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Abstract

In this thesis, we discuss many-particle systems on general compact quantum

graphs. The results cover systems of distinguishable particles as well as systems of

bosons or fermions. The main focus lies on the introduction of many-particle inter-

actions in order to establish a useful model regarding many-particle quantum chaos

and one-dimensional Bose-Einstein condensation (BEC). Using suitable quadratic

forms, we will characterise self-adjoint realisations of the two- and many-particle

Laplacian which incorporate two different types of interactions, i.e. singular inter-

actions localised at the vertices of the graph and contact interactions which are

also present along the edges. In that context, we will establish regularity results in

order to characterise the domains of the self-adjoint realisations explicitly. We will

also discuss spectral properties of the constructed operators by establishing dis-

creteness of their spectra and Weyl laws for the corresponding eigenvalue counts.

Finally, based on the introduced models of interacting particles, we discuss Bose-

Einstein condensation on general quantum graphs. We will distinguish between

systems of bosons for which BEC occurs and such for which no BEC is present at

any finite temperature. As a final result, we prove that no Bose-Einstein conden-

sation occurs (in the sense of phase transitions) in a system of bosons interacting

via repulsive hard-core interactions.
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1. INTRODUCTION

This thesis is concerned with the description of (interacting) many-particle systems

on general compact quantum graphs. Originally, quantum graphs were introduced

in the 1950s to model the spectrum of free electrons in organic molecules [RS53].

Since then, quantum graphs have found application in various interesting areas

of physics such as nanotechnology and condensed matter physics. In the latter,

they served as a model to investigate Anderson localisation [SS00] as well as the

quantum Hall effect [GG08]. Furthermore, in a paper by Kottos and Smilansky

[KS97b], quantum graphs were introduced into the field of quantum chaos by

showing that their quantum mechanical spectra exhibit the same correlations as

the spectra of random Hermitian matrices. On the other hand, a famous conjec-

ture in quantum chaos states that such correlations are expected in all systems

with chaotic classical counterparts [BGS84]. For this reason, one can regard quan-

tum graphs as simple quantum mechanical systems whose underlying dynamics

are chaotic and hence they provide the playground for a better understanding of

quantum chaos. In general, to understand the origin of chaos in a given system

can be quite difficult and this is true, in particular, for interacting many-particle

systems [VSCdL01, JS97]. Accordingly, there are many open questions in the field

of many-particle quantum chaos [GKK+11]. One aim of this thesis is, therefore,

by discussing interacting many-particle systems on quantum graphs, to contribute

to a better understanding of many-particle quantum chaos.

Also, it is another aim of this thesis to discuss Bose-Einstein condensation (BEC)

on general compact quantum graphs. In a gas of non-interacting bosons in three di-

mensions, condensation was predicted by Einstein almost ninety years ago [Ein25].

He showed that, below some critical temperature, the particles start to condense

into the one-particle ground state. In other words, the one-particle ground state

becomes macroscopically occupied. In a system of interacting bosons, on the

other hand, it is in general very difficult to establish condensation [LSSY05]. In-

deed, already the definition of Bose-Einstein condensation in such a system is not
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straightforward [PO56, Mic07]. Therefore, using the introduced models of inter-

acting particles, we want to elucidate the role of interactions in the context of

Bose-Einstein condensation.

A graph Γ = Γ(V , E) consists of a finite number of vertices V = {1, ..., V } which

are connected by a finite number of edges E = {1, ..., E}. To each edge e ∈ E ,
we associate an interval (0, le) ⊂ R+ with le ∈ R+ ∪ {∞} being the length of the

edge. Whenever all lengths are finite, we call the graph compact. Accordingly, the

(one-particle) Hilbert space on a graph is defined by

L2(Γ) =
E⊕
e=1

L2(0, le), (1.0.1)

implying that a one-particle wave function Ψ ∈ L2(Γ) is a vector of scalar-valued

functions, i.e.

Ψ =


ψ1

...

ψE

 . (1.0.2)

If one introduces Schrödinger type operators on the Hilbert space (1.0.1), we call

the graph a quantum graph. A prominent example of such an operator, which in

fact will serve as the one-particle Hamiltonian, is the Laplacian −∆1 which acts

on F ∈ C∞(Γ) via

(−∆1F )e = − d2

dx2e
fe, ∀e ∈ E . (1.0.3)

In quantum mechanics, one usually requires the Hamiltonian to be self-adjoint

[JBE08]. For the Laplacian −∆1, each self-adjoint realisation is characterised by

a domain D1(A,B) ⊂ L2(Γ) such that each function F ∈ D1(A,B) fulfils the

boundary conditions

A



f1(0)
...

fE(0)

f1(l1)
...

fE(lE)


+B



f
′
1(0)
...

f
′
E(0)

−f ′
1(l1)
...

−f ′
E(lE)


= 0, (1.0.4)
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where A,B ∈ C2E×2E are such that rank (A,B) = 2E and AB∗ is self-adjoint

[KS99]. Note that the boundary conditions (1.0.4) can be interpreted as the result

of external potentials localised at the vertices of the graph.

In quantum chaos, it is generally believed that the presence of chaos in a classical

system manifests itself in the spectrum of the corresponding quantum system

[BGS84, Haa91]. An important quantity in that context is the nearest-neighbour

level spacings distribution

P (s) = lim
N→∞

1

N

N∑
n=0

δ (s− (En+1 − En)) , (1.0.5)

where δ is the standard Dirac delta function and {En}n∈N0 the rescaled eigenval-

ues of the system, i.e. they are rescaled such that the mean level spacing is one

[Haa91]. According to the Berry-Tabor conjecture [BT77], one expects a Poisso-

nian behaviour of (1.0.5) for a classically integrable (non-chaotic) system, i.e.

P (s) = e−s. (1.0.6)

Hence, the eigenvalues tend to cluster and one observes a level attraction. On

the other hand, in the case of quantum systems whose classical counterparts are

chaotic, the distribution P (s) is expected to be determined by the eigenvalue

statistics of random Hermitian matrices and is such that larger distances of neigh-

bouring eigenvalues are preferred, i.e. one observes level repulsion.

In the early days of quantum theory, energy spectra where described in terms of

Bohr-Sommerfeld quantisation rules [Gut90] and Einstein observed that this is

possible for integrable systems only [Ein17]. After full quantum mechanics had

been established by Heisenberg, Schrödinger and Dirac, however, reference to clas-

sical properties seemed to be obsolete. Interestingly enough, using a semiclassical

approximation, Gutzwiller [Gut71] derived a formula that allowed to calculate the

spectral density

d(E) =
∞∑
n=0

δ (E − En) (1.0.7)

for chaotic systems using classical quantities only (we shall assume that the pe-

riodic orbits are isolated and unstable). Although this so-called trace formula

suffers in general from serious problems related to convergence [BK90, SS90], it
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nevertheless establishes an interesting connection between the quantum mechan-

ical spectrum of a system and the (periodic) orbits of its classical counterpart.

Most interestingly, it was possible to establish an equivalent trace formula for the

spectrum of the operator −∆1 on general quantum graphs [KS97b, BE09]. Also, in

contrast to the result of Gutzwiller, the trace formula on graphs is not restricted to

a semi-classical limit. Noting that the trace formula on graphs takes into account

only non-negative eigenvalues {k2n ≥ 0}n∈N0 , it reads

∞∑
n=0

h(kn) =Lĥ(0) + γh(0)− 1

4π

∫ ∞

−∞
h(k)

ImTrS(k)

k
dk

+
∑
po

[(
ĥ ∗ Âpo

)
(lpo) +

(
ĥ ∗ Âpo

)
(lpo)

]
,

(1.0.8)

where L =
∑E

e=1 le is the total length of the graph, γ a constant related to the

multiplicity of the eigenvalue zero and ∗ a convolution defined in [BE09]. Further-

more, the function h : C → C is a suitable test function with corresponding Fourier

transform ĥ. Also, Âpo is the Fourier transform of an amplitude Apo(k) which is

associated with any periodic orbit po of length lpo. Note that the boundary con-

ditions (1.0.4) are implicitly contained in the so-called scattering matrix S(k). As

an important consequence, the trace formula (1.0.8) establishes a close connection

between the quantum mechanical spectrum of the system and the periodic orbits

of its classical counterpart.

We have already mentioned that it is one aim of this thesis to contribute to a

better understanding of many-particle quantum chaos by developing models of in-

teracting many-particle systems on general compact quantum graphs. Indeed, the

presented models incorporate two different types of two-particle interactions. In a

first step, we will introduce singular two-particle interactions that are localised at

the vertices of the graph. This means that two particles interact only whenever

at least one particle is located at a vertex. As shown in [KS97b], the chaotic be-

haviour of a one-particle system on a quantum graph originates in the scattering

of the particle in the vertices. Therefore, by implementing singular two-particle

interactions localised at the vertices, the scattering is altered involving two-particle

effects which then provides an opportunity to investigate many-particle quantum

chaos. Note that Melnikov and Pavlov [MP95] introduced singular interactions

on a tree-like graph, i.e. a graph with three edges of infinite length joined at one
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common vertex, in order to investigate the effect of short range two-particle in-

teractions as present, for example, between electrons in a solid. To illustrate our

approach which leads to the implementation of singular two-particle interactions,

consider the simplest compact graph, i.e. an interval of length l. In this case,

the configuration space of two particles is the square D = (0, l) × (0, l) and the

two-particle Hilbert space (for two distinguishable particles) is given by L2(D).

As a two-particle Hamiltonian, we consider the two-dimensional Laplacian

−∆2 = − ∂2

∂x2
− ∂2

∂y2
, (1.0.9)

which, defined on the set of all functions in C∞
0 (D), is a symmetric and densely

defined operator. The idea is then to characterise suitable self-adjoint extensions of

(−∆2, C
∞
0 (D)) which incorporate singular interactions. Indeed, these self-adjoint

extenstions will be obtained via the construction of suitable quadratic forms. It

is interesting to note that the domains of the corresponding self-adjoint operators

can be characterised in a way very similar to (1.0.4), i.e. each function f ∈ H2(D)

in such a domain fulfils the two-particle boundary conditions

A(y)


f(0, y)

f(l, y)

f(y, 0)

f(y, l)

+B(y)


fx(0, y)

−fx(l, y)
fy(y, 0)

−fy(y, l)

 = 0, y ∈ [0, l]. (1.0.10)

Here the maps A(y), B(y) ∈ C4×4 are required to fulfil, for each value y ∈ [0, l],

the same properties as corresponding one-particles maps [KS99]. In order to elu-

cidate the two-particle interactions which are induced by the boundary conditions

(1.0.10), consider the (non-compact) graph that is obtained by replacing the origin

of the real line by a vertex. Indeed, if the maps A(y) and B(y) are chosen appro-

priately, the boundary conditions at this vertex effectively describe a two-particle

system on the real line with (formal) Hamiltonian

Ĥ = − ∂2

∂x2
− ∂2

∂y2
+ α(x, y) [δ(x) + δ(y)] , (1.0.11)

where α is a variable interaction strength [BK13b]. One can see that the δ-

functions lead to strongly localised two-particle interactions at the vertex of the
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graph. Furthermore, if we choose the function α with support close to the origin,

the interactions are present only whenever both particles are close to the vertex.

In this way, we can relate our model to the model considered by Melnikov and

Pavlov in which both particles interact only in the vertex.

Subsequently we will introduce, in addition to singular interactions located at the

vertices, contact interactions which are also present along the edges of the graph,

i.e. whenever two particles are located at the same position. The introduction

of such contact interactions is again interesting from the point of view of many-

particle quantum chaos. In a one-particle system, the motion of the particle along

the edges is simple since scattering takes place at the vertices only. However, in

a many-particle system with contact interactions, the particles also scatter in the

interior of an edge whenever at least two particles hit each other. Due to this ad-

ditional source of scattering, the dynamics of the system becomes more involved.

More precisely, the interactions we want to implement are point-like contact inter-

actions and, most prominently, δ-interactions. Such interactions are, for a system

of N particles moving on the real line, described by the (formal) Hamiltonian

ĤN = −
N∑
j=1

∂2

∂x2j
+ α

∑
i>j

δ(xi − xj), (1.0.12)

where α ∈ R is the interaction strength. Note that the limit α → ∞ corre-

sponds to (repulsive) hard-core interactions. In fact, it will be our goal to give

a rigorous realisation of the Hamiltonian (1.0.12) on general compact quantum

graphs. Note that a Hamiltonian of the form (1.0.12) is considered, for example,

in the Lieb-Liniger model [LL63] which plays an important role in one-dimensional

Bose-Einstein condensation [CCG+11] and our results will indeed provide a gen-

eralisation of the Lieb-Liniger model to general compact quantum graphs.

Finally, we will use the models of interacting particles introduced to discuss Bose-

Einstein condensation (BEC) in the context of quantum graphs. In contrast to a

free Bose gas in three dimensions, no Bose-Einstein condensation occurs at any

finite temperature (T > 0) in a free one-dimensional Bose gas [DGPS99]. However,

if a gas of bosons in one dimension is trapped and hence not free, Bose-Einstein

condensation might nevertheless occur [BK91]. Also, condensation was proved in

[IRH76] for a one-dimensional Bose gas on the real line with one-particle Hamil-
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tonian

Ĥ = − d2

dx2
− αδ(x), (1.0.13)

where α > 0 is the interaction strength. Accordingly, even a small and strongly

localised interaction can lead to Bose-Einstein condensation and, indeed, in one of

the main results we will establish condensation in a large class of many-particle

systems on quantum graphs. More precisely, given a system without particle-

particle interactions, BEC is shown to occur if and only if the interactions with

external potentials, as induced by the boundary conditions (1.0.4), are not fully

repulsive. Subsequently, we will extend the discussion to include systems of in-

teracting bosons, i.e. the particles shall be interacting via singular interactions

as well as contact interactions. Since it is, as mentioned above, in general very

difficult to prove condensation in a system of interacting particles [LSSY05], we

approach the problem indirectly by taking into account the connection of Bose-

Einstein condensation and phase transitions. As a final result, we will show that

(in the sense of phase transitions) no Bose-Einstein condensation occurs in a sys-

tem of bosons interacting via repulsive hard-core interactions. Most importantly,

this result holds independently of the singular interactions in the vertices of the

graph.



2. MATHEMATICAL BACKGROUND

In this chapter, we present the necessary mathematical theorems and techniques

in order to establish the results of the thesis. Most of the mathematical repertoire

we use originates in the theory of functional analysis as well as the theory of partial

differential equations. Quantum mechanics, as the fundamental theory to describe

the physics of the microscopic world, makes extensive use of operator theory and,

in particular, self-adjoint and symmetric operators on some appropriate Hilbert

space [RS72, JBE08, Tak08].

2.1 Basics in operator theory

The material presented in this section can be found in [Kat66, RS72, RS78, BB93,

RR04]. In the following, H will denote a separable, complex Hilbert space with

scalar product ⟨·, ·⟩H.

Definition 2.1.1. A linear operator Â on a Hilbert space H is a linear map from

a linear subspace D(Â) into H. Furthermore, a linear operator Â is called densely

defined if D(Â) is dense in H.

Note that we will, in the following, consider linear and densely defined operators

only.

Definition 2.1.2. An operator Â is bounded if there exists a constant c ∈ R such

that

∥Âφ∥H ≤ c∥φ∥H, ∀φ ∈ D(Â). (2.1.1)

Otherwise, the operator is called unbounded.

Note that a bounded operator can always be defined on the whole Hilbert space

H.
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Definition 2.1.3. The norm of a bounded operator is given by

∥Â∥op = sup
φ∈D(Â);∥φ∥H ̸=0

∥Âφ∥H
∥φ∥H

. (2.1.2)

Often it is interesting to identify extensions of an operator. In particular, it

will be important in later chapters to identify self-adjoint extensions of symmetric

operators.

Definition 2.1.4. An operator
(
B̂,D(B̂)

)
is called an extension of some operator(

Â,D(Â)
)
, denoted as Â ⊆ B̂, if D(Â) ⊆ D(B̂) and

Âφ = B̂φ, ∀φ ∈ D(Â). (2.1.3)

As a next step we define closed operators.

Definition 2.1.5. An operator Â is called closed if for every sequence {φn}n∈N ∈
D(Â) converging to φ ∈ H and Âφn −→

n→∞
ψ ∈ H, we have

φ ∈ D(Â) and ψ = Âφ. (2.1.4)

Definition 2.1.6. An operator Â is called closable if it has a closed extension.

Note that the smallest closed extension of an operator is called its closure.

Definition 2.1.7. A bounded operator Â is called compact if for every bounded

sequence {φn}n∈N the sequence {Âφn}n∈N contains a convergent subsequence.

The most prominent operators in physics are self-adjoint operators. Most im-

portantly, the Hamiltonian of a system is in general required to be self-adjoint.

Definition 2.1.8. An operator Â is called symmetric if

⟨Âψ, φ⟩H = ⟨ψ, Âφ⟩H, ∀ψ, φ ∈ D(Â). (2.1.5)

It is important to note that every symmetric operator is closable [JBE08].

Definition 2.1.9. A symmetric operator Â is bounded from below if

⟨ψ, Âψ⟩H ≥ −λ∥ψ∥2H, ∀ψ ∈ D(Â), (2.1.6)
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for some number λ ≥ 0. If an operator is bounded from below we call it semi-

bounded. Furthermore, if λ = 0 we call it positive.

Definition 2.1.10. Let Â be an operator on a Hilbert space H. Define D(Â∗) to

be the set of ψ ∈ H for which there is an χ ∈ H such that

⟨Âφ, ψ⟩H = ⟨φ, χ⟩H, ∀φ ∈ D(Â). (2.1.7)

For each such ψ ∈ D(Â∗), one sets Â∗ψ = χ. Then the operator (Â∗,D(Â∗)) is

called the adjoint of Â.

Definition 2.1.11. An operator Â is self-adjoint if Â = Â∗, i.e. if D(Â) = D(Â∗)

and

Âφ = Â∗φ, ∀φ ∈ D(Â). (2.1.8)

Definition 2.1.12. Let Â be a closed, symmetric operator. Its deficiency indices

are defined as

n+ = dimker (Â∗ − i),

n− = dimker (Â∗ + i).
(2.1.9)

Lemma 2.1.13. A closed, symmetric operator is self-adjoint if and only if n± = 0.

Sometimes it is difficult to determine the closure of a given symmetric operator.

For this reason, one would like to define a weaker form of self-adjointness which

does not require the operator to be closed.

Definition 2.1.14. A symmetric operator Â is said to be essentially self-adjoint

if its closure is self-adjoint.

For an operator Â, we define the set C∞(Â) :=
∩∞
n=1 D(Ân). A vector φ ∈

C∞(Â) is called an analytic vector if the power series

∞∑
n=0

∥Ânφ∥H
zn

n!
(2.1.10)

has a non-zero convergence radius [JBE08]. Based on this, we can state the im-

portant theorem of Nelson that allows to establish essential self-adjointness of an

operator. For this, note that a subset X ⊂ H of a Hilbert space is called total if

span(X) = H.
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Theorem 2.1.15 (Nelson). Let Â be a symmetric operator whose analytic vectors

form a total set. Then Â is essentially self-adjoint.

Before we move on to characterise the spectrum of an operator, we mention

an important subclass of compact operators which are also very important in

physics. For this we note that one can define the “square root” of a bounded,

positive operator Â, i.e. there exists a bounded, positive operator
√
Â such that

(
√
Â)2 = Â [JBE08].

Definition 2.1.16. A bounded operator Â is said to be of trace-class if

Tr |Â| :=
∞∑
n=1

⟨en, |Â|en⟩H <∞ , (2.1.11)

where |Â| :=
√
A∗A and {en}n∈N is some orthonormal basis of H. Note that Tr |Â|,

i.e. the trace of |Â|, can shown to be independent of the basis chosen [JBE08].

Theorem 2.1.17. Let Â be a trace-class operator. Then

Tr Â :=
∞∑
n=1

⟨en, Âen⟩H (2.1.12)

is well defined, i.e. the sum on the right-hand side converges absolutely and is

independent of the basis {en}n∈N.

Now we want to give basic definitions regarding the spectrum of an operator.

In contrast to the finite-dimensional case, where the spectrum of a matrix consists

of finitely many eigenvalues, the spectrum of operators on infinite-dimensional

Hilbert spaces is more complex since it may not be purely discrete.

Definition 2.1.18. Let Â be a closed operator on a Hilbert space H. Let λ ∈ C
be a complex number and consider the operator (Â− λ I,D(Â)). If this operator

has dense range, is bijective and has bounded inverse, we say that λ is in the

resolvent set ρ(Â). Furthermore,

Rλ(Â) = (Â− λ I)−1 (2.1.13)

is called the resolvent of Â at λ. If λ ̸∈ ρ(Â), then λ is in the spectrum σ(Â) of Â.
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The spectrum σ(Â) of a closed operator Â can be decomposed into three (dis-

joint) subsets, i.e. the point spectrum, the continuous spectrum and the residual

spectrum.

Definition 2.1.19. The point spectrum is the set of all values λ ∈ C for which

Â− λ I is not bijective, i.e.

σp(Â) = {λ ∈ σ(Â)| Rλ(Â) doesn’t exist}. (2.1.14)

Definition 2.1.20. The continuous spectrum is the set

σc(Â) = {λ ∈ σ(Â)| ran(Â− λ I) is dense; Rλ(Â) exists but is unbounded}.
(2.1.15)

Definition 2.1.21. The residual spectrum is the set

σr(Â) = {λ ∈ σ(Â)| Rλ(Â) exists; ran (Â− λ I) is not dense}. (2.1.16)

One reason why self-adjoint operators are important in physics is due to the

fact that their spectrum is purely real.

Lemma 2.1.22. Let Â be a self-adjoint operator. Then its spectrum is purely real,

i.e.

σ(Â) ⊆ R. (2.1.17)

An important subset of the point spectrum is the discrete spectrum which

consists of all isolated eigenvalues with finite multiplicity.

Definition 2.1.23. The discrete spectrum of an operator Â consists of all elements

λ ∈ σp(Â) for which

1. dim ker (Â− λ) <∞,

2. λ is an isolated value in the point spectrum.

In physics, there are numerous examples of operators with purely discrete spec-

trum, e.g. the Hamiltonian of the harmonic oscillator. However, as for the Hamil-

tonian of the hydrogen atom, the spectrum may not always be purely discrete.

Theorem 2.1.24. [RS78] Let Â be a semi-bounded, self-adjoint operator. Then

Â has purely discrete spectrum if and only if its resolvent is a compact operator.
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Proving that a given symmetric operator is self-adjoint is often difficult. One

suitable way to identify self-adjoint operators is through the construction of suit-

able quadratic forms.

Definition 2.1.25. A sesquilinear form Q, defined on a linear subspace DQ ⊂ H,

is a map

S : DQ ×DQ 7→ C, (2.1.18)

that is anti-linear in the first and linear in the second argument. The form is called

symmetric if

Q[ψ, φ] = Q[φ, ψ], (2.1.19)

and it is called densely defined if its domain DQ is dense in H. Furthermore, a

quadratic form Q[ψ] := Q[ψ, ψ] is called bounded from below if there exists a λ ≥ 0

such that

Q[ψ] ≥ −λ∥ψ∥2H, ∀ψ ∈ DQ. (2.1.20)

A quadratic form is called closed if DQ is complete with respect to the norm

∥ · ∥2Q = Q[·] + (λ+ 1)∥ · ∥2H. (2.1.21)

Note that, since there is a one-to-one correspondence between sesquilinear and

quadratic forms [JBE08], we will also refer to both briefly as a form.

Theorem 2.1.26 (representation theorem). Let Q : DQ × DQ → H be a densely

defined form which is closed, symmetric and bounded from below. Then there exists

a unique, semi-bounded and self-adjoint operator Â on H such that D(Â) ⊂ DQ

and

⟨ψ, Âφ⟩H = Q[ψ, φ], ∀ψ ∈ DQ, φ ∈ D(Â). (2.1.22)

Let Â be a self-adjoint operator with purely discrete spectrum and eigenvalues

(counted with multiplicity) {λn}n∈N0 . Then we define the counting function of Â

by

NÂ(λ) = #{n ∈ N0| λn ≤ λ}, (2.1.23)

where λ ∈ R is some real number. Using the representation theorem, it is possible

to compare the counting functions of two operators. More precisely, let Â and B̂

be self-adjoint operators with corresponding forms QÂ and QB̂ as characterised in

Theorem 2.1.26. Suppose that both operators have compact resolvent. Then, if
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DQÂ
⊆ DQB̂

and QÂ[ψ] ≥ QB̂[ψ] for all ψ ∈ DQÂ
, one has

NÂ(λ) ≤ NB̂(λ), ∀λ ∈ R. (2.1.24)

Note that the inequality (2.1.24) follows from the min-max principle (see The-

orem XIII.2 [RS78]). In order to formulate it, we use the shorthand notation

[φ1, . . . , φm]
⊥ for {ψ| ⟨ψ, φj⟩H = 0, j = 1, ...,m} [RS78].

Theorem 2.1.27 (min-max principle). Let Â be self-adjoint and bounded from

below with corresponding quadratic form QÂ as described in Theorem 2.1.26. We

then define the number

µn(Â) = sup
φ1,...,φn−1∈H

inf
ψ∈[φ1,...,φn−1]⊥

ψ∈DQ
Â
,∥ψ∥=1

⟨ψ, Âψ⟩H . (2.1.25)

In particular, if Â has compact resolvent, µn(Â) is the n-th eigenvalue counting

multiplicity.

2.2 Sobolev spaces and Lipschitz domains

In this section, we introduce the concept of Sobolev spaces since they are suitable

spaces for the discussion of partial differential operators. We also introduce Lip-

schitz domains and provide important properties of Sobolev spaces on Lipschitz

domains. Note that all results stated in this section can be found in [Dob05] unless

otherwise stated. For a more detailed analysis of Sobolev spaces and properties of

Sobolev functions on general domains see [Ada75, MP01].

In the following, Ω ⊂ RN shall always denote an open, bounded domain, i.e. Ω is

connected. A multi-index α is a vector α = (α1, ..., αN) ∈ NN
0 with

|α| = α1 + ...+ αN , (2.2.1)

as well as

Dα = ∂α1
x1
...∂αN

xN
. (2.2.2)

Definition 2.2.1. Let ψ ∈ L2(Ω) be a function. The function χ ∈ L2(Ω) is a
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weak derivative of order α of ψ, if

⟨ψ,Dαφ⟩L2(Ω) = (−1)|α|⟨χ, φ⟩L2(Ω), ∀φ ∈ C∞
0 (Ω). (2.2.3)

A function ψ ∈ L2(Ω) is called m-times weakly differentiable if it is weakly differ-

entiable of all orders α with |α| ≤ m.

Remark 2.2.2. Note that, for each j = 1, ..., N , the weak derivative with respect

to xj will also be denoted by ∂j.

Definition 2.2.3. Let m ∈ N0. The m-th Sobolev space Hm(Ω) consists of all

functions ψ ∈ L2(Ω) that are m-times weakly differentiable. Then

∥ψ∥Hm(Ω) =

∑
|α|≤m

∥Dαψ∥2L2(Ω)

 1
2

(2.2.4)

is a norm on Hm(Ω).

Remark 2.2.4. It follows that H0(Ω) = L2(Ω).

Lemma 2.2.5. The space Hm(Ω) is a Hilbert space with scalar product

⟨ψ, φ⟩Hm(Ω) =
∑

0≤|α|≤m

∫
Ω

(Dαψ)Dαφ dx. (2.2.5)

A very important class of (bounded) domains Ω are Lipschitz domains. Loosely

speaking, Lipschitz domains are domains that allow for corners. Due to this, they

are very important in applied mathematics since domains with corners appear

naturally, e.g. in the area of fluid dynamics or electrodynamics.

Definition 2.2.6. The space C0(Ω) consists of all bounded and uniformly contin-

uous functions on Ω. Furthermore, the space Cm(Ω) is the subset of Cm(Ω) which

consists of all functions that have bounded and uniformly continuous derivatives

up to order |α| ≤ m.

Definition 2.2.7. The space C0,1(Ω) consists of all functions φ ∈ C0(Ω) that are

Lipschitz continuous.

Now, in order to introduce Lipschitz domains as well as smooth domains more

precisely, let hrη : BN−1
η (0) → R be a function such that hrη ∈ Cm(BN−1

η (0)) or
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hrη ∈ C0,1(BN−1
η (0)) with η, r > 0 some constants and where BN−1

η (0) is the open

ball of radius η ∈ R around the origin 0 ∈ RN−1. Note that, in the following, we

use the convention x = (x′, xN)
T ∈ RN where x′ ∈ RN−1 and xN ∈ R.

Definition 2.2.8. Let m ∈ N or m = 0 with α = 1. A domain Ω is said to

be of class Cm (or of class C0,1) if, for every boundary point x0 ∈ ∂Ω, we can

translate and rotate the coordinate system such that a neighbourhood U of x0 can

be parametrized as

x′ = y′, xN = hrη(y
′) + yN , y′ ∈ BN−1

η (0), |yN | < r, (2.2.6)

where hrη ∈ Cm(BN−1
η (0)) (or hrη ∈ C0,1(BN−1

η (0))) with yN > 0 for all points

U ∩Ω, yN = 0 for all points U ∩∂Ω and yN < 0 for all points U ∩Ωc. Furthermore,

a domain of class C0,1 is called Lipschitz domain.

Using the characterisation of the boundary as established in the previous def-

inition together with a partition of unity argument, it is possible to define an

L2-space on the boundary of a Lipschitz domain:

Definition 2.2.9. Let Ω ⊂ RN be a Lipschitz domain and U =
∪J
j=1 Uj a finite

open cover of the boundary with
∑J

j=1 ϕj(x) = 1 in U , ϕj ∈ C∞
0 (Uj). For each

open domain Uj ⊂ RN , let h
rj
ηj denote the function characterising the boundary as

introduced above. Then, if ψ : ∂Ω → C is a function on the boundary, consider

the restrictions ψj(y
′) = (ϕjψ)(y

′, h
rj
ηj(y

′)) with y′ ∈ BN−1
ηj

(0). We say that ψ is

measurable on ∂Ω whenever all ψj are measurable in BN−1
ηj

(0). Also, ψ is called

integrable on ∂Ω if the integrals∫
∂Ω

ψj dσ :=

∫
BN−1

ηj
(0)

ψj

√
1 + |∇hrjηj |2 dy′ (2.2.7)

exist in the sense of Lebesgue for all j ∈ {1, ..., J}. Furthermore, the integral

∫
∂Ω

ψ dσ :=
J∑
j=1

∫
∂Ω

ψj dσ (2.2.8)

is called the boundary integral of ψ. Defining the norm ∥ψ∥L2(∂Ω) =
(∫

∂Ω
|ψ|2dσ

) 1
2 ,

the space L2(∂Ω) consists of all measurable functions ψ : ∂Ω → C with finite

L2(∂Ω)-norm.
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Theorem 2.2.10. Let Ω ⊂ RN be a Lipschitz domain. Then, the set of all re-

strictions of functions in C∞
0 (RN) to Ω is dense in Hm(Ω).

A fundamental property of Lipschitz domains is that one is able to assign

boundary values to a Sobolev function. Note that this is not straightforward since

the boundary is a set of (Lebesgue) measure zero.

Theorem 2.2.11. Let Ω ⊂ RN be a Lipschitz domain. Then there exists a unique,

continuous linear operator γ : H1(Ω) → L2(∂Ω) such that

γψ = ψ|∂Ω (2.2.9)

for ψ ∈ C∞(Ω). Moreover, there exists c > 0 such that

∥γψ∥L2(∂Ω) ≤ c∥ψ∥H1(Ω). (2.2.10)

The constant c > 0 is called the trace constant.

Remark 2.2.12. The Sobolev spaces Hm
0 (Ω) consist of all functions φ ∈ Hm(Ω)

such that γ (Dαφ) = 0 for |α| ≤ m− 1.

Note that a generalisation of the trace theorem (on Lipschitz domains) can

be found in [Din96]. Indeed, one can show that the traces of functions in H1(Ω)

are elements of the fractional Sobolev space H
1
2 (∂Ω) [Dob05, RR04]. Also, it

is possible to estimate the boundary integral more precisely than provided by

(2.2.10).

Theorem 2.2.13. [Gri11] Let Ω ⊂ RN be a Lipschitz domain. Then there exists

a constant K > 0 such that∫
∂Ω

|γφ|2 dσ ≤ K

(
δ

∫
Ω

|∇φ|2 dx+
1

δ

∫
Ω

|φ|2 dx

)
(2.2.11)

for all φ ∈ H1(Ω) and δ ∈ (0, 1). Furthermore, the constant K depends only the

the domain Ω and its boundary.

