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Abstract

A compound two-mode torsional oscillator is used to investigate the ‘supersolid’

signature in polycrystaline 4He. We observe a change in the resonant period of both

torsion modes below 200 mK, accompanied by dissipation peaks, consistent with the

original observation of Kim and Chan [52]. By careful analysis of the sensitivity of

the two modes of the torsional oscillator we are able to account for contributions

from changes in the shear modulus of the 4He sample proposed by Beamish et al [14]

and Maris [61], and the viscoelastic behaviour discussed by Yoo and Dorsey [94].

We find that a zero-frequency period shift remains unaccounted for, corresponding

to a velocity-dependant decoupling of 0.14% of the sample with a critical velocity

of∼ 100 µm s−1. We examine the results of Aoki et al and apply the same corrections

to their work, finding a decoupling of 0.017% Extensive repair work performed on

the cryostat during the experiment is also described.
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Chapter 1

Motivation

“As a rule,” said Holmes, “the more bizarre a thing

is the less mysterious it proves to be ... It is quite a

three pipe problem, and I beg that you won’t speak

to me for fifty minutes.”

Arthur Conan Doyle

The Red-headed League

1.1 Helium and Superfluidity

The second most abundant element in the universe is surely the most remarkable.

Discovered by spectroscopy on, and named for, the sun in 1868 by French astronomer

Jules Janssen [55], helium is the lightest of the noble gasses and makes up around

24% of observable matter in the universe [28]. There are two stable isotopes of

10



CHAPTER 1. MOTIVATION 11

Figure 1.1: P − T phase diagrams of 4He (a) and 3He (b).

helium, by far the most abundant being 4He. 4He on earth is formed by the alpha

decay of heavier elements – an alpha particle is a fully ionised 4He nucleus. The other

stable isotope is 3He. This occurs at around 1 part per million in 4He collected on

earth, but this ratio varies due to the different nuclear processes responsible for their

production. Both 4He and 3He are produced in the proton-proton chain reaction in

stars, leading to a higher abundance of 3He elsewhere in the solar system [95, 93].

5He, 6He and 7He and 8He have also been produced, but all have half-lives of less

than one second.

Helium was first liquefied by Kamerlingh Onnes in Leiden in 1908 by means

of a cascade of cryogens, achieving the few degrees above absolute zero required

to condense his valuable sample of helium. For this achievement he received the
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1913 Nobel Prize in Physics [67]. The availability of liquid helium in the laboratory

allowed experiments at temperatures as low as 1 K producing a number of excit-

ing results, most notably the observation of persistent electrical current in certain

metals, but helium held surprises of its own.

Helium was cooled to 1 K by evaporation, but no solid phase was observed at

this remarkably low temperature. It was not until 1926 when Keesom subjected a

sample to a pressure of 26 atm at low temperature that a solid was formed [48].

Helium’s twin properties of low mass and weak van der Waals interaction give rise

to a unique property - the lack of a triple point. It is now known that helium is the

only material that can remain liquid down to absolute zero [92].

The spherical symmetry of the fully occupied 1s electron orbital means that

the helium atom has very low polarisability, and thus its weak interactions and

exceptionally low boiling point – 4.2 K for 4He and 3.2 K for 3He at 1 atm. We can

see the reason behind the reluctance of helium to solidify by considering its zero

point motion. To solidify a material its atoms must be confined to lattice sites.

By modelling each atom as an independent quantum harmonic oscillator we may

estimate the zero point energy of a helium atom at around E0 ≈ 7 meV which would

correspond to thermal motion at 70 K. This means that helium atoms are so light

that even cooled to absolute zero their quantum mechanical motion overcomes the

weak van der Waals attraction between them, and they must be tightly confined by
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significant pressures before they will form an ordered solid.
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Figure 1.2: The lambda anomaly in the specific heat of liquid 4He. Taken from [20].

In 1924 Boks and Onnes discovered a maximum in the density of liquid helium

at 2.3 K [40], and in the same year Dana and Onnes observed a sharp spike in the

specific heat of helium around 2.2 K, shown in Fig. 1.2 [20]. The shape of this

anomaly – a greek lambda – gives its name to the phase transition to which these

phenomena hinted.

Considering the thermal de Broglie wavelength of an atom of helium gives us

some insight into its odd behaviour. The de Broglie wavelength, λdB = h/p, encap-

sulates a central postulate of quantum mechanics – that of wave-particle duality.

By calculating the de Broglie wavelength of a particle we can determine whether

quantum mechanics will be relevant to its behaviour (if λdB is comparable to length

scales in the experiment) or if it can be described classically (if λdB is much smaller

than any experimental feature). From the Maxwell-Boltzmann distribution we can
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approximate the momentum of a particle as

p = (2mkBT )1/2, (1.1)

from which we can obtain the thermal de Broglie wavelength

λdB =

(
2π~2

mkBT

)1/2

. (1.2)

For an atom of 4He in the liquid phase (T < 4.2 K) λdB ≈ 0.4 nm, and is larger still

in 3He. This is greater than the typical interatomic spacing of 4He, d ≈ 0.27 nm,

meaning that liquid helium must be considered a quantum fluid [7].

Figure 1.3: A superfluid helium film flowing up the edges of a container, down the
outside and dripping into the bath below. A still from an educational video by
Alfred Leitner [57]
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Below the lambda transition the behaviour of liquid 4He is truly astonishing.

Kapitza [47], and Allen and Misener [2], working independently and essentially si-

multaneously [10] in 1937 discovered that the flow velocity of liquid helium below the

lambda transition, dubbed helium II, is almost independent of the pressure driving

it. Kapitza concluded that the viscosity of the liquid helium II must be at least 106

times smaller than that of the normal liquid, helium I. This lack of viscosity allows

helium II to flow through channels too narrow to permit the flow of a normal fluid,

causing Kapitza to dub helium II a ‘superfluid’. Driving the flow above a certain

critical velocity caused the viscosity to return. The meniscus of helium II in a con-

tainer extends into a film that will run up the walls of the container to find its level.

In this way a beaker of helium II will gradually empty itself, shown dramatically in

Fig 1.3. Helium II is an astonishingly good conductor of heat, which may be ob-

served by pumping on a vessel of liquid helium to cool it. At high temperatures the

liquid will boil vigorously, but on cooling through Tλ the liquid becomes calm as a

mill pond [62]. Liquid is still evaporating, but the temperature differences required

to nucleate bubbles of gas are equalised by the extraordinary thermal conductivity.

A mass flow can be driven by a temperature difference in the liquid helium II, known

as the thermomechanical or fountain effect [1]. The liquid level of a volume of he-

lium II separated from a reservoir by a narrow channel will rise when it is heated

as liquid flows into the heated region. In the right arrangement this can produce a
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dramatic fountain of liquid, driven only by a difference in temperature.

Later in 1937 London proposed that the lambda transition in liquid helium may

be analogous to Bose-Einstein Condensation (BEC) [58]. Bose and Einstein had

collaborated on the statistics of integer-spin particles, now known as bosons. Un-

like half-integer-spin fermions, multiple bosons may occupy a single energy state.

Einstein demonstrated that a dilute gas of bosons will condense into the lowest

available energy state when cooled to very low temperatures and form a new phase

of matter, governed by quantum physics. As helium is a boson (its even number

of fundamental particles give it no overall intrinsic angular momentum) any num-

ber of helium atoms may occupy a single quantum state. London argued that the

lambda-shaped discontinuity in the specific heat of helium was similar to that of an

ideal Bose-Einstein gas on condensing into its ground state, and that the unusual

behaviour observed in helium II should be considered in the context of Bose and

Einstein’s condensate phase.

Having seen London’s paper, Tisza suggested that the bizarre transport proper-

ties observed in helium II could be explained through a ‘two-fluid model’, where a

superfluid condensate state coexisted with a normal liquid [86, 87]. The superfluid

flows with no viscosity in response to changes in chemical potential, and the normal

fluid flows viscously in response to changes in pressure. As the temperature drops

more helium condenses and the superfluid density rises. The condensate state is



CHAPTER 1. MOTIVATION 17

not quite a BEC as the interactions between helium atoms are small but significant

whereas Einstein’s ideal Bose gas is non-interacting, but it shares the key property

of a macroscopic wave function. Landau advanced these theories by considering

the motion of the superfluid component as a number of quasiparticle excitations.

He proposed an excitation spectrum for helium with a linear slope at low energies

corresponding to phonon excitations and a minimum corresponding to a particu-

lar excitation named the ‘roton’ at higher energies. The strong coupling between

an atom in the condensate and its neighbours involves them in its motion. The

low-energy excitations drag many particles together, causing phonon-like collective

motion. At high energies the moving atom forces its neighbours to move in backflow

around it – a motion likened by Feynman to a smoke ring. From the behaviours

of these quasiparticles Landau was able to describe key properties of the super-

fluid such as the T 3 behaviour of the specific heat, the absence of viscosity and the

critical flow velocity. Landau’s proposed excitation spectrum was later confirmed

by neutron scattering experiments [42], as shown in Fig. 1.4. For these and other

achievements he was awarded the 1962 Nobel Prize in Physics [67].

The strength of the two-fluid model was demonstrated experimentally in 1946

by Andronikashvili [6] by measuring the mass of helium viscously dragged between

moving plates by its effect on the natural frequency of a torsional oscillator immersed

in liquid (see section 2.1). Landau’s work on superfluids was later refined by Feyn-
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Figure 1.4: The excitation spectrum of liquid 4He, measured by neutron scattering,
confirming the roton minimum proposed by Landau. [42].

man to bring his results into better quantitative agreement with experiment [31]

and develop the concept of the roton as a vortex ring [32]

The other stable isotope, 3He, has two superfluid phases at temperatures some

two orders of magnitude lower than in 4He, as seen in Fig. 1.1. These phases were

discovered by Lee, Osheroff and Richardson [69, 70], for which they received the

1996 Nobel Prize in Physics. As a fermion, superfluidity in 3He originates from a

pairing mechanism not unlike that in certain superconductors. The low temperatures
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required to observe these phases are beyond the reach of the apparatus used in this

experiment, and so shall not be discussed further.

1.2 The ‘Supersolid’ Phase

A ‘supersolid’ quantum crystal analogous to the superfluid has been conjectured

since the late ‘60s [5, 56, 22]. Such a phase must be rigid and long-range ordered

while supporting a flow of mass without dissipation, breaking both translational and

gauge symmetries. The popular conception of such a state is that of a gas of lattice

vacancies that undergo BEC at low temperature. The high zero-point energy of

helium makes its atoms (and therefore any vacancies between them) highly mobile.

If such mobile vacancies can exist at low temperatures [33, 71, 4] helium is a likely

candidate for such a phase. Legget proposed a study of the DC rotation of an

annulus of solid sample while cooling through the proposed transition temperature,

and slowing the rotation below a presumed critical velocity. In both cases the

superfluid-like flow would reduce the moment of inertia of the sample and speed its

rotation as a persistent mass current is established [56].

Such DC rotation is extremely challenging at millikelvin temperatures and high

pressures – how does one fill the sample cell, for example – so other methods have

been employed in the search for supersolid behaviour. Greywall [36] attempted to

measure a mass flow between two reservoirs driven by a difference in pressure but
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saw no ‘superflow’. Bishop et al [16] looked for a change in the natural frequency of a

torsional oscillator but saw no effect. These and other early searches are extensively

reviewed by Meisel [63].

In 1997 Goodkind et al [43] observed an anomaly in the acoustic attenuation

and velocity in solid 4He at 200 mK and suggested this was consistent with a phase

transition, specifically a BEC of vacancies in the solid.

Figure 1.5: Kim and Chan’s observation of an anomalous period shift in solid 4He
in vycor glass [53].

In 2004 Kim and Chan [53] loaded a torsional oscillator with solid 4He in a porous

matrix of vycor glass and tracked its natural frequency. On cooling the oscillator
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below 200 mK they observed an abrupt drop in its resonant period, shown in Fig.1.5,

which they interpreted as a drop in the moment of inertia of the sample. The change

in period was suppressed by high drive speeds and increasing concentration of 3He.

No change in period was observed in a pure 3He sample. Kim and Chan went

on to repeat the experiment using a bulk 4He sample loaded into an annular cell

and saw a similar drop in resonant period [52]. In this experiment a control was

made by blocking the annulus to prevent rotational flow. This strongly suppressed

the period shift, consistent with a fluid-like flow of mass around the annulus. The

torsional oscillator results have been reproduced by several other groups [8, 39, 82,

45, 96, 72] with broadly similar results.

If solid 4He does have a genuinely superfluid component it should be observable

in DC mass flow experiments. Several attempts have been made to force mass flow

between two reservoirs joined by a constriction by applying pressure to one resevoir

and measuring the pressure at the other [36, 18, 27, 83] but none have observed a

measurable mass flux. It is possible that these experiments failed as they exert force

on the rigid lattice of solid helium, rather than driving the superfluid component

within it. Ray and Hallock [76, 75] took a more subtle approach and grew their

solid sample in a cell connected to two remote chambers by porous vycor rods. The

confinement of the vycor raises the melting point of the helium, so that solid in the

bulk and superfluid in the rods may coexist in thermal equilibrium. The chambers
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at other ends of the rods can then be filled with bulk superfluid helium at a higher

temperature. By analogue to the fountain effect one would expect temperature

differences between the two liquid resevoirs two drive a mass flux through the ‘su-

persolid’ chamber. A mass flux is observed, but at temperatures far higher than the

torsional oscillator anomaly–up to 600 mK. Balibar and Caupin [12] suggest that

this mass flux may originate from liquid channels between grain boundaries and

the chamber walls rather than a superfluid-like flow. Ray and Hallock [77] argue

that the observed hysteresis of the flow cannot be explained by liquid channels, and

represents superfluid-like mass flux along grain boundaries or dislocations.

Tsepelin et al followed the melting curve of 4He with a high precision pressure

cell [88]. The crystal followed the expected T 4 behaviour with no sign of a supersolid

transition.

In 2007 Day and Beamish loaded helium into a cell containing two piezo trans-

ducers supported on rigid posts and separated by a narrow gap [25]. One transducer

is driven sinusoidally to oscillate back and forth. This motion shears the helium be-

tween the two transducers which in turn exerts a force on the other transducer,

generating a voltage across it. Thus the shear modulus of the helium sample may

be measured directly at a wide range of frequencies. Day and Beamish showed

that the shear modulus rises on cooling the sample below 200 mK. This rise has a

remarkably similar shape to the torsional oscillator period shift, is independent of
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Figure 1.6: Similarity between the torsional oscillator and shear modulus measure-
ments in 4He [25].

frequency and is similarly suppressed by high strain and 3He impurity concentration,

as shown in Fig. 1.6.

It is now well understood that the change in shear modulus observed by Day

and Beamish can affect the behaviour of torsional oscillators loaded with solid he-

lium [79], but could it effect them? A number of subtle changes to the torsional

oscillator period have been proposed as arising from changes in the shear modulus

of the sample:

� The viscoelastic motion of the solid sample will change as the shear modulus

varies [94, 61], causing a change in the apparent moment of inertia.

� The base of the torsional oscillator cell is in torsion along with the rod, and its

torsion constant will be changed by the helium sample in contact with it [61].
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� If the torsional oscillator sample chamber is shaped as an annulus with a solid

cylinder forming the inner wall it may move independently of the oscillator,

shearing the helium and changing the natural frequency [64].

� Torsional oscillators that are filled through their torsion rod will experience

a stiffening of the rod as the shear modulus increases. This will cause the

natural frequency of the oscillator to increase, just as would be seen from a

reduction in the moment of inertia of the sample [14].

Any torsional oscillator study of helium at these temperatures must take these con-

tributions in to account.

No study has yet conclusively proven the existence of a ‘supersolid’ phase, and

some early proponents of the discovery are now distancing themselves from it [78, 11].

Chan et al have repeated some of the early torsional oscillator experiments made in

their group using cells designed to be resistant to the shear modulus contributions

discussed above, and has seen no period shift [50]. Balibar et al argue that the

effect is down to ‘giant plasticity’ of 4He crystals [41] which freezes out at low

temperatures, and the torsional oscillator period shift is merely the crystals’ shear

modulus returning to ‘normal’.

There are still unexplained results. Several explanations exist of the DC flow

measurements of Ray and Hallock. The torsional oscillators of some groups designed

to negate shear modulus contributions still show period shifts [65]. Sullivan et al
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have measured the NMR signal of extremely dilute 3He in solid 4He samples and

see features and hysteresis around 200 mK [54]. Kim et al have used a variety of

sophisticated torsional oscillators and piezo transducers to measure the response of

solid 4He in rotating cryostats and see a range of unexpected features [23].

Recently a ‘supersolid’ phase has been theorised [49] and experimentally re-

alised [13] in optical lattice traps. This involves the self-organisation of a BEC of

cold atoms into a ‘checkerboard’ lattice, with atoms occupying alternate states at

neighbouring sites. This phase spontaneously breaks spatial and gauge symmetries,

meeting our criteria for a ‘supersolid’.

It remains unclear whether a ‘supersolid’ phase can be realised in solid helium.



Chapter 2

The Torsional Oscillator

Nothing happens until something moves.

Albert Einstein

2.1 Background

The Torsional Oscillator (TO) is a commonly used instrument for measuring dy-

namic mechanical properties of a liquid or solid sample. The first TO was de-

signed by Andronikashvili in 1946 after a suggestion by Landau as a way to measure

the superfluid density of liquid helium [6]. His oscillator comprised a bob made

up of stacked aluminium discs 10 µm thick, spaced 200 µm apart, suspended on a

phosphor-bronze wire. In his experiment the bob was immersed in a sample of liquid

helium and a torque applied to the wire to start it oscillating in torsion.

26
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Figure 2.1: A schematic of Andronikashvili’s torsion bob oscillator experiment (a)
and the mass-spring model (b).

