed. Whenever a failure or

a security flaw is found in a phase, the ceremony designer must go back to the design

phase, correct it, and perform the analysis in the loop again.

This design process loop provides a systematic approach to identifying different

possible failures in different aspects of a ceremony. More importantly, it assists the

identification of root causes of different failures. After completing a loop, designers

may need to revisit the whole loop to try to further improve the ceremony and reduce

the risk of failures. The number of rounds in the loop can be as many as needed to

reach a point where no relevant issue can be found.

5.3 Bluetooth Legacy Pairing Ceremony

Although it is well known that this protocol presents security flaws, the Bluetooth

Legacy Pairing ceremony is worthy of the analysis because we can develop several

insights into what ceremony analysis gives us. By systematically presenting variations

of the ceremony model, and the threat model involved, we can reach different results

and discover clues as to what are the benefits of this approach.

The first change we note when we move from a protocol description (as seen in

Section 2.4.1.1) to Bluetooth’s legacy pairing ceremony, is that the definition of the

PIN code cannot be ignored, and therefore it is not part of the design assumptions

any more. In fact, for each type of method for setting the PIN value, a different

ceremony must be specified. For a fixed PIN , we could still assume that the PIN is

pre-defined and therefore the ceremony would be similar to the protocol. However, in

the variable PIN setting, which is the recommended use according to the specification

[22], the PIN is now a relevant part of the specification. The PIN request is now

an explicit message sent from the device to the user after the ACCEPT message, as

shown in the protocol description presented in Figure 5.2. Also, the request of the

PIN and its value being shared between the UA and UB are also explicit messages in

the specification. Finally, the user entering the PIN in to the device is also presented

in the ceremony description.

The remainder of the protocol stays the same. In this ceremony we consider two

different users pairing their respective devices. The moment where the PIN is gener-

ated by the user does not affect the ceremony. However, the way they share the PIN

with the other user is relevant, since an attacker could eavesdrop the PIN value. Note

93

5.3. Bluetooth Legacy Pairing Ceremony

1. A −−→
DD

B : IN RAND

2. B −−→
DD

A : ACCEPTED

3. A −−→
HD

UA : PIN Request

4. B −−→
HD

UB : PIN Request

5. UA −−→
HH

UB : PIN

6. UA −−→
HD

A : PIN

7. UB −−→
HD

B : PIN

8. A −−→
DD

B : AU RANDA

9. B −−→
DD

A : SRES1 = e1(Kinit, BD ADDRB, AU RANDA)

10. B −−→
DD

A : AU RANDB

11. A −−→
DD

B : SRES2 = e1(Kinit, BD ADDRA, AU RANDB)

12. A −−→
DD

B : E LK RANDA = LK RANDA ⊕Kinit

13. B −−→
DD

A : E LK RANDB = LK RANDB ⊕Kinit

Figure 5.2: Ceremony description for the legacy mode pairing

that there is also a ceremony setting where a single user could be pairing two devices

they own.

The ceremony we will focus on in this section is a legacy pairing ceremony using

a variable PIN that involves two users pairing their devices. As mentioned earlier,

the changes from the protocol description to ceremony description are clear in the

initialisation steps in legacy pairing. Figure 5.3 shows a sequence diagram of the

initialisation phase of the ceremony. In the other parts, authentication and link key

calculation are similar for the protocol and ceremony (see Figure 2.5 and 2.6 for more

details).

5.3.1 Threat Model

Now that we have defined the ceremony, it is important to define a realistic threat

model for its channels. It is reasonable to assume that for the DD channel, we will

have a DY attacker since it represents a very powerful (and realistic) attacker for a

network channel. The communication channel between the humans and the devices

(HD) in this ceremony could possibly be under three different threat models. First,

we could use DY and therefore assume that we do not trust what the devices A and B

display and receive via input (possibly due to a corrupted application and/or operating

system). Second, we could assume an attacker capable of only eavesdropping (E)

on the messages, meaning that we have a passive attacker. Third, we could assume

94

5.3. Bluetooth Legacy Pairing Ceremony

Device A Device B

Human A Human B

Generate IN RAND

IN RAND

ACCEPTED

PIN Request

Generate PIN
PIN

PIN

PIN Request

PIN

Calculate: Kinit =
e22(BD ADDRB , P IN,

IN RAND)

Calculate: Kinit =
e22(BD ADDRB , P IN,

IN RAND)

Figure 5.3: Sequence diagram for the legacy mode pairing ceremony (Initialisation)

that there is no attacker on the HD channel. Finally, for the HH channel, a DY

attacker is unrealistic since an attacker cannot perform any other operation rather than

eavesdropping the channel without being detected in this Bluetooth pairing setting.

As we can see, defining the threat model for the DD and HH channel for this

ceremony is straightforward. However, the attacker capabilities on the HD channel

requires further analysis. Although possible, a DY attacker on the HD channel in this

ceremony is extremely unlikely to exist in real world scenarios. An attacker would have

to corrupt both devices in order to manipulate the messages exchanged between the

users and their devices to deploy an attack. A threat model that does not consider any

attacker capability for the HD channel is also questionable. Despite that, the protocol

description for the legacy pairing protocol assumes that there is no attacker on the HD

channel. Such a threat model does not seem to be accurate in the case of the ceremony.

Since Bluetooth is designed to be used in short range communications between (mobile)

devices, the pairing ceremony could be run anywhere, from private places (e.g. home)

to public ones (e.g. airport lounges). It is too optimistic to assume that no one else

apart from the users involved in the ceremony could see (eavesdrop) the user entering

PIN in to the device. Finally, considering that the attacker is capable of eavesdropping

on the HD channel seems realistic for the reasons we presented. Over-the-shoulder is a

very well known threat and fits well in this scenario. Thus, an eavesdropping attacker

is appropriate and realistic for the HD channel.

95

5.3. Bluetooth Legacy Pairing Ceremony

5.3.2 Informal Analysis

As described in Section 2.4.1.1, it is clear that if an attacker is capable of obtaining the

PIN value, the protocol properties of confidentiality and authentication are violated.

The same situation applies for the legacy pairing ceremony. Although the specification

allows for PINs up to 16-digit long, in practice only 4-digit long PINs are used. This

represents a very low entropy input. That is, an attacker is likely to be able to guess

the PIN value and verify it offline, as already discussed in [57, 92, 34]. In fact, for

4-digit long PINs, Shaked and Wool demonstrated that brute-forcing the PIN could

be done in near real time [92].

To analyse the legacy pairing ceremony in more detail, we will divide the threat

model in to four possible settings:

i) the ceremony is similar to the most common version of protocol, that is, the PIN

is short (e.g. 4-digit long) and we assume that the attacker has no control over the

HH and HD channel. In this scenario, the attacker is DY on the DD channel,

and has no capabilities on the HD and HH channels.

ii) we consider the PIN as the longest possible (16 digits). Therefore, we assume that

it is long enough not to be broken by the attacker in a reasonable time. Again, the

attacker is DY in the DD channel, and has no capabilities on the HD and HH

channels.

iii) we still have a long PIN (16 digits), but the attacker now has eavesdrop (E)

capability on the HD and HH channels.

iv) we reduce the PIN back to 4 digits, and keep E for the attacker on the HD and

HH channels.

The ceremony is considered broken if an attacker is able to break the confidentiality

of the protocol by either obtaining PIN or deriving Kinit, or if the attacker is able to

violate mutual authentication between the parties involved. For scenario i, we can see

that by eavesdropping the DD channel, the attacker cannot learn the PIN , making

the offline attack the only viable option due to the low-entropy of the PIN . This

attack is similar to the attacks presented in [57, 92, 34] and violates confidentiality for

the current session and authentication for future sessions. Confidentiality is violated

because the attacker will have all the information needed to calculate Kinit, then derive

the link (KAB) and encryption keys. Authentication is violated, possibly only in future

sessions, since pairing happens only for the first time when two devices connect. After

that, they use KAB as the base for calculating encryption keys between them. Thus, by

96

5.3. Bluetooth Legacy Pairing Ceremony

knowing KAB, an attacker can impersonate the devices in future sessions. Note that,

depending on the length of PIN , it could be broken by the attacker in a very short

time (in milliseconds, as demonstrated in [92]) and therefore authentication could be

violated even in the first session (during pairing) when short PINs are used (e.g. less

than 6 digits).

If we increase the length of PIN , as proposed in scenario ii, breaking or brute-

forcing its value would be unreasonable for the attacker. Since the attacker has only

access to the DD channel, there is nothing much he could do to break the ceremony.

Indeed, this scenario is considerably more secure than the previous one and no relevant

attacks can initially be found. However, another problem is evident in this ceremony:

usability. Asking users to generate and share 16-digit long random numbers is very

unusable and unfeasible as we discussed in Chapter 3, and as some experiments have

demonstrated [103, 104, 58]. The result of this setting is two-fold. First, if users decide

to proceed and enter the 16-digit long number, there is a high probability that the

numbers will not have enough randomness and be predictable, significantly reducing

the entropy. In this case, the attacks we discussed for scenario i, are now possible in

this scenario. Second, as Uzun et al. [103] and Valkonen et al. [104] demonstrated,

entering 4-digit long PINs already require a significant effort from users (taking around

20-25 seconds to be performed). By increasing this number to 16 digits, there is a high

probably that the ceremony would be unusable and users would give up on using the

mechanism. In this case, the setting would be relatively safe (if users could choose

random PINs), but useless, since no one would use it in practice.

In scenario iii, we still assume a high-entropy PIN , making it relatively unbreakable

by the attacker. However, in this setting, there are at least two additional points where

an attacker could learn the PIN value in the ceremony without even having to brute-

force it. By eavesdropping the HH or HD channels in messages 5, 6 or 7, he could

learn the PIN and therefore calculate Kinit, KAB and finally the encryption key. This

violates both confidentiality and authentication for the current session in a very simple

and straightforward way, making the attack even more powerful than the offline attacks

presented in scenario i. Note that the attacker would only need to eavesdrop either

the HH or HD channel to be able to lean the PIN , which is, in practice, completely

feasible since Bluetooth is designed to run on mobile devices, and therefore be used in

public places such as airport lounges, restaurants, etc.

Finally, in scenario iv we have the most realistic setting for this ceremony. We

merge the case where we have the low-entropy 4-digit PIN , which is the most used

setting, with the E capabilities of the attacker. In this scenario, the attacks we found

in i and iii are possible.

97

5.3. Bluetooth Legacy Pairing Ceremony

In the analysis we present we consider the case of two users pairing two devices

they own. Another situation that could happen is a setting where one user is pairing

two devices they own (e.g. a smart phone and a laptop). In this case, there would be

no HH channel in the ceremony. However, the only change in our analysis would be

that the attacker would have the eavesdrop capability only on the HD channel. The

attacks would still be the same on the scenarios presented.

5.3.3 Formal Analysis

In our formal analysis, we modelled the same scenarios presented in the informal anal-

ysis we performed earlier (Section 5.3.2). In ProVerif however, there are some details

that are relevant to the scope of our analysis. First, we need to model the secrecy of

PIN , in order to represent its variations in low and/or high entropy settings. Second,

we need to model the additional channels used in the ceremony. Third, we have to de-

fine different threat models for the channels, which proved to be quite tricky. Finally,

it is necessary to model the confidentiality property of the protocol.

Modelling the secrecy of the PIN value is subtle. As discussed earlier in the in-

formal analysis and in Section 2.4.1.1, the PIN used in legacy mode is usually a low

entropy input and therefore is guessable. ProVerif provides a mechanism for modelling

low entropy values, such as human-memorable passwords. It has already been demon-

strated and proved that legacy pairing is subject to offline attacks in its protocol version

[57, 92, 34]. To model such a characteristic of the PIN in ProVerif, and therefore verify

the absence (or otherwise) of offline guessing attacks against the PIN , we make use of

the query: weaksecret PIN . When this query is used, ProVerif tries to prove that the

adversary cannot distinguish a correct guess of the PIN from an incorrect guess [20].

In the scenario where we consider longer PINs and therefore wish to analyse when a

PIN provides higher entropy, we can simply remove the weaksecret query from the

model.

Modelling the additional channels is quite straightforward. It is as simple as mod-

elling a network channel. However, in our implementation, one important difference

is that it is semantically important to differentiate between the channels used for the

communication between user UA and device A and user UB and device B. By using

different channels for them, despite being of the same type (HD) we can clearly differ-

entiate the messages between the users and the devices they possess rather than mixing

them all on the same channel (which does not happen in practice).

Defining the threat model for each channel is a tricky part of our modelling. By

default, ProVerif provides either a Dolev-Yao or a passive attacker for all channels.

The only additional differentiation we could have for a channel is between defining it

98

5.3. Bluetooth Legacy Pairing Ceremony

as public or private. In a private channel the attacker has capability on the channel.

In a public channel we can have either Dolev-Yao or passive only. Thus, we kept the

threat model for all channels (except for private channels) as Dolev-Yao, and declared

the channels that we will add eavesdrop capability as private. Then, to allow the

attacker to eavesdrop these private channels, we broadcast any communication on these

channels over a public channel. With this trick, we are able to simulate the passive-only

channels needed along with the Dolev Yao threat model for the other channels. Then,

the definition of the channels in ProVerif is the following:

free DD : channel. (* device-device channel *)

free HDA : channel [private]. (* human-device channel A (no attackers) *)

free HDAE : channel. (* human-device channel A (eavesdrop) *)

free HDB : channel [private]. (* human-device channel (no attackers) *)

free HDBE : channel. (* human-device channel B (eavesdrop) *)

free HH : channel [private]. (* human-human channel B (no attackers) *)

free HHE : channel. (* human-human channel (eavesdrop) *)

As we can see, we defined a public channel for device-device communication (DD),

private channels between the users and their respective devices (HDA and HDB) and

a human-human private channel (HH). In addition to these channels, we defined

the three additional public channels (HDAE , HDBE and HHE). To broadcast the

messages sent on the private channels HDA, HDB and HH, to the public channels

HDAE , HDBE and HHE respectively, and therefore simulate the attacker’s eavesdrop

capability, we add the following to the process model:

(!in(HDA, x :bitstring); out(HDAE, x))

| (!in(HDB, x :bitstring); out(HDBE, x))

| (!in(HH, x :bitstring); out(HHE, x))

The modelling above duplicates everything on the private channel to the respective

public channel enabling a passive attacker on the channel.

To model the secrecy property of the protocol, we then simulated a scenario where

A sends a secret to B using the initialisation key Kinit they established during the

pairing process. To do that, we defined secret s, which is sent from A to B at the

end of the protocol run, and added the query “query attacker(s)” to the model, in

order to test the secrecy of s. Internally, ProVerif attempts to prove that a state where

the secret s is known by the attacker is unreachable. If a state where s is known by

the attacker is found, it means that the protocol specified fails to provide the desired

secrecy property.

99

5.3. Bluetooth Legacy Pairing Ceremony

We modelled in ProVerif each scenario presented in Section 5.3.2 using the mech-

anisms discussed above when needed. The results were similar to those presented in

our informal analysis. For scenario i, we tested the secrecy of PIN using the query

weaksecret PIN . As expected, ProVerif found an attack which is fundamentally the

same as the attacks found and described in [57, 92, 34]. In the attack, the attacker eaves-

drops a successful pairing session between A and B and uses the values BD ADDRB,

IN RAND, AU RANDA and SRES1. Figure 5.4 shows how the attacker proceeds af-

ter collecting the information needed. The attacker tries an initial value for PIN ′, then

he calculates K ′
init and SRES′

1. He then compares whether SRES′
1 matches SRES1.

If it does, the value he guessed for PIN ′ matches PIN , otherwise he tries a new value

for PIN , until he finds a matching value.

Attacker tries:
PIN ′ = 0000

Calculate K′
init =

e22(BD ADDRB ,PIN ′, IN RAND)

Calculate SRES′
1 =

e1(K′
init, BD ADDRB , AU RANDA)

is
SRES1 =
SRES′

1?
Try next PIN ′

PIN = PIN ′

Attacker knows:
BD ADDRB

IN RAND
AU RANDA

SRES1

no

yes

Figure 5.4: Brute-forcing PIN in the legacy pairing

For scenario ii, we removed the weaksecret query from the model and added a

query for the secret s, as described earlier. In this case, no attack was found, since

PIN was assumed to have high entropy. Note that the analysis we presented in Section

5.3.2 already pointed to the same results. However, it highlights the low probability of

100

5.4. Bluetooth Simple Secure Pairing Ceremony

a such setting being feasible in practice.

Next, we modelled scenario iii, where the entropy of PIN is still assumed to be high,

but the attacker now has the eavesdrop capability on both HD and HH channels. As

expected, ProVerif found an attack where the attacker could eavesdrop the PIN value

from the HH channel, and then violates the confidentiality of s by being able to obtain

Kinit from the values eavesdropped from the DD channel and the PIN from HH.

Although this attack seems very simplistic, the assumption that the attacker will never

learn the PIN value by eavesdropping the communication channels between humans

and between human and devices is too optimistic. As mentioned earlier, Bluetooth

pairing is expected to be used in public places and therefore should take into account

such a realistic setting in its design.

