
The Effect of Representations on

Constraint Satisfaction Problems

PhD Thesis

Chris Houghton

Department Of Computer Science

Royal Holloway, University Of London

Supervised by Prof. David Cohen

Declaration of Authorship

I Christopher James Houghton hereby declare that this thesis and the work presented in it is

entirely my own. Where I have consulted the work of others, this is always clearly stated.

Signed:

Date:

2

Abstract

Constraint Satisfaction is used in the solution of a wide variety of important problems such as

frequency assignment, code analysis, and scheduling. It is apparent that the modelling process

is key to the success of any constraint based technique, and much work has been done on the

identification of good models [FJHM05].

One of the key choices made during the modelling process is the selection of a constraint

representation with which to express the constraints [HS02]. Whilst practitioners will commonly

use an implicit representation, most existing structural tractability results are defined for explicit

representations. We address a well-known anomaly in structural tractability theory, that acyclic

instances are tractable when expressed explicitly, but may not be when expressed implicitly, and

show that there is a link between representation and tractability.

We introduce the notion of interaction width in order to address this disconnect between theory

and practice, and use this to define new tractable classes by applying existing structural tractability

results to different constraint representations. We show that for a given succinct representation, a

non-trivial class of instances with bounded interaction width can be transformed into an explicit

representation in polynomial time so that existing structural tractability results may be applied.

We compare our work to existing results for alternative succinct representations and show that

the tractable classes we have defined are incomparable and novel, and can be used to derive new

tractable classes for SAT.

3

Acknowledgements

I would like the thank my supervisor Prof. David Cohen for his help, direction and perseverance

during the production of this thesis. I would also like to thank my good friend Dr. Martin Green

for providing me with much needed help and motivation along the way.

I am grateful for the support and gentle pressure from my wife Annabel, without whom this

thesis would probably have never been completed.

There are also many friends, relatives and colleagues who deserve a mention for providing

invaluable assistance during the production of this thesis. There are too many of you to list

without risking offence by leaving someone out - hopefully you all know who you are!

4

Contents

1 Introduction 9

Motivation . 9

Research Achievements . 10

Overview of Thesis . 11

Related Papers . 12

2 Constraint Satisfaction 13

2.1 The Constraint Satisfaction Problem . 14

2.2 Modelling Problems as CSPs . 15

2.3 Visualising CSPs . 17

2.4 Constraint Representation . 18

2.5 Complexity . 21

2.6 Solving CSPs . 21

2.6.1 Search Algorithms . 22

2.6.2 Heuristics . 24

2.6.3 Preprocessing and Consistency . 25

2.7 Summary . 27

3 Efficiently Solvable Classes 28

3.1 Structure . 29

3.1.1 Acyclicity . 32

3.1.2 Reduction to Acyclic . 34

3.1.3 Polynomial Solution Size . 38

3.2 Language . 39

3.3 Fixed Parameter Tractability . 42

5

3.4 Relational Structure . 42

3.5 Summary . 46

4 Algorithmic Complexity Analysis Model 47

5 Interaction Width 55

5.1 Structural Observations . 57

5.2 Tractability with Respect to Representation . 59

5.3 Interaction Width of Relational Structures . 62

5.4 Application to Hypergraphs . 118

5.5 Tractable Classes of SAT . 121

5.6 Place in the Succinctness Hierarchy . 123

5.7 Not a Dichotomy . 126

6 Conclusions and Further Work 129

6

List of Figures

2.1 Simple Crossword Puzzle . 16

2.2 Possible Models for the Simple Crossword Game 16

2.3 Primal Graphs . 18

2.4 Constraint Hypergraphs . 19

3.1 Primal Graph of Example 3.1.6 . 31

3.2 Hypergraph of Example 3.1.6 . 31

5.1 The SA-similar and SB-similar relations for SA and SB from Example 5.3.3 65

5.2 The SA-equivalent and SB-equivalent relations for SA and SB from Example 5.3.3 . 66

5.3 The τ functions for the variables of SA and SB in Example 5.3.3 66

5.4 The Interaction Regions for the Relational Structures in Example 5.3.3 67

5.5 The Merged Structures of SA and SB from Example 5.3.3 68

5.6 (left) The hypergraph Hn. (right) The incidence graph Hn
∗ of Hn. 122

5.7 (left) The hypergraph Jn. (right) The incidence graph Jn
∗ of Jn. 123

5.8 (left) H(Hn) (right) IncG(Hn) . 125

5.9 (left) H(Jn) (right) IncG(Jn). 127

7

List of Algorithms

1 Graham’s Algorithm . 33

2 Generate S-similar . 72

3 Generate S-equivalent . 74

4 Generate Tau Relation . 76

5 Generate Interaction Regions . 78

6 Compare Positive Constraint Relations . 81

7 Compare Positive and Negative Constraint Relations 83

8 Check Disallowed Assignments . 85

9 Check Extra Domain Values . 86

10 Compare Negative Constraint Relations . 87

11 Replace Equivalent Negative Constraints . 89

12 Create Approximate Partition . 91

13 Merge . 94

14 Create Improved Merged Partition . 100

15 Convert to Positive . 103

16 Restore Removed Constraints . 108

17 Unmerge Solution . 112

18 Solve Mixed CSP . 116

8

Chapter 1

Introduction

Motivation

The constraint satisfaction problem is, in general, NP-hard. However, certain classes of prob-

lem instances have known structural or language based properties which can be identified, and

which allow us to solve them efficiently. Much research has been concerned with identifying these

properties and finding efficient algorithms to exploit them.

We have observed that the way in which problems are represented in the theoretical world,

and the way in which the same problems are represented in practice, are not always the same.

More specifically, problems in the theoretical world tend to be expressed explicitly, as opposed

to implicitly in practice. This limits the practical applicability of most theoretical tractability

results.

In any categorisation for classes of constraint satisfaction problem instances, into tractable and

intractable, equivalent instances should be regarded as having the same complexity. For example,

the renaming of variables or domain elements should not change the time required to solve an

instance. However, there are anomalies within the current results: many properties which lead to

efficient solution in the theoretical world do not hold when using implicit constraint representa-

tions. What is needed is a unification of theory and practice so that theoretical tractability results

are generated for a wide range of practical constraint representations.

9

Research Achievements

The purpose of this thesis is to help bridge the gap between theory and practice. Of particular

importance is the use of real world (succinct) constraint representations in the theoretical world,

so that tractability results may still be applied when more practical constraint representations

are used. We consider a succinct representation, called Mixed, which allows constraints to be

represented by explicitly listing either the allowed assignments, or the disallowed assignments.

We define a new measure of structural width, called interaction width, which considers the

level of constraint interaction within an instance. We show that although bounded interaction

width alone does not of itself define structurally tractable classes, it allows the application of

existing structural tractability results to more succinct constraint representations. We do this by

constructing the algorithms necessary to convert an instance given in the mixed representation

to the explicit theoretical representation, and performing a detailed complexity analysis of these

algorithms in order to prove that this conversion can be performed in polynomial time for the

class of instances with bounded interaction width.

We observed that there was no widely used framework for performing complexity analysis of

algorithms, with much prior work concerned with optimisation rather than establishing member-

ship of a complexity class. We construct such a framework based on the computational model

of a Random Access Machine [CRR72] that provides data structures for which the complexity of

certain operations is well defined.

By defining interaction width for relational structures, we are able to extend a result of

Grohe [Gro07] to give a dichotomy result for the tractability of the mixed representation under

bounded interaction width.

To show that we have defined novel structurally tractable classes using this technique, we com-

pare our result with that of Chen and Grohe for another succinct representation, GDNF [CG06],

and find them to be incomparable. We consider further the relative succinctness of these repre-

sentations, and demonstrate that the mixed representation is strictly more structurally tractable

than the GDNF representation.

As the mixed representation naturally expresses SAT problems, our result defines structurally

tractable classes for SAT. We show that our result is also incomparable to that of Szeider [Sze03]

whose result uses incidence width to define tractable SAT classes.

10

Overview of Thesis

• Chapter 2 is intended to familiarise the reader with the constraint satisfaction paradigm.

We provide the constraint definitions used in this thesis, and discuss how problems may be

modelled as CSPs. A brief survey of pre-processing and solutions techniques is also provided.

• Chapter 3 provides a survey of theoretical tractability results. Emphasis is placed on the

structural definitions and results for tractability as these are used throughout the remainder

of this thesis and form the basis for the main contributions.

• Chapter 4 describes the framework we have developed for the complexity analysis of algo-

rithms. This framework will be used extensively for the proof of results in Chapter 5.

• Chapter 5 contains the main results of this thesis. We present the notion of interaction

width for relational structures and use this to derive new tractability results for a more

succinct representation of constraint satisfaction problems. We do this by developing the

algorithms necessary to convert instances given in this succinct representation into the ex-

plicit representation used by theoretical tractability results. We then provide a detailed

complexity analysis to prove that these algorithms run in polynomial time for classes with

bounded interaction width. We demonstrate that our results are novel by showing them to

be incomparable with existing results for other succinct representations.

• Chapter 6 discusses the conclusions drawn from our results and provides direction on how

these may be extended.

11

Related Papers

The Effect of Constraint Representation on Structural Tractability [HCG06]

Principles and Practice of Constraint Programming (CP 2006) - Proceedings of the 12th Interna-

tional Conference, Nantes, France, 25th-29th September 2006. Pages 726-730.

A short paper in which interaction width was introduced and defined on hypergraphs. An

algorithm to convert an instance in the mixed representation to the positive representation is

described that would preserve existing hypergraph tractability results and run in polynomial time

for classes of CSP with bounded interaction width.

Constraint Representations and Structural Tractability [CGH09]

Principles and Practice of Constraint Programming (CP 2009) - Proceedings of the 15th Interna-

tional Conference, Lisbon, Portugal, 20th-24th September 2009. Pages 289-303.

A full paper in which interaction width is redefined on relational structures in order to extend

the results from the previously presented hypergraph definition. The dichotomy result for the

tractability of the mixed representation under bounded interaction width is given along with an

overview of the necessary proof explaining how the necessary algorithms would work. However,

neither the algorithms, nor their analyses, are provided.

12

Chapter 2

Constraint Satisfaction

The aim of this chapter is to introduce the reader to the constraint satisfaction paradigm, and

to give an overview of the core techniques used within the Constraint Satisfaction community to

solve problem instances.

We start by discussing how certain types of real world problems can be naturally modelled as

constraint satisfaction problems. We demonstrate that a given problem can be modelled using

different sets of constraints, and that the constraints themselves can be represented in a variety

of ways.

We provide an overview of common solution techniques for Constraint Satisfaction Problems,

concentrating on those based on backtrack search. This will include some commonly used improve-

ments to chronological backtrack such as algorithm enhancements, variable ordering heuristics and

consistency processing, both before and during search.

13

2.1 The Constraint Satisfaction Problem

The Constraint Satisfaction paradigm [Mon74, Tsa93, Dec03, vHK06] is a system for modelling

real life problems that views the world as a set of questions to be answered. Each of these

questions requires an answer, or value, to be assigned to it and so are referred to as variables. The

set containing all possible values that may be assigned to the variables is called the domain.

Definition 2.1.1. For any set of variables X and set of values D, we call a mapping a : X → D

an assignment to X.

A constraint is a rule which limits the set of allowed assignments to a set of variables.

Definition 2.1.2. A constraint is a pair ⟨σ, ρ⟩ where σ is a set of variables called the scope

and ρ is a set of assignments called the relation.

For ease of notation, the scope and relation of a constraint, c, may be referred to as σ (c) and

ρ (c).

The restricted effect of a constraint over a subset of its scope is called a projection of a

constraint.

Definition 2.1.3. The projection of a constraint, c = ⟨σ, ρ⟩, onto a set of variables X ⊆ σ,

denoted ΠXc, is ⟨X, ρ′⟩ where ρ′ =
{
z|X | z ∈ ρ

}
.

Similarly, the combined effect of multiple constraints is achieved by joining these constraints.

This is a form of constraint synthesis [Fre78, YAAP03].