The bob will behave as a simple harmonic oscillator, modelled as a mass M on

a spring of force constant k with position x. We balance the restoring force of the

spring, given by Hooke’s law F = −kx, and the acceleration of the mass, given by

Newton’s second law F = mẍ, to arrive at the equation of motion

Mẍ+ kx = 0. (2.1)
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As one would intuitively expect, this has the solution of sinusoidal motion

x(t) = A sinωt (2.2)

where A is the amplitude of oscillations and ω their frequency. Substituting this

into the equation of motion provides us with the natural frequency of the oscillator

ω0 =

√
k

M
. (2.3)

It will be important later to note that the natural frequency depends on both the

mass and the spring constant.

As the separation of the aluminium discs is less than the known viscous pene-

tration depth of normal liquid helium the liquid between the discs is dragged along

with the bob, increasing its moment of inertia. By effectively increasing the mass of

the bob M , the natural frequency ω0 of its oscillations is necessarily reduced.

The liquid helium sample is then cooled below Tλ. As the liquid becomes super-

fluid its viscosity drops to zero and so is no longer dragged with the bob. As such,

the bob effectively loses moment of inertia, and so its natural frequency increases.

By measuring the oscillation frequency of the torsion bob at various temperatures

Andronikashvili was able to quantify the superfluid density below the λ transition

and so provide strong evidence for Landau’s two-fluid model of superfluid helium.
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Figure 2.2: A schematic diagram of a modern torsional oscillator.

Modern torsional oscillator experiments encapsulate the sample in a closed cell

rather than being immersed into them [15] allowing pressurised samples and solids

to be studied. Such an oscillator might consist of a sample chamber, commonly

metal or epoxy but other materials such as sapphire have been used [30], mounted

to a springy torsion rod. The torsion rod is then anchored to an isolator block which

is connected by a soft rod to the cryostat. The isolator block is designed to have

a lower natural frequency than the experimental cell and act as a low-pass filter to

vibrations. Attached to the sample chamber are two vanes which are used to drive

the oscillator and detect its motion. A capillary fill line through which to load the

sample may enter the cell directly, or the torsion rod may be drilled out to act as a

fill line.

Two capacitor posts with electrically isolated surfaces are mounted on to the
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isolator block. These surfaces are held close enough to capacitatively couple to the

oscillator vanes. An AC signal is superimposed on to a DC bias voltage and applied

to one post to continuously drive the oscillator while the other is used to measure

the oscillator’s movement. In some designs [45] the vanes contain magnets and the

movement of the oscillator induces a current in a pickup coil in the posts, allowing

for very precise measurement via a SQUID.

TOTO

1

2

V0

Vd

A

Current Preamp

Ccable

Figure 2.3: Top-down schematic of the electrical contacts of torsional oscillator,
showing the capacitatively coupled electrodes.

The oscillator used in this experiment is of capacitatively coupled design with

detection via a current preamplifier, as shown schematically in Fig. 2.3. The vanes

of the oscillator are rigidly mounted to the cell and electrically isolated from it. In

use they are raised to a high voltage V0 (typically a few hundred volts) to provide

the E-field across the gaps between the posts and the vanes. Alternatively, the vanes

may be grounded and the plates raised to high voltage with appropriate isolation



CHAPTER 2. THE TORSIONAL OSCILLATOR 31

from the readout instruments, as shown in Fig. 2.10 in section 2.4. The electrodes

on the posts are of equal area A and separated from the vanes by distance d1,2. The

capacitance of the gaps 1 and 2 is then

C1,2 =
ε0A

d1,2

. (2.4)

The driving electrode 1 stores the field energy

U1 =
C1V

2
1

2
(2.5)

which we differentiate to find the force acting on vane 1 of the oscillator:

F = − ∂U
∂d1

(2.6)

=
ε0A

2d2
V 2

1 =
C1

2d1

V 2
1 =

C2
1

2ε0A
V 2

1 . (2.7)

It is often desirable to write these expressions in terms of the area and the capaci-

tance rather than the separation d, as the gap is difficult to measure. The voltage

on the drive electrode V1 is the sum of the AC drive and the DC bias

V1 = V0 + Vd (2.8)
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so we may rewrite the force as

F =
C1

2d1

(V0 + Vd)
2 (2.9)

=
C − 1

2d1

(V 2
0 + 2V0Vd + V 2

d ). (2.10)

As Vd � V0 we may neglect the V 2
d term, leaving

F =
C1

2d1

V 2
0 +

C1

d1

V0Vd (2.11)

= F0 + ∆F (2.12)

where F0 is a static force

F0 =
C1

2d1

V 2
0 (2.13)

and ∆F is a much smaller oscillating force

∆F =
C1

d1

V0Vd. (2.14)

By assuming linearity we may apply Hooke’s law and introduce a torsion constant
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k as in our simple harmonic oscillator model above to give a static displacement d0

d0 = k
C1

2d1

V 2
0 (2.15)

= k
C2

1

2ε0A1

V 2
0 (2.16)

and an oscillating displacement ∆d

∆d = k
C1

d1

V0Vd (2.17)

= k
C2

1

ε0A1

V0Vd. (2.18)

We may now obtain the velocity of the vane from the time derivative of this dis-

placement. Since the variation is eiωt the velocity is |ḋ| = |ω∆d|, giving

|ḋ| = kω
C1

d1

V0Vd (2.19)

= kω
C2

1

ε0A1

V0Vd. (2.20)

We have assumed a constant C1, so we require that the displacement of the vane be

much less than the electrode spacing, i.e. ∆d� d1. Because the torsional oscillator

is a resonant system this displacement will be multiplied many times when the

oscillator is driven at its resonant frequency. We shall derive the resonant response

of the oscillator in section 2.2, and this frequency-dependant behaviour will multiply
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the displacement calculated above.

The situation is slightly different on the detection side due to the behaviour of

the current preamplifier. Here we consider the cable capacitance Ccable so that

C = C2 + Ccable (2.21)

and we know that V2 is constant and V2 = V0 as the electrode post is grounded

through the preamp. Here the capacitance between the electrode and the vane is

C2 =
ε0A

d2

(2.22)

=
ε0A

d+ ∆deiωt
. (2.23)

As we are measuring the current, we differentiate the charge Q2 = CV2

I =
dQ2

dt
(2.24)

= V0
dC

dt
(2.25)

which, because Ccable is constant, is equal to

I = V0
dC2

dt
(2.26)

= −iωV0C2
∆d

d
eiωt. (2.27)
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Note then that by using a current preamplifier we have eliminated any contributions

arising from the cable capacitance, and introduced a 90° phase shift. The current

preamplifier has gain GA, typically 1 MW, such that Vout = GAI. The signal we

observe is thus

Vout = −iωGAV0C2
∆d

d
eiωt. (2.28)

We rearrange to find the amplitude of the displacement |∆d| from the the signal

amplitude |Vout|

|∆d| = |Vout|d2

ωGAV0C2

(2.29)

from which we eliminate d2 via eqn 2.22

|∆d| = |Vout|Aε0
ωGAV0C2

2

. (2.30)

and as above in Eq. 2.20 we obtain the velocity of vane 2 in terms of readily mea-

sureable quantities:

|ḋ| = |Vout|Aε0
GAV0C2

2

. (2.31)

Using either analogue or digital electronics at room temperature the torsional

oscillator can be held on resonance as the temperature is varied. In this way the

resonant frequency, and so any changes in the moment of inertia of the sample, can

be tracked as a function of temperature. The amplitude of the drive may also be
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varied to study critical velocity phenomena.

2.2 The Damped, Forced Oscillator

The movement of the oscillator and the sample under study will not be perfectly

elastic, meaning that its motion will be damped; in the linear regime we approximate

this as an additional force proportional to its speed. We introduce the damping

constant γ to give the damped harmonic oscillator equation of motion

Mẍ+ γẋ+ kx = 0 (2.32)

and may follow Boas [17], or any undergraduate mechanics textbook, for our solu-

tion. For convenience we substitute 2b = γ
M

and our earlier result for the undamped

resonant frequency ω2
0 = k

M
from Eq. 2.3. We may then solve the auxilliary equation

D2 + 2bD + ω2
0 = 0 (2.33)

which has roots

D =
−2b±

√
4b2 − 4ω2

0

2
= −b±

√
b2 − ω2

0. (2.34)
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As the torsional oscillator is designed to be as lightly damped as posssible, we solve

this in the underdamped case where b2 < ω2
0, meaning that

√
b2 − ω2

0 is imaginary.

We let

β =
√
ω2

0 − b2 (2.35)

so that √
b2 − ω2

0 = iβ. (2.36)

The roots of the auxiliary equation are then

−b± iβ. (2.37)

The general solution for complex roots may then be expressed as

x = e−bt(A sin βt+B cos βt) (2.38)

which, as we might expect, describes an exponentially decaying sinusoid. Note

though that the frequency of the oscillation

β =

√
ω2

0 −
γ2

4M2
(2.39)

is reduced from the undamped resonant frequency ω0 and approaches it in the limit

of low damping, i.e. when γ → 0, β → ω0.
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In most modern torsional oscillator experiments a continuous sinusoidal drive is

applied to the oscillator. Adding a driving torque Γ = Γ0 sinωdt of amplitude Γ0

and frequency ωd we arrive at the equation of motion

Mẍ+ γẋ+ kx = Γ0 sinωdt. (2.40)

The solution to this is of the form transient solution + steady-state solution, but

because we know the transient solution, given by the complementary function, will

tend to zero after some finite time (as shown above) we may concern ourselves only

with the steady state solution, given by the particular integral. Using the method

of complex exponentials to solve the particular integral we first solve the equation

ÿ + 2bẏ + ω2
0y = Γ0e

iωdt (2.41)

by substituting

yp = Ceiωdt. (2.42)

We thus find

−ω2
dy + 2ibωdy + ω2

0y = Γ0e
iωdt (2.43)

(−ω2
d + 2ibωd + ω2

0)Ceiωdt = Γ0e
iωdt (2.44)
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which we solve for C:

C =
Γ0

−ω2
d + 2ibωd + ω2

0

(2.45)

=
Γ0

(ω2
0 − ω2

d) + 2ibωd
(2.46)

=
(ω2

0 − ω2
d)− 2ibωd)Γ0

(ω2 − ω2
d)

2 + 4b2ω2
d

(2.47)

or in the form Reiθ

|C| = Γ0√
(ω2

0 − ω2
d)

2 + 4b2ω2
d

(2.48)

∴ C =
Γ0

(ω2
0 − ω2

d)
2 + 4b2ω2

d

e−iϕ. (2.49)

So our substitution 2.42 becomes

yp =
Γ0√

(ω2
0 − ω2

d)
2 + 4b2ω2

d

ei(ωdt−ϕ) (2.50)

Giving us our steady state solution

x(ωd) = =(yp) =
Γ0√

(ω2
0 − ω2

d)
2 + γ2ω2

d/M
2

sin(ωdt− ϕ). (2.51)

Once again this gives our expected result of sinusoidal oscillations, phase shifted

from the drive by ϕ, whose amplitude is suppressed by damping γ and increases on
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resonance, i.e. as ωd → ω0, as shown in Fig. 2.4.
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Figure 2.4: The steady-state response of a forced harmonic oscillator with different
amounts of damping. As the damping is decreased the resonance better approxi-
mates a Lorentzian peak and the peak position approaches ω0.

Although the lineshape of the resonance in frequency space is not strictly sym-

metric about ω0 it may be well approximated as such in the limit where γ � ω0.

The resonance lineshape follows a Lorentzian curve with amplitude

R(ω) = R0
δ2

(ω − ω0)2 + δ2
(2.52)

where R0 is the maximum amplitude of the peak, and δ is its width.

In torsional oscillator experiments it is more common to express the damping
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of the oscillator as a dimensionless quality-factor, or Q-value. This may be defined

in a number of ways, but may be most simply thought of as the energy stored in a

resonant system divided by the energy dissipated per cycle, that is

Q = 2π × Energy Stored

Loss per Cycle
= ω0 ×

Energy Stored

Power Loss
(2.53)

which in the case of low loss is equal to the resonant frequency divided by the

linewidth

Q =
ω0

∆ω
(2.54)

and is related to the damped oscillator response discussed above by

Q =

√
Mk

γ
(2.55)

Equation 2.53 encapsulates the intuitive value of this parameter, as it gives the

time it will take a resonator to lose practically all its energy (1/e2π, or ∼ 1/535 of

its initial energy), expressed as a number of cycles of that resonator. Because Q is

directly related to the linewidth it is a good measure of the resolution performance

of a torsional oscillator - that is the smallest ∆ω0 and therefore the smallest ∆M

it can perceive. A typical torsional oscillator might have a Q of a few thousand at

room temperature, rising to tens of thousands on cooling it to nitrogen temperature

as the material stiffens and its torsion constant rises. On further cooling various
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dissipation mechanisms begin to freeze out and the Q may rise to several hundred

thousand at helium temperature, and by the limit of dilution cooling may exceed a

million. This means that for a typical torsional oscillator experiment mounted on a

dilution unit with Q = 500 000 and ω0 = 2 kHz the linewidth of the resonance would

be 4µHz.

2.3 The Two Mode Torsional Oscillator

xM

k

(a)

k

M

x1

x2
2

M1

2

k1

(b)

Figure 2.5: A single (a) and double (b) torsional oscillator.

The two-mode compound torsional oscillator uses a second ‘dummy’ mass joined

by a second torsion rod to allow the study of one sample at two frequencies. As

before we formulate an equation of motion from the forces acting on the two masses
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that arise from Hooke’s law, namely the torques Γ1 and Γ2:

Γ1 = −k1x1 − k2(x1 − x2)

Γ2 = −k2(x2 − x1)

(2.56)

which produce the angular accelerations

M1ẍ1 = Γ1

M2ẍ2 = Γ2

(2.57)

and thus the equations of motion for the two masses are

k1x1 + k2(x1 − x2) = −M1ẍ1

k2(x2 − x1) = −M2ẍ2.

(2.58)

We are interested in the normal modes – solutions where both masses are oscillating

with the same frequency, that is

x1(t) = X1e
iωt

x2(t) = X2e
iωt.

(2.59)
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Substituting these into the equations of motion we arrive at the following equations

(k1 + k2)x1 − k2x2 = M1ω
2x1

−k2x1 + k2x2 = M2ω
2x2

(2.60)

which may be conveniently represented in eigenvector/eigenvalue form Ax = λx:

(k1 + k2)/M1 −k2/M1

−k2/M2 k2/M2


x1

x2

 = ω2

x1

x2

 . (2.61)

The homogeneous, characteristic equations are thus

(k1 + k2 −M1ω
2)x1 − k2x2 = 0

−k2x1 + (k2 −M2ω
2)x2 = 0.

(2.62)

We find the eigenfrequencies of this system by the requirement that the determinant

of the matrix of characteristic equations be zero, i.e. the eigenvalues of matrix A

are the real numbers λ that satisfy the equation det(A − λI) = 0 where I is the

identity matrix. ∣∣∣∣∣∣∣∣
(k1 + k2)−M1ω

2 −k2

−k2 k2 −M2ω
2

∣∣∣∣∣∣∣∣ = 0 (2.63)
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Which gives us a quadratic equation for ω2:

M1M2ω
4 − (k2M1 + k1M2 + k2M2)ω2 + k1k2 = 0. (2.64)

This provides us with two positive solutions for the natural frequencies of the

oscillator. We shall see later that the lower frequency corresponds to a symmetric

oscillation (x1 and x2 have the same sign) and the higher frequency to an antisym-

metric oscillation (x1 and x2 have opposite signs), so they are designated ωs and ωa

respectively:

ω2
a =

1

2

(
k1

M1

+
k2

M1

+
k2

M2

)
+

√
1

4

(
k1

M1

+
k2

M1

+
k2

M2

)2

− k1

M1

k2

M2

ω2
s =

1

2

(
k1

M1

+
k2

M1

+
k2

M2

)
−

√
1

4

(
k1

M1

+
k2

M1

+
k2

M2

)2

− k1

M1

k2

M2

(2.65)

From the characteristic equations (2.62) we can derive two equivalent equations

for the ratio of displacements

X2

X1

=
k1 + k2 −M1ω

2

k2

X2

X1

=
k2

k2 −M2ω2

(2.66)
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which we can solve at the two eigenfrequencies ωa and ωs to give

X2

X1

∣∣∣∣
a

=
1

2


(

1 +
k1

k2

− M1

M2

)
−

√(
1 +

k1

k2

+
M1

M2

)2

− 4
k1

k2

M1

M2


X2

X1

∣∣∣∣
s

=
1

2


(

1 +
k1

k2

− M1

M2

)
+

√(
1 +

k1

k2

+
M1

M2

)2

− 4
k1

k2

M1

M2

 .

(2.67)

As the moments of inertia M1 and M2 and the torsion constants k1 and k2 are

necessarily positive the square root term must always be greater than the first term.

Thus x2
x1

∣∣∣
a

must always be negative and x2
x1

∣∣∣
s

must always be positive. This means

that in the first case the displacements must have opposite sign at all times and in the

second case they must have the same sign, hence their designations as antisymmetric

and symmetric respectively. We may reduce these displacement ratios in terms of

the characteristic frequency ω2 =
√

k2
M2

to a more convenient form

X2

X1

∣∣∣∣
a

=
1

1− ω2
a/ω

2
2

and
X2

X1

∣∣∣∣
s

=
1

1− ω2
s/ω

2
2

. (2.68)

2.4 Our Torsional Oscillator

Our torsional oscillator is a two mode design made from coin silver (90% Ag, 10%

Cu) with magnesium vanes. The sample is contained in the hollow ‘head’. The

oscillator is designed after that of Morley et al [66]. Coin silver was chosen over

the more conventional beryllium copper as it offers comparable low temperature
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Figure 2.6: The torsional oscillator cell, mounted in a test probe.

performance in Q and thermal conductivity with less temperature dependence of

the oscillation frequency and dissipation of the empty cell. In addition there are

safety concerns when machining beryllium copper as it’s dust can cause serious lung

damage if inhaled [68].

