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ABSTRACT

Our knowledge of the role of higher-order chromatin
structures in transcription of microRNA genes
(MIRs) is evolving rapidly. Here we investigate the
effect of 3D architecture of chromatin on the tran-
scriptional regulation of MIRs. We demonstrate
that MIRs have transcriptional features that are
similar to protein-coding genes. RNA polymerase
II–associated ChIA-PET data reveal that many
groups of MIRs and protein-coding genes are
organized into functionally compartmentalized
chromatin communities and undergo coordinated
expression when their genomic loci are spatially
colocated. We observe that MIRs display wide-
spread communication in those transcriptionally
active communities. Moreover, miRNA–target
interactions are significantly enriched among
communities with functional homogeneity while
depleted from the same community from which
they originated, suggesting MIRs coordinating
function-related pathways at posttranscriptional
level. Further investigation demonstrates the exist-
ence of spatial MIR–MIR chromatin interacting
networks. We show that groups of spatially
coordinated MIRs are frequently from the same
family and involved in the same disease category.
The spatial interaction network possesses both

common and cell-specific subnetwork modules
that result from the spatial organization of chroma-
tin within different cell types. Together, our study
unveils an entirely unexplored layer of MIR regula-
tion throughout the human genome that links the
spatial coordination of MIRs to their co-expression
and function.

INTRODUCTION

MicroRNAs (miRNAs) are a large family of small
noncoding RNAs (�21 nt) that have emerged as key
posttranscriptional regulators of gene expression in eu-
karyotic organisms. More than 1500 miRNA genes
(MIRs) have been identified in the human genome (1)
and they likely regulate the activity of more than half of
all protein-coding genes (2). Functional investigations
indicate that these MIRs control various developmental
and cellular processes, and the dysregulation of their
expression is being found to be associated with diverse
human diseases, including cancers (3,4).
Despite these great advances in our recognition of the

important biological roles of MIRs, our understanding of
the transcriptional regulation of MIRs is still developing.
It is generally believed that the transcription of mostMIRs
is mediated by RNA polymerase II (RNAPII) (5). There
have been several exceptional cases of MIRs reported
to be transcribed by RNAPIII (6-9). However, some of
these putative RNAPIII-transcribed MIRs (for example,
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mir-565, mir-886 and mir-1975) are actually other types of
RNAs, such as tRNAs, Y RNAs and Vault RNAs, which
are transcribed by RNAPIII (10–13), while others (for
example, chromosome 19 MIR cluster, C19MC) displayed
no occupancy by RNAPIII (7,8) but showed evidence
of being transcribed by RNAPII instead (14). These
misannotated MIRs have been subsequently removed
from miRBase (1) ahead of further investigation.
MIRs originate from precursor molecules (pri-

miRNAs). These transcripts can be encoded as independ-
ent transcription units (TUs), in polycistronic clusters or
within the introns of protein-coding genes (15,16), and
contain poly(A) tails as well as cap structures (17).
Approximately 50% of human MIRs are organized into
introns of protein-coding genes (intragenic MIRs) and are
likely transcribed in parallel with their host transcripts
(18), whereas MIRs located within intergenic regions
(intergenic MIRs) are believed to be derived from inde-
pendent TUs (15).
Transcriptional regulation is not only determined by the

DNA code at the linear chromosomal level. It also
involves additional layers of higher-order chromosomal
organization, which provides the chromatin context that
can either facilitate or block the initiation of transcription
(19). In particular, the development of chromosome con-
formation capture (3C) and similar techniques (20) have
demonstrated that the spatial organization of chromatin
has important transcriptional roles in regulating gene ex-
pression (21). Recent observations of RNAPII-associated
chromatin interactions using ChIA-PET (22) showed
that the transcription of protein-coding genes could
be coordinated spatially through extensive promoter–
promoter chromatin interactions in close proximity.
Because the transcription of MIRs is RNAPII-mediated,
the availability of a genome-wide RNAPII-associated
chromatin interaction provides us the opportunities to
study, on a genome scale, how 3D chromatin interaction
affects the transcription regulation of MIRs.
In this study, we have integrated comprehensive 3D

chromatin interaction data (22) and genome-wide histone
modification and expression data sets (Supplementary
Table S1) from the Encyclopedia of DNA Elements
(ENCODE) project (23). We establish a potential mech-
anistic link between chromatin-associated spatial inter-
actions and transcriptional regulation of MIRs by
RNAPII (Supplementary Figure S1).

MATERIALS AND METHODS

Overview of the integrated data analysis strategy

The huge genome-wide data sets from the ENCODE
project (23) provide us with an unprecedented opportun-
ity to dissect the underlying mechanisms of chromatin or-
ganization and its impact on transcriptional regulation
and gene expression using an integrative approach.
In this study, we have performed integrative data
analysis to investigate the relationships between the
spatial organization of the human miRNAome, the local
chromatin status and how it affects MIR regulation
(Supplementary Figure S1). We began our analysis with

the identification of putative MIR promoters using inte-
grative data sources and prediction methods (see below).
We then used ChIA-PET with RNAPII peak data and
ChIP-seq of histone modifications and DNA methylation
data to characterize the chromatin features of MIRs. We
also correlated the chromatin status with gene expression
data, and examined the expression patterns between MIRs
and their nearby protein-coding genes. Next, we de-
veloped a statistical model to assign MIRs into different
chromatin interaction models based on ChIA-PET inter-
action data, and thus obtained a global MIR–MIR inter-
action network. Finally, we integrated RNA-seq data and
disease information to systemically uncover the relation-
ship between chromatin organization, cell-specific MIR
regulation and disease biology.

In this study, we focus our analysis on K562 (chronic
myelogenous leukemia) and MCF7 (mammary gland,
adenocarcinoma) cell lines (see http://encodeproject.org/
ENCODE/cellTypes.html for detailed information). The
data sources used in this analysis are available in
Supplementary Table S1 and summarized as below.