Definition 2.1.4. Given two constraints, c0 = ⟨σ0, ρ0⟩ and c1 = ⟨σ1, ρ1⟩, the join of c0 and c1,

denoted c0 ◃▹ c1, is the constraint ⟨σ0 ∪ σ1, ρ
′⟩ where ρ′ =

{
z | z|σ0

∈ ρ0 ∧ z|σ1
∈ ρ1

}
.

A set of variables, the domain, and a set of constraints over subsets of the variables is called an

instance [CJG08] of the Constraint Satisfaction Problem, a constraint network [Dec03], or simply

a CSP.

Definition 2.1.5. A constraint satisfaction problem instance (CSP) is a triple ⟨V,D,C⟩

where:

• V is a finite set of variables,

• D is a finite set, the domain of the instance, and

• C is a set of constraints

14

An assignment is said to be consistent with respect to a constraint if the projection of the

constraint onto the assigned variables that are in its scope allows the assignment to those variables.

If an assignment is consistent with all of the constraints in a CSP, then it is called a partial

assignment to that CSP.1

Definition 2.1.6. Let P = ⟨V,D,C⟩ be a CSP and X ⊆ V . A partial assignment, z, on X is

an assignment to X such that for all c ∈ C where Y = σ (c) ∩X, z|Y ∈ ρ (ΠY c).

An assignment to all the variables in a CSP, which is supported by all of the constraints, is

called a solution.

Definition 2.1.7. A solution, s, to a CSP, P = ⟨V,D,C⟩, is a partial assignment on V .

CSPs which have different sets of constraints may be seen as equivalent if they have the same

solutions.

Definition 2.1.8. Two CSPs over the same set of variables are solution equivalent if they have

the same set of solutions.

2.2 Modelling Problems as CSPs

When given an instance of a real world problem to model as a CSP, it may not always be clear

what the questions to model as variables are, or what the constraints between them should be. It

may be that there are several ways in which the same problem instance can be modelled. What

is more, some models may provide substantial improvement in solution time.

Example 2.2.1. Given the simple crossword grid and the set of possible words in Figure 2.1 we

are required to fill in the grid with the words so that all of the grid squares are filled and each

grid square only contains a single letter.

There are at least two ways in which the problem instance given in Example 2.2.1 can be

modelled.

Firstly, each grid square may be considered to be a variable, as shown in Figure 2.2(a). The

domain would be the alphabet, and each constraint scope would be the set of possible grid squares

that each word could be entered into. Each relation would be the set of variable assignments which

make up whole words over the scope.

1This definition of a partial assignment is stronger than the more common usage (see the Handbook of Constraint
Programming [RvBW06]) in which the assignments are not required to be consistent with the constraints.

15

Possible words:

{on, no, in, we, ice,

cup, pot, ant, tin

gate, sink, soap, toga}

Figure 2.1: Simple Crossword Puzzle

(a) (b)

va2

vb1

vb2

vb3

vc2

vd0

vd1

vd2

vd3

ve1

v1
→

v2
→

v3 ↓

v4 ↓

Figure 2.2: Possible Models for the Simple Crossword Game

16

Secondly, each set of grid squares that a word could fill may be considered to be a variable, as

in Figure 2.2(b). The domain would be the set of possible words and each constraint would define

the way in which the words may overlap. In this case each scope would be a pair of variables

whose words overlap in the crossword, and each relation would be the set of pairs of words which

have the same letter at the overlapping position.

These two simple models impart different levels of implicit knowledge about the underlying

problem, for example, model (b) contains knowledge about which pairs of words can overlap in

certain positions.

Modelling vs Solving

Although different constraint models may appear to represent the same problem, they are not

necessarily as ‘hard’ to solve because knowledge applied during the process of modelling may

have reduced the complexity of the original problem. That is, the modeller may have chosen to

express the problem using types of constraints that the intended solver can process efficiently. See

Beacham, Chen, Sillito and van Beek[BCSvB01] for an examination of how different models of

crossword puzzles affect various solution techniques.

In the extreme case, a problem may be modelled by giving a single constraint over all vari-

ables, that only allows the set of solutions. However, producing this model would require solving

the problem first. This trade-off between ‘modelling effort’ and ‘solution effort’ indicates that

a stronger notion of equivalence between models is needed than simply whether they have the

same set of solutions. Rossi, Dhar and Petrie[RDP90] provide an improved definition which states

that two instances are equivalent if there is a polynomial transformation between their solutions.

In Chapter 5 we will present CSP transformation methods whose results rely on there being a

polynomial transformation from solutions of the transformed instance to the original.

2.3 Visualising CSPs

CSPs can be visualised as graph structures. Two common abstractions found in the literature

are the Gaifman (or primal) graph and the hypergraph. These graphs not only provide the user

with a visual aid, but are also used to aid solving CSPs (as will be shown in Section 2.6.2) and

to identify tractable classes of instances (as will be shown in Chapter 3, and where more formal

definitions will be provided).

In the Gaifman graph, each variable is a vertex and there is an edge between a pair of variables

17

(a) (b)

vb1

vb3

vb2

vc2

va2 vd2

ve1

vd1

vd3 vd0
�� AA ## cc ## cc

� �� � x3 x1 x4 x2

Figure 2.3: Primal Graphs

if both are present in the same scope of some constraint in the given CSP. Figure 2.3 shows the

Gaifman graphs for the two models of the crossword problem from Example 2.2.1.

The hypergraph also has each variable as a vertex, but the edges cover sets of variables, each

corresponding to a constraint scope in the given CSP. Figure 2.4 shows the hypergraphs for the

two described models of the crossword problem from Example 2.2.1.

2.4 Constraint Representation

In Section 2.1 we described how a constraint could be expressed as a scope and a relation, where the

scope defines which variables the constraint acts over, and the relation describes the restrictions

imposed on assignments to these variables. The constraint relation is a formal way in which to

express knowledge about the effects of the constraint. The ability to interpret this relation is

required in order to determine whether a given assignment is supported by this constraint. The

formal way in which this knowledge is expressed is called a representation, and a method, or

algorithm, used to determine if an assignment is supported by a given constraint relation is called

an oracle. The oracle is therefore dependent on the representation.

There are many different ways in which constraints may be represented, each of which can be

categorised as being either explicit or implicit.

An explicit representation consists of a list of assignments. As such, support for any given

18

(a)

(b)

vb1 vb3 vb2 vc2 va2 vd2 vd0 vd3 vd1 ve1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

x3 x1 x4 x2

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2.4: Constraint Hypergraphs

assignment can be determined by performing a membership check.

In some explicit representations, (such as tuples,) it may be shorter to express the disallowed

assignments than the allowed ones. This is still valid because a relation constructed in this way still

expresses the knowledge about the effect of the constraint. However, the oracle used to determine

whether an assignment is supported will not be the same as when listing allowed assignments.

As we shall show in Chapter 5, there are classes of CSPs which have efficient solution techniques

when the relations are represented as allowed assignments, but which do not have efficient solution

techniques when the relations are represented as disallowed assignments.

An implicit representation relies on there being some solver which is parameterised by the rep-

resentational language used. Assuming the existence of this solver, a CSP can be expressed using

the given representational language. This allows a shorter notation for commonly occurring con-

straint types to be used. These solvers are commonly known as constraint propagators [RvBW06],

and the languages they accept consist of implicitly defined constraints for which there are good

propagation algorithms, such as ‘AllDifferent’, ‘AllEqual’, and ‘NotAllEqual’, known as global

constraints. (See the Global Constraint Catalogue [BCDP07] for a maintained list of global con-

straints.)

Some applications deal with constraints which are easily represented in implicit form. For

example, satisfiability and constraint logic programming. It is natural to represent a Boolean

predicate or clause implicitly, and it is hard to understand what knowledge a constraint of this

19

type reflects when written explicitly. It is also known that certain classes of constraints, such as

linear equations, are easy to solve (in a way which we shall describe in Chapter 3) and have a

natural implicit representation. (For example, x+ y ≤ k for variables x, y and constant k.)

In the next section, we shall show that the time an algorithm requires to solve a CSP is usually

given as a function of the input size. This implies that when solving a CSP it may be possible to

perform more processing if the CSP is described using an explicit representation rather than an

implicit one (while maintaining the same function of input size) due to the potential size difference

of the representations.

However, while most theoretical results assume that a CSP is given in the larger explicit

representation, this is very rarely the case in practice. In Chapter 5 we will show that theoretical

tractability results do not always carry over to representations other than explicitly listed allowed

assignments and examine the link between representation and tractability.

Example 2.4.1. Alternative Representations of Constraints

A tuple is a list, and the arity of a tuple is the number of items it contains. A relation of arity

m is a set of m-ary tuples. Given a set, S, an m-ary relation over S is a subset of the Cartesian

product Sm. In the positive tuples representation, the relation of a constraint is the set of allowed

tuples. That is, it is an explicit relation.

A mapping is a single assignment of a value to a variable. Given a constraint over a set of

variables, σ, a single assignment to σ can be expressed as the set of mappings to these variables,

called a labelling. A relation is then represented as a set of labellings.

A constraint of arity m can be represented as an m-dimensional Boolean matrix in which each

dimension represents a variable in the scope and each dimension is labeled with the domain values

of the corresponding variable. This matrix can be used to express a relation by using the flags

TRUE and FALSE at each position in the matrix to specify whether that combination of values

for the m variables is an allowed assignment or not.

When all variables have Boolean domains, the constraints can be expressed as clauses. As

each variable has only two possible values in its domain they may be viewed as truth values and

referred to as TRUE and FALSE. Each variable and value pair can now be written as either just

the variable, x, to express TRUE or the negation of the variable, x, to express FALSE. These

variable and value pairs are called literals. x is a positive literal, whereas x is a negative literal.

A clause is a disjunction of literals. For example, (x ∨ y ∨ z). A logic formula is in Conjunctive

Normal Form (CNF) if it is a conjunction of clauses. The Satisfiability Problem (SAT) is a well

known NP-Complete decision problem[Coo71] whose instances are logic formulas in CNF.

20

2.5 Complexity

When analysing algorithms, such as those which perform some action on CSPs, we are interested in

their complexity. In other words, how much time they will take (or how much space they require)

as a function of their input size. In order to compare algorithms, we usually consider their worst

case complexity, or if this is not known exactly, a bound on their worst case complexity. Informally,

the complexity of an algorithm is considered to be that of the component which dominates as the

input size is increased. More formally, we use the Big-Oh (or Landau[HW84]) notation which

describes the upper bound for a function (or algorithm):

Definition 2.5.1. For input size n, the function f (n) is O (g (n)) if there exist two constants

N,K such that ∀n ≥ N , 0 ≤ f (n) ≤ K.g (n).

Classes of instances are often classified by the required complexity of those algorithms capable

of performing certain functions on their members[GJ79].

The class of instances for which an answer to the decision problem (determining whether an

instance has a solution) can be determined in polynomial time, with respect to the input size,

is called P (or Polynomial-Time). The class of instances for which there is a polynomial time

algorithm, with respect to the input size, that can determine whether a candidate solution is

actually a solution is called NP (or Nondeterministic Polynomial-Time). By definition, P ⊆ NP,

but it is an open question as to whether P = NP.

Two other classes of interest are NP-Complete and NP-Hard. NP-Complete is a subclass of

NP. An instance, I, in NP is in NP-Complete only if all instances in NP can be converted to I in

polynomial-time2. NP-Hard is the class of instances (not necessarily in NP) for which there is a

polynomial-time conversion from an instance in NP-Complete (hence NP-Complete is a subclass

of NP-Hard).

As stated in the Motivation section, the class containing all constraint satisfaction problems

is, in general, NP-hard[Mac77][GJ79].

2.6 Solving CSPs

When solving a CSP, the goal may be to: determine if a solution exists (the decision problem),

find a single solution (the search problem), find the best solution (optimisation), or even find all

solutions to the instance. Normally, decision is equivalent to search [Coh04], so here we concentrate

2So, if P = NP-Complete, then P = NP

21

on finding a solution. There are two ways in which this can be done: either by using a constructive

method such as backtrack based search, or a stochastic method such as simulated annealing. In

this thesis, we are primarily concerned with solution techniques based on constructive search as

it is both sound and complete.