After machining the oscillator is annealed in vacuum at 650 ◦C for 12 hours to

improve its mechanical properties. This is an in-house ‘recipe’ that has been found
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Figure 2.7: Technical drawing of the torsional oscillator cell. The pressure gauge
assembly is shown separately in Fig. 2.9.

to give good performance (Q > 100000) at low temperatures. Magnesium is used

for the vanes to save weight - the change in moment of inertia of the sample ∆M

may be very small, so for good sensitivity the mass of the oscillator must be kept as

small as the strength requirements will allow. As the vanes are far from the torsion

axis and moment of inertia goes as the square of radius it is especially important

that the vanes be both light and rigid.

Fine wires run to the vanes to raise them to high voltage. A number of wiring

arrangements were tested in a dipping probe at 4 K, as shown in Fig. 2.8. Originally

38-gauge bare copper wires were soldered to the pin of the Microdot connector,

routed around the oscillator head and secured to the wings with conductive silver

DAG adhesive, as (a). The Q performance of this oscillator was between 200 000
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Figure 2.8: The wiring arrangements used to raise the torsional oscillator vanes to
high voltage. Directly from the connector, (a), via a thicker wire secured to the
posts, (b), via a PCB pad (green), (c), and to a tab on the vanes, (d).

and 250 000 at base temperature, significantly lower than that achieved by other

groups. Thicker wires were tried in the same arrangement, up to 28-gauge, and the

copper wire substituted for bronze and gold with no reproducible improvements.

It was believed that the length of the wires was allowing them to ‘wobble’ and

contribute to the oscillator’s dissipation. In order to shorten the length of the wires

1 mm diameter enamelled copper wire was soldered to the Microdot pin and secured

to the drive and pickup posts with dental floss. The fine bare copper wire was then
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soldered to this and secured to the vane, as shown in (b). This arrangement yielded

poorer Q performance of ∼ 150 000. It was thought that the thick wire may be

moving and causing loss, so a small piece of copper-clad board was fixed to the post

with epoxy and the two wires soldered onto this pad. This led to no improvement

in Q.

It was decided that moving the wire out to the posts reduced the oscillator’s Q

because it brought the wire further from the oscillator’s torsion axis, necessitating

greater movement and so more loss. New copper-clad boards were secured to the

isolator block with brass screws. The fine bare copper wire was then run directly

from the board to the vane, keeping the length of wire short, as in (c). This led to

a modest improvement on the original Q to ∼ 350 000. When a leak developed on

the torsional oscillator a new one was made with small tabs on the bottom edge of

the vanes near the torsion rod, as shown in (d). The fine wire is then soldered to

the pad, raised up to the vane tab near the torsion rod and wound around it, then

secured with silver DAG. This arrangement allows the wire to be very close to the

torsion axis, though the wire is longer than in (b) or (c). On the following cooldown

the oscillator experienced stability problems, where the resonant frequency would

abruptly change. There was a suspicion that this may be down to movement of

the copper-clad boards on the isolator block, as the board will thermally contract

more than the brass screws securing it and become lose. a small amount of vacuum
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grease was applied beneath the pads to hold them fast at low temperature. On the

following run the stability problems were much reduced. With the final arrangement

the oscillator achieved Q in excess of 900 000, but an adsorbtion pump was fitted

to the cryostat at the same time which may be partly responsible. It is possible

that exchange gas left in the IVC was causing dissipation from the oscillator, but

different exchange gasses used (3He, 4He and neon) showed no significant difference

to torsional oscillator performance, and heating the oscillator plate to avoid the

adsorbtion of exchange gas had no effect. In future runs the wires will be removed

all together, as the oscillator is now operated with the vanes grounded, as in Fig 2.10.

The sample chamber is assembled from two pieces joined by a screw thread and

sealed with Stycast 2850 epoxy. The magnesium vanes are secured into milled slots

with cigarette paper coated in Stycast 1266 epoxy. The sample chamber is filled

from a fill line drilled through the torsion rod 0.6 mm in diameter up to the top

of the body and 0.3 mm in diameter in to the head. The oscillator is secured to a

copper isolator block with a natural frequency of around 60 Hz via four brass M3

studs. These compress an indium seal joining the oscillator fill line to a hole bored

in the isolator block. The CuNi fill line capillary is soldered into the bottom surface

of the isolator block.

The top of the head forms an in situ capacitative pressure gauge. A narrow

70µm kapton washer sits on top of the head and supports a polished silver plate.
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Figure 2.9: The pressure gauge assembly.

The washer is coated with a thin film of vacuum grease to stop any slippage as

the cell oscillates. A fine copper wire is secured to this plate with silver DAG. It

is critical that the wire be kept on the axis of the torsional oscillator, as shown in

Fig. 2.9. The closer the wire is to the torsion axis the less it will move and reduce

the Q of the oscillator. The assembly is held in place with a stepped PTFE ring.

The thermal contraction of PTFE is much greater than that of metals, so the PTFE

ring will tighten on cooling and hold the assembly rigid. The top wall of the sample

chamber deflects outwards as the pressure inside the cell is raised, increasing the

capacitance between the cell wall and the floating plate. This forms the capacitative

arm of a back diode oscillator circuit mounted on the 1 K pot plate. The frequency

of this oscillator circuit is then read out to provide a precise pressure measurement

directly of the sample. Most experiments rely on remote gauges, but the ability to

make a pressure measurement directly allows exact positioning on the P − T phase



CHAPTER 2. THE TORSIONAL OSCILLATOR 53

diagram and fine control during annealing.

TOTO

Isolator Box

Vd

Isolator Box

A

Current Preamp

10 MW

V0

Figure 2.10: A schematic of the torsional oscillator connected in ‘grounded’ mode.
The electrode posts are raised to high-tension V0 and the oscillator vanes are
grounded. The isolator boxes contain the circuit shown in Fig. 2.11 to add the
AC signal on to the DC drive while keeping the instruments isolated from high
voltages. A 10 MW shunt resistor is added to the input of the current preamp to
dissipate any residual charge when it is switched off.

The torsional oscillator is driven by a Stanford Research Systems DS345 function

generator using an Agilent 53132A frequency counter as an ultra-high stability clock.

This is passed through a potential divider to bring the voltage down to achieve low

enough drives. The torsional oscillator is operated in the ‘grounded’ configuration

discussed above and shown in Fig. 2.10 in which the vanes are held at ground and

the post electrodes are raised to high voltage. This has the advantage that no wires

running to the oscillator vanes are needed, eliminating a source of damping from
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Figure 2.11: The isolator circuit used to superimpose the AC signal onto the high-
tension DC at the electrode posts without damaging instrumentation.

the oscillator and improving its Q. It is however necessary to properly isolate the

instruments from the high voltage, and so two isolator boxes containing the circuit

shown in Fig. 2.11 are used to superimpose the AC drive on to the DC bias on the

input, and to act as a high-pass filter to cut the DC bias on the output. The high

voltage DC bias is provided by an Innotec LAB2K5 power supply.

The capacitor posts are cleaned and positioned by hand before each experimental

run to achieve a capacitance of between 2 pF and 4 pF as this has been found to give

adequate signal with little risk of the plates touching as the oscillator moves. The

signal lines to and from the oscillator are superconducting coaxial cables with NbTi

inners and stainless steel shields with Microdot connectors and all room temperature

wiring is through coaxial cables with BNC connectors.

The oscillator response is measured using phase-sensitive detection following a

Stanford Research Systems SR570 current preamplifier. We know from Eq. 2.51

that the oscillator’s steady-state response to a sinusoidal drive will be a sinusoid

at the same frequency as it is driven. As such we are only interested in signals
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Figure 2.12: The main components of the tosional oscillator instrumentation used
in this experiment.
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returning from the oscillator at the drive frequency ωd. Noise will occur at all

frequencies, chiefly originating from mechanical vibrations in the laboratory as the

cryostat lacks any vibration isolation. We may thus minimise the noise present in

the final signal via the use of a band-pass filter centred on ωr. This will attenuate

signals at frequencies outside of the bandwidth of the filter ωr ± δ, so for maximum

signal-to-noise we desire a very narrow bandwidth. Conventional filters may achieve

narrow bandwidth but do not easily allow the centre frequency of the filter to be

varied. As we are interested in following a changing resonant frequency this is a

critical limitation. The solution is to use a lock-in amplifier, which can provide

extremely narrow-band detection at across a wide range of frequencies [85]. Here a

Stanford Research Systems SR830 two-channel digital lock-in amplifier is used.

A lock-in amplifier consists of four essential components - a sine-wave generator,

a phase shifter, a multiplier and a low-pass filter [44]. The oscillator’s response to

sinusoidal drive will be a sinusoid at the drive frequency ωd, phase-shifted from the

drive by ϕ. This is equivalent to the sum of an in-phase and a quadrature signal

with amplitudes Ri and Rq respectively:

Vsig = R cos(ωdt+ ϕ) (2.69)

≡ Ri cos(ωdt) +Rq sin(ωdt). (2.70)

The lock-in amplifier generates a sine wave at frequency ωr either from an internal
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clock set by the user or an external reference. In our case the square-wave trigger

output of the DS345 function generator is used. This signal can then be phase

shifted by an adjustable ϕr. The input signal is then multiplied by the reference:

Vm = R cos(ωdt+ ϕ)A cos(ωrt+ ϕr) (2.71)

≡ A cos(ωrt+ ϕr){Ri sin(ωdt) +Rq cos(ωdt)}. (2.72)

which, given the trigonometric identities

cosA cosB =
1

2
{cos(A−B) + cos(A+B)} (2.73)

cosA sinB =
1

2
{sin(A+B)− sin(A−B)} (2.74)

is equivalent to

Vm =
ARi

2
{cos [(ωr − ωd)t+ ϕr] + cos [(ωr + ωd)t+ ϕr]}

+
ARq

2
{sin [(ωr + ωd)t+ ϕr]− sin [(ωr − ωd)t− ϕr]}.

(2.75)

The multiplied signal is then passed to the low-pass filter. The low-pass filter will

typically have a cutoff frequency much less than ωr, so it will eliminate the sum

frequencies, leaving the signal

Vout =
ARi

2
cos [(ωr − ωd)t+ ϕr]−

ARq

2
sin [(ωr − ωd)t− ϕr] . (2.76)
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Since we are generating our reference sine wave from the trigger output of the DS345

we know that ωr = ωd. Thus ωr − ωd = 0 and our output reduces to a DC voltage

Vout =
A

2
{Ri cosϕr −Rq sinϕr}. (2.77)

If we then set ϕr = 0 then

Vout =
A

2
Ri (2.78)

and if we set ϕr = −π/2 then

Vout =
A

2
Rq. (2.79)

The sine wave generator maintains the reference amplitude A such that

A

2
= 1 (2.80)

so that by choice of ϕr the output of the lock-in amplifier is either the in-phase or

quadrature amplitude of the oscillator.

We now consider signals at frequencies other than ωd, which we shall call noise

of frequency ωn. We let d = ωr − ωn 6= 0, remembering that A/2 = 1, then from

Eq. 2.76 we are left with the signal

Vout = Ri cos(dt+ ϕr)−Rq sin(dt− ϕr). (2.81)
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We recall that the low-pass filter has a cutoff frequency ∆, so it will pass all signals

for which |d| < ∆ and attenuate all signals for which |d| > ∆. So we see that the

lock-in amplifier acts as a band-pass filter with narrow bandwidth of ωr ± ∆ that

can be easily centred on a supplied reference frequency.

The real-world implementation is inevitably more complicated, but the main

features of the SR830 digital lock-in amplifier are shown inside the yellow box in

Fig. 2.12. The signal from the current amplifier first enters an analogue low-noise

voltage preamplifier. At this stage a monitor output is taken to an oscilloscope

to observe the complete signal. A low-pass anti-aliasing filter set at the Nyquist

frequency of the digitiser is required before the signal is digitised to prevent artefacts

appearing from aliasing between signals at frequencies comparable to the digitiser

sampling frequency. Notch filters are optionally applied at the power line frequency

and double the power line frequency to remove noise picked up from the mains

supply and its harmonics, but are not used in this experiment. The signal is then

digitised and passed to the digital multiplier.

As the SR830 is a two-channel unit it simultaneously multiplies the signal by

two reference sinusoids, one at phase ϕr and the other at ϕr − π/2. Because the

signal is digitised and the reference sinusoids are generated digitally the SR830 uses

digital multiplication, avoiding problems of noise and offset voltage that would affect

analogue units. Following the multiplication digital gain is applied to the signal.
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The application of gain after the multiplication allows the digital lock-in amplifier

to operate with high dynamic reserve - this is its tolerance to off-frequency noise at

the input. If there is a high amplitude of noise at the input the voltage preamplifier

may saturate even though the signal amplitude is low. By using a low gain at the

input and a high digital gain after the multiplier the signal is preserved, at the cost

of greater noise introduced by the analogue-to-digital converter as it is operating

on a smaller signal. The SR830 may be operated in high dynamic range mode in

which the input gain is low and the digital gain is high, low noise mode in which

the input gain is high and the digital gain is low, and normal mode in which they

are even. Normal mode is used for this experiment as a much of the signal noise

originates from mechanical ‘knocks’ to the oscillator, and as such is amplitude noise

at the resonant frequency and larger than any electrical noise in the system. Thus

there is no advantage to be had from the high dynamic range or low noise modes.

The cutoff frequency of the low-pass filter is set by specifying a time constant.

We assumed in the calculation above that the signal we are interested in is a con-

stant sinusoid, but this may not always be the case. If the amplitude of our signal

changes then the signal is be described as a spread of frequencies around the signal

frequency. These additional components of the signal will appear as extra terms in

the multiplication, and larger changes will generate higher frequency terms. Any

with frequency greater than than the cutoff frequency of the low-pass filter will be



CHAPTER 2. THE TORSIONAL OSCILLATOR 61

attenuated, so only a fraction of a large change will be visible in the output signal.

Since we compute an appropriate value for A based on Vout, the speed at which

the lock-in amplifier can adapt to a changing input signal is limited by the band-

width of the low-pass filter. Expressing the cutoff frequency ∆ as a time constant

τc = 1
2π∆

gives a more intuitively useful control, as it will take several times τc for

Vout to reflect a change in the input signal. Reducing the time constant allows faster

response, but as this increases the low-pass filter bandwidth it comes at the cost of

more noise in the output. Low pass filters with the same cutoff frequency act on

both the outputs of the multiplier.

The output of the low-pass filters are then the in-phase and quadrature outputs,

denoted X and Y respectively. These may then be combined to give the absolute

amplitude of the oscillator R =
√
X2 + Y 2 and the phase shift of the returning

signal ϕ = arctan
(
X
Y

)
either directly on the instrument or later in software.

We recall our solution to the amplitude of the forced harmonic oscillator in

Eq. 2.47:

C =
((ω2

0 − ω2
d)− 2ibωd)Γ0

(ω2 − ω2
d)

2 + 4b2ω2
d

(2.82)

which we may rearrange to

C

Γ0

=
ω2

0 − ω2
d

(ω2 − ω2
d)

2 + 4b2ω2
d

− i 2bωd
(ω2 − ω2

d)
2 + 4b2ω2

d

. (2.83)
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This shows the in-phase and quadrature response of the oscillator - we note that

at ω2
0 = ω2

d the first term goes to zero and the second reaches its maximum. Their

lineshape is shown in Fig. 2.13.

X

Y

Frequency

Amplitude

Figure 2.13: The in-phase X and quadrature Y response of the torsional oscillator
as measured by two-channel lock-in detection.

2.5 The Oscillator Parameters

It is important to quantify the parameters of the torsional oscillator. We may

measure the resonant frequencies of the torsional oscillator when it is empty and

when it is loaded with 3He and 4He. From these frequencies the properties of the

torsional oscillator may be deduced using Eqn. 2.65. The symmetric and antisym-

metric mode frequencies are shown in table 2.1 for different samples loaded into the

torsional oscillator at 250 V DC and 0.5 mV AC drive at 700 mK. It is important

that figures are compared at a low AC drive where the empty oscillator behaviour

does not change with drive amplitude. Using these loaded frequencies we may per-
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Table 2.1: Frequencies of the oscillator loaded with different samples.
ωa/2π ωs/2π Ratio ωa/ωs

Empty cell 1978.484 597 Hz 399.143 886 Hz 4.9568
3He @ 41.5 bar 1977.787 764 Hz 398.696 627 Hz 4.9606
4He @ 42.0 bar 1977.434 426 Hz 398.458 359 Hz 4.9627

form a self-consistency check. The samples contribute extra moment of inertia to

the head of the oscillator, i.e. M2 → M2 + ∆M . The extra contribution is given

in Table 2.2, masses are calculated from the molar volume of helium at the sample

pressure extrapolated from [37].

Table 2.2: Masses and moment of inertia contributions of the samples.
Mass m Inertia ∆M

3He @ 41.5 bar 3.941× 10−5 kg 0.966× 10−9 kgm2

4He @ 42.0 bar 6.127× 10−5 kg 1.501× 10−9 kgm2

Substituting these additional moments of inertia and their experimentally known

frequencies into equations 2.65 gives us a set of four equations in the four unknown

values k1, k2, M1 and M2 for each sample loading. We can solve these to arrive

at the torsional oscillator parameters in table 2.3. For comparison values for the

moments of inertia are provided as calculated using a commercial CAD package.

