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Abstract

Epitaxial graphene (EG) on SiC is readily compatible with CMOS processes and

holds great potential for wafer scale production of devices. My aim is to understand the

electronic properties of EG using bulk transport and nanoscale mapping techniques.

It is shown that miniaturisation of single-layer graphene (1LG) devices even down to

100 nm does not significantly change the superior electronic properties of the material.

However, unoptimised device geometry results in an increase of 1/f noise, significantly

affecting the magnetic field sensitivity of devices. Detection of small magnetic moment

reveals that EG devices still outperform conventional semiconductor devices.

To study the nanoscale properties of EG, a comparison of amplitude- and frequency-

modulated Kelvin probe force microscopy and electrostatic force spectroscopy is carried

out. The most accurate of these techniques are used for non-contact measurements of

the various properties of EG. In addition, the local electrical and magnetic gating effects

are also investigated using scanning gate microscopy (SGM). Work function measure-

ments reveal that patches of double-layer graphene (2LG) exhibit a significantly higher

carrier density, affecting the conductivity and sensitivity of devices. Furthermore, elec-

tric field screening is measured in 2LG devices using SGM. A carrier inversion is ob-

served at lithographically defined edges of devices, which could be further enhanced

with lateral gates. Resists and chemicals used throughout the fabrication process are

shown to affect the carrier type in the most extreme cases and was used to create a

unique planar p-n junction. Changes in the ambient air can lead to further doping

effects, which are reversed in vacuum.

Novelty of this work is in the combination of bulk transport and local nanoscale

work function mapping techniques, which led to a deeper understanding of the unique

electronic properties of EG.
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Chapter 1

Introduction

In the fast evolving modern world, the need for ever faster, cheaper and more energy

efficient consumer electronics has pushed scientists and industry to invest vast amount

of resources forming the semiconductor industry. Moore’s Law has been closely followed

since 1971. Inevitably, it will soon breakdown as manufacturers continue to push the

limits of fabrication producing ever smaller devices. This has lead scientists and indus-

try worldwide to find an alternative material that can outperform silicon and breaking

away from the silicon age.

Sir Andre Geim and Sir Konstantin Novoselov were awarded The Nobel Prize in

Physics 2010 “for groundbreaking experiments regarding the two-dimensional material

graphene” [1]. Their electric field effect experiments in atomically thin carbon films [2]

(now known as graphene) revealed to the world, that graphene has potential appli-

cations for metallic transistors that are smaller, more energy efficient and operate at

higher frequencies. Graphene offers ballistic transport, linear current-voltage character-

istics and excellent conductivity (> 108 A/cm) [2]. In addition to these extraordinary

transport properties, graphene is a truly 2D material, where each carbon atom is co-

valently bonded to three other carbon atoms to produce an atomically flat honeycomb

crystal lattice. Although graphene was only recently discovered, the band structure

and Brillouin zone of graphene was theorised in the late 1940’s by P. R Wallace using

the tight-binding approximation [3].

The Manchester group demonstrated amazing transport properties in graphene

flakes obtained from highly ordered pyrolytic graphite (HOPG) via mechanical ex-
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foliation using Scotch tape [4]. Although this technique still produces graphene of

the highest quality, it is not the most viable technique for large scale production to

kick-start the graphene age. Graphene grown by chemical vapour deposition (CVD)

on transition metal films is of high quality. However, it must be transferred onto an

insulating substrate, requiring chemical and mechanical processes that can potentially

damage the film. Epitaxial graphene (EG) on Silicon Carbide (SiC) substrate can be

patterned in its as grown state due to the insulating nature of the substrate. How-

ever, growth on the Si-face of SiC(0001) tends to be patchy with islands of multiple

graphene layers and is closely following the complex topography of the substrate. More-

over, graphene on SiC(0001) is subject to heavy n-doping from a carbon layer that is

covalently bonded to the substrate, typically referred to as the buffer- or interfacial-layer

(IFL). The growth mechanism of graphene on the C-face of SiC(000-1) is not subject

to the IFL, however graphene forms quickly and wildly, making it extremely difficult

for controlled uniform growth. In order for graphene to be commercially viable, the

electronic properties of single- and double-layer graphene (1LG and 2LG, respectively)

need to be fully understood. The primary focus of this thesis is to correlate bulk trans-

port with local electronic properties of EG nanodevices, using various scanning probe

microscopy (SPM) techniques, to obtain a full understanding and to demonstrate their

potential for electronic and magnetic sensing applications.

Chapter 2 provides a literature review on the theory of 1LG and 2LG band struc-

ture. As the primary focus of this thesis is on EG, a review has been provided for

the SiC(0001) growth process, common characteristics of EG, the influence of envi-

ronmental doping and the advantages and disadvantages of EG. A review of Raman

spectroscopy is equally important as it is widely regarded as the definitive method of

identifying the graphene layer thicknesses. The use of electrical force microscopies in

studies of electronic properties of graphene is increasingly becoming common due to its

ease of access and nanometre scale spatial resolution. Review on layer identification,

work function and contact resistance measurements on devices using SPM techniques

are also provided.

Chapter 3 discusses the investigations of miniaturising Hall devices from 0.1-19.6µm

fabricated out of nominally 1LG on 4H -SiC(0001). The effects of fabrication induced de-
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fects and miniaturisation have been studied by investigating the carrier density (n), car-

rier mobility (µ), Hall coefficient (RH) and minimum detectable magnetic field (Bmin)

at room temperature, in ambient air, using transport and noise spectrum measure-

ments. The performance of these devices are compared to that of devices fabricated

out of state-of-the-art semiconductor and CVD graphene. Furthermore, the stray mag-

netic field emanating from a single 1µm diameter magnetic particle was detected using

AC/DC Hall magnetometry. The result of this experiment was also compared to find-

ings from identical measurements carried out on InSb epilayer devices of similar size

and geometry, providing a clear demonstration of the advantages of graphene.

While transport measurements provide a measure of the bulk electronic properties,

SPM techniques provide a map of nanoscale electronic properties. Chapter 4 discusses

the atomic force microscopy (AFM) based mapping techniques used throughout this

thesis to study the nanoscale electronic properties of EG devices. These include map-

ping of the topography, surface potential, and device response to a local electrical/mag-

netic scanning gate. Chapter 5 discusses the nanoscale mapping of the electronic

properties of EG devices. The three most widely used surface potential measurement

techniques are electrostatic force spectroscopy (EFS), amplitude-modulated (AM-) and

frequency-modulated (FM-) Kelvin probe force microscopy (KPFM). However, each

technique can provide contradicting results, therefore a comprehensive review has been

carried out on a representative EG device to determine the most accurate technique.

Using the most appropriate technique(s), various aspects of EG devices were studied.

For example, FM-KPFM was used to study the potential drop from Au-graphene con-

tact lead, revealing a non-Ohmic component in the contact resistance. EFS was used

to study the work function of 1LG and 2LG, p-doping nature of photochemicals and

n-doping nature of the IFL. The work function studies also revealed hole conduction at

edges of devices that were lithographically defined using oxygen plasma etching. The

effects of 2LG islands on bulk transport properties of devices were also investigated

by accurately locating their positions with FM-KPFM. In most cases, the nanoscale

investigations were complimented with bulk transport measurements to obtain a more

detailed insight into the electronic properties of EG devices.

Chapter 6 discusses the effects of lateral electrical gates and scanning local electrical
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and magnetic gates. For example, the effects of lateral gates on the surface potential

distribution of the channel were studied using FM-KPFM and quantified with work

function measurements. The effects of local electrical top gate on uniform and non-

uniform EG devices were studied using scanning gate microscopy (SGM) and scanning

gate spectroscopy (SGS). These investigations are useful in studying the electric field

screening properties of isolated 2LG islands in non-uniform EG devices. The effects of

local magnetic top gate on a uniform 1LG device were also investigated. Such effects

can prove to be difficult to observe due to a substantial contribution from electrostatic

effects. However, FM-KPFM was used in situ with SGM to apply a compensating

voltage to the probe, such that the parasitic electric field was eliminated. This method

proved extremely effective for study of the magnetic field response of EG devices.

The ultimate goal is to apply bulk and nanoscale electrical measurement techniques

to EG nanodevices to obtain a more comprehensive understanding of non-uniform layer

thickness devices, effects of fabrication processes, environmental doping, electrical and

magnetic gating and electric field screening by 2LG. This will aid in exploiting the

unique electrical properties of graphene and improve the performance of devices for

electronic and magnetic sensing applications.
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Chapter 2

Graphene: theory, growth and

characterisation

This chapter provides a literature review on the theory of linear dispersion of 1LG

and parabolic dispersion of 2LG. The chapter also discusses the three most common

graphene production methods: mechanical exfoliation, chemical vapour deposition and

epitaxial growth. However, as the work has been carried out on devices fabricated out

of 4H -SiC(0001), a greater emphasis has been put on epitaxially grown graphene. The

literature review also covers previous studies of Raman spectroscopy and functional

electrical microscopy techniques to investigate differences in the electronic properties

of different layer thicknesses of graphene.

2.1 Band structure

2.1.1 Single-layer graphene

The sp2 carbon atoms are arranged in a hexagonal (honeycomb) structure, which

can be regarded as two triangular sub-lattices with each lattice consisting of two atoms

per unit cell (Fig. 2.1). The 2D lattice and reciprocal-lattice vectors can be written as

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−

√
3
)

(2.1)
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Figure 2.1: (a) Graphene honeycomb lattice structure showing the two interpenetrating

triangular sublattices, where a1 and a2 are the lattice unit vectors, δ1 = a
2 (1,

√
3), δ2 =

a
2 (1,−

√
3) and δ3 = −a(1, 0) are the three real space nearest-neighbour vectors and δ′1 = ±a1,

δ′2 = ±a2 and δ′3 = ±(a2 − a1) are the six second-nearest neighbours. The carbon atoms

relating to the A and B sublattices is show using two different colours [5]. (b) Graphene

Brillouin zone in the momentum space, where the Dirac cones are located in the k -space as

indicated by K and K ′. Adapted from Ref. [5].

and

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1,−

√
3
)
, (2.2)

respectively, where a ≈ 1.42 Å is the carbon-carbon distance. Using the tight-binding

approximation, P. R. Wallace realised the linear E-k relation at low energies near the

corners of the Brillouin zone (BZ) at each carbon site [3]. The K and K ′ points of

the graphene BZ in the momentum space are the points at which the cones of the

electron-hole energy dispersion touch (Fig. 2.2). These positions referred to as the

Dirac points, given by

K =

(
2π

3a
,

2π

3
√

3a

)
and K′ =

(
2π

3a
,− 2π

3
√

3a

)
, (2.3)

are of significant importance in the transport properties of graphene. Wallace calcu-

lated the band structure of graphene using the tight-binding Hamiltonian for electrons

in graphene hopping between the nearest-neighbour (AB) and next-nearest-neighbour

(AA or BB) carbon atoms [3], which has been summarised by Neto et al. [5] and Das

Sarma et al. [6]. Following from the full electronic dispersion (Fig. 2.2), the approxi-
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Figure 2.2: The full electronic

dispersion of 1LG showing the K,

K ′, M and Γ points, is given by

E±(k) = ±t
√
3 + f(k) − t′f(k),

where f(k) = 2 cos (
√
3kya) +

4 cos (
√
3kya/2) cos (3kxa/2).

Adapted from Ref. [5].

mate energy for the conduction (upper, +, π∗) and valence (lower, −, π) band is given

by [6]

E±(q) ≈ 3t′ ± ~υF |q| −
(

9t′a2

4
± 3ta2

8
sin 3θq

)
|q|2, (2.4)

where t(≈ 2.7 eV ) is the nearest-neighbour (interlayer) hopping energy, t′(≈ −0.2t)

is the next-nearest-neighbour (intralayer) hopping energy, υF = 3ta/2 is the Fermi

velocity, θq = arctan [qx/qy] is the angle in the momentum space and q is the momentum

relative to the Dirac points. However, the position of the Dirac point is shifted due

to the presence of t′, thus breaking the electron-hole symmetry. At long wavelengths

(t′ = 0), the graphene band dispersion for small q is given by [6]

E±(q) = ±~υF |q| + O(q/K)2. (2.5)

Most of the work with graphene presented in literature is in the low carrier density

regime, i.e., linear energy dispersion with the conduction and valence bands intersecting

at q = 0 with no energy gap, making it a zero band-gap semiconductor. Therefore

the Fermi energy for 1LG is described by EF = νF~
√
nπ. The electrons and holes in

graphene mimic relativistic particles due to a zero effective mass, which can be described

by the Dirac’s (relativistic) equation for fermions [7, 8].
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2.1.2 Double-layer graphene

Double-layer graphene is a stack of two 1LG that are weakly coupled by interlayer

hopping. The hopping is dependent on the specific stacking, i.e., AA (Fig. 2.3a) or

AB (Fig. 2.3b), and must be taken into account when extending the tight-binding

approximation to 2LG [9]. In the case of AB stacked 2LG, the band energy is given

by [6]

E2
±(q) = V 2 + (~υF q)2 + t2⊥/2 ±

√
4(V ~υF q)2 + (t⊥~υF q)2 + t4⊥/4, (2.6)

where t⊥ is the effective interlayer hopping energy and V is the externally applied

electric field perpendicular to the layers (i.e., the field between top and bottom layer).

However, the band energy can be expanded for small momentum and V � t, such

that [6]

E±(q) = ±

[
V − 2V (~νF q)2

t⊥
+

(~νF q)4

2t2⊥V

]
. (2.7)

The electrochemical potential between the graphene layers results in a shift in the 2LG

dispersion, thus, opening a small band-gap of ∆ = 2V − 4V 3/t2⊥at q =
√

2V/~νF , near

the Dirac Point (V 6= 0, Fig. 2.3c) [6], which has been experimentally observed [10–13].

In the absence of a perpendicular electric field (V = 0, Fig. 2.3c), 2LG is a gapless

Figure 2.3: (a) AA and (b) AB stacked 2LG. (c) The electronic dispersion of 2LG near the

K Dirac point. Adapted from Ref. [9].
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semiconductor with parabolic energy dispersion [6]

E±(q) ≈
(~νF q)2

t⊥
=

~2q2

2m
, (2.8)

where m = t⊥/2ν2
F for small q . However, the parabolic dispersion for V = 0 is only

valid for small q satisfying ~νF q � t⊥, whereas, a linear dispersion with E±(q) ≈ ±~νF
is satisfied when ~νF q � t⊥, as with 1LG [6]. The crossover from quadratic to linear

dispersion is easily understood when rewriting the 2LG band dispersion for V = 0 in

the hyperbolic form [6]:

E2LG = ∓mν2
F ±mν2

F [1 + (k/k0)
2]1/2, (2.9)

where k0 = t⊥/(2~νF ) is a characteristic wave vector. For the effective 2LG band

dispersion with k � k0, E2LG → k2 when k → 0, i.e., parabolic, whereas with k � k0,

E2LG → k when k → ∞, i.e., linear.

2.2 Mechanical exfoliation

Nearly a decade on, the firstly discovered form of graphene, i.e., with mechanical

exfoliation [2], has yet to be outclassed in terms of the quality [2, 7, 14–17]. This

simple yet effective method of mechanically exfoliating graphene flakes from HOPG

with Scotch tape and transferring them onto Si/SiO2 substrate can produced 1LG flakes

that are now up to a millimetre wide [18]. These flakes exhibit tunable electron/hole

concentrations in the range of n = 109-1013 cm−2 using bottom gating [2, 19, 20] and

carrier mobilities reaching µ ∼ 20, 000 cm2/V s at room-temperature [2, 7, 20]. The

mobility is generally limited by Coulomb and resonant scattering and mechanical defects

such as ripples, however, suspending the graphene flake can dramatically increase the

mobility to µ ∼ 105 (106) cm2/V s at room (low) temperature [19–23]. In graphene,

carriers have been known to travel at mean free paths of ∼ 0.4µm without scattering [2].

These carriers travel at velocities of ∼ 106 m/s denoted as the Fermi velocity (νF ),

behaving like massless Dirac fermions [7,14,16]. One example of a quantum mechanical

phenomenon that occurs in 2D materials is the quantum Hall effect (QHE) [24], which is
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typically observed at liquid helium temperatures (∼ 4K), however, the QHE can occur

at room-temperature in graphene [16]. Although mechanically exfoliated graphene is

still the best in terms of quality, the technique is not suitable for large scale production

required for commercialisation of graphene electronics.

2.3 Chemical vapour deposition

One of the heavily researched areas of large scale graphene production is by the

CVD method. The growth process involves using thin film metals such as Cu [25,26] or

Ni [27,28] as a catalyst and exposing the heated surface (up to 1000oC) to a hydrocarbon

gas [25, 29, 30]. This method typically produces 1-10 layer thick graphene [29], which

then has to be transferred onto an insulating substrate such as Si/SiO2 with the use

of mechanical and chemical treatments, for electrical measurements [30, 31]. CVD

graphene typically exhibits defects such as grain boundaries and wrinkles induced by

the original grain boundaries and mismatched thermal expansion of the catalyst [31,32].

Without due care, further defects such as cracks can easily be induced from the transfer

process [31]. The room (low) temperature mobilities of such films are on the order of

µ ∼ 2000 (3700) cm2/V s [29, 30, 32]. Moreover, as with exfoliated graphene, CVD

graphene transferred onto Si/SiO2 also benefits from tunable carrier densities using

bottom gating.

2.4 Epitaxial growth on SiC

SiC has been hailed as one of the most promising routes for industrialised graphene

devices [33]. Early attempts of growing EG resulted in non-uniform formation of

graphite [34–36]. More recently, groups have demonstrated reproducible 1-2 layer

growth by carefully tuning parameters such as growth time, annealing temperature,

atmospheric pressure and SiC crystalline form (3C, 4H and 6H ) [37–39].
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2.4.1 Growth of graphene on SiC(0001)

The ideology of using SiC is such that it is a material with a comparable hexagonal

structure to graphene, with the added benefit of layer by layer sublimation of Si from

the surface during high-temperature annealing, leaving behind carbon that rearranges

to forms the graphene honeycomb lattice. Moreover, the insulating nature of SiC means

graphene grown in this manner can be instantly used without the need for damaging

and unreliable process of transferring onto insulating substrates. The formation of

graphene on a particular face of SiC, i.e., Si- or C-face, is extremely important for

controlled growth [40]. On C-face, i.e., SiC(000-1), graphene grows quickly and wildly,

producing islands of multiple graphene layer thickness [41]. On Si-face, i.e., SiC(0001),

graphene grows much slower, where optimised parameters can produce uniform 1LG

coverage (Fig. 2.4a), with only a few percentage of 2LG (Fig. 2.4b) coverage [43].

The annealing of SiC(0001) leads to the modification of the surface starting from a

Si-rich (33) structure [37,44,45], through to an intermediate (1×1) [46] and (
√

3×
√

3)

reconstruction [39, 44, 47], to the C-rich (6
√

3 × 6
√

3)R30o structure (i.e., buffer or

interfacial layer, IFL) composed of the sp3 carbon atoms bonded to the substrate Si

layer [42, 48,49], and finally the desired hexagonal lattice of graphene (Fig. 2.4) [50].

Attempts of growing EG in ultra-high vacuum (UHV) resulted in non-uniform

graphene formation [44, 51–54]. However, introducing Ar suppresses the rate of sub-

limation of Si, producing graphene with better uniformity [40, 51]. The sublimation

rate of Si and subsequently graphene formation are also sensitive to annealing tem-

perature, requiring furnaces with inductive heaters offering precise temperature control

and uniform coverage across the area of a 2-inch wafer [37, 38]. The Linköping group

typically prefers higher temperature and argon gas pressure of 2000 oC and 760 Torr,

Figure 2.4: Schematic structure

for (a) single-layer (1LG) and

(b) double-layer (2LG) epitax-

ial graphene on interfacial-layer

(IFL) and SiC(0001) substrate.

Adapted from Ref. [42].
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respectively [37, 55], while the IBM group prefers much lower settings of 1450 oC and

3.5 × 10−4 Torr, respectively [38]. The higher annealing temperature does result in a

faster and more uncontrolled graphene formation, thus requiring complementary higher

Ar pressure to further suppress the Si sublimation rate [37,51]. In either growth philos-

ophy, highly uniform 1LG on a 2-inch 4H and/or 6H -SiC wafer can be obtained with

carrier mobilities in the range of µ = 1000-4000 cm2/V s at temperatures ranging from

room temperature down to 4 K [33, 38,39,54,56–58].

2.4.2 Effect of wafer miscut angle

Commercially available SiC wafers that are specified as nominally “on-axis” are

typically characterised by the unintentional miscut angle, i.e., angle from the axis

of the SiC lattice to the surface of the wafer, of up to 0.5o, giving rise to straight

SiC terraces (Fig. 2.5) [59]. However, the terrace edges enhance the Si desorption,

acting as nucleation sites for graphene growth, therefore playing a vital role in the

graphene formation [44, 48]. The terrace edges initially start as relatively straight,

however, the graphitisation significantly changes the surface topography, making them

wavy [44,48,60,61]. The latter is more apparent in substrates with small miscut angles,

where typically the terraces are wider [59]. Moreover, substrates with miscut angle

below 0.1o are more prone to the formation of deep pits as a result of the buffer layer

domains pinning the decomposing surface step, where a new source of carbon is required

for further graphitisation [44,59].

Figure 2.5: A simple schematic showing a 4H -SiC substrate that is (a) on-axis and (b)

miscut.
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2.4.3 Layer uniformity

Despite the SiC steps in integers heights of 0.25 nm [62, 63], graphene grows over

the steps continuously (Fig. 2.6a) [36, 64–66], which has been observed by imaging

cross-sections of terrace steps using tunnelling electron microscopy [68–70]. As previ-

ously mentioned, the terrace edges act as nucleation sites for graphitisation and are

often found to have additional graphene layer emanating (Fig. 2.6b), i.e., on a sample

with 1LG coverage, 2LG islands can be typically found emanating at the terrace step

edges [62, 67, 68]. The electronic properties of graphene passing over the abrupt ter-

race edges were thought to be affected as a result of the strong curvature of graphene;

nonetheless, theoretical calculations show little effect to the resistance of graphene [66].

