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Abstract
10 years ago superconducting resonators emerged with two potential applications, firstly

kinetic inductance detectors were proposed [1] and secondly the strong coupling of a res-

onator to a qubit was realised [2]. As such, the field of superconducting quantum circuits

is beginning to enter maturity and has become competitive with alternative approaches

to quantum information processing [3] and photon detection [4]. However, there remains

much room for further improvement and some problems persist still. Prevalent among

these problems is a high level of environmental noise interfering with the device. This en-

vironment can be parametrised as a bath of two level fluctuators (TLFs): an uncontrolled

intrinsic two level system which couples to the superconducting quantum circuit. These

can produce the ubiquitous 1/f noise and are a dominant source of decoherence.

In this thesis, microwave resonators are interrogated using a novel high-precision fre-

quency readout technique. This technique is based upon Pound locking and is implemented

to examine the effects of two level fluctuators. The Method uses feedback to track devia-

tions in the centre frequency of a microwave resonator. Sensitivity to Hz-level fluctuations

allows the technique to trace ultra low dielectric loss tangents. Hence the approach is

suitable for accessing even the samples with a very low density of two level fluctuators.

Additionally a feedback mechanism allows for slow noise processes to be studied with

exceptional statistical confidence.

This thesis outlines the theory and development of the Pound loop. This is characterized

and improved until capable of resolving Hz-level deviations and operating towards single

photon energies within the resonator. This allows the 1/f noise of a resonator to be studied

under varying microwave drive and temperature. Ultimately we show that a new design

of epitaxially grown superconductor is able to realize an ultra low dielectric loss tangent,

and a low noise level, probably significantly below that measured by any other system.

Which allows the temperature dependence of 1/f noise in superconducting resonators to be

examined. This result provides important new guidance to methods that might eradicate

the TLF problem from superconducting quantum circuits.
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Table 1: Table of important symbol definitions

Symbol Definition

α kinetic inductance ratio, or coefficient of power law noise process

∆(T ) Superconducting gap energy at temperature T

δi Intrinsic dielectric loss tangent

E Electric field

Ec TLF saturation field

ε Permittivity

F Filling factor

f Fourier frequency

fL Leeson frequency

g Coupling parameter

h−1 Flicker frequency magnitude

i Current

Ji(β) Bessel function of ith order with modulation index β

Papp Applied microwave drive

Pc TLF saturation microwave drive

ν Drive frequency

ν0 Centre frequency of resonator, resonant frequency

〈n〉 Average number of photons within a resonator

µ TLF distribution parameter

Qc Quality factor due to coupling

Qi Intrinsic quality factor

σy Allan deviation, usually implied to be overlapping, often fractional

σ2
y Allan variance, usually implied to be overlapping, often fractional

Sy Spectrum of frequency fluctuations, often fractional

SQ Spectrum of charge fluctuations

Sθ Spectrum of phase fluctuations

Sφ Spectrum of flux fluctuations

Tc Superconducting transition temperature

T1 Longitudinal relaxation time in a TLS

T2 De-phasing time in a TLS

θ Phase

U Energy, usually in terms of a potential

V Voltage

y Normalised fractional frequency, defined as ν − ν0/ν0

Γ1 Longitudinal relaxation rate for a TLS, T1 = 1/Γ1

Γ2 De-phasing rate for a TLS, T2 = 1/Γ2

Ω Frequency of Rabbi oscillations in a TLS

ω Drive angular frequency, ω = 2πf , sometimes called ωc
ωm Phase modulation frequency in Pound setup, typically 1 MHz

Ws Energy stored within a resonator

Z Impedance

Z0 Characteristic impedance, usually 50 Ω
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Table 2: Table of abbreviations used within the thesis

Abbreviation Definition

CPB Cooper Pair Box

CPW Coplanar Waveguide

HEMT High Electron Mobility Transistor

HPF High Pass Filter

KID Kinetic inductance detector

MB Mattis-Bardeen, usually implying an element derived from the theory

µW Microwave

PID Proportional-Integral-Derivative controller

QIP Quantum Information Processing

SET Single Electron Transistor

SQUID Superconducting QUantum Interference Device

TLF Two Level Fluctuator

TLS Two Level System

VCO Voltage Controlled Oscillator

VNA Vector Network Analyzer

YIG Yttrium Iron Garnet, usually meaning a narrowband tunable filter

Table 3: Table of resonator parameters

Resonator Geometry Frequency
(GHz)

Qi x104 g F tanδ
x10−6

Sputtered Nb LE 5.08 23.1 21.5 - 5.3j 26

Sputtered Nb LE 6.98 44.3 18.5 - 3.6j 2.0

Sputtered Nb Fractal 7.06 7.3 1.6 + 0.6j 12

Epitaxial Nb LE 5.4 5.8 2.3 + 1.3j 1.8

Epitaxial Nb LE 6.69 7.6 0.9 + 0.5j 1.7

Epitaxial Nb+Pt LE 5.55 24.1 6.6 + 0.2j 1.4

Epitaxial Nb+Pt LE 6.68 34.9 13.1 - 2.1j 1.1
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Chapter 1: Introduction

At the start of this project, the field of superconductivity was approaching its 100th

birthday. However, despite this age, superconductivity is far from widespread in its uses.

Outside of research, there are perhaps only two well developed applications: supercon-

ducting magnets as used in MRI scanners, and magnetometers based on Superconducting

QUantum Interference Devices (SQUIDs). By comparison, the 60 year old field of semi-

conductors is considerably more abundant, so that it can be difficult not to be near some

device based upon semiconductors. A large reason for this is simply that semiconductors

have many useful properties at room temperature. This is unlike superconductivity, which

is a low temperature phenomenon. Traditionally, liquid helium is required to reach these

low temperatures. This is prohibitive due to the large cost and high level of knowledge

required to operate cryogenic systems. In recent years, so called dry (meaning no liquid

helium) cryogenic systems have come a long way. While still prohibitively expensive, the

ability to reach low temperatures at the push of a button greatly relaxes the knowledge

requirement. It is possible that easier access to cryogenic temperatures may help super-

conductivity realise more useful applications.

A superconductor is something that possesses zero DC resistance when at tempera-

tures below some transition temperature Tc. The superconducting state is described by a

macroscopic quantum wave-function, meaning a superconductor behaves as a bulk quan-

tum object. Detectors are therefore an obvious application, where the superconductor is

very sensitive to some perturbation of the superconducting state. Another property of

superconductivity is the ability to weakly couple two superconductors via the Josephson

effect. This results in a low dissipation system which is very sensitive to fluctuations in

either superconductor. Coupling this with the perfect diamagnetism from magnetic flux

quantisation, allows the SQUID to be realised.

At high frequencies a superconductor does not exhibit zero resistance. This can be

understood using the two fluid model of the superconductor, where the charge carriers are

modelled as two inter mixed populations consisting of Cooper pairs and quasiparticles. Any
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current is forced through each of these populations and therefore even in the superconduct-

ing state some current can be carried by the quasiparticles, which can create dissipation.

However, the dissipation is low enough that ultra high quality factor resonators can be

realised. This high quality factor is exploited by kinetic inductance detectors to increase

their sensitivity1. The low dissipation means that when a superconductor is excited by a

high frequency field, the carriers are able to store the energy without loss. This stored

energy can then be recovered when reversing the field, which is not usually possible in

normal metals. Since the energy can be recovered in phase (like an inductor) it is termed

as an inductance. This additional inductance allows superconducting microwave circuits

to be made smaller than their non superconducting counterparts and is the mechanism

for kinetic inductance detectors. Here circuits can be made sensitive to excitations in the

superconducting state. These excitations cause dissipation in the device, changing the

kinetic inductance and therefore producing a frequency shift in the circuit.

Another microwave device, is the solid state qubit. Here a quantum state is realised

by creating an asymmetric potential well from a Josephson junction2. Operations can be

performed on this state to realise a quantum bit (qubit). Microwave devices are therefore

an attractive application of superconductors. However, despite high expectations, both of

these applications suffer from degraded performance. A higher than expected level of noise

exists, resulting in reduced sensitivity and high levels of decoherence3.

It is proposed that the noise can be parametrised by the presence of a bath of two level

fluctuators (TLFs) [5]. In the context of superconducting circuits, a two level fluctuator

(TLF) is described by an asymmetric potential well. Transitions between the states can

occur by absorption of a microwave photon or by thermally excited tunnelling, which

saturates by 1 K. The TLFs exhibit a broad energy spectrum for the asymmetry in the

potential, resulting in a distribution that is nearly uniform in frequency. Experiments with

1The kinetic inductance is associated with the kinetic energy absorbed by a charge carrier from a high frequency
field. It is very high for a few excess quasiparticles (electrons) within the sea of Cooper pairs. Therefore kinetic
inductance detectors operate by observing the frequency shift associated with the breaking of Cooper pairs.

2A Josephson junction is a weak link between two superconductors. Generally this is realized as an oxide barrier
separating the superconductors.

3Decoherence relates to the lifetime of the quantum state. A high level of decoherence means that the state is
short lived. The parasitic interference of TLFs is proposed as the cause of this short lifetime.
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small Josephson junctions can view avoided crossings due to interactions with individual

TLFs [6], in contrast superconducting resonators usually couple to a large ensemble due

to their much larger size.

A microwave photon can interact with the TLFs as well as the qubit or resonator.

For qubits, this means that a quantum state can be influenced by a photon released by a

TLF relaxing. It also means the qubit sees a different environment depending on whether

the TLF is excited or not. This results in the qubit Larmor frequency being dependent

on the environment. In superconducting resonators a TLF produces two effects. At low

microwave drive a photon interacts with the TLF creating a path for energy loss, lowering

the resonators internal quality factor (Qi). Additionally each state of the TLF corresponds

to a different relative permittivity, resulting in a frequency shift as the ratio of thermally

excited TLFs varies with temperature between 50 mK–1 K. This means that like the qubit,

the resonator is sensitive to the environment and whether TLFs are excited or not.

This thesis will give an overview of a measurement technique new to this field, based

upon a Pound based frequency locked loop, to study the frequency jitter in superconduct-

ing resonators. Chapter 2 follows conventional solid state theory before introducing TLFs.

Then Chapter 3 describes the models for superconducting resonators and their transmission

parameters, showing the effects of TLFs and the Mattis-Bardeen theory. Chapter 4 covers

details of oscillator stability, the Barkhausen condition, the Leeson effect and the theory

for a Pound frequency locked loop. It also details the statistical methods for analysing

frequency jitter, focusing on the use of Allan based statistics which feature heavily in later

measurements. Chapter 5 contains the Literature review before Chapter 6 covers the mea-

surement setup. Lastly, experimental sections begin with measurements of the systematic

noise contributions in Chapter 7. Following this are three further chapters on measure-

ments of superconducting resonators. The first of these examines the ability of the Pound

method to study noise in superconducting resonators. It finds that not only do super-

conducting resonators exhibit flicker noise, but crucially this is in excess to the measured

system noise floor. The flicker noise is shown to be temperature and power dependent, an

effect which is studied further in Chapter 9. Here another resonator geometry is measured,

finding the flicker noise increases with both decreasing temperature and power. Although
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consistent with previous results, the large dielectric loss tangent makes temperature insta-

bility problematic to the measurements. To solve this an epitaxially grown sample with

a novel conducting capping layer is measured in Chapter 10. This sample exhibits such

low dielectric loss that the temperature dependence of the flicker noise is fully mapped

out. The final measurement finds strong evidence that the TLF picture is incomplete and

needs to consider interactions. Finally, the thesis ends with Chapter 11 which covers the

conclusions and suggestions for future measurements.

1.1 State of the field

Research into superconducting resonators has become increasingly popular over the past

decade. Initial applications relied on using the kinetic inductance to produce millimetre

wave detectors [1], the next generation of which are likely to surpass the performance

of bolometers currently in use [7]. Kinetic inductance detectors consist of a resonator

coupled to the absorber, which is usually another superconductor. Photons incident on the

absorber create quasiparticles, leading to a change in the kinetic inductance and therefore

the resonator’s centre frequency. These detectors are interrogated in the many photon

regime with circulating powers in excess of ≈ −40 dBm [8]; where, high power in the

resonator can allow for very large quality factors, typically 106 but recently in excess of

107 [9].

The second major use of superconducting resonators is in quantum information process-

ing (QIP). Here, resonators are coupled to qubits for readout of the qubit state [2], to act as

a memory bus coupling multiple qubits [10] or create quantum limited amplifiers [11], [12].

For QIP applications, the resonator power approaches energies where only one photon is

circulating in the resonator [13](a low power is required to correctly manipulate the qubit).

At low powers, the Qi of the resonator is found to decrease [14], and the mechanism behind

this is also a possible cause of decoherence in the qubit.

Changes to the Qi with decreasing power cannot be explained by Mattis-Bardeen the-

ory4; instead, a description of the resonator coupling to a bath of two level fluctuators

4Mattis-Bardeen theory takes the two fluid model of superconductivity and extends the discussion of how the
conductivity fractions vary with temperature. Importantly this produces a temperature dependent quality factor
and frequency shift in superconducting resonators.
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(TLFs) is required [15]. Additional measurements have also shown the centre frequency to

be temperature dependent after Mattis-Bardeen mechanisms have saturated [16–19], this

effect can also be described by the resonator coupling to a bath of two level fluctuators.

These TLFs absorb and emit resonant photons. This produces both a source of loss and a

potential source of decoherence.

The microscopic origin of TLFs is not currently known. Additionally measurements

are yet to agree with theory for the noise processes produced by a bath of two level

fluctuators [7]. Furthermore measurements are yet to agree on the exact nature of these

TLFs, such as whether they act independently of each other or are in fact interacting.

1.2 The dielectric loss problem

Dielectric loss is a measure of the dissipation of electromagnetic energy within a dielec-

tric material. It is modelled by a phasor in the complex plane which represents the resistive

and reactive components. The level of loss is described by either the loss angle δ or the loss

tangent tan δ. Dielectric loss is usually considered arising from a bath of TLFs [20–23].

Such TLFs are a candidate for producing the ubiquitous 1/f noise [24] and are expected

to produce de-phasing in Josephson qubits [25] [26]. Furthermore, superconducting cir-

cuits are also affected by dielectric loss. The dielectric loss tangent, tanδ, directly relates

to two parameters. Firstly the intrinsic loss tangent provides a limitation on the qubit

T1 [27], this is due to the common approach of using a Josephson junction shunted by a

thin capacitor [28]. Where dielectric loss within the Josephson junction leads to

T1<
1

ω10 tan δ
(1.1)

where ω10 is the qubit transition frequency, tan δ is the dielectric loss tangent and T1 is the

energy decay time of the qubit. Hence a high dielectric loss tangent leads to a limitation

of the maximum possible T1. Furthermore the loss tangent limits the maximum possible

intrinsic quality factor by 1/Qmax = tan δ.

A superconducting resonator’s sensitivity to temperature fluctuations is determined by

the dielectric loss tangent. Where a modest temperature instability of ∼100 mK ±5 mK
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leads to a ∆ν in the kHz for a GHz resonator with typical loss tangent values in the mid-

10−5 level (where typical resonators have Ftan δ ≈10−4–10−6). Such frequency shifts give

the appearance of low frequency noise.

1.3 Project aims

The aim of this project is to investigate the effects of TLFs - a dominant decoherence

mechanism in superconducting circuits. These TLFs are studied using superconducting

resonators, which are sensitive probes to fluctuations in their electromagnetic environment.

The project aimed to:

1. Develop novel measurement techniques to enable the characterisation of ultra low

dielectric loss,

2. Develop a novel measurement technique to study jitter and noise of superconducting

resonators,

3. Examine the role of TLFs in the noise mechanisms by investigating noise while tuning

TLF parameters.

The measurement technique is based upon an adapted Pound frequency locked loop and

is novel to this field. This technique which was first used for NMR, but has been adapted

for the stabilisation of lasers [29]. This thesis examines the Pound method theoretically

and explores its suitability to measure properties of superconducting resonators. These

include the measurement of ultra-low dielectric loss and the study of intrinsic jitter within

the resonator.

20



Chapter 2: Solid state theory
The theoretical part of this thesis is split into several chapters. The first of which is

this chapter, which provides an overview of the relevant solid state theory. After this, the

circuit models for superconducting resonators are covered in Chapter 3. Finally Chapter

4 details the measurement and analysis details which are used later in the thesis.

2.1 Phenomena of Superconductivity

A normal metal consists of many electrons, often in excess of 1028m−3. In the sim-

plest picture the electrons are non interacting and only constrained by the Pauli exclu-

sion principle [30]. This gas of fermions produces conduction properties described by the

Drude-Sommerfeld model. Under closer examination, the electron density is high enough

to produce interactions between the electrons, where electrons are pushing each other away

due to the Coulomb force. The high electron density also leads to screening of these in-

teractions, effectively reducing them to distances comparable to the inter-atomic spacing.

Any motion of an electron will also cause the screened Coulomb interaction to move, lead-

ing to other electrons being perturbed by this screened Coulomb interaction. As such, the

electrons can no longer be considered independent within a Fermi gas, instead they must

be considered as electron-like quasiparticles within a Fermi liquid.

These quasiparticles forming a Fermi liquid are interdependent and also have a finite

lifetime. All conduction properties can now be understood in terms of these quasipar-

ticles acting as charge carriers. Within a normal metal, these charge carriers are called

Landau quasiparticles. Furthermore elastic and inelastic interactions leads to interesting

effects within metallic solids with strong electron lattice coupling, which combined with the

Coulomb interaction can lead to an attractive interaction between quasiparticles (known

as BCS theory). The lattice can be distorted by the motion of a quasiparticle. The now

distorted lattice appears as a positively charged region, capable of attracting a second

quasiparticle. Therefore, producing an effective attraction between two quasiparticles that

is mediated by a phonon. This attraction has already been shown to form a bound state

with a binding energy ∆ by Cooper [31]. It was further shown that the quasiparticle pairs
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must exist at opposite sides of the Fermi surface. Then, below a sufficiently low temper-

ature, these quasiparticles form a Cooper pair and condense into a macroscopic quantum

state. That is, all Cooper pairs can be described by one superconducting wave function.

The length scale over which this wavefunction decays, or equivalently, the maximum sep-

aration of the Cooper pair is given by the coherence length, ξ(0) = ~vF/π∆(0) where vF

is the Fermi velocity and ∆(0) is the binding energy at zero temperature.

Excitations from this macroscopic quantum state are called Bogoliubov quasiparticles

[32]. These excitations are described by an energy, U =
√
η2 + ∆2 with η being the energy

of a single particle in the normal state (a Landau quasiparticle) relative to the Fermi

energy. For η > 0 the Bogoliubov particle is electron-like and for η < 0 it is hole-like.

Both are equally favourable unless there exists a charge imbalance.

From BCS theory, the critical temperature in weakly coupled superconductors is de-

scribed by Tc = 1.14~ωD
kB

e−1/N(0)Uep . Where Uep is the electron phonon coupling potential

and ωD is the Debye frequency. BCS theory also predicts that the superconducting energy

gap is related to the critical temperature by ∆ = 3.52kBTc
√

1− (T/Tc). This highlights

that at temperatures above Tc the energy gap drops to zero, destroying the superconduct-

ing state. From the temperature dependence of the energy gap, it follows that the density

of quasiparticle excitations is also temperature dependent, this is described by

Nqp = 2N(0)

∫ ∞
∆

N(U)f(U)dU ∼ 2N(0)
√

2πkT∆e−∆/kT (2.1)

The final term is true for kT � ∆, which allows the Fermi-Dirac distribution to be

replaced by a Maxwell-Boltzmann distribution.

This BCS picture of superconductivity produced both the qualitative and quantitative

description of superconductivity that had been missing in the near half century since

its discovery. The theory explained the pairing mechanism, its temperature dependence,

and described its charge carriers. It provided a framework to describe the vanishing DC

resistance, expulsion of magnetic fields, exponentially decreasing heat capacity and infrared

properties of superconductivity. Interestingly, the theory makes only a few changes to the

Drude-Sommerfeld model; including an effective attractive potential and describing the
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screened Coulomb repulsion by just the quantity µ∗. From this, the superconducting state

of any s-wave superconductor can be described by one wavefunction with a macroscopic

phase and energy gap ∆.

2.2 Two fluid model

When the temperature of a superconductor is reduced through the superconducting

transition temperature, the population of charge carriers can be modelled as consisting of

two parts. One part consists of normal electrons (quasiparticles) described by the density

nn. The other part consists of Cooper pairs with a density ns. These two densities allow

the conductivity of the superconductor to be described by a two-fluid model. This model

takes into account that the current within a superconductor can travel by one of two paths,

either by ns or nn. Within this two fluid model, the conduction densities are described by

the following laws.

nt = ns + nn (2.2)

ns = nt

(
1−

(
T

Tc

)4
)

(2.3)

This shows the two densities sum to the total electron density of the metal at all tem-

peratures. As the temperature is decreased below Tc the Cooper pair density increases,

eventually becoming equal to the total electron density at T = 0 K. From these densities,

the quasiparticle contribution to the conductivity can be denoted as σn, while the conduc-

tivity due to ns is given by σs, considering the complex conductivity expressed using the

Drude model.