A value for the torsion modulus G of annealed coin silver at low temperatures is

not available in the literature. Angolet [60] suggests using the same value given for

beryllium copper of G = 5.3× 1010 N m−2, which for a hollow rod of length l, outer
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diameter d and hole diameter h has spring constant

k =
πG

32

(d4 − h4)

l
(2.84)

giving us the values of k1 and k2 in table 2.3. The values of the moments of inertia

Table 2.3: Calculated parameters of the torsional oscillator
3He loading 4He loading Mean CAD

M1 1.4276 1.4335 1.4306 1.455 ×10−7kgm2

M2 3.2732 3.3282 3.3007 3.432 ×10−7kgm2

M2/M1 2.2928 2.3217 2.3072 2.359
k1 3.3215 3.3706 3.3460 6.68 N m
k2 13.674 13.758 13.716 21.8 N m

k2/k1 4.1168 4.0818 4.0992 3.26

calculated from the sample loadings are all within 1% agreement and within 10%

of the estimation of masses from CAD software. The values of k show a very poor

agreement, suggesting that Angolet’s assumption that GAgCu ≈ GBeCu is not valid.

Rearranging Eqn. 2.84 and using our values of k derived from the torsional oscillator

frequencies we find that at 700 mK GAg90Cu10 = 3.3× 1010 N m−2 after annealing.

2.6 Mass Sensitivity

Ultimately we are interested in the oscillator’s mass sensitivity – that is the change

in the natural frequency of a mode for a given change in a sample’s moment of
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inertia:

∂ωa
∂M2

and
∂ωs
∂M2

. (2.85)

It will be more convenient to discuss these sensitivities in terms of the logarithmic

derivatives

M2

ωa

∂ωa
∂M2

=
∂ lnωa
∂ lnM2

and
M2

ωs

∂ωs
∂M2

=
∂ lnωs
∂ lnM2

. (2.86)

We recall the eigenfrequencies of the oscillator given in Eq. 2.65:

ω2
a =

1

2

(
k1

M1

+
k2

M1

+
k2

M2

)
+

√
1

4

(
k1

M1

+
k2

M1

+
k2

M2

)2

− k1

M1

k2

M2

ω2
s =

1

2

(
k1

M1

+
k2

M1

+
k2

M2

)
−

√
1

4

(
k1

M1

+
k2

M1

+
k2

M2

)2

− k1

M1

k2

M2

(2.87)

which give the square of the frequencies. The derivatives of the frequencies with

respect to M and k are then

∂ω

∂M
=

1

2ω

∂ω2

∂M
and

∂ω

∂k
=

1

2ω

∂ω2

∂k
(2.88)

and therefore the logarithmic derivatives are given by

∂ lnω

∂ lnM
=

M

2ω2

∂ω2

∂M
and

∂ lnω

∂ ln k
=

k

2ω2

∂ω2

∂k
. (2.89)
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This leaves us with a set of eight logarithmic derivatives that describe the oscillator,

but the symmetry of the frequency equations 2.65 means that

∂ lnωs
∂ lnM1/2

=
∂ lnωa
∂ lnM2/1

,
∂ lnωa
∂ lnM1/2

+
∂ lnωs
∂ lnM1/2

= −1

2
(2.90)

and

∂ lnωs
∂ ln k1/2

=
∂ lnωa
∂ ln k2/1

,
∂ lnωa
∂ ln k1/2

+
∂ lnωs
∂ ln k1/2

= +
1

2
. (2.91)

As such we need only evaluate two independent logarithmic derivatives to de-

scribe the sensitivity of the oscillator to changes in mass and torsion constant,

namely

β = − ∂ lnωa
∂ lnM2

=
(ω2

2 − ω2
s)

2(ω2
a − ω2

s)
(2.92)

and

α =
∂ lnωs
∂ ln k1

=
(ω2

a − ω2
1)

2(ω2
a − ω2

s)
(2.93)

respectively. The substitutions ω2 and ω1 are the characteristic frequencies

ω2 =

√
k2

M2

and ω1 =

√
k1

M1

. (2.94)



CHAPTER 2. THE TORSIONAL OSCILLATOR 67

In terms of these parameters the eight logarithmic derivatives are

∂ lnωa
∂ lnM2

=
∂ lnωs
∂ lnM1

= −β

∂ lnωa
∂ lnM1

=
∂ lnωs
∂ lnM2

= β − 1

2

∂ lnωa
∂ ln k2

=
∂ lnωs
∂ ln k1

= α

∂ lnωa
∂ ln k1

=
∂ lnωs
∂ ln k2

=
1

2
− α.

(2.95)

The characteristic frequencies are evaluated from the oscillator parameters in Ta-

ble 2.3 and found to be

ω1 = 4836.2 = 2π × 769.71 Hz

ω2 = 6446.3 = 2π × 1026.0 Hz.

(2.96)

From these and the empty cell frequencies in Table 2.1 we find α and β to be

α = 0.442 and β = 0.119. (2.97)

The α parameter expresses the sensitivity of the oscillator’s frequency to changes

in the spring constant of the torsion rods, and β its sensitivity to changes in moments

of inertia. In designing torsional oscillators to detect mass flux in a sample it is thus

important to minimize α while maximising β. We can explore how this may be

achieved by relating α and β to the frequency ratio of the double oscillator.
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Figure 2.14: Countours of constant ωa
ωs

in the α− β plane.

We may rearrange Eqns. 2.93 and 2.92 to find the characteristic frequencies ω1

and ω2

ω2
1 = ω2

a + 2α(ω2
a − ω2

s)

ω2
2 = ω2

s − 2β(ω2
a − ω2

s).

(2.98)

From Eqn. 2.64 we know that

ω1ω2 = ωaωs (2.99)

so that

[ω2
a + 2α(ω2

a − ω2
s)][ω

2
s − 2β(ω2

a − ω2
s)] = ω2

aω
2
s (2.100)
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which we can rearrange in terms of the frequency ratio

(
ωa
ωs

)2

=
α(1− 2β)

β(1− 2α)
. (2.101)

We plot contours of constant ωa
ωs

in the α − β plane in Fig. 2.14. In order to

maximise β and minimise α we can see that the ratio of ωa
ωs

must be as low as

possible. Solutions with ωa
ωs
< 1 are unphysical, as the symmetric mode must occur

at a lower frequency than the antisymmetric mode. This plot shows that there is

a fundamental compromise in the design of two-mode torsional oscillators; that for

the best sensitivity performance the frequencies must be as close as possible, but the

chief motivation for using a two mode oscillator is to measure frequency dependence,

for which a wide spread of frequencies is desirable.
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The Cryostat

Other people can talk about how to expand the

destiny of mankind. I just want to talk about how to

fix a motorcycle. I think that what I have to say has

more lasting value.

Robert M. Pirsig

Zen and the Art of Motorcycle Maintenance

3.1 The Dilution Refrigerator

The cryostat used for this experiment is a dilution refrigerator with a base temper-

ature of around 15 mK. Originally a 4He pot fridge, an Oxford Instruments 100 µW

dilution stage was retrofitted in order to reach lower temperatures. The cryostat

has a super-insulated nitrogen jacket which contains the helium bath.

70
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Figure 3.1: The cryostat
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The helium bath and nitrogen jacket are filled from storage dewars every 24

hours. A vacuum can is mounted to the 4K flange and is immersed in the helium

bath. Three cold baffles minimise warming of the bath from the top-hat assembly.

Below the 4 K flange is the 1 K plate which is cooled by a 4He pot. Below the pot

is the dilution unit (DU) which cools the experimental stage.

The dilution refrigerator exploits the phase separation of 4He/3He isotopes at

low temperatures [59, 74]. The unit comprises a series of pipes, chambers and heat

exchangers that make a long ‘U’-shape running down the cryostat through which

3He circulates. A flow impedance below the 1 K pot consisting of a thin capillary

partially blocked by a fine wire slows the entry of 3He and forces it to condense

inside a chamber mounted on the 1 K plate. The liquid 3He flows down the cryostat

through the continuous heat exchanger, then a series of discrete heat exchangers,

where it is cooled by the returning 3He in solution with 4He flowing up the other

side of the ‘U’.

The incoming 3He leaves the exchanger stack and enters the top of the mixing

chamber. This stainless steel cavity is packed with sinter biscuits (fine silver powder

pressed and heated into a porous solid with high surface area and good thermal

conductivity) tightly bolted to a copper post. This post runs through the brass base

and down to screw thread, to which the experimental stage is attached. The mixing

chamber contains a layer of 3He floating on 4He. As 3He is a fermion and 4He is a
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Figure 3.2: Schematic diagram of the dilution unit.

boson they obey different quantum statistics and are imiscible at low temperatures.

4He has vanishingly small solubility in 3He at millikelvin temperatures, and 4He

supports a 6% 3He impurity down to absolute zero, as shown in Fig. 3.3.

A pipe enters the roof of the mixing chamber and runs from the bottom layer

of 4He up through the heat exchangers. Above the exchanger stack it enters the

still, where a pumping line leads up and out of the IVC. Usually the still is heated,

but on this cryostat heat leaks from lines thermally anchored to the still raise its

temperature. The temperature difference between the mixing chamber and the

still drives an osmotic flow of 3He up into the still. When the 3He/4He mixture

is correctly ‘tuned’ the liquid level is in the still. A polished knife-edge where the
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Figure 3.3: The phase diagram of liquid 3He/4He mixtures at saturated vapour
pressure. Note the suppression of the superfluid transition, the phase separation of
the mixture below 0.8 K and the finite solubility of 3He in 4He at T → 0 K. Taken
from Pobell [74].

pumping line enters the roof of the still prevents superfluid film climbing up the

walls of the line and evaporating. In more modern cryostat designs this is usually a

series of concentric pipes or a heated element known as a film burner.

3He evaporates preferentially when the still is pumped on due to its lower mass.

By removing 3He from solution in the still, more is drawn up from the mixing

chamber via osmotic pressure. This drives a flow across the phase boundary from the

pure 3He layer into solution in 4He. This is analogous to evaporative cooling - atoms

undergo a change from a concentrated phase to a dilute phase with a corresponding
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change in enthalpy producing cooling at the phase boundary. A crucial difference

being the requirement to maintain a 6% 3He impurity in the dilute phase all the way

to absolute zero, meaning that an ideal dilution refrigerator does not lose cooling

power altogether at low temperatures.

The 3He is pumped by a ‘booster’ vacuum pump, usually a high-throughput

oil-mist diffusion pump or a Roots pump, backed by a sealed rotary pump. This

cryostat uses an Edwards EO4 high-vacuum diffusion pump backed by an Alcatel

two-stage sealed rotary pump. The pumped 3He is sent through a Gas Handling

System (GHS) to a charcoal nitrogen trap which freezes out any impurities such as

air that may have leaked into the system, and a helium trap which freezes out any

hydrogen that may have been released from cracking processes in the pump oil as

it degrades. The cleaned mixture goes through a flow meter to monitor circulation,

then into the dewar and a final U-bend trap in the helium bath and lastly into the

IVC where it condenses again at the 1 K pot stage.

We may follow Pobell [74] to calculate the cooling power of the dilution refrig-

erator. From measurements of the specific heat of 3He/4He mixtures we know that

the enthalpy 3Hd of 3He diluted in 4He is larger than that of pure 3He, 3Hc [91, 3].

We can thus define a heat of mixing for ṅ3 moles of 3He

Q̇ = ṅ3(Hd(T )−Hc(T )). (3.1)
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Figure 3.4: Heat flow in the dilution unit.

As the enthalpy of a system is given by the integral of its heat capacity C

H(T )−H(0) =

∫ T

0

C(T )dT (3.2)

and we know from experimental data by Greywall [35, 34] that the heat capacity of

3He liquid at the saturated vapour pressure below 40 mK is approximately

C3 ≈ 22T J mol−1 K−1 (3.3)
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(as a strongly interacting Fermi liquid calculating this value is difficult). Thus the

enthalpy of concentrated liquid 3He at low temperature is

3Hc = 3H(0) + 11T 2 J mol−1. (3.4)

In the mixing chamber we have a mixture of 6% 3He in solution in 4He. This

is sufficiently low a concentration to consider the 3He a weakly interacting Fermi

liquid, where we may make a good approximation by the substitution of an effective

mass. This allows us to derive a a specific heat of a 6% mixture as

3Cd(6%) ' 106TJ mol−1 K−1. (3.5)

In equilibrium the chemical potential of the dilute and concentrated phases must be

equal. As µ = H − TS then

3Hc − T × 3Sc = 3Hd − T × 3Sd (3.6)

from which follows

3Hd(T ) = 3Hc(0) + 11T 2 + T

∫ T

0

(
3Cd
T ′
−

3Cc
T ′

)
dT ′ (3.7)

= 3Hc(0) + 95T 2J mol−1. (3.8)
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We now consider the enthalpy balance in Fig. 3.1. For ṅ3 mole of 3He circulating

through the dilution unit

ṅ3(3Hd(Tmix)− 3Hc(Tmix)) = ṅ3(3Hc(Tex)− 3Hc(Tex)) + Q̇ (3.9)

Where Tmix is the temperature of the mixing chamber and Tex is the temperature of

the heat exchanger. Rearranging for Q̇ and substituting in our results 3.4 and 3.8

we can see that the cooling power of the dilution unit is given by

Q̇ = ṅ3(95T 2
mc − 11T 2

ex) W. (3.10)

This shows how important properly cooling the condensing stream of 3He is to

good operation of the dilution unit - the heat load entering the mixing chamber at

the bottom of the ‘U’ limits the cooling power and thus the minimum temperature

of the refrigerator. At low temperatures the mismatch in phonon velocity between

the liquid helium and surrounding metal leads to extremely high thermal boundary

resistance, known as Kapitza resistance, which goes as T−3 [74]. The common

solution to this is to provide the highest possible surface area of metal for heat

transport.

The continuous exchanger consists of a large brass pipe containing a finer capil-

lary wound tightly inside. The viscous condensing stream in the brass pipe is thus
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cooled by the contraflowing returning stream in the capillary. The continuous heat

exchanger terminates at the cold plate which is packed with sinter to thermalise

it. This plate provides a last thermal anchor for lines running down the cryostat

before the mixing chamber. The discrete exchangers are flat split rings of stainless

steel divided into upper and lower chambers for the two streams by a thin CuNi

foil. Silver sinter biscuits are bonded to either side of the foil giving the maximum

possible surface area for heat exchange.

In practice the cooling is limited by their ability to cool the incoming 3He stream

to around 10 mK in commercial units and almost 1 mK in specialist units [19]. At the

lowest temperatures turbulence in the viscous 3He flow will cause appreciable heating

around the exchangers, practically limiting base temperature. Base temperature

may also be limited by chemical or oil contamination, physical problems such as a

poorly prepared sinter, or a cross-leak between the condensing and pumping streams.

If the cryostat is leaking and helium is entering the IVC a superfluid film may

thermally ‘short’ stages and carry heat load down the DU, or poorly anchored wiring

and fill lines may carry heat down the cryostat. The correct concentration and

quantity of 3He/4He mixture (commonly referred to as ‘mash’) varies widely between

cryostat designs and is vital for good operation. If the phase boundary occurs outside

the mixing chamber cooling power will be severely reduced due to poor thermal

contact and small area of the phase boundary, and be highly sensitive to changes in
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concentration. If the liquid level is not high enough to enter the still there will be

insufficient surface area for good pumping. If the still is below 600 mK the liquid

will be too cold to achieve good 3He circulation, and if it is over 800 mK 4He will

evaporate and start circulating with the 3He. Similarly if the still is over-full or the

film burner is not working a superfluid film will climb up the walls of the pumping

line to warmer parts of the cryostat where it will evaporate and circulate with the

3He. If 4He enters circulation it must be recondensed, causing an additional heat

load without any contribution to cooling.

Temperatures on this cryostat were originally monitored with Speer and Alan-

Bradley carbon resistors. Because these were of different values and their calibra-

tions were of poor quality they were replaced with surface-mount ruthenium dioxide

resistors (see below). As ruthenium dioxide has very poor thermal conductivity

the resistors are cooled through their copper leads which are thermally anchored to

the cryostat. CuNi-clad NiTi superconducting loom runs from the copper leads to

connector pads mounted to the underside of the 4 K flange, and then constantan

wires run up an IVC pumping line to hermetically sealed 24-way Fischer connectors

above the top-hat where they are read via a 2-wire measurement using a home-made

scanner controlled by the computer and a Stanford SIM921 AC resistance bridge.

Two wire measurement is sufficient for these monitoring resistors as the resistance

of the constantan and superconducting leads varies very little and allows more ther-
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mometers from the available wiring on the cryostat. Where resistors are required

for experiment thermometry they are used in 4-wire configuration to eliminate lead

resistance.

Figure 3.5: A calibration curve of the original MCT showing the poor stress-strain
relationship. The cell has poor sensitivity at higher pressures, and shows significant
hysteresis between raising (blue points) and lowering (red points) the pressure. A
6th order polynomial is fitted to the calibration sweeps.

The torsional oscillator stage is held on black nylon washers to thermally isolate

it from the DU. Copper braids run from posts coming from the DU on to the TO

plate, allowing the thermal anchoring of the plate to be adjusted between runs. The

temperature of the plate is regulated using an aluminium strain gauge as a heater

and a calibrated germanium resistor as a main thermometer, read via a 4-wire
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measurement by a dedicated Stanford SIM921 AC bridge. A Stanford SIM 960 PID

controller applies heat to stabilise at temperature setpoints sent from the control

computer via a LabVIEW vi. In addition to the germanium and RuO2 resistors a

3He Melting Curve Thermometer (MCT) is mounted on the TO plate. This is a

Straty-Adams-type pressure gauge made from beryllium copper that capacitatively

measures the deflection of a membrane caused by pressure changes in a cell filled with

ultra-pure 3He. On cooling the cryostat to pot temperature its pressure response

is calibrated and it is charged to 35.5 bar using a dipping bomb before starting the

dilution unit. The fill line will block on reaching around 800 mK and the liquid 3He

in the cell will start to freeze. If the cell was loaded correctly a mixture of solid

and liquid will persist in the cell and its pressure will follow the 3He melting curve,

from which the temperature of the cell may be accurately inferred. The pressure of

the MCT cell is read out by measuring the capacitance of the cell as one arm of a

bridge circuit, the other being a reference capacitor mounted on the 1 K plate. An

inductive voltage divider controlled by the computer is used to balance the bridge

circuit using a lock-in amplifier as a null-detector.