However, Ji et al. experimentally measured a significant potential drop across terrace

step edge related to a resistivity of 6.9 ± 2.9, 14.9 ± 3.9 and 24.7 ± 4.3 Ωµm for 1LG

crossing a single, double and triple substrate steps, respectively [71]. The change in

resistivity of the graphene film over the terrace step edge is almost entirely attributed

to the de-lamination of the film (Fig. 2.6a), significantly affecting the doping from the

substrate [66,71], which will be further discussed in Section 2.4.4.

Puckers (or otherwise known as folds, ridges, ripples or wrinkles) in EG are common

defects [40,52,72–74]. The high temperature annealing process causes the substrate to

expand and upon cooling the graphitised film experiences a compressive strain due to

a difference in the thermal contraction [40, 72]. Inevitably, the graphene film buckles

upwards under the immense stress [40,72,75,76], forming puckers that are up to 30nm

in height [75].

Figure 2.6: A simple schematic showing (a) continuous 1LG over terrace step edges and (b)

additional graphene layer emanating at a terrace step edge of a 4H -SiC substrate. Adapted

from Ref. [67].
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2.4.4 Influence of environmental conditions

Graphene, being a single atomic layer thick lattice, has the top of each carbon

atom exposed to the environment. This unique property of graphene adds an extra

complication in that the electronic properties of graphene can be severely affected by

changes to the environment, such as gases [77–79] and humidity [80,81], thus affecting

the operation of devices.

Pearce et al. studied the effect on transport properties of n-type 1LG grown on

4H -SiC(0001) to exposing gases such as O2, NO2 and N2 [82]. Exposing the sample to

low parts-per-billion (ppb) concentrations of NO2 in N2/O2 (synthetic air of 4:1 ratio)

background for 1 hour increased the resistance of the sample from ∼ 700 to ∼ 840 Ω

with an estimated recovery time of over 10 hours. The introduction of NO2 shows a

clear decrease in the electron carrier density of graphene due to the introduction of

holes [78], nevertheless, the total combined effect of the NO2 and the substrate is still

n-type. However, exposing the samples to higher concentrations of NO2 revealed n-p

transition, indicating the doping was significant enough for holes to become the majority

carriers. It was reported that NO2 preferentially adsorbs at defects by transferring one

electron from graphene to NO2 [79, 83].

Similarly, water also affects the transport properties of graphene acting as a p-dopant

[80, 81, 84]. Kazakova et al. used SPM techniques to study the effect of humidity

on 1-3LG on 4H -SiC(0001). Tapping phase AFM revealed preferential droplet-size

adsorption of water on 2-3LG only at room temperature. Heating the sample to 50 oC

forced the water nanodroplets to move around and coalesce into larger sizes but only

on 3LG. Further heating of the sample to 80 oC evaporated all the water from 2-3LG.

Cooling the sample back down to room temperature allowed the water to re-condense

preferentially on 2-3LG.

2.4.5 Advantages and disadvantages

Epitaxially grown graphene on SiC has one of the greatest potentials for commer-

cialisation, as readily available SiC wafers are ideal for 1LG growth on wafers up to

2-inch diameter in present time [33, 37, 38]. The highly insulating nature of SiC also

adds an extra benefit in that graphene can be patterned without the need to transferred
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onto an alternative substrate, as is the case with, for example, CVD graphene grown

on metal substrates that need to be transferred to Si/SiO2 substrate. EG is highly

compatible with existing silicon processing technologies, potentially saving the indus-

try from using up vast amounts of valuable resources on new equipment. Regardless

of all the advantages to EG, there are a few disadvantages which has the possibility of

hindering its development. The most immediate problem being the significantly higher

cost of a single SiC wafer (∼ 2000 USD for a 4-inch wafer [85]), making it economically

non-viable at this stage. There are currently other more fundamental issues with EG;

no group has been able to grow perfectly uniform defect-free 1LG or 2LG, albeit some

have come as close as 97% uniform 1LG coverage with significantly reduced lattice

defects, grain boundaries, nucleation sites and impurities.

2.5 Raman spectroscopy

Raman spectroscopy is widely regarded as the definitive way of characterising the

structures of graphitic materials and especially graphene [86, 87]. The method can

be applied to determine the structure in various systems, such as free-standing exfoli-

ated graphene [88–90], exfoliated graphene transferred on various substrates (such as

Si/SiO2) [91–94], epitaxially [92, 95, 96] and CVD grown graphene [26, 29, 97], all of

which can have a shifted EF via chemical doping [98–100] or electrical gating [101,102].

2.5.1 Phonon dispersion

Raman spectroscopy is a direct measurement of the phonon dispersion [103]. In

graphite, there are three acoustic (A) and three optic (O) phonon dispersion bands

related to the two (A and B) carbon atoms [87]. These consist of two phonon branches

that are perpendicular to the graphene plane, i.e., out-of-plane (o) and four phonon

branches that are parallel to the graphene plane, i.e., in-plane (i) [87]. The directions

of the vibrations in graphene are generally considered with respect to the direction of

the carbon-carbon (AB) atoms, categorising the parallel and perpendicular vibrations

as longitudinal (L) and transverse (T), respectively [87], hence the high symmetry

directions (ΓK and ΓM ). The curves of the six phonon dispersion modes are assigned
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Figure 2.7: Phonon dispersion

of graphene from density func-

tional theory calculations show-

ing the iLO, iTO, oTO, iLA,

iTA and oTA phonon modes.

Reprinted (adapted) with per-

mission from Ref. [103]. Copy-

right 2008 by The American

Physical Society.

iLO, iTO, oTO, iLA, iTA and oTA (Fig. 2.7) [87]. The iLO and iTO phonon modes are

the active Raman modes in graphene, which are associated with the degenerate zone

centre E2g [87, 93,104].

2.5.2 Raman spectra of graphene

2.5.2.1 Exfoliated graphene

The most intense features of the Raman spectra for exfoliated graphene on Si/SiO2

(Fig. 2.8a) are the G- and G′-peaks (∼ 1582 and ∼ 2700 cm−1, respectively, using

a 514 nm laser, Fig. 2.8b) [87, 93, 94]. Graphene samples containing a disordered

crystalline lattice structure or at the terminating edge of graphene gives rise to the

Figure 2.8: (a) Optical microscope image of 1LG and folded 1LG (f-1LG) on Si/SiO2 sub-

strate. (b) Raman spectra for 1LG and f-1LG. The inset in (b) shows the magnified D-peak

for f-1LG, fitted with two Lorentzians. (c) Band structure of 1LG near the Dirac point show-

ing the transition of iTO phonon mode. Reprinted with permission from Ref. [94]. Copyright

2012 American Chemical Society.
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D-peak (∼ 1350 cm−1 using a 514 nm laser, Fig. 2.8b) [87, 104]. In the case of Fig.

2.8a, additional defects are introduced as the 1LG folds over (f-1LG), giving rise to a

more intense D-peak (Fig. 2.8b inset). The G-peak is related to the doubly degenerate

phonon modes (iLO and iTO) coming from the first-order Raman scattering process.

The G′-peak (also referred to as the 2D-peak due to its ∼ 2 times larger phonon

frequency compared to the D-peak) is related to the two iTO phonons near the K

point coming from the second-order scattering process (Fig. 2.8c) [94]. The D-peak is

also related to the second-order process involving a single iTO phonon.

2.5.2.2 Epitaxial graphene on SiC

Graphene grown on SiC(0001) consists of an additional IFL composing of sp3 carbon

atoms that are covalently bonded to the substrate Si. The IFL is an n-dopant due to

electron charge transfer to the graphene [43, 56, 57, 105, 106], shifting the Fermi energy

by up to EF = 400meV towards the conduction band in 1LG [105]. The IFL has similar

structural properties to graphene, also producing peaks around 1300-1750 cm−1 (Fig.

2.9a) [92, 107, 108]. These peaks inevitably are superimposed on top of the graphene

Figure 2.9: Raman spectra for (a) 1LG (Mono, black), 2LG (Bi, red), 6H -SiC(0001) reference

(green), (b) 3LG (Tri, blue) and the 4H -SiC(0001) reference (green). The dotted boxes in (a)

and (b) marks the region of graphene D- and G-peaks that are partly masked by the Raman

signal from the SiC substrate. (c) Raman spectra for 1-3LG subtracted from their respective

bare SiC reference. (d) Normalised Raman spectra near the G′-peak (2D) for epitaxial 1-3LG.

Reprinted with permission from Ref. [92]. Copyright 2008 American Chemical Society.
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G-peak [92, 107], adding an extra challenge towards precise analysis of the graphene

Raman spectrum [96]. Furthermore, the IFL does not produce a G′-peak [109].

Raman studies on 1-2LG on 6H -SiC(0001) (Fig. 2.9a) and 3LG on 4H -SiC(0001)

(Fig. 2.9b) using a 488 nm laser reveals D- and G-peaks, albeit superimposed on to

the signal from their respective substrates, which makes it difficult for layer analysis

from the raw data [92]. However, subtracting the reference SiC spectra reveals D-peaks

(∼ 1360 cm−1) and G-peaks (∼ 1591 cm−1) for 1-3LG (Fig. 2.9c). When comparing

the G-peak of exfoliated graphene (∼ 1587 cm−1) with EG [92], the compressive strain

on graphene induced by the SiC(0001) substrate blue-shifts the peak by ∼ 4 cm−1.

EG also exhibits a strong G′-peak, where 1LG, 2LG and 3LG peaks are located

at ∼ 2721, ∼ 2743 and ∼ 2760 cm−1 and the full width at half-maximum (FWHM)

are ∼ 46, ∼ 64 and ∼ 74 cm−1, respectively, showing a gradual progression of both

the G′-peak and the FWHM from 1LG-2LG-3LG (Fig. 2.9d) [92]. In comparison to

exfoliated graphene from HOPG, the FWHM for 1LG and 2LG is < 30 and 50 cm−1,

respectively [92]. While both exfoliated and epitaxial 1LG exhibits a G′-peak that can

be fitted with a single Lorentzian, it is not as straightforward for 2LG. AB stacked 2LG

typically requires four Lorentzians to fit the G′-peak due to an asymmetric shape of

the peak with an added shoulder structure, whereas AA or any other stacking of 2LG

can be fitted with a single Lorentzian [87]. This is because the electronic structure of

non-AB stacked 2LG resembles the massless Dirac fermions in 1LG.

Figure 2.10: Raman spectra for epitaxially grown graphene on SiC, that was transferred to

Si/SiO2 substrate via mechanical exfoliation, showing the spectra for (a) 1LG and (b) G′-peak

for 1LG, 2LG and >2LG. Reprinted with permission from Ref. [92]. Copyright 2008 American

Chemical Society.
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Lee et al. also obtained Raman spectra of epitaxial 1LG that was exfoliated from

SiC and transferred to Si/SiO2 substrate in order to investigate the effect of the IFL on

epitaxially grown graphene. Transferred EG loses the forest of dominating peaks present

in measurements for graphene on SiC and appears more like spectra for exfoliated

graphene from HOPG, however with the presence of a small D-peak, related to the

defects in epitaxially grown graphene (Fig. 2.10a). A more detailed analysis reveals a

change in the shape of the G′-peak and especially with the spectra for 2LG or thicker,

where accurate fitting requires multiple Lorentzians (Fig. 2.10b), thus resembling the

spectra for exfoliated graphene from HOPG (Fig. 2.9d).

2.5.3 Raman mapping

Raman spectroscopy can also be performed over an area, mapping quantities such as

the peak position, FWHM and relative intensities of the peaks, to build up 2-dimensional

images [95,110]. The technique is relatively time consuming due to the slow acquisition

time of the Raman spectroscopy at each point. However, the acquisition time can be

decreased by using a more powerful laser to increase the signal or using a more sensitive

detector. With increasing the laser power, one has to consider the heat dissipation in

the sample, which can potentially lead to permanent damage [87]. The major disad-

vantage of Raman mapping is the low spatial resolution, which is generally limited by

the spot size of the laser to ∼ 0.4-1µm [95,110–114], making it two orders of magnitude

lower than SPM techniques (10’s of nanometres).

The AFM topography image performed on mechanically exfoliated HOPG, trans-

ferred onto Si/SiO2 substrate reveals different layer thickness of graphene, where “0”

indicates the substrate and numbers 1-6 indicates the graphene layer thickness (Fig.

2.11a and Fig. 2.11b) [110]. The 2-dimensional mapping of the Raman spectra per-

formed on the same region of the sample has been filtered to show the G-peak intensity

integrated from 1537 to 1622 cm−1 (Fig. 2.11c and Fig. 2.11d) and the FWHM of

the G′-peak (referred to as the D′-peak) (Fig. 2.11e and Fig. 2.11f) producing a false-

colour image [110]. Comparing the line profiles of the integrated G-peak intensity to

the topography revels good correlation and clearly distinguishing graphene domains of

different thickness. However, the FWHM of the G′-peak can only be used to identify
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Figure 2.11: (a) Topography image of a few-layer graphene flake obtained using AFM. Raman

mapping showing (c) the intensity of the G-peak and (e) the FWHM of the G′-peak (referred

to as the D′-peak). (b), (d) and (f) are the cross-sectional plot along the white dashed arrows

indicated in (a), (c) and (e), respectively. Dashed squares in (c) and (e) corresponds to the

area in (a). Reprinted with permission from Ref. [110]. Copyright 2007 American Chemical

Society.

domains of single- and few-layers of graphene.

2.6 Surface potential mapping

2.6.1 Identifying graphene thickness domains

AFM is a widely accessible tool used for straightforward topography measurements

with atomic height resolution. This makes it an obvious choice for determining graphene

layer thickness. The technique is successfully used for graphene on Si/SiO2 substrate

(Fig. 2.12a) [115–118], however, the same cannot be said for EG on SiC substrate due

the complex nature of the topography of the substrate (Fig. 2.12b) [61, 62, 72, 119].

KPFM is an AFM based technique for imaging the surface contact potential difference

(∆VCPD) between the probe and the sample [62,116,120–125]. Often when topography
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Figure 2.12: (a) Topography map of few graphene layers on Si/SiO2 substrate. Inset in (a)

shows a topography line profile along the indicated dotted line. (b) Topography and (c) VCPD

mapping of epitaxial graphene on 6H -SiC(0001). The arrows point to the boundary of 1-2LG.

(a) is reprinted with permission from Ref. [115]. Copyright 2009 American Chemical Society.

(b) and (c) are reprinted with permission from Ref. [62]. Copyright 2008 AIP Publishing

LLC.

measurements are ineffective, KPFM has been used to map out graphene domains,

where contrast arises due to differences in the electrical properties of each graphene

layer thickness (Fig. 2.12c) [43,62,116,123,125].

Histogram analysis on Fig. 2.12c done by Filleter et al. revealed 135±9meV decrease

in work function from 2-1LG and a further decrease of ∼ 140meV from 1LG to IFL at

room temperature, in UHV, carefully avoiding surface contaminants [62]. Uncontrolled

levels of surface contaminations affect the ∆VCPD of each graphene layer differently,

producing relative contrasts that can be complex to interpret. Understanding the effect

of substrate and environmental doping on the work function of graphene is a key step

towards accurate interpretation of the exact number of layer thickness.

Yu et al. performed work functions measurements on exfoliated 1LG and 2LG on

Si/SiO2 contacted with Cr/Au electrodes (Fig. 2.13) [124]. Unlike EG on SiC, graphene

on Si/SiO2 substrate is intrinsically p-doped. However, using doped Si substrates to-

gether with the insulating SiO2 layer has the added benefit of tunable carrier density

of graphene by simply applying a voltage to the substrate, back gating the device. By

using back gate, the EF of graphene can be modulated to either side of the Dirac point,

enabling one to counteract the effect of substrate and environmental doping. Using

Au-coated probes with a known work function (Φprobe), the work function of the sample

(Φsample) can be determined: Φsample ≈ Φprobe − e∆VCPD [126]. The work function
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Figure 2.13: Work function of 1LG (filled

symbols, shaded in red) and 2LG (open

symbols, shaded in blue) as a function of

applied gate voltage (Vg) minus the gate

voltage at the Dirac point (VD). The

filled red, green and purple symbol data

sets were obtained in air, while all other

data sets were obtained in dry nitrogen

environment. Reprinted with permission

from Ref. [124]. Copyright 2009 American

Chemical Society.

of 1LG and 2LG at the Dirac point were reported to be Φ1LG = 4.57 ± 0.05 eV and

Φ2LG = 4.69 ± 0.05 eV , respectively (Fig. 2.13) [124].

2.6.2 Contact resistance

In KPFM, the probe acts as a movable electrical contact making it an excellent

tool for measuring the potential drop and subsequently the contact resistance between

graphene and the electrode [124]. Fig. 2.14a shows such measurement performed on a

graphene device with voltage (VSD) applied across the source-drain electrodes. Within

the channel, current-VSD characteristics reveal a linear relation with the total circuit

resistance (3.44kΩ) provided by the slope. The KPFM line profiles reveal the potential

Figure 2.14: (a) Topography and VCPD line profile along the device, i.e., electrode-graphene-

electrode, at voltages VSD = 0-2.25 V applied across the source-drain electrodes. (b) VCPD

line profiles shown in (a) are referenced to the grounded drain electrode and normalised by

VSD. Reprinted with permission from Ref. [124]. Copyright 2009 American Chemical Society.
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distribution across the source-drain electrodes at VSD = 0-2.25V . Inspection of the sur-

face potential drops of the normalised line profiles ([VCPD(VSD)−VCPD(VSD = 0)]/VSD)

provides an estimation of the contact resistance for source (rs = 1.24 kΩ) and drain

(rd = 0.5 kΩ) electrodes and the graphene channel (rc = 1.7 kΩ) (Fig. 2.14b).

2.7 Summary

In summary, graphene exhibits extraordinary electrical and mechanical properties

with high hopes for future technological applications in many areas. However, for some

of these applications to be a reality, wafer scale production of graphene with care-

ful control of its unique properties are required. One of the most promising routes

for wafer scale graphene is via epitaxial growth on SiC. While Raman spectroscopy is

widely used to characterise graphene samples, surface potential mapping techniques are

faster alternative way of obtaining nanometre scale characterisations. Surface potential

mapping techniques applied to EG samples have shown significant inhomogeneities in

the graphene layer thickness. The latter is possible as the subtle changes in electronic

properties of different graphene layer thickness are described by unique band structures.

While bulk transport properties provide only average statistics of these electronic prop-

erties, surface potential mapping techniques provide nanometre scale characterisations.

Accurate characterisation of the transport properties is essential as industry pushes the

limits of fabrication processes to produce ever smaller devices. My objective is to use

bulk transport and noise measurements to study the effects of miniaturisation of Hall

bar devices. In addition, SPM techniques are used in conjunction with bulk transport

measurements to further understand various aspects such as fabrication processes, envi-

ronmental doping, effects of 2LG on bulk transport, edge effects and electrical/magnetic

gating on uniform and non-uniform submicron scale EG Hall bar devices.
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Chapter 3

Bulk electronic properties of Hall

sensors

This chapter provides bulk transport and noise measurements of micron to submi-

cron scale Hall bar devices. The Hall bar geometry is ideal for characterising local

variations in the electronic properties of the material. The devices were characterised

at room temperature, in ambient conditions, using the classical Hall effect [127] and

4-terminal resistance measurements. These measurements were used to study the minia-

turisation effects by characterising the carrier density, carrier mobility, Hall coefficient

and mean free path. The performance of Hall bar devices were further studied using

noise spectral density measurements by characterising the minimum detectable field.

Miniaturisation of devices often results in an increase in resistance of the total mea-

surement circuit, resulting in an increase in 1/f noise. The potential of graphene Hall

bar devices for magnetic field sensing applications was also realised by sensing the stray

field of a single 1 µm diameter magnetic bead. The detection was carried out using

an AC/DC Hall magnetometry technique that was originally pioneered by Besse et

al. [128]. The performance of EG devices was compared to that of well-established

state-of-the-art semiconductor devices.
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3.1 Classical Hall effect

The Hall effect is the generation of a transverse potential difference (Vxy) with respect

to the directional flow of the electrical current (Ibias) within an applied magnetic field

(B) perpendicular to the current [127]. The transverse voltage, typically referred to

as the Hall voltage (VH), is generated by the deflection of the current flow due to the

charged carriers experiencing the Lorenz force. The sensitivity of the material to the

generation of the VH is characterised by the Hall coefficient:

RH =
VH

IbiasB
=

1

ent
≡ 1

en2D

, (3.1)

where n is the carrier density, t is the material thickness and e is the electronic charge

[129]. However, due to the two-dimensional nature of graphene, it is more convenient

to use the 2D carrier density (n2D), which will simply be referred to as n throughout

the thesis. The sensitivity can be characterised by measuring VH while sweeping B,

yielding a linear relation that can be fitted with Eq. 3.1. The Hall coefficient is a

direct measure of the material carrier density. In this form, Eq. 3.1 yields a positive

(negative) value for the Hall coefficient of n-type (p-type) material.

3.2 Transport properties of nominally 1LG devices

Hall sensors with cross size ranging from 0.1-19.6 µm (sample #1) were fabricated

out of nominally 1LG (Appendix A) and characterised at room temperature1, in a dark

environment (Fig. 3.1a), using a GMW 5403 water cooled copper coil electromagnet

(powered by a TTi QPX1200) to generate an out-of-plane DC magnetic field (BDC)

(Fig. 3.1b). The devices were current biased, using a Howland current source, at

Ibias = 10-50µA and the VH response was simultaneously measured for all three crosses

using digital voltmeters (Agilent 34420A), while sweeping the BDC from 0 → 0.5 → 0T

(Fig. 3.1c). LabVIEW was used to control the instruments over GPIB and serial

interfaces to automate the measurements. Electrical measurements were conducted

1Note: Recent investigations show that size of devices are smaller than originally designed, there-
fore the interpretation of results presented in Section 3.2 and 3.3 are somewhat different from those
published in Panchal et al., Journal of Applied Physics, 111, 07E509, 2012.
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Figure 3.1: Images of (a) sample box placed between the pole pieces of (b) copper coil

magnet. (c) A schematic of the Hall voltage measurement setup showing a triple cross device

placed in out-of-plane DC magnetic field (BDC). C1, C2 and C3 represents crosses 1, 2 and 3,

respectively. (d) Magnetic field dependence of the Hall voltage for a single cross of a 600 nm

wide device at Ibias = 10-50 µA in increments of 10 µA. The RH is extracted from each Ibias.