σ =
nte

2τs
m(1 + iωτs)

=
nte

2τs
m(1 + ω2τ 2

s )
− i nte

2ωτ 2
s

m(1 + ω2τ 2
s )

(2.4)

This is now of the form σ = σ1 + iσ2 and a circuit model of a superconductor can be

constructed using this equation to demonstrate the routes available for a current when

flowing through a superconductor, as shown in figure 2.1. The complex Drude model

considers a scattering time τs which in a normal metal is approximately 10−14s. However,

a superconductor experiences no scattering, hence τs can be taken as very large. When
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this happens, the complex Drude model can be rewritten to give

σ ∼ nte
2

m
(

1

ω2τs
− j 1

ω
) (2.5)

it follows that at low frequencies the real term will dominate the conductivity, this leads

to the characteristic zero resistance which gives superconductivity its name. At higher

frequencies, the imaginary term dominates. This change in behaviour typically occurs

at microwave frequencies, where ω2τs � 1. Phenomenologically the process can be un-

derstood by considering charged particles in a high frequency field. A Cooper pair can

absorb the energy from a high frequency field, but since they cannot scatter, this energy

is stored within the condensate and can be extracted again, so the effect being likened

to an inductance. A normal quasiparticle can scatter, which creates a dissipative path at

high frequencies. The effect is termed the kinetic inductance and allows superconducting

circuits to exhibit a larger inductance than is possible from their geometry alone (this can

also be realised in normal metals but at much higher frequencies). The kinetic inductance

at zero tempeature can be estimated using Mattis-Bardeen theory to give LK = 0.18 ~Rn
kBTc

,

where Rn is the normal state resistance. Additionally, these effects are temperature de-

pendent due to the carrier density terms ns and nn. Therefore, it follows that as the

temperature is increased towards Tc a larger proportion of the current is shunted into the

resistive normal path. This produces increasing losses when the temperature or frequency

is increased.

2.3 Two level fluctuators

This section overviews the theory relating to two level fluctuators. In other work, these

are often called two level systems, but here the word fluctuator is used to express that the

system is not readily controlled, by comparison a qubit is considered as two level system

since the probability of either state being occupied can be directly controlled.

The study of two level fluctuators began with measurements of amorphous solids at low

temperatures [20] [21], where the thermal, acoustic, and dielectric properties were found

to be very different to that of crystalline solids. A model which successfully describes

24



Figure 2.1: Circuit model of a superconductor showing the different routes current can take. The
impedance of each route changes with frequency; a superconductor has different DC and AC
properties, which vary with the relative carrier densities ns and nn.

all the key behaviour was independently introduced by Phillips [22] and Anderson [33].

This model explains the temperature dependent behaviour by the existence of a broad

spectrum of tunnelling states. For this thesis, changes to the dielectric constant are most

important, and the model suggests a change to the dielectric constant based upon the

population of the tunnelling states. A rigorous derivation of the model can be found in

the thesis by Gao [18], the review by Phillips [23] or the book “Low Temperature Physics”

by Enss and Hunklinger [34]. Here, I will only draw attention to the specific details of

the model required for either conceptual understanding or explaining results shown later

in this thesis.

The two level fluctuator is modelled as a particle in an asymmetric double well potential,

where thermally excited tunnelling allows for transitions between the states of either well.

Alternatively the model allows for transitions to occur by resonant absorption of microwave

photons. Each state corresponds to a different dielectric constant. As such transitions be-

tween states produce a change in the dielectric constant, this is despite the expectation

that the dielectric constant would be unchanging at such low temperature [35] [36]. Ex-

perimentally superconducting resonators are found to exhibit a temperature dependent
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centre frequency and a microwave drive dependent Qi. Where the frequency decreases

with decreasing temperature and the quality factor decreases with decreasing microwave

drive. Both effects can be parametrised by the presence of a bath of two level fluctuators

coupling to the resonator.

TLF effects have been found in a variety of substrates including r-cut sapphire [37], c-

cut sapphire [38], MgO [14], SiN [39], hydrogen passivated Si [40], wet and dry SiO2/Si [41]

and bare Si [42]. Additionally comparisons between surface oxides and deposited dielectrics

have been made using SiOx [43] and AlOx [40] [44]. The abundance of systems exhibiting

TLF like behaviour has led to suggested microscopic origins; paramagnetic impurities such

as chromium in sapphire, and dangling bonds which have been found in oxidised silicon

surfaces [19]. Changes in dielectric constant (ε(T )− ε(T0)/ε(T )) are parametrised as [23]

ε(T )− ε(T0)

ε(T )
= −2nd2

3ε

(
ln
T

T0

− [g(T, ω)− g(T0, ω)]

)
(2.6)

Where g(T, ω) = ReΨ(1/2 + ~ω/2πikBT ), T0 is a reference temperature, Ψ is the

complex digamma function and is only significant when kBT ≤ ~ω/2 and nd2 relates to

the density of fluctuators and their dipole moment squared. As such the model does not

distinguish between a few fluctuators with a large dipole moment and many fluctuators

with a small dipole moment. The frequency shift ∆ν0/ν0 is related to equation 2.6 by

introducing a filling factor F , which depends on the device geometry, and the electric field

distribution [45].
∆ν0

ν0

= −F
2

∆ε

ε
(2.7)

Where the loss tangent is then described by Fnd2/3ε = F tanδi. As shown in figure 2.2,

TLFs coupled to a resonator lead to a non-monotonic decrease in centre frequency with

decreasing temperature. This continues until the minimum at the value T = hν0/2kB after

which, the complex digamma function dominates creating an increase in centre frequency

with further decreases in temperature. The Kramers Kronig relation can be applied to

equation 2.6, producing a model describing the behaviour of the Q under varying microwave

drive. This derivation is comprehensively covered in references [18] [40] so only the relevant
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Figure 2.2: A plot simulating the general behaviour of a resonator’s centre frequency as temper-
ature is varied. The shift is due to TLFs and is described by equation 2.6. The minimum occurs
at T = hν0/2kB while the magnitude of the total frequency shift scales with Ftanδ.

parts are included here. In the weak field limit, the TLFs introduce a loss, resulting in

1

Qi

= Fδ0
TLStanh

(
~ω

2kBT

)
(2.8)

where Qi is the resonator’s internal quality factor and δ0
TLS is the intrinsic loss tangent

at zero temperature (note this is not the same as the δTLS determined from equation 2.6,

although in practice, the two agree to within 20% [40]). Equation 2.8 implies a weak

scaling of Qi with temperature yet does not describe any dependence on the microwave

drive. For this, we need to consider the strong field limit, which introduces a saturation

factor to equation 2.8.

1

Qi

=
Fδ0

TLStanh
(

~ω
2kBT

)
√

1 +
(

E
EC

)2
(2.9)

where EC is the TLF saturation field and E the electric field (although these can equiv-
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alently be replaced by the microwave drive P and saturation drive Pc). The existence

of this saturation relates to TLFs precessing much faster than any relaxation rates, re-

sulting in the TLF being found 50% of the time in the ground state [40]. Figure 2.3

highlights the general behaviour of the quality factor due to equation 2.9. In this plot it is

assumed that the only limiting losses are due to conductor losses and TLF losses, that is

1/Qi = 1/QMB +1/QTLF , in reality more loss mechanisms exist complicating the analysis.

The strength of this method is that it can be used on superconductors with a low Tc, where

conductor losses due to Mattis-Bardeen theory would occur in parallel with the TLF losses

in equation 2.8, an example of this is aluminium [14].

Figure 2.3: A plot showing the non-monotonic increase in 1/Qi with decreasing microwave drive.
At microwave powers below a critical drive, the Qi saturates at some lower value QTLF , in the
ideal case the high power saturation occurs due to the Mattis-Bardeen limited energy loss QMB.
The effect is exaggerated to more clearly show the behaviour.
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Chapter 3: The theory of

superconducting resonators

3.1 Derivation of the quality factor and Mattis-Bardeen effects

One of the many reasons that interest exists in superconducting resonators is the low

dissipation of the superconducting state. This should allow for very large intrinsic quality

factors (Qi) in resonators constructed from such materials. The devices featured in this

thesis are based upon LC “tank” circuits such as that shown in figure 3.1. For such an LC

circuit, the centre frequency is given by ω0 = 2πν0 = (LC)−1/2, where L is the inductance,

and C the capacitance. The quality factor is then defined as the energy in the resonator

divided by the energy lost per period. Energy in the resonator is stored in the inductor

Em = Li2/4 and capacitor Ee = CV 2/4 where i is the current and V the voltage, on

average the energy is equal to twice either of these quantities. Power lost is described by

Plost = i2R/2 for a series LC circuit or Plost = V 2/2R|| for a parallel LC circuit it follows

that5

Qi = ω0
Em + Ee
Plost

= 2ω0
Em
Plost

= 2ω0

CV 2

4
V 2

2R||

= ω0R||C

(3.1)

and for the series circuit

Qi = ω0
Em + Ee
Plost

= 2ω0
Em
Plost

= 2ω0

Li2
4
i2R
2

= ω0L
R

(3.2)

5Note these relations consider an oscillating voltage of amplitude V , or oscillating current of amplitude i. In
terms of the RMS voltage the power lost would instead be given by Plost = 〈V 〉2 /R = 〈i〉2R.
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For a fixed centre frequency, Qi scales inversely with any series resistance for a series LC

circuit, or linearly with the parallel resistance in a parallel LC circuit. The inherent low

dissipation of superconductors should make them suitable for producing high Qi devices.

Zero resistance is a property of superconductivity at DC, however, at higher frequencies

(but still below the superconducting gap energy) surface resistance becomes finite, but still

small enough to realise high quality factors.

Figure 3.1: Schematic of a parallel tank circuit, consisting of a capacitor of capacitance C,
inductor of inductance L, resistor of resistance R and driving voltage V .

In the presence of an electric field, Cooper pairs are accelerated. Their kinetic energy

is stored due to the lack of dissipation and can be recovered by reversing the electric field.

An applied magnetic field will penetrate a short distance λLon and can also store energy.

Together these effects create a complex surface impedance

Zs = Rs + jωLk (3.3)

which describes the non zero AC surface resistance of a superconductor Rs, and the fre-

quency dependent kinetic inductance Lk. Rs replaces R in equation 3.1 to become the

important factor determining the Qi of a superconducting resonator. The surface re-

sistance varies with the quasiparticle density, which follows an exponential temperature

dependence.

ρqp(T ) = 2N(0)
√

2πkBT∆(0)e−∆(0)/kBT (3.4)

where T is the temperature, N(0) is the single spin density of electron states at the metal’s

Fermi energy and ∆(0) ≈ 3.5kBTc is the superconducting energy gap. Understanding
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how the quasiparticle density relates to the surface impedance requires Mattis Bardeen

theory [46] to describe the temperature dependence of the complex conductivity, which

is given by σt = σ1 + jσ2. Here there conductivity is split into its real and imaginary

components, the Mattis-Bardeen theory is used to describe how these components behave

while the density of quasiparticles is varied. According to Mattis-Bardeen theory the

imaginary part of the complex conductivity is described by

σ2

σn
=

1

~ω

∫ ∆

∆−~ω

[1− 2f(u+ ~ω](u2 + ∆2 + ~ωu)√
∆2 − u2

√
(u+ ~ω)2 −∆2

du (3.5)

where ∆ is the superconducting gap function, u the energy, f(u) the Fermi function and

σn is the normal state conductivity just above Tc. A similar integral describes the real part

of the complex conductivity.

σ1

σn
=

2

~ω

∫ ∞
∆

[f(u)− f(u+ ~ω](u2 + ∆2 + ~ωu)√
∆2 − u2

√
(u+ ~ω)2 −∆2

du (3.6)

The ratio of each of the integrals is used to determine the Mattis-Bardeen limited quality

factor QMB = 2σ1
ασ2

[15]. Where α is the kinetic inductance fraction α = Lk
Lg+Lk

with Lg

being the geometric inductance. α is temperature dependent due to the kinetic inductance

depending on the quasiparticle density. The behaviour of QMB with temperature is shown

in figure 3.2. It should be noted that this describes the hard limit for the intrinsic quality

factor of a superconducting resonator. Although figure 3.2 shows that in the low T limit

QMB rapidly diverges, as such it rarely limits Qi when below Tc/10.

3.2 Derivation of scattering parameters

Next the coupling to the resonator must be considered. We begin by first deriving the

impedance of the tank circuit shown in figure 3.1. However, we are only interested in

the behaviour around the resonant frequency. Therefore writing ω = ω0 + dω allows the

impedance of a parallel LC circuit ZLC|| to be calculated.
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Figure 3.2: Plot showing how quality factor scales with normalised temperature. Plot generated
using Mattis-Bardeen theory with niobium Tc = 9 K and α= 0.001 at T =0 K, here α acts as
a scaling factor. The Mattis-Bardeen theory provides the hard limit on the quality factor for
all superconducting resonators. In practice, superconducting resonators follow the curve at the
high temperature end, but at low temperature other mechanisms prevent the quality factor from
reaching the Mattis-Bardeen limit.

ZLC|| =

(
1
R + 1

jω0L(1 + dω/ω0)
+ jω0C(1 + dω/ω0)

)−1

'
(

1
R + j dω

ω2
0L

+ jCdω

)−1

'
(

1
R + j2Cdω

)−1

' R
1 + j2CRdω

= R
1 + j2Qidω/ω0

=
R− 2jRQi(dω/ω0)
1 + 4Q2

i (dω/ω0)2

(3.7)

A coupling element will be added to this impedance to describe the total impedance of

the resonator, where the resonator is considered as the LC tank circuit plus some coupling

element. In general the coupling is modelled as being capacitive and achieved by including
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an additional coupling capacitor to the circuit, however the coupling can be generalised

to inductive coupling. Introducing an additional coupling capacitor will allow energy to

be added to the resonator, but at the cost of allowing additional energy to leak from

the resonator. This can be modelled with another quality factor, Qc, associated with

the coupling capacitance. The coupling capacitor is considered as connecting one plate

to the tank circuit and the other to a feedline of impedance Zl. The average energy

stored within the feedline side of coupling capacitor is given by Ecl = 1
4
ClV

2. Following

the calculation by Mazin [15] the power lost through the coupling capacitor is given by

Pcc = 2i2Z0 = 2(ωCcV )2Z0 and the capacitance of the feedline is given by Cl = nπ
ωnZl

.

Where Zl is usually engineered to be close to Z0, the characteristic impedance (defined as

50 Ω for the circuits in this thesis). For a lumped element resonator the n represents only

the fundamental mode so that Cl = π
ω0Zl

. Making use of this leads to a coupling quality

factor given by

Qc = 2ω0
Ecl
Pcc

= 1
2ω0

ClV
2

(2ωCcV )2Z0

= 1
4

π
(ωCZ0)2

(3.8)

There are now multiple quality factors describing a resonator. These combine by a sum

of reciprocals, such that the observed loaded quality factor consists of 1
QL

= 1
Qc

+ 1
Qi

where

the internal quality factor, Qi, covers loss due to Mattis-Bardeen and two level fluctua-

tor effects. Loading the resonator with a coupling capacitor also changes the resonator

impedance and hence its centre frequency. Therefore the new centre frequency needs to

be calculated, this is achieved by considering the impedance of an additional coupling ca-

pacitor in series with the previously derived LC circuit impedance. These terms combine

to give

Zres =
−j
ωCc

+
R− 2jRQi(

ω−ω0

ω0
)

1 + 4Q2
i (
ω−ω0

ω0
)2

(3.9)
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the resonance condition is met by setting the imaginary part of the impedance to zero.

Im(Zres) =
−1

ωCc
−

2RQi(
ω−ω0

ω0
)

1 + 4Q2
i (
ω−ω0

ω0
)2

= 0 (3.10)

Defining R = 4QiZ0

π
leads to a quadratic equation

4Q2
i

(
ω − ω0

ω0

)2

+
8Q2

iωCcZ0

π

(
ω − ω0

ω0

)
+ 1 = 0 (3.11)

solving for ω−ω0

ω0
leads to

ω − ω0
ω0

= −ωCcZ0
π ± ωCcZ0

π

√
1−

(
π

2QiωCcZ0

)2

= −ωCcZ0
π ± ωCcZ0

π

√
1−

(
Qc

2Qi

)2
(3.12)

In practice the resonator is designed such that Qi ≥ Qc, this makes the square root

term approximately 1. The positive solution then leads to ω = ω0 satisfying the resonance,

this is the initial unloaded LC centre frequency. However, this frequency leads to a high

impedance of the loaded resonator and hence reflection at the coupling capacitor. The

negative solution is then more interesting, and leads to a new centre frequency which will

be defined as ωn. To determine what this new centre frequency will be we need to define

δω = ω − ω0 and δω′ = ω − ωn these combine to give

ω0 + δω − ωn
ωn

=
δω′

ωn
(3.13)

using this definition for the negative impedance solution, leads to

δω

ω0

=
δω′

ωn
− 2Z0ωnCc

π
(3.14)

which can be substituted into the expression for the impedance of the loaded resonator
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Ztot = 1
jωCc

+
Z0

4Qi

π

1 + 2jQi

(
δω

ωn

)

=

1 + 2jQi

(
δω′

ωn

)
+ jωCcZ0

4Qi

π

jωCc − 2QiCcω

(
δω′

ωn

)

=

1 + 2jQi

(
δω′

ωn

)
jωCc − 2QiCcω
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(3.15)

here g = 4Qi(Z0Ccωn)2

π
= Qi/Qc is the coupling parameter. Therefore when g = 1 then

Qi = Qc so the resonator is critically coupled. It follows that g > 1 results in over

coupling the resonator and g < 1 results in under coupling the resonator. This expression

for a loaded LC resonator can describe both a lumped element resonator with a specified

inductance and capacitance, or a distributed (geometric) resonator with an inductance and

capacitance per unit length.

The loaded resonator appears as an abrupt change to the impedance. An applied signal

will change due to the resonator’s impedance, resulting in a transmission response and a

reflection response. In a two port circuit these are called scattering parameters and are

denoted by Sij where the signal is applied from port j and received through port i. These

relate to the ratio of voltages such that Sij = Vj/V i, therefore the transmission response is

denoted S21. The transmission response is therefore the ratio of the transmitted voltage to

the input voltage and indicates the signal was applied from port 1 and measured in port 2.

For completeness the reflection response is denoted by S11, here the scattering parameter

describe the ratio of the reflected voltage to the input voltage.

The scattering parameters can be obtained by use of the appropriate ABCD parameters

for two-port circuits [47]. In general this thesis focuses on the use of lumped element
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Figure 3.3: A plot showing the magnitude (in black) and phase (in red) response of a supercon-
ducting resonator described by equation 3.16 with ν0 = 5 GHz, Qi = 50000 and g = 2. These
values are representative of a typical resonator used within this thesis.

resonators. These resonators produce a notch response because the resonance provides

high impedance to the transmission line, this is described by

SLE21 =
2(1 + 2jQiy)

g + 2(1 + 2jQiy)
(3.16)

where a normalised centre frequency of y = δω′

ωn
has been used also it is common that

equation 3.16 is rewritten in the form S21 = 2[2 + g/(1 + 2jQiy)]−1. The magnitude and

phase response of a resonator are found from equation 3.16 and are plotted in figure 3.3.

For completeness, a quarter wavelength is also described by equation 3.16, but a half

wavelength would produce a peak response, and is therefore described by

S
λ/2
21 =

2

g + 2(1 + 2jQiy)
(3.17)

Alternative derivations of similar resonators can be found in other literature [48] [49]

[15], although the derivation in the thesis by Calvo [50] is particularly clear.
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Chapter 4: Measurement theory
This chapter outlines the important elements of oscillator theory required for perform-

ing noise measurements. The initial details cover phase sensitive homodyne detection and

frequency sensitive Pound based detection. Then a section covers how noise processes

can be understood. Next the Barkhausen relation for changing between the phase and fre-

quency of a resonator near its centre frequency is introduced. Finally the Leeson frequency

is covered to discuss its implications on noise measurements and the validity of when the

Barkhausen relation can be applied.

4.1 Phase sensitive detection

In the previous chapter the circuit model describing a resonator was derived. Now we

want to interrogate the resonator and to examine its dynamics. This could be to use the

resonator as a detector by subjecting it to some external stimulus. However, in this thesis

we are concerned with the dynamics of the unperturbed resonator. This is known as the

intrinsic jitter to either the resonator’s frequency or phase. This section will cover two

methods of measuring the resonator to examine its intrinsic jitter.

Firstly the most common and well understood method of homodyne detection is cov-

ered. Some example schematics are presented and the mathematics of the detection is

introduced. Then the problems of the method are evaluated. This is to justify the use of

a different measurement technique known as Pound locking.

Homodyne detection is a phase sensitive method for measuring the phase different

between two different signal paths. The phase sensitive element in this method is known

as a mixer, these have the effect of multiplying their two inputs to provide an output,

which in this implementation is down-mixed. Figure 4.1 gives the basic schematic for a

homodyne detection scheme. In essence, the signal is split into two paths, one which serves

as a reference while the other features some device that produces a phase jitter. These

paths recombine at the mixer, which produces a down-mixed DC signal with an amplitude

dependent on the phase difference between the two signal paths. It is assumed that the

dominant source of phase jitter should be the device under test. However at microwave
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Figure 4.1: Schematic of a simple homodyne detection setup. Shown are signals at RF (red) and
DC (green). The microwave generator output is split into two signal paths. One passes through
the resonator, while the other acts as a reference path. A mixer is then used to recombine the
signals and measures the phase difference between the resonator path and the reference path.

frequencies where the wavelengths concerned are of order ∼10 mm, an appreciable phase

shift can occur due to vibrations of cables. As such the use of semi-rigid coaxial lines and

vibration isolation is required for moderate phase stability. In practice, a phase shifter is

used in the reference arm to put the two arms into quadrature. The mixer output consists

of sum and difference terms as shown by

Acos(ωt+ θa) ∗Bcos(ωt+ θb) =
AB

2
[ cos(θa − θb) + cos(2ωt+ θa + θb)] (4.1)

where a low pass filter is used to remove the sum term, resulting in only the DC term

which is dependent on the phase difference.

AB

2
cos(θa − θb) =

AB

2
cos(∆θab) (4.2)

By using the phase shifter in the reference path to keep the two arms in quadrature, the

output DC voltage will then be zero. Since the gradient of the cosine is steepest around 0

this is the point of highest sensitivity.