Finally, in scenario iv, we analyse the scenario that covers the most (realistic)

threat among the variations we presented. As expected, the results demonstrated the

existence of attacks on the entropy of PIN as we found by analysing scenario ii, and

on the confidentiality of s, as found in scenario iii.

5.4 Bluetooth Simple Secure Pairing Ceremony

As discussed earlier, the Bluetooth Simple Secure Pairing (SSP) ceremony is designed

to mitigate the problems found in the legacy pairing protocol. The most relevant

phase for the ceremony analysis is the second phase. It is in this phase where mutual

authentication is achieved, which is the main goal of this ceremony. Therefore, our

focus on the ceremony analysis will be on phase two using the numeric comparison

(NC) mode.

The second phase of SSP, described as a ceremony, includes two more agents UA

and UB and two additional communication channels HD and HH to represent the

human-device channel and human-human channel respectively. Figure 5.5 presents the

ceremony of phase two using the NC mode.

When compared to the protocol description (presented in Figure 2.10), we have 6

additional steps. These steps start at 4, which represents device A sending the value

Va to user UA; then 5, which represents device B sending the value Vb to user UB; 6

which represents user UA sending the value Va to user UB; 7 which represents user UB

sending the value Vb to user UA; finally 8 and 9 where the users confirm whether the

values received and generated match. It is important to note that in our ceremony

we assume two users pairing two devices. The main reason for using this assumption

is that it allows us to introduce the idea of the HH channel in a realistic scenario.

However, there is also the possibility of a single user pairing two devices, which would

101

5.4. Bluetooth Simple Secure Pairing Ceremony

1. B −−→
DD

A : Cb = f1(PKB, PKA, Nb, 0)

2. A −−→
DD

B : Na

3. B −−→
DD

A : Nb

4. A −−→
HD

UA : Va = g(PKA, PKB, Na, Nb)

5. B −−→
HD

UB : Vb = g(PKA, PKB, Na, Nb)

6. UA −−→
HH

UB : Va

7. UB −−→
HH

UA : Vb

8. UA −−→
HD

A : Ok

9. UB −−→
HD

B : Ok

Figure 5.5: Ceremony description for the SSP ceremony phase two

remove the need of the HH channel. In this case, we would just assume that messages

sent by both devices via the HD channel would be sent directly to the same human

who would then compare their values. Figure 5.6 shows the sequence diagram for phase

two of the pairing ceremony under the NC mode.

By adding these six additional steps, the pairing ceremony encompasses the whole

pairing process and covers all the messages sent and received among the peers in order

to achieve mutual authentication. Furthermore, when analysing the specifications, we

find that both legacy mode and SSP are designed under assumptions that the attacker

possesses a restricted set of capabilities during the pairing process.

5.4.1 Threat Model

A SSP ceremony is considered flawed if an attacker is able to violate the mutual au-

thentication between the devices A and B. Although no explicit mention is made of

these additional channels or variations of threat models in the specification, it is clear

that the SSP protocol and its association modes are designed under assumptions that

imply a weaker threat model. If they assumed a Dolev-Yao attacker, several attacks

would be possible (as we briefly presented in Section 4.4.4). However, since there is

no HD and HH channels specified, it is not clear which threat models were assumed

instead.

When analysing the SSP ceremony we need to define a realistic threat model. A

DY attacker is reasonable for the DD channel, however it is not appropriate for the

HD and HH channels. If we assume a Dolev-Yao attacker for the entire ceremony,

unrealistic attacks will be found. These unrealistic attacks may incur countermeasures

that are extremely likely to make the protocol more complex and less usable in practice.

In a similar manner to the threat model we discussed for legacy pairing, the threats

102

5.4. Bluetooth Simple Secure Pairing Ceremony

Device A Device B

Human A Human B

Generate: Na Generate: Nb

Calculate :
Cb = f1(PKB , PKA, Nb, 0)

Cb

Na

Nb

Verify if:
Cb = f1(PKB , PKA, Nb, 0)

Calculate:
Va = g(PKA, PKB , Na, Nb)

Calculate:
Vb = g(PKA, PKB , Na, Nb)

Va Vb

Va

Vb

Verify if Va = Vb Verify if Va = Vb

Ok Ok

Figure 5.6: Sequence diagram for phase two of the ceremony of SSP under the NC
mode

that the HD channel is subject to could vary. We could assume DY and therefore not

trust what A and B display and receive. Another option would be that the attacker is

capable of eavesdropping (E) the messages, or even no attackers on the HD channel.

For the HH channel, an attacker capable of eavesdropping is very realistic. The pres-

ence of no attackers on the HH channel for this ceremony could only be assumed in

very strict scenarios.

In our analysis, the threat model we consider consists in DY for the DD channel

and E for both HD and HH channels. Since Bluetooth is designed to be used in

both private and public locations for short range communications between (mobile)

devices, assuming that no one else, apart from the users involved in the ceremony, could

eavesdrop the messages between the users and the users and devices is too optimistic,

and would ignore some realistic threats. On the other hand, active attackers on the

103

5.4. Bluetooth Simple Secure Pairing Ceremony

HH channel for the SSP ceremony is not realistic either, since both users agree to

pair their devices in the first place. Finally, assuming an E only attacker for the HD

channel rather than DY is reasonable since the attacker would need to corrupt both

devices in order to succeed. Still, it would be interesting to analyse what happens in

the case of one device being corrupted, that is, having a DY attacker for only one of

the HD channels we have in the ceremony.

5.4.2 Informal Analysis

Although no major attacks currently exist against the protocol, analysing the SSP

ceremony is relevant since it brings different scenarios into perspective and new possible

threats. We divided our analysis in six different settings, where we systematically

change the threat model and user behaviour so that we can simulate several possible

scenarios, as follows:

i) In a similar manner to the most common version of the protocol specification, we

assume that the attacker has no control over the HH and HD channel. Thus, in

this scenario the attacker is DY on the DD channel, and has no capabilities on

the HD and HH channels.

ii) In this setting, we add eavesdrop capabilities to the attacker on both HD and HH

channels. On the DD channel the attacker is kept as DY .

iii) For this variation, we still consider DY for the HD channel and E for both HD

and HH channels. The difference now is that we will make an assumption about

the behaviour of human UA. Rather than behaving as expected and comparing the

number on his screen to the one he received from the human UB, he will proceed

even if the numbers do not match.

iv) In this case, we assume the opposite of we assumed in iii. Now, UA behaves as

expected, but UB will proceed in any case.

v) Complementing the previous two settings, we now assume that both UA and UB

proceed without checking if Va and Vb match.

vi) Finally, we again change the threat model on the HD channel. In this case we will

analyse what happens in the case where one of the devices is corrupted. That is,

the HD channel of one user is under a DY attacker. In this case, we will assume

that the HD channel between UA and his device A is under a DY attacker and

that both UA and UB behave correctly.

104

5.4. Bluetooth Simple Secure Pairing Ceremony

Figure 5.7 shows an attacker attempting to deploy a man-in-the-middle (MITM)

attack between devices A and B. In the figure, we present the expected execution of

the ceremony when this situation occurs. As we can see, what prevents the attacker

from succeeding is the human verification of whether Va and Vb match and if it does

not, the human ends the ceremony and aborts the pairing.

Device A Device B

Human A Human BAttacker

Establishes 2 parallel sessions with
A and B, calculating Vi−A =
123412 and Vi−B = 567890

Calculated
Va = 123412

Calculated
Vb = 567890

Va Vb

Va = 123412

Vb = 567890

Verify if
Va = Vb → fail

Verify if
Va = Vb → fail

Abort Abort

Figure 5.7: Sequence diagram for an MITM attempt in the SSP in NC mode

For scenarios i and ii, no attacks happen if the user verification is performed cor-

rectly. Even in ii, where the attacker has E, he will not be able to prevent the users

from detecting the difference between Va and Vb. This generates a scenario similar to

the one presented in Figure 5.7. Although being simple and easy to use when using

4-digit long numbers, the authentication method used, based on users comparing values

and confirming whether they match is susceptible of a high error rate, going up to 20%

error rate in some scenarios [103, 104, 58]. Therefore, attacks such as the one presented

in Figure 5.7 could succeed in many cases. If the users make a mistake when checking

the values, or do not check the values at all, and therefore just proceed confirming the

pairing, the MITM attack would be successful, even though the ceremony is designed to

prevent such an attack. Furthermore, if consider the taxonomy we presented in Chap-

ter 3, this user-ceremony interaction is likely to be susceptible to user-conditioning, as

presented in the bounded attention taxonomy item (Section 3.3.4); lack of knowledge of

105

5.4. Bluetooth Simple Secure Pairing Ceremony

security threats and inaccurate mental models (Section 3.3.1) from the user knowledge

item; and the decision making influencing factors (Section 3.3.3).

Users can easily be conditioned to just click on “confirm” for the pairing process,

especially if the pairing is repeated several times by the user. In this case users can pre-

dict the outcome, and it may result in them anticipating the matching hash values task

and simply pressing “confirm” without properly checking the values [58]. Another fac-

tor that may impact on the failure rate of this ceremony is the users’ lack of knowledge

of security threats and inaccurate mental models, since by not appreciating the possi-

ble threats to the pairing process and not evaluating the importance of authentication

processes correctly, the importance of comparing the values displayed are likely to be

underrated and consequently poorly performed. Finally, factors that influence decision

making are more difficult to simulate in lab experiments such as those in [103, 104, 58].

Factors such as time constraints are likely to negatively influence the user performance

when comparing strings, making the error-rate even higher, as mentioned by Kainda

et al. [58].

For iii and iv, we consider that just one of the humans involved behaves as expected

by the ceremony. In iii, for example, A would be vulnerable to the attacker since A

would have concluded the pairing, even though B has not accepted or finished the

pairing. This problem could be solved by UB warning UA that the numbers did not

match, but it could be too late and A would have to abort by closing the application

they were using to create the pairing. The same applies for the opposite scenario, iii.

In the case where the two devices perform the pairing process prior to any other action

(e.g. sharing a file), there would be little or no harm if UB notifies UA about the not

matching values. However, if the pairing was started in order to immediately share

a file between A and B, the file transfer is likely to happen before UB can warn UA,

causing a more serious security problem. Another issue with this scenario is that at the

end, the attacker will have created a link key with the device that mistakenly accepted

the pairing, and future connections with this device would not require a new pairing

procedure. Thus, to prevent that from happening, A would have to manually delete

the link key stablished with the attacker, which is not simple or easily understood by

some users.

In scenario v, both UA and UB behave inadequately, and therefore a MITM attack

is trivial. In this case, an attack would be even harder to detect because the pairing

session, and the subsequent actions (e.g. file sharing), would work normally. The

attacker would then have link keys established with both devices, making future attacks

against the devices trivial.

106

5.4. Bluetooth Simple Secure Pairing Ceremony

Finally, in vi, we assume a DY attacker on one of the HD channels. In our example,

we assume that we have DY on the HD channel between A and UA. The attacker, in

this case, could simply replace the number sent from A to UA by the number generated

between the attacker and B. In this case, the numbers would match, and even if both

UA and UB perform the authentication task correctly, the attack would still succeed,

since the numbers displayed to the users would match. Figure 5.8 shows the attack.

Another variation of an attack on the HD channel would be in case the attacker

changes the confirmation message. In this case, even if UA sends an Abort message to

A, the attacker would replace Abort by Ok and therefore A would confirm the pairing.

However, this second case, would only affect A’s side, since UB would abort after

verifying that the number sent by UA does not match the one he sees on his display

(similar to scenario iii).

Device A Device B

Human A Human BAttackerAttacker

Establishes 2 parallel ses-
sions with A and B, cal-
culating Vi−A = 123412

and Vi−B = 567890

Calculated
Va = 123412

Calculated
Vb = 567890

VaVi−B
Vb

Vi−B = 567890

Vb = 567890

Verify if
Vi−B = Vb → Ok

Verify if
Vi−B = Vb → Ok

Ok Ok

Figure 5.8: Sequence diagram for an MITM attack in the SSP in NC mode

In the analysis we presented, we assumed the case where two users pair two devices

they each posses. The pairing process may be also run in a setting where one user

pairs two devices (e.g. a smart phone and a laptop). In this case, there is no HH

channel in the ceremony. In this case, scenarios iii and iv are not likely to exist, being

replaced just by v. The other scenarios would still be similar. Note that, in this

107

5.4. Bluetooth Simple Secure Pairing Ceremony

case, user-conditioning could have more influence and be more likely to happen. The

repetitive task of verifying numbers would be performed twice by the same user per

pairing session, accelerating the user-conditioning process. Another factor that may

happen, but would be difficult to measure, is the possible increased level of confidence

when the user pairs two devices they own. In this setting, the user could feel more

‘secure’ and be less careful when checking the numbers on both displays.

5.4.3 Formal Analysis

Our formal model of the Simple Pairing ceremony focuses on phases one and two of

the ceremony and implements similar scenarios to those we have seen in the informal

analysis we performed. The basic ceremony is the same as we have shown in figure

5.6 with the addition of a public key exchange (phase one) that happens prior to the

sequence presented in the figure. We modelled the channels HD and HH using the

same approach we discussed in Section 5.3.3, where we have separate channels for the

HD for A to UA and B to UB. The threat model for these channels in our analysis

varies from no attacker (N), to eavesdrop (E) and finally Dolev-Yao DY . The approach

for modelling these variations is similar to the one we discussed in Section 5.3.3. Our

focus is on modelling authentication, which is the most important and interesting part

of this ceremony.

We modelled authentication using correspondence assertions which are used to rep-

resent a sequence of events in the form “if an event x has been executed, then event

x′ has been previously executed” [20]. In ProVerif we use special begin and end events

that are parameterised by protocol terms. To model the authentication of A to B, we

modified A’s process to include a begin event using B’s parameters as soon as A starts

a pairing session with B (after the initial public key exchange). We also modify B’s

process to include an end event using B’s parameters once B successfully completes a

pairing session. Similarly, we model authentication from B to A by making the same

modifications, but using A’s parameters and including the begin event in B’s pro-

cess and end event in A’s process. Thus, in ProVerif, we modelled the authentication

properties in the form: if the event end(X’s parameters) is executed, then the event

begin(X’s parameters) should have been previously executed. If a state where the event

end(X’s parameters) is executed without a previous begin(X’s parameters) event, the

authentication property is violated. This condition, means that an attacker could have

started a communication with an agent X and the execution reached an state where

the event end(X’s parameters) was executed without the event begin (X’s parame-

ters) being executed before. Such an implementation is similar to the implementation

described in [34].

108

5.4. Bluetooth Simple Secure Pairing Ceremony

ProVerif supports two types of correspondence assertion types: correspondence

(non-injective) and injective correspondence. The difference between them is that the

injective correspondence captures a one-to-one relationship between the number of

protocol runs performed, while the first does not. For example, injective correspondence

is useful to capture a setting where a server should only complete a single transaction

per transaction started by the client (e.g. financial transactions). In other words,

injective correspondence implies that for every end(params) event, there should be a

matching begin(params) event, while for the (non-injective) correspondence, implies

that if end(params) is output, then at least one begin(params) event was previously

outputted.

In our analysis, we followed a similar authentication implementation that was made

by Chang and Shmatikov [34] for the protocol version of SSP. Therefore, we model both

injective and non-injective versions of two types of authentication properties. The first

type is modelled by using the agents’ identities (public keys) as parameters of begin and

end events. In this first type, if the authentication property holds, then we can assume

that each agent is certain about the identity of the other agent in the ceremony run.

However, other parameters, such as nonces and the other agents’ identities involved do

not necessarily match. Therefore, we model a second authentication type, where the

events are parameterised by the nonces generated by A and B, and their respective

identities, which are the parameters used in the challenge-response performed in the

ceremony. Finally, we modelled the authentication properties from both sides, that is

from A to B and B to A authentication.

We modelled each one of the scenarios presented in Section 5.4.2 in ProVerif. Sim-

ilarly to our findings from the informal analysis, in scenarios i and ii, no attack traces

were found.

However, as described in our informal analysis, it is often the case where one or both

users may not check the values adequately (due to several factors) and just proceed

with the pairing. Scenarios iii, iv and v reflect these cases, varying from one human

agent to both agents not behaving as expected. The results of formal analysis are very

similar in the three cases. When only one human agent does not behave as expected

and always confirms the pairing, the authentication property does not hold for only the

side that misbehaves. For the the other side, the authentication holds. As mentioned

in Section 5.4.2, the harm caused by this attack may vary, since the side that behaved

properly can inform the other side about the failure. However, in cases such as a pairing

directly followed by file sharing, for example, it may be too late and the file could have

been already received by the attacker. When both sides misbehave (scenario v), the

attacker successfully deploys a MITM attack. The sequence of steps found in the attack

109

5.4. Bluetooth Simple Secure Pairing Ceremony

trace generated by ProVerif in this scenario is presented in Figure 5.9. Note that in the

case where both sides misbehave, the messages exchanged between the users are not

likely to happen in reality, since knowing the other side’s value is not relevant in such

settings. Finally, by analysing Figure 5.9, we can easily see how the attack works on

the other cases (iii and iv). The only difference would be in the last message, where the

side behaving as expected would send an Abort message (since Va and Vb are different)

rather than Ok.

