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Abstract

The problem of describing the set of all small Mahler measafepolynomials
with integer coefficients is a difficult one. One approachoisok for possible can-
didates among polynomials attached to combinatorial e®jdn this paper we study
the Mahler measure of polynomials coming from non-bipaditaphs: we classify all
such graphs that have Mahler measure bejow (1 + +/5)/2. The bound ofp is
natural in that it is found to be the smallest limit point oétbet of Mahler measures
of connected non-bipartite graphs. (The bipartite casecoasred in an earlier paper
by the second and third authors.)

2010 Mathematics Subject ClassificationPrimary 11R06, 05C50; Secondary 11C99.

1. Introduction

For a monic polynomiap(z) € Z[z], its Mahler measure, written M (p), is defined by

M(p) =[] max(Llal), (1.1)
p(a)=0

where multiple roots contribute to the product accordinth&r multiplicity. The descrip-
tion of all ‘small’ Mahler measures of polynomials #jz| is a notorious open problem: see
[Sm2] for a recent survey of results. Fofz) irreducible and# z or z — 1, Breusch [Br]
showed that unlesg(z) is a reciprocal polynomial (meaning thets®)p(1/2) = p(z))
one hasM (p) > 1.1796.. . . ; this constant was later improved ([Sm1]) to the best-fbssi
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oneM (23 — z — 1) = 1.3247... . The smallest-known Mahler measure greater thin
1.17628.. .., the larger real root of what is now called ‘Lehmer’s polynali the recipro-
cal polynomialL(z) = 2104 2% — 27 — 26 — 25 — 2% — 23 4 2 + 1 [L]. Is this the smallest
Mahler measure greater tha® This celebrated question remains unresolved, although se
eral interesting special cases have been settled [Sm2,.M&3jew of Breusch’s result,
the hunt for small values a¥/(p) > 1 can be restricted to reciprocal polynomials.

A fruitful way of studying certain algebraic objects is bysasiating them with combi-
natorial structures. Indeed Lehmer’s polynomial itselswiéscovered in this wayL(—z)
is the Alexander polynomial of a pretzel knot [R]. There isaunal way to attach re-
ciprocal polynomials to graphs, and it becomes an intergsquestion to ask about the
spectrum of possible Mahler measures for reciprocal patyats that arise in this way (not
all reciprocal polynomials do, bui(z) is an example of one that does).

Let G be a finite graph, witl vertices. (For definitions of graph-theoretical terms,
see [B] or [GR].) The notion of th&lahler measure of a graph was introduced in [MS1].
If Xg(x) is the characteristic polynomial ¢f, thenG has theassociated reciprocal poly-
nomial Rg(z) = z2"Xa(z + 1/z). The Mahler measure of a gragh written M (G), is
defined to be the Mahler of measure of its associated re@ppatynomial.

It is convenient to translate (1.1), wifh= R, into an equation involving the eigen-

values ofG:
M@= [ & <|)\| + VA2 —4) . (1.2)

Xa(X)=0, [A[>2

Again one treats multiple roots according to multiplicibAs a shorthand, we shall say
simply that a grapl6; hassmall Mahler measure to mean that(G) < ¢ := (1 +/5)/2.

Bipartite graphs having small Mahler measure were clagsifigMS1, Theorem 10.2]
(the word ‘bipartite’ was mistakenly omitted from the stagnt), and the remarks fol-
lowing it. If a graph is bipartite, then its roots are symnteabout the origin [CR], and
consequently having Mahler measure belpwmplies that the spectral radius is below
6 = /245 (with A = /2 + /5 one hag A + /A2 — 4)/2 = /4, and in the bipartite
case both\ and —\ contribute to (1.2)). The set of connected graphs with Etrgeggen-
value in the interval2, 0] is described completely in the survey paper of Cvetkovid an
Rowlinson [CvRo, Theorem 2.4], drawing on work of Brouwedadeumaier [BN] and
Cvetkovi¢, Doob, and Gutman [CDG]. The work of [MS1] iddigs the intersection of
this set of graphs with the set of those that have Mahler nmedmlow¢, and hence deals
with the bipartite case. But in the non-bipartite case, jpassible for the spectral radius
to be larger, with the Mahler measure still belgwThe current paper completes the clas-
sification of all graphs that have small Mahler measure byimgavith the non-bipartite
case.