Finally, we want to state an important result concerning convex domains.

Definition 2.2.14. Let Ω ⊂ RN be a domain. If for every two points x, y ∈ Ω,

the point tx+ (1− t)y is in Ω for all values t ∈ [0, 1], we call the domain convex.
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Theorem 2.2.15. [Gri11] Let Ω ⊂ RN be a convex domain. Then Ω has a

Lipschitz boundary.

Note that all domains considered in this thesis will be convex.

2.3 Boundary value problems

Let Ω ⊂ RN be an open, bounded Lipschitz domain and consider the classical

boundary value problem: Given f ∈ L2(Ω) and λ ≥ 0, find a function ψ ∈
C2(Ω) ∩ C1(Ω) such that

(−∆+ λ)ψ = f, ∀x ∈ Ω, (2.3.1)

and
∂ψ

∂n⃗
+ αψ = 0, ∀x ∈ ∂Ω, (2.3.2)

with some constant α ∈ R or

ψ = 0, ∀x ∈ ∂Ω. (2.3.3)

The boundary conditions (2.3.2) are so called Robin conditions, where c ≡ 0 cor-

responds to Neumann conditions. Furthermore, (2.3.3) are Dirichlet boundary

conditions. Now, one would like to prove existence as well as uniqueness of a clas-

sical solution ψ ∈ C2(Ω) ∩ C1(Ω). However, it was soon realised that one cannot

expect a classical solution to exist for arbitrary data f ∈ L2(Ω) and independent

of the domain considered [RR04, Dob05]. Therefore, the concept of a weak solu-

tion was introduced into the modern theory of partial differential equations. To

illustrate this concept, let H be a Hilbert space, a(·, ·) a sesquilinear form

a : H×H 7→ C, (2.3.4)

and f(·) a linear and continuous functional on H. Then we can formulate the

abstract boundary value problem: Find ψ ∈ H such that

a(ψ, φ) = f(φ), ∀φ ∈ H. (2.3.5)

Definition 2.3.1. If ψ ∈ H is a solution of the abstract boundary value problem
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(2.3.5), we call it a weak solution.

In order to relate the abstract boundary value problem (2.3.5) to the classi-

cal boundary value problem above, we associate with the Laplacian a suitable

sesquilinear form and define this form on a suitable Hilbert space H. In the case

of the Robin boundary value problem (2.3.2), we introduce the form

aR(ψ, φ) =

∫
Ω

∇ψ̄∇φ dx+ λ

∫
Ω

ψ̄φ dx+ α

∫
∂Ω

ψ̄φ dσ (2.3.6)

and define it on the Hilbert space H = H1(Ω). The variational version of the

boundary value problem (2.3.2) then reads: Find a function ψ ∈ H1(Ω) such that

aR(ψ, φ) = ⟨f, φ⟩H, ∀φ ∈ H1(Ω). (2.3.7)

Furthermore, the variational version of the Dirichlet problem (2.3.3) is obtained

by defining the form

aD(ψ, φ) =

∫
Ω

∇ψ̄∇φ dx+ λ

∫
Ω

ψ̄φ dx (2.3.8)

on the Hilbert space H = H1
0 (Ω). The boundary value problem then reads: Find

a function ψ ∈ H1
0 (Ω) such that

aD(ψ, φ) = ⟨f, φ⟩H, ∀φ ∈ H1
0 (Ω). (2.3.9)

To show the existence of a unique weak solution, one applies the theorem of Lax-

Milgram [Gri11, Dob05, RR04].

Theorem 2.3.2. Let a(·, ·) : H×H 7→ C a sesquilinear form on H. Suppose there

exist two constants c1, c2 > 0 such that

|a(ψ, φ)| ≤ c1∥ψ∥H∥φ∥H, ∀ψ, φ ∈ H (2.3.10)

and

a(φ, φ) ≥ c2∥φ∥2H, ∀φ ∈ H. (2.3.11)

Then, for every continuous and linear functional f(·), there exists a unique ψ ∈ H
such that

a(ψ, φ) = f(φ), ∀φ ∈ H. (2.3.12)
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Theorem 2.3.3. [Gri11] Let Ω ⊂ RN be an open bounded convex domain. Then,

for each function f ∈ L2(Ω), the boundary value problems (2.3.9) with λ ≥ 0 and

(2.3.7) with λ > 0 and α ≥ 0 have a unique weak solution ψ ∈ H2(Ω).

The most important conclusion from Theorem 2.3.3 is not that there exists

a unique weak solution ψ ∈ H1(Ω) but that this solution actually belongs to a

Sobolev space of higher order. In general, if a weak solution ψ ∈ H1(Ω) is such

that ψ ∈ H2(Ω), we call it H2-regular or regular for short. As it turns out,

however, there is no general criterion which allows one to conclude that a weak

solution of an arbitrary boundary value problem is regular. Instead, the regularity

of a weak solution strongly depends on the domain Ω ⊂ RN , its boundary ∂Ω

and the boundary conditions imposed [Neč67, Dau88, Gri11, Dob05]. Also, it

is particularly difficult to establish regularity on domains with corners since the

standard technique that works for smooth boundaries usually cannot be applied.

A standard technique to establish regularity is the difference quotient technique

introduced by Nirenberg [Nir59, RR04, Dob05]. Since we will use this technique in

the proof of a regularity theorem given in part B of the appendix, we here provide

the necessary technical prerequisites.

Definition 2.3.4. Let en be the unit vector in the direction of the n-th coordinate.

For given h > 0 and given function ψ : RN → C, we define the two difference

quotients

(
D+h
n ψ

)
(x) =

ψ(x+ hen)− ψ(x)

h
,(

D−h
n ψ

)
(x) =

ψ(x)− ψ(x− hen)

h
.

(2.3.13)

Note that the difference quotients are usually not defined for all x ∈ Ω.

Lemma 2.3.5. Let ψ, φ ∈ L2
loc(Ω) be two functions with one function having

compact support in Ω. Then, for h small enough, we have the partial summation

rule

⟨ψ,D+h
n φ⟩H = −⟨D−h

n ψ, φ⟩H. (2.3.14)

Theorem 2.3.6. Let Ω0 b Ω be an open subset which is compactly contained in

Ω. Then there exists h0(Ω0) > 0, depending on the set Ω0, such that for 0 ≤ h ≤
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h0(Ω0) we have

∥D+h
n ψ∥L2(Ω0) ≤ ∥∂nψ∥L2(Ω), ∀ψ ∈ H1(Ω). (2.3.15)

Furthermore, let ψ ∈ L2(Ω) be such that ∥D+h
n ψ∥L2(Ω0) ≤ K for all Ω0 b Ω and

all 0 ≤ h ≤ h0(Ω0), then ψ is weakly differentiable with respect to xn and we have

∥∂nψ∥L2(Ω) ≤ K. (2.3.16)



3. FUNDAMENTALS OF ONE-PARTICLE QUANTUM

GRAPHS AND (QUANTUM) CHAOS

In this chapter, we briefly describe the basic features of one-particle quantum

graphs as well as (quantum) chaos. The classical configuration space of a quantum

graph is a compact metric graph, i.e. a finite graph Γ = (V , E) with vertices

V = {1, ..., V } and edges E = {1, ..., E}. To each edge e ∈ E , we associate an

interval (0, le) and a corresponding coordinate xe ∈ (0, le). Accordingly, functions

on the graph are collections of functions on the edges, i.e.

F = (f1, . . . , fE) with fe : (0, le) → C, (3.0.1)

so that spaces of functions on Γ are (finite) direct sums of the respective spaces of

functions on the edges. For example, the one-particle Hilbert space is defined by

H1 = L2(Γ) =
E⊕
e=1

L2(0, le), (3.0.2)

and, in the same way, Sobolev spaces of order m ∈ N are given by

Hm(Γ) =
E⊕
e=1

Hm(0, le). (3.0.3)

As it is standard in quantum mechanics, one now introduces a Hamiltonian on

the Hilbert space. On quantum graphs, the most prominent Hamiltonian is the

one-particle Laplacian −∆1. This operator acts on F ∈ C∞(Γ) via

−∆1F = (−f ′′
1 , . . . ,−f ′′

E) (3.0.4)

and hence acts as the standard one-dimensional Laplacian on each component

of the wave function. We here use the index 1 to indicate that this is a one-
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particle Laplacian in order to distinguish it, later on, from the two- or many-

particle Laplacian. Note that, although the operator (3.0.4) is the most prominent

Hamiltonian on one-particle quantum graphs, one could also add an additional

interaction term V̂ to (3.0.4) in order to account for external potentials along the

edges. In this case, the associated Hamiltonian Ĥ is

Ĥ = −∆1 + V̂ . (3.0.5)

For example, if V̂ is a diagonal and bounded multiplication operator, one has

(ĤF )e = −f ′′
e + Vefe, ∀e ∈ E , (3.0.6)

for functions F ∈ C∞(Γ). Note that Hamiltonians of the form (3.0.5), introduc-

ing electric or magnetic potentials along the edges, are also frequently considered

[GS06]. For theoretical reasons, the introduction of magnetic potentials is interest-

ing since they can generate a breaking of the time-reversal symmetry [Sch97]. Such

symmetries are important, for example, in the field of quantum chaos since they

determine to which ensemble of random matrices the system can be associated

[Haa91].

3.1 Self-adjoint realisations of the one-particle Laplacian

As mentioned before, in quantum mechanics one usually requires the Hamiltonian

to be self-adjoint. In order to characterise self-adjoint realisations of the one-

particle Laplacian −∆1, we begin by considering it on the set of all infinitely

differentiable functions with compact support.

Lemma 3.1.1. The operator (−∆1, C
∞
0 (Γ)) is densely defined and symmetric.

Proof. Let I = (a, b) be an open interval. A standard result in integration theory

then states that C∞
0 (I) ⊂ L2(I) is dense [Dob05]. Since L2(Γ) is a direct sum of

L2-spaces over intervals, density follows directly. For two functions Ψ,Φ ∈ C∞
0 (Γ),
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we calculate

⟨Φ,−∆1Ψ⟩L2(Γ) = −
E∑
e=1

∫ le

0

φ̄(xe)ψ
′′(xe) dxe

= −
E∑
e=1

(
φ̄(xe)ψ

′(xe)− φ̄′(xe)ψ(xe)
)le
0
+ ⟨−∆1Φ,Ψ⟩L2(Γ)

= ⟨−∆1Φ,Ψ⟩L2(Γ).

(3.1.1)

Since the functions are in C∞
0 (Γ), we could integrate by parts and since they have

compact support, the term containing the boundary values vanishes. Hence, the

operator is symmetric.

However, the operator (−∆1, C
∞
0 (Γ)) is not self-adjoint. The idea is now to

look for (symmetric) extensions of this operator in order to enlarge its domain in

such a way that it finally becomes self-adjoint. The basic theorem, on which this

idea is based, is a standard result in operator theory.

Theorem 3.1.2. [BB93] Let H be a Hilbert space and Â, B̂ two densely defined

and symmetric operators such that

Â ⊆ B̂. (3.1.2)

Denoting the corresponding adjoint operators as Â∗ and B̂∗, we have the inclusion

B̂∗ ⊆ Â∗. (3.1.3)

Hence, by enlarging the domain of a densely defined and symmetric operator Â,

the domain of its adjoint Â∗ becomes smaller. Since one always has the inclusion

Â ⊂ Â∗, one hopes to enlarge the domain of Â such that it finally becomes self-

adjoint. Now, let

Fbv =
(
f1(0), . . . , fE(0), f1(l1), . . . , fE(lE)

)T ∈ C2E (3.1.4)

be a vector that contains the boundary values of a function F ∈ H1(Γ) and

F ′
bv =

(
f ′
1(0), . . . , f

′
E(0),−f ′

1(l1), . . . ,−f ′
E(lE)

)T ∈ C2E (3.1.5)
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an additional vector for functions F ∈ H2(Γ) that contains the boundary values of

its derivative. Then, using this notation and based on the idea introduced above,

Kostrykin and Schrader characterised all self-adjoint realisations of the one-particle

Laplacian −∆1.

Theorem 3.1.3. [KS99] Any self-adjoint realisation of the Laplacian on a com-

pact, metric graph has a domain of the form

D1(A,B) = {F ∈ H2(Γ); AFbv +BF ′
bv = 0}, (3.1.6)

where A,B ∈ M(2E,C) are such that rank(A,B) = 2E and AB∗ is self-adjoint.

Moreover, two such realisations with domains D(A,B) and D(A′, B′) are equiv-

alent, iff there exists C ∈ GL(2E,C) such that A′ = CA and B′ = CB.

Remark 3.1.4. In order to clarify the notation, we consider an example which will

also be of interest in the last chapter of the thesis when we discuss Bose-Einstein

condensation. To this end, let Γ be a graph with two edges E = {e1, e2}, each of

length l, and three vertices V = {v1, v2, v3}. Intuitively, one should think of the

interval (−l,+l) with an additional vertex placed at the origin. Furthermore, we

choose the boundary conditions

AFbv +BF ′
bv = 0 (3.1.7)

with maps

A =


1 −1 0 0

−α 0 0 0

0 0 1 0

0 0 0 1

 and B =


0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (3.1.8)

where α > 0 is some constant. The interesting property of this example is that

the boundary conditions (3.1.7) are the same as the boundary conditions (at x =

0) in a one-particle system moving on the interval (−l,+l) and whose (formal)

Hamiltonian is given by

Ĥ = − d2

dx2
+ αδ(x). (3.1.9)
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Indeed, it is well known that a delta potential leads (at x = 0) to the conditions

ψ(0+) = ψ(0−),

ψ′(0+)− ψ′(0−) = αψ(0+),
(3.1.10)

where ψ ∈ H2 ((−l, 0) ∪ (0,+l)) is some function. Now, it is straightforward to

check that the boundary conditions (3.1.10) equal, at the origin, the conditions

(3.1.7) with maps (3.1.8).

Remark 3.1.5. As established in the previous example, boundary conditions on

a one-particle quantum graph can be regarded as the result of external potentials,

localised at the vertices of the graph.

Besides the approach of Kostrykin and Schrader, there exists another approach

to characterise self-adjoint realisations of the one-particle Laplacian −∆1 which is

due to Kuchment [Kuc04]. Indeed, it is this approach that will provide us with

the starting point to characterise self-adjoint realisations of the two- and many-

particle Laplacian in later chapters. To introduce this approach, let P ∈ M(2E,C)
and L ∈ M(2E,C) be two matrices such that

1. P is an orthogonal projection;

2. L is a self-adjoint endomorphism on kerP ⊂ C2E.

Moreover, we set Q = 12E − P . Note that the second condition implies that Q

commutes with L when acting on elements in the kernel of P . Indeed, since L is a

self-adjoint endomorphism one concludes that PL = LP on kerP from which one

immediately gets QL = LQ on kerP . Now, one can define the quadratic form

Q
(1)
P,L[F ] =

E∑
e=1

∫ le

0

|f ′
e(x)|2 dx− ⟨Fbv, LFbv⟩C2E (3.1.11)

with domain

DQ(1) = {F ∈ H1(Γ); PFbv = 0}. (3.1.12)

Lemma 3.1.6. [Kuc04] The quadratic form Q
(1)
P,L is symmetric, closed and bounded

from below.
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Proof. Let Ψ,Φ ∈ DQ(1) be two functions. Taking the self-adjointness of L into

account, we have

Q
(1)
P,L[Ψ,Φ] =

E∑
e=1

∫ le

0

ψ̄′(xe)φ
′(xe) dxe − ⟨Ψbv, LΦbv⟩C2E

= Q
(1)
P,L[Φ,Ψ],

(3.1.13)

and hence Q
(1)
P,L is symmetric. Furthermore,

Q
(1)
P,L[Ψ] ≥ ∥Ψ′∥2L2(Γ) − Lmax∥Ψbv∥2C2E , (3.1.14)

where Lmax is the largest eigenvalue of the matrix L. Using the estimate

∥Ψbv∥2C2E ≤ δ∥Ψ′∥2L2(Γ) +
2

δ
∥Ψ∥2L2(Γ), ∀δ ≤ lmin, (3.1.15)

as established in [Kuc04], we arrive at

Q
(1)
P,L[Ψ] ≥ (1− Lmaxδ)∥Ψ′∥2L2(Γ) −

2Lmax

δ
∥Ψ∥2L2(Γ)

≥ −2Lmax

δ
∥Ψ∥2L2(Γ),

(3.1.16)

for δ small enough. Hence, the form is bounded from below. Finally, consider the

form norm

∥ · ∥2
Q

(1)
P,L

= Q
(1)
P,L[Ψ] + (λmax + 1)∥Ψ∥2L2(Γ), (3.1.17)

where we have set λmax =
2Lmax

δ
.

Proposition 3.1.7. On H1(Γ), the form norm ∥ · ∥
Q

(1)
P,L

is equivalent to the H1-

norm ∥ · ∥H1(Γ).

Proof. Let Ψ ∈ H1(Γ) be some function. Using (3.1.15) we have

∥Ψ∥2
Q

(1)
P,L

= Q
(1)
P,L[Ψ] + (λmax + 1)∥Ψ∥2L2(Γ)

≤ (1 + δLmax)∥Ψ′∥2L2(Γ) + (2λmax + 1) ∥Ψ∥2L2(Γ)

≤ c1∥Ψ∥2H1(Γ)

(3.1.18)

for some δ ≤ lmin and c1 > 0 some constant. Furthermore, using (3.1.16) we
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directly obtain

∥Ψ∥2
Q

(1)
P,L

= Q
(1)
P,L[Ψ] + (λmax + 1)∥Ψ∥2L2(Γ)

≥ (1− δLmax) ∥Ψ′∥2L2(Γ) + ∥Ψ∥2L2(Γ)

≥ c2∥Ψ∥2H1(Γ),

(3.1.19)

for δ small and c2 > 0 some constant.

Now, let {Ψn}n∈N ∈ DQ(1) be a Cauchy sequence with respect to the form norm.

Since it is equivalent to the H1-norm, we immediately conclude that {Ψn}n∈N is a

Cauchy-Sequence in H1(Γ). By the completeness of H1(Γ), there exists a function

Ψ ∈ H1(Γ) such that

∥Ψ−Ψn∥2Q(1)
P,L

≤ ϵ, (3.1.20)

for all n ≥ n0 and arbitrary small ϵ. Furthermore,

∥PΨbv∥2C2E ≤ ∥P∥op∥Ψbv −Ψn;bv∥2C2E

≤ ∥P∥op
(
δ∥Ψ′ −Ψ′

n∥2L2(Γ) +
2

δ
∥Ψ−Ψn∥2L2(Γ)

)
≤ ϵ,

(3.1.21)

for δ ≤ lmin and ∥P∥op the operator norm of P . Hence, we conclude that PΨbv = 0

and Ψ ∈ DQ(1) which implies that the form Q
(1)
P,L is closed.

Now, by the standard representation theorem of quadratic forms [Kat66], there

exists a unique self-adjoint operator associated with each form (3.1.11). In fact, as

shown in the next theorem, this operator is the one-particle Laplacian −∆1 with

a suitable domain.

Theorem 3.1.8. [Kuc04] The unique, self-adjoint and semi-bounded operator as-

sociated with the quadratic form (3.1.11) is the one-particle Laplacian −∆1 with

domain

D1(P,L) = {F ∈ H2(Γ); PFbv = 0 and QF ′
bv + LQFbv = 0}. (3.1.22)

Proof. The starting point is the quadratic form (3.1.11). We denote the associ-

ated self-adjoint operator by (Ĥ,D(Ĥ)). According to [Kat66], the domain D(Ĥ)
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consists of all Φ ∈ DQ(1) for which there exists a Λ ∈ L2(Γ) such that the relation

Q
(1)
P,L[Ψ,Φ] = ⟨Ψ,Λ⟩L2(Γ) (3.1.23)

holds for all Ψ ∈ DQ(1) . Note that the action of Ĥ is then given by ĤΦ = Λ. Now,

choosing Ψ ∈ C∞
0 (Γ), we calculate

Q
(1)
P,L[Ψ,Φ] =

E∑
e=1

∫ le

0

ψ̄′(xe)φ
′(xe) dxe

= −
E∑
e=1

∫ le

0

ψ̄′′(xe)φ(xe) dxe = ⟨Ψ,Λ⟩L2(Γ).

(3.1.24)

Comparing the last line of (3.1.24) with Definition 2.2.1 of the second weak deriva-

tive implies that Φ ∈ H2(Γ). Furthermore, using the fundamental lemma of vari-

ational calculus [Dob05], we conclude that the operator Ĥ acts as the negative

second derivative, i.e. the Laplacian in one dimension.

Now, let Ψ ∈ DQ(1) and calculate

Q
(1)
P,L[Ψ,Φ] =

E∑
e=1

∫ le

0

ψ̄′(xe)φ
′(xe) dxe − ⟨Ψbv, LΦbv⟩C2E

= −
E∑
e=1

∫ le

0

ψ̄(xe)φ
′′(xe) dxe − ⟨Ψbv,Φ

′
bv + LΦbv⟩C2E .

(3.1.25)

Since the operator Ĥ is the one-dimensional Laplacian, the second term on the

right-hand side must vanish. Furthermore, since PΨbv = 0 and P is a projection,

we conclude that QΦ′
bv + QLΦbv = 0. Finally, we take into account that by

definition L and Q commute when acting on elements in kerP .

Remark 3.1.9. [Kuc04] Above we characterised all self-adjoint realisations of the

one-particle Laplacian in two different ways. However, these two approaches are

connected as follows: P is the orthogonal projection onto kerB ⊂ C2E and L is the

self-adjoint endomorphism L = (B|ranB∗)−1AQ of C2E (see [Kuc04] for a detailed

construction). Note that (B|ranB∗)−1 is the inverse of the map Q1BQ : ranB∗ →
ranB, Q1 = 1 − P1 and P1 the projection on kerB∗.

Finally, we want to distinguish between local and non-local boundary condi-
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tions. Local boundary conditions respect the graph structure, i.e. the boundary

conditions are called local whenever all matrices M ∈ {A,B;P,L} have the block

structure

M =
V⊕
v=1

Mv. (3.1.26)

Here Mv, corresponding to the vertex v, connects only such components of Fbv

and F
′

bv that end or start in the vertex v. For instance, the boundary conditions

of Example (3.1.8) are local boundary conditions. For physical reasons, non-local

boundary conditions are often discarded [BE09].

3.2 The spectrum of the one-particle Laplacian

In this section, we discuss spectral properties of the Laplacian (−∆1,D1(A,B))

or, equivalently, (−∆1,D1(P,L)).

Proposition 3.2.1. [KS06] Let (−∆1,D1(A,B)) be a self-adjoint realisation of

the one-particle Laplacian on a compact quantum graph. Then, its resolvent is a

compact operator and hence the spectrum is purely discrete.

Most importantly, on one-particle quantum graphs, one can calculate the (pos-

itive) eigenvalues directly as roots of the so-called secular function. This prop-

erty is crucial, for example, for the derivation of the trace formula on graphs

[KS97b, BE09]. Following the presentation in [KS06, BE09], we define the scat-

tering matrix of the graph by

S(k) = −(A+ ikB)−1(A− ikB) (3.2.1)

or, in terms of the maps P and L,

S(k) = −P −Q(L+ ik)−1(L− ik)Q, (3.2.2)

see [BE09]. Note that the scattering matrix (3.2.1) is unitary for all k ∈ R\{0}
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[KS06]. Furthermore, we define

T (l; k) =

(
0 t(l; k)

t(l; k) 0

)
with t(l; k) =


eikl1

. . .

eiklE

 ,

(3.2.3)

where k ∈ C and set

U(k) = S(k)T (l; k). (3.2.4)

Note that U(k) is, for k ∈ R\{0}, a unitary matrix [BE09]. The secular function

F (k) is then defined by

F (k) = det (1 − U(k)) (3.2.5)

and we have the following statement.

Theorem 3.2.2. [KS06] The number k2 > 0 is an eigenvalue of −∆1 iff k is a

zero of (3.2.5), i.e. F (k) = 0. Moreover, the spectral multiplicity of the Laplace

eigenvalue k2 > 0 coincides with the multiplicity of the eigenvalue one of U(k).

Introducing the counting function

N(K) = #{n ∈ N | k2n ≤ K2}, (3.2.6)

where the eigenvalues are counted with their multiplicities, one has the following

result.

Lemma 3.2.3. [BE09] Let (−∆1,D1(P,L)) be a self-adjoint realisation of the one-

particle Laplacian on a compact quantum graph. Then, the corresponding counting

function N(K) fulfils the asymptotic law

N(K) ∼ L
π
K, K → ∞, (3.2.7)

where L =
∑E

e=1 le is the length of the graph.

Proof. Without loss of generality, we restrict ourselves to an interval of length l.

As a first step, we consider the Dirichlet-Laplacian, i.e. we choose PD = 1 and
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LD = 0. In this case, the eigenvalues are
{
n2π2

l2

}
n∈N

and therefore

ND(K) = #

{
n ∈ N | n ≤ Kl

π

}
=

⌊
Kl

π

⌋
=
Kl

π
− µ(K),

(3.2.8)

with |µ(K)| ≤ 1. From this, we readily see that the asymptotic law (3.2.7) is

indeed fulfilled. As a next step, we consider the Robin-Laplacian, i.e. we choose

PR = 0 and LR = λ1 with λ = ∥L∥op. As shown in [BE09], its positive eigenvalues

(which have multiplicity one) are the squares of the (positive) solutions kn > 0 of(
λ− ikn
λ+ ikn

)2

e2iknl = 1. (3.2.9)

Now, solving (3.2.9) yields the condition

tan (knl) =
2λkn
λ2 − k2n

(3.2.10)

from which we can infer that large eigenvalues k2n differ only little from corre-

sponding Dirichlet eigenvalues. More precisely, for all kn ≥ K0 with K0 ∈ R+

large enough, we can write

kn =
πn

l
+ ϵn, (3.2.11)

with |ϵn| → 0 for n → ∞. In particular, we can assume that |ϵn| < ϵ with ϵ > 0

some small number. Now, defining

N(K0, K) = #
{
n ∈ N |K2

0 ≤ k2n ≤ K2
}
, (3.2.12)

we obtain

ND(K0, K − ϵ) ≤ NR(K0, K) ≤ ND(K0, K + ϵ), (3.2.13)

and hence NR(K) shows the asymptotic law (3.2.7). Finally, using the Dirichlet-

Neumann bracketing for quadratic forms as described in [RS78], it was shown in

[BE09] that

ND(K) ≤ N(K) ≤ NR(K), (3.2.14)

and hence the asymptotic law (3.2.7) holds for all self-adjoint realisations of the
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one-particle Laplacian.

3.3 Fundamentals of chaos

In this section, we want give a brief introduction to fundamental concepts in

classical chaos as well as quantum chaos [Ber89, KS97a]. We will also discuss the

connection of quantum graphs with quantum chaos as introduced in [KS97b].

In classical mechanics, the phase space P of N particles moving in d dimensions is

given by P = RdN × RdN , with q ∈ RdN denoting the positions and p ∈ RdN the

momenta of the particles. On the phase space, a sufficiently smooth Hamiltonian

function H : P → R is defined that governs the motion of the particles through

the equations of motion, i.e.

q̇ =
∂H(q,p)

∂p
, ṗ = −∂H(q,p)

∂q
. (3.3.1)

Through these equations, the Hamiltonian function induces a flow Φt : P → P on

the phase space that describes the trajectories of the particles.

Definition 3.3.1. Let H ∈ C2(P ) be a Hamiltonian function generating the flow

Φt through the equations of motion (3.3.1). We then call (P,H,Φt) a Hamiltonian

system.

In Hamiltonian systems, the total energy E is conserved under the flow Φt, i.e.

the trajectory of the particles is restricted to a subset of P, called the energy shell,

consisting of all points (q,p) ∈ P for which

H(q,p) = E . (3.3.2)

Chaotic motion of a system then manifests itself in the nature of the flow Φt that

describes the trajectories of the particles. In general, one would like to distinguish

between two different aspects of chaotic motion, i.e. hyperbolicity and ergodicity.

Whereas hyperbolicity refers to the local instability of the trajectories as expressed

in terms of Lyapunov exponents [BP00], ergodicity refers to a more global aspect

of chaotic motion. Loosely speaking, a system exhibits ergodic motion if the

trajectory r(t) = (q(t),p(t)) covers the whole energy shell densely in the course of

time. To introduce the notion of ergodicity in general, let (X,Σ, µ) be a probability
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space where X is some set with σ-algebra Σ and probability measure µ [Kle08].

Definition 3.3.2. [Kle08] Let {Φt}t∈R be a one-parameter group of measure-

preserving transformations, i.e.

Φ0 = 1 and Φt1 ◦ Φt2 = Φt1+t2 (3.3.3)

as well as

µ(Φt(A)) = µ(A), ∀t ∈ R,∀A ∈ Σ. (3.3.4)

Then (X,Σ, µ,Φt) is called a µ-invariant dynamical system.

Definition 3.3.3. [Kle08] Let (X,Σ, µ,Φt) be a µ-invariant dynamical system and

consider the set of Φt-invariant sets, i.e.

I = {A ∈ Σ | ∀t : Φt(A) = A}. (3.3.5)

Then, the flow Φt is called ergodic if

µ(A) ∈ {0, 1}, ∀A ∈ I. (3.3.6)

Note that ergodic systems are important in the context of statistical mechanics.

Indeed, the famous Ergodic hypothesis as introduced by Boltzmann states that,

for thermodynamical systems, the time-average of an observable should equal the

ensemble (phase-space) average [GBG04, Far64]. For ergodic systems, this is in

fact the case as expressed in the following theorem of Birkhoff.

Theorem 3.3.4. [KS97a] Let (X,Σ, µ,Φt) be a µ-invariant dynamical system with

an ergodic flow Φt. Then, for any function f ∈ L1(X,Σ, µ), the limits

f̄±(x) = lim
t→∞

1

t

∫ t

0

f(Φ±s(x)) ds (3.3.7)

exist for almost every x ∈ X. Also, one has

f̄+(x) = f̄−(x) := f̄(x) (3.3.8)

and

f̄(x) =

∫
f(z) dµ(z). (3.3.9)
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Besides the notion of ergodicity, there exists another type of dynamics which

is associated to chaotic motion. Indeed, systems with mixing dynamics exhibit a

higher degree of chaos.

Definition 3.3.5. [Kle08] A µ-invariant dynamical system (X,Σ, µ,Φt) is called

mixing if

lim
|t|→∞

µ(Φt(A) ∩B) = µ(A)µ(B), ∀A,B ∈ Σ. (3.3.10)

Lemma 3.3.6. [Kle08] Mixing systems are ergodic.

Having introduced concepts of chaotic motion in classical mechanics, one would

like to establish similar concepts in the quantum mechanical description of a sys-

tem. However, there are fundamental conceptual problems. For example, since the

notion of a trajectory loses its meaning, the definition of chaos as a local instability

of trajectories (hyperbolicity) seems not possible. Also, since there is no notion of

phase space in quantum mechanics, our definition of ergodicity cannot be carried

over directly to the quantum describtion. However, based on the correspondence

principle, one should nevertheless be able to identify signatures of chaos in quan-

tum mechanics [Haa91]. Indeed, to find and understand such signatures is the

main object of quantum chaos [Ber89, Gut90, Haa91].

The quantum mechanical description of a system relies heavily on the eigenstates

and the eigenspectrum of the corresponding Hamiltonian. It is therefore con-

venient, while searching for signatures of chaos, to study those quantities more

closely. To this end, let Ω ⊂ R2 be an open bounded convex subset (billiard)

such that the unit normal vector has Lipschitz regularity [GL93] and consider,

as a Hamiltonian, the two-dimensional Laplacian with Dirichlet boundary condi-

tions. Interestingly enough, given the classical dynamics is ergodic, one can show

that the quantum motion follows closely the classical one in the sense that the

eigenfunctions become, in the high-energy limit, smeared evenly over the complete

billiard.

Theorem 3.3.7. [GL93] Let Ω ⊂ R2 be a billiard of area |Ω| as introduced above

with an ergodic billiard flow and let {φn}n∈N0 be the eigenfunctions of the Dirichlet

Laplacian with eigenvalues {λn}n∈N0. Then, there exists a subsequence {nk}nk∈N ⊂
{n}n∈N of asymptotic density one such that

lim
nk→∞

∫
B⊂Ω

|φnk
(x)|2 dx =

|B|
|Ω|

(3.3.11)
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holds for all (Lebegue measurable) subsets B ⊂ Ω with area |B|.

Remark 3.3.8. Since Theorem 3.3.7 accounts for almost all eigenfunctions only,

there may be eigenfunctions that are localised. This phenomenon is generally

known as scarring [Hel84].