Device A Device B

Human A Human BAttacker
PKA PKI

PKI PKB

Generate: Na Generate: Nb
Generate:
Ni and N ′i

Calculate :
C ′b = f1(PKI ,
PKA, Ni, 0)

Calculate :
Cb = f1(PKB ,
PKI , Nb, 0)

C ′b Cb

Na Ni

N ′i Nb

Verify if:
C ′b = f1(PKI ,
PKA, N

′
i , 0)

Verify if:
Cb = f1(PKB ,
PKI , Ni, 0)

Calculate: Va =
g(PKA, PKI , Na, N

′
i)

Calculate: Vb =
g(PKI , PKB , Ni, Nb)

Va Vb

Va

Vb

Ok Ok

Figure 5.9: Sequence diagram for an MITM attack in the SSP in NC mode when A
and B always confirm the pairing

For the last scenario, vi, where we assume a DY attacker on the HD channel

110

5.4. Bluetooth Simple Secure Pairing Ceremony

between A and UA, two different attacks were found. The first, where the authentication

from B to A is violated, is very straightforward. Since the attacker controls the channel

between A and UA, the trace of the attack indicates that A communicates with the

attacker I as a normal pairing session until A sends the verification value Va to UA. At

this point, the attacker simply replies to A on the HD channel with an Ok message,

concluding the pairing session. In practice, this attack can be interpreted in different

ways. We could just assume that it happens exactly as the trace shows. That is, even

though the number displayed to UA differs to the one presented to UB, the attacker (in

this case, probably malware installed on device A) sends Ok directly back to A, without

prompting UA for confirmation. Another possibility would be that the behaviour of the

buttons “Ok” and “Abort” on the display are modified by the attacker. In this case,

even if UA chooses to abort the connection, the attacker would replace the message by

Ok when sending it to A. In both cases, a user that knows how the ceremony works

would possibly detect the different behaviour of the ceremony or be notified by UB

that the values do not match. However, the user would have to actively interrupt the

pairing (e.g. closing the application), rather than being protected by the ceremony run

itself.

A more interesting attack is shown in the attack trace where A’s authentication to

B is violated. In fact, this attack violates authentication of both sides and it would

be undetectable by the users since the ceremony runs as normal. Figure 5.10 presents

the attack trace found in ProVerif. The attacker again starts two parallel sessions with

A and B, acting as a man-in-the-middle. The ceremony runs normally for both sides

until right before the moment where the verification values Va and Vb are about to be

displayed. At this point, the attacker intercepts Va that is sent on the HD channel

between A and UA and replaces its value by Vi, which is the same Vi generated in

the session he runs with B. By doing that, the values displays for both UA and UB

will be the same. After that, the ceremony runs as normal, UA and UB exchange the

values shown on their displays (which will match) and confirm the pairing, allowing

the attacker to successfully deploy a MITM attack.

5.4.4 Fixing the Simple Secure Pairing Ceremony

Although the authentication mechanism used in SSP in NC mode, where the users are

asked to compare two short values, is relatively easy and simple to be used by humans

[103, 104, 58], it presents security problems. As discussed in Section 5.4.2, this method

is susceptible to a high error rate, going up to a 20% error rate in some scenarios,

possibly even more. These errors happen when users fail to compare the values, or

even in the case where they do not compare the numbers at all. Additionally, this

111

5.4. Bluetooth Simple Secure Pairing Ceremony

Device A Device B

Human A Human BAttackerAttacker
PKA PKI

PKI PKB

Generate: Na Generate: NbGenerate: Ni

Calculate :
C ′b = f1(PKI ,
PKA, Ni, 0)

Calculate :
Cb = f1(PKB ,
PKI , Nb, 0)

C ′b Cb

Na Ni

Ni Nb

Verify if:
C ′b = f1(PKI ,
PKA, Ni, 0)

Verify if:
Cb = f1(PKB ,
PKI , Ni, 0)

Calculate:
Va = g(PKA,
PKI , Na, N

′
i)

Calculate:
Vb = g(PKI ,
PKB , Ni, Nb)

Calculate:
Vi = g(PKI ,
PKB , Ni, Nb)

VaVi
Vb

Vi

Vb

Verify if Vi = Vb Verify if Vi = Vb

Ok Ok

Figure 5.10: Sequence diagram for an MITM attack in the SSP in NC mode when
HDA is under a DY attacker

user interaction is likely to be susceptible to user-conditioning, lack of knowledge of

security threats, inaccurate mental models and the decision making influencing factors.

Therefore, we propose a different approach to solve the problems we found.

Our amended version for the SSP under the NC mode changes the authentication

task given to the user. Instead of asking the users to compare numbers, we make use

of a forcing function that prevents the user from proceeding with the pairing without

completing the security task (authentication) and that brings the focus on the secu-

112

5.4. Bluetooth Simple Secure Pairing Ceremony

rity activity to the main workflow. Additionally, we focus on making the minimum

changes possible to the specification, making the impact of such a change very small

and therefore more likely to be implemented in practice.

The new version of the ceremony, shown in Figure 5.11 runs normally until the

moment that Va and Vb are calculated. At this point, we split the values calculated

into two parts, producing Va1 and Va2 for Va, and Vb1 and Vb2 for Vb. Next, rather than

sending the complete value to the human via HD channel, each device sends just one

of the halves calculated. The initiating device (A) sends the first half of its Va and the

non-initiating device (B) sends the second half of its Vb.

Device A Device B

Human A Human B

Calculated
Va = 12345678

Calculated
Vb = 12345678

Split Va in Va1 = 1234
and Va2 = 5678

Split Vb in Vb1 = 1234
and Vb2 = 5678

Va1 Vb2

Va1

Vb2

Vb2 Va1

Calculate
V ′a = (Va1||Vb2)

Calculate
V ′b = (Va1||Vb2)

Verify if Va = V ′a Verify if Vb = V ′b

Figure 5.11: Sequence diagram for our fix to the SSP in NC mode

After receiving the values from their respective devices, humans UA and UB then

exchange the values they received via the HH channel. The following step is where our

forcing function takes place. Now, rather than just choosing between Ok and Abort, the

user is required to type the value received from the other human peer into their device.

This prevents the user from not checking the value and shifts the comparison task

from the human to the device. Therefore, the human peers now send the values they

receive from the other human to their devices via the HD channel. Each device, when

receiving the values, merge the half displayed with the half received and compare with

the full value calculated earlier. If the values match, the pairing succeeds, otherwise it

113

5.4. Bluetooth Simple Secure Pairing Ceremony

fails.

Device A Device B

Human A Human BAttacker

Establishes 2 parallel ses-
sions with A and B, calcu-
lating Vi−A = 12123434
and Vi−B = 56567878

Calculated
Va = 12123434

Calculated
Vb = 56567878

Split Va in Va1 = 1212
and Va2 = 3434

Split Vb in Vb1 = 5656
and Vb2 = 7878

Va1 Vb2

Va1 = 1212

Vb2 = 7878

Vb2 Va1

Calculate
V ′a = 12127878

Calculate
V ′b = 12127878

Verify if
Va = V ′a → fail

Verify if
Vb = V ′b → fail

Figure 5.12: Sequence diagram of a MITM attempt against our fix to the SSP in NC
mode

Figure 5.12 shows a MITM attempt against our variant of SSP. The main difference

now is that the authentication property of the ceremony does not depend on correct

user behaviour. Now, the user cannot make a mistake that impacts on the security

properties of the ceremony. If the user inputs an invalid half of V into his device, the

pairing will fail. In the case of an attempted MITM attack, as shown in Figure 5.12,

the values exchanged via the HH channel will be sent on the HD channel afterwards.

Since the attacker does not control this channel (he can only eavesdrop), he cannot

stop this authentication step and prevent the MITM attempt from failing. The only

possibility is in the case of the attacker having DY on one of both HD channels, in

this case, he could modify the value displayed to the users and inserted by the users,

and therefore perform an attack similar to the one presented earlier, in Figure 5.10.

Although possible, this attack is more complex than the one presented for SSP ‘as-is’.

114

5.4. Bluetooth Simple Secure Pairing Ceremony

The attacker would have to display one value to the user, so the correct value needed

by the attacker would be sent via the HH channel. In addition, the attacker would

have to modify the value entered by the user, replacing it by a value that matches

the expected one. Thus, our variation has inherent resistance against user security

mistakes, as long as the devices are not compromised.

We updated the formal implementation in ProVerif for scenarios i and ii and sim-

ilarly to the previous implementation, no attack traces were found. For the scenarios

that involved user mistake (iii, iv and v), there is no possible formal implementation

since the user cannot perform the authentication task incorrectly, otherwise the pairing

ceremony will fail. For vi, where there is a DY attacker on the HD channel between A

and UA, the authentication of B to A fails. This failure happens because the attacker

knows the complete value of Va and therefore sends the second half of Va through the

HD channel between A and UA. This action can be interpreted as, in practice, the

attacker could block what UA sends to A and replace it by Va2. Similarly, the authen-

tication of A to B fails because the attacker may display the value Vb1 on A’s display.

That is, the attacker replaces Va1 by Vb1 on the HD channel between A and UA. Then,

UA sends Vb1 to UB via HH channel, who will then send the value modified by the

attacker to B and complete the MITM attack successfully.

The method we proposed here is inherently secure against incorrect user interaction.

However, it requires more effort from the users involved. Both users would have to read

and type values in to their devices. In usability tests performed in [103, 104, 58] users

found, as expected, the default method used in SSP’s NC mode easier and faster to

use when compared to another method that presents similar interaction to the method

we propose here. However, as described by Kainda et al. [58], although the actions of

reading and typing values in to devices are more difficult to perform in terms of usability,

the mechanism we proposed cannot be incorrectly operated by users. Additionally, the

popularity of Short Message Service (SMS) and similar services for mobile devices

means that more and more users tend to become familiar with the task of typing text

in to devices. Furthermore, in the study performed by Uzun et al. [103] and another

by Valkonen et al. [104], a similar method to the one we presented here was perceived

as more difficult to use than the default SSP, but also more professional. Among users

in the experiment performed by Uzun et al., most users mentioned that this method

was the most preferred personal choice and they would like to have it available on their

devices.

Looking back to the taxonomy we presented in Chapter 3, we find that the activ-

ities involved in the task we added to our ceremony follows the recommendations we

proposed. It respects user faculties, since it only asks users to read short strings and

115

5.5. WhatsApp Registration Ceremony

input them into a device. More importantly, it removes an authentication task from

the user and gives it back to the device, following the recommendation of not relying on

user authentication capabilities. It also integrates the security into the main workflow

by including the security-related user interaction as an active part of the ceremony.

Finally, the use of the forcing function we proposed prevents the user from performing

an inappropriate interaction.

5.5 WhatsApp Registration Ceremony

The WhatsApp registration ceremony is simple and relies on the properties that an

SSL/TLS connection with the registration server provides. The registration process is

straightforward. It uses the user’s mobile phone number as the basis for identification,

which is sent to the registration server. In response, the server returns an acknowl-

edgement message. The server then sends a PIN1 code via SMS to the phone number

that requested the registration. As we can see, the message that contains the PIN

code is sent via an alternative channel. Finally, the registration is confirmed when

the PIN code is sent back to the server, now using a regular network channel. This

message binds the phone number to the device, and allows the server to complete the

registration. As a response, the server sends a confirmation message to the device.

Note that all the messages exchanged between the device and the registration server

are sent using an HTTPS connection, meaning that there is server authentication and

the communication is encrypted.

The whole registration ceremony using protocol notation is presented in Figure 5.13.

As we can see, we have four agents and four communication channels in place. First,

we have agent S which is the registration server. Second, there is UA which represents

the user operating the device A. In A, we have two subdivisions in our ceremony.

Rather than specifying just a device A, we consider two different agents. The agent

AW represents the WhatsApp application installed on the device, while AM is an SMS

application. In most cases, both applications will be installed on the same device, but

in fact, it could also be the case where they are on two different devices. The main

reason for this separation is because of the nature of the protocol. Although the SMS

is sent to device A, in most cases (except for Android OS devices), AW cannot directly

read the contents. Therefore, the user will have to read the contents of the SMS and

then type it into the application. This causes the need for additional messages 5 and

6 that deal with the actions of receiving the PIN and sending it to the WhatsApp

1Although we disagree with the name “PIN” to represent the value sent by the server, all the
references to the WhatsApp protocol call this value by “PIN”. In reality, this value acts as a one-time-
password rather than a PIN.

116

5.5. WhatsApp Registration Ceremony

application. Once again, this works in the same way, whether the applications are

installed on the same device or not.

The four channels we use are composed of:

• the network channel DD between AW and S (assuming a HTTPS connection);

• a secondary and restricted device-device channel, DDSMS which is specifically

used to the deliver the SMS message;

• a HDAW channel between the user UA and the agent AW ;

• and finally, another HDAM channel between the user UA and the agent AM .

1. UA −−−−→
HDAW

AW : PhoneNumber

2. AW −−−−→
DD

S : PhoneNumber

3. S −−−−→
DD

AW : NumberReceived

4. S −−−−→
DDSMS

AM : PIN

5. AM −−−−→
HDAM

UA : PIN

6. UA −−−−→
HDAW

AW : PIN

7. AW −−−−→
DD

S : PIN

8. S −−−−→
DD

AW : RegistrationConfirmation

Figure 5.13: Ceremony description for WhatsApp registration

A more detailed sequence of actions and messages is presented in Figure 5.14.

We identified the SMS channel using a larger arrow and presented the application as

different agents. The sequence diagram presents the registration ceremony using the

sms method.

In the self method, presented in Figure 5.15, the larger arrow does not exist. In-

stead, there is a change in the NumberReceived message contents, which now includes

the PIN code. The SMS message containing the PIN code would be sent from the

WhatsApp App to the SMS App. The SMS App then sends an SMS to the device’s

own number (using the short message service center - SMSC), ‘validating’ the number.

Note that the DDSMS channel used in the sms method does not exist in the self

method. There is a new DD channel, called DDSMSC , that is responsible for the mes-

sage exchange between SMS App and SMS Center. There is also a HDWM channel,

which is an additional device-device channel that exists between the two applications

involved in the ceremony: WhatsApp and SMS app.

117

5.5. WhatsApp Registration Ceremony

WhatsApp
App

SMS
App Server S

Human A

PhoneNumber

PhoneNumber

Generate PIN
NumberReceived

PIN
PIN

PINPIN

PIN

Verify if PIN
values match

RegistrationConfirmation

Figure 5.14: Sequence diagram of the WhatsApp registration ceremony using the sms
method

As presented in Section 2.4.2, in older versions of the registration ceremony, the

PIN used to be generated in the device and then sent to the server which caused

several security problems. In our analysis we consider only the most recent version,

where the PIN is generated on the server side and the methods self and sms are

available.

Finally, for analytical purposes, we will also discuss a naive version of the registra-

tion protocol, where an SMS message is not used to authenticate the ownership of the

number. The ceremony starts in two possible ways. In the first, the user would insert

the desired phone number in to the device (using the WhatsApp application), while in

the second the application detects the phone number automatically. After obtaining

the device’s phone number, the application then sends it to the registration server,

which will confirm the registration back to the application, as shown in Figure 5.16.

5.5.1 Threat Model

The threat model for the WhatsApp ceremony is difficult to define. Where a HTTPS

connection is used, there are several assumptions on the DD channel that are very

difficult to model and analyse. There are also different threat models for the DDsms

channel, HDWM channel and HDAM channel. For all registration methods, we would

118

5.5. WhatsApp Registration Ceremony

WhatsApp
App

SMS
App Server S

SMS
Center

Human A

PhoneNumber

PhoneNumber

Generate PIN

NumberReceived, PIN

PIN
PIN

PIN
PIN

PINPIN

PIN

Verify if PIN
values match

RegistrationConfirmation

Figure 5.15: Sequence diagram of the WhatsApp registration ceremony using the self
method

WhatsApp
App Server S

Human A

PhoneNumber
PhoneNumber

RegistrationConfirmation

Figure 5.16: Sequence diagram of the WhatsApp registration ceremony without an
alternative channel verification

typically assume a DY attacker on the DD channel, however, the current protocol uses

the TLS/SSL protocol, which provides server authentication and confidentiality. On

the other hand, assuming no attacker on the DD channel may hide some subtleties of

the protocol and potential attacks. Therefore, we will approach this scenario would by

analysing the ceremony against different variants of the threat model and verifying the

outcomes. Thus, for the DD channel, we will consider different variants of the threat

model in our analysis. We will discuss a setting where there is no attacker (N), which

119

5.5. WhatsApp Registration Ceremony

is likely to be the threat model assumed by the registration protocol designers; another

setting that gives DY capabilities to the attacker; and finally, an I attacker, which

is capable of initiating a new communication with the server using the knowledge he

possesses.

For the restricted DDsms channel, we assume no attackers (N). Finally, for the two

channels that involve human interaction (HD), we need to consider variations going

from N to E, since the registration may be run in a public location. A DY attacker

for the HD channels in this ceremony are very unlikely to exist in practice as long as

the device is not corrupted (although we can still analyse the outcome this a scenario

in our ceremony).