Theorem 1.1. Every connected non-bipartite graph that has Mahler measure below ¢ =
(1+/5)/2 is of one of the following types:

e an odd cycle;

e a ‘kite’ graph, shownin Figure 1;

e a‘balloon’ graph, shown in Figure 2;

e one of eight sporadic examples, Sp,,, ..., Sp;,, shown in Figure 3.
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Figure 1. The kite graph<t,, hasn vertices.
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Figure 2. The balloon graph&ls,, has2n vertices. The smallest balloon is also a kite.

Following [MS1], we shall call a graphbyclotomic if all its eigenvalues are in the in-
terval [—2, 2]. Equivalently,G is cyclotomic if and only ifA/(G) = 1. Cyclotomic graphs
were classified by Smith [S]. In particular, he showed thatdhly connected cyclotomic
non-bipartite graphs are the odd cycles.

From Theorem 1.1 and [MS1, Theorem 10.2], it is easy to desail (not necessarily
connected) non-bipartite graphs of small Mahler measues dso the remark in [MS1],
following Theorem 10.2, concerning non-connected biagraphs of small Mahler mea-
sure.

q
q
q
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Figure 3. The sporadic grapBs,, . ..,Sp;,.
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Corollary 1.1. Every non-bipartite graph of small Mahler measure is of one of the foll ow-
ing types:

e A (not necessarily connected) bipartite graph of small Mahler measure, with one or
more additional connected components consisting of odd cycles;

e A graph with one connected component as given in Theorem 1.1, with any other
components cyclotomic;

e A graph with one connected component Blg, one connected component the tree
e o o o o o oo Withany other components cyclotomic.

As an immediate consequence of Theorem 1.1, and the congmstatvolved in its
proof, we find the following lower bound on Mahler measuresaggr thari for connected
non-bipartite graphs.

Corollary 1.2. Let G be a connected non-bipartite graph. Then either M (G) = 1 or
M(G) > M(Blg) = 1.35098. .., thelarger real root of 210 — 29 — 26 4- 25 — 2% — 2 + 1.

We note that ifH is an induced subgraph 6f, then by interlacing [GR, Theorem 9.1]
one hasM (H) < M(G).
All computations were performed using either PARI [P] or Négj/].

2. Proof of Theorem 1.1

The plan of the proof is as follows. After Smith’s result [Sgwre reduced to consider-
ing non-cyclotomic graphs. We prove that all kité2.1) and balloonss@.2) have small
Mahler measure. We record the results of some computat@3) ¢hat deal with all small
examples. We list some special graphs whose Mahler measua small §2.4): by in-
terlacing these examples cannot appear as induced subgo@mraphs that have small
Mahler measure. We then prove that any connected graph dkatrhall Mahler measure
and contains a triangle must be a kite (Lemma 2.6). To com et proof, we show that all
remaining cases of connected, non-bipartite graphs that $rmall Mahler measure are in
fact balloons (Lemma 2.8). The paper ends with the proof ab{lary 1.1, and some open
problems.

2.1. All kites have small Mahler measure

The spectrum of a kite is no doubt well-known and in any evemtat difficult to derive.
For completeness we give a short argument that the Mahlesureaf a kite is small.

The graphKt,, is a line graph [GR§1.7], so has all eigenvalues in the inter{ak, co)
[B, Proposition 3.7]. Deleting one of the vertices in thangle leaves a cyclotomic graph,
as is seen from Smith’s classification [S]. Biit,, itself is not one of Smith’s graphs, so
does not have all eigenvalues [in2, 2], and so by interlacing [GR, Theorem 9.1K},,
has a unique eigenvalue larger tharand this is the only eigenvalue that contributes to the
Mahler measure via (1.2). (In the language of [M3d4,, is aSalemgraph.) Let \,, be the
largest eigenvalue dft,,.
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| M(Ktn) | M(Bly,) |
1.5061...
1.4012....
1.5061...| 1.3500...
1.5823...| 1.5064...
1.6054...| 1.5783...
1.6134...| 1.6020...
1.6162...| 1.6113...
1.6173...| 1.6151...
10 || 1.6177...| 1.6168...