The MCT cell mounted on the cryostat at the start of the experiment had a poor

stress-strain curve, shown in Fig. 3.5 and showed hysteresis between expanding and

contracting, so this was replaced with a new cell provided by the Low Temperature

Physics group at Kharkov. This cell has a more linear response and shows no
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significant hysteresis, shown in Fig. 3.6.

Figure 3.6: A calibration curve of the replacement MCT. This cell has an almost
linear response and so requires only a 3rd order polynomial to fit the calibration
curve.

On this cryostat cooling is limited to around 19 mK, most likely due to an inad-

equate booster pump. This was poorly chosen when the cryostat was designed as it

is a high-vacuum rather than a high-throughput pump. Diffusion pumps rely on a

circulating stream of oil vapour to deflect gas particles and drive them through the

body of the pump. When the still is heated slightly the pressure in the still pumping

line is seen to fluctuate as the higher throughput causes the pump to ‘stall’ as the

flow of gas disrupts the oil circulation. This failure of the pump prevents us achiev-

ing 3He circulation rates above 60µmol s−1 which is low for this design of cryostat.



CHAPTER 3. THE CRYOSTAT 84

A full overhaul of the cryostat will replace this pump, and fit an improved mixing

chamber base for better thermal contact to the experimental stage.

3.2 Repairing the Dilution Unit

Early in the project an accident caused a pressure gauge to break off the still line and

a large amount of air to be pulled in. This froze and formed a plug in the still line.

When the cryostat was warmed the helium mixture in the DU boiled and the build-

up of pressure between the plug and the impedance ruptured two of the discrete

heat exchangers. It was decided that the heat exchangers could be repaired, but

would need to be removed. Support brackets were made up to hold the experimental

stage while the indium seal joining the discrete exchanger stack to the cold plate was

broken. Once the cryostat was split at this point the bottom half was lowered and

the mixing chamber was heated with a blow torch to melt the solder joints between

the exchanger stack an the mixing chamber. The stack was lifted clear of the mixing

chamber and the ruptures were soldered closed with eutectic solder on the bench.

The connections to the mixing chamber at the bottom of the stack were plugged and

tubes made up with indium seal flanges to match the connections at the top were

fabricated. These tubes were soldered into Klein Flanges (KF) at the other end for

leak testing. The exchangers were leak tested by pumping on either side with the

leak detector and spraying the outside with helium gas. To check for cross-leaks
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the other side of the exchangers were flushed with helium. The exchangers were

immersed in a liquid helium bath and the tests repeated at 4 K to see if leaks would

open at low temperature due to thermal contraction. Blanking plates were made

up to fit the exposed indium seals on the cryostat to close the two sides of the DU.

The cryostat was pumped and leak tested and found to be leak tight.

The exchangers were refitted using Woods metal to avoid excessive heating of the

mixing chamber. The cryostat was lifted on the support brackets and the indium

seals were made up. The cryostat was found to be leak tight down to 4 K, but when

the dilution unit was started it could not cool below 180 mK. On warming back up,

a significant amount of helium was found inside the IVC, indicating the presence of

a superfluid leak, or ‘superleak’.

A superleak is a flow channel too small to allow measurable leak rates to normal

fluids, but is open to superfluids. Due to the superfluid property of zero viscosity a

significant amount of 4He may pass through the apparently leak-tight barrier when

it is cooled below the λ transition. No leak appeared after the pot had been cooled

without admitting any mash, so the leak must have been on the DU. The Woods

metal joints were reflowed and the indium seals were split, cleaned and remade, with

several small scratches polished out. The cryostat was cooled again to 1.5 K and

held there for 8 hours. It was then warmed to 5 K, where the IVC was pumped with

a turbomolecular pump backed by a leak detector to establish a background helium



CHAPTER 3. THE CRYOSTAT 86

signal (no leak signal is visible below 4.2 K as any 4He present is being strongly

cryopumped). This process was repeated with mash admitted to the DU and the

unit was found to be leaking at pot temperature.

To isolate the leak, thin film aluminium strain gauges (used as small heaters)

and RuO2 thermometer resistors were mounted to each heat exchanger, the cold

plate and the mixing chamber so that they could be heated and monitored indepen-

dently. To aid diagnostics all the Speer and Allen-Bradley resistors were replaced

by 1.2 kW RuO2 surface mount resistors. By using nominally identical high-quality

resistors selected from one batch throughout the cryostat it is simple to make qual-

itative comparisons between the temperature of different components. All resistors

were thermally cycled ten times in liquid nitrogen after soldering and tested by im-

mersing in liquid helium. Any that differed by more than 1% from the others were

replaced. One resistor was fitted to the experimental stage and calibrated against

the Lakeshore germanium resistor and MCT (shown in Fig. 3.7). On a log-log plot

the behaviour of the RuO2 resistors is essentially linear below 1 K, making them

convenient monitoring resistors. Below 30 mK the RuO2 resistors become unreli-

able as conduction freezes out and resistance diverges. This generic calibration was

then applied to all the resistors to provide approximate thermometry throughout

the cryostat. The thermal conductivity of RuO2 is vanishingly small at low temper-

atures, so these are soldered to short sections of enameled 36-gauge copper wire to
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Figure 3.7: Generic calibration applied to all RuO2 resistors. The MCT (pink
data points) is used at temperatures below the limit of the germanium thermometer
(black data points). In the vicinity of the melting curve minimum the MCT becomes
insensitive, so the germanium is used for higher temperatures.
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thermalise the resistors through their leads. This copper wire is then wound around

a copper post or held under a copper tab in good contact with the plate it measures.

On the exchanger stack the copper leads are wound around the tubes connecting

exchangers. Mash was condensed into the DU with the pot while the mixing cham-

ber and heat exchangers were heated, restricting the region in which helium could

go superfluid. By reducing the heat on individual exchangers this superfluid region

could be lowered down the cryostat so that a superleak could only occur between

the pot and some known point inferred from the temperatures of the exchangers.

Over many successive runs down to pot temperature and warm-ups back to 5 K to

test the contents of the IVC, the superfluid region was allowed further down the

cryostat, until a leak appeared when it was admitted into the exchanger stack. This

procedure was extremely challenging due to the high thermal conductivity of the

superfluid, poor thermalisation of resistors and the difficulty in maintaining the del-

icate equilibrium of heaters for the 8 hours required to allow the leak to build up

to measurable levels. These difficulties made it impossible to isolate one individual

exchanger as the source of problem.

Attempts were made to reflow the repaired joints in situ but these were unsuc-

cessful. It was suggested that the cryostat might be able to run while leaking if

an adsorbtion pump (sorb) could be fitted to stop stray helium thermally shorting

the DU. Such pumps use a large surface area of a material such as carbon to which
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helium will bond when cooled. A large sorb was made, holding 12 g of activated

charcoal in a copper cylinder, held back by copper mesh. A constantan wire was

wound around the cylinder to act as a heater for desorbing the pump and an Allen

Bradley carbon resistor calibrated using the PPMS monitors the temperature. It

was wrapped in superinsulating silvered mylar and fastened under the pot plate with

a stainless steel bracket and nylon screws to thermally isolate it. 10 cm of fine copper

wire provide a thermal link to the pot plate. This assembly allowed the sorb to be

heated to over 30 K, expelling the adsorbed helium to be pumped away, and cool

back down without warming the rest of the cryostat above 4 K. Though the sorb

was shown to work as planned, running for several weeks without saturating, the

base temperature did not improve. It was suspected that there may be a cross-leak

between the contraflowing streams in the exchangers, or some physical damage to

the sinter.

Eventually a decision was made to replace the exchanger stack. The cryostat was

again split at the cold plate, the experimental stage was lowered and the stack re-

moved, this time together with the mixing chamber. The stack and mixing chamber

were sent to Oxford Instruments where a new stack was prepared, mounted to the

mixing chamber and leak tested. Minor adjustments had to be made as although

the placing of ports is the same in modern OI units the flow direction is reversed.

The new stack was mounted and the cryostat circulated with no leaks, but could



CHAPTER 3. THE CRYOSTAT 90

Figure 3.8: The old heat exchanger stack, removed from the cryostat. The two
pipes leading into the mixing chamber are on the left. The returning stream leaves
through the large flange on the right, joined into the bottom of the cold plate. The
condensing stream enters the exchangers through the small flange, bottom right.
Note the reflowed solder join on the left-most exchanger.

not cool below 80 mK.
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3.3 Tuning the Mash

Some amount of 3He/4He mixture was lost during the accident, so an imbalance

in the mash was the first candidate for the cryostat’s poor performance. The total

quantity was inferred from the dump pressure and volume as 80 l. A leak detector

was used to measure the concentration, as follows:

A brass disc was made up to fit in the recess in KF16 Klein Flange, with a 2 mm

hole drilled through the centre. This supported a thin sheet of polythene behind an

O-ring, made gas-tight with vacuum grease. Polythene is somewhat permeable to

helium, so this assembly shown in Fig. 3.9 made a ‘test leak’ through which the mash

could be sampled by the leak detector. This test system was calibrated by admitting

a shot of pure 3He measured out between two valves from a sample gas bottle, then

pumped out and repeated for 4He using a bladder filled with boiled-off helium gas

collected from a dewar. These leak rate values (1.6× 10−6 and 5.4× 10−7mbar L s−1

respectively) were scaled by the pressure behind the leak during the measurement

(always kept at approximately 150 mbar). A small amount of 3He/4He mixture was

then admitted from the dumps and the pressure and 3He leak rate were measured.

Dividing the mixture leak rates, normalised by pressure, by the calibration values

returned a 3He abundance of 17%. To check this value the 4He leak rate was also

measured, and the concentration was found to be 85%. These values are sufficiently

consistent to be confident in a concentration measurement of 16± 2% 3He.
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Figure 3.9: Exploded cross section of the control leak used to measure the mash
concentraion.

When a dilution refrigerator is running well all the 4He in the mixture is con-

densed into the DU and only 3He circulates. This means that the required amount

of 4He depends only on the internal geometry of the unit. By examining the original

blueprints of the DU the internal volume of the components can be easily calculated.

4He should occupy most of the mixing chamber, half of the discrete heat exchangers

and around half of the still. A small correction must be made for the packing frac-

tion of the sinter, assumed to be 0.5, and the volume of the continuous exchanger

capillary is negligible. This established a range of liquid 4He volume that would al-

low the cryostat to operate, from the still almost empty to the still almost full. The

mixing chamber provides some ‘buffer’ in the working range of concentration, and

was assumed to be half full of 4He. The quantity of 4He remaining in the dumps was
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Figure 3.10: The gas handling system used to measure the isotopic composition of
the mash.

found to be slightly in excess of this, presumably from a poor original set up, so 6l

of 4He gas were removed. The required quantity of 3He is more difficult to calculate

as it depends on the volume and pressure (and temperature) of traps, pumps and

the GHS used, but unlike the 4He quantity it can be easily tuned while the cryostat

is circulating.

The overall volume of liquid was checked by heating the still. Once liquid has

entered the still it will stabilise its temperature, as any heat applied will go to boiling

off liquid. By adding mixture in steps and running the still heater we were able to

determine when the liquid level has risen into the still. Knowing the volume of gas

remaining and the volume of the still we were able to adjust the mash to keep the

still approximately half full.
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To test the mash concentration a series of ‘one-shot’ runs were made. By closing

the circulation off to the condenser line and sending the returning 3He to the dumps

the heat load on the mixing chamber is eliminated. In a ‘healthy’ refrigerator the 3He

will continue to be pumped out from the still, but the liquid left on the condenser

side will gradually become depleted. There should be immediate cooling below the

normal minimum temperature of the unit as the heat load of the condensing stream

is removed, then as the 3He is pumped away the phase boundary will move up the

condenser side of the unit and leave the mixing chamber. At this point the cooling

will stop as there is no longer good thermal contact between the phase boundary and

the unit and the unit will start to warm. If the unit is running too ‘rich’ in 3He the

phase boundary will be up in the still-side. The one-shot will move it slowly down

into the chamber, and the cryostat will cool sharply after a long delay. If the cryostat

is running ‘lean’ the phase boundary is too high in the condenser-side. In this case

the phase boundary will never enter the mixing chamber during the one-shot, and

there will be no cooling [80]. In practice this diagnostic is more complicated as the

circulation ṅ must not change during the test, as this will change the cooling power.

When the condensing stream is stopped there is less heat load on the still, so it will

cool and less 3He will be pumped away. Thus the still temperature must be carefully

regulated to maintain a constant flow of 3He out of the DU.

The cryostat showed no cooling when a one-shot was performed, so was assumed
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to be 3He lean. 3He was added to the circulation from a 50% 3He/4He mixture

used in another experiment, 1 l of gas at a time. This increased the overall 3He

concentration and the one-shot test was repeated. After adding 6 l of 50/50 mixture

in this fashion strong pressure and temperature oscillations were observed in the

still. This was interpreted as the still overfilling and the liquid level oscillating in

the still line, and so 4 l 4He was removed to reduce the overall liquid level. While the

still is cold (. 800 mK) the pumped gas is nearly pure 3He, so by keeping the still

cold throughout a one-shot nearly all the 3He may be removed. The temperature

will then rise sharply as there is no dilution cooling as only 4He remains in the DU.

By diverting an amount of gas pumped after this temperature rise near pure 4He

may be removed from the mash.

To expedite the process it was decided to add 3He from a pure (99.9% isotopic

purity) sample bottle. After adding a further 4 l of 3He the temperature rose sharply

to 150 mK. A one-shot produced a slight cooling after a delay, so this was inter-

preted as an excess of 3He. This implies that we had passed through the correct

concentration and that another factor was preventing the cryostat from cooling. 3 l

of 3He were thus removed to reach a final mash load of 78 l of 22% 3He, with the

most likely factor preventing cooling being a heat leak.
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Figure 3.11: Evaluation of cooling performance before (circles) and after (squares)
eliminating the heat leak.

3.4 Finding the Heat Leak

A cooling power test was performed in which the temperature of the DU was mea-

sured as a function of heating power applied to the mixing chamber. 3 l of 3He was

removed to return the phase boundary to the mixing chamber and the cryostat was

cooled to its base temperature. Voltage was applied to a constantan wire of known

resistance wrapped around the mixing chamber to heat the DU at a known power.

As we saw in Eq. 3.10 the cooling power of a dilution unit Q̇ goes as the square of

temperature. This means that plotting T 2 vs. applied heating power a well-behaved

unit should show a linear response. The intercept of such a plot then represents the
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heat leaking into the unit. By measuring the temperature of the unit while heating

the mixing chamber we were able to ascertain that the unit had a 15.7 µW heat

leak, shown in Fig. 3.11. For reference, the refrigerator is rated as having 100 µW

of cooling power at 100 mK, and will have much less at base temperature. We can

put an upper limit on the cooling power of the unit at a given temperature if we

assume that heat exchangers are working perfectly, i.e. the lower exchanger is at

the same temperature as the mixing chamber. The temperature of the exchangers

are at the limit of resistive thermometry, but the RuO2 thermometers show this to

be a reasonable approximation. Taking equation 3.10 with Tmix = Tex

Q̇max = 84ṅ3T
2
mix (3.11)

then at the cryostat’s rated base temperature of 10 mK and a reasonable circulation

of 100 µmol s−1 the maximum cooling power available is less than a microwatt.

Calculations were made of the heat load of potential sources of a heat leak, e.g.

a copper wire accidentally used in place of a CuNi one, a superfluid film running

down the cryostat or a touch between the radiation shield and one of the stages.

The most likely candidate was found to be an alloy wire incorrectly heatsunk or a

alloy wire used in place of a superconducting one. As such all non-critical wiring

was removed from the cryostat. Wiring looms, coaxial cables and the fill lines to the

TO and NMR cells were disconnected from their connectors and wound up into the
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space between the 4 K flange and the pot plate. Only the germanium, MCT and one

RuO2 resistor were left connected to provide thermometry. Unused ports through

the 4 K flange were covered with copper shields and screw holes and slots on the

various stages were covered with copper tape to block thermal radiation. Because

the support rods around the heat exchanger stack had been removed and refitted

with different washers to adjust the spacing there was a concern that differential

cooling of the rods may cause the cryostat to go out of alignment with the radiation

shield secured to the still plate and potentially touch it. This would provide a

metal-to-metal contact between the radiation shield at ∼ 600 mK and the mixing

chamber, and so a disastrous heat leak. A PTFE spacer was fitted to the bottom

of the experimental stage to prevent the stage directly touching the shield if it were

to go out of alignment.

On cool down the cryostat achieved 29 mK and a repeat of the cooling perfor-

mance test showed a vastly improved residual heat leak of 2.4 µW. Rearranging

equation 3.11 to give the minimum temperature

Tmin =

(
Q̇load

84ṅ3

)1/2

(3.12)

we see that the maximum achievable temperature with this heat leak is 17 mK -

adequate to perform our experiment. The RuO2 resistors and coaxial cables were

reconnected, and the TO cell fill line soldered back into place. Additional heatsinking
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was added to the TO fill line at the still plate and cold plate by wrapping copper

wire around the line and clamping it to the plate under a copper bolt. The next

run showed no loss of cooling with the cables and fill lines reattached, and after

fine-tuning the mash and recalibrating the MCT a base temperature of 19mK is

readily achieved.



Chapter 4

Software

“That’s really the essence of programming. By the

time you’ve sorted out a complicated idea into little

steps that even a stupid machine can deal with,

you’ve learned something about it yourself.”

Douglas Adams

Dirk Gently’s Holistic Detective Agency

4.1 Operating the Torsional Oscillator

We desire to know how the frequency of a resonant mode of the torsional oscillator

changes as we vary its temperature. The instrumentation used to drive the oscillator

and measure its response is set up as described in section 2.4 and shown in Fig. 2.12.