Note that for the self method, there is an additional device-device channel which

exists between the two running applications in the ceremony: WhatsApp and SMS

app. For this channel, we assume an N attacker in our analysis. We assume the same

attacker capabilities (N) for the DDSMSC as well. All of these different registration

methods and channels give us different scenarios where we can analyse the ceremony

outcomes and the relevance of the SMS mechanism used.

5.5.2 Informal Analysis

In our informal analysis of the WhatsApp registration ceremony, we consider the three

registration methods discussed earlier. This gives us four different scenarios given some

variations on the threat model:

i) In this setting, we assume a naive implementation of the registration of the pro-

tocol, where no SMS verification is used. That is, the WhatsApp software sends

the phone number (received from the user or automatically detected) to the server

which confirms the registration. Therefore, there is a maximum of two channels

in use in this ceremony. In the case of the user entering the phone number, we

have a HD channel where the attacker may be capable of eavesdropping (E). If

the phone number is automatically detected, the HD channel does not exist. For

the DD channel we assume a DY and an I attacker.

ii) This scenario assumes the use of the self method. In the first setting, we assume

a DY attacker for the DD channel, and no attackers (N) for all the remaining

communication channels.

iii) In this scenario we change the method to sms. In this setting, we assume a DY

attacker for the DD channel, N attacker for the DDSMS channel, and N for both

HD channels.

120

5.5. WhatsApp Registration Ceremony

iv) Next, we assume a similar setting to the one we have in iii, but we change the

attacker on both HD channels to E.

The ceremony for the scenario i, is obviously flawed. Anyone who knows the victim’s

phone number can perform the registration impersonating the victim. If the user is

asked to insert the phone number, the impersonation attack is very straightforward.

There is no need to modify any channel or agent’s behaviour. The attacker would simply

initiate communication with the server by using his I capability and send the victim’s

phone number. In practice, an attacker would simply enter the victim’s phone number

in to the device he possesses and would successfully register an account. However,

if the number is detected automatically by the operating system, which is possible

in Android but not in iOS, the security would be reduced to operating system (OS)

security. This second variation is more reliable than the first, but it is still flawed. To

succeed, the attacker would need to corrupt the OS or the application to give himself

the I capability and send the phone number he desires instead of the correct one. The

attacker does not need to attack the victim’s device, he only needs to corrupt any

device he possesses.

The next scenario, ii, consists of a more realistic setting. In this case, SMS messages

are used to validate the ownership of the phone number using the self method, as

shown in Figure 5.15. This method is relatively similar to the sms method presented

earlier. The main change is that now the PIN is sent back to the device along with

the NumberReceived message. Additionally, the SMS containing the PIN is no longer

sent by the server. Instead, the device sends an SMS to its own number in order to

validate the ownership of the phone number. The method is inherently flawed since the

PIN is sent back to the client without any validation of the ownership of the number.

The authentication method via PIN using the SMS message is of no use since the

client already knows the PIN value.

The attack we found in the scenario ii is very straightforward. The attacker simply

initiates a communication with the server using the DD channel sending the victim’s

phone number. The server replies with the confirmation message and the PIN . At this

point, the attacker has all the information necessary to perform the attack. Despite the

fact that SSL/TLS is used, the attacker initiates the SSL/TLS session with the server,

meaning that all the messages are exchanged between the attacker and the server. In

this case, the use of SSL/TLS would only be of benefit if the attacker had only E or

N capabilities on the channel, which is not realistic. In this case, the attacker would

not be able to read the PIN value, since it would be encrypted due to the SSL/TLS

session between the client and the server. However, the attack we presented does not

require the user to be engaged in a registration session. The attacker could perform

121

5.5. WhatsApp Registration Ceremony

the whole registration ceremony by himself (similarly to the attack discussed in Section

2.4.2.1). Note that this attack would work even considering weaker variations of the

attacker model. An I attacker on the DD channel would already be powerful enough

to be able to deploy the same attack. Thus, it is clear that the self method should be

avoided by all means (although it is still available in the latest version) since it leaks

the PIN prior to the verification of the ownership of the number.

In the Figure 5.15, we presented the case where the user has to type the PIN in

to the WhatsApp application. However, there is another possible sequence of actions.

The application could monitor the SMS application for incoming messages and auto-

matically read the contents of the SMS when it is received. It is not possible in iOS,

but it is possible in Android. However, the attack discussed above would still work,

since the WhatsApp application would be installed on the attacker’s device and the

sequence of sending/receiving the SMS is not relevant because the attacker already

knows the PIN at this point.

For the sms method, the WhatsApp developers/designers probably assumed that

the use of SSL/TLS would imply an N threat model for the DD channels. The phone

number is considered public, hence the need for an SMS to verify the ownership of

the number. As opposed to the self method, this method would require the attacker

to obtain the PIN code that would be sent to the victim’s device. As long as the

attacker does not control the DDSMS channel, there is no other way to obtain the

PIN code apart from obtaining it from the victim’s device. Thus, when changing

the authentication method to sms, an important change in the ceremony happens.

Now, assuming a SSL/TLS connection between the victim’s device and the server, the

only point where the attacker can learn the PIN value is by eavesdropping one of the

HD channels between the user and the SMS application or between the user and the

WhatsApp application.

In scenario iii, the attacker, despite having full control of the DD channel, does not

have any capability on the other channels and therefore cannot learn the PIN at any

point, being unable to confirm his registration. Note that even though the attacker

has full control over the DD channel, he will not be able to read the PIN sent by the

WhatsApp application to the server on this channel because it is encrypted using an

SSL/TLS connection. Additionally, the attacker cannot impersonate the server to the

WhatsApp application and act as a man-in-the-middle, since SSL/TLS provides server

authentication.

However, in scenario iv, the attacker has eavesdropping capabilities on the HD

channels. In practice, this could happen in the case where the attacker is near the

victim’s device, being able to see its screen. A realistic example could be the case

122

5.5. WhatsApp Registration Ceremony

where the victim’s device is left on a desk during a meeting or a class without its owner

paying much attention to it. The attacker could then launch the attack by engaging in

a registration process using the victim’s phone number. When the SMS is sent to the

user’s device, the attacker would just need to read the PIN code that would appear

on the victim’s display. By using this code, the attacker would be able to register an

account impersonating the victim. In this attack, the legitimate user could notice an

unexpected SMS being received, but cannot be sure whether this is used as part of an

attack or not. In this case, the use of an SSL/TLS connection on the DD channel does

not stop the attack from happening. The SSL/TLS connection would be established

using the attacker’s device. The WhatsApp application on the victim’s device is not

used during this attack since the attacker initiates the registration process.

5.5.3 Formal Analysis

In our formal model of the WhatsApp registration ceremonies we implemented similar

scenarios to those we have seen in the informal analysis. Our implementation of these

scenarios used similar mechanisms to those we discussed in Sections 5.3.3 and 5.4.3,

with the main focus on modelling authentication, which is the most relevant part of

this ceremony.

We modelled in ProVerif each one of the scenarios presented in Section 5.5.2. There

is a limitation however. ProVerif does not support multiple variations of the attacker

model, which does not allow us to model an I-only attacker. In fact, as we presented

in Section 5.3.3, we had to use an implementation trick to be able to use DY , E and

N in the same ceremony implementation. The results, however, were not affected by

this limitation, as we will see in this section.

In the sms method implementation, we had to change an additional configuration

setting. We changed the directive ignoreTypes to false, to force the ceremony to

respect the type system. The reason for this change is that the verification had problems

because the types defined for PIN and for phone numbers were not being respected,

although they were different. When that happened, termination problems occurred

because an attacker could send a phone number as a PIN and vice-versa, which does

not happen in practice. The side-effect of this change, is that the analysis can possibly

find fewer attacks. To prevent this from happening, we carefully analysed the trace

before making the change. The previous trace only pointed to the problem we described,

so the impact of this change in this scenario is not likely to be a problem.

For scenario i, the attack trace presents an attacker sending a phone number to the

server, and receiving the confirmation back. This is similar to the attack we informally

discussed in Section 5.5.2 for the same scenario.

123

5.5. WhatsApp Registration Ceremony

In scenario ii, the same attack presented in Section 5.5.2 was found. The attack

trace presented in ProVerif in this case is very simple. It describes the attacker sending a

phone number to the server using the DD channel and receiving the message containing

NumberReceived and PIN back. By having the PIN , the attacker then sends it to

the server using the DD channel and the attack is completed. As the attack trace

shows, only the attacker, the server S and the DD channel are used for this attack

to succeed. The SMS and the other agents in the protocol are not even used in the

attack. Therefore, all the other agents and channels in the self method just add more

complexity to the ceremony without bringing any additional features or gains.

Moving to the sms method implementation, similar results to those discussed in

Section 5.5.2 were found. First, for scenario iii, no attacks were found, since the attacker

controls the DD channel but cannot obtain the PIN to perform the impersonation at-

tack because the PIN value is protected by the SSL/TLS connection. For the scenario

iv, we added eavesdropping capabilities on the HD channels for the attacker to simu-

late the case where the attacker is near the victim’s device, being able to see its display.

The attack trace is presented in Figure 5.17. In the attack found by ProVerif, similarly

to the attack we described in Section 5.5.2, the attacker starts a registration process

by sending a phone number on the DD channel to the server S. The server sends

the PIN to the victim’s device using the DDSMS channel. The SMSApp then sends

(displays) the PIN to the human using the HDAM channel. Since the attacker is able

to eavesdrop the HDAM channel, which is represented in the trace by the replication

of the message sent on the eavesdrop channel we implemented, the attacker learns the

PIN . With the possession of the PIN value, the attacker completes the registration,

and therefore the impersonation attack, by sending the PIN he eavesdropped, in to

the server S.

Implementing a ceremony that models the properties provided by the SSL/TLS

protocol was tricky. If we do not assume an SSL/TLS connection, a MITM attack

is possible. The attacker would simply intercept all the messages between the victim

and the server, and forward the same messages to the server. In the end, the attacker

would complete the registration with the server using the victim’s details, and therefore

perform an impersonation attack. Since an SSL/TLS connection prevents this type of

attack from happening, and provides confidentiality of the messages exchanged, we

modelled authentication in a form that we can verify if a PIN received by the server

(S) (modelled as an event in Proverif) was preceded by a PIN sent by the WhatsApp

application AW . By doing this, we can still detect attacks where the attacker initiates

a registration process with the server (as the attack found in scenario iv), but we do

not ‘allow’ the attacker to perform a MITM attack or read the PIN sent by the victim

124

5.6. Gains by Analysing Security Ceremonies

WhatsApp
App

SMS
App Server S

Human A Attacker

PhoneNumber

Generate PIN

PINPIN(eavesdropped)

PIN

Verify if PIN
values match

RegistrationConfirmation

Figure 5.17: Sequence diagram of the attack on the WhatsApp registration ceremony
using the sms method

through the DD channel.

5.6 Gains by Analysing Security Ceremonies

As we could see in the analysis we performed in this Chapter, as well as in the contents

discussed throughout this thesis, the most important gains we obtain by extending

protocol design and analysis to ceremonies are:

Realistic analysis – Ceremony analysis implies considering the security problem from

practical point of view and in its context of use. Although every change in context

implies different ceremonies and additional analysis, the level of accuracy of the

results is very high, as the description of the actions are significantly closer to

the practical use when compared to traditional protocol descriptions.

Better usability – By having more details of practical aspects, such as user inter-

action, messages sent and displayed to users and/or exchanged among users, it

is easier to perceive how a ceremony would work in practice and consequently

how usable it is. By not overstating the attacker’s capabilities by assuming an

excessively-pessimistic threat model, we prevent the protocol/ceremony designer

from adding (unnecessary) features that could imply non-plausible assumptions

and/or degraded usability.

125

5.6. Gains by Analysing Security Ceremonies

Earlier problem detection – Ceremonies are likely to improve the detection of se-

curity problems during design phases. Since the level of detail is higher, and

the assumptions are more accurate and less numerous, it is likely to be easier to

detect security problems during the design process. A good example is the PIN

issues we discussed in Bluetooth’s legacy pairing and with the self method in

the WhatsApp registration.

Better assumptions – Assumptions, which previously provided relatively static in-

put to protocol design, are now a more explicit part of the model. This allows a

more detailed analysis of their influence on the ceremony’s security goals. As an

example, in the Bluetooth SSP we moved user interaction from an assumption to

a more explicit exchange of messages with smaller assumptions. Therefore, we

were able analyse different scenarios that covered variations of the user behaviour

and examine the outcomes. Such differences allow for a better understanding of

the impacts in case an assumption does not hold, and may also (although it is

very subjective) help the designer to further rationalise about the assumptions

made regarding the human peer.

Prediction of the impacts of user misbehaviour – Due to the explicit inclusion

of user agents, we can now verify what happens in a ceremony if a user misbehaves,

as we did in the Bluetooth SSP analysis. We were able to analyse the impacts

of one peer misbehaving in a ceremony as well as the case where two or more

peers do not perform their tasks as expected. The changes to the threat model

we propose allows a systematic variation of the agent’s behaviour and a proper

measurement of its impact.

Prediction of the impacts of any agent’s misbehaviour – In addition to the pos-

sibility of analysing user’s misbehaviour, we can verify the impacts, in a ceremony,

of any agent’s misbehaviour. In the SSP ceremony, we demonstrated this feature

by modifying the threat model of the HD channels during the pairing process.

Training users to recognise threats – In some scenarios, adaptive threat models

may lead users to be able to detect different threat models for those situations. By

executing similar ceremonies which are adapted to run under different (realistic)

threat models, users may start to notice the different surrounding threats they

are subject to. For example, in Bluetooth SSP pairing, an automatic transition

between pairing modes according to the surrounding environment could be used

as part of the ceremony. The ceremony could enforce the pairing mode to be used

by taking into account, for example, whether there are more Bluetooth enabled

126

5.7. Summary

devices around before allowing pairing under the just works mode. If there is

more than one, the just works mode should not be available since the weakened

threat model requires that. If only one device is found, the just works mode could

be used securely, since it respects the threat model specified for its use.

Reducing the gap between protocol and HCI communities - By including user

interaction in the specification, and analysing such an interaction considering in-

herent human characteristics and capabilities, we essentially make use of existing

knowledge, methods and techniques of two different research areas to achieve a

common goal. The findings of such an approach can potentially provide cues for

taking research in these areas even further.

5.7 Summary

The findings we obtained from analysing Bluetooth’s legacy pairing ceremony are rel-

evant for several reasons. They demonstrate an inaccurate assumption that was made

at the design phase of the protocol. Assuming that threats were only existent on the

device-device channel is not consistent with the scenarios where the protocol would

take place in practice. This may have happened due to the inherent idea of threat

modelling in protocols where the threats are only assumed to exist on the network

channel. However, protocols such as legacy pairing involve more than just networked

communication. Attacks found on the protocol corroborates this. In fact, if the pos-

sibility of an attacker eavesdropping the human-device or human-human channel was

considered at the design phase, it would be straightforward to notice that the whole

security of the protocol relies on the PIN in the first place. As a result, attacks similar

to those we discussed could have been found and solved at the design or analysis phase.

Similarly, in the analysis of Bluetooth’s SSP ceremony, we found that although the

protocol can be considered secure, in practice it is likely to be susceptible to attacks.

The assumptions made regarding the human agent and its behaviour are not realistic

and do not consider several of the human characteristics we discussed in Chapter 3. We

have shown that if the user behaves according to what was assumed, the ceremony is

safe. However, there is a high probability that the users do not behave in the expected

way, and eventually make errors. Such a probability is even likely to increase over time.

To fix this problem we proposed a change in the pairing mechanism which uses a forcing

function and maintains the safety of the ceremony even in the case of a user making

an inappropriate interaction. Our amended version respects the taxonomy presented

in Chapter 3 and follows the proposed recommendations.

For the WhatsApp registration ceremony, we analysed several variants of the au-

127

5.7. Summary

thentication mechanisms and threat models. Similarly to the Bluetooth SSP ceremony,

where an authentication message is exchanged via an alternative channel, the What-

sApp registration ceremony also makes use of alternative channels for authentication.

One relevant difference is that the SSP ceremony achieves the claimed properties even

in the case of an attacker being able to eavesdrop the HD channels, while the What-

sApp ceremony does not. In order to achieve the claimed properties, the WhatsApp

ceremony limits the attacker capabilities on the DD channel by using an SSL/TLS con-

nection and assumes that the attacker is not capable of performing any action on all

remaining communication channels. However, this change in the DD channel demon-

strates how difficult composability of security protocols may be. By assuming that

the channel was authenticated and confidential (properties provided by SSL/TLS), the

designers made several mistakes, such as sending the PIN on this channel right after

receiving a phone number, without verifying the ownership of the number first. This

allows strong impersonation attacks even in the case where the victim is not actively

engaged in registering for the service. For the HD channels, the assumption that the

attacker cannot eavesdrop this channel has also proven to be inaccurate in practice, as

we demonstrated in our analysis.

Another interesting point raised by the ceremony analysis we performed through-

out this chapter was the systematic variation and analysis of scenarios. This gave us

interesting insights about the attacks we knew and/or found. Such an approach is

interesting for ceremonies, since they allow us to fine-tune the threat model according

to the results of the analysis and confirm whether the attack found is realistic or not.