O oo~NOUhAwWwNS

Table 1. Mahler measures of small kites and balloons.

As n increases, so does,, and indeed it strictly increases [GR, Theorem 8.8.1(b)].
Write \,, = z, + 1/z,, with z,, > 1; thenz, also strictly increases with, and equals the
Mahler measure dKt,,. By [MS1, Lemma 4.3], using the explicit formula in the prawf
[MS1, Lemma 4.1]z, converges to a root of> — z — 1 = 0, and it must be the positive
root ¢. Hencez, = M (Kt,,) < ¢ for all n > 4, and we see that is a limit point of the set
of Mahler measures of non-bipartite graphs.

Using Lemma 4.1 of [MS1], we compute that the reciprocal poipial ofKt,, is

2n—6 _ 1

2n 3 4 Z
-2 1-— 2 1) ———.
z 22 +1-2%22+1) o

See Table 1 for the first few values df (Kt,, ).

2.2. All balloons have small Mahler measure

Balloons cause more trouble than kites, as (apart from sraaés) they have two eigenval-
ues outside the intervéd-2, 2]. As indicated in Table 1, the Mahler measures of balloons
initially decrease as the number of vertices grows, regcaiminimum forBlg, then appear
to increase towards. This we now prove.

Computing the characteristic polynomial by expanding glthve row corresponding to
the leaf, one readily computes that the reciprocal polyabwfiBls,, is

2l 1 (2 =22 1) - (22— 0)
z2—1 z+1 '
Removing cyclotomic factors from this reciprocal polynamiand multiplying byz + 1,
gives(z?—22—1)z2""1 — (24422 —1) = P,(z), say. To show thaBls,, has small Mahler
measure, we must show thaf(P,) < ¢. Forn < 5, we check this by direct computation.
It remains to deal witlw > 5.

Deleting the vertex of valency leaves a (disconnected) cyclotomic graph, so by in-
terlacing P, has at most two roots outside the unit disc. Note tRat—+/¢) < 0,
P,(-1) =0, P(-1) =9—-2n < 0forn > 5, P,(v/¢) < 0, P,(c0) = +o0, SO
that forn > 5, P, has a rootz;, in (—/$,—1) and a rootz;" in (1/¢,00), and these
account for all possible roots outside the unit disc.
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FromP,(z) = 0, we get

1 2422 -1
BlA_2_1 2n—1 2.3)
log |22 2 '
Puttingz? = (1 + z)¢ in (2.3), the left-hand side becomes
log ‘1 4 2(1+x)
z(zp+o+1/9)
g(x) = (2.4)

loggp +log|l+z|

The two rootsz;,; andz;" correspond to real roots of the equatigir) = (2n — 1)/2:
call these—u/, andu,, say, where;, = —/(1 — u},)¢ andz;" = /(1 + u,)¢. We easily
see thay(z) is decreasing fox > 0: this is immediate from the fact that its numerator is
decreasing, while its denomiator is increasing. Sig@el) < 9/2, we see from (2.3) that
u, € (0,0.1), for alln > 5. We have

which is less tham if u], > wu,. We now show that this is indeed the case.

Knowing thatg(z) is decreasing iff0, o), andu,, € (0,0.1), it will be enough to show
thatg(—z) > g(z) for z € (0,0.1).

On rewriting the numerator af(x) in (2.4) as

log |1/x| + C +1og |1 + zR(x)| , (2.5)
where
26 (46 +3)z +Tp+5
C=1 ~ —0.11157 and R(z)= ,
R @) = G+ 2+ 6012
one readily checks that
()~ gla) ~ o log |+
N P R

asz — 0+, and simple estimates involving approximations to the dibigan function show
that this positive main term dominates in the interifal0.1), as desired.