(e) Cross size dependence of the RH , where each data point represents a single device with

the values of the three crosses averaged and plotted together with the standard deviation.

using shielded cables and die cast aluminium breakout boxes connected to a common

ground, thus avoiding ground-loops, which can be a source of electrical noise from the

environment. Fig. 3.1d shows the BDC dependence of the linear VH response for a

single cross of a 600 nm wide device. The sweep was performed at Ibias = 10-50 µA

in increments of 10 µA. RH ∼ 1, 020 Ω/T was determined by dividing the gradient of

the slope (VH/BDC) by the respective Ibias and averaging the RH for the five individual

Ibias. This method was applied to all the sensors with each device producing three

values of RH , one for each cross, which has been averaged and plotted together with

their standard deviation (Fig. 3.1e). The cross size dependence of the RH shows no
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clear trend in the magnetic field sensitivity with miniaturisation of the sensor within the

sizes investigated here. On average, the sensors exhibit RH ∼ 750 Ω/T , the result of a

low electron carrier density of ne ∼ 8.3×1011 cm−2 calculated using Eq. 3.1. The lowest

carrier density measured from this particular sample was ne ∼ 6.1 × 1011 cm−2 (Fig.

3.1d), which is comparable to ne at cryogenic-temperatures [56, 130, 131] and typically

lower than the values at room-temperature [33,38,59] published by others in the field.

While there is no clear cross size dependence of RH , the 1.1 µm device does exhibit a

relatively large RH variation compared to the other devices (Fig. 3.1e). Although the

devices were fabricated out of nominally 1LG, Section 5.6 demonstrates that islands of

2LG present on the device leads to an increase (decrease) in ne (RH).

Devices with multiple crosses are also ideal for measuring the sheet resistance (Rs) of

the material (Fig. 3.2a) using a straightforward 4-terminal resistance (R4) measurement

technique that excludes contributions from electrical cables, wire bonding and contact

resistance. R4 was determined by applying Ibias across the channel and measuring the

potential drop (Vxx) from C1 to C3 in zero field (Fig. 3.2a inset). The sheet resistance

remain relatively unchanged at Rs ∼ 2.5 kΩ, showing no clear dependence with device

Figure 3.2: (a) Cross size dependence of the sheet resistance (Rs), which is a measure of

only the channel resistance per unit square. Each data point represents a single device with

the values from the four measurement combinations (1-3, 2-4, 1-4, 2-3) averaged and plotted

together with the standard deviation. (b) Cross size dependence of the carrier mobility, where

each data point represents a single device with the values of the three crosses averaged and

plotted together with the standard deviation.
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Figure 3.3: (a) The relation between the carrier density and carrier mobility. (b) Cross size

dependence of the mean free path, where each data point represents a single device with the

values of the three crosses averaged and plotted together with the standard deviation.

miniaturisation. The carrier mobility can also be calculated using

µ =
RH

R4

× no. of �′s =
RH

Rs

. (3.2)

Rs is given by ρ/t, where ρ and t are the sheet resistivity and thickness, respectively

and hence R4 = Rs×no. of �′s, where the no. of �′s is the ratio of channel length (L)

to width (W ) (Fig. 3.2a inset). The cross size dependence of µ is shown in Fig. 3.2b,

where each data point represents a single device with the values of the three crosses

averaged and plotted together with the standard deviation. The carrier mobility also

remains relatively constant with miniaturisation at µ ∼ 2900 cm2/V s, indicating there

is no significant deterioration in the electronic properties of EG devices down to widths

of 100 nm. The small variations in the carrier mobility are related to the variations

in the carrier density. For example, Fig. 3.3a shows an exponential increase in carrier

mobility with decreasing carrier density.

Electron-electron is the dominant scattering mechanism that dictates the inverse re-

lation between the carrier density and mobility, however only at temperatures < 40K,

where the phonons are frozen out. In the present case (Fig. 3.3), the measurements are

conducted at room temperature, thus, electron-phonon interaction becomes the dom-

inating scattering mechanism [131]. This results in the inverse relationship between

the carrier density and mobility, which has been previously demonstrated theoreti-

cally [132] and experimentally [133] for the case of exfoliated graphene on SiO2. The
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electron-phonon scattering in epitaxial graphene is further enhanced due to effective

coupling to the LO phonon mode (104 meV ) of 4H -SiC [134]. These interactions can

be characterised by the mean free path (λ), given by [22]

λ =
h

2e
µ
(n
π

)1/2

, (3.3)

where h is Plank’s constant. With λ ∼ 30 nm being smaller than the dimensions of all

the devices described here (Fig. 3.3b), the electron transport at room temperature is

strongly diffusive. While the lack of cross size dependence signifies the importance of

intrinsic factors (i.e., defects in the crystal structure of the graphene and SiC substrate,

impurities, grain boundaries, non-uniform number of graphene layers and substrate

doping), extrinsic factors (i.e., environmental doping, unoptimised design of devices

and fabrication processes) can also affect the performance of devices. In comparison

to exfoliated graphene transferred to SiO2 substrate with n ∼ 1012 cm−2 and µ ∼

10, 000cm2/V s, the mean free path can be as large as λ ∼ 100nm at room temperature

and λ ∼ 1.2 µm at ∼ 5 K [22].

3.3 Noise mechanisms

The performance of the devices, i.e., Bmin, was investigated through noise spectral

density measurements for each cross individually by directly connecting the VH ter-

minals to the input of a fast Fourier transform spectrum analyser (Stanford Research

Systems SR780) in differential mode. The voltage noise (νN) can be represented by [135]

νN =

(ˆ f2

f1

SNV (f)df

)1/2

, (3.4)

where SNV (f) is the spectral density function at given range of frequencies (f). For Hall

sensors, the voltage (V ) noise spectral density can be written as SNV (f) = SV T (f) +

SV α(f)+SV GR(f), where SV T , SV α and SV GR represents the Johnson-Nyquist (thermal),

1/f (flicker) and generation-recombination (GR) noise spectral densities, respectively.
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Substituting the formula for the three different noise mechanisms gives [135]

SNV (f) =
√

4kBTR∆f +
α

N

1

fγ
V 2 +

Asens

1 + (2πfτ)2
V 2, (3.5)

where kB, T and R are the Boltzmann’s constant, absolute temperature and the

total voltage lead resistance, respectively. α and N are the Hooge parameter and

the number of charge carrier in the sensing area (Asens), respectively. γ ≈ 1 and

Asens = 4 〈∆N2〉 τ
N2 , where τ is the lifetime of the GR-centre.

The noise was measured for all the devices up to f = 4.6 kHz for Ibias = 0-50 µA

at 10 µA increments. Fig. 3.4a shows the raw noise spectra for a single 600 nm wide

cross. At Ibias = 0, the noise reaches the Johnson-Nyquist noise floor limit at SV T ∼

30 nV/
√
Hz for a cross with voltage lead resistance R2 ∼ 60 kΩ at room temperature.

Figure 3.4: (a) The noise spectral density for a single 600 nm wide cross at Ibias = 0-50 µA

in increments of 10µA. The cross size dependence of (b) the total voltage lead resistance and

the white noise level at f = 3.3 kHz, (c) 1/f noise corner frequency and (d) the minimum

detectable field at f = 3.3 kHz and Ibias = 10 µA. The dashed lines are a guide for the eye.

Each data point in (b) and (d) represents a single device with the values of the three crosses

averaged and plotted together with the standard deviation.
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Figure 3.5: (a) Current design of a 1 µm wide device from sample #1. (b) Potential design

of a 1 µm wide device optimised for lower 1/f noise.

Moreover, SV T decreases exponentially with exponential increase in cross size, primarily

related to a lowering of the R2 (Fig. 3.4b). However, the sensor exhibits a large 1/f

contribution at Ibias > 0 and even more so for smaller devices, which is illustrated

by extrapolating the frequency at which SV T = SV α, known as the 1/f noise corner

(Fig. 3.4c). Using these noise measurements, Bmin = SNV /IbiasRH was determined for

Ibias = 10 µA at f = 3.3 kHz for all the devices (Fig. 3.4d). The results show that

while Bmin ∼ 2 µT/
√
Hz for the 14.6 µm wide device, Bmin exponentially increases to

Bmin ∼ 50 µT/
√
Hz for the 100 nm device. The increase in Bmin with miniaturisation

can be attributed to the 1/f noise, which ultimately is the result of long and narrow

strips of graphene dramatically increasing R2 of the voltage leads (Fig. 3.5a). Bmin

can be significantly improved by shortening and widening the rather long and narrow

voltage leads (Fig. 3.5b), thus decreasing R2. The other significant contributing factor

to R2 is related to the contact resistance between the graphene and the Au leads, which

will be discussed in detail in Section 5.3.

In different types of materials and devices, 1/f noise results from different fluc-

tuation processes. In general, the 1/f noise in conventional semiconductor devices is

described by carrier density fluctuations, whereas the 1/f noise in metals is attributed

to carrier mobility fluctuations. As graphene behaves as a semi-metal or zero-gap semi-

conductor, the 1/f noise mechanism can be dictated by carrier density and/or mobility

fluctuations [136–138]. The carriers in graphene are subject to trapping from charge

impurities in the substrate and/or dopant’s attaching to the top surface, which can

result in carrier density fluctuations [139]. It has been reported that samples with car-
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rier mobilities on the order of 103-104 cm2/V s are the result of long-range, in-plane,

Coulomb scattering [133,140]. Furthermore, the scattering centres in substrate and/or

surface can also result in carrier mobility fluctuations [141]. However, carrier density

and mobility measurements on the devices presented in Section 3.2 showed no signifi-

cant cross size dependence. The fact that miniaturisation of the Hall bar device does

not significantly affect the carrier density and mobility, increase in 1/f noise is largely

related to unoptimised device design (Fig. 3.5).

3.4 A comparison with semiconductor devices

Comparing the properties of ∼ 5µm wide EG Hall sensors against those of identical

width made out of 300 nm thick InSb epilayers [142–144] under similar measurement

conditions (Table 3.1), R4 and RH are comparable, while n is an order of magnitude

higher and µ is approximately 3 times lower for EG. However, the Bmin and λ are

comparable, indicating that the overall performance of graphene sensors is comparable

to that of well-established state-of-the-art InSb sensors. The same cannot be said

for CVD graphene [97], which exhibits a lower RH due to a ten times larger carrier

density. Furthermore, Bmin is order of magnitude higher at a third of the applied Ibias

compared to EG and InSb devices. The higher Bmin is the result of a larger noise

floor of CVD graphene, thus indicating to a significantly lower carrier mobility (not

specified). On the other hand, miniaturising EG sensors down to 600 nm has little

effect on the carrier density. However, an increase in the channel resistance ultimately

results in larger 1/f noise, thus degrading Bmin by a factor of ∼ 3.5. In comparison,

the 600 nm wide InSb device retains the material properties, thus resulting in no real

Size [Material] R4 RH n µ Bmin [Ibias] λ

(µm) (kΩ) (Ω/T ) (1011 cm−2) (cm2/V s) (µT/
√
Hz) [µA] (nm)

0.6 [EG] 29 890 7.1 2415 13.8 [10] 24.4
0.6 [InSb] 9 1,106 1.2 13,000 5.4 [5] 52.5
4.6 [EG] 22 711 8.8 2,643 3.9 [10] 28.5

5.0 [InSb] 12 974 0.87 8,322 6.5 [10] 27.4
5.0 [CVD] − 310 20 − 43.0 [3] −

Table 3.1: A summary of data for devices made out of epitaxial graphene, InSb [142–144]

and CVD graphene [97].
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Figure 3.6: A compilation of

carrier density and carrier mo-

bility measurements for epitax-

ial graphene, InSb and GaAs de-

vices.

performance degradation. InSb is a well-established material benefiting from over half

a century of research and development [145], whereas graphene was discovered merely

a decade ago. All the measurements of carrier density and carrier mobility at room

temperature, in ambient conditions, for EG, InSb and GaAs 2DEG devices of similar

shape, size are shown in Fig. 3.6. The data points relating to the graphene devices

are typically of higher carrier density than InSb and GaAs devices, reaching up to two

orders of magnitude larger. However, the largest mobility for graphene reported here

is µ ∼ 4600 cm2/V s, whereas the GaAs has been shown to reach µ ∼ 8000 cm2/V s and

InSb µ ∼ 30, 000 cm2/V s.

3.5 Single magnetic bead detection

The performance of EG sensor was also tested by detecting the stray field of a single

superparamagnetic microbead, where a significant amount of research had previously

been carried out with semiconductor sensors for biomedical applications [128,142,146–

149]. Research in this particular field has shown that semiconductor Hall sensors with

their rather simple measurement circuit have offered excellent magnetic field sensitivity

(Bmin ∼ 0.2 µT/
√
Hz) at room temperature [128, 148]. Coupled with high spatial

resolution of sub-micron scale Hall sensors, these features makes them ideal for detection

of nanobeads [142].
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3.5.1 Placement of a single Dynal bead

The bead detection experiment was carried out on a modified 1.6 µm wide device

(#1a) from sample #1. The modification involved placing a commercially available

1 µm diameter Dynal (MyOne) bead with m ∼ 4 × 108 µB. The bead is constructed

from a polymer matrix containing 37% ferrite with total Fe concentration of ∼ 26%. A

single bead was placed on cross 1 using an FEI Nova Nanolab Duel Beam focused ion

beam (FIB), equipped with a Zyvex nanomanipulation system.

The beads are originally dispersed in distilled water at a high concentration. The

diluted concentration is then drop-cast dispersed on a Si/SiO2 substrate (Fig. 3.7a).

Using electron beam imaging (5 kV ), a single bead is located from the sea of beads

and weakly attach to a pre-sharpened single carbon fibre strand using a short burst

of methylcyclopentadienyl-trimethyl-platinum (standard e-beam Pt deposition). The

bead is then gently positioned on cross 1 and held in place by using a short burst of the

Pt deposition. After securing the bead on cross 1, the carbon fibre strand is withdrawn

(Fig. 3.7b). The magnification was kept as low as possible throughout the manoeuvre,

minimising the exposure of the graphene device to e-beam irradiation. However, the

estimated dose of e-beam irradiation was > 4 × 1014 e/cm2. Cross 2 received a dose

of ∼ 4 × 1014 e/cm2 and Pt deposition so that their combined effects on transport

properties could also be investigated. Cross 3 received a negligible e-beam exposure,

maintaining a pristine condition.

Figure 3.7: Scanning electron micrograph images showing (a) puddles of Dynal MyOne beads

and (b) device #1a with a 1 µm diameter Dynal bead attached to cross 1. C1, C2 and C3

denote Crosses 1, 2 and 3, respectively.
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3.5.2 Experimental method

The detection of the magnetic bead was carried out using a constant AC (BAC =

3mT at frequency f = 210Hz) and pulsed DC (BDC = 250mT ) magnetic fields that are

perpendicular to the device (Fig. 3.8). The BAC is produced by a miniature coil (with

an inner diameter ∼ 2 cm, inductance L = 5.87 mH and resistance R = 16.1 Ω, driven

by an Agilent Technologies 33120A arbitrary waveform generator), placed beneath the

sample, whereas BDC was produced by the electromagnet used during the transport

measurements (Section 3.2, Fig. 3.1b). The device was current biased at Ibias =

50µA, while the AC Hall voltage (V AC) response of all three crosses was simultaneously

measured at the first harmonic using lock-in amplifiers (Stanford Research Systems

SR830) referenced to the BAC drive signal. The lock-in amplifiers measure the in-phase

(V AC
x ) and out-of-phase (V AC

y ) components of the AC signal, effectively separating the

real and parasitic signals.

Figure 3.8: (a) Schematic of

the bead detection experimental

setup showing the arrangements

of the device and AC/DC mag-

netic fields.

3.5.3 Bead detection

The experiment was carried out by continuously measuring V AC with the lock-in

amplifiers set to 1 second time constant, while the device was current biased at Ibias =

50 µA. During the measurement, three separate pulses of the BDC from B0
DC = 0 (60

seconds duration) to B1
DC = 250 mT (30 seconds duration) were applied. Fig. 3.9a

and Fig. 3.9b shows the response of V AC
x and V AC

y , respectively, for all three crosses,

normalised against the parasitic capacitance signal, i.e., ∆V AC = V AC(Ibias)−V AC(0).

The results show a distinctive step wise change of V AC
x (B1

DC) − V AC
x (B0

DC) ∼ 7 µV for
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Figure 3.9: Response of (a) in-phase (V AC
x ) and (b) out-of-phase (V AC

y ) components of the

AC Hall voltage to three separate BDC pulses with a duration of 30 seconds, normalised

against the background signal, i.e., ∆V AC = V AC(Ibias) − V AC(0). The device was current

biased at Ibias = 50 µA, BDC ∼ 250mT and BAC ∼ 3mT at f = 210Hz.

cross 1 correlating to the BDC pulses, whereas crosses 2 and 3 shows no response (Fig.

3.9a). The distinctive step is a clear indication to the presence of a magnetic particle

on cross 1. Furthermore, the signal from cross 2 shows a significant increase in the

electrical noise (∼ 3µV ), which could be a consequence of damage to the graphene from

Pt deposition and e-beam irradiation. In comparison to the signal from crosses 1 and 3,

the electrical noise was lower by an order of magnitude (∼ 0.4µV ). The measurements

of ∆V AC
y on all three crosses show no response to the BDC pulses, however cross 2

maintained the higher level of noise.

The experimental results can be compared to the theoretical model, which describes

the change in V AC
x as

V AC
x (B1

DC) − V AC
x (B0

DC) = IbiasRHc[χ(B1
DC) − χ(B0

DC)]BAC , (3.6)

where the bead-sensor coupling constant was numerically calculated as cgraphene ∼ 0.045

(Appendix B) and χ is the magnetic susceptibility of the Dynal beads. Using the

susceptibility measurements performed on an ensemble of Dynal beads [144], χ(B1
DC)−

χ(B0
DC) ∼ 0.012 was estimated for a single bead. Using the transport measurement

technique described in Section 3.2, the sensitivity of cross 1 was determined as RH =

408 Ω/T , estimating a change of V AC
x ∼ 16 µV due to the presence of a single Dynal

bead at B1
DC = 250 mT . The discrepancy between the measured and estimated value

54



of V AC could be largely related to the fact that the susceptibility measurements were

performed on an ensemble of Dynal beads, from which the value was extrapolated for

a single bead.

In comparison to measurements performed on 1 µm wide Hall sensor fabricated out

of undoped InSb 300 nm thick film (RH = 262 Ω/T and µ = 1.3 m2/V s) with identical

Dynal bead, a significantly lower response of ∼ 500 nV was achieved at Ibias = 1 µA.

The lower response is largely related to a significantly lower maximum bias current

limit of Ibias = 5µA, whereas the effective electron-lattice interactions in graphene lead

to a significantly higher carrier energy loss rate [150, 151], giving it higher stability to

larger biasing currents of Ibias ∼ 1mA [152]. Furthermore, the relatively large thickness

of the InSb film results in the detection taking place from 0-300 nm below the surface

of the material, whereas the detection occurs only at the surface of the graphene sheet,

leading to a 30% decrease in the vertical coupling. Despite this, the total bead-sensor

coupling for InSb is cInSb = 0.09 [144] and for graphene in the present experimental

setup is cgraphene = 0.045. The coupling for graphene is twice as small due to ∼ 2.5

times increase in the sensor area.

3.6 Summary

In summary, EG Hall sensors with the size ranging from 0.1-19.6 µm were suc-

cessfully fabricated. Using transport and noise measurements, it has been shown that

the strongly diffusive EG sensors that are ≤ 5 µm wide are typically less sensitive to

magnetic fields than their larger counterparts due to an inherently higher R2, which

ultimately results in larger contribution from the 1/f noise at Ibias > 0. The 1/f noise

can be reduced by shortening and widening the long and narrow voltage leads, signif-

icantly reducing the length of the narrowest part of the graphene in the circuit. The

cross size dependence of Bmin clearly signifies the importance of unoptimised design to

the performance of the devices. The RH of EG sensors are approaching that of the ones

fabricated out of state-of-the-art 300 nm thick InSb epilayer. In comparison to CVD

graphene however, the EG sensors offer lower resistivity and an order of magnitude

better magnetic field sensitivity.
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Furthermore, the performance of a 1.6 µm wide EG Hall sensor was tested by de-

tecting a single Dynal bead that was accurately placed using nanomanipulation system

within a FIB. The bead was reliably detected using an AC/DC Hall magnetometry

technique, with a relatively large response of ∼ 7 µV . The large response is primarily

related to robustness of graphene devices to large biasing currents as well as improved

bead-sensor coupling in the vertical direction. This demonstrates a significant improve-

ment in the performance of graphene device when compared to identical measurements

performed on an InSb device.
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Chapter 4

Scanning probe microscopy

techniques for nanoscale

investigations

This chapter provides a detailed description of all the SPM techniques used to study

EG devices. Starting with AFM; the technique operates on the interatomic van der

Waals forces to determine the topography, forming the basis for all the SPM techniques

described in this chapter. The electrical properties of the graphene were studied using

surface potential measurement techniques such as electrostatic force microscopy (EFM),

EFS and KPFM. Furthermore, a description of SGM, a technique that measures the

response of a device to a local electric or magnetic gate, has also been presented. All the

measurements were carried out on a Bruker Dimension Icon SPM [153] using Bruker

probes (Table 4.1) [154].