When carrying out a constructive search technique, partial assignments are extended until a

solution to the CSP is generated.

2.6.1 Search Algorithms

Backtracking

Chronological backtracking (BT) [GB65] is the simplest form of complete search, employing a

depth first traversal of the search space. The algorithm builds up an assignment by selecting a

variable and mapping it to a value from the domain. If this assignment is consistent with respect

to the constraints, it selects the next variable and assigns it a value from the domain. If at any

point the current assignment is not consistent, it selects an alternate domain value for the last

assigned variable and continues. If all domain values have been tried for this variable, it backtracks

to the previous variable and selects a new domain value before continuing. The algorithm stops

when it has either built up a full assignment which is consistent (solution) or when there are no

previous variables to roll back to. By modifying the algorithm to treat solutions in the same way

as inconsistent assignments, it will continue searching to find all solutions.

In the worst case, this algorithm will have to consider every possible assignment in the search

space. So, for a CSP with n variables and a domain containing d values, the time complexity of

this algorithm is O (dn).

The following algorithms improve on the average case time complexity of Backtracking, however

their worst case performance remains O (dn).

Forward Checking

Assume that the chronological backtrack algorithm is being used to solve a CSP with ten variables,

v0, . . . , v9, and that it is using a fixed variable ordering such that assignments are constructed from

v0 to v9. It may be that instantiating variable v2 with some value, d, leads to no solutions because

there is no value for v8 which gives a consistent partial assignment when v2 has value d. BT will

keep trying to build the assignment up to v8 until it has tried all possible combinations of v3 to

v7 which are consistent.

22

Forward Checking (FC) [HE79] works in a similar manner to chronological backtracking but

tries to avoid these problems which are caused early in the assignment, but only detected later,

by propagating the effect of each variable assignment (which forms a partial assignment) forward

to the unassigned variables. The propagation in this algorithm is done by reducing the possible

values which may be assigned to the remaining (unassigned) variables as the algorithm executes.

To do this, the forward checking algorithm maintains a current domain for each future variable.

Whenever a variable is assigned a value to give a new partial assignment, then for every

currently unassigned variable, vj , this algorithm goes through the current domain of vj and checks

to see if the current partial assignment would extend to variable vj with this value. If it does not,

then it removes this value from the current domain of vj . If the current domain of any unassigned

variable becomes empty (domain wipeout) during this step, then the domain values removed by

this step are restored and another value is attempted for the current variable. If there are no more

values to try, then this algorithm backtracks in the same manner as chronological backtracking

but with the additional step of restoring any domain values removed by the previous variables’

assignment.

Forward checking will never have to try more variable assignments than chronological back-

tracking. However, the forward checking algorithm has a greater overhead due to the extra pro-

cessing needed to propagate each assignment and the extra storage required to keep track of the

current domains (see [KvB97]).

Backjumping

As with FC, Backjumping (BJ) [Gas79] also attempts to overcome the problem whereby the vari-

able assignment responsible for a dead end may be further back in the assignment than simply the

previous one. Rather than propagate the effect of variable assignments forward to the unassigned

variables, it keeps records which allow it to determine the nearest culprit variable in the partial

assignment when it comes to a dead end. So, rather than failing earlier by propagating information

forwards as in forward checking, this algorithm potentially jumps back to an earlier point in the

partial assignment than the previous variable when it rolls back.

Gaschnig’s original Backjumping algorithm fails on leaf nodes only. For each variable, it keeps

a record of the most recently instantiated earlier variable which was found to be incompatible

with any of its values. Graph based Backjumping uses the structure of the graph and jumps back

to the most recent connected variable (that is, to a variable in the same scope as the unsatisfied

constraint). It will also perform internal back jumps if there are no more values to try for a

23

variable, rather than just roll back as in Gaschnig’s original method.

Conflict Directed Backjumping

Conflict Directed Backjumping (CBJ) [Pro93] combines aspects of both Gaschnig’s original Back-

jumping method and the graph based method. This algorithm maintains a conflict set for each

variable. Whenever a previous variable fails a consistency check with the current variable, it is

added to the conflict set of the current variable. If there are no more values to try for the current

variable, then it jumps back to the least recently assigned variable in the conflict set (of the current

variable). Upon jumping back, the contents of the conflict set of the current variable are added to

the conflict set of the variable it has jumped back to (excluding itself). This is a simple learning

method which builds up knowledge about why values have been removed from the domain of each

variable.

2.6.2 Heuristics

We have seen that all of the backtrack based algorithms shown in this chapter build up a partial

assignment one variable at a time. The order in which both the variables are assigned, and the

values are selected, may have a substantial impact on the time taken to find a solution. For

example, if it was possible to select all the values in a solution first time, then a solution would

be found quickly without the need to backtrack. To achieve this consistently, the solutions would

need to be known in advance, but there may be other attributes of a CSP which could be used to

make more informed ordering decisions.

Commonly used variable orderings [EFW+02] include: Random, Most constrained variable,

Least constrained variable and Least remaining values (the variable with the smallest remaining

domain, also known as fail-first). There are also several heuristics based on the structure of the

underlying (primal) constraint graph.

Another consideration when choosing a variable ordering is whether it should be static or

dynamic. Although determining an initial ordering by applying some metric only requires a single

upfront calculation, it may be that the property this order was based upon changes dramatically

as variables are assigned.

Given a CSP to solve, there may be some variable ordering for which the algorithm used could

solve the CSP very quickly (that is, by using this ordering, the number of backtracks required is

minimised), but there may be no easy way to determine which ordering this is. This idea is based

on the notion of certain CSPs having a backbone or backdoor [WGS03], that is some set of variables

24

which, once assigned, consistently allow the rest of the CSP to be solved quickly. Analysis has

found that Random Restarts [GSMT98] can be very effective for solving certain types of CSPs.

With Random Restarts, an attempt is made to solve the CSP using some variable ordering for a

fixed amount of time (or some other metric) and if it is not solved within that time, the variables

are reordered (either randomly or using another heuristic) and another solution attempt is started.

2.6.3 Preprocessing and Consistency

The previous section stated that under certain circumstances the effectiveness of backtrack based

solution algorithms can be improved by employing some form of heuristic. Depending on the

type of CSP, it may also be possible to improve these algorithms by employing some form of

preprocessing to build up a store of useful information about the CSP before attempting to solve

them. This information can then be used to help direct the search algorithm.

During execution, it would not be sensible for an algorithm to select a value for a variable

such that the assignment to that single variable is not supported by one of the constraints. A

simple preprocessing step could be performed to reduce the domain of each variable to just those

values which may exist in consistent assignments. This removal of values from the domains of

individual variables achieves node consistency (or 1-consistency), and it can be done in linear time

(for positive explicit representations).

Definition 2.6.1. A CSP, P , is node consistent if, for all variables in P , each mapping from

a single variable to any value in its domain is a partial assignment to P .

Consider the case where an assignment is constructed by assigning a value to variable va, then

considering variable vb. If it is true that for every value which could be assigned to variable va,

there is at least one value which could be assigned to variable vb to form a partial assignment,

then the variable va is said to be arc consistent (or 2-consistent) relative to variable vb. A CSP,

⟨V,D,C⟩, is said to be arc consistent if all variables in V are arc consistent relative to all other

variables in V .

Definition 2.6.2. Two variables, vi, vj, in a CSP, P , are arc consistent if, for every value in

the domain of vi which is consistent with respect to the constraints of P , there exists a value in

the domain of vj such that this assignment to vi, vj is a partial assignment to P .

A CSP, ⟨V,D,C⟩, is said to be arc consistent if, for every pair of variables vi, vj ∈ V , where

vi ̸= vj, the pair vi, vj is arc consistent.

25

If at some stage during the solution process the CSP is in a node consistent state with no

domain wipeouts, then assigning any remaining domain value to any unassigned variable must be

consistent with the current partial assignment. If the CSP is arc consistent at this point, then not

only must there be a value for the variable being considered, but whatever value is selected will

not cause a domain wipeout for any of the unassigned variables.

Recall the Forward Checking algorithm from Section 2.6 in which the current variable as-

signment is propagated to all unassigned variables. It makes the current variable assignment arc

consistent with each of the unassigned variables. However, the set of unassigned variables may not

all be arc consistent amongst themselves. Sabin and Freuder [SF94] presented a method by which

arc consistency can be used in a solution algorithm, called Maintaining Arc Consistency (MAC).

Whenever a variable is assigned, the entire instance, together with the current partial assignment,

is made arc consistent by the removal of incompatible domain values. This prunes more of the

incompatible assignments from the search space than forward checking, at the expense of more

processing.

Arc consistency considers only a pair of variables. This can be extended to the general case,

k-consistency, which states that for every valid assignment to k− 1 variables, there must be some

valid assignment to any kth variable. This does not guarantee that the instance is j-consistent,

where j < k. A CSP which is j-consistent for all values j = 1, . . . , k is called strongly k-consistent.

Definition 2.6.3. A CSP, P , is k-consistent if, for any consistent partial assignment to k − 1

variables of P , there exists a value in the domain of every remaining unassigned variable of P ,

such that the partial assignment can be extended to this value for this variable to create a new

partial assignment (to k variables of P).

A CSP is strongly k-consistent if it is j-consistent, for j = 1, . . . , k.

If a CSP, P , is strongly n-consistent where n is the number of variables in P , then P is said to

be globally consistent. If a CSP is globally consistent, then it can be solved without backtracking.

Making a CSP globally consistent using preprocessing is therefore hard in general as it is equivalent

to solving the instance.

Consistency may also be considered between pairs of constraints, rather than variables. A

pair of constraints is said to be pairwise consistent if the projection of each constraint onto the

intersection of their scopes is the same.

Definition 2.6.4. A CSP, P = ⟨V,D,C⟩, is pairwise consistent [JJNV89] if, for any pair of

constraints c0, c1 ∈ C, Πσ(c0)∩σ(c1)c0 = Πσ(c0)∩σ(c1)c1.

26

As we shall see in Chapter 3, establishing pairwise consistency using a polynomial algorithm

(quadratic-time for positive explicit representations) is strong enough to solve certain classes of

CSPs.

2.7 Summary

In this chapter we have introduced the concept of Constraints and the Constraint Satisfaction

paradigm. We have also introduced some of the basic notation which will be used throughout the

remainder of this thesis.

We have explained that there are two distinct representation types for constraints: explicit and

implicit. We have stated that explicit constraints can be used to represent any arbitrary finite

CSP, but that some constraints are more naturally represented using implicit constraints.

We have given several common solution algorithms and described how heuristics can be used

to optimise their use. We have also shown how propagation techniques which enforce minimum

levels of consistency can be used to further improve these algorithms.

It has been our intention to show that there are many decisions to be made during the process

of modelling a problem using constraints, and then solving it, and that these decisions are not

straightforward. By making the correct decisions when modelling, we can affect the hardness of

finding solutions, either by imparting some implicit knowledge into the construction or by noticing

that the problem can be modelled using only constraints for which the solution algorithms work

well.

We are interested as to whether it is true that the same problem modelled in different ways are

equivalent. Recall that in the crossword example (Example 2.2.1) we were able to include implicit

information about the length of words that will fit in each position simply by selecting to model

the problem in a certain way.

In this thesis we intend to show that different models contain differing levels of implicit knowl-

edge imparted by the modeler, and are therefore not the same constraint satisfaction problem. We

intend to show that two CSPs are only truly equivalent if they are not only solution equivalent,

but there must also be an efficient transformation between these different models.

27

Chapter 3

Efficiently Solvable Classes

In general, the Constraint Satisfaction Problem is NP-hard [Mac77][GJ79], so an efficient algorithm

for solving all CSPs does not exist. A class of CSPs is a collection containing those CSPs which

have some defined set of properties and, as is demonstrated in this chapter, much effort has gone

into identifying classes of CSPs for which there are efficient solution algorithms.

Each CSP has a set of properties which are referred to as parameters. For example: the number

of variables, the domain size, the arity (the maximum number of variables in any constraint

scope), the constraint probability (for each subset of the variables, the probability of there being a

constraint with that scope) and the constraint tightness (the ratio of the number of incompatible

assignments to the total number of possible assignments).