Data sources

Human protein-coding genes and functional information.
The human (Homo sapiens) protein-coding genes with
HGNC (symbol from the HUGO Gene Nomenclature
Committee) symbols were downloaded from Ensembl
(http://www.ensembl.org/; release 65) and RefSeq
database (http://www.ncbi.nlm.nih.gov/RefSeq/). The
gene ontology (GO) annotation and ID mapping data
were retrieved from Ensembl using the BioMart tool. The
best-curated list of known disorder–gene associations was
obtained from Online Mendelian Inheritance in Man
database (http://omim.org/; December 2012).We only con-
sidered entries with the ‘(3)’ tag, for which there is strong
evidence that at least one mutation in the particular gene is
causative to the disorder. Subsequently, we manually clas-
sified each disorder into 20 primary disorder classes, ac-
cording to the classification scheme described in (24).

Human MIRs and their disease annotation. The
human MIR annotation information was retrieved from
the miRBase database (http://www.mirbase.org/; release
18) (1). MIRs are grouped into either ‘intragenic’ or
‘intergenic’ according to whether their genomic position
overlaps existing gene models. Specially, pre-miRNAs
embedded into annotated genes with the same strand are
referred as ‘intragenic MIRs’, whereas pre-miRNAs
located between genes are ‘intergenic MIRs’. The informa-
tion about disease-related MIRs was obtained from the
miR2Disease (25) and PhenomiR (26) databases.

ChIA-PET data. The RNAPII-associated ChIA-PET
data were retrieved from (22), the ENCODE data reposi-
tory site (http://genome.ucsc.edu/ENCODE/) and NCBI/
GEO (GSE33664). The ChIA-PET data can be used to
simultaneously identify protein binding sites and chroma-
tin interactions in a whole-genome, de novo and unbiased
manner (27). The ChIA-PET peaks reflect the binding in-
tensity by RNAPII, while the interactions determine the
genome-wide long-range chromatin contact map linked by
RNAPII. We used both types of the data here to study the
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transcriptional regulation of both protein-coding and
MIRs.

RNA-seq data. The RNA-seq data sets for protein-
coding genes and small RNA-seq data sets for MIRs
were downloaded from the ENCODE data repository
site (http://genome.ucsc.edu/ENCODE/). The mapped
files (in bam format) were directly downloaded from the
ENCODE Web site and were subjected to expression
estimation. The expression levels in FPKM (fragments
per kilobase of exon per million fragments mapped)
estimated by Cufflinks (28) were averaged for each
mRNA when there were multiple replicates available.
For MIRs, their abundances were measured in terms of
RPM (reads per million total small RNA reads) using
small RNA-seq data.

Epigenetic modification data. DNA methylation data as
well as ChIP-seq data for histone modifications were also
retrieved from the ENCODE data repository site (http://
genome.ucsc.edu/ENCODE/). To characterize the chro-
matin features, such as histone modifications, transcrip-
tion factor bindings, DNase I hypersensitive sites and
DNA methylation, for the transcriptional regulation of
MIRs, we used the epigenetic mark data to measure
their profile around MIR promoters. For each location
(the predicted promoters; see below), the number of
peaks or tags within ±5kb from the center of the loca-
tions were counted.

Hi-C data. The processed topological domains for each
chromosome were obtained from a recent Hi-C study (29),
which provided higher-coverage experiments. Domain
boundaries were identified using a hidden Markov
model at the 40-kb resolution (combined data set, http://
chromosome.sdsc.edu/mouse/hi-c).

miRNA-target interaction data. Predicted targets of
miRNAs were retrieved from six databases: TargetScan
(30), miRanda (31), miRDB (32), PicTar (33), DIANA-
microT (34) and MicroCosm (1). To consider highly
confident miRNA–target interactions, only interactions
supported by at least two databases were used in this
analysis.

Annotation of MIR promoters

We annotated the MIR promoters or transcriptional start
sites (TSSs) by integrating three different data sources
(Supplementary Figure S2A). Firstly, the predicted TSSs
were retrieved from the miRStart database (http://
mirstart.mbc.nctu.edu.tw/) (35), which systematically in-
corporates high-throughput sequencing data derived
from TSS-relevant experiments to identify TSSs of
MIRs. We obtained 832 high-confidence MIR TSSs
from this web resource. For the rest of the MIRs,
we searched the putative TSSs within the 50-kb-long
upstream region of each pre-miRNA by using
DeepCAGE tags (36) from the FANTOM web resource
(http://fantom.gsc.riken.jp/; FANTOM4) (37). This led to
the identification of another 274 MIR TSSs. We also pre-
dicted the promoter regions and TSSs of MIRs using
genome-wide RNAPII binding peaks derived from
ChIA-PET data (22), which is based on the previous ob-
servation that RNAPII binding peaks are proximal to the

TSS of MIRs (38). The nearest RNAPII peak within 50 kb
upstream of pre-miRNA was assigned to the TSS of that
MIR. We identified 180 additional MIR TSSs based on
RNAPII-associated ChIA-PET peak data (Supplementary
Figure S2A). Previous studies have shown that H3K4me3
can be considered as a useful chromatin mark for identify-
ing active MIR promoters (9,39), we thus manually
checked the putative promoter regions of these newly
identified MIRs using H3K4me3 data (Figure 1B).
Intragenic MIR may have their own promoters or share
promoters with their host genes. To confirm whether the
closest RNAPII peak is the TSS of a MIR, we included
promoter-associated histone markers, such as H3K4me2,
H3K4me3, H3K9ac and H3K27ac (40), as additional evi-
dences, on the basis that promoter-associated markers and
RNAPII peak were in the same positions around the site
and closest to the associated MIR. In total, we identified
1286MIRs with predicted promoters. If the TSS of a MIR
lies within ±2-kb region around the TSSs of nearby
protein-coding genes, this MIR was considered to share
promoters with nearby genes. Otherwise, the MIR
was considered to have an isolated promoter. Of all the
annotated MIRs, 536 (35.2%) showed shared promoters
with nearby protein-coding genes. Several examples can be
found in Supplementary Figure S3. The full list of MIR
TSSs is used for further analysis and provided in
Supplementary Data Set S1. The RNAPII binding peak
intensity within ±2kb from the MIR TSS site is available
as Supplementary Data Set S2.