As already mentioned in the introduction, signatures of chaos can also be found

in spectral correlations. Indeed, it was observed that the eigenvalues of a system

whose classical counterpart belongs to an important class of non-ergodic systems,

so called integrable systems, are distributed very differently than those of a system

whose classical analogue is chaotic [Haa91]. Note that anN -particle system moving

in d dimensions is called integrable if there exist Nd constants of motion which are

in involution [Arn78]. Most importantly, for integrable systems, one can introduce

action-angle variables (In, φn), n = 1, ..., Nd, such that the Hamiltonian function

depends on the actions I = (I1, ..., INd)
T only, i.e. H = H(I). This then allows for

a straightforward quantisation which is the reason why integrable system were of

primary interest in the early days of quantum mechanics [Gut90]. More precisely,

the quantisation rules are given by

Il =
1

2π

∮
Γl

p · dq =
(
nl +

µl
4

)
~, l = 1, ..., Nd, (3.3.12)

where nl = 0, 1, 2, ... are natural quantum numbers and µl ∈ N0 are the Maslov

indices, i.e. integers characterised by the topology of the classical dynamics [Gut90,

MF81]. Furthermore, Γ1, ...,ΓNd are topologically independent paths on the phase

space which, as expressed in the famous theorem of Liouville-Arnold, foliates into

invariant tori [Arn78, Kna12].

Remark 3.3.9. A simple system for which the quantisation rule (3.3.12) applies

is the harmonic oscillator in one dimension. Indeed, already for this rather simple

example, it is necessary to include the Maslov indices µ = 2 in order to arrive at

the correct energy eigenvalues.

Now, consider the nearest-neighbour level spacings distribution

P (s) = lim
N→∞

1

N

N∑
n=0

δ (s− (En+1 − En)) , (3.3.13)
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where the eigenvalues {En}n∈N0 are rescaled such that the mean level density is

one. Then, for an integrable system and according to the Berry-Tabor conjecture

[BT77], it is expected that P (s) follows Poisson statistics, i.e.

P (s) = e−s. (3.3.14)

This means that the eigenvalues of an integrable system tend to cluster since small

spacings s > 0 are preferred. For a generic chaotic system, the situation is com-

pletely different. Following the conjecture of Bohigas-Gianonni-Schmit [BGS84],

the level spacings distribution P (s) is expected to be the same as for an ensemble of

random matrices which is associated with the system according to its symmetries

[Dys62, Stö99, Haa91]:

1. The Gaussian Unitary Ensemble (GUE) is associated with a system without

time-reversal symmetry.

2. The Gaussian Orthogonal Ensemble (GOE) is associated with a system with

time-reversal symmetry and T 2 = 1.

3. The Gaussian Symplectic Ensemble (GSE) is associated with a system with

time-reversal symmetry and T 2 = −1.

Note that T denotes the (anti-unitary) time-reversal operator [Haa91]. In contrast

to (3.3.14), the nearest-neighbour level spacings distribution of a system associated

to one of the ensembles above is such that

P (s) ∼ sβ, s→ 0, (3.3.15)

with β = 1, 2, 4 [Haa91]. Hence, in contrast to integrable systems, larger spacings

s > 0 are preferred, i.e. one observes level-repulsion.

As illustrated above, the first quantisation rules (3.3.12) allowed to determine the

eigenspectrum of an integrable systems based on classical properties only. For

a chaotic system, however, these rules cannot be applied and no direct link to

classical mechanics seems possible. Interestingly enough, using a semiclassical

approximation, Gutzwiller was able to relate the eigenspectrum of a classically

chaotic system to periodic orbits in phase space (here we shall assume that the

periodic orbits are isolated and unstable) [Gut71, Gut90]. More precisely, writing
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the spectral density of a system with eigenvalues {En}n∈N0 as

d(E) =
∑
n

δ(E − En),

∼
~→0

d̄(E) + dosc(E),
(3.3.16)

where d̄(E) represents the smoothed density of states [Rob91], Gutzwiller estab-

lished the relation

dosc(E) =
1

π~
∑
po

TppoApo cos

(
Spo
~

− µpo
π

2

)
. (3.3.17)

Here the sum is taken over all periodic orbits (po) with energy E. Furthermore,

Tppo is the time period of the corresponding primitive periodic orbit, i.e. the time

to travel around the orbit once. Note that a primitive periodic orbit is an orbit

which is not a repetition of shorter periodic orbits. Also, Apo is an amplitude

associated with each orbit (depending on its Lyapunov exponents) and µpo is the

Maslov index [Rob91]. The relation (3.3.17) is known as the trace formula and it

played a vital role in understanding the connection between the quantum and the

classical regime. For example, in [BT76], the quantisation rules (3.3.12) could be

rediscovered from a similar trace formula valid for integrable systems. However, it

must be kept in mind that the trace formula (3.3.17) is only a formal expression.

Since the number of periodic orbits grows in general faster than the corresponding

amplitudes Apo decay, the sum (3.3.17) may not converge [BK90, ASS88]. Another

problem is, of course, the identification of all possible periodic orbits. However,

evaluating the trace formula for only a finite number of periodic orbits can already

yield valuable results [SA88, CC95].

To conclude this section, we want to comment on the connection between quantum

graphs and quantum chaos as described in [KS97b]. For this, assume that we have

a compact graph Γ = Γ(V , E) with rationally independent edge lengths. On the

one-particle Hilbert space L2(Γ), we consider the Hamiltonian

ĤA =

(
−i d

dx
− A

)2

, (3.3.18)

where A ∈ R introduces a breaking of time-reversal symmetry whenever A ̸= 0. In

order to have a self-adjoint operator, one demands Neumann boundary conditions
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at the vertices of the graph, i.e. for each vertex one requires

v∑
j=1

(
−iA+

d

dx

)
Ψj(x)

∣∣∣∣
x=0

= 0. (3.3.19)

Here v is the number of edges connected to the vertex v and {Ψj}j∈N are the

corresponding incoming components of the wave function Ψ ∈ L2(Γ). Now, calcu-

lating a large number of eigenvalues numerically, it was shown in [KS97b] that the

nearest-neighbour distribution (3.3.13) agrees very well with predictions of ran-

dom matrix theory. Furthermore, graphs with broken time-reversal symmetry are

associated with the GUE-ensemble whereas graphs without broken time-reversal

symmetry follow GOE-predictions. Hence, based on the conjecture of Bohigas-

Gianonni-Schmit as introduced above, quantum graphs can be considered as mod-

els of chaotic systems. Note that the origin of chaotic behaviour on a graph can

also be understood from a classical point of view. Along any edge of the graph, the

motion of the particle is simple. However, whenever the particle arrives at a vertex,

it will be transmitted or reflected with some probability. Given the 2E×2E matrix

UA(k), which is a generalisaton of (3.2.4) incorporating the magnetic potential A,

the probability Tee′ for the particle being transmitted from the (directed) edge e

to the (directed) edge e′ is given by

Tee′ =
∣∣(UA)ee′(k)∣∣2. (3.3.20)

Here directed edges are obtained by associating to each edge e ∈ E two directed

edges, one for each direction of travelling along the edge [KS97b, GS06, BE09].

Denoting the probability to occupy edge e at the (discrete) time t as ρe(t), the

classical evolution is described by the master equation

ρe(t+ 1) =
∑
e′

Tee′ρe′(t). (3.3.21)

Note that the largest eigenvalue of the matrix T is one with eigenvector that

corresponds to uniform distibution while all other eigenvalues have modulus less

than one [KS97b]. Therefore the system will reach a state of uniform distribu-

tion exponentially fast [KS97b] which is an attribute of classically mixing systems

(see Definition 3.3.5). Hence, on a classical level, the chaotic motion on graphs
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originates in the probabilistic scattering at the vertices of the graph.



4. SINGULAR INTERACTIONS IN TWO-PARTICLE

SYSTEMS ON COMPACT QUANTUM GRAPHS

In this chapter, we will consider two-particle systems on general quantum graphs

in which the particles are interacting via singular interactions localised at the

vertices. So far, most of the research conducted on quantum graphs focussed on

one-particle systems [GS06]. However, Harmer investigated two-particle systems

on star graphs with δ-like interactions [Har07, Har08] and Harrison et al studied

the particle exchange symmetry in many-particle versions of finite-dimensional

quantum graph models [HKR11]. Indeed, one of the first papers dealing with

interacting two-particle systems on graphs was published by Melnikov and Pavlov

[MP95]. They investigated two-particle scattering on a tree-like graph with two-

particle interactions localised at the only vertex of the graph and their goal was to

give a simple model for the effective electron-electron interaction in a solid. Since

their model is related to our models of interacting particles, we will briefly illustrate

the main steps in its construction. The graph considered by Melnikov and Pavlov

consists of three edges of infinite length, connected in one vertex. Accordingly, the

one-particle Hilbert space is given by

L2(Γ) =
3⊕
j=1

L2
j(R+), (4.0.1)

and the two-particle Hilbert space is

L2(Γ2) =
3⊕

i,j=1

L2
ij(R+

2 ), (4.0.2)

where R+
2 = R+×R+. Hence, each two-particle wave function Ψ ∈ L2(Γ2) consists

of nine components (Ψ)ij = ψij. The Hamiltonian of the system is the two-particle
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Laplacian −∆2, acting on each function Ψ ∈ H2(R+
2 ) via

(−∆2Ψ)ij = −∂
2ψij
∂x2i

− ∂2ψij
∂x2j

. (4.0.3)

As a first step, one constructs a self-adjoint realisation of the two-particle Laplacian

−∆2 corresponding to a system of non-interacting particles. For this, consider the

one-particle boundary conditions

ψj(0) = − 1

3h

3∑
i=1

dψi
dxi

∣∣∣∣
xi=0

, j = 1, 2, 3, (4.0.4)

where Ψ ∈ H2(Γ) is a one-particle wave function and h > 0 is a parameter of

the model. Denoting the set of all functions Ψ ∈ H2(Γ) that fulfil the boundary

conditions (4.0.4) as Q1, it follows that the operator −∆1 with domain

D(−∆1) = {Ψ| Ψ ∈ Q1} (4.0.5)

is self-adjoint. Based on (4.0.5) one can now construct a self-adjoint realisation of

the two-particle Laplacian such that the two-particle eigenfunctions are products

of the one-particle eigenfunctions {un}n∈N0 , i.e.

ψnm = un ⊗ um . (4.0.6)

This self-adjoint realisation shall be denoted by (−∆2,D0(−∆2)). Note that, in

such a system, the two particles are not interacting with each other. Now, in

order to implement two-particle interactions which are only present whenever both

particles are situated at the vertex, one remarks that any wave function Ψ ∈
D0(−∆2) which is zero at the vertex, should also be in the domain of the operator

incorporating singular interactions. Hence, the idea is to consider the symmetric

operator −∆2 with domain

D̃(−∆2) = D0(−∆2) ∩ {Ψ ∈ H1(Γ2)| ψij(0, 0) = 0}. (4.0.7)

Since this operator has finite deficiency indices [MP95], all self-adjoint realisation

can be obtained using the von-Neumann scheme [Wei80]. Indeed, in the model

of Melnikov and Pavlov, all self-adjoint realisation can be characterised by a real
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parameter η ∈ R and, most importantly, those realisations correspond to a two-

particle system with interactions localised at the vertex. Furthermore, it can be

shown that each value of η represents a different asymptotic behaviour of functions

Ψ ∈ H2(Γ2) far away from the vertex which then allows to investigate the effect

of the interaction on the scattering properties of the system [MP95].

As becomes clear from the model described above, singular interactions (on graphs)

are physically important for modelling short-range particle-particle interactions.

However, another motivation for the introduction of singular interactions on gen-

eral quantum graphs, as mentioned already in the introduction, is to provide a

useful model in order to understand the manifestation of chaos in a system of

interacting particles, i.e. many-particle quantum chaos. An overview over this

rapidly growing area of research can be found in [GKK+11]. Interestingly enough,

there are several new features appearing in many-particle quantum chaos that are

absent or less emphasized in the one-particle case. One such difference is related

to random matrix theory (RMT). Originally, random matrices were introduced by

Wigner in the context of nuclear physics [Wig50, Wig67]. A nucleus is a many-

particle system that is held together by strong interactions between the nucleons.

However, the first models of the nucleus neglected the effect of many-particle inter-

actions and it was soon discovered that, besides the success of those initial models,

they were not sufficient to explain all the resonances observed in neutron scatter-

ing from certain nuclei [Meh91]. For this reason, it became necessary to include

effects of many-particle interactions and since the actual structure of a nucleus

is too difficult to approach directly, random matrices were soon recognised as a

useful tool to circumvent some of the problems. However, often when applying

RMT to chaotic (complex) systems, the Gaussian Ensembles as characterised by

Dyson [Dys62] are considered [BGS84, Haa91]. But, as it turned out, the standard

Gaussian ensembles are not fully appropriate to describe a system of interacting

particles since they do not distinguish between two-particle and m-particle in-

teractions [GKK+11]. For this reason, one may use other ensembles such as the

embedded ensembles EGOE(m) when interacting many-particle systems are con-

sidered [MF75, BW03, GKK+11]. As an important consequence, it is not clear to

what extent the Bohigas-Gianonni-Schmit conjecture covers chaotic many-particle

systems.

The following chapter is organised as follows: In the first part, we will consider a
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system of two (distinguishable) particles moving on the simplest compact graph,

i.e. the interval of length l. Subsequently, we generalise the results to a system of

two (distinguishable) particles moving on an arbitrary compact graph. We then

implement exchange symmetry in order to describe either fermions or bosons on a

graph and discuss spectral properties. Note that the presentation follows closely

our paper [BK13b].

4.1 Two distinguishable particles on an interval

In this section, we will introduce the basic methods by considering the most simple

compact graph, i.e. the interval of length l. For such a system, the configuration

space of two particles is given by

D = (0, l)× (0, l). (4.1.1)

Accordingly, the two-particle Hilbert space is defined by

H2 = L2(0, l)⊗ L2(0, l) = L2(D). (4.1.2)

Remark 4.1.1. We will denote the two-particle Hilbert space also by L2(Γ2).

On this Hilbert space, we consider the two-particle Laplacian −∆2 acting on

ψ ∈ H2(D) via

−∆2ψ = −∂
2ψ

∂x2
− ∂2ψ

∂y2
. (4.1.3)

Defining −∆2 on the domain D(−∆2) = C∞
0 (D), we readily establish the following

statement.

Proposition 4.1.2. The operator (−∆2, C
∞
0 (D)) is densely defined and symmet-

ric.

However, it is not self-adjoint and it will be the goal of this section to char-

acterise self-adjoint extensions of (−∆2, C
∞
0 (D)) that incorporate singular two-

particle interactions. Note that the domain of its adjoint −∆∗
2 is given by

D(−∆∗
2) = {ψ ∈ L2(D); ∃χ ∈ L2(D) s.t. ⟨ψ,−∆2φ⟩ = ⟨χ, φ⟩ ∀φ ∈ C∞

0 (D)} .
(4.1.4)
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As explained in Chapter 3, self-adjoint extensions of (−∆2, C
∞
0 (D)) can be ob-

tained by restricting the domain of its adjoint such that the resulting operator

and its adjoint have the same domain. In the one-particle case, this was achieved

by characterising all maximal symmetric extensions of (−∆1, C
∞
0 (Γ)) [KS99]. As

a result, the domains of all self-adjoint extensions are subsets of H2(Γ). However,

it is not straightforward to generalise this approach to the two-particle case since

we are now dealing with a partial differential operator rather than an ordinary

differential operator. From (4.1.4) we can readily see that H2(D) ⊂ D(−∆∗
2)

but D(−∆∗
2) ̸= H2(D). It is therefore not clear if a self-adjoint realisation of

(−∆2, C
∞
0 (D)) has a domain that is a subset of H2(D). This difficulty, i.e. the

problem of regularity as introduced in Chapter 2, is well-known in the theory of

partial differential equations [GT83, Dob05]. Also, since the deficiency indices of

(−∆2, C
∞
0 (D)) are infinite, in contrast to (−∆1, C

∞
0 (Γ)) where they are finite, it

is not guaranteed that all maximal symmetric extension are self-adjoint [RS79].

Proposition 4.1.3. The operator (−∆2, C
∞
0 (D)) has infinite deficiency indices.

Proof. We prove the proposition for n−. Consider the set

D =
{
ψ ∈ L2(D)| ψ(x, y) = ei(kxx+kyy) s.t. k2x + k2y = −i

}
. (4.1.5)

Since D ⊂ D(−∆∗
2) and every ψ ∈ D fulfils the equation

(−∆∗
2 + i)ψ = 0, (4.1.6)

we have the inclusion D ⊂ ker (−∆∗
2 + i). Defining, for each n ∈ N,

κ2n = −i−
(
2πn

l

)2

, (4.1.7)

we see that the functions

ψn(x, y) = ei(κnx+
2πn
l
y) (4.1.8)

are such that ⟨ψn, ψm⟩L2(D) = 0 for m ̸= n. Hence, we have an orthogonal set {ψn}
that contains infinitely many functions. From this, it follows that the Hilbert space

dimension of ker (−∆∗
2 + i) cannot be finite.
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In order to characterise self-adjoint extensions of (−∆2, C
∞
0 (D)) that incorpo-

rate singular two-particle interactions, we will construct suitable quadratic forms.

For this, let

ψbv(y) =


ψ(0, y)

ψ(l, y)

ψ(y, 0)

ψ(y, l)

 and ψ′
bv(y) =


ψx(0, y)

−ψx(l, y)
ψy(y, 0)

−ψy(y, l)

 , (4.1.9)

be vectors containing the values of ψ ∈ H1(D) or, in addition if ψ ∈ H2(D), its

(inner) normal derivative along the boundary ∂D. We then introduce two bounded

and measurable maps P,L : [0, l] → M(4,C) such that

1. P (y) is an orthogonal projection,

2. L(y) is self-adjoint endomorphism of kerP (y),

for a.e. y ∈ [0, l]. Moreover, we set Q(y) = 14 − P (y).

Remark 4.1.4. For the maps P and L, measurable and bounded shall mean that

each matrix element is a measurable and bounded function.

With the maps P and L, we associate two bounded and self-adjoint operators

on L2(0, l)⊗ C4, i.e.

Π : L2(0, l)⊗ C4 → L2(0, l)⊗ C4, χ(y) 7→ P (y)χ(y), (4.1.10)

and

Λ : L2(0, l)⊗ C4 → L2(0, l)⊗ C4, χ(y) 7→ L(y)χ(y). (4.1.11)

Now, introducing the domains

D2(P,L) = {ψ ∈ H2(D); P (y)ψbv(y) = 0 and

Q(y)ψ′
bv(y) + L(y)Q(y)ψbv(y) = 0 for a.e. y ∈ [0, l]},

(4.1.12)

we can identify symmetric extensions of (−∆2, C
∞
0 (D)).

Proposition 4.1.5. The operator (−∆2,D2(P,L)) is a densely defined and sym-

metric operator. Furthermore, it is an extension of the operator (−∆2, C
∞
0 (D)).
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Proof. Since C∞
0 (D) ⊂ H2(D), density follows directly. Now, let ψ, φ ∈ D2(P,L)

be two functions. We have

⟨ψ,−∆2φ⟩L2(D) = ⟨−∆2ψ, φ⟩L2(D)

+

∫ l

0

(
ψxφ− ψφx

)x=l
x=0

dy +

∫ l

0

(
ψyφ− ψφy

)y=l
y=0

dx,
(4.1.13)

and a change of variables yields

⟨ψ,−∆2φ⟩L2(D) = ⟨−∆2ψ, φ⟩L2(D)

+

∫ l

0

(
ψxφ(x, y)− ψφx(x, y) + ψyφ(y, x)− ψφy(y, x)

)x=l
x=0︸ ︷︷ ︸

=R(y)

dy. (4.1.14)

Note that change of variables (x, y) → (y, x) in (4.1.14) is done after taking the

derivatives. Now, for functions ψ, φ ∈ D2(P,L), R(y) = 0 for a.e. y ∈ [0, l]. This

follows from an analogy with one-particle quantum graphs. Indeed, given the one-

particle wave functions Ψ,Φ ∈ L2(Γ), the self-adjointness of −∆1 on the domain

D1(P,L) (see (3.1.22)) implies

E∑
e=1

(
ψ

′

eφe − ψeφ
′

e

)x=le
x=0

= 0, (4.1.15)

see (3.1.1). Setting E = 2, l1 = l2 = l and renaming the functions shows that

R(y) = 0 for a.e. y ∈ [0, l].

As we will show later, for a certain class of maps P and L, the Laplacian −∆2

will indeed be self-adjoint on the domain (4.1.12).

Remark 4.1.6. In the same way as for one-particle Laplacians (see Remark 3.1.9),

an equivalent characterisation in terms of maps A,B : [0, l] → M(4,C) is available.
These maps are required to fulfil, for a.e. y ∈ [0, l], that rank(A(y), B(y)) = 4 and

thatA(y)B(y)∗ is self-adjoint. In that case, P (y) is a projection onto kerB(y) ⊆ C4

and the self-adjoint map is given by L(y) = (B(y)|ranB(y)∗)
−1A(y)Q(y) on C4.

Furthermore, see Remark 3.1.9 for the construction of (B(y)|ranB(y)∗)
−1.
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We can now construct a suitable sesquilinear form as

Q
(2)
P,L[ψ, ϕ] = ⟨∇ψ,∇ϕ⟩L2(D) − ⟨ψbv,Λϕbv⟩L2(0,l)⊗C4

=

∫ l

0

∫ l

0

(
ψx(x, y)ϕx(x, y) + ψy(x, y)ϕy(x, y)

)
dx dy

−
∫ l

0

⟨ψbv(y), L(y)ϕbv(y)⟩C4 dy .

(4.1.16)

Note that we will refer to Q
(2)
P,L[ψ, ψ] = Q

(2)
P,L[ψ] as the quadratic form.

Theorem 4.1.7. Given maps P,L : [0, l] → M(4,C) as above that are bounded

and measurable. Then the quadratic form Q
(2)
P,L[·] with domain

DQ(2) = {ψ ∈ H1(D); P (y)ψbv(y) = 0 for a.e. y ∈ [0, l]} (4.1.17)

is closed and semi-bounded.

Proof. As L(y) is self-adjoint, the expression (4.1.16) obviously defines a symmetric

quadratic form. We then observe that∣∣∣∣∫ l

0

⟨ψbv(y), L(y)ψbv(y)⟩C4 dy

∣∣∣∣ ≤ Lmax ∥ψbv∥2L2(0,l)⊗C4 , (4.1.18)

where

Lmax = sup
y∈[0,l]

∥L(y)∥op . (4.1.19)

Moreover, as a consequence of Lemma 8 in [Kuc04] (which is a variation of Theorem

2.2.13),

∥ψbv∥2L2(0,l)⊗C4 ≤ 4

(
2

δ
∥ψ∥2L2(D) + δ ∥∇ψ∥2L2(D)

)
(4.1.20)

holds for any δ ≤ l. Therefore,

Q
(2)
P,L[ψ] ≥

(
1− 4δLmax

)
∥∇ψ∥2L2(D) −

8Lmax
δ

∥ψ∥2L2(D) . (4.1.21)

Now choosing δ ≤ 1
4Lmax

, there obviously exits C > 0 such that

Q
(2)
P,L[ψ] ≥ −C∥ψ∥2L2(D) (4.1.22)

and hence the quadratic form is bounded from below. We denote the optimal such
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constant by C∞. Now, in order to show that the quadratic form (4.1.16) is closed,

we observe that the (squared) form norm

∥ · ∥2
Q

(2)
P,L

= Q
(2)
P,L[·] + (C∞ + 1) ∥ · ∥2L2(D) (4.1.23)

is equivalent to the Sobolev norm in H1(D). This follows from (4.1.20). Therefore,

due to the completeness of H1(D), any Cauchy sequence {ψn}n∈N in DQ(2) ⊂
H1(D) with respect to the form-norm has a limit ψ ∈ H1(D). Then, taking

the trace theorem 2.2.11 into account, we see that {ψn,bv} converges to ψbv in

L2(0, l) ⊗ C4. Finally, since the operator Π on L2(0, l) ⊗ C4 is bounded, one

concludes that P (·)ψn;bv = 0 converges to P (·)ψbv and hence P (y)ψbv(y) = 0 for

a.e. y ∈ [0, l].

Due to the representation theorem of quadratic forms [Kat66], there is a unique

self-adjoint operator (H,D(H)) corresponding to each form characterised in The-

orem 4.1.7. It will be the goal in the sequel to characterise the operator H and

its domain D(H) in more detail. According to [Kat66], for each φ ∈ D(H) there

exists a unique χ ∈ L2(D) such that

Q
(2)
P,L[φ, ψ] = ⟨χ, ψ⟩L2(D), ∀ψ ∈ DQ(2) . (4.1.24)

Hence, the action of the corresponding self-adjoint operator H is given by

Hφ = χ. (4.1.25)

Now, based on results presented in [Sho77], we can give an abstract characterisa-

tion of the domain D(H). The first step is to split the quadratic form (4.1.16) into

a volume part and a boundary part, i.e.

Q
(2)
P,L[ϕ, ψ] = q1[ϕ, ψ] + q2[ϕ, ψ] , (4.1.26)

where

q1[ϕ, ψ] = ⟨∇ψ,∇ϕ⟩L2(D) (4.1.27)

is the volume part and

q2[ϕ, ψ] = −⟨ψbv,Λϕbv⟩L2(0,l)⊗C4 (4.1.28)
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the boundary part. We then introduce an abstract Green’s operator ∂n that can

be regarded as a weak version of the standard normal derivative. To this end, we

consider the trace map

γ : H1(D) → L2(∂D), (4.1.29)

restricted to the Hilbert space DQ(2) (equipped with the form-norm), with kernel

ker γ = DQ(2) ∩H1
0 (D). Now, let

D0 = {ψ ∈ DQ(2) ; ∆2ψ ∈ L2(D)} , (4.1.30)

then ∂n : D0 → (ran γ)′, where (ran γ)′ is the dual of ran γ, is a linear map defined

by the relation

q1[ψ, ϕ]− ⟨−∆2ψ, ϕ⟩L2(D) = ∂nψ[γϕ], ϕ ∈ DQ(2) . (4.1.31)

Remark 4.1.8. For ψ ∈ H2(D) and ϕ ∈ DQ(2) we have

∂nψ[γϕ] =

∫
∂D

∂ψ̄

∂n
ϕ dσ, (4.1.32)

involving the outer normal derivative of ψ̄.

Applying Theorem 3.A from [Sho77] then yields

Proposition 4.1.9. Let H be the unique self-adjoint, semi-bounded operator cor-

responding to the quadratic form Q
(2)
P,L. Then its domain is given by

D(H) = {ψ ∈ D0; ∂nψ[γϕ] + q2[ψ, ϕ] = 0, ∀ϕ ∈ DQ(2)} . (4.1.33)

Since, due to the presence of the abstract Green’s operator, the characteri-

sation of the domain D(H) in Proposition 4.1.9 is not very explicit, we aim at

singling out cases where the domain can be characterised in more detail. Since the

abstract Green’s operator is given by (4.1.32), whenever we consider functions in

H2(D), it would be interesting to know if the domain D(H) is a subset of H2(D).

As mentioned beforehand, this is related to the issue of (elliptic) regularity as

introduced in Chapter 2. We therefore define the following notion.

Definition 4.1.10. The quadratic form Q
(2)
P,L is called regular, iff its associated

self-adjoint operator H has a domain D(H) ⊂ H2(D).
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As a first step towards a more explicit characterisation of the domain D(H),

we need to ensure that the kernel of the operator Π is under sufficient control.

This is necessary since we require a pointwise characterisation as given in (4.1.12)

rather than an integral characterisation as in Proposition 4.1.9.

Lemma 4.1.11. Let P : (0, l) → M(4,C) be such that its matrix entries are in

C1(0, l), then ran(γ|D
Q(2)

) is dense in kerΠ with respect to the norm on L2(0, l)⊗
C4.

Proof. As C∞
0 (0, l)⊗C4 ⊂ L2(0, l)⊗C4 is dense, whenever χ ∈ kerΠ ⊂ L2(0, l)⊗C4

there exists a sequence {χn} ⊂ C∞
0 (0, l)⊗ C4 that converges to χ. Moreover, any

χn ∈ C∞
0 (0, l)⊗ C4 can be extended to some ψn ∈ H1(D), such that χn = ψn,bv.

Using the orthogonal complement Π⊥ to the projection Π we note that, by the

assumption in the lemma, Π⊥χn ∈ C1
0(0, l)⊗C4. Again, Π⊥χn can be extended to a

function ϕn ∈ H1(D), such that Π⊥χn = ϕn,bv. By construction, P (y)ϕn,bv(y) = 0

so that indeed ϕn ∈ DQ(2) . Therefore, identifying ϕn,bv with γϕn we conclude that

Π⊥χn ∈ ran(γ|D
Q(2)

).

Moreover, as Π is assumed to be bounded in operator norm there exits K > 0

such that

∥Π⊥χn − χ∥L2(0,l)⊗C4 = ∥Π⊥(χn − χ
)
∥L2(0,l)⊗C4 ≤ K ∥χn − χ∥L2(0,l)⊗C4 → 0 ,

(4.1.34)

as n→ ∞. Thus, ran(γ|D
Q(2)

) is dense in kerΠ.

We are now in position to state one of the main theorems of this section. As it

turns out, for regular quadratic forms in the sense of Definition 4.1.10, the operator

H is indeed the two-particle Laplacian −∆2 with domain (4.1.12).

Theorem 4.1.12. Suppose that the matrix entries of P : (0, l) → M(4,C) are

in C1(0, l) and that the quadratic form Q
(2)
P,L is regular. Then the unique self-

adjoint, semi-bounded operator H that is associated with this form is the two-

particle Laplacian −∆2 with domain D2(P,L).

Proof. Since, in the regular case, any ψ ∈ D(H) is in H2(D), the Green’s operator

∂n is the standard normal derivative (see Remark 4.1.8). This would allow us to

state the ‘boundary condition’ contained in (4.1.33) immediately in an explicit

way. However, following the one-particle approach developed in [Kuc04], we shall
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now proceed in a more direct way. For this, we choose ψ in (4.1.24) to be smooth

and compactly supported in D, vanishing in neighbourhoods of ∂D such that

ψbv(y) = 0 for all y ∈ [0, l]. Thus

⟨χ, ψ⟩L2(D) =

∫ l

0

∫ l

0

(
ϕ̄x(x, y)ψx(x, y) + ϕ̄y(x, y)ψy(x, y)

)
dx dy . (4.1.35)

An integration by parts then yields

⟨χ, ψ⟩L2(D) =

∫ l

0

∫ l

0

(
−ϕ̄xx(x, y)− ϕ̄yy(x, y)

)
ψ(x, y) dx dy , (4.1.36)

so that χ = Hϕ = −∆2ϕ. Hence the operator H acts as a two-particle Laplacian

and every ϕ ∈ D(H) must be in D(−∆∗
2,0). Now, we choose ψ ∈ DQ(2) that is

non-zero in a neighbourhood of ∂D. Then, in addition to the right-hand side of

(4.1.36), an integration by parts yields the term

−
∫ l

0

⟨ϕ′
bv(y) + L(y)ϕbv(y), ψbv(y)⟩C4 dy = −⟨ϕ′

bv + Lϕbv, ψbv⟩L2(0,l)⊗C4 , (4.1.37)

which must vanish. Since L(·) is self-adjoint, one can rewrite this term as∫
∂D

∂ϕ̄

∂n
ψ dσ + q2[ϕ, ψ] . (4.1.38)

Hence its vanishing is precisely a more explicit version of the boundary condition

in (4.1.33).

Furthermore, the condition P (y)ψbv(y) = 0, fulfilled by ψ ∈ DQ(2) for a.e. y ∈ [0, l],

implies that ψbv is in the kernel of the orthogonal projection Π on L2(0, l) ⊗ C4.

Hence, the vanishing of (4.1.37) for all ψ ∈ DQ(2) , together with the fact that by

Lemma 4.1.11 ran(γ|D
Q(2)

) ⊂ kerΠ is dense, implies that ϕ′
bv + L(·)ϕbv is in the

kernel of Π⊥, or

Q(y)ϕ′
bv(y) +Q(y)L(y)ϕbv(y) = 0 . (4.1.39)

Furthermore, as L(y) is an endomorphism of ranQ(y) ⊆ C4, a comparison with

(4.1.12) shows that D(H) = D2(P,L).