A class of CSPs may be defined as having some fixed parameter values that are independent of

the instance size. It may be that, for one of these parameters, the classes defined by increasing or

decreasing its value go from having a very high probability of solution, to a very low probability

of solution (or vice versa). If the threshold range of the parameter under which this occurs

becomes more defined (smaller) as the instance size increases, then we call this phenomenon a

phase transition [TCC+91].

The instances within a phase transition region are commonly the hardest to solve since one

side is underconstrained, and so may have many solutions, and the other overconstrained such

that there is very little chance of there being a solution. Gent and Walsh showed this to be the

case for k-SAT[GW94].

Although the phase transition region is a good indicator of how hard an instance is likely to

be to solve, it provides no guarantees. It is simply a probability distribution, so there may well

be hard to solve ‘outliers’ in the under and over constrained regions.

28

In this chapter we shall consider two different properties of constraint instances which can be

used for classification; structure and language. These properties not only cross the bounds of the

simple parameter view, but can also be used to soundly define classes for which there are efficient

solution algorithms.

Traditionally, a class of CSPs for which there is an efficient solution algorithm has been referred

to as tractable. We prefer to use a more modern definition which extends this so that a class of

constraint problems is only tractable when there is both an efficient solution algorithm and an

efficient algorithm for determining membership of this class for any general CSP.

Definition 3.0.1. A class of CSPs, R, is tractable if there is both a polynomial-time algorithm

for solving any instance in R, and a polynomial-time algorithm for determining whether any given

instance is a member of R.

Although many tractable subclasses have now been identified, there is still no general taxonomy

of constraint classes which completely ties together structure and language. In recent years,

research has started to move towards understanding the underlying reasons why some subclasses

are tractable while others are not. Hopefully, some deeper property which unifies tractable classes

will be identified.

3.1 Structure

Constraint Satisfaction Problem instances have an associated hypergraph. It is the properties of

this graph that are referred to when talking about a CSP’s structure.

Definition 3.1.1. A hypergraph, H, is a pair ⟨V,E⟩, where V is a set, called the vertices of H,

and E is a multiset of subsets of V , called the hyperedges of H.

When used in structural tractability theory, hypergraphs are commonly defined such that the

hyperedges are sets, rather than multisets, as these results assume that all constraints are provided

in the same explicit representation. In Chapter 5, CSPs will be considered whose constraints are

not all provided using the same representation. It is then necessary to be able to identify when

constraints using more than one representation may be acting on a given scope.

Definition 3.1.2. For any CSP, P = ⟨V,D,C⟩, the structure of P , denoted σ (P), is the

hypergraph ⟨V, {σ | ⟨σ, ρ⟩ ∈ C}⟩.

Definition 3.1.3. A graph, G, is a hypergraph in which each edge contains exactly two vertices.

A graph is called a tree if it contains no cycles.

29

Definition 3.1.4. The Gaifman graph (or primal graph) of a CSP is a graph in which the

variables of the CSP are the vertices and there is an edge between pairs of vertices when they are

both found in a constraint scope. That is, there is an edge, (vi, vj) ∈ E if, and only if, for some

scope σs, vi ∈ σs and vj ∈ σs.

Definition 3.1.5. The incidence graph of a CSP P = ⟨V,D,C⟩ is a bipartite graph whose

vertices are V and C. There is an edge in the incidence graph between a variable v ∈ V and a

constraint c ∈ C if, and only if, v ∈ σ (c).

An edge between two variables in the Gaifman graph indicates that these two variables are

both in at least one constraint, whereas an edge in the hypergraph is analogous to a constraint

scope. As such, the Gaifman graph and the hypergraph are the same only for binary CSPs. This

implies that the Gaifman graph is only a crude approximation of the structure of a CSP, whereas

the hypergraph is an exact relational structure. For example it is not possible to identify whether

a CSP contains only one constraint when considering only the Gaifman graph.

Example 3.1.6. Consider the following CSP over the domain {r, g, b}:

σ0 = {v0, v1}

ρ0 = { {v0 7→ r, v1 7→ b} , {v0 7→ r, v1 7→ g} , {v0 7→ b, v1 7→ r} ,

{v0 7→ b, v1 7→ g} , {v0 7→ g, v1 7→ r} , {v0 7→ g, v1 7→ b} }

σ1 = {v1, v2}

ρ1 = { {v1 7→ r, v2 7→ b} , {v1 7→ r, v2 7→ g} , {v1 7→ b, v2 7→ r} ,

{v1 7→ b, v2 7→ g} , {v1 7→ g, v2 7→ r} , {v1 7→ g, v2 7→ b} }

σ2 = {v0, v2, v3}

ρ2 = { {v0 7→ r, v2 7→ b, v3 7→ g} , {v0 7→ r, v2 7→ g, v3 7→ b} ,

{v0 7→ b, v2 7→ r, v3 7→ g} , {v0 7→ b, v2 7→ g, v3 7→ r} ,

{v0 7→ g, v2 7→ r, v3 7→ b} , {v0 7→ g, v2 7→ b, v3 7→ r} }

The primal graph and hypergraph for this CSP are shown in Figures 3.1 and 3.2.

30

�
�
�
�

��
��
��
��

��
��
��
��

��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�������������������������
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����Vo

V2 V3V1

Figure 3.1: Primal Graph of Example 3.1.6

��
��
��
��

��������

��
��
��
��

Figure 3.2: Hypergraph of Example 3.1.6

The information represented by both the Gaifman graphs and hypergraphs is purely structural.

That is, they both show the connections between variables, but not the effect of assignments or

domains. Even with just this structural information it is still possible to identify tractable classes

as there are some structural properties which guarantee tractability regardless of the relations.

For example, Grohe has shown [GM99] that if a class is defined just by limiting its Gaifman

graph, then the class of CSPs which have an efficient solution is the class of CSPs whose Gaifman

graph has bounded treewidth. (The more general definition of the treewidth of a hypergraph is

given in Definition 3.1.10. However, it can be defined directly on a Gaifman graph such as by

Freuder [Fre82].)

When considering structure, it is usual to only consider hypergraphs that are both reduced

and connected as unreduced hypergraphs are structurally equivalent to their reduced forms (when

considering positive explicit representations) and unconnected hypergraphs can be considered as

a collection of separate connected hypergraphs.

31

Definition 3.1.7. Consider a hypergraph, ⟨V,E⟩, and an edge e ∈ E. The edge e is repeated if

the multiset E contains more than one copy of e. The edge e is maximal if it is contained in no

other edge in E.

A hypergraph in which all edges are maximal (and thus having no repeated edges) is reduced.

Definition 3.1.8. A hypergraph ⟨V,E⟩ is said to have a path of length k between two vertices

v0, vk−1 ∈ V if for each i = 0, . . . , k − 2 there exists an edge ei ∈ E such that {vi, vi+1} ⊆ ei. If

v0 = vk−1, then the path is called a cycle.

Two edges, ea and eb, in a hypergraph are said to be connected if there is a path from some

vertex contained in ea to some vertex contained in eb. If there exists a path between every pair of

vertices in the hypergraph, then the hypergraph itself is said to be connected.

As with parameters, classes of CSPs may be defined based on the structural properties of their

members.

Definition 3.1.9. For any family of hypergraphs, H, the class of all CSPs with structure contained

in H is denoted Ψ(H).

3.1.1 Acyclicity

Some hypergraphs allow efficient solution because they can be represented as a tree-like structure.

A tree decomposition is a mapping from a graph to a tree.

Definition 3.1.10. Given a hypergraph G = ⟨VG, EG⟩ and a tree T = ⟨VT , ET ⟩, ⟨T, χ⟩ is a tree

decomposition of G (where χ is a mapping function from the vertices in T to sets of vertices in

G) if:

1. Every vertex in VG is in χ (v) for some v in VT .

2. For every two vertices, x, y, contained in an edge in EG there exists v in VT such that x and

y are both in χ (v).

3. Given three vertices v0, v1, v2 in VT such that v1 lies on a path in T from v0 to v2, χ (v0) ∩

χ (v2) ⊆ χ (v1).

The width of ⟨T, χ⟩ is max (|χ (v) | − 1) , v ∈ VT . The treewidth of G, tw (G), is the minimum

width of all possible tree decompositions of G.

A join tree of a hypergraph is a restricted form of tree decomposition in which each node is

exactly an edge of the hypergraph. As a result, not all hypergraphs have a join tree.

32

Definition 3.1.11. A join tree of a hypergraph, H = ⟨V,E⟩, is a connected tree, J , whose nodes

are the edges of H. Whenever the vertex, x ∈ V , occurs in two edges, e1, e2 ∈ E, then x occurs in

each node of the unique path connecting e1 and e2 in J .

For a graph, G, we have that tw (G) = 1 precisely when G is a tree. This implies that G has

a join tree.

Definition 3.1.12. A hypergraph is called acyclic if it has a join tree.

Acyclicity is a structural property that defines a tractable subproblem. Any instance whose

underlying hypergraph is acyclic can be solved in polynomial time [BFMY83].

It is possible to determine whether a hypergraph is acyclic by performing Graham’s Algo-

rithm [Gra79] (Algorithm 1). Graham’s Algorithm repeatedly removes edges contained entirely

within other edges (non-maximal edges) and vertices that are contained in only a single edge (iso-

lated vertices) until it can no longer remove more edges or vertices. If it has successfully removed

all vertices and edges, then there is a join tree and the algorithm returns TRUE, otherwise there

is no join tree and the algorithm returns FALSE.

Definition 3.1.13. A vertex of a hypergraph is isolated if it is contained in at most one edge.

Algorithm 1: Graham’s Algorithm

1 Takes H = ⟨V,E⟩, returns TRUE / FALSE
1: repeat
2: Reduce H
3: Remove all isolated vertices from H
4: until No edges or vertices are removed
5: if E = ∅ then
6: Return TRUE
7: else
8: Return FALSE
9: end if

It is also possible to determine whether a hypergraph is acyclic by looking at its corresponding

Gaifman graph. If the Gaifman graph of a CSP is chordal and conformal, then the hypergraph is

acyclic.

Definition 3.1.14. A graph is chordal (or triangulated) if, for all cycles with length greater

than three, there is an edge between two vertices which are not adjacent in the cycle.

Definition 3.1.15. A clique is a set of vertices S ⊆ V in a graph ⟨V,E⟩ such that every pair of

vertices in S is connected by an edge in E. A clique is said to be maximal if it is not contained

in another clique.

33

Definition 3.1.16. The Gaifman graph of a CSP is conformal if its maximal cliques are exactly

the constraint scopes in the CSP.

Several non-trivial classes of CSPs have been found which are tractable because there exists a

structural decomposition method that reduces their structure to an acyclic hypergraph.

3.1.2 Reduction to Acyclic

Graham’s Algorithm fails if it reaches a state in which there are no longer any isolated vertices

or subsumed edges that can be removed, but the hypergraph is not empty. It may be possible to

modify a hypergraph such that Graham’s Algorithm does complete by removing vertices or edges,

combining edges, replacing edges, or potentially adding edges.

By considering the different ways in which a hypergraph could be modified to achieve acyclicity,

many reduction methods with varying degrees of power were formed. These methods can be ranked

by some width parameter, as CSPs can be solved in a time that is polynomial in the size of the

CSP with respect to its width [Fre82].

We shall now look at some of these commonly used reduction methods, starting with Cycle

Cutsets [Dec92] whose width parameter is the number of vertices which need to be removed in

order to make the hypergraph acyclic.

Cycle Cutsets

Given a hypergraph, H = ⟨V,E⟩, a Cycle Cutset is a set of vertices, X ⊆ V , such that the resulting

hypergraph H ′ = ⟨V −X,E|V −X
⟩ is an acyclic hypergraph.

To solve a CSP using the cycle cutset method, a consistent assignment to the variables rep-

resented by the vertices in X is chosen and then this assignment is extended to the remaining

variables using a known polynomial-time algorithm for the acyclic hypergraph H ′. If this does

not yield a solution, another assignment to the variables represented by the vertices in X must be

tried and this process repeated until either a solution is found or all consistent assignments have

been tried (at which point all possible solutions have been found, or it has been demonstrated

that there are none).