Vphase =
AB

2
cos(∆θab) (4.3)
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Phase jitter in either path will produce a non-zero phase voltage. The strength of the

homodyne technique is that it operates at a constant frequency (where the output stability

of a synthesizer is optimally low), and the phase resolution at the mixer is very good.

To an initial approximation the method has no amplitude sensitivity due to changes in

amplitude being unable to produce a non-zero phase voltage. However, if both a phase

jitter and amplitude jitter are present, then the now non-zero phase voltage is sensitive

to amplitude fluctuations. In practice this can be prevented by the use of an IQ mixer

to allow separate measurement of the amplitude and phase variations, such setups are

common and conclude the amplitude fluctuations to be much smaller than those of the

phase [51]. Even with the improvement of an IQ mixer, the homodyne technique is still

susceptible to phase variations from either signal path and crucially it cannot isolate the

variations from just the device path.

P h a s e  n o i s e  f l o o r  
f o r  1 M H z  P o u n d

P h a s e  n o i s e  f l o o r  
f o r  c h o p p e d  h o m o d y n e

S θ(f)

f r e q u e n c y

P h a s e  n o i s e  f l o o r  
f o r  s i m p l e  h o m o d y n e

f c

Figure 4.2: A plot showing the general phase noise shape, highlighting the system noise floor
as a function of operating frequency. Simple homodyne setups suffer from close-in noise, this is
somewhat mitigated by chopping the down-mixed signal. Higher operating frequencies (well above
the flicker corner fc) can be obtained from phase modulation as used in the Pound technique.

Homodyne detection suffers from close in noise, this is high levels of low frequency

noise which occur within the electronics required in the setup (the mixers and amplifiers).
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This can be measured by removing the resonator from figure 4.1 and measuring the jitter

of the amplifier chain. This is a measurement of the systematic phase noise, an example

of this type of measurement is shown in figure 4.2. The reason that homodyne detection

suffers is that the detection is performed at the same frequency as the carrier. Resulting

in an offset frequency of 0 Hz, so the relevant noise floor is shown at 0 Hz in figure 4.2.

If the detection can be performed at a different frequency then a better position against

the noise floor can be obtained. Figure 4.3 shows the use of an additional mixer at the

input which is driven by a square wave signal. The result is to chop the input signal,

which can later be synchronously detected. This is an example of a “chopped” homodyne

setup, where the use of an offset frequency (equal to the square wave repetition rate)

has led to better positioning on the system noise floor. Typically this allows for offset

frequencies of a few kHz, but this may not be above the systematic flicker corner frequency

fc. Room temperature electronics are not the only cause of the close in noise. High low

frequency noise will also occur due to slow drifts in the resonator itself as well as slow

phase fluctuations from vibrations in the measurement cables. These reasons prompted

this project to look at alternative method, that could deal with these problems.

4.2 Frequency sensitive detection

An ideal detection method would not have any ambiguity as to which path created

the jitter. This can be achieved by only using only one path, a method capable of this is

Pound locking, a technique which is over 50 years old [52]. This approach is well known

within NMR [53], was used to test general relativity in the Pound-Rebka experiment [54],

and has been adapted for use in precision frequency metrology as the Pound-Drever-Hall

setup [29] [55]. Here, the carrier is phase modulated sufficiently fast that side bands

separated from the carrier by the frequency of the phase modulation are created. The

carrier signal is tuned to be on resonance and sent to the resonator. To prevent the phase

sidebands from interacting with the resonator the modulation frequency must be set to

larger than the resonator bandwidth.

A diode is then used to rectify this signal (both the carrier and sidebands), having the

effect of squaring all terms and so the resultant signal is an envelope at the phase modula-
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Figure 4.3: A schematic of a real homodyne detection scheme. Shown are signals at RF (red)
and DC (green). A square wave drives the input mixer to chop the signal, this is synchronously
detected to help alleviate susceptibility to low frequency noise. The power input to the sample
can be varied, this power is detected using a spectrum analyser.

tion frequency containing the now phase shifted carrier. The importance of this envelope

is that in operating at the phase modulation frequency (which is much smaller than the

carrier frequency), the resulting wavelength is much larger leading to a huge suppression

of vibration based phase jitter. A lock-in amplifier can then be used to extract the phase

shifted carrier, sampling of this voltage can be used to perform noise measurements.

Feedback can be readily implemented into a Pound circuit by feeding the lock-in signal

into a PID controller which attempts to null the input signal. The PID controller calculates

a voltage expected to null its input, and sends this out to a VCO (which acts as the

source synthesizer in figure 4.4). The VCO then varies its frequency output based on the

input voltage it receives. In the next subsection, the mathematics of the Pound circuit is

derived to show that it produces an error signal where the zero-crossings correspond to

the resonance condition being met. This means that the PID is actively locking to the

resonance. Additionally within the vicinity of the zero-crossing the error signal obeys a

linear dependence, which greatly simplifies the feedback requirements.

The major advantage of the Pound based method is the use of only one signal path, that
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Figure 4.4: A schematic of a simple Pound detection setup. Shown are signals at RF (red), 1 MHz
(yellow) and DC (green). The VCO outputs an RF carrier signal, while a second generator drives
a phase modulator at 1 MHz. The carrier is phase modulated resulting in the creation of phase
sidebands. A diode acts as a power detector to rectify the signal for narrow band detection using
a lock-in amplifier.

is shared by the carrier and the sidebands. The sidebands are sufficiently separated to not

interact with the resonator, but are close enough to allow for a large common mode rejection

of any phase jitter experienced by both the carrier and its sidebands. This, along with

the high offset frequency (due to phase modulation at 1 MHz) lead to the much improved

positioning on the system noise floor, as shown in figure 4.2. Furthermore the feedback

allows for knowledge of when the resonator drifts, allowing for any detrimental divergence

to be accounted for. This means that while the timespan of a homodyne measurement

is limited by the time taken for the resonator to drift outside of the homodynes optimal

position, there is no such limitation on the measurement time for the Pound setup. It

also follows that the diode will later be shown to be insensitive to amplitude fluctuations

resulting in an unchanging slope of the error signal, reducing sensitivity to an amplitude

jitter.
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4.3 Pound theory

To understand the Pound method, we consider an incident voltage Vinc, of amplitude

V0 and at frequency ωc. This frequency is near the resonant frequency of our resonator,

ω0. The carrier is phase modulated at a frequency ωm which is several times larger than

the resonator bandwidth ∆ω.

Vinc = V0e
j(ωct+βsinωmt) =


J0(β)ejωct

+J1(β)ej(ωc+ωm)t − J1(β)ej(ωc−ωm)t

+J2(β)ej(ωc+2ωm)t − J2(β)ej(ωc−2ωm)t + ...

V0 (4.4)

Where β is the modulation index, which relates to the ratio of microwave power within

the carrier relative to the sidebands. The Pound setup uses a modulation index such that

almost all the power is within the carrier and the first two phase sidebands (J0, J1 and

J2). The Pound technique requires transmission off resonance to ensure transmission of

the phase sidebands, this means that a notch type resonance is required. Where, full

transmission occurs off resonance and reduced transmission occurs within the resonance.

This allows the phase sidebands to transmit without interacting with the resonator, while

the carrier undergoes some amplitude and phase change within the resonance. For a

resonator with a peak response it is common that a circulator is used to recreate a notch

response from the measurement of the reflected signal. However, in our implementation

the chip already produces the desired notch response. Considering the S21(ω) (where ω is

the frequency to evaluate S21 at, for example S21(ωc + ωm) means evaluating S21 at the

upper phase sideband which has a frequency of ωc + ωm) leads to

Vinc =


J0(β)S21(ωc)e

jωct

+J1(β)S21(ωc + ωm)ej(ωc+ωm)t − J1(β)S21(ωc − ωm)ej(ωc−ωm)t

+J2(β)S21(ωc + 2ωm)ej(ωc+2ωm)t − J2(β)S21(ωc − 2ωm)ej(ωc−2ωm)t + ...

V0

(4.5)
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where the conjugate of the this voltage is given by

V ∗inc =


J0(β)S∗21(ωc)e

−jωct

+J1(β)S∗21(ωc + ωm)e−j(ωc+ωm)t − J1(β)S∗21(ωc − ωm)e−j(ωc−ωm)t

+J2(β)S∗21(ωc + 2ωm)e−j(ωc+2ωm)t − J2(β)S∗21(ωc − 2ωm)e−j(ωc−2ωm)t + ...

V0

(4.6)

the power (P ∝ VincV
∗
inc) can be detected using a diode and is given by


J0(β)S21(ωc)e

jωct

+J1(β)S21(ωc + ωm)ej(ωc+ωm)t − J1(β)S21(ωc − ωm)ej(ωc−ωm)t

+J2(β)S21(ωc + 2ωm)ej(ωc+2ωm)t − J2(β)S21(ωc − 2ωm)ej(ωc−2ωm)t


J0(β)S∗21(ωc)e

−jωct

+J1(β)S∗21(ωc + ωm)e−j(ωc+ωm)t − J1(β)S∗21(ωc − ωm)e−j(ωc−ωm)t

+J2(β)S∗21(ωc + 2ωm)e−j(ωc+2ωm)t − J2(β)S∗21(ωc − 2ωm)e−j(ωc−2ωm)t




V 2

0

(4.7)

This simplifies to DC components, terms at ωm (with both in phase and quadrature com-

ponents), and also higher harmonics 2ωm, 3ωm and 4ωm. The higher order terms are

neglected since the lock-in will extract only terms at modulation frequency, leaving the in

phase component J0(β)J1(β)S21(ωc)S21(ωc + ωm)∗e−jωmt − J0(β)J1(β)S21(ωc)S21(ωc − ωm)∗ejωmt

+J0(β)J1(β)S21(ωc)
∗S21(ωc + ωm)ejωmt − J0(β)J1(β)S21(ωc)

∗S21(ωc + ωm)e−jωmt

V 2
0

(4.8)

where the exponentials can be expanded into sin and cos terms.


S21(ωc)S21(ωc + ωm)∗cos(ωmt)− jS21(ωc)S21(ωc + ωm)∗sin(ωmt)

− S21(ωc)S21(ωc − ωm)∗cos(ωmt)− jS21(ωc)S21(ωc − ωm)∗sin(ωmt)

S21(ωc)
∗S21(ωc + ωm)cos(ωmt) + jS21(ωc)

∗S21(ωc + ωm)sin(ωmt)

− S21(ωc)
∗S21(ωc − ωm)cos(ωmt)− jS21(ωc)

∗S21(ωc − ωm)sin(ωmt)

V 2
0 J0(β)J1(β)

(4.9)

Since this is now a function within an envelope at ωm the phase of the lock-in can be

adjusted to extract only the real terms, so we only consider the real part of the S21
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parameter for the cosine terms. However, we need to consider ReS21ImS21 combinations

for the Sine terms. We now make use of the S21 parameter derived earlier.

S21 =
2(1 + 2jQiy)

g + 2(1 + 2jQiy)
(4.10)

Where g is a coupling parameter and y is the normalised centre frequency (ν−ν0)
ν0

, consider-

ing S21 at ωc + ωm means taking 2πν = ωc + ωm. Evaluating the real and imaginary parts

of the S21 parameter leads to ReS∗21 = ReS21 and ImS∗21 = −ImS21. Applying this leads to

all cosine terms cancelling and produces the following combinations for the Sine terms.


+ReS21(ωc)ImS21(ωc + ωm)− ImS21(ωc)ReS21(ωc + ωm)

+ ReS21(ωc)ImS21(ωc − ωm)− ImS21(ωc)ReS21(ωc − ωm)

+ ReS21(ωc)ImS21(ωc + ωm)− ImS21(ωc)ReS21(ωc + ωm)

+ ReS21(ωc)ImS21(ωc − ωm)− ImS21(ωc)ReS21(ωc − ωm)

V 2
0 J0(β)J1(β)sin(ωmt)

(4.11)

Which simplifies to

2J0(β)J1(β)V 2
0 sin(ωmt)

 ReS21(ωc)[ImS21(ωc + ωm) + ImS21(ωc − ωm)]

−ImS21(ωc)[ReS21(ωc + ωm) + ReS21(ωc − ωm)]

 (4.12)

where the lock-in amplifier is referenced to the modulation frequency. This means it

extracts the coefficient in front of the sin(ωmt) term, leading to the error signal

Verror ∝ 2J0(β)J1(β)V 2
0

 ReS21(ωc)[ImS21(ωc + ωm) + ImS21(ωc − ωm)]

−ImS21(ωc)[ReS21(ωc + ωm) + ReS21(ωc − ωm)]

 (4.13)

This agrees with the expression of Black [55] and is depicted in figure 4.5. Here the error

signal crosses zero three times, corresponding to the carrier being at resonance and each

phase side band being at resonance. The amplitude of the central crossing (the carrier)

is twice that of the phase side bands (assuming the modulation index is appropriately

chosen). The carrier zero-crossing can always be determined by checking the direction

of the crossings, since the sidebands both cross from one direction, whereas the carrier

45



4.94 4.96 4.98 5.00 5.02 5.04 5.06

-0.4

-0.2

0.0

0.2

0.4

Frequency HGHzL

E
rr

o
r

si
g
n
al

HVL

Figure 4.5: A plot of the Pound error signal as a function of carrier frequency using equation 4.13,
where zero crossings correspond to the resonance condition being met. The loop is operated in
the vicinity of the central zero crossing.

crosses from the other direction. The feedback loop is completed by a PID controller

which attempts to null the error signal. This means care must be taken to ensure the

correct zero crossing is chosen for the lock.

So far we have neglected the DC terms which appear as

Verror ∝ V 2
0


J2

0 (β)S2
21(ωc)

2

+J2
1 (β)[S21(ωc + ωm)2 + S21(ωc − ωm)2]

+J2
2 (β)[S21(ωc + 2ωm)2 + S21(ωc − 2ωm)2]

 (4.14)

these can be further simplified by realising that far outside of resonance the S21 response

is 1. When the carrier is resonant (i.e. when the loop is locked on resonance) the S21

parameters for the J1(β) and J2(β) terms are 1. This is due to the modulation frequency

being much larger than the resonator bandwidth, thus we get

Verror ∝ V 2
0

{
J2

0 (β)S2
21(ωc)

2 + 2J2
1 (β) + 2J2

2 (β)
}

(4.15)

where the DC terms do not contribute to the error signal, but can affect detector efficiency
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by saturating the diode. The remaining S21 parameter also acts to suppress the carrier

(which would otherwise be at the highest power and could saturate the diode). A further

simplification can be applied to the error signal. Within the vicinity of a zero-crossing, the

error signal can be linearised with respect to carrier frequency as

Verror ∝ V 2
0

4gQi

(g + 2)2
y (4.16)

hence the error signal scales linearly with the normalised carrier frequency y. Then the

gradient of the error signal is dependent on the unloaded quality factor and the coupling

strength (which combine to form a non-linear function of the uncoupled quality factor). It

also scales linearly with the power detected by the diode. Low powers reaching the diode

lead to the gradient decreasing. This results in small frequency deviations (frequency in fig-

ure 4.5) corresponding to very small correction voltages (error signal voltage in figure 4.5).

However, if the power is too low then the gradient can become essentially flat, making the

zero crossing appear broad to the PID controller. This corresponds to the PID not being

able to lock – resulting in a continual linear drift of the VCO modulation voltage. These

effects can be slightly compensated for by increasing the voltage-to-frequency conversion

factor, which indirectly increases the gain. This highlights the need to maximise the power

seen at the diode. Therefore, all amplification and filtering must be performed before the

detection diode.

4.4 The effects of asymmetric resonances

It is important to know whether the resonance is symmetric before locking to the zero

crossing (resonance) with the Pound loop. This is since a symmetric resonance has a phase

zero-crossing at the same point as its maximal amplitude response, this is not true for an

asymmetric resonance. Resonator asymmetry occurs because of conduction paths existing

in parallel with the resonator [56]. They can be modelled simply by allowing the coupling

parameter g to be complex [57]. The effect of increasing resonance asymmetry is shown in

figure 4.6, the minimum of the real response stops occurring at the same frequency as the

phase zero-crossing.
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Figure 4.6: Two plots showing the magnitude and phase response of an increasingly asymmetric
resonance. The red curve shows a real coupling parameter g. Then the magnitude of the imag-
inary component of g is increased through the colour transition orange to blue. As asymmetry
is increased the minimum of the magnitude response shifts, so that the phase zero-crossing stops
representing the resonant frequency.
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Figure 4.7: A plot showing the Pound error signal for an increasingly asymmetric resonance. The
red curve shows a real coupling parameter g. Then the magnitude of the imaginary component
of g is increased through the colour transition orange to blue. Note as with figure 4.6 the position
of the zero-crossing no longer represents the resonant frequency.

Two problems arise with an asymmetric resonance, firstly the error signal zero crossing

stops representing the resonant frequency and secondly the magnitude of the error signal
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becomes smaller (leading to a reduced sensitivity). The first problem can be overcome by

using a non-zero set point on the PID controller, effectively compensating for the “false”

resonant frequency. However, the second problem causes a reduced sensitivity to frequency

fluctuations and inhibits operation at ultra low powers. In the ultra low power limit, these

problems become compounded as the error signal becomes flatter, which in turn prevents

the use of a non-zero set-point, ultimately forcing the resonator to be tracked at a frequency

that is not the resonant frequency, this is shown in figure 4.7.

4.5 Fluctuations
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Figure 4.8: A plot showing the centre frequency of a resonator as a function of time. The centre
frequency is readout at a rate of 100 Hz using the Pound method described previously. Circled are
three commonly observed noise processes, white frequency (green), random walk of the frequency
(orange) and flicker frequency noise (blue).

Having investigated the resonance model and the theory for two different measurement

setups, the next step is to cover the analysis of fluctuations and how to relate them to

noise processes. This follows other related works which also looked into this problem

(although with different methods) these are covered in the theses of Mazin [15], Gao [18],
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Barends [17], and featured later in the literature review. Fluctuations warrant study since

they are an undesired, and problematic effect. In fact, the study of electronic noise has

spanned decades. In the general case, the properties of some quantity are measured as

a time series using a convenient electronic instrument. The fluctuations are understood

by generating some statistics relating the quantity at several instances in time and thus

measuring the deviation that occurred within the time span. Commonly, the time series

of data is studied using spectral analysis.

Within this thesis the quantity that is measured as a time series is the centre frequency

of a resonator. This is shown in figure 4.8, which demonstrates the appearance of some

noise processes within the raw time series. The next section will outline how the common

noise processes within resonators appear under various analysis techniques. It will also

introduce time based statistics which are not common to this field.

Noise understood by power laws

From either spectral or time based analysis, a noise process can be quantified by its slope

in the power spectrum. By fitting the slope the noise behaviour is approximated, i.e. is

the noise diverging with time, and if so how strongly. From this analysis, several common

power laws appeared and have corresponding names. These are outlined in figure 4.9

which highlights the common noise processes and how they behave in the different analysis

environments. This figure exists to aid in the understanding of noise processes and the plots

that appear later in the thesis. The colours used in figure 4.9 match those used in figure 4.8.

This is to highlight how noise processes appear in the raw data and allow comparison to

the appearance after analysis. These plots demonstrate that white frequency noise is a fast

process (dominates over short timescales) which appears as a rapid oscillation in the raw

data. At longer timescales the flicker frequency process dominates, appearing as a series

of almost equally spaced sharp spikes in the raw time series. Finally the slow switching

behaviour represents the random frequency walk, which acts as a background for the other

two processes to act on top of.

The use of a common notation in terms of hi and bi parameters is introduced in figure 4.9

and is described in table 4. This plot demonstrates that the fundamental spectrum is that
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Figure 4.9: A plot comparing the phase spectrum Sθ, frequency spectrum Sy and Allan variance
σ2
y (all in log-log scale). The plot exists to aid in understanding the later noise measurements.

Plot details how a noise process can be understood by power laws and how each process scales
for the chosen analysis method. Table 4 can be used to switch between analysis methods. Plot
is adapted from Rubiola [58]
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of phase fluctuations Sθ, a homodyne measurement on an amplifier would measure its

spectrum of phase fluctuations. In this case the noise floor is described by the white

phase process b0. The final section of this chapter examines the Leeson frequency, this is

a timescale of a resonator which determines whether one is probing the spectrum of phase

fluctuations or the spectrum of frequency fluctuations Sy
6. It follows that typically one

actually measures the spectrum of frequency fluctuations when studying a resonator. In

the spectrum of frequency fluctuations the noise floor is shown to be the white frequency

process (h0) and the b0 process is instead drift like at high frequencies. All measurements

in this thesis will be sensitive to only the spectrum of frequency fluctuations, so only

the middle or bottom plots of figure 4.9 will be used. The top plot is included for the

discussion of the Leeson frequency (covered in section 4.7) and to highlight differences

between measurements in this thesis and those covered in the literature review.

For example flicker frequency noise is described by Sy = h−1/f , while white frequency

noise obeys Sy = h0 where h−1 and h0 are usually constants. However these are only true

within the spectrum of frequency fluctuations. Within the spectrum of phase fluctuations

Sθ the flicker frequency noise is instead described by Sθ(f) ∝ b−3/f
−3. Finally figure 4.9

shows that if the analysis is performed in the time domain then the flicker frequency noise

is described by a σy ∝ τ 0 slope. Table 4 demonstrates how one can extract the hi (or bi)

parameter to interchange between the frequency spectrum Sy, the phase spectrum Sθ or

Allan variance σ2
y. Analysis using Allan statistics is preferred in this thesis in part because

of the ability to identify frequency drifts (the τ 2 slope in the bottom plot of figure 4.9).

These drifts obscure the existence of other processes when using spectral analysis.