Remark 4.1.13. Note that, in the following we will, also in the case of a non-

regular quadratic form Q
(2)
P,L[·], denote the domain of the corresponding operator

as D2(P,L).
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We now want to discuss to what extent the representation of a quadratic form

Q
(2)
P,L[·] by the maps P and L is unique. Since the domain of each quadratic

form is a subset of H1(D), the traces of all functions φ ∈ DQ(2) exhibit some

regularity along the boundary ∂D. Indeed, as proved in [Din96], the trace map

γ : H1(D) → L2(∂D) can be extended to

γ : H1(D) → H
1
2 (∂D), (4.1.40)

where H
1
2 (∂D) is the space of all functions φ ∈ L2(∂D) such that

∥φ∥2
H

1
2 (∂D)

=

∫
∂D

|φ(x)|2 dσx +

∫
∂D×∂D

|φ(x)− φ(y)|2

|x− y|2
dσxdσy < +∞ , (4.1.41)

where dσx/y refers to the line segment of the boundary (see Definition 2.2.9).

Accordingly, in order to establish uniqueness for a quadratic form Q
(2)
P,L[·], we have

to require P to be smooth enough.

Proposition 4.1.14. Suppose that the matrix entries of P : (0, l) → M(4,C) are
in C1(0, l). Then the parametrisation of the quadratic form Q

(2)
P,L in terms of P

and L according to (4.1.16) and (4.1.17) is unique with this property.

Proof. The characterisation (4.1.17) of a domain DQ(2) involves only P . Suppose

that a given domain can be characterised by two different maps Pj : (0, l) →
M(4,C), j = 1, 2, both of which with matrix entries in C1(0, l). The associated

projection operators Πj on L
2(0, l)⊗C4 are, therefore, different implying kerΠ1 ̸=

kerΠ2. We can hence assume that there exists χ ∈ kerΠ1 such that χ ̸∈ kerΠ2.

Now, following Lemma 4.1.11 there exists a sequence {ϕn} in DQ(2) such that ϕn,bv

converges to χ. Moreover, following our assumption ϕn ∈ DQ(2) means that ϕn,bv ∈
kerΠ1 ∩ kerΠ2. However, χ ̸∈ kerΠ2 contradicts the fact that the ϕn,bv ∈ kerΠ2

converge to χ.

Now assume that a domain DQ(2) (with a unique C1-map P ) is given, but the form

(4.1.16) can be characterised by two different maps Lj : (0, l) → M(4,C), j = 1, 2,

yielding two different (bounded and self-adjoint) operators Λj on L2(0, l) ⊗ C4.

Hence

⟨ϕbv,
(
Λ1 − Λ2

)
ϕbv⟩L2(0,l)⊗C4 = 0 , for all ϕ ∈ DQ(2) . (4.1.42)

Again following Lemma 4.1.11, and using that, by definition, Lj(y) vanishes on
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(
kerP (y)

)⊥
, this implies Λ1 = Λ2.

Remark 4.1.15. In the regular case, when the associated operators are two-

particle Laplacians with domains D2(P,L), the same uniqueness results holds for

the operators as the association between closed, semi-bounded quadratic forms

and semi-bounded, self-adjoint operators is one-to-one [Kat66].

In the following, we will characterise some examples of regular forms (see Def-

inition 4.1.10). Since the proof of the main theorem will be quite technical, it will

be deferred to part B of the appendix. In a first step, we mention a few standard

cases for which regularity is well established [Kon70, Neč67, Dau88, Gri11, Mgh92,

BK06]:

1. A Dirichlet-Laplacian, in which case P (y) = 14 for all y ∈ [0, l].

2. A Neumann-Laplacian, where P (y) = 0 = L(y) for all y ∈ [0, l].

3. A mixed Dirichlet-Neumann Laplacian, where P (y) is independent of y and

diagonal such the diagonal entries are either zero or one. Moreover, L(y) = 0

for all y ∈ [0, l]. In such a case, Dirichlet boundary conditions are imposed

on the parts of the boundary that, via (4.1.9), correspond to a one on the

diagonal of P , and Neumann boundary conditions on the remaining parts.

4. A Laplacian with standard Robin boundary condition follows when P (y) = 0

for all y ∈ [0, l] and L = α14, where α < 0. In that case the boundary

conditions in (4.1.12) reduce to ψ′
bv(y) + αψbv(y) = 0.

As we will see later, these self-adjoint realisations correspond to systems of two

non-interacting particles. Now, in order to establish regularity in a further class

of examples, we require the map P to have the block-structure

P (y) =

(
P̃ (y) 0

0 P̃ (y)

)
. (4.1.43)

Note that this block structure will later be considered to implement exchange

symmetry, i.e. to describe a system of two bosons or two fermions respectively. In

general, we can assume that

P̃ (y) =

(
β(y) γ̄(y)

γ(y) 1− β(y)

)
, (4.1.44)
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where 0 ≤ β(y) ≤ 1 and |γ(y)|2 = β(y)− β2(y), i.e., when γ(y) = 0, β(y) must be

either one or zero. Hence, demanding that γ(y) → 0 as y → 0 and as y → l, P̃ (y)

approaches one of the two cases(
1 0

0 0

)
,

(
0 0

0 1

)
. (4.1.45)

We will actually assume that on intervals [0, ϵ1] and [l − ϵ2, l], where ϵ1/2 > 0 are

some small constants, P̃ (y) assumes one of the forms (4.1.45). Note that the proof

of the following theorem is given in part B of the appendix.

Theorem 4.1.16. Let L be Lipschitz continuous on [0, l] and let P be of the

block-diagonal form (4.1.43). Assume that the matrix entries of P̃ are in C3(0, l).

Moreover, when y ∈ [0, ε1] ∪ [l − ε2, l] with some ε1, ϵ2 > 0, suppose that L(y) = 0

and that P̃ (y) is diagonal with diagonal entries that are either zero or one. Then

the quadratic form Q
(2)
P,L is regular.

Finally, we want to distinguish between self-adjoint realisations (−∆2,D2(P,L))

that correspond to a system of two non-interacting particles and such realisations

that correspond to a system with genuine two-particle interactions. To illustrate

this point in more detail, assume we have a one-particle realisation (−∆1,D1(P,L))

with corresponding eigenfunctions {φn}n∈N0 . We then construct the two-particle

states

φmn = φn ⊗ φm (4.1.46)

and define

D2(−∆1) =

{
Ψ ∈ H2 | Ψ =

finite∑
mn

amn φmn, anm ∈ C

}
. (4.1.47)

Lemma 4.1.17. The operator (−∆2,D2(−∆1)) is essentially self-adjoint.

Proof. By definition D2(−∆1) is a dense subset of H2. Also, we can readily

verify symmetry and semi-boundedness following from the semi-boundedness of

(−∆1,D1(P,L)). Now, since each element Ψ ∈ D2(−∆1) is an analytic vector, i.e.

−∆n
2Ψ ∈ H2 for all n ∈ N, and

∞∑
n=1

∥ −∆n
NΨ∥H2

n!
<∞ , (4.1.48)
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Nelson’s analytic vector theorem (see Theorem 2.1.15) applies and the lemma

follows.

Definition 4.1.18. Let Q
(2)
P,L be a quadratic form with corresponding self-adjoint

operator (−∆2,D2(P,L)). We say that (−∆2,D2(P,L)) represents no interactions,

i.e. corresponds to a system of non-interacting particles, iff

(−∆2,D2(P,L)) = (−∆2,D2(−∆1)), (4.1.49)

where (−∆2,D2(−∆1)) is the closure of a operator described in Lemma 4.1.17.

Now, let P1 and L1 be one-particle maps and define the two-particle maps

P (y) =

(
P1 0

0 P1

)
and L(y) =

(
L1 0

0 L1

)
, (4.1.50)

for all y ∈ [0, l].

Proposition 4.1.19. Suppose that the matrix entries of P : (0, l) → M(4,C) are
in C1(0, l). Then, the two-particle Laplacian −∆2 with domain D2(P,L) represents

no interactions iff P and L are block-diagonal as in (4.1.50) and are independent

of y.

Proof. Consider the operator (−∆2,D2(−∆1)) and the form (Q
(2)
P,L,DQ(2)) with the

maps (4.1.50). We see that D2(−∆1) ⊂ DQ(2) . On the domain D2(−∆1), we can

then define a quadratic form by

Q−∆2 [φ] = ⟨φ,−∆2φ⟩H2 , φ ∈ D2(−∆1). (4.1.51)

This form is dense, symmetric and semi-bounded [BB93]. Since φ ∈ D2(−∆1) ⊂
H2(D), we have

⟨φ,−∆2φ⟩H2 = Q
(2)
P,L[φ], φ ∈ D2(−∆1). (4.1.52)

Now, since the form norm ∥ · ∥
Q

(2)
P,L

is equivalent to the H1-norm, (Q
(2)
P,L,DQ(2))

forms a closed extension of (Q
(2)
P,L,D2(−∆1)). Therefore, the self-adjoint oper-

ator (−∆2,D2(P,L)) corresponding to (Q
(2)
P,L,DQ(2)) forms a closed extension of

(−∆2,D2(−∆1)) [BB93]. Hence, by Lemma 4.1.17, (−∆2,D2(P,L)) represents
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no interactions. Finally, taking Proposition 4.1.14 into account completes the

proof.

Based on Proposition 4.1.19, the cases of regular forms as mentioned before-

hand clearly represent systems of non-interacting particles.

4.1.1 Two particles on a general compact metric graph

In this section, we shall generalise the results obtained in the previous section to

general compact metric graphs. The methods are the same as in the last section

and only a change of notation will be necessary. The two-particle Hilbert space

H2 on a general graph is given by

H2 = L2(Γ)⊗ L2(Γ) =
⊕
e1e2

L2(De1e2) . (4.1.53)

Hence, each two-particle state Ψ ∈ H2 consists of E2 components (Ψ)e1e2 = ψe1e2

such that ψe1e2 ∈ L2(De1e2) with De1e2 = (0, le1)× (0, le2).

Remark 4.1.20. We will denote the two-particle Hilbert space also by L2(Γ2).

Note that we will use an analogous notation also for other function spaces.

The Sobolev spaces on a general compact graph are defined by

Hm(Γ2) =
⊕
e1e2

Hm(De1e2), m ∈ N. (4.1.54)

Note that each state Ψ ∈ L2(Γ2) can be viewed as a function on the disjoint union

DΓ =
∪̇
e1e2

De1e2 , (4.1.55)

whose boundary is given by

∂DΓ =
∪̇
e1e2

∂De1e2 . (4.1.56)

Accordingly, the trace map γ : H1(Γ2) 7→ L2(∂DΓ) as introduced in Chapter 2

associates boundary values with each state Ψ ∈ H1(Γ2). As in the last section, the

Hamiltonian of a two-particle system is given by the two-particle Laplacian −∆2.
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On functions Ψ ∈ C∞
0 (Γ2), it acts via

(−∆2Ψ)e1e2(xe1 , ye2) = −∂
2ψe1e2(xe1 , ye2)

∂x2e1
− ∂2ψe1e2(xe1 , ye2)

∂y2e2
. (4.1.57)

As in Proposition 4.1.2, the operator (−∆2, C
∞
0 (Γ2)) is a densely defined and

symmetric operator but it is not self-adjoint. To construct quadratic forms that

yield self-adjoint realisations of −∆2, we introduce two vectors of boundary values,

Ψbv(y) =


√
le2ψe1e2(0, le2y)√
le2ψe1e2(le1 , le2y)√
le1ψe1e2(le1y, 0)√
le1ψe1e2(le1y, le2)

 and Ψ′
bv(y) =


√
le2ψe1e2,x(0, le2y)

−
√
le2ψe1e2,x(le1 , le2y)√
le1ψe1e2,y(le1y, 0)

−
√
le1ψe1e2,y(le1y, le2)

 ,

(4.1.58)

where y ∈ [0, 1]. As a next step, we introduce measurable and bounded (see

Remark 4.1.4) maps P,L : [0, 1] → M(4E2,C) such that

1. P (y) is an orthogonal projection,

2. L(y) is a self-adjoint endomorphism on kerP (y),

for a.e. y ∈ [0, 1]. In addition, we set Q(y) = 14E2 − P (y). Moreover, with P

and L, we associate two self-adjoint and bounded operators on the Hilbert space

L2(0, 1)⊗ C4E2
via

Π : L2(0, 1)⊗ C4E2 → L2(0, 1)⊗ C4E2

, χ(y) 7→ P (y)χ(y), (4.1.59)

and

Λ : L2(0, 1)⊗ C4E2 → L2(0, 1)⊗ C4E2

, χ(y) 7→ L(y)χ(y). (4.1.60)

Now we can define a quadratic form via

Q
(2)
P,L[Ψ] = ⟨∇Ψ,∇Ψ⟩L2(DΓ) − ⟨Ψbv,ΛΨbv⟩L2(0,1)⊗C4E2

=
E∑

e1,e2=1

∫ le2

0

∫ le1

0

(∣∣ψe1e2,x(x, y)∣∣2 + ∣∣ψe1e2,y(x, y)∣∣2) dx dy

−
∫ 1

0

⟨Ψbv(y), L(y)Ψbv(y)⟩C4E2 dy .

(4.1.61)

We will later see that whenever the form Q
(2)
P,L[·] is regular (see Definition 4.1.10),
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the corresponding operator is the two-particle Laplacian −∆2 with domain

D2(P,L) = {Ψ ∈ H2(Γ2); P (y)Ψbv(y) = 0 and

Q(y)Ψ′
bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]}.

(4.1.62)

This hence establishes a close connection with the one-particle quadratic form

(3.1.11).

Theorem 4.1.21. Let P,L : [0, 1] → M(4E2,C) be maps as introduced above that

are bounded and measurable. Then, the quadratic form (4.1.61) with domain

DQ(2) = {Ψ ∈ H1(Γ2); P (y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]} (4.1.63)

is closed and semi-bounded.

The proof follows the same lines as the proof of Theorem 4.1.7. In order to

characterise the self-adjoint operator (H,D(H)) corresponding to the quadratic

form Q
(2)
P,L[·], we first use the method developed in [Sho77] and introduced in the

last section. It employs an abstract Green’s operator ∂n that associates to each

function Ψ ∈ DQ(2) a functional ∂nΨ[·], acting on traces γΦ ∈ L2(∂DΓ) of functions

Φ ∈ DQ(2) . More explicitly, one has

∂nΨ[γΦ] = q1[Ψ,Φ]− ⟨−∆2Ψ,Φ⟩L2(Γ2), Φ ∈ DQ(2) , (4.1.64)

where q1[Ψ,Φ] = ⟨∇Ψ,∇Φ⟩L2(Γ2). Note that, for functions Ψ ∈ H2(DΓ), one has

∂nΨ(γΦ) =
∑
e1e2

∫
∂De1e2

∂ψ̄e1e2
∂n

ϕe1e2 dσ, (4.1.65)

where the standard outer normal derivative of ψ̄e1e2 is involved. Setting

q2[Ψ,Φ] = −
∫ 1

0

⟨Ψbv(y), L(y)Ψbv(y)⟩C4E2 dy , (4.1.66)

we have the following statement.

Proposition 4.1.22. Let H be the unique self-adjoint, semi-bounded operator

corresponding to the quadratic form Q
(2)
P,L. Then its domain is given by

D(H) = {Ψ ∈ D0; ∂nΨ[γΦ] + q2[Ψ,Φ] = 0, ∀Φ ∈ DQ(2)} , (4.1.67)
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with D0 defined as in (4.1.30).

In order to arrive at a more explicit characterisation of the operator (H,D(H)),

we would like to establish regularity for some quadratic formsQ
(2)
P,L[·] (see Definition

4.1.10). Since we are also interested in a pointwise characterisation of the boundary

conditions specifying the domain D(H) as given in (4.1.62), we have to ensure that

the traces γΦ of all functions Φ ∈ DQ(2) form a dense subset of L2(∂DΓ).

Lemma 4.1.23. Let P : (0, 1) → M(4E2,C) be such that its matrix entries are in

C1(0, 1), then ran(γ|D
Q(2)

) is dense in kerΠ with respect to the norm on L2(0, 1)⊗
C4E2

.

Whenever the form Q
(2)
P,L[·] is regular, we can establish the main result of this

section.

Theorem 4.1.24. Suppose that the matrix entries of P : (0, 1) → M(4E2,C)
are in C1(0, 1) and that the quadratic form Q

(2)
P,L is regular. Then the unique

self-adjoint, semi-bounded operator H that is associated with this form is the two-

particle Laplacian −∆2 with domain D2(P,L).

Proof. The proof is in close analogy to the proof of Theorem 4.1.21, and leads

to an obvious generalisation of (4.1.36). Performing the integration by part with

some Ψ ∈ DQ(2) that does not vanish in a neighbourhood of ∂DΓ one obtains the

additional term

−
∫ 1

0

⟨Φ′
bv(y) + L(y)Φbv(y),Ψbv(y)⟩C4E2 dy = −⟨Φ′

bv + LΦbv,Ψbv⟩L2(0,1)⊗C4E2 .

(4.1.68)

This is the explicit expression for ∂nΨ[γΦ] + q2[Ψ,Φ] and is required to vanish.

Again, the fact that ran(γ|D
Q(2)

) is dense in kerΠ implies the condition

Q(y)Ψ′
bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1] (4.1.69)

in (4.1.62).

As in Proposition 4.1.14, given that the map P is of class C1, we can establish

uniqueness of the quadratic form and it associated operator H.

Proposition 4.1.25. Suppose that the matrix entries of P : (0, 1) → M(4E2,C)
are in C1(0, 1). Then the parametrisation of the quadratic form Q

(2)
P,L in terms of

P and L according to (4.1.61) and (4.1.63) is unique with this property.
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As a final result in this section, we want to construct a class of regular quadratic

forms. The proof follows the same lines as the proof of Theorem 4.1.16 given in

part B of the appendix. To this end, we assume that P (y) is of form

P (y) =

(
P̃ (y) 0

0 P̃ (y)

)
, (4.1.70)

where P̃ (y) are blocks of dimension 2E2 acting on the upper or lower components

of (4.1.58), respectively.

Theorem 4.1.26. Let L be Lipschitz continuous on [0, 1] and let P be of the

block-diagonal form (4.1.43). Assume that the matrix entries of P̃ are in C3(0, 1).

Moreover, when y ∈ [0, ε1] ∪ [l − ε2, l] with some ε1, ε2 > 0, suppose that L(y) = 0

and that P̃ (y) is diagonal with diagonal entries that are either zero or one. Then

the quadratic form Q
(2)
P,L is regular.

4.2 Two identical particles on a graph

In this section, we will implement exchange symmetry in order to describe a pair of

identical particles on a graph, i.e. fermions or bosons. The corresponding Hilbert

spaces are denoted by H2,B and H2,F , respectively. They are obtained by applying

the projections

(ΠB,FΨ)e1e2(xe1 , ye2) =
1

2
(ψe1e2(xe1 , ye2)± ψe2e1(ye2 , xe1)), (4.2.1)

to the full Hilbert space H2 where a minus sign is used in the fermionic case and

a plus sign in the bosonic case.

Remark 4.2.1. We also write L2
B(Γ2) for the bosonic two-particle Hilbert space

and L2
F (Γ2) for the fermionic two-particle Hilbert space. Again, we use an analo-

gous notation for other function spaces.

Note that (4.2.1) implies the relation

ψe1e2,x(xe1 , ye2) = ±ψe2e1,y(ye2 , xe1) (4.2.2)

for functions Ψ ∈ H1
B/F (Γ2). Here, the symmetric or antisymmetric Sobolev spaces
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of order m ∈ N are defined by

Hm
B/F (Γ2) = Hm(Γ2) ∩ L2

B/F (Γ2). (4.2.3)

Due to exchange symmetry, the upper and lower components of (4.1.58) are no

longer independent. We therefore assume that the maps P and L are of block

structure

M(y) =

(
M̃(y) 0

0 M̃(y)

)
, (4.2.4)

where M ∈ {P,L}. Note that exchange symmetry would allow for more general

forms of M(y), i.e.

M(y) =

(
M̃(y) Ñ(y)

Ñ(y) M̃(y)

)
. (4.2.5)

However, for convenience, we will always restrict us to the case (4.2.4) in the

following. We also introduce the restricted vector of boundary values

Ψ̃bv(y) =

(√
le2ψe1e2(0, le2y)√
le2ψe1e2(le1 , le2y)

)
(4.2.6)

for functions Ψ ∈ H1
B/F (Γ2) and, in addition,

Ψ̃′
bv(y) =

( √
le2ψe1e2,x(0, le2y)

−
√
le2ψe1e2,x(le1 , le2y)

)
(4.2.7)

for functions Ψ ∈ H2
B/F (Γ2). Based on this notation, the quadratic form we want

to introduce is

Q
(2),B/F
P,L [Ψ] = 2

E∑
e1,e2=1

∫ le2

0

∫ le1

0

∣∣ψe1e2,x(x, y)∣∣2 dx dy

− 2

∫ 1

0

⟨Ψ̃bv(y), L̃(y)Ψ̃bv(y)⟩C2E2 dy ,

(4.2.8)

with domain

DQ(2),B/F = {Ψ ∈ H1
B/F (Γ2); P̃ (y)Ψ̃bv(y) = 0 for a.e. y ∈ [0, 1]} . (4.2.9)

Using the same steps as in the previous sections, we readily obtain the following
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result.

Theorem 4.2.2. The quadratic form Q
(2),B/F
P,L [·] with domain DQ(2),B/F is closed

and semi-bounded.

Furthermore, taking Definition 4.1.10 into account, we have:

Theorem 4.2.3. Suppose that the matrix entries of P̃ : (0, 1) → M(2E2,C) are

in C1(0, 1) and that the quadratic form Q
(2),B/F
P,L is regular. Then the unique self-

adjoint, semi-bounded operator HB/F that is associated with this form is the bosonic

or fermionic two-particle Laplacian −∆2,B/F with domain

D2,B/F (P,L) = {Ψ ∈ H2
B/F (Γ2); P̃ (y)Ψ̃bv(y) = 0 and

Q̃(y)Ψ̃′
bv(y) + L̃(y)Q̃(y)Ψ̃bv(y) = 0 for a.e. y ∈ [0, 1]} .

(4.2.10)

Remark 4.2.4. Examples of regular quadratic forms follow immediately from

Theorem 4.1.26. Also, in the following, we will denote the self-adjoint operator

corresponding to the form Q
(2),B/F
P,L as (−∆2,B/F ,D2,B/F (P,L)), irrespective of reg-

ularity.

In order to identify self-adjoint realisations that correspond to a system with

genuine two-particle interactions (see Definition 4.1.18 and Proposition 4.1.19), we

decompose the space of boundary values V as

V =
E⊕

e2=1

Ve2 , (4.2.11)

where Ve2 is the subspace of boundary values in (4.1.58) corresponding to fixed e2.

Furthermore, each block Ve2 is ordered as the vectors of bounday values (3.1.4) in

the one-particle case. Based on this, we have the following statement.

Proposition 4.2.5. Suppose that the matrix entries of P̃ : (0, 1) → M(2E2,C) are
in C1(0, 1). Then, the two-particle Laplacian −∆2,B/F with domain D2,B/F (P,L)

represents no interactions iff P̃ and L̃ are block-diagonal with respect to the de-

composition (4.2.11) with blocks that are identical and represent corresponding

one-particle maps.

Remark 4.2.6. Proposition 4.2.5 can readily be generalised to a system of dis-

tinguishable particles on general compact graphs as described in the last section.
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4.2.1 Local two-particle interactions

So far, the maps P and L were allowed to be arbitrary matrices. Only to establish

regular quadratic forms, we require P and L to exhibit the block structure (4.1.70).

However, whenever P and L are arbitrary, it can be seen from (4.2.10) that so called

non-local couplings are introduced. For example, the boundary values of the two

components ψe1e2 and ψẽ1ẽ2 could be coupled, independent of the connectivity of

the graph, i.e. it could be that edges e1 and e2 do not have a common vertex

with edges ẽ1 and ẽ2. For a one-particle system, locality means that the one-

particle maps P ∈ C2E×2E and L ∈ C2E×2E are block diagonal with respect to the

decomposition

V =
⊕
v∈V

Vv , (4.2.12)

where the subspace Vv only contains components of the wave function Ψ ∈ L2(Γ)

that start or end in the vertex v [BE09]. In the two-particle case, locality can be

introduced as follows: In a first step, we carry over the notion of locality from the

one-particle case in order to respect the connectivity of the graph. To this end,

we decompose the components in (4.2.6) and (4.2.7) as

V =
⊕
v∈V

Vv , (4.2.13)

where the subspace Vv contains all components ψe1e2 such that the first variable

is related to the vertex v. Thus all components in Vv are such that the particle

described by the first coordinate is located at vertex v. However, the second

particle could still be on any other edge which is not necessarily connected to v.

A weak version of two-particle locality would then require that

Vv =
⊕

Vweak(v), (4.2.14)

where Vweak(v) only contains components ψe1e2 and ψe′1e
′
2
such that the first particle

sits at vertex v and e2 and e
′
2 are connected. Since the weak notion of locality does

not take into account that both particles may be ‘far’ from each other, a stronger

notion of locality might be applied. To arrive at this stronger notion of locality,
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we demand that the subspace Vweak(v) is further decomposed as

Vweak(v) = Vstrong(v)⊕ Ṽweak(v). (4.2.15)

Here the subspace Vstrong(v) only contains components ψe1e2 and ψe′1e
′
2
such that

the first coordinate forms the common vertex v and the second coordinate lives on

an edge connected to v. All other components of Vweak(v) that do not allow for a

stronger notion of locality are contained in Ṽweak(v).

4.2.2 An Example

In this section, we want to illustrate the nature of the singular interactions in-

troduced above. For this, we choose a simple graph consisting of two edges of

infinite length joined at one common vertex. Strictly speaking, since this is not

a compact graph, our results do not cover this example. However, since we are

only interested in local properties of the interactions, it is enough to consider a

graph of this form. Furthermore, instead of using maps P and L to characterise

the boundary conditions, we use maps A and B as explained in Remark 4.1.6.

Since the graph has two edges, the (bosonic or fermionic) wave-function Ψ =

(ψe1e2) ∈ (L2(R2
+) ⊗ C4)B/F has four components and the boundary values of Ψ

are encoded in vectors

Ψ̃bv(y) =


ψ11(0, y)

ψ21(0, y)

ψ12(0, y)

ψ22(0, y)

 and Ψ̃′
bv(y) =


ψ11,x(0, y)

ψ21,x(0, y)

ψ12,x(0, y)

ψ22,x(0, y)

 . (4.2.16)

Note that only the values of the wave function at 0 have to be included since the

edges are of infinite length. We furthermore choose the maps A,B : [0,∞) →
M(4,C) as

A(y) =


1 −1 0 0

0 v(0, y) 0 0

0 0 1 −1

0 0 0 v(0,−y)

 and B(y) =


0 0 0 0

−1 −1 0 0

0 0 0 0

0 0 −1 −1

 ,

(4.2.17)
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where v ∈ C∞
0 (R2) with v(x, y) = v(y, x). The boundary conditions, in terms of

maps A and B, then read

A(y)Ψ̃bv(y) +B(y)Ψ̃′
bv(y) = 0. (4.2.18)

Note that this implies the continuity relations

ψ11(0, y) = ψ21(0, y),

ψ12(0, y) = ψ22(0, y).
(4.2.19)

Furthermore, writing out (4.2.18), we get

−ψ11,x(0, y)− ψ21,x(0, y) = −v(0, y)ψ21(0, y),

−ψ12,x(0, y)− ψ22,x(0, y) = −v(0,−y)ψ22(0, y).
(4.2.20)

We now rearrange the four components defined on R2
+, such that we end up with

one function defined on R2, i.e.

ψ(x, y) = ψ11(x, y),

ψ(−x,−y) = ψ22(x, y),

ψ(x,−y) = ψ12(x, y),

ψ(−x, y) = ψ21(x, y).

(4.2.21)

Using those relations, we can see that the boundary conditions fulfilled by ψ equal

those induced by the formal Hamiltonian

Ĥ = − ∂2

∂x2
− ∂2

∂y2
+ v(x, y)[δ(x) + δ(y)] . (4.2.22)

As can be seen from (4.2.22), the delta-functions lead to a strong localisation in the

sense that the interaction is present only whenever at least one of the particles hits

the vertex. Furthermore, it is worth mentioning the close connection of (4.2.22)

with the model presented in [MP95]. If we choose the function v(x, y) with a

support close to the origin, the particles only interact whenever they are both

close to the vertex. In this sense, the interactions are similar to those introduced

in [MP95] where the particles interact whenever both particles are situated at the

vertex.
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4.3 Spectral properties

In this section, we shall discuss spectral properties of the self-adjoint operators

(−∆2,D2(P,L)) corresponding to quadratic formsQ
(2)
P,L[·] as described in Theorems

4.1.21 and 4.2.2. Note that we do not, as mentioned in Remark 4.1.13, require the

forms to be regular. First of all, one would like to know whether the spectrum

of an operator (−∆2,D2(P,L)) is purely discrete. Since we are concerned with

compact quantum graphs, one would indeed expect the spectrum to be purely

discrete. However, since the boundary conditions as expressed in (4.1.62) are non-

trivial, one would like to prove this. Furthermore, it would be interesting to know

if the corresponding eigenvalue count exhibits standard Weyl asymptotics [Wey11,

AE09]. To introduce the standard Weyl law, let Ω ⊂ R2 be a bounded convex

domain with boundary ∂Ω. On this domain, consider the Helmholtz equation

(−∆2 + λ)φ(x) = 0, λ ∈ R, (4.3.1)

with Dirichlet boundary conditions, i.e. φ(x) = 0 for x ∈ ∂Ω. It is well known that

equation (4.3.1) allows for a non-trivial solution only for a discrete set {λn}n∈N0 ,

with corresponding solutions {φn}n∈N0 . Defining the counting function

N(λ) = #{λn ≤ λ}, (4.3.2)

where the eigenvalues are counted with their corresponding multiplicities, one has

the following statement.

Theorem 4.3.1. [RS78] Given that {λn}n∈N0 is the set of values for which there

exists a solution of the boundary-value problem (4.3.1). Then the counting function

N(λ) allows for the expansion

N(λ) =
|Ω|
4π

λ+ o(λ), (4.3.3)

where |Ω| is the area of the domain Ω ∈ R2 and o(·) is the Landau symbol.

In a first step, assume that the two-particle Laplacian (−∆2,D2(P,L)) de-

scribes a system of non-interacting particles as characterised in Propositions 4.1.19

and 4.2.5 (see also Remark 4.2.6). For such self-adjoint realisations, the two-
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particle spectrum is discrete with eigenvalues

λnm = k2n + k2m, n,m ∈ N0, (4.3.4)

where {k2n}n∈N0 are the corresponding one-particle eigenvalues.

Lemma 4.3.2. Let (−∆2,D2(P,L)) be a self-adjoint realisation describing a sys-

tem of non-interacting particles. Then the eigenvalues {λnm : (n,m) ∈ N2
0} of

−∆2 are distributed according to the Weyl law,

N2(λ) = {(n,m) ∈ N2
0; λnm ≤ λ} ∼ L2

4π
λ , λ→ ∞ , (4.3.5)

where L = l1+ · · ·+ lE is the sum of the edge lengths of the graph. It is understood

that N2(λ) counts eigenvalues with their respective multiplicities.

Proof. As established in Lemma 3.2.3, the eigenvalue count for the one-particle

Laplacian −∆1 with eigenvalues {k2n}n∈N0 follows the asymptotics

N1(k) = {n ∈ N0; k
2
n ≤ k2} ∼ L

π
k , k → ∞ . (4.3.6)

Via a Tauberian theorem [Kar31], this asymptotic law is equivalent to

∑
n

e−k
2
nt ∼ L√

4πt
, t→ 0 + . (4.3.7)

Squaring both sides of (4.3.7) and using the equivalence between eigenvalue asymp-

totics and heat-trace asymptotics in the opposite direction immediately yields

(4.3.5).

Using a bracketing argument for quadratic forms [RS78, Dob05], we can now

generalise this lemma to arbitrary self-adjoint realisations.

Theorem 4.3.3. A self-adjoint realisation of the two-particle Laplacian −∆2 with

domain D2(P,L) has compact resolvent and, therefore, possesses a purely discrete

spectrum. Moreover, the eigenvalue asymptotics follow the Weyl law (4.3.5).

Proof. The proof is based on a comparison with two operators (quadratic forms).

Both comparison operators describe a system of non-interacting particles and

hence are covered by Lemma 4.3.2. The first operator (−∆2,D2(PD, LD)) is the
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Dirichlet-Laplacian, characterised by the projector PD = 14E2 as well as LD = 0.