The class of CSPs whose minimum cycle cutset contains at most k vertices can therefore be

solved in time O
(
|D|k

)
in general. Identifying the cutsets O

(
|V |k

)
time.

As well as removing vertices in order to reduce a hypergraph to an acyclic subgraph, as in Cycle

Cutsets, edges may also be removed in a similar manner to form Cycle Hypercutsets [GLS00]. In

34

the case of Cycle Hypercutsets, the width parameter is the number of edges which need to be

removed.

Next, we shall consider Hinge Trees [GJC94] where acyclicity is achieved by joining existing

edges in the hypergraph.

Hinge Trees

The Hinge Tree decomposition identifies cyclic components in the hypergraph which are connected

in the correct way as to form a tree.

A hinge of a hypergraph is a connected set of at least two edges such that every connected

component of the remaining edges meets the hinge in exactly one edge (called a separating edge).

Definition 3.1.17 (Section 2.3, [GJC94]). Let (V,E) be a hypergraph, let H ⊆ E, and let F ⊆

E \ H. F is called connected with respect to H if, for any two edges e, f ∈ F , there exists a

sequence e1, . . . , en of edges in F such that (i) e1 = e; (ii) en = f ; and (iii) for i = 1, . . . , n − 1,

ei ∩ ei+1 is not a subset of
∪
H. The maximal connected subsets of E \H with respect to H are

called the connected components of (V,E) with respect to H.

Definition 3.1.18 (Definition 3.1, [GJC94]). Let (V,E) be a reduced and connected hypergraph,

and let H be either E or a proper subset of E containing at least two edges. Let H1 . . . Hm be

the connected components of (V,E) with respect to H. H is called a hinge if, for i = 1 . . .m,

there exists an edge hi in H such that hi contains all the vertices contained in Hi that are also

contained in H.

(
∪
Hi) ∩ (

∪
H) ⊆ hi

The edge hi is called a separating edge for Hi.

A hypergraph is covered by a set of hinges if each of its edges is contained in at least one of

the hinges. A hypergraph can always be covered by a set of hinges since the set of all edges is a

hinge.

A minimal hinge of a hypergraph is a hinge which does not properly contain any other hinge.

There may be many different minimal hinge covers for a particular hypergraph. Gyssens et

al. [GJC94] proved that the size of the largest hinge in a minimal hinge cover is an invariant of

the hypergraph. In other words, given a minimal hinge cover for a hypergraph, there is no other

minimal hinge cover for this hypergraph whose largest hinge is smaller.

The hinge width of a hypergraph is the size of the largest hinge in any minimal hinge cover.

This is referred to as its degree of cyclicity.

35

Gyssens et al. also demonstrate that there is a polynomial-time algorithm which can find a

minimal hinge cover for any hypergraph. In fact, this algorithm generates a tree of minimal hinges

that cover the hypergraph (i.e. a join tree of maximal hinges), called a hinge tree.

For a given degree of cyclicity, there exists a polynomial-time algorithm for solving any CSP

whose underlying hypergraph is at most this degree. Members of this class can be identified in

polynomial time by generating a hinge tree and observing the size of the largest node. A solution

can then be found by synthesising constraints on the nodes of the hinge tree. Since the degree of

cyclicity is limited, this constraint synthesis is polynomial time and the resultant acyclic CSP can

be efficiently solved.

New edges may also be added to a hypergraph in order to make it acyclic. Tree Cluster-

ing [DP89] does this by triangulating cycles in the primal graph which are not chordal.

Tree Clustering

Given a CSP, edges may be added to its primal graph until it is triangulated, and hence acyclic.

Each of the maximal cliques now corresponds to a subproblem of the CSP containing those con-

straints which have scope variables as nodes in the clique. Once these cliques have been solved,

we can replace them with single constraints and then solve the acyclic hypergraph using a known

polynomial-time algorithm. As with the cycle cutset method, we can find single solutions to each

clique and try to solve the tree with these, finding alternate solutions to the cliques if we fail to

find a solution until all possible solutions to the cliques have been attempted.

Given the class of CSPs which can be decomposed using tree clustering such that the maximal

clique contains at most k vertices, we can now solve this class in polynomial time bounded by Dk

as the largest subproblem we have to solve, for which we do not have a polynomial-time algorithm,

has Dk possible solutions. However, finding the best tree clustering is hard.

Rather than considering the processes and properties which may generate a specific structural

decomposition, we could instead consider only what it means to be a structural decomposition.

That is, for a given input CSP, a structural decomposition of its underlying hypergraph must

provide solution equivalence on the generated CSP. This gives the notion of a generalized hypertree

decomposition [GGM+05], which describes the most powerful structural decomposition. In other

words, the generalized hypertree width is never larger than any other structural width parameter.

36

Hypertrees

Consider the hypergraph H, and its associated primal graph G. A generalized hypertree decom-

position of H is a triple ⟨T, χ, λ⟩ where ⟨T, χ⟩ is a tree decomposition of G and λ is a mapping

which assigns to every node t of T a set of hyperedges of H, λ (v), such that each vertex x ∈ χ (t)

is contained in some hyperedge e ∈ λ (t). (λ (t) is a set cover of χ (t).)

The width of a generalised hypertree decomposition ⟨T, χ, λ⟩ is the size of the largest set λ (t)

over all nodes t of T . The generalised hypertree width ghw (H) of H is the minimum width over

all generalised hypertree decompositions of H. However, it is known that even for generalised

hypertree width at most three, no polynomial-time identification algorithm exists [GMS09]. A

restricted form was developed satisfying a technical condition which makes identification polyno-

mial time. These are simply known as hypertrees and, as hw (H) ≤ 3.ghw (H), they are a good

approximation [AGG05].

In order to reason about structural decompositions later in this thesis, we shall use an equivalent

decomposition framework: the guarded decomposition [CJG08]. Acyclic guarded decompositions

are equivalent to generalised hypertrees.

Definition 3.1.19. A guarded block of a hypergraph, H, is a pair ⟨λ, χ⟩ where the guard, λ,

is a set of hyperedges of H, and the block, χ, is a subset of the vertices of the guard.

For any CSP, P , and any guarded block, ⟨λ, χ⟩ of σ (P), the constraint generated by P on

⟨λ, χ⟩ is the constraint ⟨χ, ρ⟩, where ρ is the projection onto χ of the relational join of all the

constraints of P whose scopes are elements of λ.

A set of guarded blocks, Ξ, of a hypergraph is called a guarded decomposition of H if for

every CSP, P = ⟨V,D,C⟩ ∈ Ψ(H), the instance P ′ = ⟨V,D,C ′⟩, where C ′ is the set of constraints

generated by P on the members of Ξ, is solution equivalent to P .

Definition 3.1.20. A guarded block, ⟨λ, χ⟩, of a hypergraph, H = ⟨V,E⟩, covers a hyperedge

e ∈ E if the vertices in e are all contained in χ.

A set of guarded blocks, Ξ, of a hypergraph, H = ⟨V,E⟩, is called a guarded cover for H if

each hyperedge of H is covered by some guarded block of Ξ.

A set of guarded blocks, Ξ, of a hypergraph H = ⟨V,E⟩ is called a complete guarded cover

for H if each hyperedge e ∈ E occurs in the guard of some guarded block Ξ which covers e.

The width of a set of guarded blocks is the maximum number of hyperedges in any of its guards.

It has been shown that a set of guarded blocks, Ξ, of a hypergraph, H, is a guarded decompo-

37

sition of H if and only if it is a complete guarded cover for H [CJG05]. A set of guarded blocks

is acyclic if the set of blocks is an acyclic set of hyperedges over their vertices.

Definition 3.1.21. A join tree of a set of guarded blocks, Ξ, of a hypergraph, H = ⟨V,E⟩, is a

connected tree, J , whose nodes are elements of Ξ, such that, whenever the vertex x ∈ V occurs in

two blocks of Ξ then x occurs in each block of the unique path connecting them in J .

A set of guarded blocks is acyclic if it has a join tree.

Guarded decompositions may be used to describe known structural decompositions, such as

hypertrees, using simple restrictions of the types of guarded blocks allowed [CJG05].

The structural classes described in this section all have the common feature that they form a

tree of components for which there is a backtrack-free search. Solving an entire instance, requires

solving these components first, and then performing a backtrack-free search on the tree. These

components are hard to solve, but are of a bounded size, so the tractable class of instances is

always defined by the size of the largest component that is permitted. However, there are some

structures which derive tractability without using acyclicity.

3.1.3 Polynomial Solution Size

An alternative structural reason for tractability was discovered that does not depend on a reduction

to acyclic structure.

Fractional Edge Covers

A fractional edge cover [GM06] is the assignment of weights to the edges of a hypergraph such

that each variable has a total (edge) weight of at least one.

The fractional edge cover number of a hypergraph is the smallest total weight which can be

used to form a fractional edge cover.

Grohe and Marx [GM06] have shown that the class of CSPs whose hypergraphs have a bounded

fractional edge cover number can be solved in polynomial time. This is done by showing that given

a CSP, all solutions can be enumerated in polynomial time for a fixed fractional edge cover number.

Fractional edge covers are extended to fractional hypertrees, but in this case identification is hard.

38

3.2 Language

We have seen that it is possible to define tractable classes of CSPs by imposing restrictions on

their structure. That is, on the interaction of their constraint scopes. However, there are other

restrictions which can be used to identify tractable classes.

Tractable classes of CSPs may be defined by imposing restrictions on the relations of the

constraints. A restricted set of relations is called a constraint language.

In this section, we shall give a brief overview of the fundamental language-based definitions.

However, we shall not give a full review of state of the art research in relational tractability as our

work in this thesis is not concerned with extending current relational theory. For a more in-depth

survey of current theory, the interested reader may wish to refer to the works presented at ‘The

Constraint Satisfaction Problem: Complexity and Approximability’ seminar [BGKK10].

Definition 3.2.1. A constraint language over domain D is a set of relations (over D). For a

constraint language, Γ, we denote by CSP(Γ) the set of all CSPs whose constraint relations are in

Γ.

A finite constraint language is tractable if there is a polynomial-time algorithm to solve any

instance from CSP(Γ). An infinite constraint language is said to be tractable if each finite subset

of the language is tractable.

All tractable languages can be defined in terms of closure operators called polymorphisms.

Definition 3.2.2. Given a domain, D, a k-ary operation on D, ϕ, is a function ϕ : Dk → D.

Assuming that assignments in a relation have the same ordering, such as when represented as

tuples, then any operation on D can be extended to an operation on a relation over D by applying

the operation pointwise across sets of assignments.

Definition 3.2.3. Let ϕ : Dk → D be a k-ary operation on D, and let R be an n-ary relation

over D.

For any set of tuples of size k, {t0, t1, . . . tk−1} ⊆ R, in which repeated members are allowed,

the n-ary tuple ϕ (t0, t1, . . . , tk−1) is:

⟨ϕ (t0[0], t1[0], . . . , tk−1[0]) , ϕ (t0[1], t1[1], . . . , tk−1[1]) ,

. . . ,

ϕ (t0[n− 1], t1[n− 1], . . . , tk−1[n− 1])⟩

ϕ (R) = {ϕ (t0, t1, . . . , tk−1) | {t0, t1, . . . , tk−1} ⊆ R}. R is ϕ-closed if ϕ (R) ⊆ R.

39

There are well known tractable relational classes, such as those defined over a constraint

language that is closed under some semilattice operator [JCG97].

Definition 3.2.4. Let D be a partially ordered set. For a, b, c ∈ D, c is the least upper bound

of a and b, denoted a ⊔ b, if

• a ≤ c and b ≤ c

• ∀x ∈ D such that a ≤ x and b ≤ x, c ≤ x

Definition 3.2.5. A semilattice, is a partially ordered set, D, where every pair of elements in D

have a least upper bound also in D. The semilattice operator for D, Φ : D2 → D, returns the

least upper bound of its two arguments. A constraint language Γ over D is semilattice-closed if

each relation in Γ is closed under Φ.