2.3. Details of some computations

A consequence of interlacing is that any connected grapth#isasmall Mahler measure can
be ‘grown’ from smaller connected examples by adding vestid-or non-bipartite graphs
this process proceeds as follows. The complete list of attede non-bipartite graphs that
have three vertices (and Mahler measure beipus very short: just the triangle. Consider
all possible ways of adding a new vertex to produce a condewia-bipartite graph witd
vertices; keep only those that have Mahler measure bglamd keep only one representa-
tive of each isomorphism class. Grow similarly to get a liss«wertex graphs, now adding
to this list theb-cycle (which cannot be grown from a triangle). One can pedce this
way for larger and larger graphs, until computational lafigns prevent further growing.
In particular, growing up t& vertices is a trivial matter, and it establishes the follogvi
Lemma.
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| number of verticeg| graph(s) \ Mahler measure(s) \
4 Kty = Bly 1.5061...
5 Kts 1.5823...
6 Ktg, Blg 1.6054..., 1.4012...
7 Kt7, Sp,, Spg, Spy, | 1.6134...,1.4723..., 1.5560..., 1.5823/..
8 Ktg, Blg, Spy, Sp. | 1.6162...,1.3509..., 1.4967..., 1.5991,..

Table 2. Small connected graphs that have Mahler measictystietweenl andq.

Lemma 2.1. Let G be a connected, non-bipartite graph with 1 < M (G) < ¢ and with at
most 8 vertices. Then GG iseither akite (Figure 1), a balloon (Figure 2), or one of Sp,,, Spy,
Spa, Spes Spy, (Figure 3).

These results are tabulated in Table 2. Once the proof off€hea.1 is complete, the
table can be extended at will: there are three more sporadimi@es $p,., Spy, Sp,), all
with 9 vertices, and beyond that the only graphs appearing areitie d&nd balloons. In
fact it was some initial computations growing upl®vertices that led us to conjecture the
statement of Theorem 1.1. For the proof, however, we negdgyolv up to8 vertices, as
later lemmas deal with all graphs 6ror more vertices.

The growing process can also be used to investigate comhewba-bipartite graphs
that have small Mahler measure and contain a particularcedigubgrapt. One starts
with the singleton grapli/, and applies the growing process. For certain subgrapttss
process terminates, revealing only a finite number of ptes&ibger graphs. In particular,
we record the results of growing from a pentagon and from salgen.

Lemma 2.2. The only connected, non-bipartite graphs of Mahler measure in the interval
(1, ¢) that contain either a 5-cycle or a 7-cycle are Blg, Blg, and the eight sporadic graphs
of Figure 3.

2.4. Some graphs that do not have small Mahler measure

We present here some graphs that have Mahler measure dgheaier There are, of course,
many others—we merely list those which will play a rdle irr tater proofs. First we list
some bipartite examples, for which we can appeal to [MS1pfdra 10.2].

Lemma 2.3. Thefour graphs L+, Lo, L3, L4 in Figure 4 all have Mahler measure greater
than ¢.

The graphd.s and L, are the first two members of an infinite family of balloons con-
taining an even cycle (by contrast to the balloons of Figyr&\Z leave it as an exercise to
check that the corresponding sequence of Mahler measures # decreasing sequence,
converging top. For other examples of Pisot limits of graph Mahler measwes can ap-
ply Lemma 4.3 of [MS1] . For example, také&t,, and add a new vertex adjacent to the two
degree2 vertices of the triangle. One obtains a sequence of Mahlassuares that converge
t0 2.205. .., the real root o&3 — 222 — 1.
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L1 L2 L3 ° L4

Figure 4. The graph&4, ..., Ly.

MM%<

Kts Ktg

Figure 5. The tailed kiteﬂn, n vertices,n > 5.

Lemma 2.4. The ‘tailed kites' Kt,, of Figure5 (n vertices, n > 5) all have Mahler measure
greater than ¢.

Proof. Note thatKt,, is not one of Smith’s graphs [S], but that deleting one of tbgrde2
vertices in the triangle cKt leaves a subgraph of one of those graphs. By interlaging,

has at most one eigenvalue greater thaand indeed exactly one, since the spectral radius
of a graph always equals an eigenvalue [GR, Lemma 8.7.3].h®wther handKt,, is a
generalised line graph [B, 3h]. Hengg,, has all eigenvalues at leas®. ThusKt,, has a
unique eigenvalue outside the interya, 2], and this is> 2. From [HS, Proposition 2.4],
the Mahler measure dﬁn strictly decreases asincreases. In the limit, using [MS34],

this sequence of Mahler measures converges téenceM (Kt,,) > ¢ foralln > 5. O

Lemma 2.5. Let @(d, e) be the graph shown in Figure 6, whered, e > 1 and d + e > 2.
Then with the exceptions of Spy, Sp,,, Sp;, (corresponding to (d, e) = (2,3), (3,4), (1,4))
one has M (Q(d, e)) > ¢.