The control computer runs a LabVIEW program that follows the resonance while

100
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sweeping the temperature, discussed in section 4.4. The program detects changes in

the resonant frequency from the changes in the in-phase and quadrature response

of the oscillator and changes the drive frequency accordingly so that the oscillator

is always ‘tuned’ on to resonance. The algorithm used to calculate the frequency

deviation requires knowledge of the parameters of the resonance mode - the resonant

frequency F0, the quality factor Q, the on-resonance amplitude R0 and the phase

shift of the response of the oscillator compared to the drive, ϕ. These parameters

are obtained by one of two methods - either measuring the frequency spectrum of

the resonance, discussed in section 4.2, or its free decay in the time domain, or

‘ringdown’, discussed in section 4.3.

4.2 Frequency Domain Sweeping

By measuring the in-phase and quadrature response of the oscillator at a range

of frequencies the frequency spectrum of a resonant mode may be acquired. The

resonant frequency F0, the peak amplitude R0 and the quality-factor Q of the mode

may then be found by fitting a Lorentzian curve to this frequency spectrum. As

discussed in section 2.2 a resonant mode approaches a Lorentzian peak in the limit

of low damping.

A LabVIEW vi controls the DS345 function generator and reads back the in-

phase and quadrature response from the SR830 lock-in amplifier, as described in
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Figure 4.1: Operation schematic of the Frequency Sweeper LabVIEW vi.

section 2.4. The program’s operation is shown schematically in Fig. 4.1. The user

inputs a drive amplitude, the range of frequencies to sweep though, a starting wait

time, the frequency step size, a holding time, sampling time and sampling rate. The

vi sets the drive amplitude and starting frequency on the DS345 then waits the

specified time to let the signal stabilise as transient components ring down. The

wait time is based on the estimated Q of the resonance, typically tens of minutes.

Once the wait time has passed the vi starts the SR830 writing X and Y values to

its buffer at the sampling rate. Once the sampling time has passed it reads back the

buffer and takes a mean of each channel. These mean values are written to a logfile
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and displayed. The vi then increments the drive frequency by the required step and

waits for the hold time for transients to decay. As the frequency increment is small

compared to the linewidth of the resonance the hold time need not be as long as the

wait time and is typically tens of seconds. After the hold time another measurement

is made. This cycle is repeated until the drive frequency is equal to or greater than

the specified stop frequency. The swept frequency range, drive amplitude, hold time,

wait time and frequency step are entered as commands in a text field on the left

side of the vi front panel, shown in Fig. 4.2. Multiple sweeps may be queued in this

fashion.

The logfile is then imported into Sigmaplot where it is analysed. A three-

parameter Lorentzian curve

y(x) =
a

1 +
(
x−x0
b

)2 (4.1)

is fitted to R2(F ). From the fit parameters the values in our notation are extracted:

F0 = x0 (4.2)

R0 =
√
a (4.3)

Q =
x0

2b
. (4.4)

We would like to know the phase shift of the signal, but this is not contained in
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Figure 4.2: The frequency sweeper program front panel. The frequency-domain
lineshape is shown in the left plot. The amplitude R is shown in white and the X
and Y outputs of the lock-in are shown in red and blue respectively. The right plot
shows the same data represented as a complex plot - the X channel is plotted on
the horizontal axis against the Y channel on the vertical. The text box on the left is
the command-set for the sweep and the tabbed controls on the right are the SR830
settings.

the amplitude information R2. We can determine the required phase shift by setting

the drive to the resonant frequency and varying the lock-in’s phase shift until X is

at its maximum and Y is minimised, but this is unreliable for noisy signals. A better

value can be obtained by fitting a circle through the complex plot representation of

the resonance.

We plot the the X channel against the Y channel to produce the complex plot,

as shown in Fig. 4.3. In such a plot the resonance appears as a circle of radius
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Figure 4.3: The resonance represented as a complex plot. In (a) the drive is off
resonance, and in (b) the drive is at the resonant frequency.

R0/2 centred on Y = 0, X = R0/2. Sweeping frequency through the resonance

The X and Y channels of the lock-in track around the circle. The total amplitude

R =
√
X2 + Y 2 at a given frequency is then the distance from the origin and the

phase θ is its angle about the origin from the Y-axis.

The circle is fitted according to the procedure outlined by Bullock in [21]. This

provides the centre coordinates and the radius of the circle. The phase shift of the

resonance is then the rotation of the entire resonance circle about the origin. It is

necessary to use a two-parameter arctan function to identify the correct quadrant

of the phase angle, implemented as:

atan2(x,y) = if(x>0)

atan(abs(y/x))*y/abs(y)

else

(180-atan(abs(y/x)))*y/abs(y))
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The complex plot is a convenient representation as it makes deviations from the

Lorentzian response clearly visible. For example if the sweep rate is too fast the

resonance will be ‘dragged’ and the peak will be skewed - this is known as the

‘gliding tone’ problem. This effect is not immediately obvious from the frequency-

domain peak but the circle is clearly distorted, as shown in Fig. 4.4.

Figure 4.4: Sweeping through the resonance slightly too fast (top) and much too
fast (bottom). The distortion of the peak, top left, is slight but clearly visible as a
distortion of the circle, top right. Notice that the ‘ripples’ in the frequency domain,
bottom right, appear as loops in the complex plot, bottom right.

4.3 Ringdown

The slow gliding tone required of the frequency sweep at high Q severely limits

the rate at which samples can be measured - acquiring a peak may take a full
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day, and two must be taken for each temperature sweep. The fourier transform

of a Lorentzian peak in the frequency domain is an exponential decay in the time

domain, so provided the behaviour of the osillator is linear all the information about

a resonance contained in a frequency sweep through a resonance can also be acquired

from its free decay. For an oscillator of resonant frequency 400 Hz and Q = 500000

a decay will be on the order of t ≈ Q/F ≈ 1000 s – a great improvement.

A LabVIEW vi was written to capture ringdowns. Drive frequency and ampli-

tude are set on the DS345 function generator, then once the resonance amplitude

has built to its equilibrium value the drive is removed and the decay is captured by

the two-channel lock-in. The DS345 does not output a synchronisation signal when

the output amplitude is set to zero, so an in-line relay box was constructed that

would break the connection to the torsional oscillator, and is driven from the SR830

Lock-in amplifier auxiliary output. The program may use the buffer of the SR830

to capture low-Q ringdowns at up to 32 Hz, or return data to the computer as the

ringdown progresses. The second mode allows the user to see the amplitude decay,

but the GPIB connection to the instrument limits acquisition to around 1 Hz so it

is not suitable for low-Q resonances which would decay too rapidly. An exponential

y = e− t/τ curve is fitted to the amplitude data R and the Q of the resonance is ob-

tained from the decay constant τ = 1/Q. The natural logarithm of R is also plotted

and the result of the exponential fit overlayed. Although fitting to lnR would be
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Figure 4.5: A captured ringdown. Note the deviation from an exponential in the
untrimmed (left) plots.

less computationally demanding it would be thrown off when the signal decays into

noise toward the end of a full ringdown. The frequency correction, or ‘off-tuneness’,

is obtained from the phase progression during the ringdown. This is illustrated in

Fig. 4.3 for an oscillator ringing down far from resonance (a) and near resonance

(b). The more rapid oscillation of X and Y shows a rapidly advancing phase angle.

A capture is shown in Fig. 4.7 is shown for comparison. The phase angle θ is given

by the arctangent of X/Y , here implemented as

θ =
Y

|Y |
arctan

∣∣∣∣XY
∣∣∣∣ . (4.5)
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Figure 4.6: The symmetric and antisymmetric signals during ringdown from well off
resonance (a) and near resonance (b) showing the phase progression. A ringdown
from exactly on resonance would have zero Y component and be entirely exponential
in X.

This value wraps at±π, so to produce a continuously changing variable the difference

between subsequent points is found and 2π added or subtracted accordingly when

a wrap occurs. The phase angle progression is then fitted with a straight line,

whose gradient gives the frequency correction. This correction is added to the drive

frequency to obtain the resonant frequency. Strictly this is the damped resonant

frequency β, but in practice the Q is sufficiently high that γ � ω0 and so β → ω0.

For ease of viewing the display is scaled by 2π so as to count cycles, rather than

radians. The necessary phase shift can be found from the intercept of this fit through

the phase progression.

Knowing the resonant frequency and the Q the on-resonance amplitude is then

found from the amplitude at the start of the capture by a rearrangement of Eq. 2.52:

R0 = R
√

1 + 4Q2(ωd − ω0)/ω2
d. (4.6)
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Figure 4.7: A capture of the oscillator’s ringdown from some way off the antisym-
metric resonance.

The analysis routine is run on the entire capture, but this may be misleading.

For example the oscillator may be significantly anharmonic at high drives, may

be dominated by noise at long times, or may be distorted at early times by the time

constant of the SR830. Any of these will result in non-exponential behaviour as seen

in Fig. 4.5 and thus a poor fit. In such cases the user may select a ‘Trim’ section of

the data to fit. Since the oscillator is held on resonance when temperature sweeping

we are only interested in the behaviour at high amplitude and thus we trim the data

to only analyse early times.

There is also the facility to show the gradient of the natural logarithm of ampli-
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Figure 4.8: A captured ringdown shown in red in the left hand plots. The slopes of
ln(R) and the phase progression are shown in white in the right hand plots.

tude and the phase progression as a function of time. If the behaviour is entirely

exponential these should be linear until the signal decays into the noise, but devia-

tions are observed. As the data is digital and noisy it cannot be simply differentiated.

Instead the program applies a linear best fit through a shifting window of the data.

The user specifies a fitting window width over which a straight line is fitted to the

data. The window is then incremented one row in the data array and the fit is

repeated. By plotting the gradients of the straight line fits the slope of the data is

shown, as in Fig. 4.8. The window size must be chosen to be as short as possible
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but longer than noise features, as any features smaller than the window size will be

smeared out.

4.4 Tracking the Resonance

A final LabVIEW vi tracks changes in the resonant frequency as the temperature

is varied and retunes the drive to hold the oscillator on resonance. The vi controls

the driving frequency from the DS345 and reads back the X and Y values from the

SR830, as shown schematically in Fig. 4.9. The DS345 is set to drive the oscillator

at its resonant frequency and the SR830 phase is set such that X is at its maximum

and Y = 0. The quality factor Qmeas and amplitude R0 found from either frequency

sweep or ringdown are entered in to the program. It reads from the SR830 in the

same manner as the frequency sweeper above, averaging sample time ×sample rate

points for the X and Y channels. The inferred Qinf is then calculated based on the

scaling of the signal amplitude from the input value R0:

Qinf =
(X2 + Y 2)Qmeas

R0X
. (4.7)

From our definition of Q in Eq. 2.53 we know that the Q of a resonant mode is

directly proportional to its amplitude R – if the Q is higher than when the ringdown

or sweep was taken then the amplitude will be proportionally higher as the oscillator
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Figure 4.9: Operation schematic of the Temperature Sweeper LabVIEW vi.

is losing less energy, and if it is lower the amplitude will be lower.

The inferred frequency, Finf is calculated from the phase information of the

signal. On resonance the Y channel will be zero. We can see from Eq. 2.83 that

for small deviations from resonance the Y voltage varies linearly with frequency. As

the Q describes the linewidth it will scale the gradient of Y (ω). From this and the
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ωd set on the DS345 we may infer the resonant frequency:

Finf = Fdrive

(
1 +

Y

X

1

2Qinf

)
. (4.8)

The assumption of this linearity is only valid for small frequency deviations, so

a maximum permitted deviation is specified in the program. If this deviation is

exceeded the drive will be set to the inferred resonant frequency. Since the oscillator

takes time to respond to drive changes because of its high Q and Finf depends on

the drive frequency the step change in Fdrive will result in a step change in Finf .

Over several τ the transient components will die away and Finf will relax to its true

value. To prevent the software setting a new Fdrive based on a false Finf and thereby

driving the oscillator off resonance a relaxation time is set. Fdrive will only be set if

the allowed deviation is exceeded and the relaxation time has elapsed since the last

change in Fdrive.

4.5 Simulation

The oscillator was modelled and its resonant modes simulated in SolidWorks CAD

package. 3D drawings of the various parts of the oscillator were created from the

machining drawings. The parts were joined into a rigid assembly and material

properties were added. The model can be used to quickly determine the moment of
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(a) (b) (c)

(d) (e)

Figure 4.10: CAD software simulation of some of the resonant modes of the os-
cillator. In order of increasing frequency, a low frequency floppy mode (a), the
symmetric torsion mode (b), a high frequency floppy mode (c), the antisymmetric
torsion mode (d), and a very high frequency stretching mode (e). Displacement
from the stationary position is shown as a colour gradient from blue to red.

inertia of various parts of the oscillator, as used in section 2.5. The model is anchored

by the base, shown by green arrows. The software then divides the assembled model

into a mesh and simulates the possible movements of the mesh within a specified

range of frequencies and identifies resonant modes. The frequencies of these modes

and animations of their motion are then displayed for review. The displacement of

the oscillator at a selection of resonant modes are shown in Fig. 4.10.
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As well as the symmetric (b) and antisymmetric (d) torsion modes, several other

resonances are predicted by the software. These are dubbed ‘floppy modes’, (a)

and (c), as the oscillator bends back and forth in its torsion rods, and ‘stretching

modes’, (e), as the torsion rods are stretched and compressed up and down like

springs. These modes are visible on a wide-rage frequency sweep of the oscillator,

but as they are of low Q and move the sample in a more a complicated fashion they

are not used.

(a) (b)

Figure 4.11: Plan view of the two torsion modes. (a) shows the symmetric, low
frequency mode and (b) shows the antisymmetric, high frequency mode.

We can see the relative displacement of the high and low torsion modes from a

plan view of the simulations of the symmetric and antisymmetric torsion modes, (b)

and (d) respectively in Fig. 4.10. Viewed as an animation or as a vector field they

show the symmetric and antisymmetric motion of the low and high frequency torsion

modes respectively. From these simulations we can read off relative displacements
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of

X2

X1

∣∣∣∣
s

= 1.4 and
X2

X1

∣∣∣∣
a

= −0.2 (4.9)

for the two modes which compare well with our calculated ratio of displacements

from Eqn. 2.68

X2

X1

∣∣∣∣
s

= 1.368 and
X2

X1

∣∣∣∣
a

= −0.178. (4.10)

The predicted resonant frequencies of low frequency modes are reasonably close

to the measured values, but accuracy is poor at high frequencies. This may be

because of small variations in the machining (particularly in the torsion rods where

k varies as the fourth power of diameter), an inadequately fine meshing of the 3D

model or incorrect material properties. Due to the poor quantitative agreement

it was decided not to use the model to estimate the change of the torsion mode

frequencies under changes in the behaviour of the sample, but it has value as an

illustrative tool to explore the motion of the oscillator.
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Results

In God we trust. All others must bring data.

W. Edwards Deming

5.1 Growing the Sample

The torsional oscillator cell and its fill line must be tested for leaks at room temper-

ature and at nitrogen temperature. The cell is loaded using the gas handling system

(GHS) shown in Fig. 5.1. The system is pumped out and flushed with nitrogen to

clean it, then the dump barrel may be filled from either the 3He sample cylinder

or with 4He through the pumping port. To generate pressure in the cell the dump

is opened to an activated charcoal dipping bomb immersed in liquid helium. The

large surface area of the charcoal strongly adsorbs helium gas when it is cooled to

118
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Figure 5.1: The sample gas handling system.

4.2 K. As the sample gas is cryopumped in to the dipping bomb it passes through a

charcoal nitrogen trap. This is immersed in liquid nitrogen so that any air or other

contaminant that may have entered the system is bound to the charcoal, but helium

will pass through freely. The dipping bomb is left to charge for several hours then

closed off to the low-pressure side of the GHS.

The bomb is then raised out of the liquid and the the sample gas desorbs from

the charcoal as it warms, raising the pressure. The pressure may be controlled with

some precision by careful raising and lowering or the bomb. The bomb is cleaned by

lifting it in and out of the liquid several times before opening it to the cell so that

any impurities are trapped in the bottom of the bomb. This part will not be raised

out of the liquid and so any impurities will not desorb as the sample gas pressure is
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increased. The bomb is then opened to the cell and the pressure is raised to a few

bar at room temperature while a leak detector pumps on the vacuum can. The cell

pressure gauge is monitored to check the performance of the back-diode oscillator

and to ensure the fill line has not become blocked. This is then repeated once the

cryostat has been cooled to liquid nitrogen temperature as leaks may have opened

under thermal contraction. If all these tests are satisfactory the cryostat is cooled

to helium temperature.

Figure 5.2: Calibrating the cell pressure gauge against the Paroscientific gauge. This
plot includes points taken both on increasing and on decreasing the pressure and is
fitted with a third order polynomial.

On reaching helium temperature the cell pressure gauge is calibrated. The bomb
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is loaded and cleaned and then opened to the cell. The cell is then exercised by

raising it to a little over the desired sample growth pressure and then gently reliving

the pressure three times to prevent hysteresis in the deflection of the pressure gauge.

The cell pressure is then raised and lowered over the working pressure range for the

run, stopping at intervals to let the pressures stabilise. A LabVIEW vi captures the

back diode oscillator frequency and the pressure given by a Paroscientific Digiquartz

gauge to produce a calibration curve. By comparing the points taken on increasing

the pressure and those taken on decreasing it we can confirm that the lag between

the gauge and the cell is small. The calibration is fitted with a polynomial as shown

in Fig. 5.2 and the fit parameters loaded into a LabVIEW vi that monitors the cell

pressure.

In this experiment both 3He and 4He samples were used. These isotopes have

very different phase diagrams, as shown in Fig. 1.1. In 3He the sample is solidified at

a little over 1 K, whereas in 4He the melting line is above 2 K. As such, low pressure

3He crystals are grown with the pot running and the cell at 1.5 K and 4He crystals

are grown with the pot stopped and the cell at 4.2 K.