Construction of RNAPII-associated chromatin
interaction network

Because MIRs and protein-coding genes are both
transcribed by RNAPII, we used these two kinds of
genes to construct a transcription-associated chromatin
interaction network. The RNAPII-associated ChIA-PET
interaction data in K562 and MCF7 cell lines were used to
define the chromatin interaction network (Supplementary
Figure S6A). Some detected ChIA-PET interactions may
result from cancer-related genome translocation. We,
therefore, removed genomic regions that mapped
proximal to genomic structural variations in their respect-
ive genomes (42) before constructing the network. Next,
for each ChIA-PET interaction (termed as ‘duplex inter-
action’), two sets of genes (including both protein-coding
genes and MIRs) within ±2kb from their predicted TSS
sites to the two interacting anchor boundaries are con-
sidered to be chromatin linked to each other. These
linked genes form complex interaction networks based
on the connectivity of overlapping anchors from one
duplex interaction to the others. We did this analysis for
each replicate of the samples separately and for each type
of cell lines (K562 cell line with three replicates and MCF7
with four replicates). To avoid gene interactions detected
by chance, each pair of interacting genes should be re-
covered by at least two replicates. The whole chromatin
interaction network consists of 2292 modules, which were
referred to as chromatin communities (Supplementary
Figure S6B). The full list of chromatin communities is
provided in Supplementary Data Set S3.
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Analysis of MIR-related chromatin interaction models

To define MIR-related chromatin interaction models, we
focus on only MIRs in the whole network. Each interacting
MIR pair should be supported by at least two independent
replicates, unless they are neighbors on the genome
(in which case they should be recovered by at least one
replicate), as neighboring interactions are believed to be
more reliable to detect in ChIA-PET technology (27) and
adjacent MIRs (in clusters) prefer to be transcribed

together (15). It is notable that, in this case, two MIRs
are linked together either ‘directly’ by shared chromatin
interactions or ‘indirectly’ via some intermediate inter-
actions. We detected 202 pairs of directly MIR–MIR inter-
actions, most (98.0%) of which were intrachromosomal
and 83.3% of which were supported by at least two repli-
cates. Although most (62.4%) interchromosomal inter-
actions were linked indirectly, they were relatively
reliable, as they were supported by at least two independent
data sets. We also incorporated RNAPII-associated
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Figure 1. Epigenetic regulation of MIRs. (A) RNAPII binding peaks around MIR body. Intergenic (purple) and intragenic (green) MIRs are shown,
respectively. (B) Chromatin features, RNAPII-associated ChIA-PET data and expression of the mir-17 cluster. Predicted promoters of this MIR
cluster and its host gene are highlighted. Data from MCF7 (top panel) and K562 cells (bottom panel) are shown, respectively. Only a partial list of
chromatin markers is shown and a complete list can be found on the UCSC Genome Browser (http://genome.ucsc.edu/). (C) Heatmap matrix of
pairwise Spearman correlations of modification profile of distinct chromatin features for MIRs in K562 cells. The upper diagonal shows the
correlation coefficients based on intragenic MIRs. The lower diagonal shows the correlation coefficients based on intergenic MIRs. Heatmap plot
was organized by hierarchical clustering with the tree (left) using Spearman’s correlation distances based on all MIRs. There is no observed difference
of the chromatin modification patterns between intergenic and intragenic MIRs [Pearson correlation r=0.95 and P< 0.001, Mantel test (41)]. See
also Supplementary Figures S2, S4 and S5.
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ChIA-PET peak data to investigate transcriptional regula-
tion of MIRs that are not assigned to the defined inter-
action models. We assigned all the annotated MIRs to
three interaction models based on how the MIRs were
involved in the interaction networks: (i) ‘basal transcrip-
tion’ model in which MIR overlapped with standalone
RNAPII peaks in its promoter regions, but did not
overlap with any interaction anchors; (ii) ‘MIR-related
chromatin interaction’ model that involved a MIR(s) that
interacted with other MIRs or protein-coding genes; while
(iii) other ‘not assigned’ model in which the promoters of
the MIRs were not supported by any RNAPII peaks or
interactions (Supplementary Figure S8A). We found 293
(19%) MIRs involved in the basal transcription model
and nearly half of the MIRs (734; 48%) in the ‘MIR-
related chromatin interaction’ models (Supplementary
Figure S8B). The list of MIR-related chromatin interaction
models can be found in Supplementary Data Set S4.

Association analysis of chromatin communities with
miRNA–target interactions

We outlined the strategy in Figure 3A. In brief, highly
reliable miRNA–target pairs (see the above ‘Data