A CSP can be made pairwise consistent (recall Definition 2.6.4) in O
(
c2t2

)
time, where c

is the number of constraints and t is the number of tuples in the constraint which has the most

tuples (cardinality) [JJNV89]. Jeavons, Cohen and Gyssens [JCG97] showed that after performing

pairwise consistency on a CSP in which all of the constraints are semilattice-closed, the resulting

CSP would also be semilattice-closed.

A solution to a CSP in which all of the constraints are semilattice-closed can be found in

polynomial time by firstly imposing pairwise consistency, and then iterating over all remaining

tuples while keeping track of the largest least upper bound value so far seen for each variable.

Once all tuples have been iterated over, the assignment in which each variable takes its largest

observed least upper bound value is a solution to the original CSP.

There can be no more tuples in each constraint of the resulting pairwise consistent CSP than in

each corresponding constraint of the original, so iterating over all tuples in the pairwise consistent

CSP is O (c.t) time, hence for a given semilattice operator, the class of CSPs whose constraint

relations are closed under this operator is tractable.

Expressibility

When a variable is assigned a value during the process of solving a CSP the set of possible values

that may be assigned to the currently unassigned values is often modified accordingly (such as

when using a look-ahead strategy). This is done such that it is more likely (or often guaranteed)

that any future assignments are consistent with the current assignment. The process of iterating

over the currently unassigned variables and restricting their set of possible assignments based

40

on the value assigned to another variable is called propagation. That is, the effect of a variable

assignment is propagated to the currently unassigned variables. A constraint propagator is the

method (or algorithm) by which the effect of a variable assignment can be propagated to (some

or all of) the unassigned variables.

By restricting ourselves to a language consisting of relations for which we have efficient propa-

gators, we are able to make solving CSPs expressed in this language easier. However, by restricting

ourselves in this way, we also reduce the number of CSPs which we are able to express. As such,

a constraint language can be seen as a tradeoff between efficient solution, and expressibility.

Structural tractability requires us to formulate the problem and then try to identify if the

resulting instance lies in a tractable class. With a language-based approach, we can restrict

ourselves in advance to a known tractable language and then try to model a given problem in it.

Definition 3.2.6. A tractable constraint language is called maximally tractable if the addition

of any new relation to the language gives a language which is not tractable.

Proving that a language is maximally tractable is very difficult as it depends on the algorithms

used to solve problems modeled in this language and, as we shall demonstrate in Chapter 5, this

depends on the way in which the constraints are represented.

Although a particular relation may not be in a constraint language, Γ, it is still sometimes

possible to express this relation using a combination of relations which are in Γ. This is done

by constructing a CSP which is solution equivalent to the relation we wish to express, but whose

constraint relations are all members of Γ. In doing this, we are required to associate each position

in the relation we wish to model with a variable. This may be done using ‘hidden variables’ (that

is, additional variables which can be projected out of a solution so the constraint relation of the

reduced solution is the same as the relation we are trying to express). The CSP used to represent

another relation is known as a Gadget.

Definition 3.2.7. Given a constraint language, Γ, and a relation, R, which is not in Γ, a gadget

for R in Γ with construction site X is a CSP G ∈ CSP (Γ) such that the projection of Sol(G) onto

X is the relation R.

Example 3.2.8. Gadget

Consider a simple CSP with three variables, {v0, v1, v2}, over a Boolean domain and two con-

straints in both of which the relation is not-equals. If the scopes of these two constraints are

⟨v0, v1⟩ and ⟨v1, v2⟩ then there is an implied binary equality constraint between v0 and v2. Thus,

in this CSP, whose language contains only the not-equals constraint, we are able to express the

41

equality constraint on the construction site ⟨v0, v2⟩.

When using a given constraint language, it is useful to know the entire set of relations that can

be expressed using it, both directly and using Gadgets. The construction of this set of relations

is possible (for a finite constraint language over a finite domain) using the Universal Gadget (or

Indicator problem) [JCG96].

3.3 Fixed Parameter Tractability

A problem may have several input parameters which define the input size, for example the number

of variables, size of the domain or maximum arity of the constraints. Downey and Fellows [DF99]

have developed strong theory which applies to classes for which certain parameters are bounded

(or fixed).

Definition 3.3.1. A parameter for class C is a function which maps instances of C to the

natural numbers.

A class is called fixed parameter tractable (FPT) with respect to parameter k if there exists

a polynomial p and a solution algorithm that runs in time f (k)× p (n), where f is a function of

k which is independent of the instance size n.

Many complexity results rely on a standard complexity theoretical assumption, that the class

W[1] is not equal to the class FPT. This is the parameterised complexity analogue of the assump-

tion that NP is not equal to P.

3.4 Relational Structure

We have seen that classes of CSPs may be defined in terms of their structure or language (rela-

tions), and that both of these techniques are powerful enough to define tractable classes of CSPs.

It is also possible to combine both techniques, by specifying both a structure and a language, to

further sub-classify CPSs. Furthermore, tractable classes may be defined by the combination of a

structure and a language, both of which are too general to define a tractable class on their own.

In particular, a CSP can be considered as a pair of algebraic structures called relational struc-

tures.

Definition 3.4.1. A relational structure ⟨U,R1, . . . , Rm⟩ consists of a set U called the universe

and a list of relations over that universe.

42

The first (or left hand side) relational structure denotes the hypergraph structure of the CSP,

but with the additional restriction that the constraints whose scopes are in the same relation of the

relational structure must also have the same constraint relation. The second (or right hand side)

relational structure has the same signature (list of arities of the relations) and gives the constraint

relations over these scopes. In this thesis we consider what restrictions need to be made to the

left hand side to obtain tractability for given representations of the right hand side.

In the remainder of this chapter, we consider the structural properties of CSPs in terms of left

hand side relational structures. A relational structure permitted by a CSP is a labelled ordered

hypergraph of the constraint scopes: hyperedges with the same label having the same relation.

Definition 3.4.2. CSP ⟨V,D,C⟩ permits structure ⟨U,R1, . . . , Rm⟩ exactly when U = V and

there is a partition C = C1 ∪ · · · ∪ Cm where, for each Ci, every constraint in Ci has the same

relation and Ri = {σ | ⟨σ, ρ⟩ ∈ Ci}.

A class H of relational structures is tractable if the class of all instances permitting a structure

in H is tractable.

It will be convenient to consider the structural hypergraph of a relational structure, which just

considers any relational tuple as the set of its components.

Definition 3.4.3. For any tuple t with arity r we define {t} = {t[1], . . . , t[r]}.

For any relation ρ we define {ρ} = {{t} | t ∈ ρ}. For any relational structure S = ⟨U,R1, . . . , Rm⟩

we define hyper(S) =
∪m

i=1 {Ri} and the structural hypergraph H(S) = ⟨U,hyper(S)⟩.

Example 3.4.4. Consider the SAT instance whose implicit logical clauses are:

v1 ∨ v2, v2 ∨ v3 ∨ v4 and v1 ∨ v4.

These three clauses may be represented as tuples by the following three constraints:

⟨⟨v1, v2⟩, {⟨T, T ⟩, ⟨T, F ⟩, ⟨F, T ⟩}⟩,

⟨⟨v2, v3, v4⟩, {⟨T, T, T ⟩, ⟨T, F, T ⟩, ⟨T, F, F ⟩, ⟨F, T, T ⟩, ⟨F, T, F ⟩, ⟨F, F, T ⟩, ⟨F, F, F ⟩}⟩,

⟨⟨v1, v4⟩, {⟨T, T ⟩, ⟨T, F ⟩, ⟨F, T ⟩}⟩

This instance permits (at least) two structures: ⟨V, {⟨v1, v2⟩, ⟨v1, v4⟩}, {⟨v2, v3, v4⟩}⟩ and

⟨V, {⟨v1, v2⟩}, {⟨v1, v4⟩}, {⟨v2, v3, v4⟩}⟩.

The structural hypergraph of these two relational structures has vertex set V and set of hy-

peredges {{v1, v2}, {v1, v4}, {v2, v3, v4}}.

43

The relational structure of an instance captures precisely the fact that scopes may be of

different types. Instead of having just one hyperedge relation we have several: one for each type

of constraint. Here theory and practice meet.

We can now extend the hypergraph theory from Section 3.1 to the structural hypergraphs of

relational structures.

Definition 3.4.5. Let S = ⟨U,R1, . . . , Rm⟩ be any relational structure.

The Gaifman graph, G(S), of S has vertex set U . A pair of vertices v and w are an edge of

G(S) if there is a hyperedge of hyper(S) containing v and w.

Given an ordering ⟨v1, . . . , vn⟩ of U the induced graph for this ordering is obtained from the

Gaifman graph by processing the vertices, from last to first; when vertex v is processed, all its

earlier neighbours are connected.

After this process, the width of any v ∈ U is the number of its earlier neighbours. The width

of S, for this ordering, is the maximum width of any v ∈ U .

The treewidth, tw(S), of S is its minimal width over all orderings. For a class, H, of relational

structures, we denote by tw(H) the maximum treewidth of any structure in H. We say tw(H) =∞

if the treewidth is unbounded.

Definition 3.4.6. Let S = ⟨U,R1, . . . , Rm⟩ be any relational structure and let L(S) = {⟨i, t⟩ | i ∈

{1, . . . ,m}, t ∈ Ri}.

The incidence graph, IncG(S), of S is the bipartite graph, ⟨V,E⟩, where

• V = U ∪ L(S), and

• E = {⟨v, ⟨i, t⟩⟩ | v ∈ U, ⟨i, t⟩ ∈ L(S), v ∈ {t}}.

The incidence width of relational structure S, denoted iw(S), is the treewidth of its incidence

graph, that is, tw(IncG(S)).

Szeider [Sze03] uses incidence width to define tractable SAT classes. We shall revisit this result

in more detail in Chapter 5 where we compare new tractable classes to these SAT classes.

Definition 3.4.7. A relational structure A = ⟨A,R1, . . . , Rm⟩ is a substructure of a relational

structure B = ⟨B,R′
1, . . . , R

′
m⟩ if A ⊆ B and, for each i, Ri ⊆ R′

i.

A homomorphism from a relational structure A = ⟨A,R1, . . . , Rm⟩ to a relational structure

B = ⟨B,R′
1, . . . , R

′
m⟩ is a mapping h : A → B such that for all i and all tuples t ∈ Ri we have

h(t) ∈ R′
i.

44

A relational structure S is a core if there is no homomorphism from S to a proper substructure

of S. A core of a relational structure S is a substructure S′ of S such that there is a homomorphism

from S to S′ and S′ is a core. It is well known that all cores of a relational structure S are

isomorphic. Therefore, we often speak of the core, Core(S), of S. For a class, H, of relational

structures, we denote by Core(H) the class of relational structures {Core(S) | S ∈ H}.

Example 3.4.8. Consider the relational structures

S = ⟨U = {0, 1, 2, 3} , R0 = {⟨0, 1⟩, ⟨1, 0⟩, ⟨0, 2⟩, ⟨2, 0⟩, ⟨1, 3⟩, ⟨3, 1⟩, ⟨2, 3⟩, ⟨3, 2⟩}⟩,

S′ = ⟨U = {0, 1, 2} , R′
0 = {⟨0, 1⟩, ⟨1, 0⟩, ⟨0, 2⟩, ⟨2, 0⟩}⟩

and

S′′ = ⟨U = {0, 1} , R′′
0 = {⟨0, 1⟩, ⟨1, 0⟩}⟩.

S′ is a substructure of S as there is a homomorphism from S to S′ with the mapping:

{0→ 0, 1→ 1, 2→ 2, 3→ 0}

However, S′ is not a core as there is a homomorphism from S′ to S′′ with the mapping:

{0→ 0, 1→ 1, 2→ 1}

S′′ is a core as there is no homomorphism from S′′ to any proper substructure of S′′.

For bounded arity, the structural classes are precisely determined by the following theorem.

Theorem 3.4.9 (Corollary 19 of Grohe [Gro07]). Assuming that W[1] is not FPT. For ev-

ery recursively enumerable class H of relational structures1 of bounded arity, the set of CSPs

which permit a structure in H is tractable (for the extensional representation) if and only if

tw(Core(H)) <∞.

1Non-recursively enumerable are of no practical interest.