Probe Coating (Thickness) Apex Diameter Spring Constant f0
(nm) (nm) (N/m) (kHz)

SCM-PIT Pt-Ir (∼ 20) ∼ 20 ∼ 2.8 ∼ 75
PFQNE-AL Uncoated Si ∼ 5 ∼ 0.8 ∼ 300

MESP Co-Cr (∼ 50)† ∼ 35 ∼ 2.8 ∼ 75
MESP-HM Co-Cr (∼ 150)‡ ∼ 80 ∼ 2.8 ∼ 75

DNP-10 Uncoated Si3N4 ∼ 20 ∼ 0.2

Table 4.1: A summary of Bruker SPM probes used throughout the thesis. Note: †Coercivity

∼ 400Oe and moment ∼ 1× 10−13 emu. ‡Coercivity ∼ 400Oe and moment > 3× 10−13 emu.

DNP-10 are probes for CM-AFM cleaning (Appendix C).
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4.1 Atomic force microscopy

Majority of the SPM techniques are based on the AFM, which exploits the van

der Waals forces between the sample and the probe to obtain topographic information.

The probe is generally in the shape of a pyramid or cone with the apex on the order

of 1-30 nm in radius. The probe is attached to the end of a silicon or silicon nitride

cantilever with mechanical resonance frequency of f0 ∼ 50-350kHz. For simplicity, the

probe and cantilever will be simply referred to as the “probe”. The probe is placed in

a holder containing a small dithering piezoelectric material, who’s sole purpose is to

mechanically oscillate the cantilever. The holder is than attached to the piezoelectric

tube that performs x, y and z movements dictated by the AFM feedback loop with

the task of maintaining the specified deflection set point of the cantilever, governed by

either positive or negative (repulsive or attractive) force, respectively. In most AFM

systems, deflection is measured using a precisely adjusted laser reflecting from the top

side of the cantilever and onto a four-quadrant position sensitive detector (PSD). A

2-dimensional topographic map of the sample is recorded by scanning the area with

x and y movements of the piezoelectric tube, while also performing z movements to

maintain the deflection set point.

Contact and tapping mode AFM are two of the most widely used techniques. Both

modes exploit the repulsive regime of the van der Waals forces, i.e., maintaining a posi-

tive deflection set point by applying and recording the z movements of the piezoelectric

tube. However, as the name suggests, tapping mode is performed with the cantilever

oscillating close to f0. Tapping mode not only provides topographic information, the

Figure 4.1: Plot showing the phase shift

and amplitude of the cantilever relative

to the drive signal as a result of energy

dissipation from when the probe contacts

the sample.
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forces between the probe and the sample will also maintain the resonance frequency,

oscillation amplitude (Aosc) and phase (ϕ) of the cantilever. Recording parameters such

as ϕ and Aosc with respect to the drive signal are known as topography phase imaging

(Fig. 4.1). The amplitude and phase shift arise due to the energy dissipation from

when the probe contacts the sample, providing mechanical (a convolution of adhesion,

composition, friction and viscoelasticity) and electrical information of the sample.

4.2 Electrostatic force microscopy

EFM probes the electrostatic interactions between the electrically conductive probe

and the sample. The two-pass technique performs AFM and EFM line scans in an

alternating manner, line-by-line, to build-up an image (Fig. 4.2a). Tapping mode

AFM is first performed to determine the surface topography (Fig. 4.2b). EFM then

retraces the surface topography at a set lift height from the surface (25 nm unless

stated otherwise), driving the cantilever near f0 with a DC bias voltage (Vprobe) applied

to the probe with respect to the sample. The sample is connected to the stage, which

is common ground of the microscope, using wire bonding. The potential difference

between the sample and the probe generates an electric field (Fig. 4.3), with the

electrostatic force, FDC = −1
2
dC
dz

∆V 2, where C and z are the capacitance and distance,

respectively [126, 155, 156]. The voltage (∆V ) is the sum of the contact potential

difference (VCPD), the applied DC voltage to the probe and all other externally induced

Figure 4.2: (a) EFM experimental setup showing tapping mode AFM to determine (b)

the sample topography. (c) EFM performed by retracing the sample topography at a set

lift height from the sample to determine the phase shift. The EFM is performed with the

cantilever driven near the mechanical resonance with a DC bias voltage applied to the probe,

with respect to the grounded sample.
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Figure 4.3: A schematic of the probe-sample electrostatic force. Note: image not to scale.

DC voltages (Vinduced); ∆V = Vprobe − (VCPD + Vinduced). The force related to only DC

voltages that deflect the cantilever is given by

FDC = −1

2

dC

dz
[Vprobe − (VCPD + Vinduced)]

2. (4.1)

The electrostatic forces related to DC voltages act as a second-order effect on the

mechanical oscillation of the cantilever, affecting the Aosc, f0 and ϕ that are detected

using a lock-in amplifier. The EFM image is generated by recording the phase change

∆ϕ = −Q

k

dFDC

dz
= −Q

2k

(
d2C

dz2

)
[Vprobe − (VCPD + Vinduced)]

2, (4.2)

where k and Q are the spring constant and quality factor of the cantilever, respectively

(Fig. 4.2c). ∆ϕ is effectively a qualitative measurement of the force gradient (dFDC/dz),

which is largest at the probe apex (Fig. 4.3). Therefore, spatial resolution with EFM

is approximately that of the probe apex diameter (Table 4.1).

4.3 Surface potential measurements

4.3.1 Electrostatic force spectroscopy

EFS, an innovative modification to EFM, can provide quantitative measurements

of the VCPD. Unlike EFM, which provides a 2D map of the sample, EFS is typically

performed at well-defined stationary points. The separated charges that result from

work function differences between the probe and the sample (Fig. 4.4a) generate a
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Figure 4.4: Energy level scheme for the Au sample and PFQNE-AL probe when they are

(a) electrically isolated, (b) electrically connected and (c) Vprobe applied to nullify the VCPD.

Evac is the vacuum energy level. Eprobe
F and Es

F are Fermi energy levels of the probe and

sample, respectively. Adapted from Ref. [126]. (d) EFS measurement on Au to calibrate the

work function for a PFQNE-AL probe. Blue and red curves represent the forward (trace) and

reverse (retrace) sweep of Vprobe and the arrow points to the inflection point, where FDC = 0.

(e) UPS measurement showing the binding energy curve for Au, where h and x are the energy

of the incident photon and the cut off binding energy, respectively.

VCPD when the probe and sample are in electrical contact (Fig. 4.4b), thus, resulting

in attractive/repulsive forces on the cantilever. Applying Vprobe = VCPD balances the

forces, i.e., FDC = 0 (Fig. 4.4c). The ∆V 2 term in Eq. 4.2 gives rise to a parabolic

response, which is easily detectable by recording the ∆ϕ, while sweeping the Vprobe

from, i.e., –3 to +3V with millivolt resolution (Fig. 4.4d) [157]. The inflection point

of the parabola constitutes the point at which Vprobe = VCPD, providing a quantitative

measure of the VCPD from ∆ϕ measurement.

EFS can be used to determine the work function of the sample (Φsample) by first

calibrating the work function of the probe (Φprobe) against a known quantity such as

Au (ΦAu) using Φprobe ≈ ΦAu + eVCPD [126], where ΦAu = 4.82 eV was determined

using ultraviolet photoelectron spectroscopy (UPS) measurements conducted in UHV
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(Fig. 4.4e). It should be noted that some uncertainty in ΦAu may arise from reversible

adsorption of gasses and water, which can form surface dipoles when transferring the

sample from UHV to ambient air. However, Au is less prone to oxidation and formation

of a submonolayer of water, making it more stable than most other good conductors.

Surface potential studies on water adsorption behaviour of metal surfaces shows that

ΦAu may decrease by ∼ 3% as relative humidity changes from 0-40% [158]. Therefore Au

remains one of the best electrode material that is also stable in ambient air. Using Au as

a reference, the work function of PFQNE-AL probe was determined as Φprobe = 4.07eV

(Fig. 4.4d) and SCM-PIT probe was determined as Φprobe = 4.99 eV . The Φsample can

then be measured by using Φsample ≈ Φprobe − eVCPD.

Analysis of hundreds of EFS measurements were made practical by post processing

the raw data using a script-based programming language such as MATLAB that fits

each parabola and extracting the VCPD. EFS data acquisition is performed at a rate of

1 second per curve, therefore a 2D map of 512×512 pixels with single EFS measurement

at each pixel would typically require over 70 hours, making it hugely impractical. In

comparison to EFM, an image with the same number of points will only require ∼ 30

minutes. However, the quantitative nature of EFS makes it a more useful technique

over EFM, while retaining the spatial resolution of the probe apex diameter. Moreover,

EFS also benefits from improved accuracy of the VCPD measurement, where the force

gradient between the cantilever and sample is negligible in comparison to the probe

apex (Fig. 4.3).

4.3.2 Amplitude-modulated Kelvin probe force microscopy

AM-KPFM is one of the most established non-invasive VCPD mapping techniques

that can be performed as a single- or double-pass. The single-pass technique operates at

the first and second mechanical resonances of the cantilever to determine the topography

and VCPD, respectively. However, the Bruker Icon system was operated as a double-pass

technique (Fig. 4.5a), where the first pass measures the sample topography (Fig. 4.5b)

and second pass measures the VCPD in lift mode. The second pass is performed with the

mechanical drive of the cantilever turned off, but instead, an AC voltage (Vmod ∼ 2 V

at f0) is applied to the probe. When Vprobe 6= VCPD + Vinduced, the AC component
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Figure 4.5: (a) AM-KPFM experimental setup showing tapping mode AFM to determine (b)

the sample topography and (c) AM-KPFM performed by retracing the sample topography at

a set lift height from the sample with the cantilever not mechanically driven at f0, however,

Vmod is applied at f0, thus inducing mechanical oscillations. (d) The VCPD is determined by

using a feedback to applying Vprobe such that Fω is minimised. Note: Vprobe 6= VCPD+Vinduced

at P1 and P2 in (c).

induces an oscillatory force on the cantilever (Fig. 4.5c) at the first (Fω) and second

(F2ω) harmonic, described by

Fω = −1

2

dC

dz
[(Vprobe − (VCPD + Vinduced)) + Vmod sin(ωt)]2, (4.3)

and

F2ω =
1

4

dC

dz
V 2
mod cos(2ωt), (4.4)

where ω = 2f0 [126], making it a force sensitive technique. The AM-KPFM technique

measures the VCPD by using a feedback loop to apply and record Vprobe such that Fω is

minimised (Fig. 4.5d). The second harmonic mode is not utilised by AM-KPFM as it

probes the capacitance effect. The cantilever oscillations are detected by the PSD, and

thus AM-KPFM is best performed using soft cantilevers that are capable of oscillating

at large amplitudes, increasing the signal to noise ratio. Unlike EFS, a 2D map of the

VCPD can be obtained with AM-KPFM. However, the large area of the cantilever results

in a strong parasitic capacitance effect (Fig. 4.3), which leads to a relatively poor spatial

resolution of 50-70 nm and can also affect the accuracy of the VCPD measurement on

samples with non-uniform electronic properties.
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4.3.3 Frequency-modulated Kelvin probe force microscopy

FM-KPFM is a VCPD measurement technique that operates on the force gradient

(dFω/dz) by detecting the shift in the mechanical resonant frequency of the cantilever

(Fig. 4.6a) [159]. FM-KPFM can also be performed as a single- or double-pass tech-

nique. The single-pass technique determines the sample topography with tapping mode

AFM at f0 (Fig. 4.6b) and a simultaneous lower frequency (fmod ∼ 2-8kHz) AC voltage

(Vmod ∼ 2-10 V ) applied to the probe induces a frequency shift of [160]

f0 ± fmod ≈ f0

(
1 − 1

2k

dFω

dz

)
, (4.5)

when Vprobe 6= VCPD +Vinduced (Fig. 4.6c). The VCPD (Fig. 4.6d) is determined by using

a feedback loop that monitors the side lobes at f0 ± fmod (Fig. 4.6e) and minimises

Figure 4.6: (a) FM-KPFM experimental setup showing tapping mode AFM to determine (b)

the sample topography. (c) The simultaneous low frequency AC voltage applied to the probe

shifts the f0 of the cantilever, to determine (d) the VCPD. (e) The VCPD is determined by using

a feedback loop that minimises the side lobes at f0 ± fmod. Note: Vprobe 6= VCPD + Vinduced

at P1 and P2 in (c).
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them by applying and recording Vprobe. With the double-pass FM-KPFM, the first pass

simply determines the topography. The second pass essentially involves performing

single-pass FM-KPFM. However as the topography is already known, the probe is

retraced at a set lift height from the surface. While the in situ measurement using

single-pass technique can be affected by the cross-talk between the topography and

VCPD, the double-pass technique is not affected as the two are determined separately.

FM-KPFM is best performed using stiff cantilevers with high f0. The consequence of

the short range detection of the force gradient has a major benefit in that, it is highly

localised to the probe apex, thus, providing VCPD map with accuracy and high spatial

resolution [126].

4.4 Electrical and magnetic scanning gate techniques

SGM operating on the field gradient is a technique that is essentially identical to

EFM in the sense that the first pass measures the sample topography in tapping mode

at f0 and second pass retraces the topography at a set lift height. During the second

pass the probe is mechanically oscillated at f0, therefore when using a DC voltage biased

(Vprobe) electrically conductive probe produces a modulated electric field (dE/dz). In

the case of using probes such as MESP or MESP-HM, which are coated with a magnetic

material (Table 4.1), a modulating magnetic field (dB/dz) is produced. The contrast

between EFM and SGM is that, with EFM, the ∆ϕ of the cantilever is recorded to

produce the image, while with SGM, in situ transport measurements are performed

using a lock-in amplifier (Stanford Research Systems SR830) on the current biased

(Ibias) device (Fig. 4.7a). These measurements are fed back into the microscope in

synchronous, producing a 2-dimensional map of the voltage response of the device to a

field gradient [118,161,162]. Using electrical SGM, the longitudinal (Vxx) or transverse

voltage (Vxy) can be recorded at each pixel with an external lock-in amplifier referenced

to f0 of the cantilever, thus producing a map of dVxx/dz response of the channel or

dVxy/dz response of the Hall cross, respectively. Using magnetic SGM, dVxy/dz map of

the Hall cross is in response to the Lorentz force acting on the charged carriers in the

material.
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Figure 4.7: SGM schematic showing a probe locally gating a Hall device, while an external

lock-in amplifier measures (a) dVxx/dz or Vxy/dz in response to a field gradient and (b) Vxx

or Vxy in response to a field, which are fed back into the microscope and recorded at each

pixel to produce a 2D map.

SGM operating on the field is similar to the SGM operating on the field gradient in

the sense that both are two-pass techniques. The main difference lies in the second pass,

where the mechanical oscillation of the probe is disabled, resulting in a non-modulated

field (Fig. 4.7b). However, an AC bias current was applied at low frequency (fI =

184 Hz) to accurately measure the response of the device with the lock-in amplifier.

The use of low frequency is essential for avoiding any adverse effects from the inductance

of the device, therefore the response of the device to the field can be regarded as purely

DC.

SGS can also be performed with both SGM techniques by fixing the x-y position of

the probe and measuring the device response to the Vprobe sweep.
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Chapter 5

Nanoscale mapping of devices

Epitaxially grown graphene on 4H -SiC(0001) typically contains non-uniform num-

ber of layer thicknesses. Where bulk transport measurements only provide an average

statistics of the material, surface potential mapping techniques quantitatively reveal

the changes between differing layer thicknesses. However, each surface potential mea-

surement technique can reveal contradicting results due to their subtle differences in the

modes of operation (Section 4.3). This chapter provides a comprehensive comparison of

the accuracy of three most widely used surface potential measurement techniques. The

most accurate technique(s) were then employed to study in detail various aspects of

EG devices. These involve work function measurements of 1LG, 2LG and edge effects.

Furthermore, complementary transport measurements were also performed to study the

contact resistance between the graphene and Au contact leads, effects of environmental

and substrate doping on 1LG and effects of 2LG islands on bulk transport properties.

5.1 Nanoscale mapping with SPM techniques

AFM is the basis for all of the SPM techniques described in Chapter 4. For example,

EFM and AM-KPFM techniques rely on knowing the exact surface topography to main-

tain a constant probe-sample distance during the second pass. Although FM-KPFM

is a single-pass technique, simultaneous tracking of the surface topography by AFM

is still required. In this section, AFM, EFM, AM-KPFM and FM-KPFM techniques

are applied using a PFQNE-AL probe to study a 4.8 µm wide EG device (#2a). The
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Figure 5.1: Mapping of the 4.8 µm wide EG device (#2a) with (a) AFM, (b) EFM at

Vprobe = −1.5 V and 40 nm lift height, (c) AM-KPFM and (d) FM-KPFM. Au signifies the

gold leads, Etched SiC is where the graphene has been etched to form a trench, 1LG and 2LG

are single- and double-layer graphene, respectively.

device was fabricated out of sample #2 using same method as for sample #1 (Appendix

A). However, this device contains only two crosses, surrounded by isolated planes of

graphene, which can be used as lateral gates. The sample topography of device #2a

is shown in Fig. 5.1a. The Cr/Au (∼ 100 nm thick) contact leads, labelled Au, show

up as bright yellow due to their relatively large thickness. The wave like features are

the edges of the nanometre scale steps (terraces) in the SiC substrate. The terraces are

on average ∼ 0.5 nm high and can be as thin as a single SiC layer (0.25 nm). In the

present sample, the terraces are formed from the initial miscut of the substrate (0.11o),

however, the high temperature EG growth process sublimes the Si from the substrate,

causing the steps to bunch together to form terraces with widths of ∼ 1 µm. The dark

areas of the map are trenches etched into the SiC to effectively form the device.

Identifying domains of different graphene layer thickness is generally very difficult

from AFM images due to the complicated surface topography of SiC. However, EFM
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Figure 5.2: Top: VCPD measurement

of 1LG and 2LG with EFS. Bottom:

Zoomed EFM image showing only the

central 2LG from Fig. 5.1b indicated

by the dashed red box. EFS measure-

ments were conducted along the indi-

cated dashed line.

phase imaging probes the electrostatic forces (Section 4.2), which can be used to identify

domains of different graphene layer thickness due to their inherently unique electrical

properties. An EFM phase image was obtained for the same area of device #2a at

Vprobe = −1.5 V and 40 nm lift height, while keeping the entire device grounded to

define the potential (Fig. 5.1b). In contrast to the surface topography, EFM image re-

veals randomly shaped features that are in fact 2LG islands (∆ϕ = 7.4o) and confirms

that 1LG grows continuously over the terraces (∆ϕ = 7.6o). Despite the clear contrast

between 1LG and 2LG, EFM alone cannot be used to definitively identify the domains

of different graphene layer thickness, making it a qualitative technique. However, by

performing EFS at a well-defined point (Section 4.3.1), i.e., measuring ∆ϕ as a function

of Vprobe, the VCPD can be determined by fitting the parabolic response and extracting

Vprobe at which dϕ/dVprobe = 0 (i.e., the inflection point), providing quantitative mea-

surement of the surface potential. EFS measurements were performed along the dashed

line indicated in the bottom EFM image of Fig. 5.2 and the VCPD of 1LG and 2LG

was determined as V 1LG
CPD ∼ −442 mV and V 2LG

CPD ∼ −332 mV , respectively, giving an

absolute difference of ∆V 1−2LG
CPD ∼ 110 mV (Fig. 5.2).

AM-KPFM is a mapping technique that providing quantitative information by di-

rectly measuring the VCPD (Section 4.3.2). The VCPD measurement performed over the

same area of device #2a with AM-KPFM is shown in Fig. 5.1c. This technique reveals

the same features as EFM, however, with a visibly lower spatial resolution due to the

capacitance between the sample and the entire base of the cantilever as a result of the

long range electrostatic force, which leads to averaging of the VCPD. For example, if

the probe apex is measuring at the centre of the device, the base of the cantilever can
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Figure 5.3: Top: VCPD measurement of 1LG and 2LG with (a) AM-KPFM and (b) FM-

KPFM. Bottom: Zoomed (a) AM-KPFM and (b) FM-KPFM images showing only the central

2LG from Fig. 5.1c and Fig. 5.1d, respectively. AM-KPFM and FM-KPFM line profiles were

obtained along the respectively indicated dashed lines.

be over the thick Au leads. Although the largest cantilever amplitude response will be

the result of strong electrostatic interactions between the sample and the probe apex,

the weaker interactions between the Au lead and the cantilever base will also affect the

cantilever oscillations, thus leading to an averaging effect. Accurate VCPD measure-

ments with AM-KPFM can only be performed on features that are typically 100’s of

microns wide. Bearing this in mind, the VCPD of 1LG and 2LG is V 1LG
CPD ∼ −505mV and

V 2LG
CPD ∼ −455mV , respectively, giving an absolute difference of only ∆V 1−2LG

CPD ∼ 50mV

(Fig. 5.3a).

In comparison, FM-KPFM technique provides the same quantitative measurement

(Section 4.3.3), however, with a greater consistency and accuracy (Fig. 5.1d). FM-

KPFM detects the shift in the oscillation frequency, operating on the electrostatic force

gradient, which is at its highest at the probe apex and rapidly decreases with increasing

distance from the probe apex. This means the base of the cantilever has negligible

contribution to the total frequency shift and therefore provides a more accurate VCPD

measurement with a higher spatial resolution on the order of the probe apex diameter.

The VCPD of 1LG and 2LG using FM-KPFM is V 1LG
CPD ∼ −154mV and V 2LG

CPD ∼ −4mV ,

respectively, giving an absolute difference of ∆V 1−2LG
CPD ∼ 150 mV (Fig. 5.3b).
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5.2 Accuracy of the surface potential measurements

As each of the three VCPD measurement techniques, performed on the same day,

provide a somewhat different ∆V 1−2LG
CPD of the exact same region of 1LG and 2LG from

device #2a, the accuracy of each technique must be investigated. An ideal ways of

determining the accuracy is to measure the VCPD of a surface at a well-defined potential,

for example, an operating device with a known applied voltage (Vch). Measuring the

VCPD of a DC voltage biased (Vch) Au leads of the graphene device will provide a

representative comparison between the applied Vch and measured VCPD. For example,

the total resistance contribution from measurement cables, wire bonding and Au contact

leads are typically many orders of magnitude lower than the graphene channel and

Au-graphene contact resistance of the device. The relatively large resistance of the

channel results in a negligible potential drop from the measurement cables to the Au

contacts, making this method a viable means for investigating the accuracy of VCPD

measurements.