sources’ section) were firstly mapped to chromatin inter-
action networks. There were 87 303 (21.4%) pairs in total
mapped on the network (Supplementary Data Set S5).
However, only 0.2% (160) of the mapped pairs was to
arise from within the same communities. We observed
that 104 (65%) of these self-interacting pairs were from
the giant community, indicating targets show significant
underrepresentation within the same community that
‘their’ MIRs come from, compared with that of by
chance (P=3.4� 10�9, Fisher’s exact test). To associate
significantly overrepresented chromatin community inter-
actions with the mapping of miRNA–target pairs, two
communities were considered to be linked if there were
at least 10 mapped miRNA–target interactions between
them. The statistical significance of their interactions
was tested by a hypergeometric test corrected for
multiple comparison by a false discovery rate (FDR) at
0.001 level. The criterion of at least 10 mapped miRNA-
target pairs between two communities is based on the
observation that each target in the chromatin inter-
action network was predicted to be targeted by 10 MIRs
on averages. With an extension analysis, we relax this
criterion (for example, �5 interactions, Supplementary
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enrichment of disease classes for miRNA genes (MIRs) in communities with size �10. Rows present communities and column denote disease classes.
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with at least two MIRs) are indicated with solid boxes in violet. The arrow (left) indicates the largest chromatin community as shown in C. The ten
disease classes from left to right are ‘‘Cancer,’’ ‘‘Cardiovascular’’, ‘‘Connectivetissue,’’ ‘‘Dermatological,’’ ‘‘Gastrointestinal’’, ‘‘Hematological’’,
‘‘Immunological’’, ‘‘Muscular’’, ‘‘Neurological’’ and ‘‘Psychiatric’’. (C) Network designating the largest chromatin community. Nodes (representing
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Figure 3. miRNA genes as regulators linking functional-related communities. (A) Methodology of association analysis of chromatin communities
with miRNA-target interactions. Genome-wide miRNA-target pairs were mapped to chromatin interaction networks. It is notable that, of the
mapped pairs, only 0.2% were found within communities. Furthermore, in this investigation, two communities were considered to be linked if there
were at least ten miRNA-target interactions between them and the statistical significance of their interactions was tested by a hypergeometric test
corrected for multiple comparison by a false discovery rate at 0.001 level. Using the cutoff, a network involving in 148 communities is shown in C.
(B) Distribution of the percentage of genes in a community targeted by miRNA genes (MIRs; dark grey). Random control (light grey) with the same
number of genes chosen randomly is shown for comparison. FDR (false-discovery rate) value was calculated through permutations (103

randomizations). The Mann-Whitney U test was used to calculated the P-value. Analysis was done for miRNA-target interactions between
communities (top panel) and within communities (bottom panel). (C and D) Networks showing community-community interactions. Each node
represents one community. Node size is scaled to the number of genes. Edge line width proportions to the number of miRNA-target pairs between
two communities. Edge shading corresponds to the statistically significant of their interactions. (C) Distribution of genes (including MIRs and
protein-coding genes) within one community is shown in pie chart. (D) Distribution of disease class is shown in pie chart. The color denotation of
disease classification is taken from (24). Please refer to the online version for details. Nodes with blank indicates no available annotated disease genes.
Note that interacting communities shared similar patterns of disease distribution. (E) Distribution of the number of shared enrichment GO terms (left
panel, biological process; right panel, molecular function) between two linked communities (left bar). As control (right bar), the distribution is
calculated with the same number of genes chosen randomly. The P-value was calculated by the Mann-Whitney U test. (F) Histogram of the
number of communities a MIR is involved in, identifying the five MIRs associated with the largest number of communities. See also
Supplementary Figure S9.
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Figure S9A), and performed the analysis analogous
to that shown in Figure 3. We observed that (i) the
overall layout of the community network remain largely
unaltered; (ii) miRNA–target interactions are enriched
between function-related communities; and (iii) miRNA–
target interactions are preferentially depleted from within
common communities. Overall, the main findings of the
current study are robust to the relaxation of the criteria we
used in our analysis.

Random control analyses

We performed several random control analyses during this
study. The basis was to extract the same number of genes/
interactions chosen randomly from the same background
sample, and then to calculate similar properties. To obtain
significant statistics, we performed 103 independent ran-
domizations for each analysis. The Mann–Whitney U test
was used to test the significance of distributions between
the random control and observed data sets, and to calcu-
late the P-value. Specifically, (i) to obtain the random
control of the distributions of miRNA–target pairs
between and within communities in Figure 3B, we chose
the same number of protein-coding genes randomly for
each community (nothing to do with MIRs). We then
calculated the percentage of genes targeted by MIRs
between or within communities. (ii) To assess the signifi-
cance of function similarity between communities
linked by miRNA–target pairs in Figure 3E, we performed
GO enrichment analysis for each community and
calculated the number of shared over-presented terms
for random control and observed samples. (iii) To test
the significance of MIR–MIR interactions from the same
family or disease category in Figure 5B and C, we
randomly generated the same number interactions from
the MIR interactome and then calculated the distribution.
FDR values were calculated from the 103 random data
sets as the probability of random values significantly
greater than observed values (with the Mann–Whitney U
test P< 0.001).

Statistical analysis and data visualization

Most statistical analyses in this study were performed
by using the R statistical package (http://www.r-project.
org/; release 2.14.1). GO term enrichment analysis
was performed using hypergeometric test corrected for
multiple comparison by the Benjamini–Hochberg
method (FDR< 0.05), implemented in GO::TermFinder
software (43).

Most of the networks presented in this study
were visualized using Cytoscape platform (44) with
force-directed layouts. The network properties, such as
scale-freeness, were performed using Network-Analyzer
plug-in in Cytoscape.

For visualization purposes, the Integrative Genomics
Viewer (IGV) (45) was used to view the interaction PET
data and various peak data; Circos (46) was used to view
in the MIR interaction map across the whole genome.

RESULTS

Transcriptional properties of MIRs

We first examined the transcription properties of MIRs
using RNAPII-associated ChIA-PET data (22). The
RNAPII peak data provided a rich source for predicting
MIR promoters (see ‘Materials and Methods’ section).
Based on searching RNAPII peaks within 50 kb
upstream of pre-miRNAs, we identified 180 novel
putative MIR promoters (Supplementary Figure S2A),
which were not supported by other public databases
(35,37,47). In total, we obtained 1286 (84.4%) MIRs
with predicted promoters (Supplementary Data Set S1).
From the combined data sets from K562 and MCF7 cell
lines, we found that nearly two-thirds (66%; 343
intergenic and 658 intragenic MIRs) of the annotated
MIRs showed high-confidence RNAPII binding sites
around their predicted promoter regions (Supplementary
Figure S2B and C and Supplementary Data Set S2). Most
of these MIRs associated binding peaks are enriched
around the predicted transcription start sites (TSSs) of
the MIRs (Figure 1A). Similar observations were separ-
ately seen for intergenic and intragenic MIRs. Specially,
we observed a high correlation between the distribution of
RNAPII binding peaks in intragenic MIRs and the gene
expression of their host protein-coding genes (Pearson
correlation r=0.98; P< 2.2� 10�16; Supplementary
Figure S2D), indicating that most, if not all, intragenic
MIRs are co-transcribed with their host genes (see
Supplementary Figure S3A and B for specific examples).
For some intergenic MIRs, they have their own promoters
for transcription (Supplementary Figure S3C and D).
Some intergenic MIRs share common promoters with
their nearby protein-coding genes, suggesting co-tran-
scription (Supplementary Figure S3E–G). Notably,
MIRs and nearby genes with opposite directions of tran-
scription showed higher correlation of RNAPII binding
distributions (r=0.62) as compared with those with iden-
tical directions (r=0.39; Supplementary Figure S2E),
suggesting the importance of the bidirectional arrange-
ment of promoters as a regulatory mechanism within the
human genome (48).
Next, we determined whether MIRs associated with