Proof. We may assume that < e. Fore < 9, we check the result by direct computation.
Fore > 9, delete suitable vertices from the middle of the longer pmtween the two

e—1
Q(d,e)
abc

Figure 6. The graph@(d, ¢) andQ(a, b, ¢).
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degree3 vertices to leave a subgragl(a, d, c) (see Figure 6; herez — 1) + (¢ — 1) <
7 < e — 1) in the following list: Q(3,1,3), Q(3,2,3), Q(3,3,3), Q(3,4,4), Q(3,5,5),
Q(3,6,5), Q(3,7,6), Q(4,8,5), or Q(4,d,4) if d > 9. From the computations in the
proof of [MS1, Theorem 10.2], this (bipartite) subgraph Mehler measure greater than
¢, and hence by interlacing so do@$d, e). O

2.5. All large enough connected, non-cyclotomic, non-bipate graphs of
small Mahler measure are either kites or balloons

Lemma 2.6. Let G be a connected graph, with Mahler measure in theinterval (1, ¢). If G
contains a triangle, then G isakite.

Proof. We use induction on > 1. Forn < 8, the direct computations 2.3 establish the
result.

Suppose that > 8 and that the result is known for relevant graphs with fewetices.
Let T be a triangle inGG, and for any vertex define the distance fromto 7" to be the
minimal number of edges in a path fromto one of the vertices ifi'. Takev a vertex of
maximal distance fronT'. Let G’ be the subgraph obtained by deletingnd all incident
edges. Maximality of the distance fromto T ensures that’ is connected. By interlacing,
the Mahler measure @¥’ is at most that of7, so either equal$ or is in the interval1, ¢).
The former is excluded by inspection of Smith’s graphs [8]bg our inductive hypothesis
G’ = Kt,_1. Letx be the leaf inG’, with y its neighbour. By maximality of the distance
of v from 7', the only possible neighbours ofn G arex andy.

First consider the possibility thatis adjacent to botlr andy. Usingn — 1 > 8, we
could then delete vertices from the middle of the path frpite 7" to leave two disjoint
copies ofKty. By interlacing, we would havé/(G) > M (Kt4)? > 1.50613% > ¢,
contradictingM (G) < ¢. We deduce that is adjacent to exactly one afandy.

Next consider the possibility thatis adjacent tay only. ThenG is a tailed kite (Figure
5), and Lemma 2.4 gives a contradiction.

We are forced to the conclusion thatis adjacent tor only, and therefore thatr =
Kt,,. ]

Lemma 2.7. Let G be a connected, non-bipartite graph, with Mahler measure in the inter-
val (1,¢). Let C bean odd cyclein G, of shortest length. If v isavertexnot in C, then v is
adjacent to at most one vertex of C.

Proof. If G contains a triangle, then the result follows from Lemma ¥v@.may therefore
suppose thati contains no triangles.

Suppose that is a vertex not inC' that is adjacent to two verticesandy on C (and
perhaps adjacent to others). The cy€l@rovides us with two paths fromto y, and since
C has odd length one of these patAontains an even number of edges.Plhad more
than two edges, then following the odd-length path froto y, then going fromy to v and
from v to z would give an odd cycle shorter th&h HenceP has exactly two edges; let
be the vertex orP betweenr andy, and letu be the other neighbour efon C'. SinceG
has no triangles, and cannot be a neighbour of (else we could shorte@' by replacing
the pathxzzyu by the pathxzu) the subgraph induced by, y, z, u, v is Lz in Figure 4.



10 Jonathan Cooley, James McKee and Chris Smyth

Lemma 2.3 records that/ (L3) > ¢, hence by interlacing we havel (G) > ¢, which is
a contradiction. We conclude that no such veraxists, which is the claim of the current
Lemma. O

We complete the proof of Theorem 1.1 by showing that any occtexe non-bipartite
graph with Mahler measure in the intervdl ¢) and with no odd cycle of length below
is a balloon.