The second operator (−∆2,D2(PR, LR)) is the Robin-Laplacian and is charac-

terised by the projector PR = 0 and LR = ∥Λ∥op14E2 , where ∥Λ∥op is the operator
norm of Λ (4.1.60) (see also [BE09]). For every operator (−∆2,D2(P,L)), the

associated quadratic form satisfies the inclusion

D
Q

(2)
PD,LD

⊆ D
Q

(2)
P,L

⊆ D
Q

(2)
PR,LR

. (4.3.8)

This means, in the sense of [RS78], that

(−∆2,D2(PD, LD)) ≥ (−∆2,D2(P,L)) ≥ (−∆2,D2(PR, LR)) . (4.3.9)

Now, for every self-adjoint, semi-bounded operator H on a Hilbert space H, one

can define

µn(H) = sup
φ1,...,φn−1∈H

inf
ψ∈[φ1,...,φn−1]⊥
ψ∈QH ,∥ψ∥=1

⟨ψ,Hψ⟩H , (4.3.10)

see Theorem 2.1.27. Then (4.3.9) implies that

µn(−∆2)D ≥ µn(−∆2) ≥ µn(−∆2)R . (4.3.11)

Using that the Dirichlet- as well as the Robin-Laplacian have compact resol-

vent, one concludes (with Theorem XIII.64 in [RS78]) that µn(−∆2)R,D → ∞
as n→ ∞; hence the same is true for µn(−∆2). By the same theorem, this implies

that (−∆2,D2(P,L)) has compact resolvent. Furthermore, (4.3.9) implies for the

eigenvalue counting functions that

ND
2 (λ) ≤ N2(λ) ≤ NR

2 (λ) . (4.3.12)

As both ND
2 and NR

2 count eigenvalues of a two-particle Laplacian that correspond

to non-interacting systems, they both satisfy the Weyl asymptotics (4.3.5). Hence

the same asymptotics holds for N2.

Finally, we want to consider symmetric or antisymmetric realisations of the

two-particle Laplacian, i.e. (−∆2,D2,B/F (P,L)). For self-adjoint realisations that

correspond to non-interacting systems, the (anti-)symmetric eigenfunctions are
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given by

ψn ⊗ ψm ± ψm ⊗ ψn, (4.3.13)

and hence the two eigenvalues λnm and λmn are identified. Accordingly, the cor-

responding eigenvalue counting function N2,B/F fulfils

N2,B/F (λ) ∼
L2

8π
λ , λ→ ∞ , (4.3.14)

where the factor of one half comes from the identification of λnm and λmn. Using

the same arguments as in the proof of Theorem 4.3.3, we can now prove the same

asymptotic for any realisation (−∆2,D2,B/F (P,L)).

Theorem 4.3.4. A self-adjoint, bosonic or fermionic realisation of the two-particle

Laplacian −∆2 on a domain D2,B/F (P,L) has compact resolvent and, therefore,

possesses a purely discrete spectrum. Moreover, the eigenvalue asymptotics follow

the Weyl law (4.3.14).



5. CONTACT INTERACTIONS ON COMPACT QUANTUM

GRAPHS

In this chapter, we will introduce contact interactions between the particles. In

contrast to the singular interactions localised at the vertices of the graph, contact

interactions are also present along the edges, i.e. whenever two particles are at the

same position.

Contact interactions play an important role in various areas of physics. For exam-

ple, the Gross-Pitaevskii equation that describes the spatial extension of a Bose-

Einstein condensate [LSSY05, Ued10] is derived from the Schrödinger equation

by considering point-like contact interactions. Indeed, the interaction potential

between two particles with positions r⃗1 ∈ R3 and r⃗2 ∈ R3 is modelled as

V (r⃗1, r⃗2) =
4π~2a
m

δ(r⃗1 − r⃗2), (5.0.1)

where a is the scattering length and m is the mass of the particles. Another

important model, that incorporates point-like contact interactions and plays a

prominent role in the description of one-dimensional Bose-Einstein condensation

[CCG+11], is the Lieb-Liniger model [LL63]. For a system of two particles, the

Hamiltonian in the Lieb-Liniger model is given by

Ĥ = − ∂2

∂x2
− ∂2

∂y2
+ αδ(x− y), (5.0.2)

where α ∈ R is the interaction strength and x, y ∈ R are the positions of the

particles. Note that the limit α → ∞ corresponds to (repulsive) hard-core inter-

actions, effectively leading to Dirichlet boundary conditions for the wave function

at x = y. Also, note that the Hamiltonian (5.0.2) is only a formal expression since

the delta-distribution δ(x − y) is not properly defined as an operator on L2(R2).

However, there are various possibilities to circumvent this difficulty. For exam-

ple, Lieb and Liniger [LL63] considered the Hamiltonian (5.0.2) for N bosons on
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an interval with periodic boundary conditions and, using a Bethe ansatz, they

constructed the eigenfunctions explicitly. On a graph, however, the boundary con-

ditions are not always periodic in the vertices and it is therefore not possible to

use the same approach. Indeed, we will use that the delta-function in (5.0.2) can

effectively be expressed in terms of boundary conditions. As a first step, note that

the interaction term in (5.0.2) is only important whenever the particles are at the

same position, i.e. whenever x = y. This in turn means that (5.0.2) acts as the

standard Laplacian on functions that vanish along the diagonal. Accordingly, the

idea is to divide the configuration space R2 into two subdomains

R2
+ = {(x, y) ∈ R2| x > y},

R2
− = {(x, y) ∈ R2| x < y},

(5.0.3)

and to characterise self-adjoint realisations of the Laplacian based on this dissected

configuration space. Formally, the action of the operator (5.0.2) is given by

⟨φ, Ĥφ⟩L2(R2) = ⟨φ,−∆2φ⟩L2(R2) + α

∫
R
|φ(x, x)|2 dx (5.0.4)

which implies that the quadratic form corresponding to the formal Hamiltonian

(5.0.2) is constructed from the form of the free Laplacian by adding the term

proportional to α, i.e.

Qδ[φ] =

∫
R2

|∇φ|2 dxdy + α

∫
R
|φ(x, x)|2 dx. (5.0.5)

To see how the δ-interaction in (5.0.2) affects the continuity properties of functions

and their derivatives, we define the form (5.0.5) on the domain

DQδ
=
{
φ ∈ H1(R2)| φ± ∈ H2(R2

±)
}
. (5.0.6)

Here φ± denote the restrictions of φ to R2
±. Note that, by construction, functions

φ ∈ DQδ
are continuous along the diagonal, i.e. φ+(x, x) = φ−(x, x). Furthermore,
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integrating by parts gives

Qδ[φ] = ⟨φ,−∆2φ⟩L2(R2) + α

∫
R
|φ+(x, x)|2dx

+
√
2

∫
R
φ̄+

(
∂φ+

∂n⃗
+
∂φ−

∂n⃗

)
dx,

(5.0.7)

where the plus sign in the outer (unit) normal derivatives refers to R2
+ and the

minus sign refers to R2
−. Finally, since the form (5.0.7) shall correspond to a self-

adjoint realisation of the Laplacian −∆2, the last two terms on the right of (5.0.7)

must vanish, implying the boundary conditions(
∂φ+

∂n⃗
+
∂φ−

∂n⃗

)
+

α√
2
φ+ = 0 (5.0.8)

along the diagonal. Hence, a two particle delta-interaction as in (5.0.2) induces

a jump in the normal derivatives along the diagonal of R2. This is similar to the

case of the one-dimensional delta-interaction which also induces a jump in the

derivatives (see (3.1.10)). Note that contact interactions of the form (5.0.8) for

identical particles were also discussed in [LM77].

Note that contact interactions on a graph are also important in the context of

many-particle quantum chaos. As established in [KS97b] and outlined in Chapter

3, chaos on a one-particle graph originates in the scattering of the particle in

the vertices. However, in a one-particle system, the motion along the edges is

simple. To investigate properties of many-particle effects, we have so far introduced

singular two-particle interactions localised at the vertices of the graph. But since

at least one of the particles had to be at the vertex, the motion along the edges

remained unaffected given that both particles were situated in the interior of an

edge. Contact interactions, on the other hand, lead to a non-trivial motion along

the edges since scattering takes place whenever two particles hit each other. For

this reason, they lead to another possibility for investigating properties of many-

particle chaos. In that context, it is worth mentioning interesting numerical results

concerning the quantum chaotic behaviour of two-particle systems with short-

range interactions [VSCdL01, XSdS+04]. In [VSCdL01], the authors considered



5. Contact interactions on compact quantum graphs 80

two particles on an interval with Hamiltonian

Ĥ = − ~2

2m

∂2

∂x2
− ~2

2γm

∂2

∂y2
+ αδ(x− y), (5.0.9)

where α ∈ R is the interaction strength and γ the mass ratio. Furthermore, the

boundary conditions where chosen to be either Dirichlet or periodic. The authors

then numerically calculated the eigenvalues and plotted the nearest-neighbour level

spacings distribution P (s) (see (3.3.13)), finally comparing it to either Poisson

statistics or random matrix predictions. The results were as follows:

1. In the case of Dirichlet boundary conditions, the system is non-chaotic for

γ = 1 and chaotic for γ ̸= 1 and α large enough.

2. In the case of periodic boundary conditions, the system is non-chaotic for all

values γ.

We hence see that the choice of boundary conditions, as well as the mass ratio,

play an important role in the development of quantum chaos. Note that similar

results were obtained in [XSdS+04]. In that paper, the authors considered two

particles in a circular domain interacting via Yukawa short-range potentials and

subject to a constant magnetic field. Numerically evaluating the eigenvalues of the

interacting system, and plotting the nearest-neighbour level spacing distribution

P (s), the results were as follows:

1. For a mass ratio γ = 1, the system is non-chaotic and the level-spacing

distribution follows Poisson statistics.

2. For a mass ratio of γ = 15, the system is chaotic and the level-spacing

distribution follows GOE predictions.

3. For increasing values of γ, the degree of chaos measured in terms of a suitable

function, increases as well. However, the curve showing the increase of chaos

is oscillating yielding a more integrable behaviour at certain values of γ.

In this thesis, we will only consider particles of equal mass. However, since the

lengths of the edges can be chosen arbitrarily, one can nevertheless introduce a

similar breaking of symmetry. To see this, assume that one particle is located on

edge e1 with length l1 and the second particle is located on edge e2 with length
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l2 = γl1, where γ ∈ R is a scaling parameter. The corresponding components of

−∆2 then read

(−∆2)e1e2 = − ∂2

∂x2e1
− ∂2

∂x2e2

= − 1

l2e1

∂2

∂y2e1
− 1

γ2l2e1

∂2

∂y2e2
,

(5.0.10)

where ye1 , ye2 ∈ (0, 1) are rescaled coordinates. A comparison with (5.0.9) hence

shows that the metric of the graph can cause a breaking of symmetry similar to a

mass ratio unequal to one.

This chapter is organised as follows: In the first part, we will introduce contact

interactions on general quantum graphs, also discussing regularity results and spec-

tral properties of the self-adjoint operators. In the second part, we then introduce

exchange symmetry in order to describe contact interactions in a system of two

bosons. In the third part, we extend the results to a system of N bosons, finally

obtaining a generalisation of the Lieb-Liniger model to general quantum graphs.

Note that the presentation in this chapter follows closely our paper [BK13c].

5.1 Contact interactions in a system of two distinguishable

particles

We want to implement interactions that are present whenever two particles on a

graph are located on the same edge and at the same position. Given the two-

particle configuration space

DΓ =
∪̇
e1e2

De1e2 , (5.1.1)

these interactions have to be implemented on the squares {Dee}e∈E . As explained
above, this will be achieved by a dissection of each Dee while imposing suitable

matching conditions for functions and their (normal) derivatives along the diago-

nal. To this end, we introduce the dissected configuration space

D∗
Γ =

( ∪̇
e1 ̸=e2

De1e2

)∪̇
e

(
D+
ee∪̇D−

ee

)
, (5.1.2)
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where D+
ee = {(x, y) ∈ Dee; x > y} and D−

ee = {(x, y) ∈ Dee; x < y}. Functions on
D∗

Γ are denoted as Ψ = (ψe1e2). Note that components defined on De1e2 , with e1 ̸=
e2, are given by ψe1e2 , whereas components on Dee are given by ψee = (ψ+

ee, ψ
−
ee)

with ψ±
ee defined on D±

ee. Accordingly, the (dissected) two-particle Hilbert space

H∗
2 is given by

L2(Γ∗
2) =

(⊕
e1 ̸=e2

L2(De1e2)

)⊕
e

(
L2(D+

ee)⊕ L2(D−
ee)
)
. (5.1.3)

Introducing Sobolev spaces in the same fashion, boundary values of functions

Ψ ∈ H1(Γ∗
2) will be characterised by vectors

Ψbv(y) =
(
ψe1e2,bv(y)

)
and Ψ′

bv(y) =
(
ψ′
e1e2,bv

(y)
)
. (5.1.4)

For e1 ̸= e2, no contact interactions are present and we set

ψe1e2,bv(y) =


√
le2ψe1e2(0, le2y)√
le2ψe1e2(le1 , le2y)√
le1ψe1e2(le1y, 0)√
le1ψe1e2(le1y, le2)

 , (5.1.5)

as well as

ψ′
e1e2,bv

(y) =


√
le2ψe1e2,x(0, le2y)

−
√
le2ψe1e2,x(le1 , le2y)√
le1ψe1e2,y(le1y, 0)

−
√
le1ψe1e2,y(le1y, le2)

 . (5.1.6)

On the other hand, for e1 = e2, boundary values along the diagonal have to be

added. Noting that the inward normal derivatives on the diagonal are

ψ±
ee,n =

±1√
2

(
ψ±
ee,x − ψ±

ee,y

)
, (5.1.7)
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we set

ψee,bv(y) =



√
leψ

−
ee(0, ley)√

leψ
+
ee(le, ley)√

leψ
+
ee(ley, 0)√

leψ
−
ee(ley, le)√

leψ
+
ee(ley, ley)√

leψ
−
ee(ley, ley)


and ψ′

ee,bv(y) =



√
leψ

−
ee,x(0, ley)

−
√
leψ

+
ee,x(le, ley)√

leψ
+
ee,y(ley, 0)

−
√
leψ

−
ee,y(ley, le)√

2leψ
+
ee,n(ley, ley)√

2leψ
−
ee,n(ley, ley)


,

(5.1.8)

for y ∈ [0, 1]. Altogether, the vectors (5.1.4) of boundary values have n(E) =

4E2 + 2E components.

In the following, we will always assume a certain ordering of boundary values

that allows us to distinguish clearly between contact interactions and interactions

related to vertices. In detail, we assume the structure

Cn(E) = Vcontact ⊕ Vvertex, (5.1.9)

with dimVcontact = 2E and dimVvertex = 4E2. Here Vvertex consists of all compo-

nents of (5.1.5) and (5.1.6) as well as the upper four components of (5.1.8). As

can be seen from their arguments, they are related to the vertices of the graph. On

the other hand, Vcontact consists of the lower two components of (5.1.8), hence rep-

resenting the contact interaction part. As a next step, we introduce two bounded

and measurable maps P,L : [0, 1] → M(n(E),C) that are required to fulfil

1. P (y) is an orthogonal projection,

2. L(y) is a self-adjoint endomorphism on kerP (y),

for a.e. y ∈ [0, 1]. Moreover, we set Q(y) = 1n(E) − P (y). On L2(0, 1)⊗Cn(E), we

associate two bounded and self-adjoint operators with P and L, i.e.

Π : L2(0, 1)⊗ Cn(E) → L2(0, 1)⊗ Cn(E), χ(y) 7→ P (y)χ(y), (5.1.10)

and

Λ : L2(0, 1)⊗ Cn(E) → L2(0, 1)⊗ Cn(E), χ(y) 7→ L(y)χ(y). (5.1.11)
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In order to avoid a coupling of vertex interactions and contact interactions, we will

throughout this chapter assume that the maps P and L are of the form

M =Mcontact ⊕Mvertex, (5.1.12)

with regard to the decomposition (5.1.9) and M ∈ {P,L}. Also, to avoid contact

interactions across different edges, we assume that Mcontact is block-diagonal with

respect to the decomposition

Mcontact =
⊕
e

Mcontact,e, (5.1.13)

where Mcontact,e contains the lower two components of (5.1.8) for the edge e ∈ E .
Our aim is now to characterise self-adjoint realisations of the two-particle Laplacian

−∆2 that represent two-particle contact interactions. They will be symmetric

extensions of (−∆2, C
∞
0 (Γ∗

2)) and, in analogy to the one-particle case (3.1.22), as

well as the case of singular interactions covered in the last chapter (4.1.62), their

domains should be given in the form

D2(P,L) = {Ψ ∈ H2(Γ∗
2); P (y)Ψbv(y) = 0 and

Q(y)Ψ′
bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]}.

(5.1.14)

However, before we generate a quadratic form that will (under certain conditions)

yield a self-adjoint realisation of −∆2 with a domain (5.1.14), we single out two

classes of particular importance.

Definition 5.1.1. Let α : [0, 1] → R be Lipschitz continuous. A contact interac-

tion is said to be of

(i) δ-type with (variable) strength α, if Ψ ∈ H2(Γ∗
2) is continuous across diago-

nals,

ψ+
ee(ley, ley) = ψ−

ee(ley, ley), (5.1.15)

and satisfies jump conditions for the normal derivatives,

ψ+
ee,n(ley, ley) + ψ−

ee,n(ley, ley) =
α(y)√

2
ψ±
ee(ley, ley). (5.1.16)

(ii) hard-core type, if it satisfies Dirichlet boundary conditions along diagonals.
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To relate those classes of contact interactions to the formalism introduced be-

fore, we set

Pcontact,e(y) =
1

2

(
1 −1

−1 1

)
, (5.1.17)

and

Lcontact,e(y) = −1

2
α(y)12, (5.1.18)

to obtain δ-like contact interactions. On the other hand, to obtain hard-core

interactions, we set Pcontact,e(y) = 12 and Lcontact,e(y) = 0. Now, in order to

identify self-adjoint realisations of the two-particle Laplacian−∆2, we will generate

a suitable quadratic form.

Proposition 5.1.2. Assume that the maps P,L : [0, 1] → M(n(E),C) are bounded
and measurable. Then the quadratic form

Q
(2)
P,L[ψ] = ⟨∇Ψ,∇Ψ⟩L2(Γ∗

2)
−
∫ 1

0

⟨Ψbv(y), L(y)Ψbv(y)⟩Cn(E) dy , (5.1.19)

with domain

DQ(2) = {Ψ ∈ H1(Γ∗
2); P (y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]} (5.1.20)

is closed and semi-bounded.

Proof. The proof follows the same lines as the proof of Theorem 4.1.7. Only the

estimate∣∣∣∣∫ 1

0

⟨Ψbv(y), L(y)Ψbv(y)⟩Cn(E) dy

∣∣∣∣ ≤ ∥Λ∥op ∥Ψbv∥2L2(0,1)⊗Cn(E) (5.1.21)

needs some consideration. Since we work on the dissected Hilbert space (5.1.3),

we have to be a somewhat more careful in order to establish an upper bound for

the right-hand side. Indeed, we require the bound

∥Ψbv∥2L2(0,1)⊗Cn(E) ≤ K

(
2

δ
∥Ψ∥2L2(Γ∗

2)
+ δ ∥∇Ψ∥2L2(Γ∗

2)

)
, (5.1.22)

to hold for all δ ≤ δ0, where K, δ0 > 0. Note that the contribution from rectangles

De1e2 with e1 ̸= e2 is estimated as done in the proof of Theorem 4.1.7. Concerning

the triangles D±
ee, we note that their contribution cannot be estimated in the same
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way. However, to estimate the non-diagonal boundary values one can always reflect

functions ψ±
ee across the diagonal, define them on the square Dee and then apply

the bound as before for the rectangles. Also, to estimate the boundary values along

the diagonal, one continues the function again by reflection onto a square such that

the diagonal is the outer boundary of that square. The proof then continues as

the proof of Theorem 4.1.7. Note that the estimate (5.1.22) can also be obtained

by applying Theorem 2.2.13.

According to the representation theorem of quadratic forms [Kat66], we con-

clude that each form Q
(2)
P,L[·] is associated with a unique self-adjoint operator on

L2(Γ∗
2) which shall be denoted as (H,D(H)). To actually identify this operator as

well as its domain, we would like to know if D(H) ⊂ H2(Γ∗
2).

Definition 5.1.3. Let Q
(2)
P,L[·] be a quadratic form covered by Proposition 5.1.2. If

its associated self-adjoint operator has domain D(H) ⊂ H2(Γ∗
2), we call the form

regular.

As mentioned in previous sections, it is in general very difficult to show that a

quadratic form is regular. Loosely speaking, in order to render a regular quadratic

form, the boundary conditions in terms of the maps P and L must be chosen

smooth enough. Furthermore, whenever a quadratic form is regular, we would like

to show that the corresponding operator has a domain of the form (5.1.14).

Theorem 5.1.4. Suppose that the map P is of class C1 and that the quadratic form

Q
(2)
P,L with domain DQ(2) is regular. Then the unique, self-adjoint and semibounded

operator that is associated with this form is the two-particle Laplacian −∆2 with

domain D2(P,L).

Proof. The proof follows the same lines as the proof of Theorem 4.1.24. It is

based on the representation theorem for quadratic forms, which implies that for

each Ψ ∈ D(H) there exists a unique χ ∈ L2(Γ∗
2) such that

Q
(2)
P,L[Ψ,Φ] = ⟨χ,Φ⟩ , ∀Φ ∈ DQ(2) . (5.1.23)

When Φ ∈ C∞
0 (Γ∗

2), an integration by parts shows that H acts as a two-particle

Laplacian −∆2. For an arbitrary function Ψ ∈ DQ(2) , the integration by parts
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yields an additional boundary term, i.e.

−
∫ 1

0

⟨Ψ′
bv(y) + L(y)Ψbv(y),Φbv(y)⟩Cn(E) dy , (5.1.24)

that is required to vanish. Following Lemma 4.1.23, which has an immediate

generalisation to the present case, the set {Ψbv; Ψ ∈ DQ(2)} is dense in kerΠ ⊂
L2(0, 1)n(E). Hence, Ψ′

bv + ΛΨbv ∈ kerΠ⊥, or

Q(y)Ψ′
bv(y) +Q(y)L(y)Ψbv(y) = 0 . (5.1.25)

This condition finally implies that D(H) = D2(P,L).

In the following theorem, we will establish regularity for δ- as well as hard-core

interactions. The proof will use the same techniques as the proof given in part B

of the appendix that corresponds to the Theorem 4.1.26 of the last chapter.

Theorem 5.1.5. In addition to the assumption made for the maps P and L above,

suppose that Pvertex has the block structure (4.1.70) and is of class C3. In addition,

L shall be Lipschitz continuous. Furthermore, for y ∈ [0, ϵ1]∪ [1− ϵ2, 1] with some

ϵ1, ϵ2 > 0 assume that the restriction of P to Vvertex is diagonal with diagonal

entries zero or one as well as Lvertex = 0, and, in the case of δ-type interactions,

that α(y) = α0 > 0. Then the quadratic form Q
(2)
P,L is regular.

Proof. First note that it is enough to show regularity near the corners of Dee =

D+
ee∪D−

ee adjacent to the diagonal. The regularity away from those corners of Dee,

as well as the regularity in the rectangles De1e2 with e1 ̸= e2, is established with the

methods employed in the proof of Theorem 4.1.26. Now, the assumptions made

on P imply that functions in DQ(2) satisfy either Dirichlet- or Neumann boundary

conditions near the corners of the squares Dee. As a next step, consider

ψee,B(x, y) :=
1

2
τ(r)

[
ψee(x, y) + ψee(y, x)

]
,

ψee,F (x, y) :=
1

2
τ(r)

[
ψee(x, y)− ψee(y, x)

]
,

(5.1.26)

where, using polar coordinates at the corner of consideration, τ ∈ C∞(0, 1) is a

(cut-off) test function with 0 ≤ τ(r) ≤ 1, τ(r) = 1 for r ≤ r0 and τ(r) = 0 for

r close to 1. The goal is then to show that both ψee,B and ψee,F are in H2(D∗
ee).
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This in turn implies that ψee ∈ H2(D∗
ee). For this, we recall the conditions (5.1.16)

which imply that, on the diagonal,

∂nψ
±
ee,B − α√

2
ψ±
ee,B = 0 , (5.1.27)

i.e., ψ±
ee,B satisfies (variable) Robin boundary conditions on the diagonal. By

construction, ψ±
ee,F vanishes on the diagonal so that near the corners ofD±

ee adjacent

to the diagonal, where α is supposed to be constant, ψ±
ee,B/F satisfies a combination

of Dirichlet-, Neumann- or standard Robin-boundary conditions. In all such cases

regularity is well known to hold [Neč67, Gri11, Dau88].

As a next step, we want to discuss spectral properties of the self-adjoint oper-

ators corresponding to quadratic forms as described in Proposition 5.1.2.

Remark 5.1.6. Let Q
(2)
P,L[·] be a quadratic form as described in Proposition 5.1.2.

In the following we will, irrespective of regularity, denote the corresponding self-

adjoint operator by (−∆2,D2(P,L)).

First of all, we would like to know if the spectrum of each operator

(−∆2,D2(P,L)) is purely discrete. In addition, given the spectrum is purely dis-

crete with eigenvalues {λn}n∈N0 , we would like to establish Weyl asymptotics for

the corresponding eigenvalue counting function

N(λ) = #{n;λn ≤ λ}, (5.1.28)

where the eigenvalues are counted according to their multiplicities.

Proposition 5.1.7. Let (−∆2,D2(P,L)) be a self-adjoint realisation of the two-

particle Laplacian describing contact interactions. Then this operator has compact

resolvent. In particular, its spectrum is purely discrete and only accumulates at

infinity. Furthermore, the counting function (5.1.28) obeys the Weyl law

N(λ) ∼ L2

4π
λ , λ→ ∞ , (5.1.29)

where L =
∑E

e=1 le is the total length of the graph.

Proof. We first note that the Hilbert space H1(Γ∗
2) is compactly embedded in

L2(Γ∗
2) [Dob05]. Accordingly, since the form norm || · ||Q(2) is equivalent to the
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H1(Γ∗
2) norm, it follows that the Hilbert space (DQ(2) , || · ||Q(2)) is also compactly

embedded in L2(Γ∗
2). Hence the operator associated with the quadratic form has

compact resolvent [Dob05].

The Weyl law then follows from a standard bracketing argument [RS78] based

on a comparison with two suitable operators (quadratic forms) (see also [BE09,

BK13b]). The first operator, (−∆2,D2(PD, LD)), is the Dirichlet-Laplacian and

is characterised by the projection PD = 1n(E) as well as LD = 0. The second

comparison operator, (−∆2,D2(PR, LR)), is the Robin-Laplacian characterised by

the projection PR = 0 as well as

LR = diag(
√
2λ, . . . ,

√
2λ︸ ︷︷ ︸

2E−times

, λ, . . . , λ︸ ︷︷ ︸
4E2−times

) , (5.1.30)

where λ = ||Λ||op. The associated quadratic forms therefore satisfy the following

inclusions of their domains, i.e.

D2(PD, LD) ⊆ D2(P,L) ⊆ D2(PR, LR) . (5.1.31)

Hence [RS78], it follows that the related eigenvalue-counting functions satisfy

ND(λ) ≤ N(λ) ≤ NR(λ) . (5.1.32)

As both ND and NR satisfy the Weyl law (5.1.29), the same asymptotics holds for

N(λ). Note that the Weyl asymptotics for the Robin-Laplacian was established

in [Zay98].

5.2 Contact interactions in a system of two bosons

In this section, we want to implement a particle exchange symmetry in order to

investigate a system of two bosons interacting via contact interactions. For this,

let ΠB be the projection operator acting via

(ΠBΨ)e1e2(xe1 , ye2) =
1

2

(
ψe1e2(xe1 , ye2) + ψe2e1(ye2 , xe1)

)
, (5.2.1)
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on components ψe1e2 with e1 ̸= e2 and

(ΠBΨ)±ee(xe, ye) =
1

2

(
ψ±
ee(xe, ye) + ψ∓

ee(ye, xe)
)
, (5.2.2)

on components ψe1e2 with e1 = e2. Accordingly, the symmetric Hilbert space is

given by

L2
B(Γ

∗
2) = ΠBL

2(Γ∗
2). (5.2.3)

In the same fashion, we introduce the (symmetric) Sobolev spaces Hm
B (Γ∗

2) of order

m ∈ N by

Hm
B (Γ∗

2) = Hm(Γ∗
2) ∩ L2

B(Γ
∗
2). (5.2.4)

Note that all functions Ψ ∈ H1
B(D

∗
Γ) fulfil

ψe1e2,x(xe1 , ye2) = ψe2e1,y(ye2 , xe1). (5.2.5)

In order to introduce a suitable quadratic form, we first introduce vectors of bound-

ary values. For components ψe1e2 = (Ψ)e1e2 with e1 ̸= e2, we write

ψe1e2,bv(y) =

(√
le2ψe1e2(0, le2y)√
le2ψe1e2(le1 , le2y)

)
, (5.2.6)

and

ψ
′

e1e2,bv
(y) =

( √
le2ψe1e2,x(0, ley)

−
√
le2ψe1e2,x(le1 , le2y)

)
, (5.2.7)

whereas for components ψee we have

ψee,bv(y) =


√
leψ

−
ee(0, ley)√

leψ
+
ee(le, ley)√

leψ
+
ee(ley, ley)

 and ψ
′

ee,bv(y) =


√
leψ

−
ee,x(0, ley)

−
√
leψ

+
ee,x(le, ley)√

2leψ
+
ee,n(ley, ley)

 ,

(5.2.8)

with y ∈ [0, 1]. The space of boundary values therefore has dimension nB(E) =

2E2 + E and decomposes in analogy to (5.1.9).

As a next step, we introduce two bounded and measurable maps P,L : [0, 1] →
M(nB(E),C) such that:

1. P (y) is an orthogonal projection,
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2. L(y) is a self-adjoint endomorphism on kerP (y),

for a.e. y ∈ [0, 1]. Moreover, we set Q(y) = 1nB(E) − P (y). Also, we assume

that P,L have the block-structure (5.1.12) in order to avoid a coupling of vertex-

interactions and contact interactions. In order to avoid a coupling between con-

tact interactions along different edges, we also assume that the decomposition

(5.1.13) holds. Now, since the restriction of P to each subspace Mcontact,e is one-

dimensional, we have

Pcontact,e ∈ {0, 1}, (5.2.9)

where 0 corresponds to δ-interactions and 1 to hard-core interactions since Dirichlet

boundary conditions are induced. Furthermore, we associate two bounded and self-

adjoint operators Π and Λ on the Hilbert space of boundary values with the maps

P and L, i.e.

Π : L2(0, 1)⊗ CnB(E) → L2(0, 1)⊗ CnB(E), χ(y) 7→ P (y)χ(y), (5.2.10)

and

Λ : L2(0, 1)⊗ CnB(E) → L2(0, 1)⊗ CnB(E), χ(y) 7→ L(y)χ(y). (5.2.11)

Using all the notation introduced above, we can now define a suitable quadratic

form for a system of two bosons on a graph.

Proposition 5.2.1. The quadratic form

Q
(2),B
P,L [ψ] = 2⟨Ψx,Ψx⟩L2

B(D∗
Γ)
− 2

∫ 1

0

⟨Ψbv(y), L(y)Ψbv(y)⟩CnB(E) dy , (5.2.12)

with domain

DQ(2),B =
{
Ψ ∈ H1

B(Γ
∗
2); P (y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]

}
. (5.2.13)

is closed and semi-bounded.

The proof is equivalent to the proof of Proposition 5.1.2. Note that the factor

of 2 appears due to the bosonic symmetry as can also be understood from the

reduced dimension of the vectors containing the boundary values. Furthermore,
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given the form Q
(2),B
P,L [·] is regular in the sense of Definition 5.1.3, we have the

following statement.

Proposition 5.2.2. Let Q
(2),B
P,L [·] be the quadratic form as described in Proposition

5.1.2. Assume that P is of class C1 and that the quadratic form is regular in

the sense of Definition 5.1.3. Then the operator associated to the form is the

two-particle Laplacian −∆2 with domain

D2,B(P,L) = {Ψ ∈ H2
B(Γ

∗
2); P (y)Ψbv(y) = 0 and

Q(y)Ψ′
bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]}.

(5.2.14)

The proof follows the same steps as the proof of Proposition 5.1.4.

Remark 5.2.3. Note that the regular forms characterised in Theorem 5.1.5 carry

over directly to the bosonic case.