45

3.5 Summary

In this chapter we have given a brief survey of current tractability results. We have seen that there

have been two main approaches for identifying tractable classes: structure, in which properties of a

CSPs underlying hypergraph are considered, and language, in which the relations used to express

the constraints are considered. We have also seen that there is a hybrid approach, relational

structure, in which a combination of both the hypergraph structure and the constraint relations

may be used to define tractable classes.

In the real world, constraint practitioners will use a constraint representation which is appro-

priate for modeling the problem in hand, and the results given in this section do not always carry

over to non-theoretical representations. The constraint representation required for a particular

class of problems to have an efficient solution technique is critical to the uptake of any tractability

result.

46

Chapter 4

Algorithmic Complexity Analysis

Model

Chapter 5 contains proofs which rely on a detailed complexity analysis of several non-trivial al-

gorithms. In order to provide consistent data structures with known operational complexities be-

tween these algorithms, they are analysed with respect to the framework presented in this chapter.

Analysing the computational complexity [CLRS09, End10, BBJ07, Fer09] of an algorithm is

performed with respect to a Turing equivalent [Tur36] computational model. The Random Access

Machine [CRR72] models the Von Neumann architecture [vN93], which is analogous to modern

computers.

Definition 4.0.1. A Random Access Machine (RAM) [CRR72] consists of an unbounded

sequence of addressable registers capable of storing arbitrary integers, a processor capable of per-

forming a set of elemental operations, an addressable list of elemental operations to perform, and

a pointer to the current operation being executed.

The set of registers is called the memory, and the address of a register is an integer which may

be stored as the value of another register. When complex data structures are stored over several

contiguous registers, the address of the first register in the block is called the base address of the

data structure. The processor contains a single internal register called the accumulator which is

used for storing intermediate calculated values during processing.

Each elemental operation requires some constant amount of time to perform, so are defined

47

as taking unit time. The elemental operations allow us to consider the following to require unit

time:

• Input or output of a single register.

• Moving the execution pointer to another position in the list.

• Moving the execution pointer to another position in the list only if the accumulator is 0.

• Reading from, or writing to, a single register.

• Integer arithmetic (addition, subtractions, multiplication and division).

Under the RAM model, the complexity of the algorithm can be determined by considering the

number of elemental operations required, as a function of the input size, to produce the expected

output.

For readability and convenience, the algorithms presented in this thesis are expressed using

pseudocode and complex data structures. This provides a higher level of abstraction than elemen-

tal operations on integer registers, and allows the general complexity of certain concepts common

to several of the algorithms to be considered in advance.

Proposition 4.0.2. Let D be a data structure of size at most d. Reading D from memory is

O (d) time, and writing D to memory is O (d) time.

Proof. By Definition 4.0.1, reading from or writing to a single register takes unit time. When

stored in memory, D occupies d contiguous registers, so d individual reads or writes must be

performed to either store or retrieve D.

Comparing two complex data structures can be performed by comparing them pointwise.

Proposition 4.0.3. Let DA and DB be two data structures of size at most d, and let bA and bB

be their respective base addresses. Equality comparison of DA and DB is O (d) time.

Proof. By Definition 4.0.1, DA is stored in a contiguous block of registers from bA to bA + d− 1,

and DB in a contiguous block of registers from bB to bB+d−1. Equality between each pair bA+ i

and bB + i can be performed in unit time for i = 0 . . . d− 1.

An array is a complex data structure which may be used as a container for other complex data

structures. So that the required contiguous block of registers can be allocated, it is required that

both the maximum number of elements in the array, and the maximum size of the data structures

it contains, are known in advance.

48

Definition 4.0.4. Let D be a data structure with maximum size d, and let x be an integer. An

array containing at most x elements of type D is constructed using a contiguous block of d.x+ 3

registers as follows: The first three registers are reserved for the current number of elements held

in the array, the maximum number of elements the array can hold (x), and the maximum size of

each element (d) respectively. The remaining registers are used to store elements of type D such

that the base address of the element in the ith position is d.i+3 relative to the base address of the

array. The space required to store an array is O (d.x).

New elements are always inserted into the first available position. Whenever an element that

is not in the last occupied position is removed, the element from the last occupied position is moved

into the position vacated by the element being removed.

As we are only required to initialise the first three registers of an array, we can construct an

empty array of arbitrary size in constant time.

Proposition 4.0.5. Let D be a data structure of size at most d, and let x be an integer. Con-

structing an array capable of containing at most x elements of size at most d is O (1) time.

Proof. Dy Definition 4.0.1 of a RAM, it takes unit time for each write of 0, x and d to the first

three registers respectively.

Because a maximum data structure size is imposed, addressing elements of the array can be

performed in constant time.

Proposition 4.0.6. Let D be a data structure with maximum size d, and A be an array containing

elements of type D. Addressing the element occupying the ith position of A is O (1) time.

Proof. By Definition 4.0.4 the base address of an element can be calculated from its index us-

ing integer arithmetic, and by Definition 4.0.1 for a RAM, integer arithmetic operations can be

performed in constant time.

The array has been defined such that its parameters and current number of elements are

explicitly stored. It can be seen that doing this only adds a unit time operation to each offset

calculation, but may provide optimisations where these values do not need to be inferred. As the

array maintains the condition that if there are x elements, then they occupy the first x positions,

the the next available position to insert at can always be determined from the stored count of the

current number of elements (rather than needing to perform a scan of the array).

49

Proposition 4.0.7. Let D be a data structure with maximum size d, and A be an array containing

elements of type D. Let bA be the base address of A, and let c be the count of the current number

of elements in A, stored at bA. Determining the base address for the insertion of a new element

of type D can be performed in time O (1)

Proof. As by Definition 4.0.4 elements are inserted into the first unoccupied position, the base

address of the next available position can be determined using integer arithmetic as bA+c.d+3. By

Definition 4.0.1 for a RAM, integer arithmetic operations can be performed in constant time.

As determining the array position into which a new element will be inserted is constant time,

the cost of insertion will always be the cost of writing the element data structure.

Proposition 4.0.8. Let D be a data structure with maximum size d, and A be an array containing

elements of type D. Inserting an element of type D into A can be performed in time O (d).

Proof. The result follows from Proposition 4.0.7 that it requires O (1) time to locate the base

register at which to write the element, and Proposition 4.0.2 that it requires time O (d) to write

a data structure of type D. By Definition 4.0.1 for a RAM, the integer arithmetic required to

increment the array membership counter requires O (1) time.

Moving the last element to take the position of one being deleted requires time. However,

if a count of the current number of elements was not maintained, then insertion would requires

scanning the array for the next free position. This means that deleting would have to overwrite

the affected registers with zeros in order to ‘free’ the position, which would require the same order

of time as moving an element.

Proposition 4.0.9. Let D be a data structure with maximum size d, and A be an array containing

elements of type D. Deleting the element at position i can be performed in time O (d).

Proof. By Definition 4.0.4, determining the position of the last element in the array is O (1)

time. If i is not the last element, then the last element is written over the ith element. By

Proposition 4.0.6, addressing the last element is O (1) time, and by Proposition 4.0.2 both reading

the data structure from the last position and writing it to the ith position is O (d) time. By

Definition 4.0.1 for a RAM, the integer arithmetic required to decrement the array membership

counter is O (1) time.

In the algorithms considered in this thesis, projection of an array onto a subset of its positions

will be required.

50

Proposition 4.0.10. Let D be a data structure with maximum size d, and A be an array con-

taining elements of type D. Given an array of at most x integer values representing indices of A,

constructing A′ as the projection of A onto these positions in the given order can be performed in

O (d.x).

Proof. By Proposition 4.0.5, constructing an empty array that can contain at most x data struc-

tures of size at most d is O (1) time. By Proposition 4.0.6 locating an element in A by index is

O (1) time. By Proposition 4.0.2 reading a data structure of size at most d is O (d) time. By

Proposition 4.0.8, inserting a data structure of size at most d into an array is O (d) time. For each

of the x positions, the value in A at that position is located and read, then inserted into A′. This

therefore requires O ((1 + d+ d) .x), so O (d.x) time.

An array may be used to represent a set by enforcing that it may not contain two elements

that are the same. Determining whether a candidate is already in the set requires scanning the

array to determine whether it is already a member. This is equivalent to determining the position

at which the element first occurs.

Proposition 4.0.11. Let D be a data structure of size at most d, and let x be an integer. Deter-

mining the index of the first instance of an element in an array, A, containing at most x elements

of type D requires O (d.x) time.

Proof. By Proposition 4.0.3, comparing any two elements of type D is O (d). By Definition 4.0.1

for a RAM, performing the integer arithmetic required to increment an iterator over the elements

of A requires unit time, and the elements stored in at most x sequential index locations will be

compared to the target element.

Sets may contain the same elements, but in a different order. For container data structures

such as this, an equivalence comparison is required as the equality comparison considered in

Proposition 4.0.3 would only evaluate to true for two equivalent sets if the members were recorded

in the same order.

Proposition 4.0.12. Let D be a data structure of size at most d, and let x1, x2 and xmin be

integers. Let A1 and A2 be two set arrays containing at most x1 and x2 elements of type D

respectively, and let xmin be the smaller of x1 and x2. Determining whether A1 and A2 contain

the same elements requires O
(
xmin

2.d
)
time.

Proof. A1 and A2 contain the same members if they both contain the same number of elements

and each element of A1 is in A2. If this is true, then both A1 and A2 cannot contain more than

51

xmin elements (being the maximum size of the smaller array). To determine whether each element

of A1 is in A2 it is necessary to compare each of the at most xmin elements of A1 against each of

the at most xmin elements of A2. This is xmin
2 comparisons, each of which takes O (d) time by

Proposition 4.0.3, so is O
(
xmin

2.d
)
time.

Several of the algorithms analysed in this thesis contain set union operations of the type

X ← X ∪ Y , that is a set union in which one of the input sets is replaced with the result. If the

elements of each set are of the same type, and we know that the maximum number of elements

in the result set may never be greater than the maximum number of elements in the replaced set,

then we may perform the set union operation in place without having to allocate a new array.

Proposition 4.0.13. Let SA and SB be two sets containing at most xA and xB elements of size

at most d respectively. If max (|SA ∪ SB |) = max (|SA|), then inserting the required elements from

SB into SA such that SA becomes the union of SA and SB (SA ← SA ∪ SB) is O
(
xB .xA.d

2
)

Proof. By Proposition 4.0.11, scanning SA to determine membership of an element is O (d.xA)

time. At most, this is performed for xB elements in SB, and in the worst case each element will

be inserted into wA, which by Proposition 4.0.8 requires O (d) time.

Similarly, several of the algorithms in this thesis contain set difference operations of the type

X ← X \ Y , that is a set difference in which one of the input sets is replaced with the result.

Again, this operation may be performed in place.

Proposition 4.0.14. Let SA and SB be two sets containing at most xA and xB elements of

size at most d respectively. Removing the required elements from SA such that it becomes the set

difference of SA and SB (SA ← SA \ SB) is O
(
xB .xA.d

2
)

Proof. By Proposition 4.0.11, scanning SA to determine membership of an element is O (d.xA).

At most, this is performed for xB elements in SB and in the worst case each iteration will require

an element from SA to be deleted. By Proposition 4.0.9, deleting a data structure of size d from

an array requires time O (d).

An associative array can be used to provide a dictionary data structure in which one data

structure may be indirectly addressed by the value of another.

Definition 4.0.15. Let Dk be a data structure with maximum size dk, let Dv be a data structure

with maximum size dv, and let x be an integer. An associative array mapping at most x keys

of type Dk to values of type Dv is constructed using a contiguous block of (dk.x+ 3) + (dv.x+ 3)

52

registers as follows: The first dk.x + 3 registers starting from the base address contain an array,

Ak, with x elements of type Dk, and the remaining dv.x+ 3 registers contain an array, Av, with

x elements of type Dv. For each index position i = 0 . . . x− 1, the key Ak [i] is associated with the

value Av [i]. Given the index position of a key in Ak, ak, the base address of the corresponding

value in Av as an offset from the base address of the associative array is (dk.x+ 3)+ (dv.ak + 3).

The space required to store the key and value arrays is O (dk.x) and O (dv.x) respectively, so

the space required to store an associative array is O (x. (dk + dv)).