Lemma 2.8. Let G be a connected, non-bipartite graph, with Mahler measure in the inter-
val (1, ¢). Suppose that G has n vertices and that the shortest odd cycle in G has length
2m — 1. If m > 5 then G = Bly,,.

Proof. We use induction om. Forn < 9 the result is vacuous.

We suppose that > 9, and that the result is known for all relevant smaller grajhlet
C be a shortest odd cycle i#. We may assume thd&t has at leasp edges, or there is
nothing to prove. Sincd/(C') = 1, there must be other vertices @ Letv be a vertex
in G that is as far distant fron®’ as possible. Deleting leaves a connected gray,
containingC' as a shortest odd cycle. M (H) = 1, thenH = C (Casel). Otherwise, by
our inductive hypothesis; — 1 is even andd = Bl,,_; (Case2): we shall in fact show that
this case cannot arise.

Casel: H = C. Thenn — 1 is odd, son is even. And by Lemma 2.7 = Bl,.

Case2: H = Bl,,_1. Letx be the leaf off, and lety be its neighbour o@’. We split
into three subcases: (a)is adjacent tac only; (b) v is adjacent tac and to a vertex on
C (exactly one such neighbour @ after Lemma 2.7); (cy is adjacent to a vertexon C
(again unique, after Lemma 2.7), but notito

Case2(a). Noting thatZ; of Figure 4 is an induced subgraph, we see that this case is
ruled out by Lemma 2.3.

Case2(b). Consider the patk on C that connecty andz via anodd number of edges.
By minimality of the length of”, the only possible lengths fd? arel and3 (else we could
find a shorter odd closed walk by replacing the p&tithin C' by the pathzvzy). If P has
length1, thenG containsLs of Figure 4 as an induced subgraphfithas lengtt8, then it
containsL4. In either case we see that Lemma 2.3 gives a contradiction.

Case2(c). We have two further subcases. zlf= y, then we have., of Figure 4 as
an induced subgraph @f. If z # y, then we appeal to Lemma 2.5, noting that> 5
excludes the sporadic cases.

Each subcase of Ca8eroduces a contradiction, so we must be in Casd = C and
G = Bl,. O

3. Proof of Corollary 1.1

The proof of the Corollary 1.1 follows readily from Theoreni lusing the facts that

e A graph is non-bipartite if and only if at least one connectethponent is non-
bipartite;

e The Mahler measure of a graph is the product of the Mahler unea®f its connected
components.
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Let G be a non-cyclotomic graph of small Mahler measure. If allribe-cyclotomic com-
ponents are bipartite, then at least one cyclotomic comuanest be non-bipartite, and so
an odd cycle. This gives the first case of the Corollary. Qtisa®, G has a non-bipartite
non-cyclotomic component, as described by the Theorem. IlAsf these have Mahler
measure at leas¥/(Blg) = 1.350980338 > /¢, there can be only one of these compo-
nents. If all other components are cyclotomic, we have tioersd case. Otherwise, some
component is non-cyclotomic and bipartite, in which caggMiS1, Theorem 10.2], it has
Mahler measure at leasdt (7'(1,2,6)) = 1.176280818. HereT'(1,2,6), defined in [MS1,
Figure 15], isthe tree,_o™u o oo - BUt then the non-bipartite component@fcan
have Mahler measure at mast1.176280818 = 1.375550773. But Blg is the only such
non-bipartite non-cyclotomic connected graph, all otherging Mahler measure at least
M (Blg) = 1.401268368, and the only connected bipartite non-cyclotomic graph fizs
Mahler measure below/M (Blg) isT'(1,2,6). This gives the third case.

4. Final remarks

It would be nice to push knowledge of graphs of small Mahleasuee beyond thé bound-
ary, in either the bipartite or non-bipartite case. In apottiirection, one might ask about
signed graphs, or more generally the Mahler measure oféntegmmetric matrices, as
defined in [MS3]. The best result known in this setting is asiffication of all indecom-
posable integer symmetric matrices that have Mahler medslow1.3 ([MS3, Theorem
4], along with [MS2,84] for a description of the cyclotomic cases).

We are grateful to the referee for helpful comments, ineclgdhe suggestion of adding
Tables 1 and 2 to help the exposition.
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