Finally, regarding the spectrum we readily establish:

Corollary 5.2.4. Assume that (−∆2,D2,B(P,L)) is, irrespective of regularity, the

self-adjoint operator corresponding to the form Q
(2),B
P,L [·] as described in Proposi-

tion 5.1.2. Then its spectrum is purely discrete, only accumulating at infinity.

Furthermore, the counting function

NB(λ) = #{n;λn ≤ λ}, (5.2.15)

where the eigenvalues are counted according to their multiplicities, fulfils the Weyl

law

NB(λ) ∼
L2

8π
λ, λ→ ∞. (5.2.16)

As we can see from (5.2.16), the bosonic symmetry leads to a factor of one half.

5.3 Contact interactions in a system of N bosons

The goal of this section is to generalise the methods of the previous section to a

system of an arbitrary number of particles. This will finally allow us to extend the

Lieb-Liniger model [LL63] to general compact quantum graphs. Note that we will,

for the sake of readability, refer in some proofs to part A of the Appendix. There,

singular interactions in systems of N non-distinguishable particles are introduced
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in the same way as discussed in Chapter 4 for the case of two particles. Since

we will establish quadratic forms for N bosons which incorporate contact as well

as singular interactions, similar methods are used in the proofs which therefore

allows us to refer to the Appendix.

For N bosons, the (formal) operator we want to consider is given by

ĤN = −∆N +
∑
i<j

α(xi) δ(xi − xj) , (5.3.1)

where α : R → R is the (possibly coordinate dependent) interaction strength.

Note that the original Lieb-Liniger model is only concerned with constant α ∈ R.
On a graph, the action of the Hamiltonian corresponding to (5.3.1) is such that

⟨Ψ, ĤNΨ⟩H2 = ⟨Ψ,−∆NΨ⟩H2

+
N(N − 1)

2

∑
e2...eN

∫ le2

0

. . .

∫ leN

0

α(x2e2)|ψe2e2...eN (x
2
e2
, x2e2 , . . . , x

N
eN
)|2 dx2e2 . . . dx

N
eN

.

(5.3.2)

We see that the interaction part in (5.3.1) is realised by an integration along hy-

persurfaces characterised by the fact that two particles are at the same position,

i.e. x1e = x2e for some e ∈ E . Note that, due to bosonic symmetry, it is enough to

consider only the corresponding hypersurface for the first two coordinates. Now, in

order to construct a quadratic form that will, due to the graph structure, also con-

tain possible interactions in the vertices, we have to construct a dissected Hilbert

space similar to (5.1.3). The configuration space for N distinguishable particles is

given by

DN
Γ =

∪̇
e1e2...eN

De1e2...eN , (5.3.3)

with De1e2...eN = (0, le1)× ...× (0, leN ). With each domain De1e2...eN , we associate

the vector (n1, ..., nE)
T ∈ NE that lists the numbers of particles situated on each

edge e ∈ E . Furthermore, the map

σe : (1, ..., ne) 7→
(
xσe(1)e , ..., xσe(ne)

e

)
(5.3.4)
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associates to each particle on edge e ∈ E its coordinate label. We then single out

a polyhedral subdomain of De1e2...eN , called the fundamental domain, by requiring

xσe(1)e < · · · < xσe(ne)
e , ∀e ∈ {1, . . . , E}. (5.3.5)

Note that there are n1!...nE! equivalent domains which are obtained from (5.3.5)

by a permutation of the particle labels. Accordingly, each domain De1e2...eN can

be written as the (dissected) union

D∗
e1...eN

=
∪̇
η

Dη
e1...eN

, (5.3.6)

where η ∈ {1, ..., (n1!...nE!)} and Dη
e1...eN

are the domains obtained via (5.3.5).

Now, based on the dissected domains (5.3.6), the N -particle Hilbert space is given

by

L2(Γ∗
N) =

⊕
e1e2...eN

L2(D∗
e1e2...eN

). (5.3.7)

In the same way, the Sobolev space of order m ∈ N is defined by

Hm(Γ∗
N) =

⊕
e1e2...eN

Hm(D∗
e1e2...eN

). (5.3.8)

According to (5.3.7), each component (Ψ)e1...eN = ψe1...eN consists of n1!...nE! sub-

components. However, to keep the notation simple, we shall only write ψe1...eN
without explicitly writing out all subcomponents.

Since we want to describe a system of N bosons, we shall now introduce exchange

symmetry. For this, let ΠB be the projection operator acting on a state Ψ ∈ L2(Γ∗
N)

via

(ΠBΨ)e1...eN =
1

N !

∑
π∈SN

ψπ(e1)...π(eN )(x
π(1)
π(e1)

, ..., x
π(N)
π(eN )), (5.3.9)

and write

L2
B(Γ

∗
N) = ΠBL

2(Γ∗
N). (5.3.10)

As in the previous sections, we now introduce vectors containing boundary values

of any state Ψ ∈ H1(Γ∗
N) or Ψ ∈ H2(Γ∗

N) respectively. Note that these boundary

values consist of two different parts: boundary values along the surfaces of De1...eN

corresponding to interactions in the vertices and boundary values along the hy-
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persurfaces characterised by x1e = x2e corresponding to contact interactions. The

boundary values associated with interactions in the vertices are then given by

Ψbv,vert(y) =

(√
le2 . . . leNψe1...eN (0, le2y1, . . . , leNyN−1)√
le2 . . . leNψe1...eN (le1 , le2y1, . . . , leNyN−1)

)
, (5.3.11)

and

Ψ
′

bv,vert(y) =

( √
le2 . . . leNψe1...eN ,x1e1 (0, le2y1, . . . , leNyN−1)

−
√
le2 . . . leNψe1...eN ,x1e1 (le1 , le2y1, . . . , leNyN−1)

)
. (5.3.12)

Note that, due to bosonic symmetry, it is enough to consider boundary values for

x1e1 = 0 and x1e1 = le1 only.

As a next step, we introduce bounded and measurable maps Pvert, Lvert : [0, 1]
N−1 →

M(2EN ,C) that act on these vertex related boundary values. They are required

to fulfil

1. Pvert(y) is an orthogonal projection,

2. Lvert(y) is a self-adjoint endomorphism on kerPvert(y),

for a.e. y ∈ [0, 1]N−1. Moreover, we set Qvert(y) = 12EN − Pvert(y). Now, in

accordance with (5.3.2), we can introduce a suitable quadratic form incorporating

δ-like contact interactions as well as singular interactions in the vertices of the

graph. Setting yl = (le2y1, le3y2, . . . , leNyN−1), we have the following statement.

Theorem 5.3.1. Let the maps Pvert, Lvert : [0, 1]
N−1 → M(2EN ,C) as well as the

function α : [0, 1] → C be bounded and measurable. Then the quadratic form

Q
(N)
B [Ψ] = N

∑
e1...eN

∫ le1

0

. . .

∫ leN

0

|ψe1...eN ,x1e1 (x
1
e1
, . . . , xNeN )|

2 dx1e1 . . . dx
N
eN

−N

∫
[0,1]N−1

⟨Ψbv,vert, Lvert(y)Ψbv,vert⟩C2EN dy

+
N(N − 1)

2

∑
e2...eN

∫
[0,1]N−1

α(y1) |
√
le2 . . . leNψe2e2...eN (le2y1,yl)|2 dy,

(5.3.13)
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defined on the domain

D
Q

(N)
B

=
{
Ψ ∈ H1

B(Γ
∗
N); Pvert(y)Ψbv,vert(y) = 0 for a.e. y ∈ [0, 1]N−1

}
, (5.3.14)

is closed and semi-bounded.

Proof. Due to the bosonic symmetry, each function Ψ ∈ H1
B(Γ

∗
N) can be considered

as a function Ψ ∈ H1
B(ΓN). Accordingly, the proof follows the same lines as the

proof of Theorem A.0.16 and we therefore comment on the estimates regarding

the contact interaction part of (5.3.13) only, i.e. we consider

A :=
N(N − 1)

2

∑
e2...eN

∫
[0,1]N−1

α(y1) |
√
le2 . . . leNψe2e2...eN (le2y1,yl)|2 dy. (5.3.15)

For each component ψe1e2...eN (le2y1,yl), we have

∥
√
le2 . . . leNψe2e2...eN (le2y1,yl)∥2L2(0,1)N−1 ≤

2K

δ
∥ψe2e2...eN∥2L2(De2e2...eN

)

+Kδ∥∇ψe2e2...eN∥2L2(De2e2...eN
) ,

(5.3.16)

forK ∈ R large enough and for all δ ≤ δ0 with δ0 > 0 some constant. Note that this

estimate can be obtained by extending the component ψe2e2...eN (x
1
e2
> x2e2) in the

first two coordinates onto a square, such that ψe2e2...eN (le2y1,yl) are the boundary

values on the outer surfaces of this square (see also the proof of Proposition 5.1.2).

Subsequently, one can apply the standard estimate (A.0.11), finally arriving at

(5.3.16). Combining everything, we have the desired estimate

|A| ≤ c1∥∇Ψ∥2L2(D∗
N ) + c2∥Ψ∥2L2(D∗

N ) (5.3.17)

with c1 arbitrarily small. Note that (5.3.17) can also be obtained by applying

Theorem 2.2.13.

As a next step, we generate a quadratic form that incorporates hard-core in-

teractions (see Definition 5.1.1).

Definition 5.3.2. Let m ∈ N. The space Hm
0,B(Γ

∗
N) consists of all functions

Ψ ∈ Hm
B (Γ∗

N) that vanish along the hypersurfaces for which xie = xje for some pair

i ̸= j and e ∈ E .
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Theorem 5.3.3. Let the maps Pvert, Lvert : [0, 1]
N−1 → M(2EN ,C) be bounded

and measurable. Then the quadratic form

Q
(N)
B [Ψ] = N

∑
e1...eN

∫ le1

0

. . .

∫ leN

0

|ψe1...eN ,x1e1 (x
1
e1
, . . . , xNeN )|

2 dx1e1 . . . dx
N
eN

−N

∫
[0,1]N−1

⟨Ψbv,vert, Lvert(y)Ψbv,vert⟩C2EN dy,

(5.3.18)

defined on the domain

D
Q

(N)
B

=
{
Ψ ∈ H1

0,B(Γ
∗
N); Pvert(y)Ψbv,vert(y) = 0 for a.e. y ∈ [0, 1]N−1

}
,

(5.3.19)

is closed and semi-bounded.

Proof. Note again that each function Ψ ∈ H1
0,B(Γ

∗
N) can be considered as a function

Ψ ∈ H1
0,B(ΓN) (here H

1
0,B(ΓN) is defined analoguously to H1

0,B(Γ
∗
N)). Taking the

completeness of H1
0,B(ΓN) into account, the proof follows the same lines as the

proof of Theorem A.0.16.

For δ-interactions, given that the map Pvertex is of class C
1 and the form (5.3.13)

is regular (see Definition 4.1.10), we can readily show that the corresponding op-

erator is the N -particle Laplacian −∆N with domain

Dα
N(P,L) = {Ψ ∈ H2

B(Γ
∗
N); P (y)Ψbv(y) = 0 and

Q(y)Ψ′
bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]N−1},

(5.3.20)

and M =Mcontact ⊕Mvert with M ∈ {P,L,Q}. For hard-core interactions, on the

other hand, we have

D∞
N (P,L) = {Ψ ∈ H2

0,B(Γ
∗
N); Pvert(y)Ψbv,vert(y) = 0 and

Qvert(y)Ψ
′
bv,vert(y) + Lvert(y)Qvert(y)Ψbv,vert(y) = 0 for a.e. y ∈ [0, 1]N−1}.

(5.3.21)

Remark 5.3.4. Note that we will, irrespective of regularity, denote the operator

corresponding to a form (5.3.13) or (5.3.18) by (−∆N ,Dα
N(P,L)). Furthermore,

the notation α ≡ ∞ shall refer to hard-core interactions.
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Finally, regarding the spectrum of each operator (−∆N ,Dα
N(P,L)), we establish

the following statement.

Proposition 5.3.5. Assume that the map Lvert is negative definite and the func-

tion α : [0, 1]N−1 → C strictly positive or α ≡ ∞. Then the spectrum of the

operator (−∆N ,Dα
N(P,L)) is purely discrete, only accumulating at infinity. Fur-

thermore, the eigenvalue counting function

N(λ) = #{n;λn ≤ λ}, (5.3.22)

where the eigenvalues are counted according to their multiplicities, obeys the Weyl

law

N(λ) ∼ LN

N !(4π)N/2Γ(1 + N
2
)
λN/2 , λ→ ∞ . (5.3.23)

Proof. The proof is based on the Dirichlet-Neumann bracketing of quadratic forms

[RS78]. Since α : [0, 1]N−1 → C is strictly positive (or α ≡ ∞) and Lvert is negative

definite, the two comparison operators are the Dirichlet-Laplacian (Pvert = 12EN

and Lvert = 0) and the Neumann-Laplacian (Pvert = 0 and Lvert = 0). For both

operators, the asymptotics (5.3.23) are well-known. The proposition then follows

using the same arguments as, for example, in the proof of Proposition 5.1.7.



6. BOSE-EINSTEIN CONDENSATION ON GENERAL

COMPACT QUANTUM GRAPHS

In this chapter, we will discuss Bose-Einstein condensation (BEC) on general com-

pact quantum graphs. We will identify many-particle systems that show condensa-

tion and other systems that do not. As a final result, we will prove that there is no

condensation in a system of bosons interacting via repulsive hard-core interactions.

Note that our results are summarised in [BK13a].

6.1 Basics of Bose-Einstein condensation

It was Einstein who predicted condensation in a free gas of bosons in three di-

mensions [Ein25]. He observed that for particle densities larger than some critical

particle density, i.e. ρ ≥ ρcrit, the one-particle ground state becomes macroscopi-

cally occupied, i.e. the fraction of particles in the ground state is given by ρ−ρcrit.
As we will see later, the macroscopic occupation of a one-particle state is indeed

the characteristic feature of Bose-Einstein condensation [PO56, Mic07].

Remark 6.1.1. Note that there is no Bose-Einstein condensation in a free Bose

gas in one dimension at any finite temperature. Only at zero temperature, all

particles occupy the one-particle ground state which implies condensation.

Bose-Einstein condensation is a phenomenon in statistical mechanics. In par-

ticular, it will be necessary to choose an appropriate ensemble in which BEC can

be described. Mostly, we will work in the grand-canonical ensemble [Gal99]. A

great advantage of this ensemble is that the particle number is not fixed. How-

ever, it requires the introduction of the Fock space F [Sch95, MR04]. Given the

symmetric N -particle Hilbert space

HB
N = ΠB(H1 ⊗ ...⊗H1︸ ︷︷ ︸

N−times

), (6.1.1)
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where ΠB is the projection that projects onto the totally symmetric subspace, the

(symmetric) Fock space is defined by

F =
∞⊕
N=0

HB
N , (6.1.2)

where HB
0 := C. In particular, Ψ with (Ψ)N = ΨN ∈ HB

N is an element of F if

and only if
∞∑
N=0

∥ΨN∥2HB
N
<∞. (6.1.3)

Furthermore, for two states Ψ,Φ ∈ F , the scalar product on F is defined by

⟨Ψ,Φ⟩F =
∞∑
N=0

⟨ΨN ,ΦN⟩HB
N
. (6.1.4)

Remark 6.1.2. The vector Ω = (1, 0, ...) is called the vacuum.

Since a state Ψ ∈ F does not correspond to a fixed particle number, it is

necessary to introduce a particle number operator N̂ whose expectation value is

interpreted as the particle number in the state Ψ. More precisely, one defines

(N̂Ψ)N = NΨN , (6.1.5)

with domain

D(N̂) =

{
Ψ ∈ F

∣∣∣∣∣
∞∑
N=0

N2∥ΨN∥2HB
N
<∞

}
. (6.1.6)

Accordingly, the particle number in a (normalised) state Ψ ∈ F is

⟨N̂⟩Ψ =
∞∑
N=0

N∥ΨN∥2HB
N
. (6.1.7)

In the framework of second quantisation [Sch95], it is customary to introduce

creation and annihilation operators which then allow to express the Hamiltonian

of the system in a clear way. For a one-particle state φ ∈ H1, the creation operator
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â†φ : F → F is defined by

(â†φΨ)N =
√
N ΠB(φ⊗ΨN−1), ∀N ∈ N,

(â†φΨ)0 = 0.
(6.1.8)

Furthermore, the annihilation operator âφ : F → F of this state is defined by

(âφΨ)N =
√
N + 1 ⟨φ,ΨN+1⟩H1 , ∀N ∈ N0. (6.1.9)

Here the scalar product ⟨φ,ΨN+1⟩H1 is evaluated in the first coordinate of ΨN+1,

i.e. whenever the one-particle Hilbert space H1 is a L2-space one has

⟨φ,ΨN+1⟩H1 =

∫
φ(x)ΨN+1(x, x1, ..., xN) dx. (6.1.10)

Now, using creation and annihilation operators, it is straightforward to express

the Hamiltonian of a system. In the grand-canonical ensemble, the Hamiltonian

Ĥ0 : D(Ĥ0) → F of a gas of non-interacting bosons is given by

Ĥ0 =
∞∑
n=0

ϵnâ
†
φn
âφn − µN̂. (6.1.11)

Here {â†φn
, âφn} are the creation and annihilation operators of the one-particle

eigenstates {φn}n∈N0 , {ϵn}n∈N0 are the corresponding eigenvalues and µ ∈ (−∞, ϵ0)

is the chemical potential [Sch06]. At inverse temperature β = 1
T
, the density matrix

of the system at thermal equilibrium is given by

ρ̂β =
e−βĤ0

Tr (e−βĤ0)
. (6.1.12)

Accordingly, the number of particles is

⟨N̂⟩ρ̂β = Tr (N̂ ρ̂β)

=
∞∑
n=0

1

eβ(ϵn−µ) − 1
.

(6.1.13)

Note that the expected number of particles occupying the n-th one-particle eigen-
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state is given by

⟨â†φn
âφn⟩ρ̂β =

1

eβ(ϵn−µ) − 1
. (6.1.14)

The statistical description of a system involves a thermodynamic limit [Gal99]. In

the grand-canonical ensemble, the thermodynamic limit is obtained by taking the

limit V → ∞. Here V is the volume of the one-particle configuration space. Note

that the particle number will also become infinite. However, the particle density

ρ remains finite and can be chosen arbitrarily. In particular, for a given value of

ρ, the chemical potential must be chosen such that

ρ = lim
V→∞

⟨N̂⟩ρ̂β
V

. (6.1.15)

Remark 6.1.3. Note that, in some situations, the chemical potential may also

depend on the volume [LW79, LSSY05]. This means that one has to define a

sequence {µV } such that (6.1.15) is fulfilled.

We can now establish a definition of BEC that holds for non-interacting sys-

tems. For this, we will assume that the considered self-adjoint one-particle Hamil-

tonian Ĥ1 has compact resolvent, i.e. its spectrum is purely discrete.

Definition 6.1.4. Let Ĥ1 be a one-particle Hamiltonian with eigenstates {φn}n∈N0

and eigenvalues {ϵn}n∈N0 . Given that the ground state energy converges in the

thermodynamic limit, i.e.

lim
V→∞

ϵ0 = δ, (6.1.16)

the corresponding Bose gas is said to display Bose-Einstein condensation (at in-

verse temperature β) iff there exists a finite set A = {n1, ..., n|A|} ∈ N|A|
0 such that

the reduced particle density

ρred(β, µ) = lim
V→∞

ρVred(β, µ)

= lim
V→∞

1

V

∑
n/∈A

1

eβ(ϵn−µ) − 1

(6.1.17)

is bounded from above, i.e. ∃λβ > 0 such that

ρred(β, µ) ≤ λβ, ∀µ ∈ (−∞, δ). (6.1.18)

Remark 6.1.5. Note that Definition 6.1.4 implies that, in the case BEC is dis-
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played, one or more states become macroscopically occupied as soon as the particle

density ρ is larger than λβ. In other words, the particles condense into these states.

We can now reformulate the classical result that establishes BEC in a Bose gas

in three dimensions [Ein25, Sch06].

Theorem 6.1.6. Consider the self-adjoint one-particle Hamiltonian −∆3, i.e. the

three-dimensional Laplacian, with domain

D(−∆3) =
{
φ ∈ H2(Λ)| φ(x) = 0, x ∈ ∂Λ

}
, (6.1.19)

where Λ = (0, L)3 and L ∈ R+. Then the system shows Bose-Einstein condensa-

tion.

Proof. We note that, due to the Dirichlet boundary conditions, the eigenvalues

and eigenfunctions can be constructed explicitly [Sch06], i.e. the eigenvalues are

k2nxnynz
= π2

L2 (n
2
x + n2

y + n2
z) with nx, ny, nz = 1, 2, ... being natural numbers. The

particle density is

ρ(β, µ) = lim
L→∞

1

L3

∑
nx,ny ,nz

1

e
β
(

π2

L2 (n
2
x+n

2
y+n

2
z)−µ

)
− 1

=

√
1

β3

Γ(3
2
)

4π2
g 3

2
(z),

(6.1.20)

where Γ is the Gamma-function, z = eβµ the fugacity and

g 3
2
(z) =

1

Γ(3
2
)

∫ ∞

0

x
1
2

1
z
ex − 1

dx. (6.1.21)

It can be checked that g 3
2
(z) is, for z ∈ [0, 1], bounded from above [Sch06]. This

then implies that the particle density (6.1.20) is also bounded from above and

hence the theorem follows.

As a consequence of the proof of Theorem 6.1.6, the particle density in the

ground state is given by

ρ0(β) = (ρ− ρcrit)Θ (ρ− ρcrit) , (6.1.22)



6. Bose-Einstein condensation on general compact quantum graphs 104

where Θ : R → R is the Heaviside function and

ρcrit =

√
1

β3

Γ(3
2
)

4π2
g 3

2
(1) (6.1.23)

the critical density. Hence, for densities ρ > ρcrit, the ground state is macroscopi-

cally occupied which implies Bose-Einstein condensation.

For a free Bose gas with one-particle configuration space (0, L), the eigenvalues

{k2n}n∈N0 of the Laplacian can again be explicitly given when Dirichlet or Neumann

boundary conditions are imposed. However, it is possible generalise the standard

approach to establish the absence of BEC in one dimension (for finite tempera-

tures) without explicit knowledge of the spectrum and the Hamiltonian. For this,

let Ĥ1 be a self-adjoint one-particle Hamiltonian describing a system with one-

particle configuration space (0, L). Furthermore, its resolvent shall be compact

and the eigenvalues shall be purely positive.

Lemma 6.1.7. Let {k2n > 0}n∈N0 be the positive eigenvalues (counted with multi-

plicity) of a one-particle Hamiltonian Ĥ1 as described above. Assume that

kn+1(L)− kn(L) ≤
c

L
, ∀n ∈ N0,

k0(L) ≤
c

L
,

(6.1.24)

where c > 0 is some constant. Then the system does not show Bose-Einstein

condensation.

Proof. Let A = {n1, ..., n|A|} ∈ N|A|
0 be any finite set of indices. We have

ρLred(β, µ) =
1

c

∞∑
n/∈A

1

eβ(k2n−µ) − 1
· c
L

≥ 1

c

∞∑
n/∈A

1

eβ(k2n−µ) − 1
· (kn+1 − kn)

L→∞−→ 1

c

∫ ∞

0

1

eβ(k2−µ) − 1
dk

(6.1.25)

in the sense of Riemann integrals. The integral on the right-hand side can be
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evaluated using generalised Bose-Einstein functions [Sch06] and one obtains

ρred(β, µ) ≥
Γ(1

2
)

2c
√
β
· g 1

2
(z), (6.1.26)

where z = eβµ and

g 1
2
(z) =

1

Γ(1
2
)

∫ ∞

0

x−
1
2

1
z
ex − 1

dx. (6.1.27)

It is well known that g 1
2
(z) is, for z ∈ (0, 1), not bounded from above [Sch06].

Due to (6.1.26), the same holds for ρred(β, µ) which then implies the absence of

BEC.

We have already mentioned that Definition 6.1.4 covers systems of

non-interacting bosons only. This follows from the fact that equation (6.1.13)

is valid only for non-interacting systems. From a physical point of view, the rea-

son is that in a system of interacting bosons, the eigenstates of the full system

are not (tensor) products of one-particle eigenstates. It is therefore not clear

into what one-particle states the particles may condense. A general definition of

Bose-Einstein condensation, which also covers systems of interacting particles, was

finally given by Penrose and Onsager [PO56]. In particular, they identified a spe-

cial set of one-particle states for which condensation is investigated. Note that the

definition of Penrose and Onsager is formulated in the setting of the canonical en-

semble. In this ensemble, one works on the (symmetric) N -particle Hilbert space

HB
N instead of working on the full Fock space. The thermodynamic limit is then

obtained by letting V → ∞ as well as N → ∞ in such a way that the particle

density remains fixed [Gal99]. In the following, let ĤN be a self-adjoint operator

on the symmetric N -particle Hilbert-space HB
N whose resolvent shall be compact,

i.e. its spectrum shall be purely discrete.

Definition 6.1.8. Let ĤN be a self-adjoint operator on HB
N as introduced above

with eigenstates {|Ψn⟩}n∈N0 and eigenvalues {En}n∈N0 . The thermal density matrix

of the system is then defined by

ρ̂N =
1

Z

∞∑
n=0

e−βEn |Ψn⟩ ⟨Ψn| , (6.1.28)
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where Z =
∑∞

n=0 e
−βEn is the partition function. Furthermore,

ρ̂1 = N Tr2...N (ρ̂N) (6.1.29)

is called the reduced one-particle density matrix.

Remark 6.1.9. In Definition 6.1.8, Tr2...N refers to taking the partial trace [Mic07].

Regarding (6.1.28) as an integral operator, the partial trace is obtained by inte-

grating out all degrees of freedom except one.

Note that the one-particle density matrix (6.1.29) is a trace-class operator on

the one-particle Hilbert space H1 [Mic07]. In the following, we will denote its

eigenvectors by {φn}n∈N0 and its eigenvalues by {λn}n∈N0 .

Definition 6.1.10 (Penrose and Onsager). Consider a system with thermal

density matrix ρ̂N . Then the system is said to display Bose-Einstein condensation

in the state φn and at inverse temperature β if there exist some positive constants

c1, c2 such that the inequality

c1 <
λn(β)

N
< c2 (6.1.30)

holds for all N > N0 in the thermodynamic limit.

Remark 6.1.11. Note that λn
N

is the fraction of particles in the state φn. This

means that the criterion of Penrose and Onsager defines BEC as the macro-

scopic occupation of an eigenstate of the reduced one-particle density matrix. For

other possible definitions of Bose-Einstein condensation and further discussion see

[Mic07].

Although the criterion of Penrose and Onsager can also be applied to inter-

acting systems, it is in general difficult to establish BEC rigorously in the sense

of Definition 6.1.10. This is due to the fact that the eigenstates of the full sys-

tem are hard to construct. Therefore, another approach to BEC related to phase

transitions is often pursued in literature [BP86, BdSP83]. To introduce the no-

tion of a phase transition, let {gn(β)}n∈N be a sequence of functions such that

gn(β) ∈ C∞(R+) for all n ∈ N and assume that the limiting function

g(β) = lim
n→∞

gn(β) (6.1.31)
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exists for all β ∈ (0,∞). If g(β) is differentiable almost everywhere, we say that

g(β) is a thermodynamical function. Furthermore, we say that a thermodynamical

function g(β) displays a phase transition at all values of β ∈ (0,∞) for which it is

not differentiable. As standard in statistical mechanics [Sch06], suitable sequences

of functions gVN(β) are constructed from the partition function or the free energy

density. In the canonical ensemble, the partition function is given by

ZV
N (β) = Tr(e−βĤN ) =

∞∑
n=0

e−βEn , (6.1.32)

and the free energy density by

fVN (β) = − 1

βV
lnZV

N (β). (6.1.33)

Possible candidates for functions that exhibit a phase transition are the free energy

density itself, the internal energy per particle

uVN(β) = − 1

N

∂ lnZV
N (β)

∂β
, (6.1.34)

or the specific heat per volume

cVN(β) =
N

V

(
∂uVN(β)

∂T

)
V

. (6.1.35)

Remark 6.1.12. It is important to note that discontinuities (and hence phase

transitions) can only occur after taking the thermodynamic limit [YL52]. For ex-

ample, the sharp onset of the occupation of the ground state in a three dimensional

Bose gas above the critical density (6.1.22) is due to taking the thermodynamic

limit [KvD96].

For the non-interacting Bose gas in three dimensions, it is well known that

besides the macroscopic occupation of the one-particle ground state (6.1.22), there

is also a phase transition occurring at a critical temperature [Sch06]. Also, in

[IRH76], the authors established Bose-Einstein condensation as well as the presence

of a phase transition in a one-dimensional system with an attractive impurity

centre. In general, one might wonder if Bose-Einstein condensation in the sense

of Definition 6.1.10 will always leads to a phase transition. This in turn would
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mean that the absence of a phase transition implies the absence of Bose-Einstein

condensation. Now, in order to give a formal argument for the presence of a phase

transition if Bose-Einstein condensation is displayed above some critical inverse

temperature βcrit, we consider a system of bosons with two-particle interactions.

Let

V̂ : H2 → H2 (6.1.36)

be a (bounded) interaction operator. The Hamiltonian ĤF : D(ĤF) → F on the

Fock space can then, in the standard formalism of second quantisation [MR04], be

written as

ĤF =
∑
mn

⟨φm, Ĥ1φn⟩H1 â
†
φm
âφn

+
1

2

∑
klmn

⟨φk ⊗ φl, V̂ (φm ⊗ φn)⟩H2 â
†
φk
â†φl
âφm âφn ,

(6.1.37)

where {âφn , â
†
φn
} are the annihilation and creation operators of the eigenstates of

the reduced one-particle density matrix {φn}n∈N0 .

Remark 6.1.13. Note that we can also consider the operator (6.1.37) as a rep-

resentation of the N -particle Hamiltonian on HB
N by identifying each function

φ ∈ HB
N with (0, ..., 0, φ, 0, ...) ∈ F .

Now, assume that we have condensation into the state φ0 for inverse temper-

atures β ≥ βcrit. Starting from (6.1.37), we calculate the internal energy

UV
N (β) = ⟨ĤF⟩ρ̂β

= ⟨φ0, Ĥ1φ0⟩H1⟨â†φ0
âφ0⟩ρ̂β

+ ⟨ĤF⟩restρ̂β
,

(6.1.38)

where ⟨ĤF⟩restρ̂β
contains all other terms. Hence, the specific heat per volume

(6.1.35) is given by

cVN(β) = ⟨φ0, Ĥ1φ0⟩H1

1

V

∂⟨â†φ0
âφ0⟩ρ̂β
∂T

+
∂⟨φ0, Ĥ1φ0⟩H1

∂T

⟨â†φ0
âφ0⟩ρ̂β
V

+
1

V

∂⟨ĤF⟩restρ̂β

∂T
.

(6.1.39)
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Now, according to (6.1.14), the average density of particles in the state φ0 is

ρVφ0
(β) =

⟨â†φ0
âφ0⟩ρ̂β
V

(6.1.40)

and, by assumption, φ0 is macroscopically occupied for β ≥ βcrit. As a conse-

quence,

lim
N,V→∞
N
V
=const.

∂

∂T

⟨â†φ0
âφ0⟩ρ̂β
V (6.1.41)

is expected to be discontinuous at β = βcrit and hence there is a phase transition

in the specific heat per volume. Note that, although this derivation is not rigorous,

it nevertheless sheds some light on basic processes. For example, in [Kim07], it

was shown that the specific heat is indeed discontinuous in the presence of weak

interactions. Also, in the one-dimensional model considered in [IRH76], the system

displays BEC as well as a discontinuity in the specific heat per volume. Hence,

instead of establishing Bose-Einstein condensation rigorously in the sense of Defi-

nition 6.1.10, one can also look for possible phase transitions. An absence of phase

transitions would then indicate an absence of BEC. However, it must be kept in

mind that this approach is not completely equivalent to the approach based on the

criterion of Penrose and Onsager and hence can only provide strong indications

towards the existence or absence of BEC. One important difference between the

two approaches lies in the fact that only the spectrum enters the partition func-

tion, whereas in the criterion of Penrose and Onsager, the wave functions play also

an important role.