The VCPD was measured from left to right Au contact, as indicated by the dashed

line in the EFM image of device #2a (Fig. 5.4a). The VCPD line profiles were ob-

tained using AM-KPFM (Fig. 5.4b), FM-KPFM (Fig. 5.4c) and EFS (Fig. 5.4d) for

Vch = ±2 V , in increments of 0.5 V , applied to the left contact while grounding the

right contact. The line profiles show a non-zero VCPD for the grounded Au contact,

which is the result of a work function difference between the Au and PFQNE-AL probe

(Section 4.3). The work function difference of the left contact was accounted for by

using ∆V = VCPD(Vch) − VCPD(0) and plotting it as a function of the applied volt-

age (Fig. 5.4e). The measured potential is typically ∼ 27.6% lower than the actual

Vch for AM-KPFM, whereas it is ∼ 4.4% and ∼ 7.8% higher for FM-KPFM and EFS,

respectively. The lower ∆V measurement is consistent with spatial averaging as the rel-

atively large base of the cantilever will weakly interact with the device channel and the

right Au contact (Fig. 5.4a), both of which are at a lower VCPD than the left contact.

Higher measurement of the ∆V with FM-KPFM is related to an overestimation of the

VCPD due to a large excitation voltage (Vmod = 8 V ), whereas the overestimation with

EFS is related to unoptimised fitting parameters. It is important to note that EFS

is essentially a frequency-modulated technique where measuring ∆ϕ is analogous to
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Figure 5.4: The VCPD measured along the indicated dashed line in the (a) EFM image for

Vch = ±2 V , in increments of 0.5 V , with (b) AM-KPFM, (c) FM-KPFM and (d) EFS. (e)

∆VCPD value as measured by different techniques from left to right Au contact in dependence

on the applied voltage (Vch).

measuring the frequency shift, thus offering comparable accuracy and spatial resolution

to FM-KPFM.

5.3 Contactless resistance measurements

VCPD techniques are excellent contactless methods for measuring the Au-graphene

contact resistance without specifically requiring a pattern that is typically used with

the transmission line method (TLM) [163]. Having already measured the VCPD line

profiles of device #2a at Vch = ±2 V , the Au-graphene contact resistance can easily be

deduced by normalising Fig. 5.4b, Fig. 5.4c and Fig. 5.4d using VCPD(Vch)−VCPD(0)
Vch

= ∆V
Vch
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Figure 5.5: The VCPD line profiles shown in Fig. 5.4 normalised using VCPD(Vch)−VCPD(0)
Vch

=
∆V
Vch

for (a) AM-KPFM, (b) FM-KPFM and (c) EFS. (d) The dependence of current (I),

flowing through the entire device, on Vch. Vch dependence of (e) ∆V/Vch and (f) resistance of

graphene channel and Au-graphene contact using FM-KPFM. The dashed lines are a guide

for the eye only. 1-2, 2-3 and 3-4 in (e) and (f) signifies left contact, graphene channel and

right contact, respectively.

for AM-KPFM (Fig. 5.5a), FM-KPFM (Fig. 5.5b) and EFS (Fig. 5.5c), respectively.

Normalising the line profiles in this manner, accounts for any VCPD changes that are

totally isolated from the application of Vch, i.e., variations in the work function of

features such as 1LG, 2LG and Au. The resulting normalised line profile is solely a
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consequence of the potential drop (∆V ) from changes in the resistivity. The focus will

be on Fig. 5.5b for the contactless resistance measurement due to the high accuracy

of FM-KPFM. Careful inspection of the Au-graphene potential drop for both contacts

reveal a clear Vch dependence. Focusing on the left contact (points 1-2 in Fig. 5.5b),

∆V/Vch ∼ 0.275 from Au-graphene for Vch = +2 V and increases to ∆V/Vch ∼ 0.455

for Vch = −2 V (Fig. 5.5e). However, at the right contact (points 3-4 in Fig. 5.5b),

∆V/Vch ∼ 0.415 and ∼ 0.260 for Vch = +2 V and −2 V , respectively. Further to the

linearity in ∆V/Vch with Vch, each contact behaves in opposite directions, resulting in a

linear current versus voltage (I-Vch) characteristics, which was determined by measur-

ing the total current flowing through the circuit (Fig. 5.5d). From these measurements,

the contactless resistance can be determined by using [∆V ×Vch]/I(Vch), where ∆V/Vch

is taken from Fig. 5.5e and I(Vch) from Fig. 5.5d. The multiplication of Vch is essential

for obtaining the actual resistance value as ∆V/Vch is unitless due to the earlier nor-

malisation. Fig. 5.5f shows the independent resistances for the graphene channel (Rch)

and the two Au-graphene contacts (Rcont). The resistance of the graphene channel

remains constant at Rch ∼ 33 kΩ, whereas, the contacts exhibit a much larger change

of ∆Rleft
cont ∼ −17.5 kΩ and ∆Rright

cont ∼ 17 kΩ for left and right contacts, respectively.

These measurements show that this particular device exhibits Rcont on the order of Rch

and that they are highly non-Ohmic. However, the Rleft
cont and Rright

cont contribution to the

total resistance of the device remains constant at ∼ 70 kΩ irrespective of the applied

bias voltage within Vch = ±2 V , thus resulting in a linear I-Vch curve.

5.4 Effects of environmental doping on 1LG

Research has shown that the electronic properties of graphene is easily influenced

by external conditions. It was shown that the high level of humidity and gases such

as N2 , O2 and NO2 act as p-dopants (Section 2.4.4) [82]. These effects can easily

be avoided by performing the experiment in vacuum or an inert atmosphere. The use

of photochemicals is essential for the device fabrication process, however, their doping

effects can generally be avoided by performing chemical or mechanical cleaning (Ap-

pendix C). On the contrary, the effects of the IFL is inherent to EG grown on SiC(0001),
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making them considerably more difficult to avoid. Even so, research into hydrogen in-

tercalation has shown that hydrogen can migrate under the IFL and passivate the SiC

substrate [42,164]. This process transforms the IFL into a quasi-free standing graphene

layer (i.e., becomes the new 1LG) and subsequently turns the previous 1LG into a

decoupled 2LG [42]. This subsection presents the investigations on the effect of resist

residues, that are made up of a mixture of PMMA/MMA and ZEP520, which readily

attach to graphene during the electron beam lithography (EBL) fabrication processes.

Furthermore, the effects of vacuum, nitrogen and humidity rich environments were also

investigated.

5.4.1 UV exposed photochemicals

The devices studied are fabricated from a new sample (#3), however, the graphene

growth parameters were similar to sample #1 and #2, thus producing ∼ 96% 1LG

and ∼ 4% 2LG on 4H -SiC(0001) as revealed by large area scans (not shown). The

topography image of a 970 nm wide device (#3a) revealed the 1LG was uniformly

covered with resist residues with a lateral grain size of ∼ 40 nm (Fig. 5.6a). Transport

measurement techniques, described in Section 3.2, revealed a weakly p-doped graphene

Figure 5.6: Topography image showing device #3a (a) before and (b) after CM-AFM clean-

ing. (c) The line profiles for both images along the white dashed line in indicated in (a).

Schematic of 1LG band structure showing the doping levels of (d) with residues, (e) clean and

(f) 5 days post-cleaning.
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State of Device #3a R4 RH n µ λ
(kΩ) (Ω/T ) (cm−2) (cm2/V s) (nm)

With residues 26 −945 nh = 6.61 × 1011 µh = 1449 13.8
Clean 6 +250 ne = 2.55 × 1012 µe = 1673 31.2

5 days post-cleaning 33 +1332 ne = 4.71 × 1011 µe = 1616 13.0

Table 5.1: Transport measurements summary of device #3a to observe the effects of resist

residues, substrate and environmental doping on epitaxial graphene.

(Table 5.1 and Fig. 5.6d). The residues were then cleaned from the surface by sweeping

them to the side using contact-mode (CM-) AFM with a soft cantilever (Fig. 5.6b

and Appendix C). The line profiles for contaminated and cleaned surface reveal the

residue thickness to be ∼ 1-2 nm (Fig. 5.6c). Immediately after cleaning the sample,

the transport measurements reveal a strongly n-doped graphene with 15% and 126%

increase in mobility and mean free path, respectively (Table 5.1 and Fig. 5.6e), making

it consistent with the vast majority of the results in literature for EG on SiC(0001). The

n-type behaviour of the device in the clean state is attributed to intrinsic doping from

the IFL as it donates electrons [42]. The sample was studied again further five days

after being stored in a desiccator, with relative humidity < 20%, revealing a weakly

n-doped graphene with 13% and 58% decrease in mobility and mean free path, with

respect to the clean state (Table 5.1 and Fig. 5.6f). These measurements indicate

that the EG had been p-doped by the atmosphere, however, unlike the residues, the

doping was only strong enough to reduce the overall carrier density to maintain n-type

conduction. The p-dopant is most likely to be a common gas such as CO2, H2O, N2

and O2 [42, 79,165–171].

Although the conventional n-type conduction is observed for EG devices on SiC(0001),

in this particular case, the conduction changed through the Dirac point and all the way

to p-type in the presence of the residues. It is very important to note that the residues

were first attempted to be removed by exposing the whole sample for 20 minutes to

250 nm wavelength UV light and subsequently submerged in o-Xylene. Exposing the

resist to UV light or e-beam irradiation has been known to have a profound effect on the

chemical structure, which effectively triggers photo-induced reactions [56,130,172,173].

Exposing PMMA/MMA to deep UV light is not expected to affect the doping as it

does not contain chlorine or other acceptor-type radicals [173]. ZEP520 on the other-

76



Figure 5.7: Time dependent carrier den-

sity measurements of a device (#1a) con-

taining resist residues, which received

electron-beam irradiation.

hand forms neutral chlorine radicals when exposed to deep UV or e-beam irradiation,

generating active electron acceptors, turning it into a p-dopant [173, 174]. The effect

was also observed on device #1a, which at the time was covered with resist residues

and subsequently exposed to e-beam irradiation during scanning electron microscopy

(Fig. 5.7). During the imaging, the estimated dose of e-beam irradiation received by

cross 1 was > 4 × 1014 e/cm2. Cross 2 received a dose of ∼ 4 × 1014 e/cm2 and cross

3 received a negligible exposure, maintaining a pristine condition. Over the course of

∼ 15 weeks, crosses 1 and 2 changed from n-type to p-type, while the pristine cross

3 remained n-type throughout, further confirming the p-doping nature of deep UV or

e-beam irradiation exposed resist residues.

5.4.2 Controlled environment

To further investigate the p-doping nature of UV exposed resist residues, a planar

p-n junction was fabricated by cleaning only part of a dual-cross device (#3b) with CM-

AFM, such that the left part with residues remained p-type, while the clean right part

changed to n-type (Fig. 5.8a). The mapping of VCPD in ambient air using FM-KPFM

produced distinctive contrasts for each side of the device (Fig. 5.8b). The work function

of each side of the p-n junction was also measured using EFS (Fig. 5.8c). Using the Au

leads as a stable reference, the work function of a PFQNE-AL probe was calibrated to

be Φprobe = 4.03 eV and so, by using Φsample ≈ Φprobe− eVCPD, the work functions of p-

type and n-type EG were determined as ΦC1
p = 4.68±0.05eV and ΦC2

n = 4.35±0.05eV ,

respectively (Fig. 5.8d). In this particular case, the doping from the resist residues in-

creased the work function by ∆ΦEFS
p−n = 330 ± 100 meV , which is consistent with the
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Figure 5.8: (a) Topography and (b) VCPD map, obtained using FM-KPFM, of device #3b

after the right-hand-side of the device was cleaned with CM-AFM. C1 and C2 represents

crosses 1 and 2. (c) EFS measurements performed on each side of the device. (d) Carrier

density dependence on the work function for 1LG. The dashed line is a fit of EF for 1LG.

Device #3b RH n EF Φ
(Ω/T ) (cm−2) (meV ) (eV )

Cross 1 (with residues) −250 nh = 2.50 × 1012 184 4.68 ± 0.05
Cross 2 (without residues) +535 ne = 1.17 × 1012 126 4.35 ± 0.05

Table 5.2: A summary of the transport measurements for a p-n junction device.

Fermi energy calculated from transport measurements using the EF (n) = ~νF
√
πn,

where ∆Φtransport
p−n = 310 meV (Table 5.2). Fitting the data using the EF , the intrinsic

work function (i.e., the Dirac point) was extrapolated to be Φ0 ∼ 4.48±0.05 eV , which

is comparable to a previous published value of Φ0 ∼ 4.47± 0.05 eV [124]. Yu et al. also

demonstrated a ∆Φp−n ∼ 300meV using bottom gate [124], however, the static doping

of the planar p-n junction presented here (device #3b) and the lack of complementary

carrier density measurements by Yu et al. prohibit a direct comparison between the

two sets of results.

In order to understand the cause of p-doping from the resist residues, transport

measurements were carried out in a controlled environmental chamber, which was also

capable of reaching a high vacuum. Characterising the device again in ambient air

revealed nC1
h = 5.7×1011cm−2 and nC2

e = 4.2×1011cm−2 for crosses 1 and 2, respectively

(0th hour in Fig. 5.9). It is important to note that the measurements here were

carried out on different days to the work function measurements, therefore the baseline
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Figure 5.9: The carrier density transformation of device #3b with the environment changing

from ambient air → vacuum → nitrogen → vacuum → 100% relative humidity → vacuum,

over the course of 4 days.

transport properties of the device are somewhat different. The sample chamber was then

pumped for 20 hours using a turbo pump, reaching a base pressure of 7.1× 10−5 mbar,

at which point, nC1
e = 8.4×1011 cm−2 and nC2

e = 2.1×1012 cm−2 (22th hour in Fig. 5.9).

Note, the entire device changed to n-type due to substantial doping only from the IFL.

The effect of nitrogen gas was investigated by flooding the chamber with pure nitrogen

direct from vacuum to atmospheric pressure. Over the course of 10 hours, the carrier

density dropped to nC1
e = 7.2× 1011 cm−2 and nC2

e = 1.9× 1012 cm−2 (32nd hour in Fig.

5.9). This shows that although the entire device maintained n-type conduction, the

reduction in carrier density indicates nitrogen is a p-dopant. The chamber was pumped

for 14 hours to clean the sample and chamber from nitrogen, reaching a base pressure

of 3.6 × 10−7 mbar. Under this higher vacuum level, the carrier density of the entire

sample increased to nC1
e = 1.4 × 1012 cm−2 and nC2

e = 3.0 × 1012 cm−2 (46th hour in

Fig. 5.9). Note: between 46th and 52nd hour, the pumping was stopped and sample was

kept under vacuum, however, the pressure was not monitored. At 52nd hour, the sample

was flooded with a continuous flow of nitrogen containing 100% relative humidity for 2

hours. Having sealed the chamber full of humid nitrogen, the sample was left in that

state for 15 hours (70th hour in Fig. 5.9), at which point the carrier density further

increased to nC1
e = 3.2 × 1012 cm−2 and nC2

e = 5.8 × 1012 cm−2. This shows that humid

nitrogen n-dopes the graphene. Furthermore, the relative increase in carrier density of
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∼ 126% (from 46th to 70th hour) was larger for the clean cross 2 than the contaminated

cross 1 (∼ 93%), indicating that the resist residues act as a weak barrier to humidity.

Upon continuous pump on the chamber for 24 hours, removing the humid nitrogen

decreased the carrier density to nC1
e = 2.8× 1012 cm−2 and nC2

e = 4.2× 1012 cm−2 (94th

hour in Fig. 5.9). Throughout these measurements, with each subsequent pumping

stage, the carrier density for the entire device steadily increases, which indicates to a

substantial amount of p-dopants from the ambient air still present on the sample surface.

While it is generally regarded that humidity (i.e., water vapour) p-dopes graphene, the

measurements conducted here clearly show water vapour in fact n-dopes graphene. It

is entirely possible that if the humidity was mixed with air instead of nitrogen, oxygen

molecules are the actual p-dopants.

5.5 Work function of 1LG and 2LG

The band structures of 1LG and 2LG are described by linear and parabolic dis-

persions, respectively, leading to differences in their transport properties (Section 2.1).

Completely uniform coverage of EG on SiC has yet to be demonstrated, thus making it

important to characterise the properties for each layer thickness. However, as demon-

strated in Section 5.1, EFS is a non-invasive technique that is capable of accurately

measuring the work function of 1LG (Φ1LG) and 2LG (Φ2LG) on the nanoscale by using

a probe with calibrated work function.

The device #2a was first cleaned of resist residues using the CM-AFM followed by

EFS measurements to characterise Φ1LG and Φ2LG. The resist residues, discussed in

Section 5.4, were removed so that a reliable comparison could be made with measure-

ments obtained by other groups. However, the exact state (i.e., clean or contaminated

with residues) of devices presented in literature that are discussed here is not speci-

fied. The VCPD for 1LG, 2LG and Au was determined by performing 200 individual

measurements along the dashed line indicated in the EFM image (Fig. 5.10a). Using

ΦAu = 4.82 eV as a reference, the PFQNE-AL probe work function was calibrated to

be Φprobe = 4.09 eV and subsequently Φ1LG = 4.55±0.02 eV and Φ2LG = 4.44±0.02 eV

for 1LG and 2LG, respectively, in ambient air (Fig. 5.10b). The difference in the work
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Figure 5.10: (a) The VCPD obtained by EFS along the dashed line indicated in inset EFM

image of device #2a. Note: the EFM image is a phase map, where the relative contrast

between 1LG and 2LG depends on the DC voltage applied to the probe (Vprobe). (b) The

linear and parabolic band structure of n-type 1LG and 2LG, respectively, when they are in

electrical contact with each other, i.e., with the Fermi energy aligned.

Substrate Φ1LG Φ2LG ∆Φ1−2LG KPFM Reference
(eV ) (eV ) (meV ) technique

4H -SiC 4.55 ± 0.02 4.44 ± 0.02 110 ± 21 FM Device #2a
6H -SiC − − 135 ± 9 FM [62]

SiO2 4.57 ± 0.05 4.69 ± 0.05 120 ± 50 FM [124]
SrTiO3 4.409 ± 0.039 4.516 ± 0.035 107 ± 36(1) FM [175]
4H -SiC − − 15 − 50(2) AM [84]
4H -SiC − − 35 AM [176]

SiO2 − − 68 AM [125]

Table 5.3: A summary of the work function difference between 1LG and 2LG, where graphene

was epitaxially grown on SiC (n-type) and graphene obtained by mechanical exfoliation was

transferred to SiO2 and SrTiO3 substrates (p-type). Note: (1)Measurements are performed in

ultra-high vacuum. In all other cases, measurements are performed in ambient environment.
(2)∆Φ1−2LG = 15-50meV at 20-120 oC, respectively.

function between 1LG and 2LG, ∆Φ1−2LG = 110 ± 21 meV , is in good agreement with

values obtained using FM-KPFM by other groups (Table 5.3).

It is generally accepted that substrate doping tends to decrease with increasing layer

thickness. However, the environmental effects must also be considered, for example, the

total doping of 1LG is dictated by the doping from the IFL (bottom of 1LG) and the

environment (top of 1LG) (Fig. 5.11a). For 2LG, the effect is further complicated.

First, the IFL will strongly interact with the bottom layer and weakly interact with

the top layer of the 2LG sandwich, which is vice versa for environmental doping (Fig.

5.11b). The effect is further complicated by the weak interactions between the top
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Figure 5.11: Schematic struc-

ture showing environmental and

IFL doping for (a) 1LG and addi-

tional interlayer interactions for

(b) 2LG. Adapted from Ref. [42].

and bottom layers of the 2LG sandwich, making it extremely difficult to form an exact

comparison between data sets.

5.6 Effects of 2LG islands on transport properties

Transport measurements were also conducted in ambient conditions on a set of 1LG

devices containing varying proportions of 2LG islands. Prior to the lithography process,

islands of 2LG were located using FM-KPFM and the sample (#4) was strategically

designed and fabricated such that the 2LG islands would be present at selected locations

of the sensing area and along the channel of 660-970 nm wide devices. Within the

specified size range, the transport properties have virtually no size dependence (Section

3.2). The exact percentages of 2LG and their locations were verified again after the

fabrication process (Fig. 5.12a inset). Fig. 5.12a shows the dependence of R4 on

Figure 5.12: The dependence of (a) 4-terminal resistance and (b) carrier density on the

percentage of 2LG graphene present on 1LG devices. Insets in (a) and (b) shows a device

channel and sensor containing 2LG that covers 28% and 68% of the total area (dashed boxes),

respectively.
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the percentage of 2LG present on the channel of 1LG devices. The results show that

a uniform 1LG device (i.e., 0% 2LG) exhibits R4 = 13 kΩ, which linearly decreases

to R4 = 2.5 kΩ for an almost uniform 2LG device (i.e., 95% 2LG), indicating that

1LG is ∼ 5 times more resistive than 2LG. Carrier density measurements conducted

in the Hall geometry, on the same set of devices, show that uniform 1LG exhibits

n1LG
e ∼ 2 × 1012 cm−2, whereas a uniform 2LG exhibits n2LG

e ∼ 8 × 1012 cm−2, which is

∼ 4 times larger than 1LG (Fig. 5.12b).

5.7 Edge effects

Despite the fact that devices are fabricated from completely different batches of EG,

surface potential measurements have shown changes in electronic properties at the edge

of graphene devices numerous times (Fig. 5.1d and Fig. 5.8b). For instance, the high

resolution topography map and line profile of devices #4b shows a protrusion appearing

at the graphene-SiC edge ∼ 2 hours after the CM-AFM cleaning process (Fig. 5.13a

and Fig. 5.13c, respectively). The surface potential map and line profile of the same

location as Fig. 5.13a shows that electronic properties of graphene up to ∼ 75nm from

the lithographically defined edge are somewhat different from bulk, with a total drop

of VCPD ∼ 565 mV (Fig. 5.13b and Fig. 5.13c, respectively).