This thesis focuses on the study of the h−1 parameter which describes the level of

flicker frequency noise within a resonator (Sy(f) ∝ h−1/f). The behaviour of the h−1 will

be measured in later chapters, which will make heavy use of table 4. The next subsection

covers spectral analysis and the Allan deviation. Although the last section on the Leeson

6The fractional frequency spectra (Sy in units of 1/Hz) is defined as the Fourier transform of the autocorrela-

tion of frequency deviations and is given by Sy = Sdν
ν20

= lim
T→∞

T∫
0

T∫
0

〈δf(t1)δf(t2)〉
ν20

ejf(t1−t2)dt1dt2, where Sdν is the

frequency spectra (in units of Hz/Hz2), ν0 is the nominal centre frequency of the resonator, and f(ti) the Fourier
frequency

52



frequency is needed to distinguish between the spectrum of phase fluctuations and the

spectrum of frequency fluctuations.

Table 4: Noise types by power law, adapted from Rubiola [58]

Noise type Sθ(f) Sy(f) Sθ ↔ Sy σ2
y(τ)

White PM b0 h2f
2 h2 = b0

ν20

3fHh2
(2π)2

τ−2 a

Flicker PM b−1f
−1 h1f h1 = b−1

ν20
A× h1

(2π)2
τ−2 b

White FM b−2f
−2 h0 h0 = b−2

ν20

1
2h0τ

−1

Flicker FM b−3f
−3 h−1f

−1 h−1 = b−3

ν20
2ln(2)h−1

Random walk FM b−4f
−4 h−2f

−2 h−2 = b−4

ν20

(2π)2

6 h−2τ

Linear frequency drift 1
2(y)2τ2 c

aValid only when 2πfHτ � 1

bWhere A = [1.038 + 3ln(2πfHτ)]

cHighlights that linear frequency drifts are not identifiable by spectral analysis

Analysis in the frequency domain

Spectral analysis begins by describing the correlation of a noisy signal z(t) at different

points in time, this is called auto-correlation. If the noisy signal has a known mean κi and

variance σ2
i , then its autocorrelation between times t1 and t2 is given by

R(t1, t2) =
X[(z(t1)− κ)(z(t2)− κ)]

σt1σt2
(4.17)

Where X is the expectation operator (this is the first moment of a random variable, in

the case of a Gaussian process it is also the mean). It is assumed the process is bounded

(has a non zero and non-infinite variance). This assumption can be problematic for the

study of ultra stable processes; where one may need to average for very long times to

observe a non-stationary variance. The autocorrelation function will have a value between

-1 and 1, where perfect correlation is indicated by 1 and anti-correlation is indicated by

-1.
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If the noisy signal has a time independent mean and variance, then the autocorrelation

can be rewritten in its more familiar form.

R(τ) =
X[(z(t)− κ)(z(t+ τ)− κ)]

σ2
=< z(t)z(t+ τ) > (4.18)

Here, it has been assumed that the autocorrelation only depends on the separation in time

of the noisy function. For analysis of fluctuations, the Wiener-Khinchin theorem is used to

translate the autocorrelation function to the power spectral density by a Fourier transform.

Sy(ω) =

∫ ∞
−∞

< z(t)z(t+ τ) > e−iωτdτ = 2

∫ ∞
0

< z(t)z(t+ τ) > e−iωτdτ (4.19)

The relevant examples for this case are the noisy signals with a Gaussian distribution.

This applies for any resistor at finite temperatures, which exhibits Johnson noise. The

autocorrelation of such a function is sharp around τ = 0, producing a flat power spectrum.

As a second example a single time-scale exponential decay leads to a Lorentzian-like power

spectrum, producing a roll off at the inverse of the single characteristic time-scale.

Two problems arise from the spectral analysis method when studying noise processes.

Firstly, the noise often results in a time dependent variance, which results in an ill-defined

autocorrelation and hence power spectrum. To get around this, a measurement must span

a long time to reach domains when the noise has a variance that is nearly time independent

(such as flicker limited). In this case, care is needed when looking at the power spectrum

as it is only valid at low Fourier frequencies which correspond to the large time limit.

Although at such time scales the the autocorrelation does not perform much averaging to

be statistically confident. Consequently this leads to low confidence in the region where

the autocorrelation is well defined. Most importantly, the non-standardised use of both

windowing, and the handling of the numerical pole at zero, make it very difficult to make

accurate and valid comparisons to other spectra. This is especially true when studying

low frequency noise, where the numerical pole at zero ensures spectral analysis will always

diverge in the low frequency limit. It is for these reasons that in this thesis we prefer to

perform analysis in the time domain.
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Analysis in the time domain

If a noisy signal has a time varying variance, or if one wants to perform valid com-

parisons to other measurements, then another method is needed to measure the nature of

fluctuations with high confidence. One can begin by simply studying the time dependence

of the mean and variance. For a white frequency noise process, this was found to be suffi-

cient (the mean and variance both converge with increasing time). This indicates that for

a frequency independent noise process averaging will improve resolution. However, it was

found that for all other noise processes, the standard variance was divergent [59] [60] [61],

making the standard variance an insufficient analysis method, this is shown in figure 4.10.

1 1 0 1 0 0 1 0 0 00 . 1

1

1 0

1 0 0

 α= 0  W h i t e  f r e q u e n c y
 α= - 1  F l i c k e r  f r e q u e n c y
 α= - 2  R a n d o m  f r e q u e n c y  w a l k
 α= - 3  F l i c k e r  w a l k  f r e q u e n c y
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Figure 4.10: a plot showing how the ratio of the standard variance for N samples by the time
average of a two sample variance varies with the number of samples, N. The plot highlights the
divergent behaviour of the standard variance for various noise types, described by the value of α.
This plot is adapted from the NIST frequency metrology pages [62]

To understand this divergence, consider a data set characterised by a strong flicker

frequency component. This results in a slow non-random (i.e. cannot be reduced by

averaging) drift in a quantity. Therefore as the number of samples is increased, the portion
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of samples that are sufficiently separated that they become affected by the flicker increases.

Consequently the classical variance will diverge as the number of samples is increased. This

happens for any slow drift-like noise process, as can be seen in Figure 4.10. To get around

this the Allan (or two sample) variance was created. The Allan variance is non divergent

for all noise processes and for a resonator can be determined by

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

(ȳi+1 − ȳi)2 (4.20)

where ȳi is the ith of M mean fractional frequency values over the measurement interval

τ , which is usually some n multiples of the base clock interval τ0. Additionally, the Allan

variance (σ2
y) relates to an Allan deviation (σy) as σy =

√
σ2
y. Further, the Allan variance

can be improved, to use all possible combinations of the data set, this is achieved by

overlapping the samples and known as the overlapping Allan variance.

σ2
y(τ) =

1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

{
j+m−1∑
i=j

(ȳi+m − ȳi)

}2

(4.21)

Here the averaging time is now denoted by τ = mτ0. Although computationally inten-

sive, this calculation greatly improves statistical confidence at long time scales. Hence, it is

especially useful for the analysis of slow processes and is the standard metric for metrology

applications. After calculating the Allan variance, the Allan deviation is usually plotted

in a so-called sigma-tau plot. This plot is read as the jitter magnitude (from the Allan

deviation) which is found when measuring for a given period τ . Figure 4.9 shows how to

understand a sigma-tau plot compared to the phase spectrum and frequency spectrum.

4.6 Barkhausen relation

Having covered the various measurement and analysis methods, this section will now

detail the differences between the measurement of frequency fluctuations and phase fluctu-

ations. This begins with the Barkhausen relation, which relates the frequency and phase

response of a resonator. Then the Leeson frequency is introduced to examine when the

Barkhausen relation is valid. The Barkhausen relation makes use of the resonator circuit
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Figure 4.11: A plot showing the measured phase response of a typical resonator used in this
thesis. In the vicinity of resonance the phase response is linear allowing the phase-to-frequency
shift to be calculated using the Barkhausen relation. Note this plot is effectively a zoom in of
the phase response shown in figure 3.3.

model, where the transmission parameter was found to be SLE21 = 2[2 + g
1+2jQiy

]−1, where

the y = (ν0 − ν)/ν is the normalised centre frequency. A zoom of the measured phase

response of a resonator is shown in figure 4.11. The linear region of the phase response of

a resonator can be described by the following statements in the Barkhausen relation [58].

δω

ω0

=
δν

ν0

=
δθ

2QL

for
δν

ν0

� 1

2QL

(4.22)

This expression assumes a critical coupling to the resonator, which is rarely realised in real

devices. Equation 3.16 can be used to produce an equivalent expression which allows for

a non critically coupled resonator.
δν

ν0

=
g

8QL

(4.23)

For the resonator shown in figure 4.11, the centre frequency is 6.9 GHz and QL = 35000.

The measured slope is found to have a gradient given by 5.8x10−3 degrees per Hz, using
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equation 4.22 the gradient is found to be 8x10−3 degrees per Hz, but the resonator is not

critically coupled. In this instance using equation 4.23 leads to a gradient of 7x10−3 degrees

per Hz, which is very close to the Barkhausen estimate. The strength of the Barkhausen

relation is to provide a very useful relation between the frequency and phase of a resonator

without making any assumptions on the resonator itself. It should be noted that the linear

part of the phase transmission scales with the resonator bandwidth. This means it is only

linear for approximately ∆ν/10 which for the resonator in figure 4.11 corresponds to a

frequency shift of 20 kHz. Any noise process that moves towards the extremes of this

limit will require more careful analysis to understand the corresponding phase-frequency

conversion7. Additionally any noise process outside of this range will result in rapidly

decreasing phase sensitivity.

4.7 The Leeson frequency and its effects

Care must be taken when studying the noise properties of any resonator, due to the

need to consider the ratio of several frequency scales. Firstly there is the resonator centre

frequency and secondly there is the frequency at which the resonator is interrogated. Fi-

nally there is the frequency which is based upon the natural ringing time of the resonator.

The resonator and its coupling describe the centre frequency as was shown in Chapter 3.

The coupling was also shown to produce the loaded quality factor QL, the natural ringing

time of a resonator [58] is then defined by

fL =
1

τring
=

ν0

2QL

(4.24)

While the measurement frequency may be chosen, the Leeson frequency and the centre

frequency are direct properties of the resonator and its coupling. This means that in

general they cannot be changed without either producing another resonator or changing

the experimental setup to vary the coupling. Within resonators, the Leeson frequency

7In later measurements of the jitter in superconducting resonators this limit is approached. This can be seen
in figure 8.8 where the jitter at -100 dBm is around 4 kHz for short times. This prevented the study of noise at
higher frequencies, as this jitter level rapidly increases with decreasing measurement time. Additionally it made
measurement at lower microwave drives difficult. This was later circumvented by improvements to the setup
and by lowering the measurement frequency to 100 Hz, where the noise level is lower (even at lower microwave
drives).
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creates a limit for when the Barkhausen relation in the previous section can be applied.

More precisely the Leeson frequency determines whether a measurement is sensitive to the

instantaneous phase or not.

To explain the instantaneous phase, consider a photon within a resonator with a given

QL. This photon will exist within the resonator for τring before escaping, for a lumped

element resonator like that considered in the previous chapter, this means the photon

travels between the inductor and the capacitor approximately QL times. The instantaneous

phase is considered as being sensitive to the phase of the photon every time is makes the

transition from the capacitor to the inductor. This is important if the photon experiences

a phase jitter each time it enters the capacitor. Then within the ringing time the photon

would experience approximately QL kicks to its phase. This would lead to much larger

(“tanked up”) phase jitter. If one wishes to measure the size of the jitter then they need

to be aware of whether they are measuring the single kick which requires sensitivity to

the instantaneous phase. If not they are measuring a “tanked up” effect, this important

difference is covered in the noise as power laws section at the end of this chapter. Here noise

processes are related to various spectra, where the measurement of instantaneous phase

will produce the spectrum of phase fluctuations Sθ, known as the phase noise. However,

if the phase is measured at a frequency less than the Leeson frequency then the resulting

spectrum is actually that of the frequency fluctuations Sy.

The Barkhausen relation can be used on any measurement of the spectrum of frequency

fluctuations. This means the relation holds when the measurement time is larger than the

ringing time. If however the measurement was sensitive to the instantaneous phase, then

the Barkhausen relation no longer holds. In this case the spectrum of phase and frequency

fluctuations are described by the following relation [58].

Sy =
f 2

ν2
0

Sθ (4.25)

Here f is the Fourier frequency and Sy is the spectrum of fractional frequency fluctuations.

Note that a noise process obeying a given power law, 1/fα where α is well defined will see

the value of α change by ±2 when moving between the two types of spectra.
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The second important point to consider is what happens when the sampling frequency

is lower than the Leeson frequency. In this case, regardless of the detection mechanism

used, the measurement is not sensitive to the instantaneous phase and hence cannot di-

rectly measure the spectrum of phase fluctuations. This means the measurement actually

produces a spectrum of frequency fluctuations.

Here, the Barkhausen relation can be applied, and the spectrum can be re-expressed

in units usually associated with the phase spectrum (dBc/Hz), however, this is still the

spectrum of frequency fluctuations. One way to understand this when looking at a typical

frequency spectrum is to realise that a roll off occurs above the Leeson frequency. The

roll off is generally the steepest slope of the measurement, as this part of the spectrum

has become sensitive to the instantaneous phase. Equation 4.25 must be used to keep the

measurement consistent with the rest of the graph, the slope needs to be multiplied by

a Fourier factor (which makes the roll off less steep). Table 4 covers the details of this

conversion completely for all noise processes.

To describe this in experiments, first we consider a measurement of the centre frequency

vs time, made directly with the Pound technique. A Fourier transform of this dν(t) data

series will result in the spectrum of frequency fluctuations Sy. An analogous measurement

is possible using a homodyne setup to produce a measurement of the phase shift as a

function of time. The Barkhausen relation can then be used to turn the time series of

phase shifts dθ(t) into that of frequency shits dν(t). Now for frequencies below the Leeson

frequency the Fourier transform of this data set will produce the spectrum of frequency

fluctuations Sy. However for the frequencies above the Leeson frequency, the Barkhausen

relation is no longer valid. Therefore the Fourier transform should be taken of just of the

phase shifts with time dθ(t), which will now produce the spectrum of phase fluctuations

Sθ. Now equation 4.25 must be used to produce the spectrum of frequency fluctuations

from the spectrum of phase fluctuations.

It should be noted that when phase noise is explicitly measured, it is usually done with

a resonator that has a QL which is sufficiently high that the Leeson frequency is lowered to

a few Hz. This means that only modest sampling rates are required to be sensitive to the

instantaneous phase. Importantly this also allows long time scales to be examined without
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increased computation due to the size data set size. The advantage of a measurement

sensitive to the instantaneous phase is that most noise types rapidly converge in the phase

spectrum, so only modest offset frequencies are required to attain ultra high stability.

Within this thesis, the sampling frequency is always kept below the Leeson frequency.

This is to remove any ambiguity that the spectrum of frequency fluctuations is always

being measured. It is also because measurements focus on the behaviour of the flicker

component of the noise. Being a low frequency noise processes, this requires long measure-

ment times to gain high statistical confidence. Here the low sampling rate helps to reduce

the computation required for the subsequent analysis. The Leeson frequency has been

introduced because the Literature review will show that many other studies of resonator

noise have occurred where the sampling frequency was above the Leeson frequency. This

means that additional care is needed when performing any analysis, and some results can

be simply explained by the Leeson frequency.
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Chapter 5: Literature review

The relevant background for this literature review is split into several sections. These

are general measurements on resonators, then the study of noise (generally 1/f) in charge

sensitive devices and finally onto noise measurements on superconducting resonators.

Superconducting electronics are attractive due to the inherent low loss and macroscopic

quantum behaviour of the superconducting state. As the temperature is decreased towards

zero, excitations of Cooper pairs should tend to zero. Without such excitations devices

should be less “noisy” (less susceptible to unwanted dissipative mechanisms). This should

allow the lifetime of a quantum state to become large. In these cases, the fundamental

noise limitation should be due to Cooper pair generation-recombination (g-r noise) which

can be reduced by lowering the temperature [63].

In both QIP (Quantum Information Processing) and detector applications, the g-r

noise is not found to be the limiting factor [64], instead excess noise exists which limits

coherence [2] or detector sensitivity [1]. To describe the excess noise behaviour, this review

will follow the progress of superconducting resonators. This review will explain the basic

understanding as of 2013, by which point the noise has been found to be similar to that in

other superconducting or charge sensitive devices. For this reason it is useful to overview

noise studies in single electron transistors and Josephson junctions and to relate these noise

processes to decoherence.

The thesis of Mazin [15] details the early progress on work in kinetic inductance de-

tectors [1]. Early work examined the temperature dependence of the superconducting

resonator centre frequency [15]. This suggested that excess noise did not originate from

mechanisms relating to superconductivity, a result that was verified when Al resonators

on Sapphire where found to be less noisy than Al on Si [15]. This prompted a study into

substrates motivated by the idea that the dielectric was responsible for the excess noise.

To verify the substrate dependence, first the superconductor had to be ruled out. Using

the Mattis-Bardeen framework the effect of conductivity changes due to the population of

quasi-particles can be explained [46]. It follows that when T is lower than approximately
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Tc/10 the superconductivity mechanism saturates [42]. This meant that Al with its low Tc is

a bad choice for exploring substrate dependence. Consequently higher Tc superconductors

such as Nb [65], NbN [66], Ta [67], NbTiN [43] and TiN [68] were used in later work.

When measuring Ta and Nb resonators on Si a frequency shift was found to occur at

temperatures below Tc/10 [42]. Importantly the shift was a decrease in frequency with

decreasing temperature, which is the opposite of the Mattis-Bardeen effect, therefore the

shift was attributed to TLFs but not explored further. Additionally, this work demon-

strated a saturation of the quality factor (instead of following the Mattis-Bardeen limit).

While similar effects can be found in the Mazin thesis, the first modelling of the frequency

shift with temperature was done by Gao et al. [45]. This provided a framework for compar-

ison of the “density” (in fact Fnd2) of TLFs across different superconductor and substrate

combinations. The examination of many substrate and superconductor combinations is

crucial. This is because the nd2 term describes the number of TLFs and their dipole mo-

ment squared. Since the microscopic origin of TLFs is still not known, this framework

allows measurements to quantify a reduction in the density of TLFs. There is however a

complication, where the F term describes the geometric filling factor which relates to the

electric field distribution of the resonator. In essence this means it is possible to create a

resonator with reduced sensitivity to TLFs. Although the real goal would be to keep F

constant and then observe a reduction in nd2 which would relate to the microscopic origin

of TLFs.

In parallel work, it was realised that the “density” of TLFs could also be extracted by

measuring the change in Qi with microwave drive [14]. This was also the first study of many

substrates with Al as the superconductor. Using this method the Tc is not important, as

the microwave drive can be varied in the low temperature limit. This work highlighted SiO2

to have a loss tangent approximately 10 times larger than high resistivity Si or sapphire.

Evidence that TLF loss could be an interface effect came from depositing additional

dielectric layers over the resonators. While this was found to increase the frequency shift

at low temperatures, the shift was found to be independent of the dielectric thickness [43].

However, this work did not quantify the magnitude of the increase in the loss tangent.

Next the frequency dependence of the TLF loss was studied, finding that it was the same
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for resonators of varying centre frequencies [37]. This work concluded that the “density” of

TLFs is frequency independent across the 4–8 GHz range. It also determined that Nb on r-

cut Sapphire exhibited very low dielectric loss and a weaker power dependence than Nb on

SiO2, and that this weaker dependence can be explained by some newer TLF models [69].

Further evidence of TLF loss being an interface effect came from experiments removing

parts of the dielectric. Specifically, removing the dielectric beneath the superconductor

(where the electric fields were highest), was found to produce a decrease in the frequency

shift compared to the basic design [8].

In measurements of quality factor vs microwave drive in varying temperatures, Macha

et al. found evidence for the loss rate to be temperature dependent [70]. Such behaviour

fits well within the TLF picture. It also verified that TLF effects only become apparent at

temperatures below 800 mK. Attempts to minimise the loss tangent while maintaining a

large kinetic inductance ratio led to numerous papers involving superconducting nitrides.

These led to measurements approaching single photon energies which showed that NbTiN

maintained intrinsic quality factors of ≈5x105 [71] and TiN of ≈1x106 [39] [9]. Modelling of

TLF contributions from various locations found the metal-substrate and metal-air surfaces

to be dominant [72]. While this agrees with observed behaviour, it also helps describe the

observed geometry dependence [38] for films that underwent identical fabrication processes.

Further measurements have verified the agreement of loss tangent measurements obtained

by both quality factor vs power and frequency vs temperature [40]. Final evidence for

the TLF model can be found in the observation that pumping of harmonics leads to

a decreased loss rate and improved quality factors at low powers [41]. Many of these

experiments involving TLF behaviour can be found in the review by Zmuidzinas [7].

The properties of superconducting resonators in applied magnetic fields has also been

extensively studied. Approaches to tunable resonators were demonstrated in both inde-

pendent resonators [19] and resonators containing SQUIDs [73]. Tunability of resonators

is needed for fine coupling to various quantum systems [74]. While attractive, applied

magnetic fields have been shown to be detrimental to the quality factor of superconduct-

ing resonators [75]. Attempts to mitigate these problems have been studied using various

dotted ground-plane structures [76] [77]. The importance of these effects was recently
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emphasised when measurements highlighted the hysteretic effects relating to the magnetic

memory of the resonators [78]. Advanced work on fractal resonators with fractal ground

planes has led to extremely resilient resonators even in applied fields of ∼200 mT [79]. In

addition to studies in static magnetic fields, the effects of rapid field changes demonstrated

that it is possible to vary the centre frequency of a resonator quicker than the photon life-

time [80]. The ability to vary the centre frequency quickly allows for transfer of microwave

states between storage elements [81], where rapidly moving the centre frequency of the

resonator away from the storage element, a long lifetime can be realised. In fact tuning of

the centre frequency can be so rapid as to allow amplification of vacuum states and has

led to the observation of the dynamical Casimir effect [82]8.