higher RNAPII binding peaks were more likely to be
actively transcribed. We analyzed the transcriptional
levels measured by small RNA-seq reads from ENCODE
(23) and observed that the binding intensity at promoter
sites correlated well with the expression level of the corres-
pondingMIRs (Supplementary Figure S2F). The higher the
RNAPII occupancy, the higher the MIR expression
level tends to be (Supplementary Figure S2G and H).
Besides, we observed that MIRs and their host (for
intragenic MIRs) and nearby protein-coding genes (for
intergenic MIRs) had coordinated expression output
(Supplementary Figure S2I).
In addition to transcriptional regulation directed by

RNAPII, MIRs could also be subject to epigenetic
control at the chromatin level, similar to that seen for
protein-coding genes. We observed high enrichment of
active chromatin marks, such as histone modifications
including H3K4me3, H3K4me2, H3K4me1 as well as
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histone acetylation and histone variant H2A.Z, within
MIR promoter regions, that correlated well with
RNAPII binding and expression output (Figure 1B and
Supplementary Figure S4). By contrast, when these marks
were weakened or totally lost, the binding peaks and
expression levels changed accordingly.
To further explore the association of chromatin state

dynamics with RNAPII-associated binding intensity, we
systemically examined a comprehensive list of currently
available chromatin marks and functional binding sites
from the ENCODE consortium (see ‘Materials and
Methods’ section). An unbiased pairwise association
analysis was carried out on data sets from the K562 cell
line. Heatmaps organized by hierarchical clustering
revealed two clear groups of correlated pairs that distin-
guished active chromatin marks (red) from repressive
marks (blue), where active marks were positively
correlated with RNAPII peaks (Figure 1C).
Interestingly, the distribution of binding peaks for
RNAPII closely followed the binding peaks of histone
marks (such as H3K4me2, H3K4me3, H3K9ac,
H3K27ac, H3K79me2, H3K4me1 and H2A.Z; as active
promoters and/or strong enhancers), the elements bound
with chromatin remodeling factors (such as BRG1 and
CHD1), the binding sites for the chromatin insulator
CTCF and DNase hypersensitive sites. In contrast,
repressive histone modifications (such as H3K27me3
and H3K9me3), DNA methylation and bindings of
polycomb proteins (such as CBX2 and CBX8), known
to be present in broad domains that encompass inactive
genes, showed opposite distribution patterns compared
with that of RNAPII binding. To rule out the possibility
that the expression of intragenic MIRs is just tracking the
expression of their host protein-coding genes being
regulated by the epigenetic factors, we performed associ-
ation analysis for intergenic and intragenic MIRs separ-
ately. We observed that the overall patterns are consistent
[r=0.95 and P< 0.001, Mantel test (41); Figure 1C].
Collectively, our observations are in line with the
emerging view derived from the surveys of protein-
coding genes (r=0.98 and P< 0.001, Mantel test;
Supplementary Figure S5A), namely that the enrichment
of active chromatin modifications positively correlates
with RNAPII occupancy in promoter regions (49). This
supports the hypothesis that, like protein-coding genes,
MIRs are extensively regulated at the chromatin level.

Transcription-associated chromatin interaction networks
involved in both coding genes and MIRs

Our recent study (22) focusing on protein-coding genes
revealed that discrete gene loci are frequently transcribed
together within a transcription factory—a self-assembling
and organizing nuclear structure, where RNAPIIs are
concentrated and engaged in transcription (50). Because
MIRs possess similar transcriptional properties to those of
protein-coding genes, it leads us to ask whether they
are transcribed together from the same factory. To our
knowledge, the role of MIRs in such transcription-
associated chromatin modules has not been probed in
previous studies. To address this problem, we used

RNAPII-associated ChIA-PET data from K562 and
MCF7 cells (22) to construct a transcription-associated
chromatin interaction network whose nodes represent
the annotated genes (including both MIRs and protein-
coding genes) and edges denote high confident chroma-
tin interactions among these genes (Supplementary
Figure S6A). We required that each gene pair should be
recovered in at least two independent samples (see
‘Materials and Methods’ section). The whole network
(Supplementary Figure S6B and Supplementary Data
Set S3) consists of 18 414 nodes with 62 495 links sharing
among the nodes, and the network structure is
largely conserved between K562 and MCF7 cell lines
(Supplementary Figure S6C). The network is organized
as 2292 discrete network modules (referred to as chroma-
tin communities hereafter), 80% of which (with at least
five genes) are common to both cell types (Supplementary
Figure S6D). Network topology analysis revealed that
distributions of the community size (Supplementary
Figure S6E) and node degree (Supplementary
Figure S6F) exhibit a hallmark of scale-freeness. These
findings are in line with a recent study (51) that used
similar data sets but did not include MIRs within its
analysis.

To investigate the spatial organization of these chroma-
tin communities, we took the recent Hi-C data (29) into
account. We found that genes (including both MIRs and
protein-coding genes) from the same chromatin commu-
nity identified by ChIA-PET data are frequently present in
the topological associated domains (TADs) identified by
Hi-C experiments (Supplementary Figure S7). The overall
correlation is highly stable across different cell types. The
observation of multiple TADs associating with the same
chromatin community suggests that these domains were
organized into higher spatial structures by RNAPII for
co-transcription. Besides, we noticed that MIRs are
frequently observed in the community-associated TADs
(Supplementary Figure S7).