Figure 5.13: (a) Topography and (b) VCPD map of device #4b, obtained using FM-KPFM,

∼ 2 hours after the CM-AFM cleaning process. (c) Topography and VCPD line profiles along

the black and red lines indicated in (a) and (b), respectively. The dashed white lines in (b)

marks out the lithographically defined edge, which was determined from (a) by taking the

half-distance between 12 and 88 % relative intensity of the edge spread function, as defined

in the standard on lateral resolution [177].
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The edge effects were quantitatively studied in detail with EFS on device #4a. SCM-

PIT probe with Φprobe ∼ 5.29eV was used to carry out the work function measurements

at the centre (ΦC) and ∼ 30 nm from the physical edge (ΦE) of the etched graphene

channel. A total of ten EFS curves were obtained at each position, from which the

averages are shown in Fig. 5.14a. The work function of 1LG in the grounded state was

determined as ΦC = 4.17 ± 0.06 eV and ΦE = 4.47 ± 0.08 eV (Fig. 5.14b). ΦC is effec-

tively a measure of the bulk 1LG work function, which is lower than Φn = 4.35±0.05eV

measured on n-doped side of device #3b. This can be attributed to a lower carrier den-

sity of ne = 1.17×1012cm−2 for device #3b, whereas transport measurements performed

on device #4a revealed ne = 2.95 × 1012 cm−2. The differences in bulk carrier density

can be attributed to differences in the IFL doping as the devices are fabricated out

of completely different batches of EG samples. Furthermore, the measurements were

carried out on different days, therefore daily variations in the atmospheric conditions

can also result in changes from the environmental doping.

Comparing the work function at the centre with the edge results in a difference of

∆ΦC−E = −300 meV , which indicates to a significantly different carrier density at the

edges. An estimate can be obtained by using the bulk carrier density from transport

measurements together with the work function measurements. The Fermi energy at

the centre was first calculated as ECentre
F = 200 meV from ne = 2.95 × 1012 cm−2 using

±EF = ~νF
√
πn, where + is n-type and − is p-type. Then using ∆ΦC−E provided us

with the estimate of EEdge
F = ECentre

F + ∆ΦC−E = −100 meV for the edge, where the

Figure 5.14: (a) EFS measurements performed on device #4a at the centre and edge of the

etched graphene channel. (b) 1LG band structure showing the work function at the centre

and edge.
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negative sign signifies the graphene at the edge is p-doped with nh = 7.33× 1011 cm−2.

An estimate of the work function was also obtained for the Dirac point (ED = ΦC +

ECentre
F = 4.37 eV ) of the graphene (Fig. 5.14b).

Previous reports have been made for graphene samples with n-type central region,

surrounded by p-type edges, using other techniques [178–180]. For instance, the doping

variations at the edges of exfoliated graphene have shown a red shift of the G-peak

in scanning Raman spectroscopy measurements [181]. Furthermore, p-doping has also

been observed for lattices of lithographically fabricated antidots, where a significant

variation in the D-peak was attributed to defect induced scattering processes [182].

Due to the damaging nature of the reactive ion etching processes, the oxygen plasma

can oxidise the edges. Furthermore, the etching can break the symmetry in the hon-

eycomb lattice [178], creating dangling bonds that attract p-doping molecules such as

O2, CO2 and H2O [69, 183–186] and n-doping molecules such as NH3 [183]. The fact

that protrusions appear at the graphene edge after the CM-AFM cleaning process indi-

cates to adsorbent molecules attaching to the defective edge, soft gating the graphene.

While it is not possible to determine the exact reason for p-type edges from these

results, measurements performed in a controlled environment (Section 5.4.2) gives in-

dication to oxygen or oxygen containing molecule being the main cause of the effect.

Furthermore, the measurement could be repeated in a specific gas rich atmosphere to

potentially enhance the effect.

5.8 Summary

In summary, a comparison of the three most widely used techniques revealed FM-

KPFM to be the most accurate surface potential measurement technique, principally

due to operation on the force gradient. AM-KPFM was determined to be the least

accurate technique for surface potential measurements on non-uniform samples on the

submicron scale. AM-KPFM suffers from considerable sample-cantilever base capac-

itance affecting the force acting on the cantilever. However, with the force gradient

being largest at the probe apex, the capacitance effects are negligible for FM-KPFM

and EFS. Furthermore, the force gradient confinement yields a spatial resolution of ap-
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proximately the probe apex diameter. Applying all three SP measurement techniques

to characterise EG devices yielded ∆V 1−2LG
CPD = 50,110 and 150mV for AM-KPFM, EFS

and FM-KPFM, respectively. The averaging effect of the cantilever base is the result

of a lower ∆V 1−2LG
CPD for AM-KPFM, whereas the discrepancy with EFS is attributed to

a small number of measurement points on 2LG. Calibrating the work function of the

probe against Au electrodes revealed Φ for 1LG and 2LG to be Φ1LG = 4.55 ± 0.02 eV

and Φ2LG = 4.44± 0.02 eV , respectively (for the particular sample discussed in Section

5.5), Comparison of ∆Φ1−2LG obtained with AM- and FM-KPFM against values from

literature confirmed the FM-KPFM to be the more superior technique.

The transmission line method is widely used to determine contact resistance, how-

ever the method requires a specific TLM pattern. FM-KPFM can be applied to any

device, providing a direct measurement of the contact resistance. Investigations into

graphene-Au leads contact resistance revealed non-Ohmic behaviour with resistances

fluctuating from ∼ 25 to ∼ 45 kΩ at Vch up to ±2 V , whereas the channel remained at

∼ 33 kΩ with resistivity of 2.7 × 10−6 Ωcm.

Work function measurements were conducted for a quantitative measure of the Fermi

energy. For this, the work function of the probe had to be first calibrated using Au as

a reference. EFS was used to conduct accurate measurements on a planar p-n junc-

tion device that was fabricated by cleaning only half the channel (n-type) and leaving

the other half contaminated with residues (p-type), where Φn = 4.35 ± 0.05 eV and

Φp = 4.68 ± 0.05 eV , respectively, giving a difference in n- and p-type Fermi energy

of ∆ΦEFS
p−n = 330 ± 100 meV . This value obtained entirely by SPM technique was

consistent with ∆Φtransport
p−n = 310 meV obtained from transport measurements. These

measurements reveal a significant alteration in the characteristics of graphene devices

fabricated using EBL processes. Furthermore, environmental doping effects were inves-

tigated by performing measurements in vacuum, pure nitrogen, 100% relative humidity.

Transferring the device into vacuum reversed the effects from the environment, restor-

ing the strong n-doping from the IFL. Transferring the sample from vacuum to a pure

nitrogen environment decreased the electron carrier density, indicating nitrogen is a p-

dopant. However, introducing the sample to 100% relative humidity further increased

the electron carrier density, revealing water vapour to be an n-dopant.
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FM-KPFM was also applied to study changes in the SP at lithographically defined

edges of EG devices. Quantitative work function measurements were used in conjunc-

tion with transport measurements to reveal the conduction at the edges were hole

driven, whereas the bulk central part of the device remained n-type. The p-type nature

of the edges are believed to be the result of oxygen plasma etching process oxidising the

graphene as well as breaking the symmetry of the honeycomb lattice, creating dangling

bonds that attract oxygen containing molecules.

The effects of isolated 2LG islands on transport properties were also investigated by

mapping the SP of devices with varying proportions of 2LG. The transport properties

were correlated with the exact percentage of 2LG present on the device. The statistics

showed that R4 ∼ 13 kΩ for channels containing 0% 2LG (i.e., uniform 1LG) and

decreases linearly with increasing percentage of 2LG, reaching R4 ∼ 2.5 kΩ for channel

with 95% 2LG. Carrier density measurements in the Hall bar geometry showed n1LG
e ∼

2×1012cm−2 for cross containing 0% 2LG, whereas n2LG
e ∼ 8×1012cm−2 for 100% 2LG,

indicating that n is ∼ 4 times larger for 2LG, confirming the decrease in resistance for

2LG.
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Chapter 6

Electrical and magnetic gating

Further to the nanoscale mapping of epitaxial graphene devices, the effects of lateral

and scanning local electrical and magnetic gating are also important in understand-

ing the bulk transport properties. For example, SGM is a well-established technique

that can be used to locally top gate graphene devices to investigate effects such as

the local [162, 187] and edge conductance enhancement [188], localised states in wide

constrictions [189], charge inhomogeneity and extrinsic doping [118]. As it has been

shown that a band gap can be opened in 2LG by inducing an electric field between

the two layers [13, 190], the presence of 2LG islands on devices can significantly affect

the transport properties of devices. Such effects could potentially be investigated with

SGM techniques. This chapter first describes the nanoscale investigations into lateral

electrically-gated 1LG devices and how these effects correlate with bulk transport mea-

surements. However, as the effects of lateral gates on 2LG islands are more difficult

to observe, SGM and SGS techniques (Section 4.4) are also used to locally top-gate

devices. The effects of a local out-of-plane electric and magnetic field on the bulk

transport properties of EG devices have been mapped. These techniques are used to

understand the behaviour of uniform EG devices and compare them to non-uniform

EG devices, effectively revealing the exact screening behaviour of 2LG.
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6.1 Electrical lateral gates

This section investigates the nanometre scale changes of the surface potential re-

sulting from electric fields created by lateral gates. The device is formed by etching

a trench in the shape of a Hall bar. The remaining graphene is used as lateral gates

as they are electrically isolated from the Hall bar due to the insulating nature of the

SiC substrate. The electric field effects were investigated on four separate dual-cross

devices fabricated out of 1LG from sample #4. Device #4a, #4c and #4d consisted

of 970, 680 and 450 nm wide crosses, respectively, with 280 nm channel-gate spacing.

Device #4b consisted of a 910 nm wide cross with 480 nm channel-gate spacing. All

devices underwent CM-AFM cleaning to remove any resist residues and their effects on

the electronic properties of graphene (Section 5.4).

6.1.1 Nanoscale visualisation of the gating effect

The effect of lateral electric fields on the nanometre scale was investigated on device

#4b using SCM-PIT probes (Table 4.1). The topography (Fig. 6.1a) and surface

potential (Fig. 6.1b) images were simultaneously obtained using FM-KPFM (Section

4.3.3) to first determine the exact electronic structure of the device. The topography

map clearly shows all the previously observed features, such as terraces, whereas the

surface potential map reveals 1LG with the exception of a few isolated 2LG islands

present near Cross 2. The effect of the lateral gates on a grounded channel was observed

by using FM-KPFM to measure the VCPD along the red dashed line indicated in Fig.

6.1b. VCPD line profiles were obtained for Vg = 0, ±1 and ±2 V , the results of which

are shown in Fig. 6.1c. The VCPD values are shifted from zero due to differences in

the work function of the probe, graphene and SiC. Fig. 6.1d shows the line profiles

which takes into account the work function differences by normalising the raw data

using ∆VCPD = VCPD(Vg) − VCPD(Vg = 0). The resulting data accurately shows the

voltages applied to the gates. Furthermore, VCPD for bulk of the grounded channel is

largely unaffected for Vg = ±2 V , however a small change is observed near the edges

(Fig. 6.1e). The changes in VCPD(Vg = 0) observed up to ∼ 75 nm from the edge is

related to the inherent changes in the carrier density (Section 5.7). However, inspecting
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Figure 6.1: (a) Topography and (b) VCPD maps of device #4b obtained by FM-KPFM. (c)

VCPD and (d) ∆VCPD (normalised) line profiles obtained along the red dashed line indicated

in (b) for Vg = 0,±1 and ±2V . (e) and (f) shows the zoom of the area indicated by the

black boxes in (c) and (d), respectively. The vertical dashed lines in (c)-(f) indicate the

graphene-SiC boundaries.

the normalised line profiles near the edge shows that ∆VCPD increases by ∼ 80 mV at

Vg = +2 V , whereas ∆VCPD decreases by ∼ 270 mV at Vg = −2 V (Fig. 6.1f). ∆VCPD

line profiles also show that positive Vg affects the graphene up to 20 nm from the edge,

whereas negative Vg affects it up to 55nm. These results show that positive Vg are ∼ 3

times less effective than negative Vg at changing the VCPD and the distance up to which
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VCPD is affected. However, this is still only 12% of the entire channel width.

6.1.2 Gating effect quantified on nanoscale

The lateral gating effect was accurately quantified using a calibrated SCM-PIT probe

(Φprobe ∼ 5.29eV ) by means of EFS technique. The work function was measured at two

locations on device #4a: at the centre (ΦC) and ∼ 30 nm from the edge (ΦE) of the

channel, for Vg = −2 to +2V , in increments of 100mV (Fig. 6.2a). The work function at

the centre of the channel (black squares) was ΦC = 4.17±0.09eV , showing no observable

effect from the lateral gates, whereas ΦE (red circles) was affected by ∼ 512 meV .

Note: ΦE measurements here also include the inherent changes in the carrier density.

Accounting for the latter using ∆Φ = Φ(Vg)−Φ(Vg = 0) results in ∆ΦE ∼ 345±75meV

and ∆ΦE ∼ 167 ± 110 meV at Vg = −2 V and Vg = +2 V , respectively. The work

function of the Dirac point (ED = 4.37 eV ), which was previously estimated for the

current device in Section 5.7, is also marked out by the horizontal dashed line in Fig.

6.2a. In addition, Fig. 6.2b shows the carrier density, that was estimated from the

work function measurements using the technique described in Section 5.7. The results

show that majority of carriers (i.e., in the centre of the channel) remains n-type at

ne ∼ 2.95 × 1012 cm−2 with no observable effect from the lateral gates. However, the

carrier density and even type can be controlled at the edge from nh = 1.8 × 1013 cm−2

(p-type) at Vg = −2 V to ne = 1.3 × 1012 cm−2 (n-type) at Vg = +2 V , where the

Figure 6.2: (a) The lateral gating effect on (a) work function and (b) carrier density of device

#4a at the centre (black squares) and ∼ 30 nm from the edge (red circles) of the channel.

The insets in (a) and (b) show schematics of 1LG band structure and charge distribution in

the channel.
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minimum conductivity (Dirac point) was achieved with Vg ∼ +1 V . It should be noted

that the scattering of the data points for Vg > 0 appears to be more significant than

the data points for Vg < 0 in Fig. 6.2b, which is related to the fact that the carrier

density is plotted on a logarithmic scale.

The behaviour of the carrier density can be understood from electrostatic point of

view. For instance, electrons accumulate in the gates when Vg < 0, attracting more

holes towards the edge of the channel (Fig. 6.2b inset). As the work function is the

minimum energy required to remove an election from the Fermi surface to a point just

outside the material, larger energy is require to remove an electron from a material

that has a lower electron carrier density. For Vg > 0, holes accumulate in the gates,

attracting electrons towards the edge of the channel. This increases the electron carrier

density and lowers the work function. Thus, the experimental results are consistent

with carrier density behaviour from an electrostatic point of view.

6.1.3 Gating effect on bulk electronic properties

The effect of lateral gates was also studied during transport measurements to in-

vestigate its possible influence on the bulk electronic properties of devices #4a, #4c

and #4d. R4 (Fig. 6.3b inset) measurements were conducted at Vg = −5 to +5 V ap-

plied to the lateral gates. Fig. 6.3a shows the dependence of the change in resistance,

∆R4 = R4(Vg) − R4(Vg = 0), on the lateral gate voltage for device #4a. ∆R4 could

be modified by up to ∼ ±15 Ω for Vg = ∓5 V , which accounts for ∼ 0.3% of the total

Figure 6.3: (a) The lateral gating effect on change in channel resistance and conductance of

device #4a. (b) The dependence of ∆R4 on channel width at Emax ∼ 180 kV/cm. The inset

in (b) shows the schematic for R4 measurements.
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Figure 6.4: The lateral gating effect on

carrier density of device #4a. Inset shows

the schematic for carrier density measure-

ments.

resistance of the channel (R4 = 8.9 kΩ). The conductance was also determined for the

channel, where G = R−1 = 1.1×10−4 e2/h and ∆G = G(Vg)−G(Vg = 0) is on the order

of 10−7 e2/h. At first, this may not seem very compelling, however it should be noted

that carrier density for only ∼ 10% of the total channel width (970 nm) was affected

at Vg = −2 V (Section 6.1.1). Decreasing the channel width will result in the affected

area of the channel accounting for a larger percentage of the total area. Measurements

conducted on narrower channels have shown an exponential increase in the lateral gat-

ing effect, where ∆R4 changed by up to ∼ 1% for 450 nm wide channel (Fig. 6.3b). In

literature, measurements conducted on devices with widths down to 10’s of nanometres

have shown lateral gating to be considerably more effective [191–194]. Furthermore,

back/top gates have been used in conjunction with lateral gates to fine-tune the carrier

density around the Dirac point [191–193], thereby further enhancing the lateral gating

effect. Carrier density measurements conducted in the Hall bar geometry on device

#4a showed no observable dependence on the lateral gate voltage (Fig. 6.4). However,

this is not so surprising as the measurement was conducted in the Hall geometry, where

only ∼ 1% of the total sensor area of a 970nm wide cross is affected by the lateral gates

(Fig. 6.4 inset).

6.1.4 Leakage current

The magnitude of the current leaking (I) through the SiC substrate was investigated

on device #4a to account for its effect on the electronic properties of the device. The

measurement circuit consisted of an ammeter, the voltage source and the lateral gate

device in series (Fig. 6.5 inset). The leakage current was determined by measuring I
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Figure 6.5: Dependence of the current

leaking through the SiC substrate on the

applied lateral gate voltage for device

#4a. Inset shows the electrical circuit for

the leakage current measurement. ∆I =

I(Vg) − I(Vg = 0). Red dashed line is a

linear fit to the data.

at Vg and subtracting it against I at Vg = 0 after each individual I(Vg) measurement:

∆I = I(Vg)−I(Vg = 0). In this instance, the normalisation is vital for accurate leakage

current measurements as the insulating nature of SiC leads to significant charging. The

measurement reveals a linear I-Vg relationship for Vg up to ±5 V with channel-gate

resistance of ∼ 1.9 TΩ (Fig. 6.5). During the transport measurements, a maximum

of |∆I| ∼ 2.5 pA was leaking through the substrate at Vg = ±5 V . Compared to the

bias currents used for R4 and n measurements, the leakage current is at least six orders

of magnitude smaller, insuring maximum efficiency of the electric fields created by the

lateral gates. Thus, ruling out a possibility to affect the lateral side effect measurements.

6.2 Electrical scanning gate

This section describes the investigations of longitudinal (Vxx) and transverse voltage

(Vxy) response of Hall bar devices to local electric fields by the means of SGM and SGS

technique described in Section 4.4. Both techniques were performed with DC voltages

(up to Vprobe = ±10 V ) applied to the SCM-PIT probes. The oscillating cantilever

produces an electric field gradient (dE/dz) that locally affects the carrier density of

the graphene, altering the characteristics of the device. These changes were accurately

measured with a lock-in amplifier referenced to the drive frequency of the cantilever

(f0). In addition, non-oscillating SGM and SGS were also performed to investigate the

effects of a DC electric field on Vxx.
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6.2.1 Electrostatic effects in uniform 1LG and 2LG devices

FM-KPFM was first used to study the uniformity of the graphene layer thickness for

1LG and 2LG device (#4e and #4f, respectively). The VCPD maps confirmed that while

the 1LG device was indeed 100% uniform, the 2LG device had small patches of 1LG,

making it ∼ 95% uniform 2LG for the area of the channel within the two Vxx leads

(Fig. 6.6a). Field gradient SGM measurements were performed with Ibias = 50 µA,

Vprobe = −5 V and 20 nm lift height, mapping the dVxx/dz response of both devices

with a lock-in amplifier (Fig. 6.6b). For both devices, the dVxx/dz increased for probe

gating on the channel, i.e., between the two Vxx measurement arms. This indicates that

Figure 6.6: Measurements on uniform 1LG and 2LG devices (#4a and #4e, respectively).

(a) Surface potential maps performed at Ibias = 0, and (b) electrical SGM maps of dVxx/dz

performed at Ibias = 50 µA, Vprobe = −5 V and 20 nm lift height. (c) Line profiles of the

dVxx/dz maps along the dashed line at the centre of the channels indicated in (b). (d)

d(Imp)/dz obtained with SGS performed at the three locations indicated in (b).
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negative Vprobe locally decreases the carrier density, which increases the total resistance

of the channel, thereby increasing dVxx/dz. The dVxx/dz line profile along the dashed

line indicated in Fig. 6.6b for the 1LG device clearly shows that maximum coupling to

the local gate occurs when the probe is positioned at the centre of the channel (Fig.

6.6c). However, identical analysis of the measurement on 2LG device shows that gating

effect is considerably uniform across the area of the channel (Fig. 6.6c).

To further understand the dependence of Vprobe (and subsequently the electric field

strength) on the channel resistance, SGS measurements were performed on both devices

for Vprobe up to ±10 V at three locations indicated in Fig. 6.6b. However, as we are

measuring dVxx/dz at ∼ 70 kHz, dividing the voltage by Ibias gives the derivative of

the impedance (d(Imp)/dz). Measurements show that d(Imp)/dz is linear only for

E ∼ ±2.35 MV/cm (Fig. 6.6d). The gating effect is largest at the centre of the

channel (position 1) for the 1LG device, whereas for 2LG device, the effects of gating at

the three locations are almost identical (Fig. 6.6d). These SGS results are consistent

with previous observations from SGM images (Fig. 6.6b). As the dielectric between the

graphene and the probe is simply ambient air during these experiments, non-linearity in

d(Imp)/dz shows possible signs of electrical breakdown of the air at |E| > 2.35MV/cm.

For 2LG device, the non-linearity is much less pronounced than that of 1LG device.