5.1 Studies of noise in other systems

Interest in the low frequency noise properties of superconducting devices has existed for

decades [83]. It is common to find flicker (1/f) noise which scales as S = a/fα where α=1.

This process has been extensively studied in a variety of superconducting devices, including

SQUIDs [84] [85] [86] [87], single electron transistors (SETs) [88] and superconducting

qubits [89] [90] [91]. Several reviews cover the results and models which can give rise to

flicker noise [92] [93] [94] [95], and more recently [24]. However, work in understanding

and eliminating this noise process is still ongoing. For this section, the focus is to overview

studies of the flicker noise dependence with another parameter, such as temperature or

magnetic field. In early work it is hinted that flicker noise decreases with decreasing

temperature [86], although it could have also been a material effect. Later work confirmed

this temperature dependence [85]. A more systematic study of charge noise SQ, found

linear scaling with temperature in both SETs [96] and Josephson junctions [97]. Other

measurements on qubits found noise scaling as temperature squared [98], though later

results from the same group on SETs instead suggested a linear dependence which saturates

at low temperatures [99]. Further measurements on flux qubits [100] and SETs [101] agreed

on the linear dependence which saturates at low temperatures. Due to the links between

8The Dynamical Casimir effect is the creation of energy from the rapid movement of a mirror. This was realized
with a SQUID which rapidly changed the electric length of a superconducting resonator.
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Table 5: Overview of the flicker noise behaviour in various superconducting devices, SQ denotes
charge noise and Sφ denotes flux noise

Device Dominant noise type Observed dependence

SET [96] SQ ∝ T
Josephson junction [97] SQ ∝ T

charge Qubit [98] SQ ∝ T 2 above 250 mK
SET [99] SQ ∝ T

flux Qubit [100] SQ ∝ T above 200 mK
SET [101] SQ ∝ T above 150 mK

Josephson junction [105] SQ ∝ T above 200 mK
SQUID [103] Sφ ∝ 1

T γ

SQUID [104] Sφ ∝ B

flicker noise and decoherence [24], the observation of a low temperature saturation in charge

noise has potential implications for the optimal temperature at which to operate a device.

To combat the effects of charge noise, some devices use geometries with reduced sensitivity

to charge noise. However, these devices still exhibit flux noise Sφ, which shows 1/f like

behaviour [102]. Interestingly recent studies of the flux noise find an inverse temperature

scaling [103] in contrast to the linear scaling found for the charge noise. This inverse scaling

suggests a spin-based origin, which is supported by the observation that the flux noise was

found to scale linearly with applied field [104]. Table 5 overviews these studies of noise

and the general behaviour found.

5.2 Studies of noise in Superconducting resonators

The existence of excess noise in superconducting kinetic inductance detectors was iden-

tified in the initial work of Day et al. [1] and is covered in the thesis of Mazin [15]. This

work consisted of a homodyne setup using a mixer. Although details of the sampling dura-

tion and rate are not presented, this measurement showed a Sθ ∝ 1/f 0.5 dependence. This

dependence was also found in a 220 nm Al on Si, ν0=4.35 GHz, QL=3.5x105 resonator at

T=120 mK with Pcirc=-30 dBm [65]. Again, a homodyne setup was used although the two

signal quadratures were individually studied. Here the signal quadratures were digitised

for 10 second windows at a rate of 250 kHz. By reconstructing the quadratures (to the

amplitude and phase response) this work was able to demonstrate the amplitude noise to
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be negligible. In relation to TLFs this experiment explored the dependence on microwave

drive and found a scaling as P−0.5
app .

In parallel work by Baselmans et al. a similar Sθ ∝ 1/f 0.5 dependence was observed [67],

again using a homodyne technique. This work featured several Ta resonators on intrinsic

Si, with ν0 between 3-3.3 GHz and QL between 1.9–16x104. The observed noise was lower

than that featured in Gao et al. [65] although the difference was attributed to higher drive

powers. In comparative work, the Si substrate was replaced with Sapphire and shown

to reduce the noise level [42]. This work also suggested a link between the microwave

absorption in dielectrics due to TLFs and properties of the resonator. The effects of TLFs

were later shown to affect the quality factor [14] and resonant frequency [45] [37].

The first comprehensive study to measure the temperature dependence of noise in

resonators was performed by Kumar et al. [106]. Here, the measurements shown previously

by Gao et al [65] were repeated for many temperatures and microwave drives. Again

a general Sθ ∝ 1/f 0.5 was observed, and the noise of the phase channel between 200-

300 Hz was extracted in varying microwave drive and temperature. A general dependence

given by Sy = AP−0.46
app T−0.14 tanh2(hν0/2kBT ) was obtained, implying a 1/

√
Papp and

weak temperature dependences. The tanh term was motivated by the TLF model but

measurements could not verify its validity. Additionally the results implied no relation

between the temperature and power effects, i.e. the behaviour with applied power shows

no temperature dependence itself. A follow up noise modelling paper by Gao et al. [107]

provided justification for the observed 1/
√
Papp dependence. The paper also found a strong

dependence on the width of the CPW (Coplanar Waveguide), which suggests that if TLFs

are the source of excess noise, then they should be located at the interfaces, rather than in

the bulk. Further details on these measurements can be found in the thesis by Gao [18].

The next studies of noise in superconducting resonators come from a series of papers by

Barends et al. [43] [108] [109] [71]. These further tested the hypothesis of noise being due

to TLFs located at interfaces. It involved the comparison of noise between bare resonators

and those covered by an additional SiOx layer. The results found noise to be 7 dB (∼ 4

times) higher for resonators covered by the additional dielectric. More importantly there

was no observed dependence on the height of the dielectric [43]. A dependence on choice
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and treatment of dielectric materials was found when hydrogen passivation of the silicon

surface led to decreased noise [109]. The final paper in this series [71] examines the effect

of removing dielectric from regions of high electric field, and found the noise was reduced.

This effect is additive to widening the CPW producing a cumulative benefit. These results

are interpreted as the presence of SiOx dominating contributions to noise.

To summarise the existing studies of noise in superconducting resonators had all in-

volved the use of a homodyne detection scheme. In general the observed dependence has

been a Sy ∝ f−0.5 which is not the expected noise process from TLFs. It is possible that

the reason for this is the insufficient measurement time which resulted in tracing the auto-

correlation function rather than the underlying noise shape9. A further possibility is the

incorrect conversion from the measured phase jitter to frequency spectra. Strong evidence

for this is the apparent observation of noise levels comparable with frequency standards [8],

as well as the confusing use of the term phase noise [65]. More importantly these results

are not in agreement with the nature of TLFs [7].

5.3 Studies of noise in hybrid systems

Following the overview of noise studies in superconducting resonators and other super-

conducting devices, the attention shifts to hybrid systems, where some quantum device

is coupled to a resonator. In general this follows one of two routes, either phase noise

measurements are performed on parametric amplifiers relative to the noise temperature

of a HEMT amplifier, or flux noise measurements are performed on a Josephson junction

type element within a resonator.

The behaviour of 1/f flux noise in the single photon limit was studied by Murch et al.

[110]. Here Josephson junctions were embedded in a variety of superconducting resonator

geometries and homodyne noise measurements were performed. These measurements found

a Sy ∝ 1/f dependence attributed to the presence of Josephson junctions. A noise scaling

9The autocorrelation function possesses a numerical pole at zero since this term is defined as being in perfect
correlation. This underlying correlation decays through the function and means a short measurement can be
influenced by this underlying decay in the autocorrelation function itself. Recent measurements [110] [?] with
homodyne systems that measured superconducting resonators for much longer time spans were able to observe
the true 1/f process in the resonator, this validates the possibility that the Sy ∝ f−0.5 was a measurement
artefact.
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Table 6: Overview of frequency stability for various frequency standards.

Type Stability h0 Sy Sθ Time

SRS PRS10 [111] <2x10−11 8x10−22 8x10−22/Hz -71 dBc/Hz 1 s

<1x10−11 2x10−23 2x10−23/Hz -87 dBc/Hz 10 s

Hydrogen MASER [112] <2x10−13 8x10−26 8x10−26/Hz -91 dBc/Hz 1 s

8x10−14 1.3x10−27 1.3x10−27/Hz -109 dBc/Hz 10 s

Sapphire oscillators [113] 7x10−15 9.8x10−29 9.8x10−29/Hz -83 dBc/Hz 1 s

<5x10−15 5x10−30 5x10−30/Hz -94 dBc/Hz 10 s

linear with temperature was observed, although much sample-to-sample variation existed.

The paper concluded the observed noise was dominated by the resonator, however, the

observed noise shape and temperature dependence did not agree with previous studies [106].

On the basis that readout is limited by the noise contribution of the cryogenic HEMT

amplifiers [114] there have been numerous efforts towards ultra low noise parametric am-

plifiers [11, 115–119]. The base comparison for all these methods is to compare the noise

temperature (or equivalently noise figure) of the parametric amplifier to the HEMT. A

state of the art HEMT amplifier can obtain a noise temperature as low as 2.6 K [120]

(across the band 4-8 GHz), although values reported in the literature are generally around

5 K. The noise figure relates the degradation of the signal-to-noise ratio corresponding to

the thermal noise of a black body at the noise temperature TN , at the signal chain input.

While this definition is suitable for approximating the white phase noise of the amplifier

(the b0 process in table 4) care is needed, as often this noise is not the dominating noise

process over the timespan of a measurement. The noise temperature and noise figure can

be used to calculate the b0 value of an amplifier by

b0 =
FNkBTN
Papp

(5.1)

where FN is the noise figure and Papp is the applied power in watts. From this value, one

can then use table 4 to convert between Sθ, Sy and σ(τ) for the white phase noise of an

amplifier. This has been done for varying input powers in figure 5.1, where the value for
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the noise temperature is derived from the Friis formula.10. This plot shows the phase noise

floor being given by b0 and highlights the 1/Papp dependence. However, there are several

things to consider here

• Firstly the overall stability appears to quickly approach the∼10−13 level at 1 s realised

by an atomic fountain [112]

• The frequency spectrum reveals a divergent process, such a process is almost never

seen in frequency spectra

These two points highlight the fact that often other noise processes dominate the noise

contributions from a HEMT amplifier. In fact the noise temperature (or noise figure)

do not sufficiently describe the noise as they neglect any low frequency processes. Due

to this any comparison relative to the noise temperature is an insufficient comparison.

Instead, the relative h−2, h−1 and h0 values for an amplifier chain should be extracted.

Then measurements on parametric amplifiers should seek to prove that these h parameters

become lower. In particular, the abundance of Josephson elements in many realisations of

a parametric amplifier is likely to lead to large h−1 (flicker noise) contributions [102].

Table 6 contains stability measurements of various frequency standards. One should

be cautious with any values in literature which report phase noise close to that obtainable

by frequency standards. Not only have reports been published on resonators where this

is true [8], but this also stresses the point that b0 does not sufficiently describe the noise

from an amplifier. Primarily, this is because all standards are realisable with a large

signal-to-noise ratio and hence do not need any amplification, unlike measurements on

superconducting resonators. This lack of amplifiers and high signal-to noise-ratio results

in no low frequency noise and also a minimal white noise contribution at 1 s.

5.4 Summary

This literature review has demonstrated the prevalence of a spectral noise ∝ 1/f in

charge sensitive superconducting devices. When looking at superconducting resonators a

10The Friis formula describes the addition of noise temperatures (or equivalently noise figures) for a chain of
amplifiers. These scale as TN = T1 + T2

G1
+ T3

G1G2
, where T is the noise temperature of the amplifier, G is the

amplifiers gain and the number denotes the amplifiers position. The Friis formula highlights that the noise
temperature is dominated by the first amplifier.
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Figure 5.1: A plot showing the phase noise, fractional frequency noise and Allan deviation of
a b0 limited amplifier under varying microwave drive. The microwave drive is referenced to
an incoming number of 5 GHz photons, hence <1> photon ≈ -200 dBm. The assumed noise
temperature is TN=6 K, which provides a noise figure of F = 0.2, these represent typical (rather
than state of the art) values of an amplifier chain using the Friis formula Note the phase spectrum
describes the noise as a flat noise floor, while the Allan deviation shows the noise to sharply reduce
with time.

1/f 0.5 spectral noise has frequently been found instead. Charge sensitive devices observe

the 1/f spectral noise due to the existence of TLFs which exhibit telegraph noise. It follows

that since there is strong evidence for TLFs within superconducting resonators, it is odd

that the observed noise is not 1/f. A potential reason for this, is that measurements of noise

in superconducting resonators has only spanned short timescales (up to ∼30 s), which are

not sufficiently long to observe 1/f . An alternative possibility is that much of the analysis

of resonator measurements was incorrect, or that some systematic effect has instead been
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explored. Perhaps most importantly the present measurements have only explored the

noise in superconducting resonators at relatively high microwave drives. This is suitable

for detector based applications but not for QIP.

This thesis, focuses on a measurement technique able to observe noise processes at longer

timescales. The previously observed S ∝ 1/f 0.5 dependence is interpreted as peculiar in

that it is not a common noise process within any oscillator type system [58]. Further

the homodyne detection scheme is heavily flawed when resolving slow noise processes,

here systematic noise contributions are not neglected, and more advanced methods such as

cross-correlation should be used. This measurements within this thesis begin by performing

comparative noise measurements on superconducting resonators. The need to exhaustively

check systematic noise contributions and correctly analyse noise processes is paramount.

Table 7 compares many of these noise measurements with results obtained later in this

thesis.
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Chapter 6: Measurement setup
This section describes various details of the measurement setup, including the mi-

crowave setup and equipment realise the Pound measurement technique. The characteri-

sation of this setup, and measurement of the system noise floor will be covered in the next

section in measurements of the dielectric resonator.

Figure 6.1: A schematic of the real Pound detection scheme used in this project. Shown are
signals at RF (red), 1 MHz (yellow) and DC (green). The input and output power can be varied,
allowing varying microwave drive at the resonator while maintaining constant power at the diode.
An additional generator is used to create an up-mixed input signal, providing benefits of low
phase noise source compared to using the microwave synthesizer as a VCO. This setup allows
high frequency resolution using microwave counters however tunable YIG filters are required to
control the input signal and prevent saturation of the diode. The LNA located at 4K is a low
noise cryogenic HEMT amplifier. In this setup the generator, VCO and counter are all referenced
to the 10 MHz source derived from a hydrogen MASER.
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Figure 6.2: A photo of the dilution refrigerator. Labels point to the various temperature stages
of the dilution refrigerator. Additionally a low noise cryogenic amplifier, circulator and optical
fibre are shown.

6.1 Microwave setup

All measurements begin with an Anritsu 3767C vector network analyser (VNA) to

diagnose the microwave lines and find any resonance curves. The microwave connection

on the inside of the cryostat is photographed in figures 6.2 and 6.3, and is detailed in the

schematic of figure 6.6. After the VNA has traced a resonance curve the Pound loop can
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Figure 6.3: A photo of the dilution refrigerator tail with an aluminium sample box that was
used for most of the measurements with superconducting resonators. The photo shows the two
microwave lines, a low frequency gate line and an orange optical fibre.

then be set to track that resonance.

The components which form the Pound setup show in figure 6.1 are described as follows.

The initial microwave frequency signal is formed by an Anritsu 69253A synthesizer, which

drives the LO port of a single side band mixer. The IF port is driven at 15 MHz by an

Agilent 33522A arbitrary waveform generator, which also acts as the voltage controlled

oscillator (VCO), which changes its output frequency based on the input voltage it is

driven by. The upper side-band from the RF port is the carrier signal and is nominally

chosen to be at the resonant frequency as was determined using the VNA. A 1 MHz

signal is generated using a Novatech 409B signal generator to drive a Hittite HMC538LP4

phase shifter to provide phase modulation of the carrier. A YIG bandpass filter is used

to reject the lower side-band from the input mixer and a tunable attenuator is used to
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allow the input power to be varied. Measurement of the input power is performed by a

HP 8593E spectrum analyser. Figure 6.4 shows an optical-breadboard that is clamped to

the cryostat frame for mechanical support. Housing the RF setup in this way damps any

vibration induced phase fluctuations.

Figure 6.4: A photo of the microwave setup mounted on an optical breadboard which is clamped
to the cryostat for vibration isolation. Shown is an up converting single side-band mixer, phase
modulator, phase shifter, tunable attenuator and YIG filter on the microwave input. On the top
are two room temperature amplifiers, a second tunable YIG filter, power splitter and the diode
on the microwave outline.

The output signal from the cryostat undergoes amplification from 4 amplifiers before

passing through a second YIG filter and another tunable attenuator. These are used to

reduce the levels of wideband noise from the amplifier chain. An Atlantec ATD-040080

tunnel diode detector is used to rectify the phase modulated signal and generate the Pound

error signal. The diode output voltage is fed into a Stanford Research Systems SR844 RF

lock-in amplifier, which is also receiving a reference signal from the Novatech 409B. The
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lock-in provides narrow-band detection of the small diode voltage, which is fed into a

Stanford research systems SIM960 PID controller within a SIM900 mainframe. An Agilent

DSO7014A oscilloscope reads both the lock in output and PID output to form the Pound

error signal. Viewing the error signal allows the error signal gradient to be optimised,

which is essential when operating at low microwave drive. The PID output then drives the

VCO to complete the Pound setup.

Figure 6.5: A photo of the dilution refrigerator tail with an aluminium can sample holder used
for the dielectric resonator. The photo shows the two microwave lines, with a circulator mounted
on the input port to the aluminium can.

An Agilent 3523A frequency counter is used to read the IF frequency. Further analysis

is then performed based on this frequency measurement. Alternatively the PID voltage can

be sampled with a National Instruments DAQpad-6015 analogue to digital converter. The

frequency counter is preferred as it can perform measurements with no dead time over any

sampling period, by contrast the DAQpad only performs an instantaneous measurement at

the sampling interval. This is problematic as a large dead-time can exist between individual
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measurements. Analysis of a stream of instantaneous measurements with dead time is not

trivial and makes it difficult to draw accurate conclusions from the data.

6.2 Cryogenic setup

The cryogenic setup consists of a dilution refrigerator for obtaining temperatures as low

as 50 mK. The operation of a dilution refrigerator can be found in the book by White and

Meeson [121]. Figure 6.2 details the general cryogenic setup. An aluminium sample box is

used to house the superconducting resonator. There are also copper enclosures which may

be substituted for the aluminium sample box, this is mainly to allow for small magnetic

fields to be applied to the sample. Such copper enclosures have not been used heavily in

this thesis and so the aluminium sample box is considered as the default measurement

setup. Figure 6.5 is applicable for the measurements of the dielectric resonator. The rest

of the cryogenic setup shown in figure 6.6 is the same for all measurements.

Figure 6.6 shows the microwave in-line undergoing 3 stages of attenuation which total

to 50 dB. This attenuation cools the incoming black body radiation of the microwave signal

and consists of XMA attenuators. Each subsequent attenuation stage is placed at a lower

temperature to thermalise the coaxial lines. The input coax consists of copper-beryllium

from 300 K to 4 K, stainless steel from 4 K to 1 K, brass from 1 K to the mixing chamber,

and copper from the mixing chamber to the sample. These materials minimise the heat

load of the coax while optimising the microwave transmission. The final performance is

near that of superconducting NbTi coax, but is more robust due to soldered rather than

crimped connections.

Copper rods thermally anchor the sample to a copper cold finger, which itself is clamped

to the mixing chamber. The microwave signal passes through 3.5 GHz high pass filters

before and after the sample box. The output signal passes through a circulator before being

amplified by a cryogenic low noise amplifier with a noise temperature, TN=5 K and gain

of 28 dB. After the amplifier, there is a 3 dB attenuator at 4 K for thermalising the coaxial

line before it leaves the refrigerator. Thermally the sample looks out to the aluminium box

which acts as a 50 mK black body, this looks out to the radiation shield which acts as a

200 mK black body. This reduces the number of 4 K photons (from the inside of the IVC)
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that are able to interfere with the sample. Magnetic shielding of the sample begins with

a double layer of mu-metal outside the cryostat. Then a superconducting lead cylinder

surrounds the IVC and finally the aluminium sample box is also superconducting. This

“freezes” the now reduced magnetic field.

Figure 6.6: A Schematic of the cryogenic setup, showing three lines, which reach the sample
at the mixing chamber. The microwave in-line consists of high frequency coax with 50 dB of
attenuation and a 3.5 GHz high pass filter. The microwave out-line consists of high frequency
coax with a 3 dB attenuator, a 3.5 GHz high pass filter, cryogenic amplifier and circulator. Shown
in green is the gate line which consists of low frequency coax and contains 50 dB attenuation.
This line is suitable for applying a low frequency voltage bias to gate elements on some samples.
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Chapter 7: Characterizing the loop
This section covers the experiments which characterised the loop itself. This involved

a dielectric resonator which was used to determine the system noise floor. This chapter

expands on the Reviews of Scientific Instruments paper by Lindström et al [122].

7.1 The resonator

The dielectric resonator was made from high purity sapphire. This is formed into an

r = 8 mm puck stood atop an 8 mm column. The resonator was clamped to a copper plate

which formed the lid of a 30 mm wide aluminium can. The copper plate had an SMA

bulkhead connector on the outside where the central conductor formed a small loop inside

the can. This setup is shown in figure 6.5, where the microwave setup includes a circulator

on the mixing chamber. The resonator was then interrogated by measuring the reflected

response using the circulator.

Coupling to the resonator was controlled by the size of the loop within the central

conductor and how far into the can it extended. Although a dielectric resonator can

operate at room temperature, this results in a coupling limited quality factor after cooling.

Therefore, the resonator was setup to be very under coupled at room temperature, then as

the temperature decreases the conductivity of the aluminium increases resulting a better

coupling when cold.

The magnitude response of the dielectric resonator at 100 mK is shown in figure 7.1.

This resonance exhibits a quality factor of ≈100000 and the resonance dip is ∼3.1 dB,

which corresponds to near critical coupling.