So far, we have introduced the general criterion for the occurrence of Bose-Einstein

condensation and repeated the main argument that establishes BEC in a free gas

of bosons in three dimensions (see Theorem 6.1.6). However, the concept of a free

gas is somehow pathological. Firstly, in a real gas the particles are never free in

the strict sense. Secondly, we have to require boundary conditions which effec-

tively describe an interaction with external potentials (see Remark 3.1.5). Most

importantly, however, it is not clear how robust Bose-Einstein condensation is with

respect to any additional (two-particle) interactions [dS86, BdSP83] or a change of

boundary conditions [FGKE00] (p.91-111). Therefore, it is of fundamental impor-

tance to understand the occurrence or absence of Bose-Einstein condensation in a
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system of interacting particles. In that context, it is interesting to mention some

results. For example, in [BP85], it is shown that condensation in a Bose gas in one

dimension is destroyed as soon as the particles have some hard core, i.e. whenever

they are modelled as hard balls with some diameter a > 0. Note that, in their

one-dimensional model, the presence of condensation before the introduction of

the hard cores is due to attractive interactions with external potentials. Further-

more, starting with the same one-dimensional model exhibiting condensation, it

is shown in [dS86] that the condensation is destroyed through the implementation

of arbitrarily small repulsive two-particle interactions. More precisely, the one-

particle ground state remains no longer macroscopically occupied after repulsive

two-particle interactions were switched on. Note that, in three dimensional models,

the condensate may not be destroyed by implementing two-particle interactions

given there was a gap in the one-particle spectrum [BdSP83, JLZ03]. Indeed, the

presence of a gap leads to Bose-Einstein condensation also in a one-dimensional

system. To illustrate this, let Ĥ1 be a self-adjoint one-particle Hamiltonian de-

scribing a system with one-particle configuration space (0, L). We shall assume

that Ĥ1 has compact resolvent and that the ground state eigenvalue −k20(L) with
k20 > 0 converges, in the limit L → ∞, to −Θ where Θ > 0 is some constant.

Furthermore, the multiplicity of the ground state shall be one.

Proposition 6.1.14. Let Ĥ1 be the one-particle Hamiltonian described above with

spectrum

σ(Ĥ1) = {−k20} ∪ {k2n > 0}n∈N, (6.1.42)

where the eigenvalues shall have multiplicity one and are such that

c1
L

≤ kn+1(L)− kn(L) ≤
c2
L
, ∀n ∈ N, (6.1.43)

with c2 > c1 > 0 some constants. Then the system shows Bose-Einstein conden-

sation.
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Proof. For the particle density at finite volume ρL(β, µ), we have

ρL(β, µ) =
1

c

∞∑
n=1

1

eβ(k2n−µ) − 1
· c
L

+
1

L

1

eβ(−k
2
0−µ) − 1

≤ 1

c

∞∑
n=1

1

eβ(k2n−µ) − 1
· (kn+1 − kn) +

1

L

1

eβ(−k
2
0−µ) − 1

L→∞−→ 1

c

∫ ∞

0

1

eβ(k2−µ) − 1
dk

(6.1.44)

in the sense of Riemann integrals. As in the proof of Lemma 6.1.7, the integral

on the right-hand side is calculated to be a multiple of the Bose-Einstein function

g 1
2
(z). However, due to the negative eigenvalue −Θ, there is now a shift in the

chemical potential, i.e. µ ∈ (−∞,−Θ). Hence, since g 1
2
(z) is monotonic, the

right-hand side of (6.1.44) is bounded by some multiple of g 1
2
(e−βΘ) <∞.

6.2 Bose-Einstein condensation in non-interacting many-particle

systems

In this section, we will consider non-interacting many-particle systems on quantum

graphs in the sense of Definition 4.1.18. Note, however, that the corresponding self-

adjoint realisation of the one-particle Laplacian nevertheless induces interactions

with external potentials as described in Remark 3.1.5.

In the sequel, we will work in the grand canonical ensemble and since the volume

of a graph is given by

L =
E∑
e=1

le, (6.2.1)

we define the following.

Definition 6.2.1. Let Γ = Γ(V, E) be a compact graph with edge lengths {le}e∈E .
Introducing a scaling parameter n ∈ N and replacing le by nle for all e ∈ E , the
limit of infinite volume is obtained by the limit n → ∞. This limit will also be

denoted as limL→∞.

To construct a system of N non-interacting bosons in the sense of Defini-

tion 4.1.18, let (−∆1,D1(P,L)) be a self-adjoint realisation of the one-particle
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Laplacian with eigenfunctions {φn}n∈N0 and eigenvalues {k2n}n∈N0 . Introducing

the domain

DN(−∆1) =

{
Ψ ∈ HB

N

∣∣∣∣∣Ψ =
finite∑
n1...nN

an1...nN
· ΠB(φn1 ⊗ ...⊗ φnN

), an1...nN
∈ C

}
,

(6.2.2)

we readily establish the analogue of Lemma 4.1.17.

Lemma 6.2.2. The operator (−∆N ,DN(−∆1)) is semi-bounded and essentially

self-adjoint.

Remark 6.2.3. Note that the closure of (−∆N ,DN(−∆1)) can be represented in

the form DN
B (P,L) with suitable N -particle maps P and L (see Remark A.0.20).

In the first theorem, we show that no Bose-Einstein condensation occurs for

systems of non-interacting bosons where the interactions with external potentials

in the vertices are fully repulsive, i.e. where the corresponding one-particle Lapla-

cian −∆1 is characterised by a negative definite map L.

Theorem 6.2.4. Let (−∆N ,DN(−∆1)) be such that the corresponding one-particle

operator (−∆1,D1(P,L)) has a negative definite map L. Then no Bose-Einstein

condensation is displayed.

Proof. Let A = {n1, ..., n|A|} ∈ N|A|
0 be any finite set of indices. Since the one-

particle map L is assumed to be negative definite, a standard Dirichlet-Neumann

bracketing argument [RS78] yields

N ′
D(K) ≤ N ′(K) ≤ N ′

N(K), (6.2.3)

where N ′(K) = #{n /∈ A; k2n ≤ K2} is the reduced eigenvalue counting function

for the one-particle Laplacian (−∆1,D1(P,L)) and K ∈ R some bound. Also,

N ′
D(K) denotes the reduced counting function for Dirichlet boundary conditions

(PD = 12E, LD = 0) and N ′
N(K) the reduced counting function for Neumann

boundary conditions (PN = 0, LN = 0). Setting ϵn = k2n, we have the identity

(µ < 0) ∑
n/∈A

1

eβ(ϵn−µ) − 1
=

∫ ∞

µ
2

1

eβ(ϵ−µ) − 1
dN ′(ϵ), (6.2.4)

where N ′(ϵ) = #{n /∈ A; ϵn ≤ ϵ}. Note that we were free to choose the lower

bound on the right-hand side of (6.2.4) to be µ
2
< 0 since N ′(ϵ) = 0 for ϵ < 0.
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Now, using an integration by parts, while taking into account that the boundary

terms vanish due to the Weyl asymptotic for N(K) (see Lemma 3.2.3) as well as

N(µ
2
) = 0, we have

ρred(β, µ) = ρ
D/N
red (β, µ). (6.2.5)

Finally, taking into account that the one-particle Laplacian with Dirichlet or Neu-

mann boundary conditions is covered by an extension of Lemma 6.1.7 to general

graphs, the theorem follows.

As demonstrated in Proposition 6.1.14, a gap in the one-particle spectrum leads

to Bose-Einstein condensation even in the one-dimensional Bose gas. However, in

order to generate such a gap in the thermodynamic limit, it is necessary for −∆1

to possess negative eigenvalues. Note that an upper bound for the number of

negative eigenvalues n−(−∆1) of the one-particle Laplacian was proved in [KS06].

Lemma 6.2.5. [KS06] Let (−∆1,D1(A,B)) be a self-adjoint realisation of the one-

particle Laplacian. Then, the number of negative eigenvalues n−(−∆1) is bounded

from above, i.e.

n−(−∆1) ≤ n+(AB
∗), (6.2.6)

where n+(AB
∗) is the number of positive eigenvalues of AB∗ ∈ C2E×2E.

The exact number of negative eigenvalues of a self-adjoint realisation

(−∆1,D1(P,L)) was later determined in [BL10] where the matrix

M0(l1, . . . , lE) =


m1(l1) 0

. . .

0 mE(lE)

 , (6.2.7)

with

me(le) =
1

le

(
−1 1

1 −1

)
, (6.2.8)

was introduced. It was shown that

n−(−∆1) = n+(L+QM0Q), (6.2.9)

where the right-hand side denotes the number of positive eigenvalues of the linear

map L+QM0Q on kerP ⊆ C2E.
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On a graph, the eigenvalues may depend on the edge lengths and hence it is not

clear that a gap present at finite volume will persist when taking the thermo-

dynamic limit. However, in the following proposition we will indeed prove that

a gap will remain present when taking the thermodynamic limit as soon as the

one-particle map L has at least one positive eigenvalue.

Proposition 6.2.6. Let (−∆1,D1(P,L)) be a self-adjoint realisation of the one-

particle Laplacian. Assume that L has at least one positive eigenvalue and denote

the largest eigenvalue by Lmax. Then the ground state eigenvalue k20 < 0 of the

one-particle Laplacian converges to −L2
max < 0 in the thermodynamic limit.

Proof. As L is assumed to possess at least one positive eigenvalue, n+(L) ≥ 1, the

relation (6.2.9) implies that the Laplacian has at least one negative eigenvalue if

the edge lengths are chosen large enough. Hence, for any Φ ∈ DQ1 ,

−s2 ≤ k20 ≤ R[Φ] (6.2.10)

where R[Φ] is the Rayleigh-quotient

R[Ψ] =
Q1[Ψ]

∥Ψ∥2L2(Γ)

, Ψ ∈ DQ1 . (6.2.11)

Here −s2 is the lower bound for the spectrum of the one-particle Laplacian proved

in [KS06], with s a solution of

s tanh

(
slmin

2

)
= Lmax , (6.2.12)

and lmin the shortest edge-length. In the thermodynamic limit, where lmin → ∞,

the lower bound in (6.2.10) converges to −L2
max. To find an upper bound in

(6.2.10), we need to determine the Rayleigh quotient of a suitable trial function.

We assume that P ̸= 12E as this would correspond to Dirichlet boundary con-

ditions in the vertices, where it is known that there are no negative eigenvalues.

Hence, there exists a non-trivial vector

v = (c1, . . . , cE, cE+1, . . . , c2E)
T ∈ kerP . (6.2.13)

Using the components of such a vector, we now define a trial function Φ with
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components

ϕe(x) =


ce
(
1− x

λ

)α
, x ≤ λ

0 , λ ≤ x ≤ le − λ

ce+E
(
x
λ
+ 1− le

λ

)α
, x ≥ le − λ

, α ≥ 1 . (6.2.14)

In the thermodynamic limit, given any value for λ, we can arrange that le ≥ 2λ

for all e = 1, . . . , E. The boundary values of this function, therefore, are

Φbv = (c1, . . . , cE, cE+1, . . . , c2E)
T = v ∈ kerP , (6.2.15)

hence this function is in the domain DQ1 of the quadratic form. We now intend to

estimate the Rayleigh quotient of Φ, noting that we are free to choose v ∈ kerP .

The optimal choice for our purpose is to let v = Φbv be an eigenvector of L

corresponding to its maximal eigenvalue Lmax > 0. Then,

Q1[Φ] =
E∑
e=1

∫ le

0

|ϕ′
e(x)|2 dx− ⟨Φbv, LΦbv⟩C2E

=
α2

(2α− 1)λ

E∑
e=1

(
|ce|2 + |ce+E|2

)
− Lmax∥Φbv∥2C2E

=

(
α2

(2α− 1)λ
− Lmax

)
∥Φbv∥2C2E .

(6.2.16)

Moreover,

∥Φ∥2 =
E∑
e=1

∫ le

0

|ϕe(x)|2 dx =
λ

2α+ 1

E∑
e=1

(
|ce|2 + |ce+E|2

)
=

λ

2α+ 1
∥Φbv∥2C2E ,

(6.2.17)

so that

R[Φ] =

(
α2

(2α− 1)λ
− Lmax

)
2α+ 1

λ
. (6.2.18)

The right-hand side is negative when λ > α2

(2α−1)Lmax
and has a minimum at λmin =

2α2

(2α−1)Lmax
. With this optimal choice we find that

R[Φ] = −4α2 − 1

4α2
L2

max . (6.2.19)
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As α ≥ 1 can be chosen arbitrarily large in the thermodynamic limit, the optimal

upper bound in (6.2.10) approaches −L2
max. Hence, k

2
0 converges to −L2

max in the

thermodynamic limit.

We are now in position to state the main result of this section which is a

generalisation of Proposition 6.1.14. We will show that Bose-Einstein condensa-

tion is present for all non-interacting many-particle systems whose corresponding

one-particle map L has at least one positive eigenvalue. Since we have shown,

in Theorem 6.2.4, that no BEC occurs for systems with negative definite L, all

possible (non-interacting) systems on quantum graphs are covered by our results.

Theorem 6.2.7. Let (−∆N ,DN(−∆1)) be such that the corresponding one-particle

operator (−∆1,D1(P,L)) has a map L with at least one positive eigenvalue. Then

the system displays Bose-Einstein condensation.

Proof. We first note that since L has at least one positive eigenvalue, the operator

(−∆1,D1(P,L)) has at least one negative eigenvalue. The particle number in the

eigenstates with positive eigenvalues is then given by

N+(β, µ) =
∑
k2n≥0

1

eβ(k2n−µ) − 1
. (6.2.20)

In order to evaluate this expression, we use a preliminary version of the trace

formula as established in [BE09], i.e.

∞∑
k2n≥0

h(kn) =
L
2π

∫ ∞

−∞
h(k) dk + γh(0)− 1

4π

∫ ∞

−∞
h(k) s(k) dk

+
∑
l ̸=0

1

4πi

∫ ∞

−∞
Tr[Λ(k)U l(k)]h(k) dk .

(6.2.21)

Here γ is a constant related to the multiplicity of the eigenvalue zero, Λ, U are

matrix-valued functions involving the boundary conditions, and s is another func-

tion related to the boundary conditions. In this trace formula, h is a test function

from a suitable test function space [BE09].

Now, choosing h(k) = 1

eβ(k
2−µ)−1

, the left-hand side of (6.2.21) is N+(β, µ). The

right-hand side, on the other hand, provides four seperate contributions toN+(β, µ)

of which the second and the third term give no contributions to the particle den-

sity ρ+(β, µ) in the thermodynamic limit. An estimate of the fourth term can be
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found in the proof of Theorem 5.4 in [BE09],

∑
l ̸=0

∣∣∣∣∫ ∞

−∞
Tr[Λ(k)U l(k)]h(k) dk

∣∣∣∣ = O
(
e−σlmin

)
, (6.2.22)

where lmin is the shortest edge-length and σ > 0 a constant. Therefore, in the

thermodynamic limit, this term also gives no contribution to ρ+(β, µ) and hence

the only non-vanishing contribution comes from the first term (which also provides

the Weyl term in the asymptotics of the eigenvalue count), i.e.

ρ+(β, µ) =
1

π

∫ ∞

0

1

eβ(k2−µ) − 1
dk =

1√
4πβ

g 1
2
(eβµ) . (6.2.23)

Since µ < k20 → −L2
max, where L

2
max is the largest positive eigenvalue of the map L,

ρ+(β, µ) is bounded from above and since the number of eigenstates with negative

eigenvalues is also bounded, the theorem follows.

Finally, with the notation of the previous proof, we can derive an expression

for the critical particle density above which the states of negative energy are pop-

ulated. The total particle density is given by

ρ(β, µ) = ρ−(β, µ) + ρ+(β, µ) (6.2.24)

where ρ−(β, µ) is the particle density in the states of negative energy. The critical

density is the maximal density of particles that can be occupied in the excited

states, i.e.

ρcrit =
1√
4πβ

g 1
2
(e−βL

2
max). (6.2.25)

Hence, whenever ρ > ρcrit, the states of negative energy are macroscopically occu-

pied, i.e. we have Bose-Einstein condensation.

6.3 Bose-Einstein condensation in interacting many-particle

systems

In this section, we will investigate Bose-Einstein condensation in many-particle

systems where the particles are interacting with each other, i.e. we will consider

realisations (−∆N ,Dα
N(P,L)) as described in Chapter 5. Since, as mentioned in the
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introduction of this chapter, it is in general very difficult to discuss Bose-Einstein

condensation rigorously in the sense of Definition 6.1.10, we will approach the

problem indirectly. In the first part, we investigate the effect of many-particle

interactions on the ground-state energy density. In the second part, we generalise

the Fermi-Bose mapping introduced by M. Girardeau [Gir60] to general quantum

graphs and use the results to establish, in the third part, the absence of Bose-

Einstein condensation (in the sense of phase transitions) for systems of particles

interacting via repulsive hard-core interactions.

6.3.1 The ground state energy density

In this subsection, we will consider many-particle systems at zero temperature.

Note that, regarding Bose-Einstein condensation, it is customary to consider first

the simplified situation of zero temperature [LSSY05]. For example, the ther-

mal density matrix (6.1.28) then takes on a simple form incorporating the many-

particle ground state only. Also, from a physical point of view, the tendency of a

Bose gas to form a condensate can be assumed to be higher at zero temperature

than at finite temperatures. In this context, a very interesting model is the Bo-

goliubov model of the weakly imperfect gas [ZB01]. There, one starts with a free

three-dimensional Bose gas at zero temperature showing complete condensation

into the one-particle ground state. One then implements repulsive two-particle

interactions and, while assuming that condensation persists, investigates the ef-

fects of the interactions on the condensate. As a result, repulsive interactions

lower the fraction of particles forming the condensate and, at the same time, the

ground state energy is increased. As a consequence, if many-particle interactions

lead to a higher ground-state energy density compared to the free gas (in which

case the ground state energy density usually is zero), one expects the degree of

Bose-Einstein condensation to be lowered.

In this subsection, we will work in the canonical ensemble and we will consider

two types of systems, i.e. systems of non-interacting bosons described by realisa-

tions (−∆N ,DN(−∆1)) and systems of interacting bosons described by realisations

(−∆N ,Dα
N(P,L)).

Definition 6.3.1. Let ĤN be a (self-adjoint) N -particle Hamiltonian describing a

system of N bosons on a compact quantum graph Γ = Γ(V , E) with edge lengths

{le}e∈E . Furthermore, let ⟨ÔN⟩ρ̂N be the expectation value of an observable ÔN .
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Introducing a scaling parameter n ∈ N and replacing le by nle for all e ∈ E and N

by nN , the thermodynamic limit of ⟨ÔN⟩ρ̂N in the canonical ensemble is obtained

as the limit limn→∞⟨ÔN⟩ρ̂N .

Definition 6.3.2. Let (−∆N ,Dα
N(P,L)) or (−∆N ,DN(−∆1)) be a realisation of

the N -particle Laplacian as introduced above. The ground state energy density is

then defined as

e∞0 (ρ) = lim
n→∞

EN
0

N
, (6.3.1)

where EN
0 is the N -particle ground state energy.

We first consider realisations (−∆N ,DN(−∆1)), i.e. systems of non-interacting

bosons.

Lemma 6.3.3. Let (−∆N ,DN(−∆1)) be a realisation of the N-particle Laplacian

describing a system of N non-interacting bosons. Then, given the corresponding

one-particle map L is negative definite, we have

e∞0 (ρ) = 0 . (6.3.2)

Proof. Since we consider a system of non-interacting bosons, we have

EN
0 = k20 + ...+ k20 = Nk20 (6.3.3)

where k20 is the one-particle ground state eigenvalue (compare with (4.3.4)). We

get

e∞0 (ρ) = lim
n→∞

EN
0

N

= lim
L→∞

k20.
(6.3.4)

Now, since L is negative definite, we can apply the min-max principle (Theorem

2.1.27) to obtain

k20,N ≤ k20 ≤ k20,D (6.3.5)

where the index N indicates Neumann boundary condition whereas the index D

indicates Dirichlet boundary conditions. Now, since k20,D and k20,N converge to zero
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in the limit L → ∞, we readily obtain

lim
L→∞

k20 = 0. (6.3.6)

As a next step, we consider realisations (−∆N ,Dα=0
N (P,L)), i.e. systems where

the particles interact via (repulsive) singular interactions located at the vertices of

the graph. However, we do neglect contact interactions by setting α = 0.

Corollary 6.3.4. Let (−∆N ,Dα=0
N (P,L)) be a self-adjoint realisation of the N-

particle Laplacian on the Hilbert space H∗B
N with α = 0. Assuming that the N-

particle map L is negative definite, we have

e∞0 (ρ) = 0 . (6.3.7)

Proof. The proof follows the same lines as the proof of Lemma 6.3.3. Since the

N -particle map L is negative definite, the min-max principle (Theorem 2.1.27)

directly yields

e∞0,N(ρ) ≤ e∞0 (ρ) ≤ e∞0,D(ρ), (6.3.8)

where the indices (D,N) refer to Dirichlet or Neumann boundary conditions re-

spectively. Furthermore, since those two cases correspond to systems of non-

interacting particles, we can take Lemma 6.3.3 into account and the corollary

follows.

Note that, under the assumption that the N -particle map L is negative def-

inite and 0 ≤ α(y) ≤ ∞ for all y ∈ [0, 1], an upper and a lower bound for the

ground-state energy density can be established. Indeed, it is straightforward to

check that e∞0 (ρ) ≥ 0. Furthermore, in [LL63] an upper bound for the case α→ ∞
was given, i.e. e∞0 (ρ) = π2

3
ρ2. Therefore, applying the min-max principle (see The-

orem 2.1.27), we readily see that π2

3
ρ2 is an upper bound for all other realisations

considered.

As a final result in this section, we want to show that for a system with repul-

sive two-particle contact interactions, the ground state energy density is strictly

positive. For example, Lieb and Liniger have established this for their model us-

ing the eigenvalues which could be implicitly given [LL63]. More explicitly, they

established the following result.
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Proposition 6.3.5. Consider the simplest compact graph, i.e. an interval of

length l, and a system of N bosons described by the form (5.3.13) with maps

Pvert =
1

2

(
1 −1

−1 1

)
and Lvert =

(
0 0

0 0

)
, (6.3.9)

as well as α(y) = α with α > 0 some constant. Then, one has

e∞0 (ρ) > 0 (6.3.10)

for all values ρ of the particle density.

Our aim is now to generalise their result to more general systems on quantum

graphs. To establish this result, we need the following version of Lemma 5.12 of

[Dob05].

Lemma 6.3.6. Let Ω ⊂ RN be an open domain and K ⊂ Ω a compact subset.

Then there exists a real-valued function τ ∈ C∞
0 (Ω) such that 0 ≤ τ ≤ 1 and τ = 1

on K. Furthermore, given the distance between K and Ω is δ, i.e. dist (∂K, ∂Ω) =

δ, one can choose the function τ such that

|∂jτ | ≤
cN
δ
, in Ω\K, j = 1, ..., N, (6.3.11)

where the constant cN depends only on N but not on Ω or K. More explicitly, one

has cN =
(√

π
4

)N
γ

Γ(N
2
+1)

, where γ > 0 is some constant not depending on N .

We can now state our result.

Theorem 6.3.7. Let (−∆N ,Dα
N(P,L)) be a self-adjoint realisation of the N-

particle Laplacian as introduced in Chapter 5. Assume that the N-particle map

Lvert is negative definite as well as α(y) ≥ α > 0 for all y ∈ [0, 1]. Furthermore,

assume that the sequence of (normalised) ground states is (in the thermodynamic

limit) bounded from above, i.e. there exists a constant c > 0 such that

|
(
Ψ0
N

)
e1...eN

| ≤ c√
le1 ...

√
leN

, ∀N, ∀e1, ..., eN ∈ E . (6.3.12)

Then there exists a constant γ(ρ) > 0 such that

γ(ρ) ≤ e∞0 (ρ). (6.3.13)
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Proof. For simplicity, we will restrict ourselves to the case of an interval of length

l and, accordingly, the N -particle configuration space is DN = (0, l)N . Note that,

due to the min-max principle (Theorem 2.1.27), it is enough to consider the case

Pvert = 0, Lvert = 0 and constant α.

We will prove the theorem by contradiction and assume that e∞0 (ρ) = 0. On the

rescaled domain D∗
N = (0, 1)N , we choose a symmetric test function τN ∈ C∞(D∗

N)

such that 0 ≤ τN ≤ 1 and τN = 1 on a domain Ω∗
N b D∗

N . Note that we denote

the corresponding domain contained in DN by ΩN . Indeed, Ω
∗
N is supposed to be

a smaller hypercube such that dist (∂D∗
N , ∂Ω

∗
N) = δN . By construction,

µ (D∗
N\Ω∗

N) = 1N − (1− 2δN)
N → 0, (6.3.14)

if 4NδN → 0 and we have

∥Ψ0
N∥2L2(DN\ΩN ) ≤ c2 · µ (D∗

N\Ω∗
N) → 0. (6.3.15)

Furthermore,

∥∇ (Ψ0
N − (τNΨ

0
N)) ∥2L2(DN )

2N
≤

∥∇Ψ0
N∥2L2(DN )

N
+

∥ (∇τN)Ψ0
N∥2L2(DN )

N

≤
∥∇Ψ0

N∥2L2(DN )

N
+ sup

j
|∂jτN |2 · ∥Ψ0

N∥2L2(DN\ΩN ),

(6.3.16)

where supj |∂jτN |2 shall denote the supremum on the rescaled domain D∗
N . Note

that, since we assume e∞0 (ρ) = 0, the first term on the right-hand side of (6.3.16)

vanishes in the limit N → ∞. Using Lemma 6.3.6 as stated above, we can choose

the test function τN such that

sup
j

|∂jτN | ≤
cN
δN
, (6.3.17)

with cN =
(√

π
4

)N
γ

Γ(N
2
+1)

and γ > 0 is some constant not depending on N . There-

fore also the second term in (6.3.16) vanishes in the limit N → ∞. Now, for the

state Ψ̃N =
τNΨ0

N

∥τNΨ0
N∥L2(DN )

we obtain, using that ∥τNΨ0
N∥L2(DN ) ≥ λ for all N > N0
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with 1 > λ > 0 some constant,

Q
(N)
B (Ψ̃N)

N
≤ 2

λ2

(
∥∇ (Ψ0

N − τNΨ
0
N) ∥2L2(DN )

N
+
Q

(N)
B (Ψ0

N)

N

)
≤ 2

λ2
(κN + e∞0 (ρ))

(6.3.18)

for all N > N0 and κN → 0 as N → ∞. Since Ψ̃N fulfils Dirichlet boundary

conditions, Ψ̃N lies in the domain of the quadratic form considered in Proposition

6.3.5. Therefore, the left-hand side of (6.3.18) is bounded from below by the

ground state energy density (6.3.10) which is larger than zero. On the other hand,

by assumption we have e∞0 (ρ) = 0 and hence we conclude that the right-hand side

of (6.3.18) converges to zero which yields a contradiction.

Theorem 6.3.7 indicates, as described above, that repulsive contact interactions

act against Bose-Einstein condensation. Furthermore, since the implementation

of purely repulsive singular interactions does not increase the ground state energy

density as established in Corollary 6.3.4, they can be considered as only a ‘small

perturbation’.

6.3.2 Fermi-Bose mapping on general quantum graphs

In this subsection, we generalise the Fermi-Bose mapping introduced by M. Gi-

rardeau [Gir60, VIY05] to general quantum graphs. This will then allow us to

establish results concerning Bose-Einstein condensation in a system of particles

interacting via repulsive hard-core interactions. Note that we use the results es-

tablished in part A of the appendix. To construct the Fermi-Bose mapping, we

define a map

σ : H1
F (ΓN) → H1

0,B(Γ
∗
N) (6.3.19)

as follows: Let ΦF ∈ H1
F (ΓN) be any state with components (ΦF )e1...eN = φFe1...eN .

For a given component φFe1...eN , we form a set that contains φFe1...eN as well as all

other components whose edge indices are a permutation of e1...eN and choose one

representative of this set, denoted as φFẽ1...ẽN . Now, for each component φFẽ1...ẽN ,

n(j) shall denote the number of particles on edge j ∈ E . We then define a subdo-
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main Ω̃ ⊂ Dẽ1...ẽN such that all x ∈ Ω̃ fulfil

x
ζ(1)
j < ... < x

ζ(nj)
j , ∀j ∈ {1, ..., E}, (6.3.20)

where the map ζ associates the particle label to the coordinate. Based on this, we

can define a bosonic component φBẽ1...ẽN on Dẽ1...ẽN . To this end, we set

φBẽ1...ẽN (x) := φFẽ1...ẽN (x) (6.3.21)

for x ∈ Ω̃ and, by symmetric continuation, we extend φBẽ1...ẽN to all of Dẽ1...ẽN .

Finally, by permuting the edge indices of φBẽ1...ẽN and setting

φBπ(ẽ1...ẽN ) := φBẽ1...ẽN , (6.3.22)

we obtain all other components, defining a symmetric function ΦB ∈ H1
0,B(Γ

∗
N).

Based on the map σ, we can introduce a diagonal matrix Σ(y) whose entries

Σii(y) ∈ {1,−1} account for the possible sign changes. More explicitly, if Φ ∈
D
Q

(N)
F

is a function with boundary values Φbv, the function Φσ := σ(Φ) has bound-

ary values

Φσ
bv(y) = Σ(y)Φbv(y). (6.3.23)

Furthermore, we set

Pσ(y) = Σ(y)P (y)Σ(y),

Lσ(y) = Σ(y)L(y)Σ(y).
(6.3.24)

Note that we associate, in the same way as in (A.0.8) and (A.0.7), bounded and

self-adjoint operators Λσ and Πσ with Lσ(y) and Pσ(y), respectively.

Theorem 6.3.8. Let Q
(N)
F [·] be a quadratic form on the (fermionic) Hilbert Space

HF
N with corresponding maps P and L. Then there exists a mapping

σ : H1
F (ΓN) → H1

0,B(Γ
∗
N) (6.3.25)

such that the form Q
(N)
B [·] with maps Pσ and Lσ, defined on the dissected Hilbert

space HB∗
N , is symmetric, closed and semi-bounded. Furthermore, the spectrum of

the corresponding self-adjoint operators is discrete and identical.
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Proof. We note that the map σ applied to D
Q

(N)
F

yields the domain

Dσ = {Φσ ∈ H1
0,B(Γ

∗
N); Pσ(y)Φ

σ
bv(y) = 0 for a.e. y ∈ [0, 1]N−1}. (6.3.26)

Furthermore, we have

Q
(N)
F [Φ] =

∑
e1...eN

∫ le1

0

...

∫ leN

0

|∇φe1...eN |2 dx1e1 ...dx
N
eN

−N

∫
[0,1]N−1

⟨Φbv, L(y)Φbv⟩C2EN dy

=
∑
e1...eN

∫ le1

0

...

∫ leN

0

|∇φσe1...eN |
2 dx1e1 ...dx

N
eN

−N

∫
[0,1]N−1

⟨Φσ
bv, Lσ(y)Φ

σ
bv⟩C2EN dy

= Q
(N)
B [Φσ].

(6.3.27)

Since Pσ is bounded and Lσ is self-adjoint, we can reformulate the proof of Theorem

A.0.16 to show that Q
(N)
B [·] with domain Dσ is a densely defined, closed, symmetric

and semi-bounded form. Furthermore, taking into account that Lσ(y) = L(y)

whenever L(y) is a diagonal matrix and applying the min-max principle (Theorem

2.1.27), we readily see that the inequality

µRn ≤ µn ≤ µDn (6.3.28)

holds for all n ∈ N (see also proof of Theorem 4.3.3). Here the index R refers to

the form with maps Pσ = 0 and Lσ = 1∥Λ∥op, whereas the index D refers to the

form with maps Pσ = 1 and Lσ = 0. Since the spectrum of the two corresponding

fermionic operators is known to be discrete (see Lemma A.0.21), we conclude that

µRn , µ
D
n → ∞. Hence, employing Theorem XIII.64 of [RS78], we see that the self-

adjoint operator corresponding to the form Q
(N)
B [·] has purely discrete spectrum

since µn → ∞. Finally, due to (6.3.27) we see that the spectrum of this operator

is identical to the spectrum of the corresponding fermionic operator.

As a consequence of Theorem 6.3.8, we can associate with any fermionic oper-

ator (−∆N ,DN
F (P,L)) the bosonic operator (−∆N ,DN

B (Pσ, Lσ)) whose spectrum

is identical. Also, since the map σ is invertible, we can assign to any bosonic
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operator with hard-core interactions, (−∆N ,D∞
N (P,L)), a fermionic operator with

identical spectrum, i.e. (−∆N ,DN
F (Pσ, Lσ)).

6.3.3 Bose-Einstein condensation in a gas of bosons interacting via repulsive

hard-core interactions

In this final subsection, we use the Fermi-Bose mapping established in Theorem

6.3.8 in order to discuss Bose-Einstein condensation for a system of interacting par-

ticles on general quantum graphs. In particular, the particles shall be interacting

via repulsive hard-core interactions.