To elucidate the links between expression patterns
of MIRs and their chromatin regulation, we assigned all
the annotated MIRs into three chromatin models (22)
based on the RNAPII-associated ChIA-PET data:
(i) ‘basal transcription’ model, (ii) ‘MIR-related chromatin
interaction’ model and (iii) ‘not assigned’ (see ‘Materials
and Methods’ section; Supplementary Figure S8A and
Supplementary Data Set S4). These chromatin models
showed both common and cell-specific manners in the
two cell types (Supplementary Figure S8B). We found
that MIRs associated with chromatin interactions, espe-
cially those in multi-MIR interaction models, showed sig-
nificantly higher expression levels than those in basal
transcription models. However, as a control, MIRs
without supporting RNAPII-associated ChIA-PET data
had the lowest expression levels (Supplementary
Figure S8C). These findings were the same for both
K562 and MCF7 cell types. Altogether, our study of
MIRs, along with other observations of protein-coding
genes (22), suggest that spatially coordinated transcription
factories exist in the nucleus and cooperatively transcribe
both protein-coding genes and MIRs.
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Widespread involvement of MIRs in functionally
compartmentalized chromatin communities

We performed enrichment analysis of GO terms on
protein-coding genes in the communities. Our results
showed that the communities participated functionally in
essential biological processes such as cell death, cellular
metabolic processes, biosynthetic process, immune
system development and cellular response to stress/
stimulus (Figure 2A). Moreover, the functional investiga-
tion of disease annotations reveals that most of these
communities are enriched in MIRs involved in cancer
and/or hematological disorders (Figure 2B). As observed
in the largest community (Figure 2C), disease-related
genes (including 10 MIRs) tend to form coherent
clusters with similar distributions of functional categories.
Furthermore, cell-specific or conserved gene interactions
are likely organized together. For example, mir-21 and
TRIM33, which are both regulators involved in breast
cancer (52), are located in an MCF7-specific cluster,
whereas mir-194-2, mir-192 and MEN1 as leukemogenesis
(53) in a K562-specific cluster. These observations raise
the possibility of functional compartmentalization of
chromatin in the nucleus.

We next explored the extent to which MIRs are
involved in the defined chromatin communities. The
largest community, as shown in Figure 2C, involved 896
genes (including 29 MIRs). For all the communities, we
observed that only a small proportion (27.3%, 201 of 734)
of these MIRs shared promoters with protein-coding
genes. The MIRs with shared promoters had similar chro-
matin features to the MIRs with their own isolated
promoters (r=0.80 and P< 0.001, Mantel test;
Supplementary Figure S5B). Remarkably, we found that
MIR-associated communities are significantly more likely
to have a large size (P< 2.2� 10�16, Wilcoxon’s rank sum
test; Figure 2D), indicating that MIRs demonstrate wide-
spread communication in the transcriptionally active
genome, or alternatively, a community with more nodes
has a higher chance to overlap with MIRs. This notion
was further confirmed by the observation that MIRs have
a larger number of interactions than protein-coding genes
(P< 3.0� 10�4; Figure 2E).

Systems coordination of chromatin communities through
miRNA-target interactions

Mature miRNAs result in posttranscriptional repression
of protein-coding genes (2). So it is reasonable that MIRs
and their targets should escape to be transcribed together
(as to be observed in the same communities). If not, it
leads to a paradox, as it is not economical for the cell to
first transcribe target genes and then later repress them by
MIRs produced from the same factory. We thus asked
whether miRNA–target pairs result from MIRs and
their target genes that are produced from the same chro-
matin communities. We mapped a comprehensive list of
high confident miRNA–target pairs to the above described
chromatin communities (Supplementary Figure S6B and
Supplementary Data Set S5). To our surprise, we found
that only 0.2% of the total mapped miRNA–target inter-
actions were found to be from the same communities,

while nearly all (99.8%) of interaction pairs were
mapped between different communities (Figure 3A).
Permutation (103 randomizations) analysis showed that
the actual percentage of genes in one community
targeted by MIRs in another community was significantly
higher than that of random control (FDR< 0.001;
Figure 3B, Top), while the probability of MIRs targeting
to genes from the same communities (the percentage of
self-targetable) was comparable with that of by chance
(Figure 3B, Bottom).
We suspected that MIRs may act as the linkers that

connect distinct function-related communities via
miRNA–target interactions. To test this hypothesis, we
first constructed a chromatin-associated community–
community interaction network by denoting the chroma-
tin communities as its nodes and statistically significantly
(P-value from hypergeometric test with correction for
multiple comparisons, P< 0.001) miRNA–target inter-
actions distributed among these communities as edges
(Figure 3A). Here we needed at least 10 miRNA–target
interactions mapped to each pair of communities. To be
cautious, we performed an extension analysis by relaxing
this criterion (for example, at least five interactions), and
we found similar results (Supplementary Figure S9A). We,
therefore, obtained a network involving 148 communities,
109 of which were MIR-related ones (Figure 3C). It is
notable that about half of the genes in the communities
were targeted by MIRs from the linked communities,
demonstrating the widespread communication, at the
posttranscriptional level, of the transcriptionally active
genome. We found that expression of MIRs was nega-
tively correlated with expression of their targets, albeit
only weakly (Spearman’s rank correlation �=�0.14
for K562 and �=�0.11 for MCF7), supporting the
notion of a fine-tuning role of MIRs in gene regulation.
Accordingly, genes associated with targets in the
communities showed slightly lower expression levels than
nontarget genes (Student’s t-test P< 0.003; average ex-
pression levels with RPKM values 19.4 versus 23.4 in
K562, and 20.1 versus 21.6 in MCF7; Supplementary
Figure S9B).
We next investigated the disease distribution of genes in

the interconnected communities. We found that connected
communities showed coordinated distribution of genes
with disease classes and dominant parts of genes were
cancer-related (Figure 3D). Genes associated with the
same disorder were proposed to share functional charac-
teristics (24). We now asked whether the genes in con-
nected communities share similar molecular functions
and are involved in similar biological processes, as
annotated in GO. We calculated the number of enriched
GO terms shared among the linked communities (see
‘Materials and Methods’ section), finding significant
elevation of homogeneity of GO terms with respect to
random controls (Figure 3E). Together, our findings
reveal that MIRs act as widespread systems regulators
that act to coordinate the links between function-related
communities, as examples shown in Figure 3F. MIRs such
as miR-194-2, miR-21, miR-301a, miR-454 and miR-92b,
each target nearly one-third of the communities, for
example.
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The interactome network of miRNAome in the 3D
chromatin space