7.2 Jitter studies and determining the system noise floor

A dielectric resonator was chosen to characterise the Pound loop for a few reasons.

• Dielectric resonators are a well studied system that can produce a ∼GHz resonance

with high quality factors.

• Dielectric resonators are ultra stable and are an alternative approach to a frequency

standard [113]
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Figure 7.1: A plot showing the measured magnitude response of the dielectric resonator at
100 mK. The resonance dips by ∼ 3.1 dB which corresponds to near critical coupling with a
quality factor of ≈105.

• Dielectric resonators noise processes are well understood and commonly do not exhibit

1/f type noise [123]

These reasons made the dielectric resonator both a suitable alternative to use within the

dilution fridge with only small modifications required and a good candidate to examine

the noise floor of the system. This is due to the electronics, amplifiers and mixers all being

well known for exhibiting noise at low frequencies. If the Pound setup attempts to stabilise

a perfect noise free system, it will become limited by its own noise processes. Hence, if

the dielectric resonator displays no 1/f noise then it is suitable for estimating the 1/f noise

floor of the loop.

Figure 7.2 shows the intrinsic jitter of the dielectric resonator in terms of fractional

frequency analysed using the Allan variance. Although it is more conventional to use

the Allan deviation (square root of the variance) to characterise the fractional frequency

jitter, it is preferable to use the Allan variance to extract h parameters as explained in

table 4. This figure shows frequency resolution is limited at short time scales by a white
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Figure 7.2: A plot showing the calculated fractional frequency stability of the dielectric resonator
with an applied power of -95 dBm at 100 mK. Power law noise processes are displayed, and this
trace shows white frequency noise, flicker frequency noise and a linear frequency drift.

frequency process. Here the resolution improves as the measurement time is increased,

this implies the noise process is frequency independent. In the long time limit a rapid

drift is shown, this is due to either temperature instability or vibration of the dilution

fridge. A temperature instability produces a frequency instability in the resonator, while

vibrations result in a time varying coupling to the resonator. Of more interest is the noise

floor which occurs between 10 and 300 seconds, here the dominant noise process is flicker

frequency noise. For the reasons outlined above this is expected to be the noise floor of

the mixer/amplifier chain and is important for future measurements.

By repeating the stability analysis for many microwave powers, power dependence of

the flicker noise floor can be examined as shown in figure 7.3. The plot highlights a very

weak power dependence which is expected of amplifiers [58]. It also verifies the assumption

that stability measurements of the dielectric resonator become limited by jitter originating

within the loop. The second y-axis contains the calculated phase noise which corresponds

to the measured noise floor. The first thing to notice with this phase noise is that it is
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Figure 7.3: A plot showing the measured h−1 parameter for varying input microwave powers,
this describes the flicker noise floor by Sy = h−1/f . This value is determined by repeating
the stability analysis shown in figure 7.2 for varying microwave powers, then extracting the h
parameters as explained in table 4. The right y-axis shows the calculated phase noise based upon
the h parameter.

very high, in fact ∼100 dBc higher than the values reported in table 6. However, this

is not surprising as those measurements were “white” rather than flicker limited. The

reason for this is that the microwave power is much higher, this means there is no need

for amplification, which would drastically increase the phase noise. In fact the typical best

values of amplifier phase noise at low offset frequencies are typically -20 dBc [58]. When

comparing to this value the phase noise shown in figure 7.3 the difference is likely to be

attributable to the difference in applied power. This highlights that caution is required

when examining literature which show measurements at ultra low microwave powers with

a phase noise comparable to, or apparently better than, the frequency reference.

7.3 Optimizing the loop

In general, a Pound type of feedback is used where the signals strength is very high,

and often there is no need for any amplification. The excellent signal to noise ratio makes
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Figure 7.4: A plot showing the measured diode sensitivity. The diode output voltage was mea-
sured when driven by a phase modulated carrier for many powers. The black line shows the
square law region, where the diode is rectifying the input signal. Shown in red (blue) are room
temperature (4 K) measurements performed on the Atlantec ATD-040080 tunnel diode detector.
For comparison data from the data sheet of a Herotek DTA182544 tunnel diode with integral pre
amplifier is shown.

the requirements on the diode and lock-in amplifier very low. Here, the setup consists

of 4 amplifiers due to the very low microwave powers being used. Due to the wide-band

nature of the amplifier and the equally wide-band sensitivity of the diode some checks are

required to ensure the diode is driven optimally.

Initially the signal output of the diode needs to be measured for various input microwave

drives. For this measurement, the phase modulated carrier signal is applied to the diode

itself. However, to represent the experiment the phase modulator needs to be biased such

that the first side bands contain more power than the carrier. This then accurately reflects

the real reflected signal where the carrier has a reduced amplitude due to the resonance

dip. The weakly coupled port of a 10 dB coupler was used to feed a spectrum analyser,

this then measured the microwave power. The output voltage of the Atlantec ATD-040080

diode was measured at both room temperature and at 4 K, as shown in figure 7.4. A
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minimum detection power of ∼-53 dBm is found, which agrees with the specifications.
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Figure 7.5: A plot showing the measured transmission through the YIG filter. The filter is used
to very heavily attenuate any signals outside of a ∼100 MHz pass band.

In general, measurements are performed at -25 dBm at the diode, which as figure 7.4

shows is well below the diode saturation power. Although a higher power could be used,

the use of a lower value increases the effective dynamic range of the experiment. This is

due to all measurements being performed with the same applied power at the diode, which

is achieved by the use of a tunable attenuator. However, since the gain of the loop is fixed

for a given amplifier chain, the minimum detectable power relates to minimal attenuation

before the diode and an input power low enough to see the diode driven at -25 dBm.

Importantly, one cannot simply add another amplifier to increase the dynamic range

as this will change the flicker noise floor of the amplifier chain. The reason for this is that

the flicker noise is additive [58], so it becomes worse with each additional amplifier. By

comparison, the white frequency noise obeys the Friis formula, which means additional

amplifiers add negligible white noise. As such if the amplifier chain was changed, then the
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characterisation of the system noise floor would need to be repeated.

To improve the stability at low microwave drives, a YIG tunable bandpass filters is used.

This is due to the diode being sensitive to a wide band of frequencies. When operating

at low microwave powers, the attenuation before the diode is minimal, this can lead to

the diode being saturated by wide band noise rather than a strong input signal. As a

result, the diode cannot be driven optimally, leading to much reduced loop performance.

To counter this YIG tunable bandpass filters are used to reduce the amplified wideband

noise. Figure 7.5 shows the transmission through such a filter. Thus, the diode is only

able to see a ∼100 MHz band about the carrier, rather than a 4 GHz band due to the

amplifiers. Using a YIG allows the diode to be driven closer to its optimal performance

over a wide range of microwave powers into the cryostat. Later measurements will span the

power range of ∼-135 to -90 dBm, allowing the few photon regime to be reached in some

samples. The earlier Pound schematic shown in figure 6.1 is that of the fully optimised

loop following the improvements from the YIG filters.
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Chapter 8: Identifying noise processes

in superconducting resonators
This section overviews measurements performed on superconducting resonators. The

goal of these measurements is to examine the Pound technique’s suitability to measure

the intrinsic jitter of superconducting resonators. As covered in the Literature review, the

measurements are to examine the noise processes present in superconducting resonators,

and verify whether the flicker noise process exists. It builds upon the description of the

loop behaviour and a calibration of the system noise floor in the previous section. The noise

contributions of superconducting resonators are measured under varying drive conditions.

The noise processes are expected to be due to the presence of TLFs in the dielectric. As

such, the relevant parameters are the microwave drive, temperature, and the density of

TLFs. The density of TLFs is varied by use of an additional dielectric layer on some of

the resonators.

8.1 Description of the samples

Figure 8.1 shows three photographs demonstrating the PCB (Printed Circuit Board)

and chip layout used for the majority of this project. The PCB sits inside the aluminium

sample box shown in figures 6.2 and 6.3. This PCB has been metallised with gold and

patterned into ground planes with a 50 Ω transmission line. Midwest microwave launchers

are used to connect the transmission line to an SMA adapter. The holes within the ground-

plane are used to suppress standing modes on the PCB, these could otherwise interfere

with the resonators, and provide parallel conduction paths which lead to asymmetry in

the resonance.

A typical sample chip is also shown in figure 8.1, the chip is 5 mm x 10 mm and also

consists of a 50 Ω, 25 µm wide transmission line. The Transmission line broadens to

∼300 µm for the so called contact triangle, this allow for bond wires to connect the chip to

the PCB transmission line. Additionally the chip’s ground-plane is heavily bonded to PCB

ground. Within the ground-plane, lumped element resonators are placed surrounding the
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Figure 8.1: Top, a photo of the PCB (Printed Circuit Board) used for the majority of measure-
ments. PCB is metallised with gold and formed into two coplanar transmission lines with an
impedance of 50 Ω between 4-8 GHz. Middle, a photo of the general chip geometry used for the
majority of measurements. Chip is 5 mm x 10 mm also consisting of a coplanar transmission line.
Bottom, a photo zooming in on the contact triangle of the chip’s transmission line, this region is
used for accepting bond wires from the PCB.

transmission line. The holes for these resonators are 300 µm x 300 µm and are typically

placed between 10-30 µm from the transmission line.
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Generally, five resonators exist on a chip, their typical appearance is shown in figure

8.2. This consists of a 4 µm wide inductive meander close to the transmission line and

an inter-digitated capacitor. The inductive meander is kept at a constant size to keep the

coupling relatively constant for all resonators on the same chip. This coupling can then be

varied by changing the distance between the transmission line and the inductive meander.

The resonant frequency was varied by changing the size of the inter-digitated capacitor.

Resonant frequencies were chosen to be within the 4-8 GHz pass band of the microwave

setup.

Figure 8.2: An optical picture of a lumped element resonator. Picture highlights the typical
geometry consisting of an inductive meander (close to the transmission line) and an inter-digitated
capacitor. In this picture the surrounding ground plane contains holes to trap magnetic flux, this
feature is not present on all resonators.

The samples measured in this section consist of a sputter-deposited niobium layer on

r-plane sapphire. These samples were patterned from Nb films deposited by Star Cry-

oeletronics. These were patterned using the recipe located in Appendix B. Other samples
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come from NTT Basic Research labs and include the addition of a dielectric layer on top

of the resonators. Figure 8.7 shows the appearance of the dielectric coating. The addi-

tional dielectric is either HfO or Al2O3 and is deposited by atomic layer deposition (ALD).

The location of the dielectric layer is focused on the inter-digitated capacitors where the

electric field is maximal. Here, any TLFs within the dielectric will couple strongest to the

resonator. The effect of TLFs in varying locations is studied by comparing the effect of the

substrate-superconductor interface and the superconductor-surface interface which has an

additional 50 nm of deposited dielectric.
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Figure 8.3: A plot showing the measured magnitude response of the 6,98 GHz Nb on sapphire
resonator, data is fit to equation 4.10 and the parameters can be found in table 3.

The initial characterisation of a sample involves checking the microwave through-put.

Since all samples are coupled to a common feedline, there should be high transmission

across the range 4-8 GHz, where the transmission band is limited by the cryogenic amplifier

bandwidth and the presence of the 3.5 GHz high pass filters at the copper cold stage. A

vector network analyser (VNA) is used to measure the microwave transmission.
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Figure 8.4: A plot showing the measured magnitude response of the 5.08 GHz ALD Al2O3 Nb
on sapphire resonator, measurement taken using complete amplifier chain with a total gain of
100 dB and noise temperature of ∼ 7 K. Data is fit to equation 4.10 and the parameters can be
found in table 3.

The VNA is used to find the frequency of each resonator, and then measure their

magnitude and phase response. This data can be fit to equation 4.10 to extract parameters

such as the various quality factors, coupling parameters and the resonance frequency.

Figures 8.3 and 8.4 show both the magnitude response of a resonator and the fit to equation

4.10. This provides the values of Qi = 23.1x104, QL = 3x104 and g = 21.5 - 5.3j for the

5.08 GHz resonator and Qi = 34.8x104, QL = 3.5x104 and g = 13.1 - 3.6j for the 6.98 GHz

resonator. The parameters for all the resonators in this thesis are shown in table 3.

8.2 Loss and Noise analysis of superconducting resonators

The first measurement to perform after the initial characterisation is to determine the

dielectric loss tangent of each resonator. This is performed by tracking the change in the

centre frequency with temperature over the range of 50-800 mK. We gain several useful

pieces of information from this measurement. Firstly we can verify the quality of the Nb

film by checking it’s surface Tc resembles the bulk Tc. Observation of a saturated Mattis-
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Bardeen frequency shift around 800 mK confirms that the Nb film has good surface quality.

Secondly, the dielectric loss tangent is then a measure of interface quality, and from this

we can determine the sensitivity of the resonator to temperature fluctuations.
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Figure 8.5: A plot showing the dielectric loss measured in the 6.98 GHz Nb on sapphire res-
onator, measurement taken by tracking the centre frequency of the resonator while varying the
temperature of the mixing chamber. Data is fit to equation 2.6 and the parameters can be found
in table 3.

From the measurement of frequency shift with temperature, equation 2.6 is used to

extract the Ftanδ value. For the 6.98 GHz bare Nb resonator shown in figure 8.5, this

is Ftanδ=2.0x10−6. Which is comparable to previous low dielectric loss Nb on sapphire

resonators of this geometry [37]. Importantly the geometry being the same means the

filling factor, F , is the same allowing for valid comparisons.

Having shown the interface quality to be as good as previous samples, we next look into

the effect of an additional dielectric layer atop the inter-digitated capacitor. Figure 8.6

shows the frequency vs temperature measurement which reveals Ftanδ=26x10−6, which is

more than a 10x increase in the dielectric loss tangent compared to the bare resonator.
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Figure 8.6: A plot showing the dielectric loss measured in the 5.08 GHz ALD Al2O3 Nb on
sapphire resonator, measurement taken by tracking the centre frequency of the resonator while
varying the temperature of the mixing chamber. Data is fit to equation 2.6 and the parameters
can be found in table 3.

At first, such an observation is perhaps not surprising as the presence of more dielectric

material could produce a reduced interface quality. However, this is assuming the top

dielectric interface both contributes comparably to the superconductor-substrate interface,

and contributes greater than the existing superconductor-oxide surface. Certainly for non-

oxidizing superconductors or after some annealing treatment the second assumption is not

surprising. However, the first assumption would likely vary with deposition technique and

treatment of the substrate surface.

The result of repeating these measurements of the dielectric loss tangent across many

samples can be seen in figure 8.7. Here, we see that the dielectric loss tangent exhibits

a uniform frequency dependence, preventing any design where a device can operate at

some preferential frequency (in a glass the density of TLS states is assumed to be uniform

with frequency). Additionally, the presence of an added dielectric layer is always seen to

increase the level of dielectric loss by a factor of 5–10. Circled within figure 8.7 are the two
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Figure 8.7: Left, an optical photo of a lumped element resonator with an additional Al2O3

dielectric layer deposited by ALD. Right, a chart of the Ftanδ value extracted for many resonators.
Chart highlights a uniform frequency dependence, with the additional dielectric layer always
leading to an increased level of dielectric loss.

resonators shown previously. These resonators are now measured using the Pound setup.

Each resonator was locked using the Pound setup and deviations of the resonance were

tracked by a DAQ sampling the PID output voltage. The DAQ was sampling at a rate

of 300 Hz so as to make the measurement dead-time small compared to the measurement

interval. In subsequent measurements, a zero-dead time frequency counter was used to

alleviate this problem. A non-negligible measurement dead-time can lead to decreased

confidence of processes with short time constants (high frequency noise) fortunately, the

high frequency noise is generally systematic in origin. As such it is not the focus of this

thesis.

Once locked, the DAQ sampled the PID voltage for approximately 1.5 hours, this

maintains a high statistical confidence for all timescales. For this duration, the temperature

of the sample was determined by measuring two RuO2 thermometers where one is located

at the mixing chamber, while the other is located adjacent to the sample box on the

copper cold finger. Additionally the microwave drive was measured by a spectrum analyser

via 10 dB coupler on the microwave in line on top of the fridge. Prior measurement of

the heavily attenuated microwave in-line and the sample box insertion loss allows the

microwave power reaching each resonator to be known to within a few dB.

The sampled voltage is analysed by both Allan analysis in figure 8.8 and spectral
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Figure 8.8: A plot showing the measured Allan deviation of superconducting resonators for
analysing noise processes. Shown in pink is a calibration measurement on the dielectric resonator,
this determines the systematic noise floor. Shown in red are measurements with a high applied
microwave drive of -85 dBm, green corresponds to -95 dBm and blue corresponds to -105 dBm

analysis in figure 8.9. Shown in pink is a calibration measurement of the systematic noise

contribution, measured by use of a dielectric resonator (in fact the data is that of figure

7.2). Here the flicker noise floor is shown by the τ 0 slope in the pink Allan analysis.

This described the systematic flicker noise due primarily to the amplifier chain and mixer.

As shown in the previous section this flicker noise floor shows little power dependence,

and therefore is valid for the subsequent measurements performed on the superconducting

resonators.

Beginning with the high microwave drive, measurements on a bare resonator (shown

in red within the top left of plots in figures 8.8 and 8.9) show a white frequency noise

process described by τ−0.5 (f 0) at short times (high frequencies) using the Allan deviation
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Figure 8.9: A plot showing the measured spectrum of frequency fluctuations in superconducting
resonators. For clarity, the systematic noise floor has been removed from these traces. Shown
in red are measurements with a high applied microwave drive of -85 dBm, green corresponds to
-95 dBm and blue corresponds to -105 dBm

(spectrum of frequency fluctuations). This results in the resolution improving as the mea-

surement time is increased. However, from 0.1 s a τ 0 flicker frequency noise process begins

to dominate for all remaining time scales. Importantly when compared to the calibra-

tion measurement of the system noise floor we find the white frequency processes overlap.

However, the superconducting resonator exhibits a flicker frequency noise in excess of the

flicker noise floor.

The behaviour of the flicker process can be studied by varying the microwave drive.

The microwave drive in the blue trace is 20 dB lower. Here, the white frequency noise

process at short times has increased, suggesting the resolution is limited by a reduced

signal-to-noise ratio. However, the flicker noise level is shown to have also increased,
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despite figure 7.3 showing that the flicker noise floor is not dependent on the drive level.

A direct verification of this is shown by repeating the measurement while changing the

mixing chamber temperature as shown in the top right plots of figures 8.8 and 8.9.

At an elevated temperature, the white frequency noise level is shown to be unchanged at

both microwave drives. However, the timescale over which this remains the dominant noise

process has increased by an order of magnitude. Since the measurement is sensitive to the

additive effect of all noise processes; this suggests the action of increasing the temperature,

has led to a reduction of the flicker frequency noise level. As such the white frequency

noise process remains dominant for a longer duration. Instead, at long times an emergent

random frequency walk noise process shown by the τ 0.5 slope. It is suspected that the

random walk process could be due to flux motion across the superconducting film.

Performing this measurement on the covered resonator is shown in the lower plots

of figures 8.8 and 8.9. Here, the behaviour is the same, revealing a microwave drive

and temperature dependent flicker frequency noise process. In fact the absence of any

other noise process makes the elevated temperature measurement more illustrative of the

temperature dependence since the flicker frequency noise level appears to have saturated

and no longer shows any dependence on the microwave drive.

8.3 Discussion

The measurements of the dielectric loss tangent demonstrate a behaviour that can be

parametrised by a bath of two level fluctuators using the theory of microwave absorption in

glasses. Evidence for the existence of many TLFs makes the observation of flicker frequency

noise unsurprising. This is due to random fluctuations within a two level system, which are

well established for producing a superposition of Lorentzian spectra, such a superposition

gives rise to the observed S = 1/f dependence. The properties of flicker noise in various

charge sensitive devices has been a very active topic of research and is summarised earlier

in table 5. However, this table contains no information on superconducting resonators.

This is because the flicker process had not been observed in superconducting resonators

until this work. Instead, table 7 highlighted that the observed noise in superconducting

resonators was previously found to follow a Sy ∝ 1/f 0.5 slope.
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This is the first measurement to find the flicker process to exist in superconducting

resonators. The flicker frequency noise process is found to be dependent on both the

microwave drive and the temperature. Here, the noise level increases with decreasing

microwave drive and decreases with increasing temperature. In addition, the temperature

dependence is sufficiently strong as to dampen the dependence of the microwave drive, this

was seen most clearly in the bottom right plot of figures 8.8 and 8.9.

It is interesting to compare the observed noise level between the bare and covered

resonator. The dielectric loss tangent of the covered resonator was ∼10x higher than the

bare resonator, suggesting either an increased number or strength of TLFs. Which could

perhaps be expected to give rise to an increased flicker frequency level. Instead, the results

find there to be little difference between the two resonators, which perhaps suggests there

is only a weak dependence on the distribution of TLFs.

Further probing the microwave drive and temperature dependence of the flicker process

in superconducting resonators is of great interest, especially to QIP applications. In these

measurements, the temperature dependence could not be accurately examined. This is due

to the large effect of frequency drifts occurring because of a comparatively large dielectric

loss tangent. In order to accurately study a slow noise process, the temperature based

frequency shifts must be lower than the flicker level over the duration of the measurement.

The dielectric loss tangent and in particular the figures 8.6 and 8.5 allow the frequency

shift for a modest temperature shift to be determined. As such, accurately measuring the

temperature dependence would require a dielectric loss tangent of <Ftanδ=2x10−6 such

that the frequency shift due to a ±10 mK temperature shift is <100 Hz. An accurate

determination of the microwave drive dependence would be of further interest when ap-

proaching average resonator energies within the few photon regime. Realising these points

will require further improvements in the Pound setup11, and the sample fabrication.