Once the cell has been calibrated it is loaded to the required growth pressure.

The solid density of the sample at the required pressure is taken from the literature.

The cell is then loaded to the pressure corresponding to that density at the melting

line. In 3He the starting pressure will also determine the structural phase of the
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final sample – body centered cubic (BCC) at low pressure or hexagonally close

packed (HCP) at high pressure. In 4He the BCC phase is limited to a narrow

region between 1.4 K and 1.8 K, and 26 bar and 30 bar, and only HCP remains at

our working temperature. The in situ pressure gauge allows us to confirm the final

sample pressure for precise positioning on the P − T phase diagram. This growth

method is known as ‘blocked capillary’, or constant volume growth, where a solid is

formed behind a block in the fill line. This is known to produce highly disordered

polycrystaline samples as pressure changes behind the block break up the crystal

lattice [30]. This growth technique produces the largest period shifts observed in

other groups [81].
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Figure 5.3: Typical blocked capillary growth of a 4He sample. The cell is loaded
with liquid. It contracts slightly on cooling and joins the melting line and the
sample starts to freeze. Because of the difference in density between the solid and
liquid phases the mixture follows the melting line until all the liquid is frozen. The
solidified sample then leaves the melting line and contracts slightly as it cools.
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Once the dipping bomb is stabilised at the growth pressure the pot is started.

The pot plate quickly cools to 1.4 K and the liquid in the fill line freezes to form a

solid plug where the line is thermally anchored to the pot plate. The growth of the

sample follows an isochor on the P − T phase diagram. A typical growth path in

4He is shown in red in Fig. 5.3. The digital gauge at room temperature and the cell

gauge will now move independently, so the user can confirm that the line is blocked.

At this point the cell fill line is closed off to the GHS and the bomb is emptied back

to the barrel. It is critical that the bomb and nitrogen trap are pumped out as they

are warmed to room temperature as any air that may have leaked into the GHS will

expand on warming and could reach dangerous pressures.

The 3He/4He mash is admitted into the cryostat as the pot cools the cryostat

overnight. Once the cryostat is equilibrated at ∼1.5 K the MCT is loaded in the

same fashion from its own gas handling system. The MCT fill line is plugged at the

still plate by starting the condensed mash circulating through the dilution unit.

5.2 Empty-Cell Backgrounds

On the initial cooldown the torsional oscillator cell is not loaded. The empty tor-

sional oscillator has temperature dependant behaviour that must be subtracted away

from the data to leave only the behaviour of the sample. This behaviour is drive

dependent, so several backgrounds must be taken for each of the two torsion modes.
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Below a certain drive level the drive dependence diminishes and the backgrounds

all follow the same curve, as shown in Fig. 5.4 and Fig. 5.5. The temperature of

the cryostat is stabilised at 700 mK and the oscillator drive amplitude is set. A fre-

quency sweep or ringdown is performed to obtain the parameters of the resonance

to be studied. The temperature sweep vi is then started with these parameters to

hold the oscillator on tune and the temperature of the cryostat is swept down to

base temperature linearly over 12 hours. This sweep rate is slow enough that the

sample remains thermalised with the thermometers. In this way the temperature

dependence of the resonant frequency and Q is obtained between 700 mK and 18 mK.

Figure 5.4: High mode empty-cell period and dissipation.

The low mode shows larger deviations in its frequency and amplitude, most likely

because its frequency is close to that of some source of mechanical noise in the lab,

such as a pump. Where possible the sweeps are run overnight to minimise ambient

noise. The temperature sweeps are fitted with a high order polynomial so that

the empty cell behaviour may be subtracted away from the Q and frequency points
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Figure 5.5: Low mode empty-cell period and dissipation.

obtained with a sample in the cell. In the context of the sample it is more convenient

to discuss in terms of resonant period P and dissipation D, so the reciprocals of the

F and Q are taken to produce the plots in Fig. 5.4 and Fig. 5.5.
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Figure 5.6: Fitting the empty cell background as P = a + bt + ct2 + dt13 where
t = 0.7− T . The data is black, the fit is overlayed in green.

The polynomial gives a better fit if the temperature scale is reversed, i.e. we

fit to t = 0.7 − T rather than T . Originally a 10th order polynomial was used.
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The period and dissipation variation with temperature is essentially linear down to

100 mK where a sharp turn occurs. This marks the onset of ‘glassy’ behaviour of

the metal due to tunnelling systems within the metal, namely the movement atoms

in double-well potentials around defects [73, 89].

This means that most of the high order terms are very small, and only the

highest were needed to account for the sharp turn. It was found that a better fit

was achieved using a quadratic with an added t13 term, i.e.

P = a+ bt+ ct2 + dt13. (5.1)

The slightly curved high temperature behaviour is well fitted by the quadratic, and

the sharp curve is well fitted by t13. An example of the fitting is shown in Fig 5.6.

Neglecting the highest drives the fit parameters a and c change very little between

different drive levels, and the parameters b and d vary linearly with drive level. The

empty oscillator was left tracking the low mode resonance stabilised at 50 mK as

a ‘worst case’ test, and was found to show 1.9 µV of amplitude noise and 0.95° of

phase noise with a frequency stability of 10µHz.
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Figure 5.7: The P − T phase diagram of 3He. The tri-critical point at 3.148 K and
137.7 bar is shown in pink. Data taken from Straty and Adams [84], and Grilly and
Mills [38]

5.3 The 3He Sample

Once a set of empty background sweeps were acquired the cryostat was warmed to

1.5 K and the cell was filled with 3He. The cell was loaded at 52.0 bar to produce a

final solid pressure of 41.5 bar. At this pressure 3He is BCC.

The resonant mode frequencies were found via ringdown and confirmed by fre-

quency sweep at a number of different drive levels. The difference between the

empty cell and loaded frequencies at 700 mK is the mass-loading frequency. This
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difference may then be used to scale any observed frequency changes as a fraction

of the sample mass.

The resonant frequency and Q were then logged as the temperature was swept for

each in the same fashion as the empty cell. From the background polynomial empty-

cell period P and dissipation D values were generated for each P and D point of the

sweep, and subtracted away. In this manner the temperature dependent behaviour

of the empty cell is removed from the data.

24/05/2013 BCC 3He crystal
Background Subtracted, high mode, 0.1mV drive.
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21/05/2013 BCC 3He crystal
Background Subtracted, low mode, 0.5mV drive.
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Figure 5.8: Behaviour of the 3He sample at high frequency (a) and low frequency
(b). Empty cell background behaviour has been subtracted. The errors from the
background fitting are shown in red. Period shift is shown at the top and dissipation
at the bottom.

Examples of temperature sweeps on the 3He sample are shown in Fig. 5.8. The



CHAPTER 5. RESULTS 129

small feature at very low temperatures may be some loss mechanism in the sample

freezing out, causing a drop in dissipation and shifting the resonant period. In

agreement with other groups using a 3He control sample we see no feature in the

period at 200 mK and no peak in the dissipation. We observe no drive dependence

in the 3He temperature sweeps.

5.4 The 4He Sample

The dilution unit and the pot were then stopped and the cryostat was warmed to

5.0 K and the cell was emptied into the bomb. The cell was cryopumped by the

bomb for 24 hours then closed off and the sample gas returned to the 3He dump.

The cell was then flushed with 4He and left for an hour to dislodge any 3He from

the cell walls and fill line. The cell was then pumped out for several hours, and the

4He flush and pump were repeated twice more. The cell was then loaded with 4He

to a growth pressure of 80.0 bar and the cryostat was cooled to base temperature,

giving a final sample pressure of 42.0 bar.
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Figure 5.9: The raw f and Q data collected from a twelve hour temperature sweep
of the empty oscillator. The smaller plots below show the ringdowns used to collect
the initial f and Q parameters used to track the resonance, left, and to remeasure
then to confirm that the sweep tracked correctly, right. The small discrepancy at
the low temperature (left) end of the sweep is due to the cryostat cooling further
after the sweep is completed.

The mass loading frequency shift was found in the same manner as for 3He and

the temperature sweeps were conducted, again from 700 mK to base temperature

over 12 hours. The background were subtracted to produce a set of data sheets of

sample period shift ∆P and dissipation contribution D for several drives at each

frequency. Example data sheets are shown in Fig. 5.10 (high mode) and Fig. 5.11

(low mode).

The two plots on the left side are the raw data taken from the temperature

sweeping program, the upper plot is the period of the resonant mode and the lower
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Figure 5.10: A high frequency 4He example data sheet.

is its dissipation. The full cell data is shown in black, and its corresponding empty

cell background is shown in blue. The scales are shifted but of the same span so

that differences between the loaded and empty cell are obvious. The plots on the

right side show the full cell data after the empty cell background data is subtracted

away. Again, the upper plot shows the period and the lower plot the dissipation.

The data is shown in black, and the error arising from the polynomial fitting of the

background in red. The low mode shows more noise due as it couples more strongly

to sources of mechanical vibration in and around the cryostat. The noise in the Q
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Figure 5.11: A low frequency 4He example data sheet.

is greater as this is calculated from the angle between the two lock-in channels and

is thus highly sensitive to phase noise, whereas the period is only sensitive to the

amplitude noise.

The general shape of these period shift plots is a plateau at high temperatures,

gently sloping down in period on cooling. On approaching 200 mK the downward

slope increases, reaching a maximum gradient around 60 mK which coincides with

the peak in the dissipation. At around 30 mK the dropping period levels off sharply

and remains constant or rises slightly. At higher drives the levelling off at low tem-
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Figure 5.12: High frequency period shift summary.

perature is not observed - presumably it is suppressed below the base temperature

of the cryostat.

Over the ∆P plot top right a construction (green lines) is made to find the period

shift. First the high temperature slope is extrapolated to T = 0. Then the lowest

period the oscillator reaches is then subtracted from the extrapolation of the high

temperature slope to give a lower limit on the period shift, as shown in blue on the

summary plots. The steepest section of the period drop is then extrapolated back to

T = 0. This intercept is subtracted from the extrapolation of the high temperature

slope to give an upper limit on the period shift. For sweeps at low drive level where

the levelling off of the period at low temperature is observed only the lower limit

shift value is used. At higher drives we can only specify a range between the two

limits in which the maximum period shift may be.

Summaries of the sweeps at various drive levels are shown in Fig. 5.12 (high
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Figure 5.13: Low frequency period shift summary.

mode) and Fig. 5.13 (low mode). The sweeps in the low mode summary are shifted

for clarity.

The dissipation of the oscillator is also measured during the temperature sweep

as shown in Eqn. 4.7. An empty cell background dissipation is then subtracted

via a polynomial fit as for the oscillator period, leaving the bare dissipation of the

sample as a function of temperature. The dissipation shifts are summarised in

Figs. 5.14 and 5.15 for the high and low frequency modes respectively. The high

frequency summary shows a clear peak at low temperatures, growing in amplitude

and appearing at higher temperature with decreasing drive. The same feature is

present in the low frequency mode but is obscured at lower drives by noise.

The period shift for each mode is then taken as the mean of the measured lower

limit shifts at drive levels where the shift is saturated. The period shifts are then

divided by the mass loading period for the corresponding mode to scale them by the
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Figure 5.14: High frequency dissipation shift summary.

mass sensitivity of the oscillator at that mode. Note that this mass loading period

is not the same as the parameter β derived in Eq. 2.93 – β refers to the frequency

change caused by changes of moment of inertia as a fraction of the moment of inertia

of the entire head of the cell, whereas this scaling gives shift as a fraction of the

helium sample, ∆M
MHe

. These values are given in Table 5.1.

Table 5.1: Period shifts and apparent change in moment of inertia of the torsional
oscillator.

∆P ∆M/MHe

Symmetric mode (9.05± 0.70) ns (2.10± 0.16)× 10−3

Antisymmetric mode (2.16± 0.10) ns (8.04± 0.37)× 10−3

Once the data had been acquired the cell was very gently opened to the dump

barrel. The cryostat was warmed up to room temperature and the cell left open to

the dump barrel to equilibrate. Because the cell had been used to measure a 3He

sample before the 4He sample was loaded there may have been some contamination
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Figure 5.15: Low frequency dissipation shift summary.

from 3He that was not removed by flushing the cell with 4He. To test this a leak

detector was used in a similar manner to that discussed in section 3.3 to measure the

3He impurity concentration. In this case the 3He concentration was much smaller,

and so the method of measuring 3He and 4He leak rates as in section 3.3 may be

inaccurate. The mass peak of the abundant 4He may overlap with the center of the

3He mass peak, inflating the 3He abundance.

By controlling the leak detector from a computer over RS232 it is possible to

initiate a service procedure that generates a full mass spectrum from the leak de-

tector. The leak detector sweeps its accelerating voltage from 300 V to 1000 V and

gives the mass spectrometer current, scaled as a leak rate, to a two channel chart

recorder output. The leak rate is outputted in scientific notation with the mantissa

on one channel and the exponent on the other, as analogue voltages between 1 V

and 10 V. These two channels are captured by a Textronics TDS430A storage os-
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cilloscope and are read back to the control computer via GPIB. A python program

provided by Dr Lev Levitin combines the mantissa and the exponent to obtain the

mass spectrometer current. From this data Fig. 5.16 was produced.
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Figure 5.16: Mass spectrometry of the 4He sample. The isotope peaks are labelled
along the top edge. The discontinuous features circled in red are artefacts from the
leak detector automatically changing its preamplifier gain.

A needle valve was mounted between the leak detector and the sample gas han-

dling system. The valve and piping are pumped out and the needle valve is closed.

The sample gas is then admitted behind the needle valve and the leak detector is set

to monitor 4He. The needle valve is then cracked open to allow the sample gas to
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enter the detector, and opened until the leak rate reaches 1.0× 10−4 mbar l s−1. The

mass spectrum is then swept and captured. Three distinct peaks are observed with

lighter masses at higher accelerating voltages. As well as the two helium isotopes

originating from the sample a large hydrogen peak originates from the breakdown

of the pump oil. In previous measurements on samples of known purity Dr Lev-

itin learned that the leak detector is 2.3± 0.1 times more sensitive to 3He than to

4He, so this correction factor was applied. Comparing the height of the isotope

peaks and applying the correction factor gives a 3He impurity concentration of 1

part-per-million, essentially the same purity as commercial helium gas [95].
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Interpretation

Torture the data, and it will confess to anything.

Ronald Coase

6.1 Drive Dependence

Superfluidity of liquid helium is suppressed above a certain critical velocity, vc ≈

20 cm s−1 [7]. If the ‘supersolid’ phase is its analogue one would expect a similar

critical flow velocity. Persistent DC flow experiments in solid helium have proven

fruitless [36, 18, 27, 83] or highly complex [76, 75], so we must rely on the torsional

oscillator. As expected the observed period shifts increase as the drive level (and

hence the velocity) is reduced until a saturation is reached where further reductions

in drive produce no larger period shift (see section 5.4). However, the nature of the

139
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torsional oscillator introduces complications. Because the cell is undergoing simple

harmonic motion we cannot say whether the suppression of period shift at high

drives at a given frequency is a response to the sample velocity, the acceleration it

is undergoing or the shear it is subjected to.

The two-mode oscillator allows us to resolve this ambiguity by comparing the

period shift suppression of the two modes.
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Figure 6.1: The measured period shift as a function of cell velocity.

The signal voltage from the torsional oscillator is proportional to its velocity, as

shown by Eq. 2.31, but this describes the velocity of the vane – we are interested in

the velocity of the sample.

From the ratio of displacements in Eq. 2.66 we know that the relative motion of
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the head and the body is

x2

x1

∣∣∣∣ =
k2

k2 −M2ω2
=

1

1− ω2/ω2
2

(6.1)

which we scale by the ratio of the radius of the rim of the specimen to that of the

vane to find the velocity of the sample rim at a given frequency

υrim = υvane
1

1− ω2/ω2
2

× rrim

rvane

. (6.2)

From the signal voltage of the torsional oscillator readout we find the velocity

of the rim of the sample and plot this against the measured period shift to produce

the plot in Fig. 6.1. The two plots follow the same curve, shifted on the vertical axis

due to the frequency dependence of the period shift. By multiplying the low mode

points by 3.2 (hollow red circles) we see that the two modes have the same ‘rolloff’

as the full period shift is suppressed by increasing the velocity of the oscillator.

The knee of this curve gives a critical velocity in the region of 100µm s−1. The

‘pancake’ geometry of our cell limits our ability to determine the critical velocity,

as the velocity of the sample goes as its radius from the axis, smearing the knee of

the curve.
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6.2 The Effect of Changes in Shear Modulus

Apparent changes in moment of inertia at zero frequency may originate from changes

in the moment of inertia M and from changes in the spring constant k. Changes

in the spring constant of the silver torsion rod are accounted for in the subtraction

of the empty-cell background, but as our cell is filled through a fill line drilled

through the torsion rod we must consider the effect of the helium in the line on

the period of the oscillator. The piezo cell measurements of Day and Beamish

[25] have shown that the shear modulus of solid 4He increases significantly in the

vicinity of 200 mK, independently of frequency, with strikingly similar drive and

3He concentration dependence. The effect of this increase in shear modulus of the

helium in the fill line is to stiffen the torsion rod, and as we showed in Eq. 2.3

ω0 =

√
k

M

an increase in the natural frequency of the oscillator may arise from either a re-

duction in its moment of inertia M or an increase in its spring constant k. This

stiffening of the helium has been shown to account for an appreciable fraction of the

observed period shift of torsional oscillators using a hollow torsion rod, depending

on their particular geometry [14]. This effect must be taken into account before any

conclusions can be drawn from an apparent change in moment of inertia.
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We denote the outer radius of the torsion rod as ro and the radius of the fill line

as ri, and the shear modulus of the rod material µr. If the shear modulus of the

helium in the torsion rod changes by ∆µHe then the fractional change in the torsion

constant of the rod is given by

∆k

k
=

∆µHe

µr

1

(ro/ri)4 − 1
. (6.3)

In our double oscillator we must consider the effect on both rods, which will be

different due to their different geometry. Using the dimensions of the rods in Fig. 2.7

we find that
∆k1

k1

= 2.02× 10−2 ∆µHe

µHe

∆k2

k2

= 7.72× 10−4 ∆µHe

µHe

.