In order to assess the gating efficiency, the ratio d(Imp)/dz
Rs

can be compared for the

1LG and 2LG devices. In Section 5.6, it was shown that from 1LG to 2LG, a 4 times

increase in the carrier density results in a 4 times decrease in R4, where R1LG
s = 2.28kΩ

and R2LG
s = 0.49 kΩ, respectively. For the 1LG device, d(Imp)/dz = 1.03 Ω/m for

position 1, which gives a ratio of 4.51×10−4. If we are to assume the same ratio and that

2LG device is simply a material with a 4 time larger carrier density, estimations show

that identical |E| ∼ 2.35 MV/cm should result in d(Imp)/dz = 0.22 Ω/m. However,

the measurements show that d(Imp)/dz = 0.06 Ω/m at position 1, giving a ratio of

1.22×10−4, which is a further 3.7 times lower than the estimate. This comparison shows

that gating effect on 2LG device is reduced by ∼ 73% in relation to 1LG, indicating to

substantial screening of the electric field due to Coulomb interactions. The magnitude of

the electric field screening is therefore strongly related to the carrier density of 2LG. For

example, Castro et al. showed that increasing the carrier density of 2LG from ne ∼ 4 to
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10×1012 cm−2, while applying a perpendicular external electric field (Eext = 3MV/cm)

comparable to the present experiment, leads to an approximately linear decrease in the

screened electric field from E ∼ 1.7 to 1.4 MV/cm [195].

6.2.2 Electrostatic effects of 2LG islands on 1LG device

6.2.2.1 Effects on channel resistance

The electrical gating effect was also investigated with the field gradient SGM for

a 1LG device (#4c) containing a 2LG island in the middle of the channel, which was

revealed using FM-KPFM (Fig. 6.7a). dVxx/dz map of the device was obtained with

SGM at 20 nm lift height and Ibias = +5 µA with Vprobe = −5 and +5 V (Fig. 6.7b

and 6.7c, respectively). In a similar fashion to the uniform 1LG device #4e from

Section 6.2.1, locally gating with Vprobe = −5 V on the 1LG parts of the channel

increases the device response by dVxx/dz = 4.8µV/m (Fig. 6.7b), indicating the channel

resistance increases. However, when the probe is gating with on the 2LG part of the

channel, the device response only increases by dVxx/dz = 1.6 µV/m. Whereas for

gating with Vprobe = +5V on 1LG part of the channel decreases the device response by

dVxx/dz = −4.2 µV/m (Fig. 6.7c) and 2LG by dVxx/dz = −1.4 µV/m.

Figure 6.7: (a) Surface potential map of the 680 nm device #4c performed at Ibias = 0.

Electrical SGM maps of dVxx/dz performed at 20 nm lift height with Ibias = +5 µA, (b)

Vprobe = −5 V and (c) Vprobe = +5 V . (d) d(Imp)/dz obtained with SGS performed at the

three locations indicated in (a).
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SGS measurements performed on 1LG, 2LG and background part of the device shows

that, while gating on the background has negligible effect on the channel, gating on 1LG

and 2LG at E ∼ 2.35 MV/cm produces d(Imp)/dz = 1.6 and 0.4 Ω/m, respectively

(Table 6.1). For an accurate comparison of the ratios, Rs must be separated for 1LG

and 2LG, because: 1) the resistance of 1LG and 2LG are different and 2) the lock-in

amplifier measures the total response of the device. With the total R4 = 10.6 kΩ, the

contribution from 1LG is R1LG
4 = 9.78 kΩ and 2LG is R2LG

4 = 0.82 kΩ, thus giving us a

sheet resistance of R1LG
s = 3.40 kΩ and R2LG

s = 0.73 kΩ for 1LG and 2LG, respectively

(Table 6.1). Thus, taking the ratio d(Imp)/dz
Rs

gives 4.71 × 10−4 and 5.47 × 10−4 m−1 for

1LG and 2LG, respectively (Table 6.1). Comparing the ratios for 1LG and 2LG shows

that in this particular geometry, when the probe is located on the 2LG island at the

centre of the channel, gating effect is increased by ∼ 16% in relation to gating on 1LG

(Table 6.1). However, this comparison is misleading as the local electric field affects

the electronic properties over an area that is comparable to the size of the 2LG island.

Therefore, gating on 2LG contains gating contributions from 1LG and vice versa. It

should be noted that these measurements are performed at ∼ 70 kHz, therefore the

gating efficiency is further complicated by the device inductance and probe-sample

capacitance effects.

To account for such effects, the measurements were also performed on the same

device #4c using the DC electric field SGM and SGS techniques described in Section

4.4. Fig. 6.8a and 6.8b shows the Vxx map of device #4c obtained with SGM at

20 nm lift height and Ibias = +5 µA with Vprobe = −5 and +5 V , respectively. The

maps show identical features to the force gradient technique, however, the voltage

response of the device is considerably larger. To understand the dependence of R4 on

Vprobe, SGS measurements were also performed at the same three locations indicated

Gating R4 no of �′s Rs d(Imp)/dz ∆R4
d(Imp)/dz

Rs

∆R4

Rs

(kΩ) (kΩ) (Ω/m) (Ω) (m−1)

1LG 9.78 2.88 3.40 1.6 42 4.71 × 10−4 1.24 × 10−2

2LG 0.82 1.12 0.73 0.4 14 5.47 × 10−4 1.92 × 10−2

Relative Change +16% +55%

Table 6.1: A summary of the measurements obtained with the electric field gradient and

electric field SGS techniques.
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Figure 6.8: Electrical SGM maps of Vxx performed at 20 nm lift height with Ibias = +5 µA,

(a) Vprobe = −5V and (b) Vprobe = +5V . (c) ∆R4 obtained with SGS performed at the three

locations indicated in Fig. 6.7a. (d) ∆R4 line profiles for 1LG and 2LG from (c) subtracted

with the background measurement to account for gating effect from the cantilever base.

in Fig. 6.7a. Fig. 6.8c shows the dependence of ∆R4 on electric field strength up

to E ∼ ±2.35 MV/cm, where R4 = 10.6 kΩ. Results show that, although gating on

1LG and 2LG has the largest affect on R4, gating on the background also produces a

relatively strong response. While the probe apex is at 20nm from the surface producing

a strong electric field, the significantly larger area of the cantilever base is at ∼ 10 µm

from the surface, thus affecting the entire device with ∼ 103 times smaller electric field

(E ∼ 5kV/cm assuming parallel plate capacitor), even when the probe is gating on the

background (Fig. 6.8c inset). However, as the contribution from the cantilever base is a

global effect, the ∆R4 for background was subtracted from ∆R4 for 1LG and 2LG (Fig.

6.8d). Results show that gating with |E| ∼ 2.35MV/cm increases the channel resistance

by ∆R1LG
4 = 42 Ω and ∆R2LG

4 = 14 Ω for gating on 1LG and 2LG, respectively. Thus,

taking the ratio ∆R4

Rs
gives 1.24 × 10−2 and 1.92 × 10−2 for 1LG and 2LG, respectively

(Table 6.1). Comparing the ratios with each other shows that a DC electric field further

increases the efficiency by ∼ 55% for gating on the 2LG island. Similarly to the field

gradient SGM technique, gating on the 2LG contains gating contributions from 1LG

and vice versa. However, with the DC electric field being considerably less localised

than field gradient SGM, the gating contribution from neighbouring graphene area is

considerably larger. While the DC electric field SGM technique provides quantitative
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analysis of the gating effect, it lacks the spatial resolution given by the electric field

gradient SGM technique, making it less useful for observing nanoscale features.

6.2.2.2 Effects on transverse voltage

Furthermore, the electric field gradient effect on transverse voltage (dVxy/dz) was

also studied for the second cross of device #2a, which contains a long narrow patch of

2LG located in the active sensor area (Fig. 5.1). Vxy maps of the device were obtained

at 25 nm lift height with all four combinations of Ibias = ±100 µA and Vprobe = ±5 V

(Fig. 6.9). Similar to the previous dVxx/dz SGM experiments, no measurable dVxy/dz

response is observed when gating outside the geometrical boundaries of the device.

The largest dVxy/dz response with a two-fold symmetry is observed at the corners

of the cross. This has been previously observed in various semiconductor systems

and is related to the geometry of the device [161, 196]. For example, in the case of

Ibias = +100 µA and Vprobe = −5 V (Fig. 6.9b), the negative probe voltage repels

electrons in the graphene, therefore the probe gating at corners 1 and 4 (Fig. 6.10a and

Fig. 6.10d, respectively) diverts the flow of electrons towards V − electrode, increasing

Vxy. Similarly, if the probe is gating at corners 2 and 3 (Fig. 6.10b and Fig. 6.10c,

Figure 6.9: (a)-(d) Electric field gradient SGM of second cross of device #2a measuring

dVxy/dz at 25nm lift height with all four combinations of Ibias = ±100µA and Vprobe = ±5V .
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Figure 6.10: Schematic of the current distribution with locally gating with Vprobe < VCPD

at corners (a)-(d) 1-4 of a Hall sensor (corresponds to the case described in Fig. 6.9b). The

blue circle represents the location of the probe and arrows represent the flow of electron.

respectively), the current flow is diverted towards V + electrode, decreasing dVxy/dz.

When measurements are performed with Ibias = +100µA and Vprobe = +5V , the positive

Vprobe attracts electrons towards the probe, inverting the contrast of the dVxy/dz map

(Fig. 6.9a). Furthermore, applying a negative bias current (Ibias = −100 µA) reverses

the direction of the flow of electrons, which also inverts the contrast for respective Vprobe

(Fig. 6.9c and Fig. 6.9d). The SGM dVxy/dz map line profiles performed along the

dashed line indicated in Fig. 6.11a inset, clearly shows that the magnitudes of the

response at corner 4 is not symmetric for the four combinations of Ibias and Vprobe (Fig.

6.11a), which is the result of differences in the probe-sample voltages. For example,

largest difference between VCPD and Vprobe occurs when Ibias and Vprobe are of opposite

polarities, i.e., Ibias = ±100 µA and Vprobe = ∓5 V . Whereas, smallest difference

between VCPD and Vprobe occurs when Ibias and Vprobe are of the same polarity, i.e.,

Figure 6.11: (a) SGM dVxy/dz map line profiles at Ibias = ±100µA and Vprobe = ±5V along

the dashed line indicated in the inset image. (b) EFM image of device #2a at Ibias = +100µA

with gates Ga and Gb grounded and gates Gc and Gd floating.
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Ibias = ±100 µA and Vprobe = ±5 V .

In addition to the two fold symmetry responses at the corners, a second contrast

is also observed at the geometrical edge of corners 1 and 2 for all dVxy/dz maps (Fig.

6.9). This contrast is related to a change in the electric field as a result of the grounded

lateral gates Ga and Gb, which appears as different contrast to the rest of the device

in EFM phase imaging (Fig. 6.11b). Furthermore, the double contrast is not observed

at corners 3 and 4 (Fig. 6.9) because the floating gates Gc and Gd do not create any

additional electric fields.

There is also a change in contrast when probe is gating on the 2LG island. For

example, the SGM contrast at the lower part of the 2LG island (Fig. 6.11b) is similar

to that of background level for all combinations of Ibias and Vprobe (Fig. 6.9), indicating

that the 2LG screens the electric field produced by the probe. However, the line profiles

of the SGM maps reveal that the SGM contrast at the upper part of the 2LG island

is similar to the contrast at corner 1 (not referring to the second contrast in this case)

(Fig. 6.11a). This indicates that locally gating on the upper part of the 2LG island

has a similar effect to gating at corner 1 (Fig. 6.10). It should be noted that higher

resolution EFM images revealed the width of the constriction between the upper and

lower part of the 2LG island to be ∼ 120 nm, indicating both parts are electrically

connected.

6.3 Magnetic scanning gate

This section describes the investigation of transverse voltage (dVxy/dz) response

of a Hall sensor to a local oscillating magnetic stray field emanating from a probe

(dBprobe/dz) by the means of SGM technique described in Section 4.4. The measure-

ments were conducted using MESP and MESP-HM probes (Table 4.1).

6.3.1 Elimination of electrostatic effects

The measurements were carried out on a 1 µm wide device (#3a). Topography and

surface potential mapping of device #3a shown in Fig. 6.12a and 6.12b, respectively,

reveals that the device consists of only 1LG. It is important to note that the device here
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has been cleaned of resist residues with the CM-AFM technique (Appendix C). The

electrical properties of the device were characterised using the transport measurement

technique described in Section 3.2, where RH = 1250 Ω/T , ne = 5 × 1011 cm−2 and

µe = 1500 cm2/V s.

The magnetic stray field emanating from MESP and MESP-HM probes was mea-

sured by scanning and simultaneously mapping dVxy/dz of a current-biased epitax-

ial graphene Hall sensor. The technique is essentially the same as electrical SGM,

where dVxy/dz responds to the electric field gradient, whereas with magnetic SGM, the

dVxy/dz should respond to the magnetic field gradient. Fig. 6.12c shows the dVxy/dz

response of device #3a (with Ibias = 20 µA) to a MESP-HM probe. The image is

largely dominated by a strong dVxy/dz response at the corners of the device (position

2 in Fig. 6.12d), which is related to the electrostatic effect described in Section 6.2.2.2.

The magnetic coating of the probe is also electrically conductive, therefore applying

Figure 6.12: Images showing (a) topography and (b) surface potential mapping of device

#3a. Red lines in (a) show the outline of the device. (c) The Vxy response of a Hall sensor

(Ibias = 20 µA) to electric and magnetic fields emanating from a MESP-HM probe. (d) Line

profiles along the indicated dashed lines in (c), where 1: background, 2: electrostatic and 3:

magnetic contributions.
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Figure 6.13: A schematic showing the magnetic stray field measurement setup. The probe is

scanned across the sensor in FM-KPFM mode, while an external lock-in amplifier measures

dVxy/dz, which is fed back into the microscope and recorded at each pixel to produce a 2D

map of the dVxy/dz.

Ibias = 20µA across the device raises the potential of the sensor area (∼ 1V ). Further-

more, the grounded probe creates a potential difference between the probe and sample,

thereby creating an electric field. This parasitic electric field makes it rather difficult

to determine the contribution from the probe magnetic stray field only (position 3 in

Fig. 6.12d).

The parasitic electric field can be eliminated by applying a potential to the probe

that is equal to the potential of the sample in the sensor area [196]. However, the

potential is not fixed across the sample and so this technique is only moderately effective

at eliminating the electric field [197]. A more elegant way of eliminating the electric

field is by applying a potential equal to the surface, at each individual pixel. The KPFM

feedback loop performs this exact procedure to measure the surface potential (Section

4.3). The most accurate surface potential measurement technique (FM-KPFM, Sections

4.3.3 and 5.2) was used to eliminate the parasitic electric field (Fig. 6.13).

6.3.2 Magnetic response of uniform 1LG device

The dVxy/dz response of device #3a to the magnetic field gradient (dBprobe/dz)

emanating from MESP and MESP-HM probes (Table 4.1) oscillating with an amplitude

of Aosc was measured. In essence, the technique operates on the Hall effect, where the

lock-in amplifier measures the Hall voltage response of the device to the local magnetic
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field. Fig. 6.14a and Fig. 6.14b shows the response for MESP-HM with magnetisation

pointing down (↓) and up (↑), respectively, at Ibias = 20 µA. The images show a

small contribution from the electrostatic effects in the corners, indicating incomplete

nullification of the electric field, however, the largest part of the response originates from

the magnetic contributions. The largest response to the magnetic stray field is at the

centre of the device due to a maximum coupling of the probe with the sensor area, where

↓ (↑) magnetisation at Aosc = 20 (10) nm produces a positive (negative) response of

dVxy/dz = 1.08 (−0.64)µV/m (Table 6.2). The response from MESP probe is expected

Figure 6.14: The dVxy/dz response of a Hall sensor (Ibias = 20 µA) to magnetic fields

emanating from MESP-HM probe with magnetisation pointing (a) down (↓) and (b) up (↑)
and for MESP probe with (c) down (↓) and (d) up (↑). (e) Line profiles along the indicated

dashed lines of (a)-(d). Aosc = 10-20 nm is the oscillation amplitude at cantilever mechanical

resonance f0. The vertical dashed lines in (e) mark out the width of the cross. A schematic

view of Bprobe coupling when probe is gating at (f) the centre and (g) edge of the sensor area.
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Probes Moment dVxy/dz [Aosc] dVxy/dz [Aosc]
(emu) (µV/m) [nm] (µV/m) [nm]

MESP-HM > 3 × 10−13 ↓ 1.08 [20] ↑ −0.64 [10]
MESP ∼ 1 × 10−13 ↓ 0.39 [10] ↑ −0.37 [10]

Table 6.2: A summary of the maximum dVxy/dz response to MESP and MESP-HM probes.

to be smaller due to a lower moment of ∼ 1× 10−13 emu, where ↓ (↑) magnetisation at

Aosc = 10nm produces a positive (negative) response of dVxy/dz = 0.39 (−0.37)µV/m.

The line profiles along the indicated dashed lines in Fig. 6.14a-d are shown in Fig.

6.14e. Fit to the line profile from Fig. 6.14a reveals a clear Lorentzian response. For

instance, the coupling of Bprobe is maximum when the probe is gating at the centre of

the cross (Fig. 6.14f) and gradually decreases as the probe moves away from the centre

position (Fig. 6.14g). When the probe is located on the current arm outside the sensor

area, the field gradient still influence the flow of charges, therefore producing a dVxy/dz

response.

6.4 Summary

In summary, the effects of lateral and top electrical gating on the channel resistance

have been studied. The screening behaviour of 2LG was also investigated with electrical

SGM and SGS. In addition, magnetic SGM was used in conjunction with FM-KPFM

to study the response of a Hall sensor to a non-uniform magnetic field.

The effects of lateral gates on local transport properties of graphene device were

studied using an electrically conductive probe with a calibrated work function. First,

the surface potential distribution across the channel width was studied with FM-KPFM,

revealing that positive Vg only affect the transport properties up to 20 nm from the

lithographically defined edge of the channel, whereas negative Vg affects the transport

up to 55 nm. Work function measurements with EFS at the centre of the channel

revealed no observable change in transport properties as a result of the lateral gates.

However, a total change of ∆ΦE ∼ 0.5eV was measured at the edge of the channel. The

lateral gating effect could be used to tune the conduction from holes to electrons with

carrier densities nh = 1.8× 1013 cm−2 and ne = 1.3× 1012 cm−2, respectively. Although

a relatively large edge effects were observed with the SPM techniques, complementary
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bulk transport measurements revealed that the resistance of a 970 nm wide channel

could be controlled by a total of only ∼ 0.3%. Identical measurements conducted on

narrower channel of 450nm width showed an increase in the lateral gating effect, where

∆R4 could be controlled by a total of ∼ 1%. Leakage current measurements were

used to characterise the channel-gate resistance ∼ 1.9 TΩ, indicating that changes in

electronic properties of the channel are the result of electrostatic gating.

The effects of electrostatic top gating on the impedance of uniform 1LG and 2LG

devices were studied using the high spatial resolution qualitative SGM and SGS tech-

niques. Mapping the d(Vxx)/dz of the devices showed negative (positive) voltages re-

duce (increase) the local carrier density, thereby increasing (decreasing) the overall

impedance of the channel. The relative gating efficiency between 1LG and 2LG devices

was assessed with SGS by taking the ratio of d(Imp)/dz
Rs

. Results show a 73% reduction in

the gating efficiency for uniform 2LG device, which indicates to substantial screening

of the electric field.

Applying the same electric field gradient technique to a non-uniform EG device

shows that locally gating on a 2LG island present on the channel significantly affects

the total d(Imp)/dz response of the device. However, the local electric field affects the

electronic properties of the device over a significantly larger area, resulting in averaging

of the gating effect. Thus, making it difficult to accurately assess the gating efficiency

in the non-uniform EG device. While the electric field gradient technique provides qual-

itative information on the device, it also includes device impedance and probe-sample

capacitance effects as the measurements are conduced at ∼ 70kHz. Quantitative anal-

ysis of the DC resistance can be carried out using the electric field SGS. However, in

the non-uniform EG device, averaging of the gating effect prohibits accurate assessment

of the gating efficiency. The electric field screening behaviour was also observed with

d(Vxy)/dz maps, where the screening depends on the location and geometry of the 2LG

island.

A direct comparison for the efficiency of lateral and top electrical gating on the

DC channel resistance can also be performed as measurements were conducted on the

same 680 nm wide device. At identical gate voltages, the DC channel resistance was

affected by ∼ 0.23% and ∼ 0.43% with lateral and top gating, respectively. Although
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the probe only locally affects the channel surface, its close proximity at 20 nm results

in a significantly larger electric field than in the lateral gate experiment. On the other

hand, the lateral gates are considerably further away at 280nm from the channel edge.

The larger spacing results in a considerably smaller electric field, however affecting the

edges along the entire length of the channel from both sides. The net result of close

proximity and directly affecting the surface led to ∼ 2 times larger efficiency with top

gating.

The response of a Hall sensor to a local magnetic field was also studied using SGM.

As the technique produces significant electrostatic responses in the transverse voltage

due to the potential difference between the current-biased device and the electrically

conductive magnetic coating of the MFM probe, the parasitic probe-sample potential

difference was eliminated by the means of FM-KPFM feedback loop. The local magnetic

response of the Hall sensor was studied with SGM performed in situ with FM-KPFM.

The response of a 1 µm wide 1LG Hall sensor was mapped with the probes magne-

tised up and down. The transverse voltage of the Hall sensor responded positively with

relation to the magnetic field pointing down and negatively for field pointing up. Un-

der identical experimental conditions, 70% larger dVxy/dz response was observed with

MESP-HM probe compared to MESP, which is attributed to a thicker Co-Cr coating,

producing a larger Bprobe. Furthermore, increasing Aosc increases the magnetic field gra-

dient, thereby further enhancing the Hall sensor response. This technique is ideal for

measuring the stray magnetic field of MFM probes for calibrated MFM measurements.
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Chapter 7

Conclusion and future outlook

The aim of this work has been to form a deep understanding of the unique electronic

properties of EG. This has been achieved by applying various bulk (transport and noise)

and local SPM techniques.