Remark 6.3.9. Condensation in a Bose gas on an interval, with bosons interacting

via repulsive hard-core interactions, was rigorously investigated in [Sch63, Len64,

Len66] showing that no condensation in the sense of Definition 6.1.10 is present

at zero temperature.

In the following, we will work in the grand-canonical ensemble. Hence, the free

energy density of a system at finite volume is given by

fL(β, µ) = − 1

βL
lnZL(β, µ), (6.3.29)

where

ZL(β, µ) =
∞∑
N=0

zNZL
N(β) (6.3.30)

is the partition function and ZL
N(β) (see (6.1.32)) the partition function in the

canonical ensemble [Sch06]. Note that z = eβµ is the fugacity. In a first step, we

consider fermionic operators of the form (−∆N ,DN
F (P,L)). We will show that the

free energy densities of such systems are identical in the thermodynamic limit. As a

reference model, consider the realisation (−∆N ,DN
F (P,L)) with P = 12EN and L =

0. This realisation corresponds to a free gas of fermions with Dirichlet boundary

conditions in the vertices. Its free energy density (6.3.29) can be calculated using

basic techniques of statistical mechanics [Sch06], i.e.

fF,D(β, µ) = − lim
L→∞

1

βL

∞∑
n=0

ln
(
1 + e−β(k

2
n−µ)

)
, (6.3.31)

where {k2n}n∈N0 are the eigenvalues of the one-particle realisation (−∆1,D(P,L))
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with P = 12E and L = 0.

Remark 6.3.10. Note that the free energy density fF,D(β, µ) is infinitely differ-

entiable, i.e. fF,D(β, µ) ∈ C∞ ((0,∞)× R). Indeed, a direct calculation yields

fF,D(β, µ) = − 1

πβ

∫ ∞

0

ln
(
1 + e−β(k

2−µ)
)
dk (6.3.32)

from which the statement follows by standard arguments.

Proposition 6.3.11. For each N ∈ N, let (−∆N ,DN
F (PN , LN)) be a self-adjoint

realisation of the N -particle Laplacian −∆N as introduced above. Assume that

there exists M ∈ R+ such that

∥ΛN∥op ≤M, ∀N. (6.3.33)

Then, denoting the corresponding free energy density by fF (β, µ), we have

fF (β, µ) = fF,D(β, µ), ∀β ∈ (0,∞), ∀µ ∈ R. (6.3.34)

Proof. As a first step, we use the min-max principle (see Theorem 2.1.27) to con-

clude that the inequality

fL
F,R(β, µ) ≤ fL

F (β, µ) ≤ fL
F,D(β, µ) (6.3.35)

holds. Here R refers to the realisation with maps PN = 0 and LN = M12EN .

Furthermore, since fL
F,R(β, µ) is the free energy density of a free gas whose corre-

sponding one-particle Laplacian is described by the one-particle maps P = 0 and

L =M12E, we have

fL
F,R(β, µ) = − 1

βL
∑
k2n≤0

ln
(
1 + e−β(k

2
n−µ)

)
− 1

βL
∑
k2n>0

ln
(
1 + e−β(k

2
n−µ)

)
. (6.3.36)

Here we have split up the sum into two parts. Since the number of negative

eigenvalues is bounded (see Lemma 6.2.5), the first term does not contribute in

the thermodynamic limit. Furthermore, the second term in (6.3.36) can be eval-

uated using the trace formula as demonstrated in the proof of Theorem 6.2.7. In
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particular, we arrive at

lim
L→∞

fL
F,R(β, µ) = fF,D(β, µ) (6.3.37)

which completes the proof.

Remark 6.3.12. Note that condition (6.3.33) can be understood as a stability

condition for the interaction potential as commonly required in statistical me-

chanics [Rue68]. More precisely, for a self-adjoint N -particle Hamiltonian ĤN one

requires the lower bound to be −NB where B ≥ 0 is some constant (see (A.0.12)

and (A.0.13)).

Finally, we can state the main results of this section.

Theorem 6.3.13. For each N ∈ N, let (−∆N ,D∞
N (PN , LN)) be a self-adjoint

realisation of the bosonic N -particle Laplacian as described above. Assume that

there exists M ∈ R+ such that

∥ΛN∥op ≤M, ∀N. (6.3.38)

Then, denoting the corresponding free energy density in the thermodynamic limit

by fB(β, µ), we have

fB(β, µ) = fF,D(β, µ), ∀β ∈ (0,∞), ∀µ ∈ R. (6.3.39)

In particular, fB(β, µ) is infinitely differentiable, i.e. fB(β, µ) ∈ C∞ ((0,∞)× R).

Proof. Theorem 6.3.8 implies that the spectrum of (−∆N ,D∞
N (P,L)) is identical

to the spectrum of (−∆N ,DN
F (Pσ, Lσ)). Hence we can apply Proposition 6.3.11

and the Theorem follows.

Theorem 6.3.13 shows that no phase transition in the free energy density is

present in a system of interacting bosons on a general quantum graph, given the

particles interact via repulsive hard-core interactions. Most importantly, this holds

independently of the singular interactions in the vertices.

Remark 6.3.14. Note that Theorem 6.3.13 can be regarded as a quantum statisti-

cal version of a famous theorem by van Hove, see Theorem 5.6.7 of [Rue68]. In this

theorem, a classical continuous one-dimensional system of particles with hard-cores
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and short-range two-particle interactions is considered. More precisely, the (con-

tinuous) two-particle potential V (x, y) is such that V (x, y) = ∞ for 0 < |x−y| < R

and V = 0 for |x − y| ≥ R0. As a result, it is proved that no phase transitions

occur in such a system, i.e. the free energy density is analytical in z (see also

[Gal99, GGR68]).

Theorem 6.3.13 also shows that Bose-Einstein condensation, present for sys-

tems characterised in Theorem 6.2.7, is destroyed as soon as repulsive hard-core

interactions are switched on. To illustrate this, we consider a simple quantum

graph, i.e. an interval (0, L) with the one-particle Laplacian −∆1 defined on

D(−∆1) = {φ ∈ H2(0, L)| φ′(0) = κφ(0) and φ′(L) = κφ(L)}, (6.3.40)

where κ > 0 is some parameter. Note that the operator (−∆1,D(−∆1)) has ex-

actly one negative eigenvalue [BP85] and hence, due to the gap in the one-particle

spectrum, condensation occurs in the non-interacting many-particle system (see

Theorem 6.2.7). Most importantly, however, there exists a phase transition in the

free energy density, i.e. the function f(ρ) = limL→∞ f(β, µL(ρ)) is not differen-

tiable at some critical density ρ = ρcrit (see (6.2.25)). Note that, in order to derive

f(ρ), one has to choose a volume-dependent sequence of chemical potentials as

mentioned in Remark 6.1.3, see [LW79]. However, as a consequence of Theorem

6.3.13, we see that this phase transition is destroyed by switching on repulsive

hard-core interactions.

Remark 6.3.15. Note that the domain (6.3.40) can be expressed in the form

D1(P,L) by setting Pκ = 0 and Lκ = diag (−κ, κ). Consequently, we can describe

(see Remark A.0.20) the (non-interacting) many-particle system of this model by

a self-adjoint realisation (−∆N ,DN
B (P

N
κ , L

N
κ )) with N -particle maps

PN
κ =

⊕
Pκ and LNκ =

⊕
Lκ. (6.3.41)

Repulsive hard-core interactions are then implemented by considering the self-

adjoint realisation (−∆N ,D∞
N (PN

κ , L
N
κ )).



7. SUMMARY AND OUTLOOK

In this thesis, we have developed models of interacting many-particle systems on

general compact quantum graphs. In a first step, we have introduced singular

two-particle interactions localised at the vertices of the graph. In a second step,

we have introduced additional contact interactions between the particles which are

present whenever (at least) two particles are situated at the same position. This

means, in particular, that contact interactions are present also along the edges.

Finally, we have discussed Bose-Einstein condensation for many-particle systems

on general quantum graphs. We have identified non-interacting many-particle sys-

tems which display condensation and others which do not, depending on the nature

of the interactions with external potentials in the vertices. As a final result, we

have shown that no Bose-Einstein condensation is present (in the sense of phase

transitions) in a system where the particles are interacting via repulsive hard-core

interactions.

Based on the results obtained, there are various possibilities for future research.

Regarding many-particle quantum chaos, it would be of great interest to establish

a trace formula analogous to (1.0.8) for a two-particle systems interacting via sin-

gular interactions and (or) contact interactions. Unfortunately, compared to the

one-particle case, there is no secular equation as (3.2.5) for the two-particle prob-

lem. To construct such an equation, one could regard the system of two-particles

(e.g. on an interval) as a two-dimensional billiard and employ semiclassical meth-

ods as described in [DS92]. However, the resulting secular equation would only be

valid in a semiclassical limit. Also, it would be interesting to calculate numerically

the nearest-neighbour level spacing distribution (1.0.5) for the developed models

in order to establish a connection with the Bohigas-Gianonni-Schmit conjecture

[BGS84]. This would, in particular, be interesting with respect to the results men-

tioned in the introduction of Chapter 5. Regarding the theory of phase transitions,

there exists a very interesting connection between quantum graphs and lattice sys-

tems. Lattice systems have a long history in statistical mechanics since they are
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models for which rigorous results, e.g. regarding phase transitions, can be obtained

[Rue68, GMS67]. In a d-dimensional lattice Λ ⊂ Zd, particles are situated at the

lattice points whereas particles on a graph are situated on the edges. One could

therefore relate quantum graphs to lattices in two different ways. One could either

associate the edges of a graph with the lattice points or, alternatively, consider the

vertices of a graph as the lattice points. In the latter case, one would introduce

potentials along the edges of the graph that confine the particles to the vicinity of

the vertices. In general, using the tools available for quantum graphs, it would be

very interesting to derive rigorous results and compare them to results established

for lattice systems.



APPENDIX



A. SINGULAR INTERACTIONS IN MANY-PARTICLE

SYSTEMS ON GENERAL COMPACT QUANTUM GRAPHS

In this part of the appendix, we will generalise the methods of Chapter 4 and

5 in order to describe a system of N fermions or bosons on a general compact

graph interacting via singular interactions. Although we have already discussed the

more general case of combined singular and contact interactions for a system of N

bosons, it is convenient to formulate the following results for both types of particles.

Note that the main motivation of this appendix is to provide the necessary results

for the discussion of Bose-Einstein condensation in the last chapter of the thesis.

The bosonic/fermionic N -particle Hilbert space is given by

HB/F
N = ΠB/F (H1 ⊗ ...⊗H1︸ ︷︷ ︸

N−times

),

= ΠB/FHN ,

(A.0.1)

where ΠB/F : HN → HB/F
N is the projector onto the subspace of (anti-)symmetric

functions. On a graph, the N -particle Hilbert space HB/F
N can be represented as

L2
B/F (ΓN) = ΠB/FL

2(ΓN), (A.0.2)

where

L2(ΓN) =
⊕
e1...eN

L2(De1...eN ) (A.0.3)

and De1...eN = (0, le1) × ... × (0, leN ). Given a function Ψ ∈ HN , the projection

operators act via

(ΠB/FΨ)e1...eN =
1

N !

∑
π∈SN

(−1)sgnπψπ(e1)...π(eN )(x
π(1)
π(e1)

...x
π(N)
π(eN )), (A.0.4)
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where, for fermions, (−1)sgnπ = 1 for an even permutation and (−1)sgnπ = −1 for

an odd permutation. For bosons we set (−1)sgnπ = 1 for all permutations. Note

that Sobolev spaces are introduced in the same manner. In order to characterise

self-adjoint realisations of the N -particle Laplacian that incorporate singular in-

teractions in the vertices, we will construct suitable quadratic forms. However,

before we have to introduce some notation. As a first step, we define the vector

Ψbv(y) =

(√
le2 . . . leNψe1...eN (0, le2y1, . . . , leNyN−1)√
le2 . . . leNψe1...eN (le1 , le2y1, . . . , leNyN−1)

)
, (A.0.5)

for Ψ ∈ H1(ΓN) and if Ψ ∈ H2(ΓN), we define in addition

Ψ′
bv(y) =

( √
le2 . . . leNψe1...eN ,x1e1 (0, le2y1, . . . , leNyN−1)

−
√
le2 . . . leNψe1...eN ,x1e1 (le1 , le2y1, . . . , leNyN−1)

)
, (A.0.6)

for y ∈ [0, 1]N−1. As a next step, we introduce two bounded and measurable maps

P,L : [0, 1]N−1 → M(2EN ,C) such that

1. P is an orthogonal projector,

2. L is a self-adjoint endomorphism on kerP ,

for a.e. y ∈ [0, 1]N−1. Moreover, we set Q(y) = 12EN −P (y) and we will associate

two bounded and self-adjoint multiplication operators with the maps P and L on

the Hilbert space L2(0, 1)N−1 ⊗ C2EN
, i.e.

Π : L2(0, 1)N−1 ⊗ C2EN → L2(0, 1)N−1 ⊗ C2EN

, (ΠΨbv)(y) = P (y)Ψbv(y),

(A.0.7)

and

Λ : L2(0, 1)N−1 ⊗ C2EN → L2(0, 1)N−1 ⊗ C2EN

, (ΛΨbv)(y) = L(y)Ψbv(y).

(A.0.8)

Theorem A.0.16. Let the maps P,L : [0, 1]N−1 → M(2EN ,C) be bounded and
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measurable. Then the quadratic form

Q
(N)
B/F [Ψ] = N

∑
e1...eN

∫ le1

0

. . .

∫ leN

0

|ψe1...eN ,x1e1 (x
1
e1
, . . . , xNeN )|

2 dx1e1 . . . dx
N
eN

−N

∫
[0,1]N−1

⟨Ψbv, L(y)Ψbv⟩C2EN dy

(A.0.9)

defined on the domain

D
Q

(N)
B/F

= {Ψ ∈ H1
B/F (ΓN); P (y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]N−1}, (A.0.10)

is closed and semi-bounded.

Proof. Since ΠB/FC
∞
0 (ΓN) ⊂ D

Q
(N)
B/F

is dense in L2
B/F (ΓN), the form is densely

defined. Also, from (5.3.13) we can readily see that the form is symmetric. Fur-

thermore, as a consequence of Lemma 8 in [Kuc04] (which is a variation of Theorem

2.2.13), we have the estimate

∥Ψbv∥2L2(0,1)N−1⊗C2EN ≤ 2

(
δ∥Ψx1e1

∥2L2(ΓN ) +
2

δ
∥Ψ∥2L2(ΓN )

)
(A.0.11)

which holds for all δ ≤ 1. Setting

A = N

∣∣∣∣∫
[0,1]N−1

⟨Ψbv, L(y)Ψbv⟩C2EN dy

∣∣∣∣ , (A.0.12)

we arrive at

A ≤ K

(
δ∥∇Ψ∥2L2(ΓN ) +

2

δ
∥Ψ∥2L2(ΓN )

)
, (A.0.13)

with K ∈ R+ some constant. Now, choosing δ small enough, we see that there

exists λ ∈ R+ such that

Q
(N)
B/F [Ψ] ≥ −λ∥Ψ∥2L2(ΓN ), ∀Ψ ∈ D

Q
(N)
B/F

. (A.0.14)

Hence the form is semi-bounded. Again using (A.0.13) we see that the form norm

∥ · ∥2
Q

(N)
B/F

= Q
(N)
B/F [·] + (1 + λ)∥ · ∥2L2(ΓN ) (A.0.15)

is equivalent to the H1-norm. Now, let {Ψn}n∈N ∈ D
Q

(N)
B/F

be a Cauchy-sequence
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with respect to the form norm. By the completeness of H1, there exists a function

Ψ ∈ H1
B/F (ΓN) such that

∥Ψ−Ψn∥H1
B/F

(ΓN ) ≤ ϵ1, ∀n ≥ n0. (A.0.16)

Finally, since

∥PΨbv∥L2(0,1)N−1⊗C2EN ≤ ∥P∥op∥Ψbv −Ψbv;n∥L2(0,1)N−1⊗C2EN ,

≤ ϵ2
(A.0.17)

for an arbitrarily small ϵ2 > 0, we conclude that Ψ ∈ D
Q

(N)
B/F

.

Remark A.0.17. According to the representation theorem of quadratic forms

[Kat66], we conclude that each form Q
(N)
B/F corresponds to a unique self-adjoint

operator which will be denoted by (−∆N ,DN
B/F (P,L)).

Definition A.0.18. Let Q
(N)
B/F be a quadratic form as described in Theorem

A.0.16. We call the form regular iff the corresponding self-adjoint operator has

domain DN
B/F (P,L) ⊂ H2

B/F (ΓN).

For regular forms, it is then possible to give an explicit characterisation of the

domain DN
B/F (P,L).

Theorem A.0.19. Let Q
(N)
B/F be a regular quadratic form as characterised in The-

orem A.0.16. Then the corresponding self-adjoint operator is the N-particle Lapla-

cian −∆N with domain

DN
B/F (P,L) = {Ψ ∈ H2

B/F (ΓN);P (y)Ψbv(y) = 0 and

Q(y)Ψ
′

bv(y) + L(y)Q(y)Ψbv(y) = 0 for a.e. y ∈ [0, 1]N−1},
(A.0.18)

with Q(y) = 12EN − P (y).

Remark A.0.20. Let (−∆1,D1(P,L)) be a self-adjoint realisation of the one-

particle Laplacian. With respect to (A.0.5) and (A.0.6), define the N -particle

maps

PN =
⊕

P and LN =
⊕

L, (A.0.19)

ordered according to the second edge index e2 as in (4.2.11). Then the self-adjoint

operator (−∆N ,DN
B/F (P,L)) corresponds to a system of non-interacting particles,
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i.e. it equals the closure of the operator (−∆N ,DN(−∆1)) as described in Lemma

6.2.2. See also Proposition 4.1.19.

Finally, we want to discuss spectral properties of (−∆N ,DN
B/F (P,L)). Since

we are dealing with a self-adjoint realisation of the N -dimensional Laplacian on a

bounded domain, we expect the spectrum to be purely discrete. Furthermore, we

expect Weyl asymptotics for the eigenvalue count.

Lemma A.0.21. Let (−∆N ,DN
B/F (P,L)) be a self-adjoint operator associated with

the (not necessarily regular) form Q
(N)
B/F as characterised in Theorem A.0.16. Then

its spectrum is purely discrete and the counting function

N(λ) = #{n;λn ≤ λ}, (A.0.20)

where the eigenvalues are counted according to their multiplicities, obeys the Weyl

law

N(λ) ∼ LN

N !(4π)
N
2 Γ(1 + N

2
)
λ

N
2 , λ→ ∞. (A.0.21)



B. A REGULARITY THEOREM

In this part of the appendix, we prove Theorem 4.1.16. Given a quadratic form

as described in Theorem 4.1.7 or 4.1.21, it is our goal to establish regularity in

the sense of Definition 4.1.10. To achieve this, we use an effective cut-off of the

corners in combination with the standard difference quotient technique as described

in Chapter 2. Also, we use some obvious properties of difference quotients, i.e. the

‘product rule’

D±h
n (ϕψ)(x) = (D±h

n ϕ)(x)ψ(x) + ϕ(x± hen)D
±h
n ψ(x) , (B.0.1)

where en is the unit vector in the direction of xn and an ‘integration by parts’, i.e.∫ b

a

(
D+h
x ϕ(x)

)
ψ(x) dx = −

∫ b

a

ϕ(x)D−h
x ψ(x) dx , (B.0.2)

where either ψ or ϕ is compactly supported (a, b) (see Lemma 2.3.5). For conve-

nience, we state here the result (Theorem 4.1.16) that we wish to prove.

Theorem B.0.22. Let L be Lipschitz continuous on [0, l] and let P be of the

block-diagonal form (4.1.43). Assume that the matrix entries of P̃ are in C3(0, l).

Moreover, when y ∈ [0, ε1] ∪ [l − ε2, l] with some ε1, ϵ2 > 0, suppose that L(y) = 0

and that P̃ (y) is diagonal with diagonal entries that are either zero or one. Then

the quadratic form Q
(2)
P,L is regular.

Proof. [BK13b] We first show regularity on any subdomain of the form D
′
=

[0, l]× [ϵ, l− ϵ] with ϵ > 0, leaving the discussion of regularity in the corners of the

domain D until the end. Our first tool is the double difference quotient

D−h
y τ 2D+h

y ϕ(x, y) =
1

h2
(
τ 2(y)ϕ(x, y + h)− τ 2(y)ϕ(x, y)

− τ 2(y − h)ϕ(x, y) + τ 2(y − h)ϕ(x, y − h)
)
,

(B.0.3)

where ϕ ∈ D(H) ⊂ DQ(2) and τ ∈ C∞
0 (R) is a test function with support in
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(0, l) such that τ |[ϵ,l−ϵ] = 1 and τ ≤ 1 elsewhere. Even though ϕ satisfies the

boundary condition P (y)ϕbv(y) = 0, (B.0.3) does in general not. This is due to

the dependence of the matrix P on y. We therefore introduce a correction function

κ ∈ H1(D) such that

D−h
y τ 2D+h

y ϕ+ κ ∈ DQ(2) . (B.0.4)

We now determine and estimate κ and, to this end, insert (B.0.4) for ψ into

(4.1.24), i.e.

⟨∇ϕ,∇(D−h
y τ 2D+h

y ϕ)⟩L2(D) + ⟨∇ϕ,∇κ⟩L2(D) − ⟨ϕbv,Λ
(
D−h
y τ 2D+h

y ϕ
)
bv
⟩L2(0,l)⊗C4

− ⟨ϕbv,Λκbv⟩L2(0,l)⊗C4 = ⟨χ,D−h
y τ 2D+h

y ϕ⟩L2(D) + ⟨χ, κ⟩L2(D) .

(B.0.5)

Employing the integration by parts (B.0.2) while taking into account that τ is

compactly supported in (0, l) and choosing h to be sufficiently small, the first

term of (B.0.5) can be re-written as∫ l

0

∫ l

0

∇ϕ̄∇
(
D−h
y τ 2D+h

y ϕ
)
dx dy =−

∫ l

0

∫ l

0

τ 2|D+h
y ∇ϕ|2 dx dy

−
∫ l

0

∫ l

0

(∇D+h
y ϕ̄)(∂yτ

2)(D+h
y ϕ) dx dy .

(B.0.6)

Hence, (B.0.5) yields

∥τD+h
y ∇ϕ∥2L2(D) =− ⟨∇D+h

y ϕ, ∂y(τ
2)D+h

y ϕ⟩L2(D) + ⟨∇ϕ,∇κ⟩L2(D)

− ⟨ϕbv,Λ
(
D−h
y τ 2D+h

y ϕ
)
bv
⟩L2(0,l)⊗C4 − ⟨ϕbv,Λκbv⟩L2(0,l)⊗C4

− ⟨χ,D−h
y τ 2D+h

y ϕ⟩L2(D) − ⟨χ, κ⟩L2(D) ,

(B.0.7)

which allows the estimate

∥τD+h
y ∇ϕ∥2L2(D) ≤ ∥τD+h

y ∇ϕ∥L2(D) ∥2(∂yτ)D+h
y ϕ∥L2(D) + ∥∇ϕ∥L2(D) ∥∇κ∥L2(D)

+
∣∣⟨ϕbv,Λ(D−h

y τ 2D+h
y ϕ

)
bv
⟩L2(0,l)⊗C4

∣∣+ ∣∣⟨ϕbv,Λκbv⟩L2(0,l)⊗C4

∣∣
+ ∥χ∥L2(D) ∥D−h

y τ 2D+h
y ϕ∥L2(D) + ∥χ∥L2(D) ∥κ∥L2(D) .

(B.0.8)
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We now use estimate (2.2.10) from the trace theorem to conclude that

∣∣⟨ϕbv,Λκbv⟩L2(0,l)⊗C4

∣∣ ≤ c̃ ∥ϕ∥H1(D) ∥κ∥H1(D) , (B.0.9)

where the constant c̃ > 0 incorporates the constant c from (2.2.10) as well as the

norm of the bounded map Λ. Furthermore, using the Cauchy-inequality

|ab| < ϵa2 +
b2

4ϵ
, ∀a, b ∈ R , ϵ > 0 , (B.0.10)

in the first, second and fourth term on the right-hand side of (B.0.8) we arrive at

∥τD+h
y ∇ϕ∥2L2(D) ≤ c1(ϵ1) + ϵ1 ∥τ∇D+h

y ϕ∥2L2(D) + c2(ϵ2) + ϵ2 ∥∇κ∥2L2(D)

+
∣∣⟨ϕbv,Λ(D−h

y τ 2D+h
y ϕ

)
bv
⟩L2(0,l)⊗C4

∣∣
+ c3(ϵ3) + ϵ3

(
∥κ∥2L2(D) + ∥∇κ∥2L2(D)

)
+ ∥χ∥L2(D) ∥D−h

y τ 2D+h
y ϕ∥L2(D) + ∥χ∥L2(D) ∥κ∥L2(D) .

(B.0.11)

Here we kept all terms containing the still unknown function κ or difference quo-

tients of ∇ϕ explicitly, as these are the quantities we want to estimate; all other

terms are absorbed in the quantities cj(ϵj). Now, in order to estimate the fourth,

the seventh and the last term on the right-hand side of (B.0.11), we need to de-

termine a suitable function κ and, in particular, establish the bounds

∥κ∥L2(D) ≤ K1 and ∥∇κ∥2L2(D) ≤ K2 +K3 ∥τD+h
y ∇ϕ∥2L2(D) (B.0.12)

hold, where Kj > 0 are some constants not depending on h.

To characterise κ, we infer from (B.0.4) that its boundary values have to be such

that

P (y)
(
(D−h

y τ 2D+h
y ϕ)bv(y) + κbv(y)

)
= 0 . (B.0.13)

Expanding the double difference quotient and using P (y)ϕbv(y) = 0, we obtain a

condition of which the upper two components read, i.e.

P̃ (y)
(
τ 2(y)ϕ̃bv(y + h) + τ 2(y − h)ϕ̃bv(y − h)

)
+ h2P̃ (y)κ̃bv(y) = 0. (B.0.14)

Here we employed the notation ϕ̃bv(y) = (ϕ(0, y), ϕ(l, y))T as well as the block-
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structure (4.2.4) of P . Since P̃ (y) is a projector, this condition is solved by

κ̃bv(y) = − 1

h2
P̃ (y)

(
τ 2(y)ϕ̃bv(y + h) + τ 2(y − h)ϕ̃bv(y − h)

)
. (B.0.15)

This, however, only yields the boundary values of the function we wish to find.

An extension of κbv into the interior of the rectangle D can be achieved by making

use of the particular structure (4.1.43), required for the projectors P (y) as well

as the assumed regularity of its matrix entries. This allows us to find functions

a, b ∈ C3(D0), where D0 is an open domain containing D̄, and define

P̃(x, y) =

(
a(x, y) b(x, y)

b(l − x, y) a(l − x, y)

)
, (B.0.16)

in such a way that P̃ (y) = P̃(0, y). Due to the required regularity of the respective

functions, the Taylor expansions

P̃(x, y ± h) = P̃(x, y)± h P̃y(x, y) + h2 P̃±
R2
(x, y;h) (B.0.17)

and

τ 2(y − h) = τ 2(y)− h τ 2R1
(y;h) (B.0.18)

hold with remainder terms that are of class C1 in the variable y and are bounded

in h. Using these expansions in (B.0.15) yields

κ̃bv(y) = τ 2(y) P̃y(y)
( ϕ̃bv(y + h)− ϕ̃bv(y − h)

h

)
+ τ 2R1

(y;h)P̃y(y)ϕ̃bv(y − h)

+ τ 2(y)P̃+
R2
(y;h)ϕ̃bv(y + h) + τ 2(y − h)P̃−

R2
(y;h)ϕ̃bv(y − h) .

(B.0.19)
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We then define the function

κ(x, y) = τ 2(y)
(
ay(x, y)

ϕ(x, y + h)− ϕ(x, y − h)

h

+ by(x, y)
ϕ(l − x, y + h)− ϕ(l − x, y − h)

h

)
+ τ 2R1

(y;h)
(
ay(x, y)ϕ(x, y − h) + by(x, y)ϕ(l − x, y − h)

)
+ τ 2(y)

(
a+R2

(x, y;h)ϕ(x, y + h) + b+R2
(x, y;h)ϕ(l − x, y + h)

)
+ τ 2(y − h)

(
a−R2

(x, y;h)ϕ(x, y − h) + b−R2
(x, y;h)ϕ(l − x, y − h)

)
,

(B.0.20)

whose boundary values indeed satisfy (B.0.13). The regularity of the functions

involved implies that κ ∈ H1(D) and, thus, ∥κ∥L2(D) and ∥κ∥H1(D) are finite.

Moreover, since ϕ ∈ H1(D) and

ϕ(x, y + h)− ϕ(x, y − h)

h
= D+h

y ϕ(x, y) +D−h
y ϕ(x, y) , (B.0.21)

Theorem 2.3.6 implies that ∥κ∥L2(D) has an h-independent upper bound. In the

same way, the second bound in (B.0.12) follows from (B.0.20) and (B.0.21).

As a next step, we estimate the fifth term on the right-hand side of (B.0.11). We

use the self-adjointness of Λ and perform an integration by parts (B.0.2) as well

as employing the product rule (B.0.1) to obtain

⟨ϕbv,Λ
(
D−h
y τ 2D+h

y ϕ
)
bv
⟩L2(0,l)⊗C4 = −

∫ l

0

⟨L(y + h)(τD+h
y ϕbv)(y), (τD

+h
y ϕbv)(y)⟩C4 dy

−
∫ l

0

⟨(τ(D+h
y L)ϕbv)(y), (τD

+h
y ϕbv)(y)⟩C4 dy .

(B.0.22)

Noting that L is supposed to be bounded and Lipschitz continuous, the right hand

side can be estimated from above in absolute value by

d1 ∥τD+h
y ϕbv∥2L2(0,l)⊗C4 + d2 ∥ϕbv∥L2(0,l)⊗C4 ∥τD+h

y ϕbv∥L2(0,l)⊗C4 , (B.0.23)

with suitable constants dj > 0. Estimating further, we apply (4.1.20) to the first
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term and (2.2.10) to the second and obtain the bound

4 d1

(
2

ϵ4
∥τD+h

y ϕ∥2L2(D) + ϵ4∥∇(τD+h
y ϕ)∥2L2(D)

)
+ d3 ∥ϕbv∥L2(0,l)⊗C4 ∥τD+h

y ϕ∥H1(D) ,

(B.0.24)

where ϵ4 > 0 is sufficiently small. Eventually, again using (4.1.20), this can be

further bounded by

d4 + d5 ϵ5 ∥τD+h
y ∇ϕ∥2L2(D) , where dj > 0 . (B.0.25)

It remains to estimate the last-but-one term on the right-hand side of (B.0.11),

∥D−h
y τ 2D+h

y ϕ∥L2(D) ≤ ∥∂y(τ 2D+h
y ϕ)∥L2(D) ≤ d6 + d7 ∥τ 2D+h

y ∇ϕ∥L2(D) . (B.0.26)

The last term on the right-hand side can be estimated with the help of (B.0.10),

and using that τ 2 ≤ 1,

∥D−h
y τ 2D+h

y ϕ∥L2(D) ≤ c6(ϵ6) + d8 ϵ6∥τD+h
y ∇ϕ∥2L2(D) . (B.0.27)

Finally, we collect all bounds for the terms on the right-hand side of (B.0.11) and

subtract all contributions of the form ϵj∥τD+h
y ∇ϕ∥2L2(D). By choosing ϵ1, . . . , ϵ6

sufficiently small we obtain the bound

∥τDh
y∇ϕ∥L2(D) ≤ K, (B.0.28)

for h ≤ h0.

Hence, by applying Theorem 2.3.6 to ∇ϕ on the domain D
′
= [0, l]× [ϵ, l − ϵ], we

conclude that ϕxy and ϕyy are in H
2(D′). Since ϕxx+ϕyy = ∆2ϕ is known to be in

L2(D), we conclude that ϕ ∈ H2(D′). The same argument can now be repeated

on a domain D
′′
= [ϵ, l− ϵ]× [0, l] so that, indeed, ϕ has H2-regularity away from

small neighbourhoods of the corners of the rectangle D.

Finally, as the condition imposed on P implies that close to the corners either

Dirichlet or Neumann or mixed Dirichlet-Neumann boundary conditions are im-

posed, regularity of ϕ in neighbourhoods of the corners follows from standard

results (see, e.g., [Neč67, Dau88]).
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