In the following sections, we focus our analyses on MIRs
involved in the MIR–MIR chromatin interaction model,
as it provides a structural framework for the study of syn-
ergistic transcription regulation ofMIRs. This set ofMIRs
is nearly one-third (459 of 1523) of currently annotated
MIRs (Supplementary Figure S8A and B). There were
1260 MIR–MIR interactions, nearly half (47%) of which
are intrachromosomal (Supplementary Figure S10A,
Inset). It is notable that these MIR–MIR interactions
are not necessary to arise from the same MIR clusters,
as we observed only 8.8% (111 of 1260) interactions
belong to the clusters (Supplementary Figure S10B).
The whole MIR–MIR spatial chromatin interactome is

likely to be formed from several hotspot regions, where
MIRs have strong RNAPII occupancy with high expres-
sion levels and are extensively linked through chromatin
interactions (Supplementary Figure S10A, Inner tracks).
Certain chromosome regions showed enrichment of cell-
specific MIR interactions. For example, MIRs from
several chromosome regions, such as 17q22, 17q23 and
20q13 showed MCF7-specific complex interchromosomal
interactions, whereas MIRs from 1p13, 9q34, 11q12,
13q31, 19p13 and 22q11 showed extensive K562-specific
interactions (Supplementary Figure S10A). However,
the distribution of MIR interactions did not necessarily
correlate with their density across the genome, adding
evidence to support the view that chromatin interactions
of miRNAome are subject to cell-specific regulation.
Interestingly, we observed several clusters of disease-
related MIRs with high expression levels enriched at the
hotspot regions (Figure 4). Moreover, nearly half of the
interactome are involved in disease classes such as cancer
(31.3%) and hematological (16.6%).
The MIR-related interactions identified from 3D chro-

matin space can be viewed from a network perspective
(Figure 5A). After mapping expression data and disease
information, several insights can be gained from this
interactome network. First, the whole network is parti-
tioned into well-demarcated domains (subnetworks)
in which MIRs showed intensive contact via either
common or cell-specific chromatin interactions.
Furthermore, MIRs with similar expression patterns
tended to be colocated, consistent with recent findings
that genes involved in chromatin interactions showed
correlated expression (22). Moreover, inactive or low-
expressed MIRs are frequently observed at network
boundaries (MIRs showing less connection with other
MIRs) or connections between subnetworks (Figure 5A).
MIRs from the same gene family have frequent contact

(FDR< 0.001; Figure 5B), supporting the idea that genes
with similar functions are spatially organized so as to
coordinate transcription. This observation provided
direct evidence that MIRs from the same family showed
co-expression in the derived MIR co-expression networks
(54–56). We note that the genes for MIRs within a specific
disease category, such as breast cancer, lung cancer and
leukemia, are frequently colocated (FDR< 0.001;
Figure 5C). Moreover, MIR loci that have spatial

interactions tended to be involved in the same disease
category. Specifically, of the 154 MIR–MIR interactions
in which both MIRs are annotated as disease-related, 132
(86%) have at least one disease category in common
(Figure 5D). Taken together, these observations provide
evidence that abnormal chromatin conformation and
regulation tends to be associated with disease.

Cell-line specificity of chromatin interactions for
MIR regulation

To investigate whether the cell-line specificity of chromatin
organization correspond to cell-specific expression and the
function of MIRs, we performed a comparative analysis
between K562 and MCF7 cell lines. Of the 1260 MIR–
MIR interaction pairs identified in our analysis, 49 (623)
and 10% (124) were specific to K562 and MCF7 cell lines,
respectively (Supplementary Figure S8D), suggesting differ-
ences in the chromatin architectural context for MIR regu-
lation between the two cell types. Accordingly, MIRs
involved in cell-specific interactions also showed cell-
specific expression (Supplementary Figure S8E), implying
that cell-specific chromatin organization provides the topo-
logical basis for cell-specific MIR transcription regulation.

We focused on the two largest cell-specific subnetworks
of MIR interactions as indicated in Figure 5A. For the
interactions specific to K562 cells, which contained 67
MIRs from nine linked chromosomes (Figure 6A), we
observed that several leukemia-regulated MIRs exten-
sively interacted via spatial chromatin links (Figure 6B),
including mir-17-92 cluster (13q31.3, including mir-17,
mir-18a, mir-19a, mir-19b-1, mir-20a and mir-92a-1), mir-
126 and mir-150 (57–63). Remarkably, nearly all the
expressed MIRs (94%, 46 of 49) were upregulated in
K562 cells comparing with MCF7 (Figure 6A).
Furthermore, the nearby protein-coding genes showed
similar expression patterns with these MIRs (Figure 6C).
This adds further evidence supporting our view that these
two types of genes are organized into the same chromatin
architecture and undergo coordinated transcription.
We found that the MIRs in K562-specific interaction
network showed significant enrichment in disease
categories such as leukemia, hematological and gastro-
intestinal-related cancers (Fisher’s exact test P< 0.1;
Figure 6D) when compared with MIRs in MCF7-specific
network. In the MCF7-specific MIR interaction network
(Supplementary Figure S11), disease-related MIRs,
such as mir-21, mir-301a and mir-454 have been shown
to play a role in the regulation of breast cancer (64–66).
Interestingly, these MIRs were intensively linked via chro-
matin interactions with two protein-coding genes,
PPM1D (67) and BRIP1 (68,69), which are known to be
involved in breast cancer. Altogether, the above results
suggest that cell-specifically expressed MIRs are subject
extensively to cell-specific regulation of the 3D organiza-
tion of chromatin.