The bulk electronic properties of EG Hall sensors with size ranging from ∼ 20

µm down to 100 nm were studied using transport and noise spectrum measurements

at room temperature, in ambient conditions. On average, these devices exhibited low

electron carrier density of n ∼ 8×1011 cm−2, making them highly sensitive to magnetic

fields. The carrier mobility remained independent on miniaturisation and showed that

the EG devices were strongly diffusive with a mean free path of λ ∼ 30nm. Furthermore,

it was clearly demonstrated that, while Bmin ∼ 2µT
√
Hz for devices of size ≥ 14.6µm,

the performance dropped to Bmin ∼ 50 µT
√
Hz for 100 nm devices. These devices

consisted of long and narrow leads, which greatly contributed to the increase in total

resistance and thus 1/f noise. Device geometry optimisations, such as widening of the

voltage leads in all sections other than the sensor area, can potentially improve the

noise performance.

The potential of EG devices for sensing application was realised by detecting

the stray magnetic field emanating from a single 1 µm diameter magnetic Dynal bead

with a moment of 4 × 108 µB. The AC/DC Hall magnetometry experiment, that had

already been carried out on an InSb device of similar size and physical properties,

would serve as an ideal comparison of the two different systems. The results showed

that EG device response was V AC
x ∼ 7 µV , whereas the InSb device was only V AC

x ∼
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0.5µV . The considerable improvement in the signal with the EG device is the result of

improved bead-sensor coupling and a significantly larger biasing current. InSb device

was fabricated out of a 300 nm thick epilayer, where the detection takes place from

0-300nm below the surface of the material. However, in graphene the conduction takes

place on the surface of the material due to its 2-dimensional nature, thereby greatly

reducing the bead-sensor distance and improving the coupling. Deterioration of the

InSb device electronic properties occurs at a modest bias current limit of Ibias = 5 µA,

whereas a similar size graphene channel can withstand biasing currents in excess of

Ibias = 1 mA. This large stability to bias current is related to an extremely effective

electron-lattice interaction, which results in high carrier energy loss rate in graphene.

AFM maps of devices revealed a substantial amount of resist residues left over

from the fabrication processes, contaminating the surface of EG. The latter prove to

be difficult to remove using UV exposure and chemicals. However, these treatments

led to an adverse affect of changing the conduction in graphene from electrons to holes.

The technique of using CM-AFM to sweep the residues from side-to-side proved very

effective on a small scale, thus restoring the typical n-type behaviour of EG.

SP mapping of EG is widely used to study the nanoscale electronic properties.

However, depending on the technique used, i.e., EFS, AM-KPFM or FM-KPFM, the

results prove to be rather inconsistent. Having conducted a comprehensive compari-

son, the most accurate were the force gradient techniques, i.e., EFS and FM-KPFM.

The fact that force gradient is highly localised to the probe apex, measurements are

not affected by the parasitic capacitance from the cantilever base, thus providing high

spatial resolution (< 20 nm) and accuracy. Furthermore, by normalising SP measure-

ments using FM-KPFM, it was demonstrated that Au-graphene contact resistance is

strongly non-Ohmic. Such investigations are typically conducted using the transmis-

sion line method, which require a specific device geometry, whereas FM-KPFM acts as

a movable contactless probe, providing a direct measurement of the SP on any device

geometry.

Work function of 1LG and 2LG was investigated with EFS, revealing Φ1LG =

4.55± 0.02 eV and Φ2LG = 4.44± 0.02 eV , respectively, due to their unique band struc-

tures, where ∆Φ1−2LG = 110 ± 21 meV . However, these values are directly related to
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the carrier density and thus dictated by the growth procedure of EG (substrate/IFL

doping) and atmospheric conditions (environmental doping). For example, EG in vac-

uum is strongly n-doped by the IFL, whereas introducing pure nitrogen p-doped EG

from the surface, thus decreasing the electron carrier density. However, introducing

EG to 100% relative humidity increases the electron carrier density beyond the level

of IFL alone. The presence of 2LG islands on the device channel was also correlated

with transport measurements. In essence, 2LG exhibits ∼ 4 times larger carrier density

than 1LG and can be regarded as islands with a lower resistance. Therefore, increase

in percentage of 2LG resulted in a decrease in the channel resistance.

Lithographically defined edges of EG devices were shown to exhibit changes

in the electronic properties. Calibrated work function measurements correlated with

bulk transport revealed that, while bulk of the material remained n-doped, edges were

in fact p-doped. This was attributed to protrusions appearing over the course of a

few hours after the contact-mode AFM cleaning process, which indicates that p-doping

molecules attach to the defective edges caused by the oxygen plasma etching process.

These measurements clearly demonstrate the effectiveness of calibrated work function

measurements. Furthermore, studies of the electronic properties by standard transport

measurements require fabrication of devices such as Hall bars, which has been shown

to contaminate the graphene. Here, non-invasive work function measurements can be

carried out on bare EG samples to quantitatively study the electronic properties without

a specific need for such devices.

Effects of lateral gating were studied with FM-KPFM, EFS and transport mea-

surements. Surface potential and work function measurements demonstrated that lat-

eral gates can affect the electrical properties of 1LG channel up to ∼ 55 nm from the

physical edge with carrier type tunable from p- to n-type. However, only a modest 1%

change in the total resistance of a 450 nm wide channel was observed. While lateral

gates have a relatively weak effect on channel widths of several hundreds of nanometres,

the electronic properties of sub 100 nm-wide devices could be significantly controlled

as a larger portion of the total channel width will be affected. Lateral gates can also

be useful for controlling the performance of devices in the quantum Hall regime, where

the conduction takes place along the edges of the channel.
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Effects of local electrical top gating on uniform 1LG, 2LG and non-uniform

EG devices were studied using electric field gradient SGM and SGS techniques. Mea-

surements on uniform 1LG and 2LG devices revealed a 73% reduction in the gating

efficiency for the 2LG device, clearly indicating to screening of the external electric

field. However, gating efficiency could not be accurately assessed for the non-uniform

EG device due to the effective gating area comparable to the size of the 2LG island, re-

sulting in averaging of the gating effect with neighbouring graphene. While electric field

gradient SGM and SGS provide relative change of the device with a high spatial reso-

lution, the measurements also include impedance and capacitance effects related to the

∼ 70kHz operation. On the other hand, electric field SGM and SGS were also used for

quantitative study of the non-uniform EG device. However, although the device chan-

nel is locally gated by the probe apex with a large electric field (E ∼ 2.35 MV/cm),

the cantilever base also affects the entire channel with E ∼ 5 kV/cm, leading to a

substantial averaging of the gating effect with the entire device. These measurements

provide some insight into different behaviours of uniform and non-uniform EG devices.

However, a considerable amount of research is further required to fully understand the

interactions between the top and bottom layer of the 2LG sandwich.

Effects of local magnetic top gating on a uniform 1LG device was studied using

SGM with MFM probes, which are coated by a magnetic layer, producing a magnetic

field gradient. Mapping the transverse voltage of the device revealed peaks that dom-

inate the signal, which is typical for electrostatic gating. In this case, the magnetic

coating of the probe is also electrically conductive, therefore creating a potential differ-

ence between the grounded probe and current biased device. The parasitic electrostatic

response was eliminated by using the FM-KPFM feedback loop to apply a compensat-

ing voltage to the probe, effectively separating the magnetic response. The technique

sets the foundations for study of magnetic response of non-uniform EG Hall sensors. In

addition, the elimination of the electrostatic interactions is extremely important with

MFM, where the long-range nature of the interactions can lead to strong correlations

with electrostatic forces. Furthermore, accurate measurements of the probe stray mag-

netic fields are also important for calibrating the magnetic moment of the probe, which

is useful for quantitative MFM imaging of magnetic domains.
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The performance of EG devices exceeds ones fabricated out of CVD graphene,

however, the performance of InSb epilayer devices of similar size and physical properties

are marginally better at this current stage of development. The best graphene devices,

however, are still ones fabricated out of mechanical exfoliated flakes from HOPG. Ra-

man spectroscopy measurements have shown that, unlike EG, flakes contain very small

number of crystalline defects, which results in their far superior carrier mobility. How-

ever, the major drawback of mechanically exfoliated flakes is their small size, which

results in a low yield and limited scalability. CVD graphene can be grown in large

quantities on substrates such as copper. However, the graphene must then be trans-

ferred onto an insulating substrate, which can lead to contamination and additional

defects in the crystalline lattice. EG has the potential for mass production of graphene

electronics as SiC wafers are readily available and compatible with the well-established

CMOS technologies. Furthermore, EG does not require a transfer processes due to the

insulating nature of SiC. However, the current high costs of SiC wafer and complicated

growth procedure makes large scale production of EG electronics unattractive.

Future outlook | Graphene that is of low quality, affordable and easy to incorporate

into existing applications, will most likely be the first to reach the end user in a few years.

However, the key to successful implementation of graphene lies with novel applications

that are specific to graphene. These applications will require extensive research and

development, material of the highest quality and expensive fabrication methods, thus,

will most likely take decades to reach the end user.

The results presented in this thesis sets out many directions for future work. For

example, although it is clear that deep UV exposed resist residues can p-dope graphene,

the exact mechanism is not fully understood. While the act of placing the sample in

vacuum temporarily restores the n-type behaviour of EG, the p-doping nature of deep

UV exposed residues gradually dominates. Therefore, it is clear that p-doping is caused

by the adsorption of certain type(s) of molecules from ambient air, where the species

are presently unknown. Furthermore, it remains to be seen weather UV exposed resist

residues can be used to p-dope the top layer of the 2LG sandwich, while the IFL

n-dopes the bottom layer. If such system could be established, a passive electric field

could be maintained between the two layers, potentially opening up a band gap. The
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correlation of bulk transport properties with nanoscale mapping techniques sets out a

solid foundation for probing such effects not only in EG, but other materials as well.

The second direction of future work can be directed towards the screening behaviour

of 2LG. While the measurements show a significant gating effect on the performance of

EG devices, the exact mechanism of the gating efficiency for uniform and non-uniform

2LG is yet to be determined. Additional techniques, such as scanning capacitance

microscopy and scanning spreading resistance microscopy, can also be used to further

clarify the coupling in 2LG and it effects on screening.

The third direction of future work could involve exploiting laterally gated devices

to control the edge states in graphene, which can play a significant role in nanoribbons,

governing their performance. While measurements have shown a significant change in

material properties at the edges of devices, lateral gates could be used to alter the

characteristics of these devices and improve their performance. The edge states also

play a significant role in the quantum Hall regime, where the lateral gates could be used

to control the electronic properties at the edges, potentially providing an extra degree

of freedom for understanding and optimisation of the QHE.

Due to the massless Dirac characteristics of the carriers in graphene, new and ex-

citing phenomena such as quasi-bound states, particle collimation, relativistic Klein

tunnelling and planar electron Veselago lensing are predicted to occur in graphene

junction devices due to the unique energy band structure. While top gates can be

used to electrically gate devices, fabrication typically involves deposition of a dielectric

material, which can degrade material properties of graphene, such as carrier mobility.

Here, the photochemically gated passive planar p-n junction could prove to be useful

as the carrier mobility is barely affected.

While all these are just a few directions for future work originating from various ex-

periments presented in this thesis, the reality is, graphene remains a hot topic for other

applications such as detection of small moments, chemical sensing, resistance standard,

transparent and flexible electronics, composite materials, batteries, super-capacitors,

hydrogen storage and many more...
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Appendix A - Fabrication

The EG sample (#1) was grown by the Linköping group using high temperature

(2000 oC) sublimation of Si from 4H -SiC(0001) substrate at argon gas pressure of 1 bar,

producing nominally 1LG [37, 198]. The devices were fabricated using the cleanroom

facilities at Chalmers University, Sweden, using a three stage process involving various

steps of electron beam lithography (EBL) in conjunction with electron beam evapora-

tion and oxygen plasma etching.

The first step involved defining the bonding pads using poly(methyl methacry-

late)/methyl methacrylate [PMMA/MMA] (250nm thick) and ZEP520 (200nm thick)

resists, which were spin coated and baked on the 7 × 7 mm2 EG sample, followed by

EBL to define the bonding pads. The ZEP520 and PMMA/MMA were developed using

o-Xylene (96%) and H2O/IPA (7 : 93 ratio), respectively, followed by oxygen plasma

to etch the graphene. Cr/Au (5/100 nm) was deposited over the entire sample using

electron beam evaporation. The unwanted metal was removed by lift-off performed in

acetone, thus forming the bonding pads with excellent adhesion to the substrate (Fig.

A.1a). The second step involved defining the leads (Fig. A.1a), which were formed

in similar fashion to the first step, however with the crucial absence of oxygen plasma

etching to ensure the metal is in a direct electrical contact to the graphene. The third

and final step involved defining the Hall bars using the same resist recipe as the previ-

ous two steps. EBL was used to write the Hall bar pattern in the resist, exposing the

unwanted regions of the device. The resists were developed using the same recipe as

the previous two steps, exposing the unwanted regions of the graphene, while leaving

behind the resist in the shape of Hall bars and leads (Fig. A.1b). Oxygen plasma was

used to etch away the unwanted graphene, forming devices with the cross size ranging

from 0.1-19.6 µm (Fig. A.1c).
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Figure A.1: (a) Optical image showing the bonding pads with resist patterned in the shape

of the leads. Image was taken prior to evaporating Cr/Au leads. (b) Optical image of a

19.6 µm wide device showing the bonding pads, leads and the patterned resist protecting the

graphene. Image was taken at the end of the third step fabrication step. (c) Image of the

completed sample mounted on a 12-pin TO-8 header.

Sample Device Size [Gate] Section % of 2LG
(nm) Cross1/Cross2/Channel

G197 (#1) 14 total 100-19600 3.2, 3.3
#1a 1600 3.5, 5.4.1

G198 (#2) #2a 4800 5.1, 5.2, 5.3, 5.5 6.6/7.9/5
G299 (#3) #3a 1000 5.4.1 0/0/0

#3b 1000 5.4.2 0/0/0
G366 (#4) 16 total 660-970 5.6, 6.3

#4a 970 [280] 5.7, 6.1.4 17.1/0/4.4
#4b 910 [480] 6.1 0/50.7/4
#4c 680 [280] 6.1, 6.2.1 0/0/28
#4d 450 [280] 6.1 0/0/0
#4e 900 6.2.1 0/0/0
#4f 930 6.2.1 100/89.6/95

Table A.1: A summary of EG devices used throughout the thesis. Note: 0% of 2LG signifies

uniform 1LG.
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Appendix B - Bead-sensor coupling

The magnetic bead-sensor coupling constant was calculated as cgraphene ∼ 0.045 by

using [199]

c =
R3

3w2

(w/2)ˆ

(−w/2)

(w/2)ˆ

(−w/2)

2z2 − (x− a)2 − (y − b)2

[(x− a)2 + (y − b)2 + z2]5/2
dxdy. (7.1)

where R is the bead radius (0.5 µm), w is the cross width (1.6 µm), a and b are the

coordinates of the bead centre with respect to the Hall cross (−0.265 and 0.706 µm,

respectively). z = R+ t, where t is the distance between the sensor surface and middle

of the 2DEG. In the present case, conduction takes places on the surface of graphene,

therefore t = 0.

Figure B.1: Scanning electron

micrograph of device #1a with

a 1 µm diameter Dynal bead at-

tached to the first cross. C1, C2

and C3 denote Crosses 1, 2 and

3, respectively.
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Appendix C - Atomic force

microscopy cleaning

Contact-mode (CM-) AFM was used to raster scan the area with non-oscillating

probes, while maintaining physical contact with the surface [200]. The map of the

surface topography is obtained by adjusting the z-piezo to maintaining a set cantilever

deflection (200-800nm). In order to avoid physical damage of the sample, the scanning

was conducted with the soft DNP-10 probes (Table 4.1). The act of scanning the sample

in contact mode pushes the resist residues from side-to-side, gently cleaning the surface

over the course of a few scans (Fig. C.1).

Figure C.1: Series of cantilever deflection error images showing the resist residues being

swept from side-to-side. Colour scale range is 10 nm.
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son, and L. Johansson, “Analysis of the Formation Conditions for Large Area

Epitaxial Graphene on SiC Substrates,” Materials Science Forum, vol. 645-648,

pp. 565–568, Apr. 2010.

[38] C. Dimitrakopoulos, Y.-M. Lin, A. Grill, D. B. Farmer, M. Freitag, Y. Sun, S.-J.

Han, Z. Chen, K. A. Jenkins, Y. Zhu, Z. Liu, T. J. McArdle, J. A. Ott, R. Wis-

nieff, and P. Avouris, “Wafer-scale epitaxial graphene growth on the Si-face of

hexagonal SiC (0001) for high frequency transistors,” Journal of Vacuum Sci-

ence & Technology B: Microelectronics and Nanometer Structures, vol. 28, no. 5,

p. 985, 2010.

[39] H. Hibino, S. Tanabe, S. Mizuno, and H. Kageshima, “Growth and electronic

transport properties of epitaxial graphene on SiC,” Journal of Physics D: Applied

Physics, vol. 45, p. 154008, Apr. 2012.

[40] N. Srivastava, G. He, P. C. Mende, R. M. Feenstra, and Y. Sun, “Graphene

formed on SiC under various environments: comparison of Si-face and C-face,”

Journal of Physics D: Applied Physics, vol. 45, p. 154001, Apr. 2012.

[41] L. Johansson, S. Watcharinyanon, A. Zakharov, T. Iakimov, R. Yakimova, and

C. Virojanadara, “Stacking of adjacent graphene layers grown on C-face SiC,”

Physical Review B, vol. 84, pp. 1–8, Sept. 2011.

[42] C. Riedl, C. Coletti, and U. Starke, “Structural and electronic properties of epi-

taxial graphene on SiC(0001): a review of growth, characterization, transfer dop-

ing and hydrogen intercalation,” Journal of Physics D: Applied Physics, vol. 43,

p. 374009, Sept. 2010.

[43] J. Eriksson, R. Pearce, T. Iakimov, C. Virojanadara, D. Gogova, M. Andersson,

M. Syvajarvi, A. Lloyd Spetz, and R. Yakimova, “The influence of substrate mor-

phology on thickness uniformity and unintentional doping of epitaxial graphene

on SiC,” Applied Physics Letters, vol. 100, no. 24, p. 241607, 2012.

123



[44] J. B. Hannon and R. M. Tromp, “Pit formation during graphene synthesis on

SiC(0001): In situ electron microscopy,” Physical Review B, vol. 77, p. 241404,

June 2008.

[45] F. Hiebel, L. Magaud, P. Mallet, and J.-Y. Veuillen, “Structure and stability of

the interface between graphene and 6H-SiC(0 0 0 1) (3 3): an STM and ab initio

study,” Journal of Physics D: Applied Physics, vol. 45, p. 154003, Apr. 2012.

[46] A. Van Bommel, J. Crombeen, and A. Van Tooren, “LEED and Auger electron

observations of the SiC(0001) surface,” Surface Science, vol. 48, pp. 463–472,

Mar. 1975.

[47] F. Owman and P. Martensson, “STM study of the SiC(0001) 3 3 surface,” Surface

Science, vol. 330, pp. L639–L645, June 1995.

[48] S. Tanaka, K. Morita, and H. Hibino, “Anisotropic layer-by-layer growth of

graphene on vicinal SiC(0001) surfaces,” Physical Review B, vol. 81, p. 041406,

Jan. 2010.

[49] P. Lauffer, K. V. Emtsev, R. Graupner, T. Seyller, and L. Ley, “Atomic and

electronic structure of few-layer graphene on SiC(0001) studied with scanning

tunneling microscopy and spectroscopy,” Physical Review B, vol. 77, p. 155426,

Apr. 2008.

[50] C. Virojanadara, R. Yakimova, A. A. Zakharov, and L. I. Johansson, “Large

homogeneous mono-/bi-layer graphene on 6H–SiC(0 0 0 1) and buffer layer elim-

ination,” Journal of Physics D: Applied Physics, vol. 43, p. 374010, Sept. 2010.

[51] N. Srivastava, R. M. Feenstra, and P. J. Fisher, “Formation of epitaxial graphene

on SiC(0001) using vacuum or argon environments,” Journal of Vacuum Sci-

ence & Technology B: Microelectronics and Nanometer Structures, vol. 28, no. 4,

p. C5C1, 2010.

[52] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of

epitaxial multilayer graphene,” Journal of Physics: Condensed Matter, vol. 20,

p. 323202, Aug. 2008.

124



[53] C. Riedl, A. A. Zakharov, and U. Starke, “Precise in situ thickness analysis of

epitaxial graphene layers on SiC(0001) using low-energy electron diffraction and

angle resolved ultraviolet photoelectron spectroscopy,” Applied Physics Letters,

vol. 93, no. 3, p. 033106, 2008.

[54] G. Gu, S. Nie, R. M. Feenstra, R. P. Devaty, W. J. Choyke, W. K. Chan, and

M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,”

Applied Physics Letters, vol. 90, no. 25, p. 253507, 2007.
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Patent PCT/SE2011/050328,” 2012.

[199] G. Mihajlovic, K. Aledealat, P. Xiong, S. von Molnar, M. Field, and G. J. Sullivan,

“Magnetic characterization of a single superparamagnetic bead by phase-sensitive

micro-Hall magnetometry,” Applied Physics Letters, vol. 91, no. 17, p. 172518,

2007.

[200] A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and

L. M. K. Vandersypen, “Mechanical cleaning of graphene,” Applied Physics Let-

ters, vol. 100, no. 7, p. 073110, 2012.

141



A role model is someone you look up to and hope to someday be just like. As the

first person in my family to achieve this high accolade, Vishy, you are my role model.

You have made me so proud to be known as your little sister and melon. I hope I

can walk in your footsteps and achieve something this great. Congratulations on your

Ph.D. I love you.

- Janki Mistry

142