Finally, it was interesting to note the importance of the taxonomy and design

recommendations we presented in Chapter 3. We found that even when no attacks

were initially found in our analysis, the assumptions regarding the user behaviour need

to be carefully analysed. As we demonstrated in the analysis, inaccurate assumptions

may lead to security flaws in the ceremony.

128

Chapter 6

Conclusions and Future Work

In this thesis we investigated and studied the benefits of designing and analysing se-

curity protocols from an extended point of view. We discussed the topic of security

ceremonies and their components from different perspectives and presented examples of

how a multidisciplinary approach could be beneficial to minimising security problems

we frequently experience when protocols are used in real-world scenarios.

Security protocols have been actively researched over the last few decades. Methods

and techniques to verify whether the claimed security properties are achieved have also

been the focus of intensive research. Similarly, but for a slightly shorter period, human-

computer interaction has also been the focus of active research. Despite their different

nature, they are both very relevant to real word scenarios where secure communication

is required. The design and analysis of security ceremonies can benefit from the existing

knowledge, methods and tools from both fields. The existing gap between these two

relevant research areas is narrowed when we use security ceremonies.

As we discussed throughout this thesis, knowing human capabilities and limita-

tions, as we presented in Chapter 3, is important in order to not overestimate the

expectations around the human peer in a ceremony. This also helps us to understand

why some protocols fail in practice and teaches us how to avoid such problems in the

future. Simply stating that the human is the weakest link does not improve security

or make existing security problems less relevant. Understanding the reasons why such

user interactions may have caused a security flaw and developing mechanisms that are

usable, feasible and respect inherent human characteristics is challenging, but must

always be done. The design of a human interaction should be revised if it violates the

recommendations we proposed, or does not consider the components we presented.

Ceremonies, as well as protocols, are developed to support human demands for secu-

rity solutions. An important difference, however, is that security ceremonies explicitly

129

6.1. Future Work

include the human components at the design and analysis phases. The framework we

presented in Chapter 4 allows such a description and discusses how the definition of

a realistic threat model is important to produce a ceremony that achieves its security

goals and is, at the same time, usable. The framework presented makes use of the

existing models for security protocols and extends them to encompass ceremony needs.

The examples we analysed in Chapter 5 are very interesting for several reasons.

They clearly show the difference between ceremony and protocol analysis. From the

granularity of the assumptions involved to the additional number of agents, channels

and messages exchanged, we were able to discuss in detail the gains of analysing cer-

emonies. We presented scenarios where practical security problems could have been

found at the design phase. We also demonstrated how reasoning about a realistic threat

model can be performed and how the analysis of the possible outcomes is relevant. Not

all of the attacks found were plausible in practice, but just the fact that we could iden-

tify a possible breach is enough to provide clues to how a ceremony could be improved

if necessary.

We demonstrated that existing protocol verification tools and methods can be

adapted to mechanically analyse security ceremonies. Another interesting contribu-

tion was the systematic variation of the threat model and its impact on the analysis

of the ceremonies presented. Such an approach can be used for any ceremony and

allows a ceremony designer to fine-tune the threat model. By checking the analysis re-

sults and verifying whether the attack found is realistic or not, a more accurate threat

model can be defined for a ceremony while the threat model stays realistic. Finally, it

was interesting to note how the application of the ceremony design and analysis cycle

presented in Section 5.2 is important. Some ceremonies that were initially considered

secure can have security flaws in practice because they would not accurately consider

the capabilities of the human node.

6.1 Future Work

There are several avenues of research that we believe would be interesting to investigate

further. The first, is to increase the number of analysed ceremonies. New scenarios, new

interaction types, and analysis of ceremonies that achieve different security goals will

surely enrich the coverage we currently have. This would allow further evaluation and

refinements of the proposed framework and the human-protocol interaction taxonomy

and recommendations.

An interesting type of ceremony to be analysed is a ceremony that includes humans

making use of constrained devices, such as one-time-password generators. These devices

130

6.1. Future Work

are widely used in several real-world scenarios, ranging from ATM systems to web

authentication. They cannot be modelled as computers or human agents. They are

different types of agents in a protocol and therefore are likely to be exposed to a

different threat model as well. Another characteristic that is likely to be interesting

from a ceremony perspective is modelling the possession of such a device.

Other ceremonies include SSL/TLS implementation in web browsers. One ceremony

that still lacks good usability and user interaction is the SSL/TLS handshake ceremony

in web browsers. The dynamic acceptance of new and/or unknown digital certificates

presented by the server in the handshake is clearly a burden for the users. Assuming

that users can handle this task is certainly a flaw and deserves more attention.

A good starting point to approach the problem from a ceremony-based perspective

is presented by Gajek [49, 50] et al. and further investigated by Radke et al. [81]. It

would be interesting to further analyse the suggestions made by Radke et al. as well

as trying different human-server authentication mechanisms, possibly using alternative

(authenticated) channels.

All of these different scenarios, along with some user-based experiments are likely

to provide interesting outcomes and would help us to further evaluate and refine our

framework, as well as verify and improve the human-protocol interaction taxonomy

and the set of design recommendations.

It is also worth investigating and elaborating a set of human strengths that can

be exploited by the ceremony designers. We briefly mentioned that users are good at

authenticating people they know. Other human strengths may include unstructured

problem-solving (i.e. solving for problems in which there are no existing rules to solve),

acquiring and processing new information (e.g. deciding what is relevant in a new

discover), among others. Such a list of strengths could be of great use when design a

user interaction.

Another point that can be investigated further is the specification and implementa-

tion of the adaptive threat model we proposed in Chapter 4 in the existing verification

methods and tools for security protocols. This would allow these existing methods and

tools, such as ProVerif, to provide better and extended support for security ceremonies.

In Chapter 5, we demonstrated and implemented mechanisms that allowed us to tailor

the set of attacker capabilities for each ceremony and adjust them to be more real-

istic. However, in our analysis, we were limited to a small set of capabilities (as we

discussed in Section 5.5.3) that we were able to implement using the tools as they cur-

rently are. Additional attacker variations to support a wider range of capabilities are

worth studying and implementing. These implementations would definitely allow for

better automated testing and provide support for designing a wider range of security

131

ceremonies.

The contextual coverage that ceremonies bring to security protocols is worth inves-

tigating further. This can give us better insights into the problem of protocol com-

posability. The composability problem normally happens because of clashes among

assumptions that are embedded in protocols. By being able to model more details of

the environment, we may now have more tools to predict what happens when two pro-

tocols, which are designed focusing on their own respective environments, are put to

work together. As we could see in the WhatsApp ceremonies we analysed in Chapter

5.5, just putting two protocols together does not necessarily mean that the proper-

ties that each protocol individually provides will be provided when the protocols are

used together. The assumption that an attacker could not eavesdrop the PIN code

sent by the server to the user’s device in the WhatsApp ceremony demonstrates that.

Although the SSL/TLS protocol provides confidentiality, when the protocol was put

together with another, the confidentiality property of the information sent through the

SSL/TLS channel was no longer achieved.

Finally, it would be interesting to investigate how ceremony analysis copes with

social engineering attacks. By being able to model human nodes and the exchange

of messages between humans, and between humans and devices, we may be able to

analyse the impacts of an attacker manipulating a human peer and investigate possible

solutions.

132

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi

calculus. In Proceedings of the 4th ACM conference on Computer and communi-

cations security, CCS ’97, pages 36–47, New York, NY, USA, 1997. ACM.

[2] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the

spi calculus. In Proceedings of the 8th International Conference on Concurrency

Theory, CONCUR ’97, pages 59–73, London, UK, UK, 1997. Springer-Verlag.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-

putational soundness of formal encryption). In Proceedings of the International

Conference IFIP on Theoretical Computer Science, Exploring New Frontiers of

Theoretical Informatics, TCS ’00, pages 3–22, London, UK, UK, 2000. Springer-

Verlag.

[4] A. Adams and M. A. Sasse. Users are not the enemy. Communications of the

ACM, 42:40–46, Dec. 1999.

[5] R. D. Alexander. The evolution of social behavior. Annual Review of Ecology

and Systematics, 5:325–383, 1974.

[6] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley Publishing, 2 edition, 2008.

[7] R. Anderson and R. Needham. Programming satan’s computer. In J. Leeuwen,

editor, Computer Science Today, volume 1000 of Lecture Notes in Computer

Science, pages 426–440. Springer Berlin Heidelberg, 1995.

[8] W. Arsac, G. Bella, X. Chantry, and L. Compagna. Validating security protocols

under the general attacker. In P. Degano and L. Viganò, editors, Foundations

and Applications of Security Analysis, volume 5511 of Lecture Notes in Computer

Science, pages 34–51. Springer Berlin / Heidelberg, 2009.

133

[9] W. Arsac, G. Bella, X. Chantry, and L. Compagna. Multi-attacker protocol

validation. Journal of Automated Reasoning, 46(3-4):353–388, Apr. 2011.

[10] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In

Security and Privacy, 2005 IEEE Symposium on, pages 171–182, 2005.

[11] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talking to strangers:

Authentication in ad-hoc wireless networks. In Proceedings of the 2002 Network

and Distributed Systems Security Symposium, NDSS’02, San Diego, CA, feb 2002.

[12] G. Bella. Formal Correctness of Security Protocols. Information Security and

Cryptography. Springer Berlin Heidelberg, New York, 2007.

[13] G. Bella. The rational attacker. Invited talk at SAP Research France, Sophia An-

tipolis (http://www.dmi.unict.it/ giamp/Seminars/rationalattackerSAP08.pdf),

2008.

[14] G. Bella, S. Bistarelli, and F. Massacci. Retaliation: Can we live with flaws?

In J. Thomas and M. Essaaidi, editors, Information Assurance and Computer

Security, volume 6 of NATO Security through Science, chapter 1, page 266. IOS

Press, Nov. 2006.

[15] G. Bella and L. Coles-Kemp. Layered analysis of security ceremonies. In

D. Gritzalis, S. Furnell, and M. Theoharidou, editors, Information Security and

Privacy Research, volume 376 of IFIP Advances in Information and Communi-

cation Technology, pages 273–286. Springer Berlin Heidelberg, 2012.

[16] G. Bella, C. Longo, and L. C. Paulson. Is the verification problem for crypto-

graphic protocols solved? In Proceedings of the 11th international conference on

Security Protocols, pages 183–189, Berlin, Heidelberg, 2005. Springer-Verlag.

[17] M. Bellare and P. Rogaway. Entity authentication and key distribution. In

D. Stinson, editor, Advances in Cryptology – CRYPTO’ 93, volume 773 of Lecture

Notes in Computer Science, pages 232–249. Springer Berlin / Heidelberg, 1994.

[18] S. M. Bellovin and M. Merritt. Limitations of the kerberos authentication system.

ACM SIGCOMM Computer Communication Review, 20:119–132, Oct. 1990.

[19] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules.

In Proceedings of the 14th IEEE workshop on Computer Security Foundations,

number 82–96 in CSFW ’01, Washington, DC, USA, 2001. IEEE Computer So-

ciety.

134

[20] B. Blanchet, B. Smyth, and V. Cheval. ProVerif 1.88: Automatic Cryptographic

Protocol Verifier, User Manual and Tutorial. INRIA Paris-Rocquencourt, LSV,

ENS Cachan & CNRS & INRIA Saclay IIle-de-France, Paris, France, Aug. 2013.

[21] Bluetooth Special Interest Group. Specification of bluetooth system version 1.0a,

Dec. 1999.

[22] Bluetooth Special Interest Group. Specification of bluetooth system version 1.2,

Nov. 2003.

[23] Bluetooth Special Interest Group. Specification of bluetooth system version 2.0

+ EDR, Nov. 2004.

[24] Bluetooth Special Interest Group. Simple pairing whitepaper v10r00. Technical

report, Bluetooth Special Interest Group, Aug. 2006.

[25] Bluetooth Special Interest Group. Bluetooth specification version 2.1 + EDR,

July 2007.

[26] S. Brostoff and M. A. Sasse. “ten strikes and you’re out”: Increasing the number

of login attempts can improve password usability. In Proceedings of CHI 2003

Workshop on HCI and Security Systems. John Wiley, Apr. 2003.

[27] V. Bruce, Z. Henderson, K. Greenwood, P. J. B. Hancock, A. M. Burton, and

P. Miller. Verification of face identities from images captured on video. Journal

of Experimental Psychology: Applied, 5(4):339 – 360, 1999.

[28] J. C. Brustoloni and R. Villamaŕın-Salomón. Improving security decisions with

polymorphic and audited dialogs. In Proceedings of the 3rd symposium on Usable

privacy and security, SOUPS ’07, pages 76–85, New York, NY, USA, 2007. ACM.

[29] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proc of the

Royal Society of London, 426(1871):233–271, 1989.

[30] M. Ĉagalj, S. Ĉapkun, and J.-P. Hubaux. Key agreement in peer-to-peer wireless

networks. Proceedings of the IEEE, 94(2):467–478, 2006.

[31] M. C. Carlos, J. Martina, G. Price, and R. F. Custodio. An updated threat model

for security ceremonies. In Proceedings of the 28th Annual ACM Symposium on

Applied Computing, SAC ’13, pages 1836–1843, New York, NY, USA, Mar. 2013.

ACM.

135

[32] M. C. Carlos, J. E. Martina, G. Price, and R. F. Custodio. A proposed framework

for analysing security ceremonies. In P. Samarati, W. Lou, and J. Zhou, editors,

Proceedings of the 7th International Conference on Security and Cryptography,

SECRYPT 12, pages 440–445. SciTePress, July 2012.

[33] M. C. Carlos and G. Price. Understanding the weaknesses of human-protocol

interaction. In Proceedings of the 16th international conference on Financial

Cryptography and Data Security, FC’12, pages 13–26, Berlin, Heidelberg, Mar.

2012. Springer-Verlag.

[34] R. Chang and V. Shmatikov. Formal analysis of authentication in bluetooth

device pairing. In P. Degano, R. Kusters, L. Vigano, and S. Zdancewic, edi-

tors, Foundations of Computer Security and Automated Reasoning for Security

Protocol Analysis, FCS-ARSPA’07, July 2007.

[35] L. F. Cranor. A framework for reasoning about the human in the loop. In

Proceedings of the 1st Conference on Usability, Psychology, and Security, pages

1–15, Berkeley, CA, USA, 2008. USENIX Association.

[36] S. Creese, M. Goldsmith, A. W. Roscoe, and I.Zakiuddin. The attacker in ubiq-

uitous computing environments: formalising the threat model. In Proceedings of

FAST 2003, Pisa, 2003.

[37] C. J. F. Cremers. Scyther - Semantics and Verification of Security Protocols.

Ph.D. dissertation, Eindhoven University of Technology, 2006.

[38] R. Dhamija and A. Perrig. Déjà vu: a user study using images for authentication.

In Proceedings of the 9th conference on USENIX Security Symposium - Volume

9, SSYM’00, pages 4–4, Berkeley, CA, USA, 2000. USENIX Association.

[39] R. Dhamija and J. D. Tygar. The battle against phishing: Dynamic security

skins. In Proceedings of the 2005 Symposium on Usable Privacy and Security,

SOUPS ’05, pages 77–88, New York, NY, USA, 2005. ACM.

[40] R. Dhamija and J. D. Tygar. Phish and hips: Human interactive proofs to detect

phishing attacks. In H. Baird and D. Lopresti, editors, Human Interactive Proofs,

volume 3517 of Lecture Notes in Computer Science, pages 69–83. Springer Berlin

/ Heidelberg, 2005.

[41] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings of

the SIGCHI conference on Human Factors in computing systems, CHI ’06, pages

581–590, New York, NY, USA, 2006. ACM.

136

[42] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.2. RFC 5246 (Standards Track), Aug. 2008.

[43] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, 29(2):198–208, Mar. 1983.

[44] J. S. Downs, M. B. Holbrook, and L. F. Cranor. Decision strategies and suscep-

tibility to phishing. In Proceedings of the second symposium on Usable privacy

and security, SOUPS ’06, pages 79–90, New York, NY, USA, 2006. ACM.

[45] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned: an empirical study

of the effectiveness of web browser phishing warnings. In Proceeding of the twenty-

sixth annual SIGCHI conference on Human factors in computing systems, CHI

’08, pages 1065–1074, New York, NY, USA, 2008. ACM.

[46] C. Ellison. UPnP security ceremonies design document. Technical report, UPnP

Forum, Oct. 2003.

[47] C. Ellison. Ceremony Design and Analysis. Cryptology ePrint Archive, Report

2007/399, Oct. 2007.

[48] M. L. Finucane, A. Alhakami, P. Slovic, and S. M. Johnson. The affect heuristic in

judgments of risks and benefits. Journal of Behavioral Decision Making, 13(1):1–

17, 2000.

[49] S. Gajek, M. Manulis, A.-R. Sadeghi, and J. Schwenk. Provably secure browser-

based user-aware mutual authentication over tls. In Proceedings of the 2008 ACM

symposium on Information, computer and communications security, ASIACCS

’08, pages 300–311, New York, NY, USA, 2008. ACM.