11The data in this chapter was taken using the measurement schematic shown in figure 6.1 but without the
tunable attenuators, the YIG filters and the frequency counter. In addition the microwave generator itself acted
as the VCO with the data acquisition performed by the DAQ.
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Chapter 9: Noise measurements of

Superconducting resonators in

varying temperature
This section focuses on improving the noise measurements of the previous section.

The measurement method follows that outlined before; the resonator is characterised, the

dielectric loss tangent is extracted, and then the resonator is locked for a few hours to

probe the intrinsic fluctuations. This section improves on the last by performing a much

finer study of the noise behaviour with microwave drive12. Additionally more temperature

steps are examined. A subset of these results are featured within the proceedings of the

International Superconductive Electronics Conference 2013 (ISEC) [124].

9.1 Description of the samples

The samples used in this section again consist of a sputter deposited niobium layer on

r-plane sapphire. However, the geometry is a fractal resonator as described by the thesis of

de Graaf [125]. Such a geometry is designed to be resilient to applied magnetic fields [79],

and allow for an internal voltage bias [126], both of which can be necessary for coupling

to TLS when Zeeman tuning is required. Structurally the fractal design is essentially a

distributed resonator but with a much smaller width of the central conductor. The sample

came from Chalmers University of Technology with each resonator coupled to a grounded

Cooper pair box. By grounding the Cooper pair box, they remain inactive allowing the

behaviour of the bare resonator to be explored.

The initial characterisation mirrors that of the previous section where a vector network

analyser is used to trace the resonance curve. The magnitude and phase response can

then be fit to equation 4.10 to extract the resonator parameters. Finding Qi = 7.3x104,

12The measurement setup now begins to more closely resemble the schematic shown in figure 6.1. Since the last
measurement but without the tunable attenuators have been added and the low frequency VCO has been added,
this allows the readout to be performed by the frequency counter rather than the DAQ.
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Figure 9.1: Plot of the measured magnitude response of the 7.06 GHz Nb on sapphire fractal
resonator, measurement taken using complete amplifier chain with a total gain of 100 dB and
noise temperature of ∼ 7 K. Data is fit to equation 4.10 and the parameters can be found in
table 3.

QL = 6x104 and g = 1.6 + 0.6j, this along with the parameters for all resonators used

in this thesis can be found in table 3. Figure 9.1 shows the magnitude response of the

7.06 GHz fractal resonator.

9.2 Loss and Noise analysis of superconducting fractal resonators

The first measurement after initial characterisation is to determine the dielectric loss

tangent. Changes in the centre frequency are tracked with temperature over the range 100-

600 mK. the frequency shift is shown in figure 9.2 and can be fit to equation 2.6 to extract

the dielectric loss tangent. However, for this resonator the different geometry means that

the F (in the Ftanδ) is no longer the same as the lumped element resonators in the rest of

the thesis, therefore directly comparing this loss tangent to those in the previous section

is not trivial. The extracted value for the fractal resonator is Ftanδ=12x10−6 which is

lower than the value obtained for the covered resonator in the previous section but larger

than the bare lumped element resonator of the previous section. This suggests the F is
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larger for the fractal geometry, which is consistent with the fractal resonator having a

larger interacting volume of TLFs. The second piece of information that is gained from

figure 9.2 is that there is no deviation from the TLF behaviour described by the theory of

microwave absorption in glasses. This suggests a fully saturated Mattis-Bardeen frequency

shift, which only occurs far below Tc (T<Tc) which suggests for this film the lower bound

for Tc is ∼7.5 K.
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Figure 9.2: A plot showing the measured dielectric loss in the 7.06 GHz Nb on sapphire fractal
resonator, measurement taken by measuring the centre frequency of the resonator while varying
the temperature of the mixing chamber. Data is fit to equation 2.6 and the parameters can be
found in table 3.

Next the intrinsic frequency fluctuations of the resonator is measured by readout of the

Pound error signal over a timescale of several hours. The resulting time series was analysed

by both Allan statistics and spectral analysis where both were shown to be equivalent.

This measurement is repeated but for many different microwave drives, an example of the

resulting Allan plot is shown in figure 9.3. Labelled on this figure are the two dominant

noise processes observed, the σ2
y = 0.5h0τ

−1 (Sy = h0) white frequency noise region and
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the σ2
y = 2ln(2)h−1 (Sy = h−1/f) flicker frequency noise region. The white frequency

region was attributed to frequency resolution being limited by system noise, which is

signal-to-noise dependent but not temperature dependent. The flicker noise region is more

interesting, this was shown to be in excess of the systematic flicker level and so originates

within the resonator. The flicker noise of the sample was shown to decrease with increasing

temperature, and to decrease with increasing microwave drive. Where the dependence on

temperature is dominant, such that while a dependence on microwave drive is seen at low

temperatures, it is diminished at elevated temperatures. Figure 9.3 highlights the flicker

noise level increasing with decreasing microwave drive.
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Figure 9.3: A plot showing the noise jitter of the 7.06 GHz Nb on sapphire fractal resonator
analysed by Allan statistics. Measurements are taken with varying microwave drive within the
range -96 to -110 dBm, where red corresponds to the high microwave drive and blue to the low
microwave drive. The insert zooms on the Flicker region where the value of h−1 and hence the
magnitude of 1/f noise can be extracted.

To explore the behaviour of the 1/f level with microwave drive, the energy stored

within a resonator Ws, is introduced. Ws = 2QLS
min
21 Papp/2πν0 where QL is the loaded

quality factor, Papp is the applied microwave power in watts, Smin21 is the depth of the
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Figure 9.4: A plot showing the measured spectral noise at 0.1 Hz for the 7.06 GHz Nb on Sapphire
fractal resonator under varying microwave drive. Two different fractal resonators are shown to
obey a similar dependence where Sy(0.1 Hz) ∝∼ W−0.7

s . At 0.1 Hz, the dominant noise process
is 1/f and hence this describes the behaviour of 1/f noise with microwave drive. Inset shows the
whole spectrum of frequency fluctuations, highlighting a flicker corner frequency around 100 Hz.

resonance dip and ν0 is the resonant frequency. This unit allows for easier comparisons

with other resonators and can also be easily translated into the average number of photons

within the resonator by the division of hν0. From the Allan statistics, the 1/f level can

be calculated by extracting the horizontal line corresponding to h−1. From this the region

of the spectrum of frequency fluctuations Sy dominated by flicker noise can be calculated

simply by Sy(f) = h−1/f , hence Sy(0.1 Hz) = h−1/0.1. The spectrum at 0.1 Hz is used

for ease of comparison with devices featured throughout the literature.

Figure 9.4 shows the behaviour of 1/f noise for two resonators measured by studying the

spectrum at 0.1 Hz. The plot highlights that both resonators obey a similar dependence

of Sy(0.1 Hz) ∝∼ W−0.7
s at 70 mK. Here, even at the highest energy within the resonator

the 1/f level remains above the system flicker noise floor.

To examine the role of temperature; which was previously found to increase the 1/f level

when the temperature decreased, and also leads to a saturation of the microwave drive
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Figure 9.5: A plot showing the measured spectral noise at 0.1 Hz for the 7.06 GHz Nb on Sapphire
fractal resonator under varying microwave drive at various temperatures. The magnitude of 1/f
noise is shown to obey a power law varying with the energy in the resonator as Sy(0.1 Hz) ∝
∼W−b(T )

s . The behaviour is also shown to be temperature dependent.

dependence. The measurement shown in figure 9.4 was repeated for several temperatures

between 70-700 mK. This is now shown in figure 9.5. Here, for the same energy in the

resonator (ie. same microwave drive) the 1/f level is seen to decrease with increasing

temperature, consistent with previous observations.

9.3 Discussion

The measurements within this section have built on the initial observations of the

previous section. These were that superconducting resonators exhibit an excess flicker

noise, which is larger than the systematic noise floor due to the amplifier/mixer chain.

Furthermore the flicker noise found within superconducting resonators is found to be

dependent on both the microwave drive and temperature. A behaviour that scales as

Sy(0.1 Hz) ∝ A(T )W
b(T )
s is found, where A(T ) indicates a temperature dependent be-

haviour on the noise magnitude such that increasing temperature leads to a decreased

noise magnitude. The microwave drive dependence is summarised by W
b(T )
s , where Ws is
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the energy within the resonator, and b(T ) is a temperature dependent parameter describ-

ing the strength of the microwave drive dependence, such that the dependence gets weaker

with increasing temperature.

It is interesting that despite the very different resonator geometry, the observed be-

haviour agrees with the previous observations. This supports a TLF based explanation

since only the TLF density and the filling factor F would be expected to be different be-

tween the samples measured so far. As covered within the literature review, a two level

system is capable of producing a Lorentzian spectrum, the superposition of many such

spectra produces the 1/f spectrum.

Table 5 overviews the behaviour of flicker noise observed in many superconducting

devices. It should be stressed that the typical behaviour is that of an increasing noise

magnitude with increasing temperature, therefore these results are in contrast to that

typical trend. In general, it is assumed that all the systems explored within table 5 cannot

have resonant interaction with the TLFs. It is because of this that the number of interacting

TLFs scales approximately as kBT , so for a DC system the noise magnitude increases with

temperature as more TLFs interact with the sample [101].

Qualitatively the ability to have resonant interactions can be understood as follows.

The natural timescale to consider is the ringing time of the resonator τres where 2QL/ν0 =

1/fL = τres. This is the average lifetime of a photon within the resonator. The resonator

is coupled to an approximately fixed number of TLFs, therefore within the ringing time

of the resonator there is an approximately fixed number of times that all TLFs could

be excited. At low temperatures, there are no thermal excitation of the TLFs, which

means excitation is only possible by the absorption of resonant photons. This results in

a high probability of photon absorption and so a strong behaviour with microwave drive

(where a photon can be caught and released multiple times). Increasing temperature leads

to thermal excitation of the TLFs, reducing the maximum number of times that photon

absorption can contribute to the excitation of TLFs. This leads to a reduced probability

of photon absorption, resulting in a weaker dependence on microwave drive. As such,

measurements at different temperatures are probing the ratio of TLF excitations due to

photon absorption rather than thermal excitation.
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Further measurements at more temperatures are required to examine this interesting

behaviour, and to develop a better model to describe it. Also, measurements probing

lower microwave drives towards the single photon energies would be of interest to QIP

applications. Measurements at more temperatures will require a much lower dielectric

loss tangent. This is due to slow thermal drifts masking the low frequency component

of the spectrum. In figure 9.5, measurements are performed at 4 temperatures being

70 mK, 160 mK, 400 mK and 700 mK. The data for three of these temperatures is very

clean due to either high thermal stability at fridge base temperature (70 mK), or due to

TLF saturation (160 mK and 700 mK). The remaining 400 mK data set contains more

spread due to thermal fluctuations. This can be explained by looking at figure 9.2 where

a 150 mK Temperature shift produces a fractional frequency shift of 5x10−6 equivalent to

∼35 kHz. A ±10 mK temperature fluctuation will produce a ∼2 kHz frequency fluctuation.

Importantly this is much larger than the flicker noise level which was shown in figure 8.8.

Although some considerable progress has been made to achieve the targets outlined at

the end of the last section, the targets remain for further study.
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Chapter 10: Examining the 1/Tβ

dependence of 1/f noise in

superconducting resonators

This section focuses on experiments to explicitly determine the nature of the inverse T

dependence of 1/f noise which has been observed in previous chapters. Epitaxially grown

samples are used to attain an ultra low dielectric loss tangent to allow the temperature

dependence of 1/f noise to be experimentally mapped out. The exact dependence is of

particular interest to determine whether the noise originates from a spin or charge based

fluctuation. The results discussed here are an early understanding of those featured on

the ArXiv [127] and are modelled on a soon to be published theory by L. Faoro and L.

Ioffe. Experimentally the setup has now been improved to include YIG filters and a better

second amplifier, it therefore is the final schematic shown in figure 6.1.

10.1 Description of the samples

The samples used in this section consist of an epitaxially deposited niobium layer on

r-plane sapphire. These films were obtained from the Institute of Microelectronics Technol-

ogy and High Purity Materials, of the Russian Academy of Sciences [128]. The films were

patterned at Royal Holloway into the familiar lumped element geometry. After this they

were baked further to anneal the Nb. Two samples were fabricated, one simply consisting

of epitaxially grown Nb (referred to as epi-Nb) and another which had an additional Pt

capping layer deposited in-situ (referred to as epi-Nb+Pt). The Pt capping layer is ∼5 nm

thick and should reduce the intrinsic surface oxide of the Nb layer.

Again, for the initial characterisation a vector network analyser was used to trace the

resonance curve. The magnitude and phase response can then be fit to equation 4.10 to

extract the resonator parameters. This provides the values of Qi = 24.1x104, QL = 7x104

and g = 6.6 + 0.2j for the 5.55 GHz resonator and Qi = 34.8x104, QL = 7.8x104 and
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Figure 10.1: A plot showing the measured magnitude response of the 5.55 GHz and 6.68 GHz
epi-Nb+Pt on Sapphire LE resonators, measurement taken using complete amplifier chain with
a total gain of 100 dB and noise temperature of ∼ 7 K. Data is fit to equation 4.10 and the
parameters can be found in table 3.

g = 13.1 - 2.1j for the 6.68 GHz resonator. The parameters for all the resonators in this

thesis are shown in table 3. Figure 10.1 shows the magnitude response of the 5.55 GHz

and 6.68 GHz LE resonators.

10.2 Extracting loss tangents from epitaxially grown resonators

with ultra low dielectric loss

Earlier sections have outlined the development of the Pound technique for readout

of Hz-level changes in the resonators. The loop has also been optimised for readout at

low microwave drive, where measurements were performed with fewer than ∼100 photons

within the resonator, this is required to make the noise measurements relevant for QIP

applications. These steps have also been necessary to enable the measurement of ultra low

dielectric loss tangents, where the total frequency shift between 0.1–1 K is less than 10 kHz.

In general the samples measured throughout this thesis have a Tc sufficiently high, that

measurements below 1 K are not affected by Mattis-Bardeen mechanisms. In the event of

a lower Tc the Mattis Bardeen frequency shift acts against the TLF frequency shift. When

this occurs a high sensitivity is required to measure the now reduced frequency shift. This

is because when an overlap occurs, the two effects will counter one another - that is unless

one (likely the Mattis-Bardeen) dominates.
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Figure 10.2: A plot showing the measured dielectric loss in the 5.55 GHz epi-Nb+Pt on Sapphire
LE resonator. The resonator exhibits an overlap of the Mattis-Bardeen and TLF regions. Ap-
proximate fits to the Mattis-Bardeen frequency shift is shown in red and an approximate fit to
the TLF region is shown in blue using equation 2.6 and the parameters can be found in table 3.

Figure 10.2 shows the measured frequency shift with temperature for the 5.55 GHz epi-

Nb+Pt resonator. The plot shows an overlap of the Mattis-Bardeen (shown in red) and

TLF (shown in blue) behaviours. The presence of this overlap indicates the film exhibits a

reduced Tc (found to be around 5 K from the Mattis-Bardeen fit). It was believed that the

surface Pt was responsible for the reduced Tc, however the epi-NB resonators also showed

a reduced Tc, meaning the Nb itself is likely the problem. This overlap complicates the

process of extracting the dielectric loss tangent. The blue fit within figure 10.2 is actually

the pseudo-loss tangent in that the frequency shift is being damped by the overlapping

Mattis-Bardeen region. To extract the real loss tangent, one needs to fit the background

Mattis-Bardeen effect and then subtract the larger TLF-induced frequency shift.

Figure 10.3 shows a measurement of the dielectric loss tangent of the 6.68 GHz epi-

Nb+Pt resonator. Again, an overlap of the Mattis-Bardeen and TLF regions is observed

consistent with the 5.55 GHz resonator. Within this plot the green curve is a fit the
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Figure 10.3: A plot showing the measured dielectric loss in the 6.68 GHz epi-Nb+Pt on Sapphire
LE resonator. The resonator exhibits an overlap of the Mattis-Bardeen and TLF regions. Shown
in green is a compensated fit of the TLF based frequency shift using equation 2.6 against a
background Mattis-Bardeen based frequency shift, the parameters can be found in table 3.

TLF-induced frequency shift against the Mattis-Bardeen background. This constitutes

the real dielectric loss tangent, finding Ftanδ=1.1x10−6 for the 6.68 GHz resonator and

Ftanδ=1.3x10−6 for the 5.55 GHz resonator. Importantly these values correspond to fre-

quency shifts of <5 kHz between 0.1-0.5 K. It follows that a ±10 mK temperature shift

relates to a ∼200 Hz frequency shift. Importantly, this is below the observed flicker jitter

for microwave drives below -100 dBm (shown in figure 8.8). As such, these samples are

suitable for accurately mapping the temperature dependence of the flicker frequency noise.

10.3 Mapping the temperature dependence of 1/f noise in epi-

taxial superconducting resonators

The previous sections have highlighted the use of a Pound error signal to extract the

intrinsic frequency fluctuations of the resonator over long periods of time. It was shown that

the measured time series can then be analysed by Allan statistics to check for temperature

induced frequency drifts. Following this, the Allan statistics can find the timescales over
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Figure 10.4: A plot showing the measured spectrum of frequency fluctuations for the 6.68 GHz
epi-Nb+Pt resonator. Plot highlights that 1/f noise dominates up to 50 Hz where white frequency
noise begins to become apparent. Inset shows a zoom in about 0.1 Hz. This highlights that as
the temperature is increased, the spectral noise at 0.1 Hz (flicker level) is found to decrease.

which the flicker process dominates the frequency jitter. The flicker level can then be found

from the extracted h−1 value and from this the spectral noise at a given Fourier frequency

can be calculated. Figure 10.4 shows the flicker region to exhibit no ringing, which validates

the assumption of that Sy ∝ h−1/f . The chosen frequency has been 0.1 Hz due to the

prevalence in literature (see table 5). However, the behaviour of the flicker process should

be the same for any chosen Fourier frequency where the flicker process dominates.

The literature review, and especially table 5, have summarised the general behaviour of

1/f noise in a variety of superconducting devices. The general trend is that the noise level

increases with temperature although some saturation is observed below ∼ 200 mK. As

shown in the previous two sections, superconducting resonators do not follow this trend.

Recent results on SQUIDs have found the noise 1/f level to increase with decreasing

temperature [103]. Prior to this, the inductance in SQUIDs has been found to increase

with decreasing temperature [129]. A result that was further clarified as 1/T [130]. This
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1/T dependence is related to a Curie-like inductance contribution from surface spins [131].

Importantly, cross-correlation measurements showed a high correlation between measured

susceptibility and the flux noise Sφ, which led to a conclusion that surface spins could

explain the observed 1/f noise. More recently an observed increase in flux noise with

decreasing temperature was seen as evidence for a spin glass transition around 1 mK

[132]. Spin glass transitions produce a 1/T dependence of inductance contributions when

approaching the glass transition temperature from above.

All evidence for a 1/f noise that increases with decreasing temperature is explained by

spin contributions leading to flux noise. It is therefore of huge interest whether noise in the

resonator is in fact due to spin contributions coupling, as opposed to charge fluctuations,

which is generally assumed to be the case. As such, the intention for this section is to

perform a measurement where Sy ∝ 1
T b

, and to determine the value of b.

Figure 10.5 shows a more detailed study of the spectrum of frequency fluctuations at

0.1 Hz vs. microwave drive and temperature. The x axis is rescaled into the average number

of photons within the resonator, this is calculated by 〈n〉 = Ws/hν0, so the number of

photons in the resonator scales linearly with applied microwave drive. At high microwave

drive, the measured 1/f level saturates to the previously determined systematic flicker

noise floor. When the microwave drive is decreased the resonator 1/f level rises from the

systematic level. As before the strength of the microwave drive dependence is shown to be

temperature dependent such that it is strongest at the lowest temperature. Additionally,

the 1/f level for a constant microwave drive is decreased when temperature is increased.

Although these effects have been slowly observed in previous sections, the behaviour here

is much clearer.

The next measurement is to accurately map the temperature dependence for a constant

applied microwave drive. Therefore, Figure 10.5 is useful to determine the appropriate

microwave drive to operate at. Interestingly the fairly rapid saturation with both tem-

perature and microwave drive suggests that the behaviour is probably only measurable

for microwave drives corresponding to less than 100 photons. This implies that the high

microwave drive (that is typically used for KIDs) leads to a saturation of the resonator 1/f

noise. Instead, the systematic noise floor becomes the ultimate limitation. This leaves QIP
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Figure 10.5: A plot showing the measured spectrum of frequency fluctuations at 0.1 Hz vs
microwave drive for the 6.68 GHz epi-Nb+Pt resonator. The microwave drive has been rescaled
into the average number of photons within the resonator 〈n〉. Both the 1/f level and the strength
of microwave drive dependence are shown to vary with temperature. Inset explicitly highlights
saturation to the systematic flicker noise floor in the high microwave drive limit. As the microwave
drive is decreased, the 1/f level is seen to rise out from the systematic 1/f flicker noise floor.

applications and parametric amplifiers as the research areas affected by this measurement.

Figure 10.6 shows the spectrum of frequency fluctuations at 0.1 Hz vs. temperature for

both the 5.55 GHz and 6.68 GHz epi-Nb+Pt resonators. Each point has an error bar which

has been calculated from the Allan statistics, where the flicker region is described by the

line σy = h−1, this line is fit to the appropriate points of the Allan deviation between the

timescales of τ=1 s and 100 s. The standard deviation of this line (of the h−1 value) is a

measure of the averaged drift or ringing over 100 s. If the drift was too large, the data was

removed, and that temperature point retaken. The resulting standard deviation was then

converted into the correct units and used for the data points error bars. Each data set for

a resonator was fit to the equation Sy(0.1 Hz) = A(W )/T b + C to extract the value of b.