(6.4)

Changes to the two modes will then be

∆Pa =
∂Pa

∂k1

∆k1 +
∂Pa

∂k2

∆k2

∆Ps =
∂Ps

∂k1

∆k1 +
∂Ps

∂k2

∆k2

(6.5)

which in terms of the logarithmic derivatives discussed in section 2.6 becomes

−∆Pa

Pa

= (
1

2
− α)

∆k1

k1

+ α
∆k2

k2

−∆Ps

Ps

= α
∆k1

k1

+ (
1

2
− α)

∆k2

k2

.

(6.6)
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This gives the contributions from shear modulus changes in the helium in the rods

to the two modes as

−∆Pa

Pa

= 1.51× 10−3 ∆µHe

µr

−∆Ps

Pa

= 8.97× 10−3 ∆µHe

µr

.

(6.7)

We take the shear modulus of coin silver to be 33 GPa and the shear modulus

of 4He at the sample pressure of 42 bar to be 15 MPa [26][36]. A typical shear

modulus shift in a polycrystaline helium of 25% as reported by Day and Beamish [26]

would thus cause period shifts of ∆Ps = 2.5 ns and ∆Pa = 0.08 ns in the symmetric

mode and antisymmetric mode respectively. Changes in the shear modulus of the

polycrystaline sample may therefore account for less than one third of the observed

period shift in the symmetric mode, and have a negligible effect on the antisymmetric

mode.

6.3 Movement of the Sample Chamber Base

Maris has shown that the behaviour of the cell can be influenced by the movement

of the base of the sample chamber [61]. He demonstrates that the base of the cell

will be in torsion as well as the rod below it, and changes in the shear modulus of

the helium in the cell can have a significant effect on the effective torsion constant

of the base. This will in turn change frequency of the oscillator. Maris estimates
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the fractional change in the torsion constant of the rod to be

∆k2

k2

=
r3
o

8lw2

∆µHe

µm

(6.8)

where l is the length of the torsion rod (in our case rod 2, as this is the one connected

to the sample chamber), w is the thickness of the base and µm is the shear modulus

of the sample cell material. For our oscillator then

∆k2

k2

= 3.65× 10−2 ∆µHe

µm

. (6.9)

Comparing this to Eq. 6.4 we can see that this effective change in torsion constant

of the upper rod is some 50 times that from the change in shear modulus of helium

inside the rod.

From Eq. 6.6 we can again find the change in the oscillator period arising from

this effect, assuming a 25% change in µHe:

−∆Pa

Pa

= 1.61× 10−2 ∆µHe

µr

−∆Ps

Pa

= 2.12× 10−3 ∆µHe

µr

.

(6.10)

This leads to an increase in ∆Ps of 0.61 ns and an increase in ∆Pa of 0.93 ns. Thus

we see that this effect may account for some 7% of the low frequency period shift,

and around 43% of the high mode shift. We see that the effect of the stiffening
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of the helium sample on the base of the sample cell makes little difference to the

zero-frequency ∆M/M , as this is chiefly influenced by the symmetric mode.

6.4 Frequency Dependence

The torsional oscillator suffers a serious complication in studying solid samples – the

elastic motion of the sample. The sample is being accelerated by the walls of the

sample chamber. The sample has inertia and therefore is subjected to an oscillating

shear stress as the oscillator accelerates, and as it has a finite shear modulus it

will distort. The oscillator will thus experience a back-action torque arising from

the viscoelastic motion of the sample. The effect of this viscoelastic back-action

is discussed by Yoo and Dorsey [94] who find that it can account for some, but

not all, of the period shift observed in previous experiments. They show that the

viscoelastic contribution to period shift will vary as the square of frequency.

The use of a two-mode torsional oscillator allows us to study the frequency

dependence of the period shift. As we have only two frequencies available to us

we are not in a position to fit a particular distribution but by plotting the period

shift, scaled by the mass sensitivity to give ∆M
MHe

, against the square of the oscillator

frequency we are able to fit the viscoelastic contribution described by Yoo and Dorsey

as a straight line. The intercept of this line will then give the frequency-independent

apparent change in moment of inertia. This plot is shown in Fig. 6.2, with the shifts



CHAPTER 6. INTERPRETATION 147

and intercept. A true superfluid-like mass flow would be frequency independent, so

it is this zero-frequency shift that is of interest. We find a residual ‘missing moment

of inertia’ fraction at zero frequency of 1.3± 0.2.

Figure 6.2: The frequency dependence of the period drop. Here ∆M
M

is plotted against
the square of frequency. The green points represent the most recent experimental
run using a well characterised cell. Measurements from a previous experimental run
using a different TO cell of the same design are given in red for reference. The α
sensitivity factor for the previous cell is assumed to be the the same as the current
cell. Error bars arise from the range of period shifts that may be inferred from the
temperature sweeps at low drives. The projection back to zero frequency represents
the period shift which does not arise from viscoelastics.
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6.5 Comparison with Aoki, Graves and Kojima

The double-oscillator experiments of Aoki et al [9, 8, 39] provide a point of com-

parisson with our work. The sensitivity of their cell to changes in shear modulus

is not discussed but from the details in [8] we are able to determine the α and β

parameters of their cell.

Their sample chamber is a bored out epoxy cylinder of 10.2 mm inner diameter

and 7.6 mm height, giving a volume of 6.2× 10−7 m3. The sample discussed in [8]

was loaded to a final pressure of 37 bar. At this pressure 4He has a molar volume

of 20.21 cm3 mol−1 (extrapolated from [37]), giving a sample mass of 1.23× 10−4 kg

with moment of inertia M4He = 1.6× 10−9 kg m2. The two resonant frequencies are

given as fs = 496 Hz and fa = 1175 Hz, which on loading the sample decrease by

∆fs = 0.6 Hz and ∆fa = 2.0 Hz respectively.

Following the analysis of our oscillator in section 2.5 we can ascertain the param-

eters for the cell of Aoki et al listed in Table 6.1 along with those of our oscillator

for comparison.

As one would expect, k1 ≈ k2 as the upper and lower rods are nominally identical.

Their oscillator has very similar susceptibility to changes in shear modulus as ours

(same α), but their mass sensitivity is greater (larger β). As discussed in section 2.6

the necessary trade-off for this is a narrower seperation in frequencies.

They observe the same 0.1% apparent mass decoupling (“NCRIF”) for both the
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Table 6.1: Comparison with the oscillator of Aoki et al.
Aoki et al This work

fs 496 Hz 399 Hz
fa 1175 Hz 1978 Hz
k1 10.7 3.35
k2 9.84 13.7
M1 7.26× 10−7 kg m2 1.43× 10−7 kg m2

M2 2.74× 10−7 kg m2 3.27× 10−7 kg m2

ω1 2π × 611 Hz 2π × 769.7 Hz
ω2 2π × 954 Hz 2π × 1026 Hz
α 0.444 0.442
β 0.294 0.119

low and high frequency modes. From their oscillator frequencies and mass loading

frequency shifts we can ascertain that this corresponds to period shifts of ∆Ps =

4.93 µs and ∆Pa = 1.24 µs. Using the calculated value of α for their cell we may

correct for shear modulus effects as above using the given geometry of their oscillator.

We can attribute period drops of ∆Ps = 2.3 ns and ∆Pa = 0.98 ns to stiffening of the

torsion rods. The base of the sample chamber contains an intermediate step in and

is formed from mixed materials making analysis of its movement more complicated.

From some of the general comments in [61] we can likely neglect movement of the

sample base as it is relatively thick. Fig 6.3 shows the correction applied to the

data of Aoki et al and extrapolated back to give a zero-frequency missing moment

of inertia.



CHAPTER 6. INTERPRETATION 150

Figure 6.3: Data of Aoki et al, original (circles), and with shear modulus correction
applied (triangles).

6.6 Conclusions

This work has developed the two-mode torsional oscillator for experiments on solid

helium at millikelvin temperatures, improving its performance and analysing its

sensitivity to mass and shear modulus changes. By using a two mode oscillator we

are able to study the frequency dependence of a single sample, avoiding sample-

to-sample variation, and correct for effects arising from changes in shear modulus.

A coin silver torsional oscillator was used with two torsion rods, a ‘dummy’ mass

with drive and pickup vanes and a sample chamber with an in situ pressure gauge.

Several wiring arrangements were tested and the highestQ performance was achieved

using a short length of 38-gauge copper wire from a PCB pad to the wings of
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the oscillator, as close as possible to the torsion axis. A method for running the

torsional oscillator without wires to the vanes was also developed and implemented.

An adsorbtion bump was also fitted to the cryostat which may have significantly

improved Q performance.

We have derived expressions for the sensitivity of the oscillator’s frequency to

changes in moment of inertia and spring constant arising from flow or changing

shear modulus of the sample, reducible to two constants α and β, calculated from

the changes in the frequencies on loading the sample cell.

We developed new software to capture the free decay of the oscillator and ex-

tract its resonant frequency and Q much faster than conventional frequency-domain

sweeping. In the future this may be developed into a new measurement scheme

to measure frequency shift and dissipation as 2D surfaces rather than as a collec-

tion of amplitude plots. We have also modelled the motion of the oscillator using

commercial finite element analysis. We have measured the frequency and Q of the

empty torsional oscillator cell as a function of temperature at a range of drive veloc-

ities and found that the cell response collapses on to a common curve when driven

below 100 µm s−1. The cell was then filled with BCC 3He and measured again.

The empty cell backgrounds were subtracted away leaving the bare sample response

which showed a slope but no clear features. The cell was then emptied and flushed

with 4He, loaded with a polycrystaline sample of 4He and measured again. On sub-
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tracting the empty cell background a shift down in the period and a dissipation

peak were observed at both frequencies, suppressed at high drive velocities. This is

consistent with the phenomenon some groups refer to as ‘supersolidity’.

By considering the α sensitivity parameter and the frequency dependence of the

effect we have accounted for possible non-superfluid contributions to the torsional

oscillator period shift in 4He. We conclude that there is a fraction of the observed

period shift extrapolated to zero frequency which does not arise from changes in the

shear modulus of the helium in the torsion rod or from the vicsoelastic behaviour

of the sample. This corrected zero frequency period shift corresponds to an appar-

ent decoupling of 0.135% of the sample, with a critical velocity vc ≈ 100 µm s−1.

This ‘missing moment of inertia’ remains unaccounted for by mechanisms of false

period shift proposed in the literature and may be a sign of genuine superfluid-like

behaviour. We have compared our data to that of Aoki et al, applying appropriate

corrections for shear modulus effects and extrapolated back to zero frequency. We

find that they also show a residual missing moment of inertia, but it is almost an

order of magnitude smaller than that observed in our experiment.
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Further Work

Poems are never finished – just abandoned.

Paul Valéry

7.1 Extending 4He Results

The behaviour of solid 4He samples in torsional oscillator cells is well known to

be highly dependent on sample preparation. Slight differences in the cooling rate,

isotopic purity, sample cell design etc. can drastically change the observed period

shifts, so repeating the measurements above with crystals grown under the same

and various other conditions is of paramount importance.

Samples may be grown under constant pressure as well as under constant volume

as used in this experiment. By adding a thermal link from the mixing chamber to the

153
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cell and weakening the thermal anchors on the fill line the crystal may be nucleated

inside the cell and grow outward, producing a single crystal in the cell. If the

cryostat is cooled below 2 K and the pressure raised while the fill line is heated it

is possible to grow a single crystal from superfluid helium. This crystal will be of

exceptionally high quality which according to other groups greatly diminishes the

period shift. However, Balibar et al have shown that the shear modulus behaviour

of 4He monocrystals depends strongly on their orientation. We do not have the

capability to determine the orientation of the crystal in the sample chamber, so it is

questionable how informative monocrystal results can be without direct observation

of the crystal growth as afforded by the optical cryostat and sapphire cells of Balibar

et al.

Sample quality may be affected after growth by pressure changes or thermal

shock [81, 29] to introduce disorder, or by annealing to reduce it [72, 81, 26]. By

warming the cell up to near the melting line grain boundaries and dislocations in

the polycrystal will relax and a higher quality sample will result.

The viscoelastic contribution calculated by Yoo and Dorsey [94] assumes fixed

boundary conditions–that there is no slip between the sample and the walls of the

cell. This assumption could be tested by using sample cells with different surface

preparations. The existing cell has a machined finish. Torsional oscillator sample

chambers made in three sections could be polished to promote slippage, and another
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bead blasted to reduce it. Because of the known variation between samples several

crystals would need to be grown in each cell. A reproducible change in the frequency

dependence of the samples would indicate that sample slippage is contributing to

the behaviour of the oscillator.

The two-mode oscillator allows for further exploration of critical velocity effects.

By mixing two AC drives the oscillator may be driven at both frequencies simulta-

neously with its response read out at the two drive frequencies by lock-in amplifiers.

By driving one mode at low amplitude and raising the amplitude of the other one

should observe the suppression of both modes as the sample exceeds its critical ve-

locity. If the same suppression is observed for both modes while over-driving the

other it is very likely that a superfluid-like critical velocity is responsible.

7.2 HCP 3He

The ‘supersolid’ period shift has never been observed in 3He samples. Beamish et

al have observed a shear modulus change in HCP solid 3He, but not in BCC. As

4He is necessarily HCP in the temperature range where the ‘supersolid’ period shift

is observed we are naturally curious what behaviour HCP 3He might show in a

torsional oscillator. If the ‘supersolid’ period shift is entirely the result of the shear

modulus change then one would expect similar results in HCP 3He as in 4He.

Only one torsional oscillator experiment on HCP 3He is documented in the lit-



CHAPTER 7. FURTHER WORK 156

HCP Solid

Liquid

BCC Solid

P
re

ss
u

re

Temperature

(a)

(b)

(c)

Figure 7.1: Phase diagram of 3He showing possible blocked-capillary sample growth
isochors, (a) BCC throughout, (b) HCP cooled through BCC, and (c) HCP through-
out. The tri-critical point is shown in pink.

erature [90] and no period shift was observed. However in order to support the high

pressure required to form HCP 3He (at least 108 bar, see Fig. 5.7) the experimental

cell used was of a very different design to earlier 4He experiments. As the path

length experiments by Chan et al [51], amongst others, have shown certain designs

appear to yield no period shift in 4He, and the experiment was never repeated in

the same cell with 4He [90].
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Our experimental cell has shown the period shift effect in 4He, and the design has

been pressure tested up to 150 bar. Its in situ pressure gauge allows us to exactly

position a sample on the phase diagram with no uncertainty regarding pressure

changes from phase transitions and thermal contraction. As such we are ideally

placed to test the torsional oscillator behaviour of HCP solid 3He. A subsequent

experiment must grow a solid 3He sample in a clean cell at a final pressure of at

least 110 bar and measure its response. This can be directly compared to a 4He

sample grown under the same conditions and the shear modulus shifts of 3He and

4He. This measurement has the potential to offer an amount of closure on the

‘supersolid’ question.

7.3 Nuclear Magnetic Resonance

The TO period shift and shear modulus change in solid 4He are known to be strongly

dependant on 3He impurity concentration, x3. Some explanations of the phenomena

centre on the ‘pinning’ of dislocations by 3He [26, 46] and so we are keen to know

more about its microscopic action. As the magnetogyric ratio of 3He is large and

the surrounding 4He has no nuclear magnetic moment to obscure its signal, one

might imagine these samples are highly amenable to Nuclear Magnetic Resonance

(NMR). Unfortunately, the required concentrations of less than 100ppm at which

the phenomena are observable make such measurements exceptionally difficult. The
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tiny number of 3He nuclei in the experimental cell make for very weak signals. The

physical separation of adjacent 3He atoms means that their interactions will be faint,

and consequently the spin-lattice relaxation time T1 will be exceedingly long, while

the exchange of 3He and 4He atoms in the solid at low temperatures will make the

spin-spin relaxation time T2 very short. These factors all conspire to make NMR

investigation of ‘supersolid’ samples challenging.

Sullivan et al have been able to measure samples down to x3 = 16ppm [54] and

observe a number of features but are unable to resolve these clearly or extend to

lower concentrations. The use of Superconducting QUantum Interference Devices

(SQUIDs) may allow detections of even smaller concentrations. SQUIDs exploit a

property of Josephson junctions to detect minute changes in magnetic felds. A DC

SQUID is formed from a loop of superconductor, broken by two Josephson junctions

in parallel. In the absence of magnetic flux an equal supercurrent I may flow through

each junction. When magnetic flux φ is applied a screening current Is is induced

in the loop to expell the flux, so that one junction experiences a current I + Is and

the other I − Is. When the critical current of a junction is exceeded it becomes

resistive and a voltage is observed across the SQUID. If this flux is ramped up to

exceed half a flux quantum (φ0
2

= h
4e

where h is the Plank constant and e is the

elementary charge) it is energetically favourable to admit one quantum of flux in to

the loop and in doing so reverse the direction of the screening current. As such, the
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critical current of the loop alternates periodically with increasing flux. By adjusting

the biasing current the working point of the SQUID is set at the steepest part of

the V −φ sinusoid the SQUID becomes a flux-to-voltage converter with astonishing

sensitivity. Full details of SQUIDs and their operation may be found in [24].

By connecting the receiver coil of an NMR cell to the input coil of a SQUID

mounted to the 4 K stage of the cryostat it may be used to amplify the minute re-

laxation signals coming from the cell. In this way the sensitivity of the experiment

and therefore the range of available concentrations may be significantly increased.

This technique could offer great insight into the microscopic behaviour of solid he-

lium.
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