[50] S. Gajek, M. Manulis, and J. Schwenk. User-aware provably secure protocols for

browser-based mutual authentication. Int. J. Appl. Cryptol., 1(4):290–308, Aug.

2009.

[51] K. Haataja and P. Toivanen. Practical man-in-the-middle attacks against blue-

tooth secure simple pairing. In 4th International Conference on Wireless Com-

munications, Networking and Mobile Computing, WiCOM ’08, pages 1–5, oct

2008.

[52] L. D. Harmon and B. Julesz. Masking in visual recognition: Effects of two-

dimensional filtered noise. Science, 180(4091):1194–1197, 1973.

137

[53] C. Herley. So long, and no thanks for the externalities: the rational rejection of

security advice by users. In Proceedings of the 2009 workshop on New security

paradigms workshop, NSPW ’09, pages 133–144, New York, NY, USA, 2009.

ACM.

[54] J.-H. Hoepman. The ephemeral pairing problem. In A. Juels, editor, Financial

Cryptography, volume 3110 of Lecture Notes in Computer Science, pages 212–226.

Springer Berlin Heidelberg, 2004.

[55] P. G. Inglesant and M. A. Sasse. The true cost of unusable password policies:

password use in the wild. In Proceedings of the 28th international conference on

Human factors in computing systems, CHI ’10, pages 383–392, New York, NY,

USA, 2010. ACM.

[56] M. Jakobsson. The human factor in phishing. In Privacy & Security of Consumer

Information ’07, 2007.

[57] M. Jakobsson and S. Wetzel. Security weaknesses in bluetooth. In D. Naccache,

editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in

Computer Science, pages 176–191. Springer Berlin / Heidelberg, 2001.

[58] R. Kainda, I. Flechais, and A. W. Roscoe. Usability and security of out-of-band

channels in secure device pairing protocols. In Proceedings of the 5th Symposium

on Usable Privacy and Security, SOUPS ’09, pages 11:1–11:12, New York, NY,

USA, 2009. ACM.

[59] C. Karlof, J. Tygar, and D. Wagner. Conditioned-safe ceremonies and a user

study of an application to web authentication. In Sixteenth Annual Network and

Distributed Systems Security Symposium, NDSS 2009, Feb. 2009.

[60] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, and

T. Pham. School of phish: a real-world evaluation of anti-phishing training. In

Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS ’09,

pages 3:1–3:12, New York, NY, USA, 2009. ACM.

[61] A. Kurtz. Shooting the messenger. World Wide Web electronic publication.

Retrieved August 25, 2013 from: http://www.andreas-kurtz.de/2011/09/

shooting-messenger.html, Sept. 2011.

[62] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using

fdr. In Proceedings of the Second International Workshop on Tools and Algorithms

138

http://www.andreas-kurtz.de/2011/09/shooting-messenger.html
http://www.andreas-kurtz.de/2011/09/shooting-messenger.html

for Construction and Analysis of Systems, TACAs ’96, pages 147–166, London,

UK, UK, 1996. Springer-Verlag.

[63] M. Marlinspik. More tricks for defeating SSL in practice. In BlackHat USA

Briefings, Las Vegas, NV, July 2009.

[64] M. Marlinspik. New tricks for defeating SSL in practice. In BlackHat Europe

Briefings, Amsterdam, Apr. 2009.

[65] M. Marlinspike. SSLSniff version 0.8. http://www.thoughtcrime.org/

software/sslsniff/, July 2011.

[66] J. E. Martina and M. C. Carlos. Why should we analyse security ceremonies?

First CryptoForma workshop, May 2010.

[67] J. L. Massey, G. H. Khachatrian, and M. K. Kuregian. Safer+. In Proceedings of

First Advanced Encryption Standard Candidate Conference. National Institute of

Standards and Technology (NIST), 1998.

[68] C. Meadows. Language generation and verification in the nrl protocol analyzer.

In Proceedings of the 9th IEEE workshop on Computer Security Foundations,

CSFW ’96, pages 48–, Washington, DC, USA, 1996. IEEE Computer Society.

[69] C. Meadows. Formal methods for cryptographic protocol analysis: emerging

issues and trends. Selected Areas in Communications, IEEE Journal on, 21(1):44–

54, 2003.

[70] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information

and computation, 100(1):1–40, Sept. 1992.

[71] R. M. Needham and M. D. Schroeder. Using encryption for authentication in

large networks of computers. Communications of ACM, 21(12):993–999, Dec.

1978.

[72] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. Internet x.509 public key

infrastructure certificate and certificate revocation list (crl) profile. RFC 4120

(Standards Track), July 2005.

[73] D. A. Norman. Design rules based on analyses of human error. Commun. ACM,

26:254–258, Apr. 1983.

[74] D. A. Norman. The design of everyday things. Basic Books, New York, NY,

USA, Aug. 2002.

139

http://www.thoughtcrime.org/software/sslsniff/
http://www.thoughtcrime.org/software/sslsniff/

[75] N. Olivarez-Giles. Whatsapp adds voice messaging as it hits 300 mil-

lion monthly active users. World Wide Web electronic publication. Re-

trieved August 25, 2013 from: http://www.theverge.com/2013/8/6/4595496/

whatsapp-300-million-active-users-voice-messaging-update, Aug. 2013.

[76] R. Oppliger and S. Gajek. Effective protection against phishing and web spoofing.

In J. Dittmann, S. Katzenbeisser, and A. Uhl, editors, Communications and

Multimedia Security, volume 3677 of Lecture Notes in Computer Science, pages

32–41. Springer Berlin / Heidelberg, 2005.

[77] G. Parker. Assessment strategy and the evolution of fighting behaviour. Journal

of Theoretical Biology, 47(1):223–243, 1974.

[78] L. C. Paulson. The inductive approach to verifying cryptographic protocols.

Journal Computer Security, 6(1-2):85–128, Jan. 1998.

[79] T. R. Peltier. Social engineering: Concepts and solutions. Information Systems

Security, 15(5):13–21, 2006.

[80] K. Radke, C. Boyd, J. Gonzalez Nieto, and M. Brereton. Ceremony analysis:

Strengths and weaknesses. In J. Camenisch, S. Fischer-Hübner, Y. Murayama,

A. Portmann, and C. Rieder, editors, Future Challenges in Security and Privacy

for Academia and Industry, volume 354 of IFIP Advances in Information and

Communication Technology, pages 104–115. Springer Berlin Heidelberg, 2011.

[81] K. Radke, C. Boyd, J. M. G. Nieto, and M. Brereton. Towards a secure human-

and-computer mutual authentication protocol. In Proceedings of the Tenth Aus-

tralasian Information Security Conference (AISC 2012), pages 39–46. Australian

Computer Society Inc, 2012.

[82] J. Reason. Understanding adverse events: human factors. Quality in Health Care,

4(2):80–89, 1995.

[83] R. Ruksenas, P. Curzon, and A. Blandford. Detecting cognitive causes of con-

fidentiality leaks. Electronic Notes in Theoretical Computer Science, 183:21–38,

2007. Proceedings of the First International Workshop on Formal Methods for

Interactive Systems (FMIS 2006).

[84] R. Ruksenas, P. Curzon, and A. Blandford. Modelling and analysing cognitive

causes of security breaches. Innovations in Systems and Software Engineering,

4:143–160, 2008.

140

http://www.theverge.com/2013/8/6/4595496/whatsapp-300-million-active-users-voice-messaging-update
http://www.theverge.com/2013/8/6/4595496/whatsapp-300-million-active-users-voice-messaging-update

[85] P. Ryan and S. Schneider. Modelling and analysis of security protocols. Addison

Wesley, 1 edition, 2001.

[86] J. Saltzer and M. Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 63(9):1278–1308, 1975.

[87] M. A. Sasse, S. Brostoff, and D. Weirich. Transforming the ’weakest link’ -

a human/computer interaction approach to usable and effective security. BT

Technology Journal, 19:122–131, July 2001.

[88] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. Emperor’s new security

indicators: An evaluation of website authentication and the effect of role playing

on usability studies. In In Proceedings of the 2007 IEEE Symposium on Security

and Privacy, SP ’07, pages 51–65. IEEE, May 2007.

[89] S. Schneider. Verifying authentication protocols in csp. Software Engineering,

IEEE Transactions on, 24(9):741–758, 1998.

[90] B. Schneier. Two-factor authentication: too little, too late. Commun. ACM,

48(4):136, Apr. 2005.

[91] S. Schrittwieser, P. Fruehwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M. Hu-

ber, and E. Weippl. Guess who is texting you? evaluating the security of smart-

phone messaging applications. In Network and Distributed System Security Sym-

posium (NDSS 2012), 2 2012.

[92] Y. Shaked and A. Wool. Cracking the bluetooth pin. In Proceedings of the 3rd

international conference on Mobile systems, applications, and services, MobiSys

’05, pages 39–50, New York, NY, USA, 2005. ACM.

[93] P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell. Face recognition by humans:

Nineteen results all computer vision researchers should know about. Proceedings

of the IEEE, 94(11):1948–1962, 2006.

[94] S. W. Smith. Humans in the loop: Human-computer interaction and security.

IEEE Security and Privacy, 1(3):75–79, May 2003.

[95] F. Stajano. The resurrecting duckling — what next? In B. Christianson, J. Mal-

colm, B. Crispo, and M. Roe, editors, Security Protocols, volume 2133 of Lecture

Notes in Computer Science, pages 204–214. Springer Berlin Heidelberg, 2001.

[96] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc

wireless networks. In Proceedings of the 7th International Workshop on Security

141

Protocols, number 1796 in Lecture Notes in Computer Science, pages 172–194,

Berlin, Heidelberg, 1999. Springer-Verlag.

[97] F. Stajano and R. Anderson. The resurrecting duckling: security issues for ubiq-

uitous computing. Computer, 35(4):22–26, Apr. 2002.

[98] F. Stajano and P. Wilson. Understanding scam victims: seven principles for

systems security. Technical Report 754, University of Cambridge, Aug. 2009.

[99] F. Stajano and P. Wilson. Understanding scam victims: seven principles for

systems security. Communications of the ACM, 54(3):70–75, Mar. 2011.

[100] L. Standing, J. Conezio, and R. N. Haber. Perception and memory for pictures:

Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19:73–74, 1970.

[101] J. M. Stanton, K. R. Stam, P. Mastrangelo, and J. Jolton. Analysis of end user

security behaviors. Computers & Security, 24(2):124 – 133, 2005.

[102] Team Venomous. WhatsAPI. https://github.com/venomous0x/WhatsAPI/

blob/master/README.md, July 2013.

[103] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing

methods. In Proceedings of the 11th International Conference on Financial cryp-

tography and 1st International conference on Usable Security, FC’07/USEC’07,

pages 307–324, Berlin, Heidelberg, 2007. Springer-Verlag.

[104] J. Valkonen, A. Toivonen, and K. Karvonen. Usability testing for secure device

pairing in home networks. In A. Bajart, H. Muller, and T. Strang, editors,

Proceedings of UbiComp 2007 Workshop, Sept. 2007.

[105] M. Vanhoef. Whatsapp considered insecure. World Wide Web electronic publi-

cation. Retrieved August 25, 2013 from: http://www.mathyvanhoef.com/2012/

05/whatsapp-considered-insecure.html, May 2012.

[106] S. Vaudenay. Secure communications over insecure channels based on short au-

thenticated strings. In V. Shoup, editor, Advances in Cryptology – CRYPTO

2005, volume 3621 of Lecture Notes in Computer Science, pages 309–326. Springer

Berlin Heidelberg, 2005.

[107] R. West. The psychology of security. Communications of the ACM, 51:34–40,

Apr. 2008.

142

https://github.com/venomous0x/WhatsAPI/blob/master/README.md
https://github.com/venomous0x/WhatsAPI/blob/master/README.md
http://www.mathyvanhoef.com/2012/05/whatsapp-considered-insecure.html
http://www.mathyvanhoef.com/2012/05/whatsapp-considered-insecure.html

[108] WhatsApp Inc. new daily record: 4b inbound, 6b outbound = 10b total messages

a day! World Wide Web electronic publication. Retrieved August 25, 2013 from:

https://twitter.com/WhatsApp/statuses/238680463139565568, Aug. 2012.

[109] WhatsApp Inc. new daily record: 10b+ msgs sent (inbound) and 17b+ msgs

received (outbound) by our users = 27 billion msgs handled in just 24 hours!

World Wide Web electronic publication. Retrieved August 25, 2013 from: https:

//twitter.com/WhatsApp/status/344966710241161216, June 2013.

[110] F. L. Wong and F. Stajano. Multichannel security protocols. IEEE Pervasive

Computing, 6(4):31–39, Oct. 2007.

[111] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually prevent

phishing attacks? In Proceedings of the SIGCHI conference on Human Factors in

computing systems, CHI ’06, pages 601–610, New York, NY, USA, 2006. ACM.

[112] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability and

security: empirical results. IEEE Security and Privacy, 2(5):25–31, Sept. 2004.

[113] K.-P. Yee. Aligning security and usability. IEEE Security and Privacy, 2:48–55,

Sept. 2004.

143

https://twitter.com/WhatsApp/statuses/238680463139565568
https://twitter.com/WhatsApp/status/344966710241161216
https://twitter.com/WhatsApp/status/344966710241161216

Appendix A

Proverif Source Code of the

Bluetooth Legacy Pairing

Ceremonies

A.1 Bluetooth Legacy Pairing - scenario i

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

(* Types *)

type key.

type nonce. (* for nonces *)

type ui_input. (* for user input messages via UI *)

type ui_message. (* for messages displayed via UI *)

(* Symetric Encryption *)

fun senc(bitstring , key): bitstring.

reduc forall m: bitstring , k : key; sdec(senc(m,k), k) = m.

(* Ceremony/Protocol Specific Functions *)

fun e22(bitstring ,bitstring ,nonce) : key.

144

fun e1(key ,bitstring ,bitstring) : bitstring.

(* Public information *)

free BD_ADDR_A : bitstring. (* A’s Bluetooth address *)

free BD_ADDR_B : bitstring. (* B’s Bluetooth address *)

(* Private information *)

free pin:bitstring[private].

(* Queries / Tests *)

weaksecret pin.

(* User A *)

let processUA =

in (hdA , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

out (hh , pin); (* 5. UA -hh -> UB : PIN *)

out (hdA , pin). (* 6. UA -hh -> A : PIN *)

(* User B *)

let processUB =

in (hdB , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

in (hh , pinX : bitstring); (* 5. UA -hh -> UB : PIN REQ *)

out (hdB , pinX). (* 7. UB -hh -> B : PIN *)

(* Device A *)

let processA =

new in_rand : nonce;

out(dd , in_rand); (* 1. A -> B : IN_RAND *)

in(dd , accept: ui_input); (* 2. B -> A : ACCEPT *)

new pin_reqa : ui_message;

out(hdA , pin_reqa); (* 3. A -hd -> UA : PIN REQ *)

in (hdA , pinX : bitstring); (* 6. UA -hd -> A : PIN *)

let kinit_a = e22(BD_ADDR_B , pinX , in_rand) in (* A

generates Kinit *)

new au_rand_a : bitstring;

out(dd , au_rand_a); (* 3. A -> B : AU_RANDa *)

in(dd, sres1X:bitstring); (* 4. B -> A : SRES1 *)

if sres1X = e1(kinit_a , BD_ADDR_B ,au_rand_a) then

in(dd, au_rand_bX:bitstring); (* 5. B -> A : AU_RANDb *)

let sres2 = e1(kinit_a , BD_ADDR_A , au_rand_bX) in

145

out(dd , sres2). (* 6. A -> B : SRES2 *)

(* Device B *)

let processB =

in(dd , in_randX : nonce); (* 1. A -> B : IN_RAND *)

new accept:ui_input;

out(dd , accept); (* 2. B -> A : ACCEPT *)

new pin_reqb : ui_message;

out(hdB , pin_reqb); (* 3. A -hd -> UA : PIN REQ *)

in (hdB , pinX : bitstring); (* 7. UB -hd -> B : PIN *)

let kinit_b = e22(BD_ADDR_B , pinX , in_randX) in (* B

generates Kinit *)

in(dd , au_rand_aX:bitstring); (* 3. A -> B : AU_RANDa *)

let sres1 = e1(kinit_b , BD_ADDR_B ,au_rand_aX) in (* calculate

SRES1 *)

out(dd , sres1); (* 4. B -> A : SRES1 *)

new au_rand_b : bitstring;

out(dd , au_rand_b); (* 5. B -> A : AU_RANDb *)

in(dd , sres2X:bitstring); (* 6. A -> B : SRES2 4 *)

if sres2X = e1(kinit_b , BD_ADDR_B ,au_rand_b) then

0.

process

(

(! processA) | (! processB) | (! processUA) | (! processUB)

)

146

A.2 Bluetooth Legacy Pairing - scenario ii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

(* Types *)

type key.

type nonce.

type ui_input.

type ui_message.

(* Symetric Encryption *)

fun senc(bitstring , key): bitstring.

reduc forall m: bitstring , k : key; sdec(senc(m,k), k) = m.