Within this equation, the term A(W ) is found to vary with the microwave drive and the

term C is the systematic flicker noise floor. This systematic flicker noise floor is additive,

unlike its white noise which obeys the Friis formula.
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Figure 10.6: A plot showing the measured spectrum of frequency fluctuations at 0.1 Hz vs.
temperature for the 5.55 GHz and 6.68 GHz epi-Nb+Pt resonators. Plot explicitly highlights
saturation to the systematic flicker noise floor in the high temperature limit. Fits to the function
Sy(0.1 Hz) = A(W )/T b +C are shown for each resonator where the parameter b is shared for all
measurements on a given resonator.

10.4 Discussion

Within figure 10.6, the value of b is found to be 1.22±0.17 for the 5.55 GHz resonator

and 1.37±0.31 for the 6.68 GHz resonator. While close the error does not allow for unity,

which rules out a simple 1/T dependence. This result and its implications will now be

discussed.

The observed increasing flicker level with decreasing temperature had previously only

been observed within systems sensitive to flux noise. This flux noise had been related to

inductance noise through cross correlation measurements. Importantly, the inductance is

due to surface spins, which obey a Curie type behaviour. In this model, the surface spin

contribution to the inductance can be estimated by L′spin = µ2
0µ

2σs(l/r)/3kBT . To check

its applicability to the resonator we can use appropriate values of surface spin density

σs = 10−16 m−2 [131], µ = µB, T = 60 mK, the length l = 1000 µm and width r = 4 µm.

These values lead to L′spin = 5x10−16 H for a typical resonator. For comparison, the noise

magnitude at 60 mK in the low power regime is Sy(0.1 Hz) = 3x10−15. The spectra equate

to σy =
√

2x10−7, which for a 6 GHz resonator is approximately a 450 Hz jitter. Producing

such a jitter by inductance fluctuations would require δL = 5x10−16. This is approximately

equal to the surface spin contribution to the inductance when using appropriate parameters
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and a reasonable estimate of the surface spin density13.

This analysis shows it is perfectly feasible that the origin of 1/f noise in superconduct-

ing resonators is in fact surface spins. There are two experiments which could discriminate

whether surface spins are the cause; either perform measurements in an applied magnetic

field, or, experimentally verify the exact temperature dependence and whether it devi-

ates from 1/T. Due to a lack of comparative studies in the literature of the 1/f noise of

other devices in applied magnetic fields at mK temperatures, it was chosen to perform

the fine measurement of temperature dependence. In this case the observed non unity

value of b would suggest that surface spins are not the underlying cause of 1/f noise in

superconducting resonators.

Instead a further examination of TLF theory is required. Specifically models describing

interacting TLFs need to be examined. Recently Faoro and Ioffe introduced a model of

interacting TLFs to explain the weaker than expected saturation of quality factors with

microwave drive in superconducting resonators [69]. At its simplest, the model proposes

two populations of TLFs, one fast population which is coherent with the resonator. The

second population acts to slowly modulate the line splitting of the fast TLFs. Evidence for

this idea can be found from recent measurements of T1 and T2 times of superconducting

qubits [133], which found T2 ∝ 1
T 1.24 . Conventional TLF theory only allows for relaxation

via phonons which produces T2 ∝ coth(E/2kBT ) where E is the TLF line splitting energy.

The coth dependence would scale as 1/T in the low temperature limit.

To explain this disagreement with conventional TLF theory it is proposed that the

distribution for TLF energy asymmetry should be non unity (where it is unity for conven-

tional theory). Instead a parameter µ is introduced to indicate the energy distribution is

non stationary (meaning the TLFs are interacting). The phonon relaxation path for TLFs

is now dwarfed by a new relaxation mechanism due to spectral diffusion. This leads to

a T2 ∝ 1
T 1+µ dependence, where a value of µ=0.12 was recently found in superconducting

qubits. This model, which will be published by Faoro et al. soon describes the contribution

13However it should be noted that this analysis calculates the mean contribution of surface spins to the induc-
tance. This is not a calculation of the fluctuation caused by these surface spins. Therefore for these to account
for the noise would require fluctuations to be comparable in size to the mean contribution. This is one of the
main reasons why the effect is not attributed to surface spins.
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of spectral diffusion to resonator jitter by

Sy(f) = 〈α〉P0
T

Γ2
2

1√
1 + Ω2/Γ1Γ2

∫
Vh
| E |4 dV

(
∫
V
| E |2 dV )2

1

f
(10.1)

Here, the 〈α〉P0 and the integral terms represent a Filling factor and dielectric loss

within the resonator [107]. Essentially, this simplifies to

Sy(f) ∝ 1

T 1+2µ

1√
1 + Ω2/Γ1Γ2

1

f
(10.2)

Clearly highlighting a 1/f spectrum as expected. Importantly, this model has three

important features

• The T/Γ2
2 term simplifies to give Sy ∝ 1

T 1+2µ where a value of µ=0.1-0.2 would explain

the results of figure 10.6

• Sy ∝ 1√
1+Ω2/Γ1Γ2

the terms within the
√

are usually reformed into
√

1 + (Ec/E)2 [40],

which represents the saturation of TLFs by absorption of resonant photons. Having

shown Γ2 = 1/T2 to be temperature dependent, this results in the critical energy

Ec also being temperature dependent, and hence Ec decreases as the temperature is

increased. This produces weaker microwave drive dependence when the temperature

is raised, and explains the results in figure 10.5.

• The microwave drive dependence in 10.5 as the interesting property that the noise

level saturates in the limit of low microwave drive, but the level of saturation is tem-

perature dependent. This can be accounted for by fitting figure10.5 to the equation

Sy = A√
T 2(1+2µ)+BW

. Where T is the temperature, W the microwave drive and A and

B are constants. In this case A = 4x10−16 for all data sets, while B = 2.5x10−4 when

above 200 mK and B = 3.5x10−3 when below 200 mK.

Therefore, a model involving interacting TLFs is able to account for all the observed

effects, but most importantly the derived value of µ is in strong agreement with that of

superconducting qubits [133].
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Chapter 11: Conclusions
This section, will briefly overview the work within this thesis. Highlighting which areas

have been successful, and which other areas need more work. Finally some perspective of

where this work is in relation to the field will be given, and from this some outlook on

possible directions of the field will be given.

11.1 The Pound loop

In essence this thesis covers two things, firstly the use of a frequency readout technique

based on Pound locking which is new to this field, and secondly the nature of slow fluc-

tuations within superconducting resonators. Despite being new to the field, Pound based

detection was in fact a very well established technique over 50 years ago [52]. The Pound

based setup was studied and used for three reasons:

• The technique is used within frequency metrology to realise unparalleled frequency

resolution

• The use of feedback would enable to study of processes over extended periods of time,

while being able to resolve drifts

• Due to its use with dielectric resonators, the setup is simple to realise with easily

available microwave equipment.

Within the earlier sections the theory of Pound loop was examined, detailing how the

error signal is derived, and how the setup is realised. A dielectric resonator was then used

to examine the stability limits of the loop itself. These steps ensured the suitability of

the technique for studying slow fluctuations in superconducting resonators, which was the

topic of the experimental sections of the thesis.

Essentially, the loop is a very sensitive readout of changes to a resonator, where for the

topic of the thesis, these changes were intrinsic to the resonator and due to TLFs. How-

ever, these are not the only changes that can be detected. As detailed in the introduction,

superconducting resonators generally have two applications, either, kinetic inductance de-

tectors, or as elements in QIP. The Pound setup should be applicable for both of these
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applications, since they rely on frequency shifts in the resonator.

11.2 Noise studies in superconducting resonators

The work within this thesis has extended the studied time scale of noise in supercon-

ducting resonators from 30 s to 10,000 s. As such while many previous studies had looked

at the noise between 300 Hz and 1 kHz, this thesis instead looked deeply into the noise

at lower frequencies. In doing so, a 1/f noise process was found, consistent with other

charge sensitive devices, and the nature of this 1/f noise became the other main focus of

this project. What was found can simply be summarised as

• 1/f noise level increases with decreasing temperature

• 1/f noise level increases with decreasing microwave drive

• The microwave dependence is also temperature dependent and reduces with increas-

ing temperature

The main driving point for this work (and why noise studies were followed rather than

the CPB work mentioned in the last section) was that this dependence is in contrast to

that typically observed in charge sensitive devices, where 1/f noise is found to increase

with increasing temperature. A few questions arise from this:

• If the resonator exhibits a noise that decreases with increased T , should kinetic in-

ductance detectors be operated at elevated temperatures, e.g. 200 mK?

• If the resonator and a charge sensitive device (e.g. Qubit) have contrasting noise

dependences with temperature, which is dominant?

For the first point there is a caveat that the temperatures still be far below the Tc, as

the sensitivity is known to reduce drastically with increasing temperature [49], however

this was only measured for Al (Tc = 1.2 K) where the temperatures involved were not

below the Tc/10 limit.

The second point has several implications which all depend on which system (resonator

or device) produces the dominant noise contribution. For a qubit, the observation that

T1 and T2 drop rapidly with increasing temperature [133] implies a low temperature is
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always needed. However, the dependence saturates below 100 mK, leaving the possibility

that a slightly elevated temperature e.g. 80 mK instead of 20 mK could be optimal. But,

parametric amplifiers can also see resonators combined with devices. In these cases, the re-

quirement for maximising T1 and T2 is not present, and hence one could operate at elevated

temperatures. Measurements determining whether the resonator or the device dominates

should be of huge interest to the development of parametric amplifiers. Certainly in the

case of travelling wave parametric amplifiers [118], the system is essentially a resonator

and one would expect the noise to behave the same.

A further point to be explored is that fabrication techniques may produce ways of

engineering a reduced sensitivity to noise originating within the resonator. In this case,

while the explicit origin of TLFs may not be known yet, further work may reveal more

pieces of the puzzle. Certainly, this thesis has produced strong evidence for a model of

interacting TLFs. Such a model produces advances away from the conventional theory

which have existed for around 40 years.

11.3 Loose ends

Throughout this thesis the Pound technique has been implemented and improved for

one purpose. This has been to study the noise processes which affect superconducting

resonators. Although the phase space for noise measurements is large, this is not the

only interesting property to measure with superconducting resonators. As covered in the

introduction, the two main uses of superconducting resonators are as kinetic inductance

detectors and in the solid state approaches to quantum information processing. The Pound

technique should be suitable for measuring both of these applications of superconducting

resonators. Due to the time constraints, and the decision to make noise measurements the

focus of the project, the study of these applications was brief. However, the suitability of

the Pound technique to measure these applications is covered below. It should be noted

that the underlying mechanisms for these applications is not covered here as these were

not the focus of the thesis. For a description of the KID see references [1, 7, 15] and for a

description of QIP applications see references [2, 10,134].
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Figure 11.1: A plot showing the measured resonator response to strong irradiation at 635 nm.
The trigger pulse is shown in green, where the laser diode switches on at the rising edge. The
resonator response is shown in black.

Using the Pound for kinetic inductance detectors

An optical fibre was installed within the dilution fridge to allow the sample to be

irradiated at optical frequencies. A 635 nm pigtailed laser diode was used to produce

the light, where the laser diode was biased to significantly below the lasing threshold. A

triggering pulse, of varying duration between 8 µs and 20 µs, with a rise time of 90 ns was

used to make the laser diode emit a short pulse of light. Between each pulse was a delay of

20 ms to ensure the resonator had fully relaxed between pulses. An oscilloscope can then

be used to determine the frequency shift of the resonator by measuring the voltage output

of the detector diode. This is shown in figure 11.1, the figure demonstrates a repeatable

frequency shift upon the trigger rise. An advantage of the oscilloscope readout is that the

modulation parameter is known, this means the conversion from voltage to frequency is

simple, and hence figure 11.2 is scaled in Hz.

The frequency shift in figure 11.1, shows a long relaxation time, this corresponded

to physical heating of the sample and matched measurements of the thermometer. By
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Figure 11.2: A plot showing the measured resonator response to varying irradiation at 635 nm.
The width of the triggering pulse is varied to tune the number of incoming optical photons. Inset
zooms on the response to the shortest pulse widths.

reducing the pulse width, the number of optical photons reaching the sample could be

reduced. A repeated measurement showing the varying frequency response in changing

pulse width is shown in figure 11.2. Here some caution is needed before evaluating the

small size of the frequency shifts. To eliminate the effects of heating, the oncoming photon

flux is reduced such that the probability of a photon being absorbed is close to zero. As

such over the course of 128 measurements only a small number (<10%) absorbed a photon,

resulting in a dampening out of the total measured frequency shift. It should be noted

that this measurement was performed on the epi-Nb+Pt sample, which is not optimised

for kinetic inductance operation. This means the kinetic inductance ratio is very small,

making the resulting frequency shift very small, a fully optimised film such as that used in

ref [135], would produce much larger frequency shifts and consequently need less averaging.

A further observation is that the off pulse jitter magnitude is in the low 10s of Hz and

hence is in agreement with the typical flicker limited jitter as shown in figure 8.8.

The original motivation for this experiment was to investigate the bandwidth of the
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frequency loop. The intention of the laser pulse was to rapidly (much faster than the

bandwidth) kick the resonator. Then the rise time of the feedback could be measured.

This was found to be around 4.5 kHz and was limited by the integration of the PID

controller. Importantly this was much higher than the sampling rate of 100 Hz which was

used for all noise measurements. This ensured the feedback mechanism did not interfere

with the analysis of the noise measurements.

Coupling to a controlled two level system

The fractal sample from Chalmers which featured in section 9 also had a sister sample

which contained Cooper pair boxes coupled to some of the resonators. A heavily attenuated

gate line was installed into the fridge to gate the CPB via the ground plane. This allowed

the occupation of the CPB island to be controlled, where the capacitive coupling to the

resonator varies with the island occupation, resulting in a frequency shift.

Figure 11.3: Left, an electron microscope image of the CPB. Right, a 2D plot of the measured
resonator response to a coupled CPB under varying DC gate voltage and microwave drive

The frequency shift can be easily detected by use of an oscilloscope. More interestingly

the system shows interesting behaviour when the microwave drive is increased. Figure 11.3

details this effect within the 2D plot, where the colour relates to the frequency offset. At

high drive, the qubit energy level splitting is exceeded and the system reveals evidence

for photon assisted quasiparticle tunnelling, which have been studied extensively using

a Pound setup at Chalmers [136] [134]. Further study of this system was not possible
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due to global helium shortages, and instead efforts were made to consolidate the noise

measurements which form the bulk of the thesis. However, the suitability of the Pound

based technique for both detector and QIP applications have been demonstrated.

11.4 Outlook

While many elements of the Pound setup and this project have been examined in

considerable detail there are many elements which remain to be uncovered. The setup has

proven both versatile and powerful, but this has been with only modest equipment. There

is much room for improvement with the use of a state of the art synthesizer, amplifier chain

and detector diode. 3 state of the art amplifiers can now realise the 100 dB of gain which

is attained with 4 amplifiers in this work, however losing one amplifier would significantly

reduce the systematic flicker noise floor. Figure 7.4 demonstrated the huge signal increase

by using a state of the art detector diode. Such an improvement would allow for operation

at lower powers, beneficial for QIP [134] or, allow for operation with less integration, and

hence a faster feedback response, beneficial for scanning applications [137].

Further improvements are also possible within device fabrication. Improved measure-

ments of the resonators response to optical radiation would be very interesting if the

resonator was optimised as a kinetic inductance detector. In this regard, the setup is

incredibly versatile as obtaining such a sample through collaboration would enable this

measurement. Another aspect for further scope is the use of epitaxially grown Nb. These

films have shown huge promise with comparatively little optimisation in the fabrication.

Extensive studies of fabrication parameters for these, and other epitaxially grown films

should lead to noticeable improvements in sample quality, as was found in TiN [138] [139].

Additionally the implementation of devices coupled to resonators should further ex-

pand the parameter space for noise measurements. At present only Josephson junction

embedded resonators have been studied in some detail [110]. However, this was by no

means an exhaustive study any many more parameters can be studied in this device. Fur-

thermore more complicated devices such various types of qubit [134] would provide the

capacity for the further study of much interesting physics. This can include a detailed

probe of the relative noise contributions from the device or the resonator. Where the goal

124



of the measurement should be at first to determine the contributions of each. Then un-

der various drive parameters, measurements could explore whether saddle point behaviour

exists. Demonstrating the noise is minimised under particular drive conditions should be

beneficial for many applications of these devices.

Perhaps more important is the new information of the nature of TLFs that has come

from this thesis. Many properties of superconducting resonators were able to be described

well enough by essentially the basic TLF theory originally derived in the 70s. This con-

sidered the bath of TLFs as non interacting, this is despite little justification that they

should not interact. In recent years the results which could not be explained by the stan-

dard model have increased. This includes both the temperature dependence of the T1 & T2

in qubits and the weaker than expected power dependence of Qi in high quality resonators.

The noise measurements within this thesis agree strongly with the qubit measurements and

are well described by a model of interacting TLFs described by Faoro et al. [69]. It is here

that an improved understanding of the nature of TLFs should enable theory to guide future

experiments.

To summarise, the Pound technique has enabled the study of much interesting physics,

but, there remains a large potential for the technique to be improved. This should allow

for many more interesting experiments and much more physics to be found.
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Appendix A: Fabrication
This section overviews the fabrication methods used for this work. Although in general

Nb thin films were used, the recipes are equally applicable for Al, Ta and TiN films. It is

assumed the wafer has already been diced into correctly sized chips. Note times may differ

slightly depending on temperature and age of resist.

• Initial clean

1. Room temperature acetone

2. Room temperature isopropanol

3. Rinse in de-ionized water

4. Nitrogen blow dry

• Photoresist and development

5. S1813 photoresist span at 4000 rpm (produces 1.1 µm resist height)

6. Bake on hot plate at 100◦ C for 10 minutes

7. Beading exposure, 2x 30 second exposure in UV

8. Develop in MF-319 for 25 seconds

9. Rinse in de-ionized water

10. Nitrogen blow dry

11. Pattern exposure, 12 second exposure in UV

12. Develop in MF-319 for 10 seconds

13. Rinse in de-ionized water

14. Check in microscope and redevelop if needed

• RIE and resist removal

15. Etch recipe Resist strip for 20 seconds

16. Etch recipe Nb etch for 8 minutes (sufficient for 200 nm of Nb)

17. Etch recipe Resist strip for 30 seconds

18. Rinse in 1165 at 50◦ for 5 minutes
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19. Rinse in room temperature isopropanol

20. Rinse in de-ionized water

21. Nitrogen blow dry

If any 1165 remains (which appears as a grease-like residue) repeat the isopropanol

rinse. The use of heated 1165 is required to remove the resist strands which appear in

figure 0.1. These resist strands appear throughout the sample after the main Nb etch.

Their presence can be reduced by extending the final resist strip steps although caution is

needed ensure resist remains atop the metal (this is to protect the metal from the excess

oxidation from the oxygen plasma of the resist strip recipe). Both the resist strands and

excess oxidation of the metal surface are detrimental to the sample quality, resulting in

reduced quality factors and increased loss tangents. The right scan of figure 0.2 underwent

all fabrication steps and results in the highest fabrication quality.

Figure 0.1: Comparison of samples fabricated with and without additional bead removal steps.
Left, AFM scan of a sample fabricated without the bead removal process (steps 7 and 8). This
leads to a poor contact between the mask and the resist due to resist stacking in the corners
of the chip. The poor contact leads to excess reflection around the capacitive fingers producing
over-exposure. The over-development manifests as the hole at the end of the capacitive finger.
Right, AFM scan of a sample fabricated with the bead removal process (steps 7 and 8). The
enhanced mask-resist contact allows for less reflection and hence no over-exposure.
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Figure 0.2: Comparison of samples fabricated with and without additional resist strip steps. This
step removes resist stacks caused by defects in the mask or under-development. Without this
step, samples exhibit more defects and build up of material at the edges. This is problematic
as the edges contain a high current density and hence problems here contribute greater to the
quality of the resonator. Left, AFM scan of a sample fabricated without the bead removal process
(step 15). Right, AFM scan of a sample fabricated with the bead removal process (step 15).
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Appendix B: Research output

Publications

• Burnett, J., Faoro, L., Wisby, I., Gurtovoi, V. L., Chernykh, A. V., Mikhailov, G. M.,

Tulin, V. A., Shaikhaidarov, R., Antonov, V., Meeson, P. J., Tzalenchuk, A. Ya. &

Lindstrom, T. (2013). Evidence for interacting two-level systems from the 1/f noise

of a superconducting resonator. arXiv preprint arXiv:1311.1655.

• Burnett, J., Lindstrm, T., Oxborrow, M., Harada, Y., Sekine, Y., Meeson, P., & Tza-

lenchuk, A. Y. Slow noise processes in superconducting resonators. Physical Review

B, 87(14), 140501. (2013)

• Lindstrom, T., Burnett, J., Oxborrow, M., & Tzalenchuk, A. Y. Pound-locking for

characterization of superconducting microresonators. Review of Scientific Instru-

ments, 82(10), 104706-104706. (2011)

Conference Proceedings

• Burnett, J., Lindstrm, T., Wisby, I., de Graaf, S., Adamyan, A., Kubatkin, S., Mee-

son, P. & Tzalenchuk, A. Y. Identifying noise processes in superconducting resonators,

Superconductive Electronics Conference (ISEC), 2013 IEEE 14th International, pp.

1-3, 2003

129



Talks

• Characterising superconducting resonators lumped element resonators by pound lock-

ing.

4th Microresonator workshop, Grenoble, 2011

Posters

• Identifying noise processes in superconducting resonators.

ISEC-14, Cambridge, 2013

• Studies of dielectric loss and noise in superconducting resonators.

CMD-24/CMMP12, Edinburgh, 2012

• High precision readout of superconducting resonators by Pound-locking.

CMMP-11, Manchester, 2011

• Pound-Drever-Hall readout of superconducting lumped element resonators.

International Workshop on Mesoscopic Superconductivity & Vortex Imaging, Bath,

2011
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