DISCUSSION

In this study, we have presented an investigation of the re-
lationship between the spatial coordination of chromatin
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and the transcriptional regulation of MIRs. By integrating
a large compendium of genome-wide data sets from the
ENCODE project (23), including ChIA-PET data, ChIP-
seq for various histone modifications, DNA methylation
data and RNA-seq data, we have established a link
between the 3D spatial organization of chromatin inter-
actions and the expression and function of the human
miRNAome. Our work sheds light, at least in part, on
a complex landscape of the transcriptional network
involving MIRs.

Previous studies have demonstrated similarities in the
transcriptional regulation of MIRs and protein-coding
genes. The first evidence comes from the early biological

studies demonstrating several instances in which MIRs are
transcribed by RNAPII (5,17). Additionally, there is
evidence that a set of RNAPII-associated transcription
factors, such as c-Myc, cAMP-response element binding
protein (CREB) and MyoD (70–73), regulate MIR expres-
sion. Notably, bioinformatics analysis reveal that CpG
islands, TATA box sequences, transcription start sites
(TSSs), conserved transcription factor binding sites and ini-
tiation elements are enriched within the promoter regions of
MIRs (9,74–78). Consistent with these observations, our
data reveal further similarities in the transcriptional
properties of MIRs and protein-coding genes. We
observed with confidence that nearly two-thirds of MIRs
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specificity. Inset pie chart: distribution of MIR-related chromatin interactome in ten disorder classes.

Nucleic Acids Research, 2013 11

 at R
oyal H

ollow
ay, U

niversity of L
ondon on D

ecem
ber 20, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

miRNA genes (
)
encyclopedia of DNA elements (
)
,
 (TFBS)
s
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


have RNAPII binding peaks within their annotated
promoter regions in the K562 and MCF7 cells
(Supplementary Figure S2B). As expected, the binding
intensity correlates well with the level of expression
(Supplementary Figure S2F–H). Although intergenic and
intragenic MIRs had distinct patterns of RNAPII occu-
pancy (Supplementary Figure S2D and E), most RNAPII
binding peaks are enriched around the proximal TSSs
(Supplementary Figure S2C). Furthermore, MIRs share
consistent patterns of chromatin marks for transcriptional
regulation, compared with that of protein-coding
genes, which are found to be correlated with RNAPII occu-
pancy in the promoter regions of MIRs and are linked to
their expression patterns (Figure 1 and Supplementary
Figure S5A). We, therefore, conclude that RNAPII serve
as the de facto polymerase corresponding to MIR transcrip-
tion, implying that both MIRs and protein-coding genes
share common mechanisms of transcriptional regulation.

We have further constructed a transcription-associated
chromatin interaction network, which involves both
MIRs and protein-coding genes. We observed that
discrete gene loci, including MIRs and protein-coding
genes, from distant regions, were organized into, and
co-transcribed from, common spatial domains, referred
to as chromatin communities (Figure 2C). We found
that such spatially interacting genes showed correlated
expression patterns (Figures 5A and 6 and
Supplementary Figure S11). Moreover, the communities
were enriched in essential cellular functions and include a
wide range of MIRs. Further investigation based on Hi-
C data (29) revealed that these chromatin communities
were frequently related to the topological domain struc-
ture of the genome (Supplementary Figure S7), suggest-
ing the potential link between topology-associated
domains and transcriptional regulation in the human
genome.
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We found that while miRNA–target interactions
were significantly enriched among function-related
communities, the MIRs and target genes tend to avoid
coming from the same spatial community (Figure 3B).
We suspect that the community-derived genes (including
both MIRs and protein-coding genes) may participate in
different but functionally related pathways after their
transcription. The pathways involved will be likely
interrelated, with MIRs acting as the fine-tune regulators,

which maintain the homeostasis of these processes. MIRs
in one community may act to switch off expression of
target genes from another community, as we observed
that targets from certain communities were absolutely
switched off (Supplementary Figure S9B). However, we
also found that target genes showed even higher expres-
sion levels than nontargets within some communities.
This observation could be explained by the widespread
feedback of regulatory loops involving MIRs (79–81).
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Our data highlight the important roles of MIRs in the
systems-level coordination of function-related chromatin
communities.
We find that genes for MIRs from the same disease

category tend to be spatially linked together (Figure 5A
and C). We suggest that, for at least some MIR-associated
disorders, the 3D conformation of chromatin is reshaped
through chromatin modifications, or mechanical perturb-
ations, that result from changes in the cellular environ-
ment. This leads to certain MIR loci appearing or
disappearing from transcription factories, resulting in
the dysregulation of these MIRs.
In conclusion, RNAPII-associated ChIA-PET analysis

enabled us to deduce a network of spatial interactions
involving MIR loci, covering nearly one-third members
of the whole miRNAome. The results presented here
provide a novel insight into the 3D regulation of MIR
transcription. Based on the similarity of the mechanisms
of transcriptional regulation between MIRs and protein-
coding genes, our results support a context-based tran-
scription factory model in which a context created by
the 3D folding of chromatin serves as a general means
of coordinating transcription of both MIRs and protein-
coding genes, highlighting the existence of ‘transcription
factories’ in the cell-defined 3D chromatin space for
co-transcribing these two types of genes (19). As more
data are being generated, we expect that studying the
links between spatial chromatin interactions and the
miRNAome will enhance our understanding of the mech-
anisms of MIR transcriptional regulation. Our analysis
shows that spatial interactions affecting the regulation of
the human genome are an important mechanism involved
in regulating MIR expression in developmental and
cellular processes, both in health and disease. This may
lead to the discovery of new disease-related MIR regula-
tors, with the potential of clinical applications.
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