(* Ceremony/Protocol Specific Functions *)

fun e22(bitstring ,bitstring ,nonce) : key.

fun e1(key ,bitstring ,bitstring) : bitstring.

(* Public information *)

free BD_ADDR_A : bitstring. (* A’s Bluetooth address *)

free BD_ADDR_B : bitstring. (* B’s Bluetooth address *)

(* Private information *)

free pin:bitstring[private].

(* Queries / Tests *)

free s:bitstring[private]. (* secret that the attacker should not

be able to obtain *)

query attacker(s).

147

(* User A *)

let processUA =

in (hdA , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

out (hh , pin); (* 5. UA -hh -> UB : PIN *)

out (hdA , pin). (* 6. UA -hh -> A : PIN *)

(* User B *)

let processUB =

in (hdB , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

in (hh , pinX : bitstring); (* 5. UA -hh -> UB : PIN REQ *)

out (hdB , pinX). (* 7. UB -hh -> B : PIN *)

(* Device A *)

let processA =

new in_rand : nonce;

out(dd , in_rand); (* 1. A -> B : IN_RAND *)

in(dd , accept: ui_input); (* 2. B -> A : ACCEPT *)

new pin_reqa : ui_message;

out(hdA , pin_reqa); (* 3. A -hd -> UA : PIN REQ *)

in (hdA , pinX : bitstring); (* 6. UA -hd -> A : PIN *)

let kinit_a = e22(BD_ADDR_B , pinX , in_rand) in (* A

generates Kinit *)

new au_rand_a : bitstring;

out(dd , au_rand_a); (* 3. A -> B : AU_RANDa *)

in(dd, sres1X:bitstring); (* 4. B -> A : SRES1 *)

if sres1X = e1(kinit_a , BD_ADDR_B ,au_rand_a) then

in(dd, au_rand_bX:bitstring); (* 5. B -> A : AU_RANDb *)

let sres2 = e1(kinit_a , BD_ADDR_A , au_rand_bX) in

out(dd , sres2); (* 6. A -> B : SRES2 *)

out(dd , senc(s,kinit_a)).

(* Device B *)

let processB =

in(dd, in_randX : nonce); (* 1. A -> B : IN_RAND *)

new accept:ui_input;

out(dd , accept); (* 2. B -> A : ACCEPT *)

new pin_reqb : ui_message;

out(hdB , pin_reqb); (* 3. A -hd -> UA : PIN REQ *)

in (hdB , pinX : bitstring); (* 7. UB -hd -> B : PIN *)

let kinit_b = e22(BD_ADDR_B , pinX , in_randX) in (* B

148

generates Kinit *)

in(dd , au_rand_aX:bitstring); (* 3. A -> B : AU_RANDa *)

let sres1 = e1(kinit_b , BD_ADDR_B ,au_rand_aX) in (* calculate

SRES1 *)

out(dd , sres1); (* 4. B -> A : SRES1 *)

new au_rand_b : bitstring;

out(dd , au_rand_b); (* 5. B -> A : AU_RANDb *)

in(dd , sres2X:bitstring); (* 6. A -> B : SRES2 4 *)

if sres2X = e1(kinit_b , BD_ADDR_B ,au_rand_b) then

in(dd ,x:bitstring);

let z = sdec(x,kinit_b) in

if z = s then

0.

process

(

(! processA) | (! processB) | (! processUA) | (! processUB)

)

149

A.3 Bluetooth Legacy Pairing - scenario iii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Types *)

type key.

type nonce.

type ui_input.

type ui_message.

(* Symetric Encryption *)

fun senc(bitstring , key): bitstring.

reduc forall m: bitstring , k : key; sdec(senc(m,k), k) = m.

(* Ceremony/Protocol Specific Functions *)

fun e22(bitstring ,bitstring ,nonce) : key.

fun e1(key ,bitstring ,bitstring) : bitstring.

(* Public information *)

free BD_ADDR_A : bitstring. (* A’s Bluetooth address *)

free BD_ADDR_B : bitstring. (* B’s Bluetooth address *)

(* Private information *)

free pin:bitstring[private].

(* Queries / Tests *)

free s:bitstring[private]. (* secret that the attacker should not

be able to obtain *)

150

query attacker(s).

(* User A *)

let processUA =

in (hdA , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

out (hh , pin); (* 5. UA -hh -> UB : PIN *)

out (hdA , pin). (* 6. UA -hh -> A : PIN *)

(* User B *)

let processUB =

in (hdB , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

in (hh , pinX : bitstring); (* 5. UA -hh -> UB : PIN REQ *)

out (hdB , pinX). (* 7. UB -hh -> B : PIN *)

(* Device A *)

let processA =

new in_rand : nonce;

out(dd , in_rand); (* 1. A -> B : IN_RAND *)

in(dd , accept: ui_input); (* 2. B -> A : ACCEPT *)

new pin_reqa : ui_message;

out(hdA , pin_reqa); (* 3. A -hd -> UA : PIN REQ *)

in (hdA , pinX : bitstring); (* 6. UA -hd -> A : PIN *)

let kinit_a = e22(BD_ADDR_B , pinX , in_rand) in (* A

generates Kinit *)

new au_rand_a : bitstring;

out(dd , au_rand_a); (* 3. A -> B : AU_RANDa *)

in(dd, sres1X:bitstring); (* 4. B -> A : SRES1 *)

if sres1X = e1(kinit_a , BD_ADDR_B ,au_rand_a) then

in(dd, au_rand_bX:bitstring); (* 5. B -> A : AU_RANDb *)

let sres2 = e1(kinit_a , BD_ADDR_A , au_rand_bX) in

out(dd , sres2); (* 6. A -> B : SRES2 *)

out(dd , senc(s,kinit_a)).

(* Device B *)

let processB =

in(dd, in_randX : nonce); (* 1. A -> B : IN_RAND *)

new accept:ui_input;

out(dd , accept); (* 2. B -> A : ACCEPT *)

new pin_reqb : ui_message;

151

out(hdB , pin_reqb); (* 3. A -hd -> UA : PIN REQ *)

in (hdB , pinX : bitstring); (* 7. UB -hd -> B : PIN *)

let kinit_b = e22(BD_ADDR_B , pinX , in_randX) in (* B

generates Kinit *)

in(dd , au_rand_aX:bitstring); (* 3. A -> B : AU_RANDa *)

let sres1 = e1(kinit_b , BD_ADDR_B ,au_rand_aX) in (* calculate

SRES1 *)

out(dd , sres1); (* 4. B -> A : SRES1 *)

new au_rand_b : bitstring;

out(dd , au_rand_b); (* 5. B -> A : AU_RANDb *)

in(dd , sres2X:bitstring); (* 6. A -> B : SRES2 4 *)

if sres2X = e1(kinit_b , BD_ADDR_B ,au_rand_b) then

in(dd ,x:bitstring);

let z = sdec(x,kinit_b) in

if z = s then

0.

process

(

(! processA) | (! processB) | (! processUA) | (! processUB)

| (!in(hdA ,x:bitstring); out(hdAe ,x)) (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

(simulates eavesdrop on hdA) *)

| (!in(hdB ,x:bitstring); out(hdBe ,x)) (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

(simulates eavesdrop on hdB) *)

| (!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker (

simulates eavesdrop on hh) *)

)

152

A.4 Bluetooth Legacy Pairing - scenario iv

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Types *)

type key.

type nonce.

type ui_input.

type ui_message.

(* Symetric Encryption *)

fun senc(bitstring , key): bitstring.

reduc forall m: bitstring , k : key; sdec(senc(m,k), k) = m.

(* Ceremony/Protocol Specific Functions *)

fun e22(bitstring ,bitstring ,nonce) : key.

fun e1(key ,bitstring ,bitstring) : bitstring.

(* Public information *)

free BD_ADDR_A : bitstring. (* A’s Bluetooth address *)

free BD_ADDR_B : bitstring. (* B’s Bluetooth address *)

(* Private information *)

free pin:bitstring[private].

weaksecret pin.

(* Queries / Tests *)

free s:bitstring[private]. (* secret that the attacker should not

153

be able to obtain *)

query attacker(s).

(* User A *)

let processUA =

in (hdA , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

out (hh , pin); (* 5. UA -hh -> UB : PIN *)

out (hdA , pin). (* 6. UA -hh -> A : PIN *)

(* User B *)

let processUB =

in (hdB , pin_reqX : ui_message); (* 3. A -hd -> UA : PIN REQ

*)

in (hh , pinX : bitstring); (* 5. UA -hh -> UB : PIN REQ *)

out (hdB , pinX). (* 7. UB -hh -> B : PIN *)

(* Device A *)

let processA =

new in_rand : nonce;

out(dd , in_rand); (* 1. A -> B : IN_RAND *)

in(dd , accept: ui_input); (* 2. B -> A : ACCEPT *)

new pin_reqa : ui_message;

out(hdA , pin_reqa); (* 3. A -hd -> UA : PIN REQ *)

in (hdA , pinX : bitstring); (* 6. UA -hd -> A : PIN *)

let kinit_a = e22(BD_ADDR_B , pinX , in_rand) in (* A

generates Kinit *)

new au_rand_a : bitstring;

out(dd , au_rand_a); (* 3. A -> B : AU_RANDa *)

in(dd , sres1X:bitstring); (* 4. B -> A : SRES1 *)

if sres1X = e1(kinit_a , BD_ADDR_B ,au_rand_a) then

in(dd , au_rand_bX:bitstring); (* 5. B -> A : AU_RANDb *)

let sres2 = e1(kinit_a , BD_ADDR_A , au_rand_bX) in

out(dd , sres2); (* 6. A -> B : SRES2 *)

out(dd , senc(s,kinit_a)).

(* Device B *)

let processB =

in(dd, in_randX : nonce); (* 1. A -> B : IN_RAND *)

new accept:ui_input;

out(dd , accept); (* 2. B -> A : ACCEPT *)

154

new pin_reqb : ui_message;

out(hdB , pin_reqb); (* 3. A -hd -> UA : PIN REQ *)

in (hdB , pinX : bitstring); (* 7. UB -hd -> B : PIN *)

let kinit_b = e22(BD_ADDR_B , pinX , in_randX) in (* B

generates Kinit *)

in(dd , au_rand_aX:bitstring); (* 3. A -> B : AU_RANDa *)

let sres1 = e1(kinit_b , BD_ADDR_B ,au_rand_aX) in (* calculate

SRES1 *)

out(dd , sres1); (* 4. B -> A : SRES1 *)

new au_rand_b : bitstring;

out(dd , au_rand_b); (* 5. B -> A : AU_RANDb *)

in(dd , sres2X:bitstring); (* 6. A -> B : SRES2 4 *)

if sres2X = e1(kinit_b , BD_ADDR_B ,au_rand_b) then

in(dd ,x:bitstring);

let z = sdec(x,kinit_b) in

if z = s then

0.

process

(

(! processA) | (! processB) | (! processUA) | (! processUB)

| (!in(hdA ,x:bitstring); out(hdAe ,x)) (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

(simulates eavesdrop on hdA) *)

| (!in(hdB ,x:bitstring); out(hdBe ,x)) (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

(simulates eavesdrop on hdB) *)

| (!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker (

simulates eavesdrop on hh) *)

)

155

Appendix B

Proverif Source Code of

Bluetooth SSP Ceremonies

B.1 Bluetooth SSP - scenario i

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

156

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd, pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

157

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

158

if VbX = VaX then

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

if VaX = VbX then

out(hdB , okBX);

0.

process

new skA:skey;

new skB:skey;

((! processA(pk(skA),skA)) | (! processB(pk(skB),skB)) |

(! processUA) | (! processUB))

159

B.2 Bluetooth SSP - scenario ii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

160

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

161

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

if VbX = VaX then

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

if VaX = VbX then

out(hdB , okBX);

162

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

*)

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

163

B.3 Bluetooth SSP - scenario iii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

164

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

165

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

(* if VbX = VaX then *) (* User now doesn ’t compare the numbers

and send Ok anyway *)

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

if VaX = VbX then

166

out(hdB , okBX);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

*)

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

167

B.4 Bluetooth SSP - scenario iv

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

168

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

169

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

if VbX = VaX then

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

(* if VaX = VbX then *) (* User now doesn ’t compare the numbers

and send Ok anyway *)

170

out(hdB , okBX);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

*)

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

171

B.5 Bluetooth SSP - scenario iv

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

172

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

173

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

(* if VbX = VaX then *) (* User now doesn ’t compare the numbers

and send Ok anyway *)

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

(* if VaX = VbX then *) (* User now doesn ’t compare the numbers

174

and send Ok anyway *)

out(hdB , okBX);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

*)

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

175

B.6 Bluetooth SSP - scenario vi

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel. (* human -device channel (no attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

176

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

new okA : nonce;

out(hdA , (Va ,okA)); (* msg 6 ... A -HD -> UA : Va *)

in(hdA ,=okA); (* msg 10 ... UA -HD -> A : ok *)

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

177

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

new okB : nonce;

out(hdB , (Vb ,okB)); (* msg 7 ... B -HD -> UB : Vb *)

in(hdB ,=okB); (* msg 11 ... UB -HD -> B : ok *)

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (VaX : bitstring , okAX : nonce));

out(hh , (VaX ,okAX));

in(hh , (VbX: bitstring ,=okAX ,okBX:nonce));

out(hh ,okBX);

if VbX = VaX then

out(hdA , okAX);

0.

(* User B *)

let processUB =

in(hdB , (VbX : bitstring , okBX : nonce));

in(hh , (VaX :bitstring , okAX :nonce));

out(hh , (VbX ,okAX ,okBX));

in(hh ,=okBX);

if VaX = VbX then

out(hdB , okBX);

0.

178

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

179

Appendix C

Proverif Source Code of

Bluetooth SSP Ceremonies -

Amended Version

C.1 Bluetooth SSP amended version - scenario i

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

180

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* Functions for truncating Vs *)

fun splitVsP1(bitstring) : bitstring.

fun splitVsP2(bitstring) : bitstring.

reduc forall x: bitstring; mergeVs(splitVsP1(x),splitVsP2(x)) = x

.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

181

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

let part1Va = splitVsP1(Va) in

out(hdA , part1Va);

in(hdA , part2VbX :bitstring);

if Va = mergeVs(part1Va ,part2VbX) then

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

let part2Vb = splitVsP2(Vb) in

out(hdB , part2Vb);

in(hdB , part1VaX :bitstring);

182

if Vb = mergeVs(part1VaX ,part2Vb) then

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (trVa1 : bitstring));

out(hh , trVa1);

in(hh , trVb2 :bitstring);

out(hdA , trVb2);

0.

(* User B *)

let processUB =

in(hdB , (trVb2 : bitstring));

out(hh , trVb2);

in(hh , trVa1 : bitstring);

out(hdB , trVa1);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB)

)

183

C.2 Bluetooth SSP amended version - scenario ii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (eavesdrop) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* Functions for truncating Vs *)

fun splitVsP1(bitstring) : bitstring.

fun splitVsP2(bitstring) : bitstring.

reduc forall x: bitstring; mergeVs(splitVsP1(x),splitVsP2(x)) = x

.

(* zero *)

const zero:bitstring.

184

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

185

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

let part1Va = splitVsP1(Va) in

out(hdA , part1Va);

in(hdA , part2VbX :bitstring);

if Va = mergeVs(part1Va ,part2VbX) then

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

let part2Vb = splitVsP2(Vb) in

out(hdB , part2Vb);

in(hdB , part1VaX :bitstring);

if Vb = mergeVs(part1VaX ,part2Vb) then

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (trVa1 : bitstring));

out(hh , trVa1);

in(hh , trVb2 :bitstring);

out(hdA , trVb2);

0.

(* User B *)

let processUB =

186

in(hdB , (trVb2 : bitstring));

out(hh , trVb2);

in(hh , trVa1 : bitstring);

out(hdB , trVa1);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive attacker

*)

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

187

C.3 Bluetooth SSP amended version - scenario vi

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hdA : channel. (* human -device channel (no attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (eavesdrop) *)

free hh : channel [private]. (* human -human channel (no attackers

) *)

free hhe : channel. (* human -human channel (eavesdrop) *)

(* Defining type nonce *)

type nonce.

(* Types and functions for public key cryptography *)

type skey.

type pkey.

fun pk(skey):pkey.

(* Commitment function *)

fun f1(pkey ,pkey ,nonce ,bitstring):bitstring.

(* Confirmation value *)

fun g(pkey ,pkey ,nonce ,nonce):bitstring.

(* Functions for truncating Vs *)

fun splitVsP1(bitstring) : bitstring.

fun splitVsP2(bitstring) : bitstring.

reduc forall x: bitstring; mergeVs(splitVsP1(x),splitVsP2(x)) = x

.

(* zero *)

const zero:bitstring.

(* Queries and events *)

event beginAparam(pkey).

event beginBparam(pkey).

188

event endAparam(pkey).

event endBparam(pkey).

event beginAConfirm(pkey ,pkey ,nonce ,nonce).

event beginBConfirm(pkey ,pkey ,nonce ,nonce).

event endAConfirm(pkey ,pkey ,nonce ,nonce).

event endBConfirm(pkey ,pkey ,nonce ,nonce).

query pkeyX:pkey; event (endAparam(pkeyX)) ==> event (beginAparam

(pkeyX)).

query pkeyX:pkey; event (endBparam(pkeyX)) ==> event (beginBparam

(pkeyX)).

query pkeyX:pkey; inj -event (endAparam(pkeyX)) ==> inj -event (

beginAparam(pkeyX)).

query pkeyX:pkey; inj -event (endBparam(pkeyX)) ==> inj -event (

beginBparam(pkeyX)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event (

endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event (endAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginAConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; event(

endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

query pkeyW:pkey , pkeyX:pkey , nonceY:nonce , nonceZ:nonce; inj -

event(endBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)) ==> inj -event(

beginBConfirm(pkeyW ,pkeyX ,nonceY ,nonceZ)).

(* Device A *)

let processA(pkA:pkey , skA:skey) =

out(dd , pkA); (* msg 1 ... A -DD -> B : PKa *)

in(dd , pkBX :pkey); (* msg 2 ... B -DD -> A : PKb *)

event beginBparam(pkBX);

new Na :nonce;

in(dd , CbX :bitstring); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,

PKa ’,Nb ,0) *)

out(dd , Na); (* msg 4 ... A -DD -> B : Na *)

in(dd , NbX :nonce); (* msg 5 ... B -DD -> A : Nb *)

event beginBConfirm(pkA , pkBX , Na, NbX);

if CbX = f1(pkBX , pkA , NbX , zero) then (* checking commitment

value *)

let Va = g(pkA , pkBX , Na , NbX) in

189

let part1Va = splitVsP1(Va) in

out(hdA , part1Va);

in(hdA , part2VbX :bitstring);

if Va = mergeVs(part1Va ,part2VbX) then

event endAparam(pkA);

event endAConfirm(pkA ,pkBX ,Na,NbX);

0.

(* Device B *)

let processB(pkB:pkey , skB:skey) =

in(dd , pkAX :pkey); (* msg 1 ... A -DD -> B : PKa *)

event beginAparam(pkAX);

out(dd , pkB); (* msg 2 ... B -DD -> A : PKb *)

new Nb : nonce;

let Cb=f1(pkB , pkAX , Nb , zero) in

out(dd , Cb); (* msg 3 ... B -DD -> A : Cb = f1(PKb ,PKa ’,Nb ,0)

*)

in(dd , NaX :nonce); (* msg 4 ... A -DD -> B : Na *)

event beginAConfirm(pkAX , pkB , NaX , Nb);

out(dd ,Nb); (* msg 5 ... B -DD -> A : Nb *)

let Vb = g(pkAX , pkB , NaX , Nb) in

let part2Vb = splitVsP2(Vb) in

out(hdB , part2Vb);

in(hdB , part1VaX :bitstring);

if Vb = mergeVs(part1VaX ,part2Vb) then

event endBparam(pkB);

event endBConfirm(pkAX ,pkB ,NaX ,Nb);

0.

(* User A *)

let processUA =

in(hdA , (trVa1 : bitstring));

out(hh , trVa1);

in(hh , trVb2 :bitstring);

out(hdA , trVb2);

0.

(* User B *)

let processUB =

in(hdB , (trVb2 : bitstring));

out(hh , trVb2);

in(hh , trVa1 : bitstring);

190

out(hdB , trVa1);

0.

process

new skA:skey;

new skB:skey;

(

(! processA(pk(skA),skA)) |

(! processB(pk(skB),skB)) |

(! processUA) |

(! processUB) |

(!in(hdB ,x:bitstring); out(hdBe ,x)) | (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

(!in(hh ,x:bitstring); out(hhe ,x)) (* this replicates

everything in hh to hh to reproduce a passive attacker *)

)

191

Appendix D

Proverif Source Code of

WhatsApp Ceremonies

D.1 WhatsApp Registration Ceremony - scenario i

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free hd : channel [private]. (* human -device channel (no

attackers) *)

free hde : channel. (* human -device channel (no attackers) *)

(* Defining type nonce *)

type nonce.

(* Public Phone Number *)

free Num : bitstring.

(* Queries and events *)

event beginSparam(bitstring).

event endSparam(bitstring).

query NumX : bitstring; event (endSparam(NumX)) ==> event (

beginSparam(NumX)).

(* User A *)

192

let processUA =

out(hd , Num); (* msg 1 ... Ua -HD -> A : Num *)

0.

(* Agent A - WhatsApp *)

let processA =

in(hd, NumX:bitstring); (* msg 1 ... Ua -HD -> A : Num *)

out(dd , NumX); (* msg 2 ... A -DD -> S : Num *)

event beginSparam(NumX);

in(dd, RegConf:bitstring); (* msg 3 ... S -DD -> A : RegConf

*)

0.

(* Server S *)

let processS =

in(dd, NumX:bitstring); (* msg 2 ... A -DD -> S : Num *)

event endSparam(NumX);

new RegConf:bitstring;

out(dd ,RegConf); (* msg 3 ... S -DD -> A : RegConf *)

0.

process

(

(! processUA) |

(! processA) |

(! processS) |

(!in(hd,x:bitstring); out(hde ,x)) (* this replicates

everything in hdA to hdAe to reproduce a passive

attacker *)

)

193

D.2 WhatsApp Registration Ceremony - scenario ii

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free dd2 : channel [private]. (* device -device authenticated

channel *)

free dd3 : channel [private]. (* device -device channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

(* Defining type nonce *)

type nonce.

(* Public Phone Number *)

free Num : bitstring.

(* Queries and events *)

event beginSparam(nonce).

event endSparam(nonce).

query PINx : nonce; event (endSparam(PINx)) ==> event (

beginSparam(PINx)).

(* User A *)

let processUA =

out(hdA , Num); (* msg 1 ... Ua -HD -> A : Num *)

in(hdB , PINx:nonce); (* msg 7 ... B -HD -> UA : PIN *)

out(hdA , PINx); (* msg 8 ... Ua -HD -> A : Num *)

0.

(* Agent A - WhatsApp *)

let processA =

in(hdA , NumX:bitstring); (* msg 1 ... Ua -HD -> A : Num *)

out(dd , NumX); (* msg 2 ... A -DD -> S : Num *)

in(dd, (NumRec:bitstring ,PINx:nonce)); (* msg 3 ... S -DD -> A

: NumRec , PIN *)

194

event beginSparam(PINx);

out(dd3 , PINx); (* msg 4 ... A -DD3 -> B : PIN *)

in(hdA , PINb:nonce); (* msg 8 ... Ua -HD -> A : PIN *)

out(dd , PINb); (* msg 9 ... A -DD -> S : PIN *)

in(dd , RegConf:bitstring); (* msg 10 ... S -DD -> A : RegConf

*)

0.

(* Agent B - SMS App *)

let processB =

in(dd3 , PINx:nonce); (* msg 4 ... A -DD3 -> B : PIN *)

out(dd2 , PINx); (* msg 5 ... B -DD2 -> SC : PIN *)

in(dd2 , PINsc:nonce); (* msg 6 ... SC -DD2 -> B : PIN *)

out(hdB , PINsc); (* msg 7 ... B -HD -> UA : PIN *)

0.

(* Server SMSC *)

let processSMSC =

in(dd2 , PINx:nonce); (* msg 5 ... B -DD2 -> SC : PIN *)

out(dd2 , PINx); (* msg 6 ... SC -DD2 -> B : PIN *)

0.

(* Server S *)

let processS =

in(dd, NumX:bitstring); (* msg 2 ... A -DD -> S : Num *)

new NumRec:bitstring;

new PIN:nonce;

out(dd , (NumRec ,PIN)); (* msg 3 ... S -DD -> A : NumRec *)

in(dd, PINx:nonce); (* msg 9 ... A -DD -> S : PINx *)

if PINx = PIN then

event endSparam(PIN);

new RegConf:bitstring;

out(dd ,RegConf); (* msg 10 ... S -DD -> A : RegConf *)

0.

process

(

(! processUA) |

(! processA) |

(! processB) |

(! processS)

)

195

D.3 WhatsApp Registration Ceremony - scenario iv

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free dd2 : channel [private]. (* device -device authenticated

channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

(* Defining type nonce *)

type nonce.

(* Public Phone Number *)

free Num : bitstring.

(* Queries and events *)

event beginSparam(nonce).

event endSparam(nonce).

query PINx : nonce; event (endSparam(PINx)) ==> event (

beginSparam(PINx)).

query PINx : nonce; inj -event (endSparam(PINx)) ==> inj -event (

beginSparam(PINx)).

(*

With the setting (set ignoreTypes = false), the protocol respects

the type system.

However , it finds fewer attacks.

In this specific case , respecting types is relevant since the

human -interaction

here cannot ignore types , but it should be carefully used for

other interactions.

I recommend test without it first on every scenario and check

whether the termination

problem is really related to it.

*)

set ignoreTypes = false.

196

(* User A *)

let processUA =

out(hdA , Num); (* msg 1 ... Ua -HD -> A : Num *)

in(hdB , PINx:nonce); (* msg 5 ... B -HD -> UA : PIN *)

out(hdA , PINx); (* msg 6 ... Ua -HD -> A : Num *)

0.

(* Agent A - WhatsApp *)

let processA =

in(hdA , NumX:bitstring); (* msg 1 ... Ua -HD -> A : Num *)

out(dd , NumX); (* msg 2 ... A -DD -> S : Num *)

in(dd, NumRec:bitstring); (* msg 3 ... S -DD -> A : NumRec *)

in(hdA , PINx:nonce); (* msg 6 ... Ua -HD -> A : PIN *)

(* colocando event beginSparam(PINx) aqui antes , eu forco o

caso de que A sempre envia o PINx antes - free from MITM

attacks due to SSL *)

event beginSparam(PINx);

out(dd , PINx); (* msg 7 ... A -DD -> S : PIN *)

(* colocando aqui depois , eu mostro o caso onde onde pode

existir MITM *)

in(dd, RegConf:bitstring); (* msg 8 ... S -DD -> A : RegConf

*)

0.

(* Agent B - SMS App *)

let processB =

in(dd2 , PINx:nonce); (* msg 4 ... S -DDs -> B : PIN *)

out(hdB , PINx); (* msg 5 ... B -HD -> UA : PIN *)

0.

(* Server S *)

let processS =

in(dd, NumX:bitstring); (* msg 2 ... A -DD -> S : Num *)

new NumRec:bitstring;

out(dd , NumRec); (* msg 3 ... S -DD -> A : NumRec *)

new PIN:nonce;

out(dd2 , PIN); (* msg 4 ... S -DDs -> B : PIN *)

in(dd, PINx:nonce); (* msg 7 ... A -DD -> S : PINx *)

if PINx = PIN then

new RegConf:bitstring;

out(dd ,RegConf); (* msg 8 ... S -DD -> A : RegConf *)

197

event endSparam(PIN);

0.

process

(

(! processUA) |

(! processA) |

(! processB) |

(! processS)

)

198

D.4 WhatsApp Registration Ceremony - scenario i

(*---

Protocol specification

---*)

(* Channels *)

free dd : channel. (* device -device channel *)

free dd2 : channel [private]. (* device -device authenticated

channel *)

free hdA : channel [private]. (* human -device channel (no

attackers) *)

free hdAe : channel. (* human -device channel (no attackers) *)

free hdB : channel [private]. (* human -device channel (no

attackers) *)

free hdBe : channel. (* human -device channel (no attackers) *)

(* Defining type nonce *)

type nonce.

(* Public Phone Number *)

free Num : bitstring.

(* Queries and events *)

event beginSparam(nonce).

event endSparam(nonce).

query PINx : nonce; event (endSparam(PINx)) ==> event (

beginSparam(PINx)).

query PINx : nonce; inj -event (endSparam(PINx)) ==> inj -event (

beginSparam(PINx)).

(* User A *)

let processUA =

out(hdA , Num); (* msg 1 ... Ua -HD -> A : Num *)

in(hdB , PINx:nonce); (* msg 5 ... B -HD -> UA : PIN *)

out(hdA , PINx); (* msg 6 ... Ua -HD -> A : Num *)

0.

(* Agent A - WhatsApp *)

let processA =

in(hdA , NumX:bitstring); (* msg 1 ... Ua -HD -> A : Num *)

199

out(dd , NumX); (* msg 2 ... A -DD -> S : Num *)

in(dd , NumRec:bitstring); (* msg 3 ... S -DD -> A : NumRec *)

in(hdA , PINx:nonce); (* msg 6 ... Ua -HD -> A : PIN *)

event beginSparam(PINx);

out(dd , PINx); (* msg 7 ... A -DD -> S : PIN *)

in(dd , RegConf:bitstring); (* msg 8 ... S -DD -> A : RegConf

*)

0.

(* Agent B - SMS App *)

let processB =

in(dd2 , PINx:nonce); (* msg 4 ... S -DDs -> B : PIN *)

out(hdB , PINx); (* msg 5 ... B -HD -> UA : PIN *)

0.

(* Server S *)

let processS =

in(dd, NumX:bitstring); (* msg 2 ... A -DD -> S : Num *)

new NumRec:bitstring;

out(dd , NumRec); (* msg 3 ... S -DD -> A : NumRec *)

new PIN:nonce;

out(dd2 , PIN); (* msg 4 ... S -DDs -> B : PIN *)

in(dd, PINx:nonce); (* msg 7 ... A -DD -> S : PINx *)

if PINx = PIN then

new RegConf:bitstring;

out(dd ,RegConf); (* msg 8 ... S -DD -> A : RegConf *)

event endSparam(PIN);

0.

process

(

(! processUA) |

(! processA) |

(! processB) |

(! processS) |

(!in(hdA ,x:bitstring); out(hdAe ,x)) | (* this replicates

everything in hdA to hdAe to reproduce a passive

attacker *)

(!in(hdB ,x:bitstring); out(hdBe ,x)) (* this replicates

everything in hdB to hdBe to reproduce a passive attacker

*)

)

200

	Introduction
	Security Protocols in the Real World
	Contributions
	Thesis Outline

	Preliminaries
	Security Ceremonies
	Ceremonies versus Protocols
	Notation
	Ceremony and Protocol Notation
	Logical Notation

	Protocols Studied
	Bluetooth Pairing
	Legacy Pairing Protocol
	Simple Secure Pairing

	WhatsApp Messenger Registration
	Registration Protocol

	Understanding the Human-Protocol Interaction
	Introduction
	Overview
	Frequently Overlooked Components of Human-Protocol Interaction
	User Knowledge
	Authentication Capabilities
	Decision Making Influencing Factors
	Bounded Attention
	Inherent Limitations

	Minimising the Weaknesses in the Interaction
	User Knowledge
	Authentication Capabilities
	Decision Making Influencing Factors
	Bounded Attention
	Inherent Limitations

	Design Recommendations
	Respect User Faculties
	Do Not Rely on User Authentication Capabilities
	Integrate Security Into the Main Workflow
	Consider that the Expected Behaviour Might Change Under Different Circumstances
	Design Should Prevent User From Performing an Inappropriate Interaction

	Associations Between Interaction Weaknesses and Design Recommendations
	Summary

	A Framework for Designing and Analysing Ceremonies
	Introduction
	Overview
	Communication Channels and Agents
	A Threat Model for Security Ceremonies
	Abstract Threat-Models for Protocols
	Premises for Ceremony Threat Modelling
	An Adaptive Threat Model for Ceremonies
	Case Study: Bluetooth Pairing Protocol

	Summary

	Designing and Analysing Ceremonies
	Introduction
	The Ceremony Design Process
	Bluetooth Legacy Pairing Ceremony
	Threat Model
	Informal Analysis
	Formal Analysis

	Bluetooth Simple Secure Pairing Ceremony
	Threat Model
	Informal Analysis
	Formal Analysis
	Fixing the Simple Secure Pairing Ceremony

	WhatsApp Registration Ceremony
	Threat Model
	Informal Analysis
	Formal Analysis

	Gains by Analysing Security Ceremonies
	Summary

	Conclusions and Future Work
	Future Work

	Bibliography
	Proverif Source Code of the Bluetooth Legacy Pairing Ceremonies
	Bluetooth Legacy Pairing - scenario i
	Bluetooth Legacy Pairing - scenario ii
	Bluetooth Legacy Pairing - scenario iii
	Bluetooth Legacy Pairing - scenario iv

	Proverif Source Code of Bluetooth SSP Ceremonies
	Bluetooth SSP - scenario i
	Bluetooth SSP - scenario ii
	Bluetooth SSP - scenario iii
	Bluetooth SSP - scenario iv
	Bluetooth SSP - scenario iv
	Bluetooth SSP - scenario vi

	Proverif Source Code of Bluetooth SSP Ceremonies - Amended Version
	Bluetooth SSP amended version - scenario i
	Bluetooth SSP amended version - scenario ii
	Bluetooth SSP amended version - scenario vi

	Proverif Source Code of WhatsApp Ceremonies
	WhatsApp Registration Ceremony - scenario i
	WhatsApp Registration Ceremony - scenario ii
	WhatsApp Registration Ceremony - scenario iv
	WhatsApp Registration Ceremony - scenario i