As an associative array is defined in terms of a key and value array, its construction is no

harder than constructing two arrays.

Proposition 4.0.16. Let Dk be a data structure of size at most dk, Dv be a data structure of size

at most dv, and let x be an integer. Constructing an empty associative array capable of containing

at most x mappings from elements of size at most dk to elements of size at most dv is O (1).

Proof. By definition, an associative array is constructed from two arrays. By Proposition 4.0.5,

constructing each empty array is O (1), so constructing an empty associative array is also O (1).

Addressing a value in an associative array requires finding the position of the key in the key

array.

Proposition 4.0.17. Let Dk be a data structure with maximum size dk, and let Dv be a data

structure with maximum size dv. Let M be an associative array mapping at most x keys of type

Dk to values of type Dv. Given a data structure of type Dk, finding the base address of the

corresponding value in M is O (d.x).

Proof. By Proposition 4.0.11, finding the index position of the given key in M is O (d.x). By

Definition 4.0.15 for an associative array, finding the base address of a value given the index

position of the key can be performed in unit time using integer arithmetic.

The associative array is reliant in the fact that insertions into both the key and value arrays

occur at the same position. As both arrays must always contain the same number of elements, this

is trivially maintained by the insertion and deletion properties of the arrays. As such, inserting

into an associative array is exactly equivalent to performing an insertion into the key array and

an insertion into the value array.

Proposition 4.0.18. Let Dk be a data structure with maximum size dk, and let Dv be a data

structure with maximum size dv. Let M be an associative array mapping at most x keys of type

53

Dk to values of type Dv. Inserting a key value pair where the key is not already in the key array

requires O (dk + dv) time.

Proof. By Definition 4.0.4 for an array, all new insertions are performed to the next available

position. By Definition 4.0.15 for an associative array, both the key and value arrays contain the

same number of elements at any given time, so inserting into the next available position for both

maintains the correct structure. By Proposition 4.0.8 inserting into the key arrays will take time

O (dk), and into the value array will take time O (dv).

A common data structure used by the algorithms in this thesis as that of an associative array

which maps from some data structure to and array of some other data structure. As such, it is

convenient to consider the common initialisation case where a key is inserted and the corresponding

value is initialised as an empty array at the same time.

Proposition 4.0.19. Let Dk be a data structure with maximum size dk, and let Av be an array

data structure with maximum size dv. Let M be an associative array mapping at most x keys of

type Dk to values of type Av.

Inserting a key of type Dk and corresponding value of type Av into M requires time O (dk)

when the key does not already exist in the key array and the value value is an empty set of type

Av.

Proof. By Definition 4.0.15 for an associative array, the insertion position in the value array will

be the same as for the key array. By Definition 4.0.4 for an array, the next insertion position can

be determined from the current membership count. By Proposition 4.0.8, inserting into the key

array requires time O (dk). The base address for the new value can be determined from the base

address of the newly inserted key, and the counter of the value array incremented, using integer

arithmetic. By Proposition 4.0.5 constructing an empty array of type Av requires time O (1).

54

Chapter 5

Interaction Width

Most theoretical structural tractability results, such as those detailed in Chaper 3, tacitly rely

on the fact that constraint relations are listed explicitly. However, since table constraints have

such poor propagation algorithms, practitioners prefer to use more succinct implicit constraint

representations such as global constraints [vHK06] or SAT clauses [GW02, CV12].

The important theorem which states that the class of instances with acyclic hypergraphs is

tractable [BFMY83] is not true for implicit representations. The class of CSPs which contain an

‘anything goes’ constraint over all variables is tractable when listed explicitly because the ‘anything

goes’ constraint dominates the size of the instance, but this constraint has only a small constant

size in an implicit representation. This is an anomaly, a break between theory and practice, which

must be addressed.

The discrepancy between the theoretical and practical world that is caused by this anomaly

is not just limited to border cases. In fact, when naturally represented as clauses, the acyclicity

result does not even hold for a class as important as SAT since any SAT instance can be reduced

in polynomial time to a pair of acyclic SAT instances.

Example 5.0.20. Given any SAT instance P we construct two acyclic SAT instances:

- Add the universal clause disallowing ‘all F’ to P to build the acyclic instance PF .

- Add the universal clause disallowing ‘all T’ to P to build the acyclic instance PT .

If P has a solution, then at least one of the two acyclic instances, PF and PT , will have a solution.

Conversely, if at least one of the two acyclic instances has a solution, then this will be a solution

to the original instance P .

55

In this chapter we begin to address the discrepancies between theory and practice by developing

theory that gives structural tractability results for some implicit representations.

Binary Decision Diagrams [Lee59] are rooted directed acyclic graphs which may be used to

represent Boolean functions, such as SAT clauses. Each internal node represents a variable, and

has two edges representing an assignment of either TRUE or FALSE. The leaves indicate whether

the clause represented by the path from the root to the leaf is a valid assignment. Bryant developed

a more concise representation, known as Ordered Binary Decision Diagrams [Bry92], in which the

variable order is fixed and the graph is reduced such that there are only two leaves indicating

validity and the graph for any given function and variable ordering is unique. In [US94], Uribe

and Stickel provide an experimental comparison of the performance of solving SAT problems

using Ordered Binary Decision Diagrams verses the standard Davis-Putnam algorithm [DLL62]

commonly used in SAT solvers.

The Trie data structure (first described by de Kleer in [dK92]) is another reduced graph

structure that van be used to concisely represent Boolean functions. In the Trie structure each

internal node is a clause operator (such as ∧ or ∨), and each edge is labeled with a set of literals

and negated literals such that each clause is represented by some path from the root node to a

leaf node. Zhang and Stickel show how the Davis-Putnam algorithm can be implemented using

Tries in [ZS94]

More recently, there has been a series of papers describing more succinct representations of

higher order constraints and attempts to improve their applicability in constraint solvers.

A known compression algorithm for the positive representation has been used in the literature

in the form of compressed tuples [FM01, KB05]. Katsirelos and Walsh [KW07] consider the

feasibility of Generalised Arc Consistency [BR97, Mac77] on this compressed representation.

Chen and Grohe [CG06] described the GDNF representation which is exactly the compressed

tuples representation. They also described a more succinct Decision Diagram representation which

extends Ordered Binary Decision Diagrams to higher order constraints. In both cases they identify

precisely the tractable structural classes.

We shall consider a simple extensional representation which naturally expresses SAT. In par-

ticular, we consider the analogous negative extensional representation and a mixed representation

which allows both the positive and negative extensional representations.

We shall introduce a new width measure called interaction width and show that by bounding

this we are able to convert instances from the mixed representation into the positive representation

in polynomial time. We shall show that this allows us to generate new structurally tractable classes.

56

We shall extend the current tractability results for SAT by comparing our classes with a

result by Szeider [Sze03] and showing that they are incomparable. A similar comparison to the

GDNF results of Chen and Grohe [CG06] show that our results are also incomparable. By defining

interaction width on relational structures we develop a complete dichotomy for the so calledmerged

structure in the mixed representation.

5.1 Structural Observations

As previously stated in Chapter 3, the treewidth of a CSP’s hypergraph is often seen as a measure

of its complexity.

Example 5.1.1. The hypergraph of a CSP consisting of a single constraint of arity n has a

treewidth of n− 1, and the hypergraph of a CSP consisting of several constraints which make up

a clique over n variables also has a treewidth of n − 1. However, while the CSP with a single

constraint is clearly very easy to solve when presented using an explicit positive representation,

the CSP whose constraints form a clique is potentially much harder to solve.

The treewidth of a CSP’s hypergraph is based on the connectivity of variables, so has its lowest

possible value determined by the largest constraint scope. However, we have just demonstrated

that a high arity does not imply high complexity of solution.

Some structural classes use reduced structures to generate results. Recall Theorem 3.4.9 which

gives the dichotomy result by Grohe [Gro07]. This result is defined by the treewidth of the core

of the structure.

For a given instance, the treewidth of its core may be smaller than that of its original structure.

However, structural homomorphisms, which define the core, do not affect the arity of the resulting

constraints. For example, the CSP consisting of a single constraint is its own core.

We observe that we might reduce the treewidth of a CSP’s structure by merging variables so

that the arity of the largest constraint scope is reduced. However, this merge must be performed

in polynomial time in order to generate useful complexity results.

Example 5.1.2. Consider a CSP consisting of a single constraint over n variables. The n variables

can be replaced with a single variable whose domain is the set of tuples in the original constraint

relation. The original constraint is then replaced with a single unary constraint on the new variable

which allows all values in its domain. This merged version of the CSP has a treewidth of 0.

In this example, each variable only occurs in the scope of the single constraint. The natural

extension to CSPs with more than a single constraint is to consider merging those variables which

57

are members of precisely the same set of constraint scopes. As such, the effects that the interactions

between these constraints have on the complexity of the merging process must be examined.

The interactions between constraints have been considered before, for example in the dual

hypergraph [Dec03]. However, our observation is that the constraint representation is also critical

to applying this structural compression.

Merging variables which share the same interaction cannot affect the edge-based notions of

structural width, such as hypertree width. In fact, it cannot alter the tractability at all because it

is also possible to unmerge the merged variables in polynomial time. Therefore, merging variables

only aims to simplify and describe properties of structures, namely similarities between variables.

Example 5.1.3. Consider the class of CSPs consisting of a single constraint. The hypergraph

structure of any CSP in this class has a hypertree width of 1 and so this class is easy to solve. The

merged structure of these hypergraphs has a single vertex, and thus a treewidth of 0, so are also

easy to solve. However, the class of hypergraphs with a hypertree width of 1 contains all acyclic

hypergraphs, yet the merged structure can have arbitrary treewidth and so the treewidth of the

merged structure is not as general as the hypertree width because the merged structure must also

be tractable. (In fact, they are still acyclic.)

So, whilst merging variables cannot alter complexity, it does allow different views of the same

tractable classes. It is not clear what benefit this brings to the positive extensional representation,

but it does allow the same simplification to be applied to other extensional representations for

which far fewer tractable classes are known.

Existing structural tractability results may be applied to classes of constraints under any

representation for which there is a polynomial time transformation to the positive extensional

representation required for the result, provided that the applicable structural properties are not

altered. In this chapter we consider a particular succinct representation for which this transfor-

mation is not polynomial time in general. We define a new structural property, called interaction

width, which when bounded allows us to partition the variables of an instance given in this repre-

sentation in such a way that the instance produced by merging the variables in each of these sets

not only allows for a polynomial time transformation into the positive extensional representation,

but also preserves existing structural properties.

58

5.2 Tractability with Respect to Representation

Constraint relations are often expressed by listing all allowed assignments. For finite CSPs, it is

also possible to express a relation by listing all disallowed assignments.

Definition 5.2.1. Let ⟨V,D,C⟩ be a CSP, and let c = ⟨σ, ρ⟩ be a constraint of arity r from C.

The positive (or extensional) representation of c is a list of the variables in σ followed by

the tuples in ρ.

The negative representation of c is a list of the variables in σ followed by the tuples in

D (σ [1])× . . .×D (σ [r]) that are not in ρ.

The mixed representation of c is a Boolean flag, which if T is followed by the positive

representation of c, and if F by the negative representation.

The GDNF representation [CG06] of c is a list of the variables in σ followed by a list of

expressions of the form A[1]× · · · ×A[r] where ρ is the union of these set products.

In the negative (and hence the mixed) representations, domain values which do not occur as

literals in any forbidden tuple could appear in solutions. All such (missing) literals in any domain

are equivalent in the sense that they are interchangeable in any solution. As a general method,

the symbol + is used to denote a domain which contains some value(s) that may occur in a

solution, but which do not occur explicitly in the chosen representation. Conversely, − is used to

denote a domain in which every value that may occur in a solution also occurs explicitly in the

representation.

The encoding of a CSP may now be described using any suitable constraint representation.

Definition 5.2.2. Let Θ be any constraint representation. A Θ instance encoding is comprised

of a list of variables, the list of domain types corresponding to these variables (in the same order),

and a list of constraints represented using Θ.

Example 5.2.3. Recall the SAT instance from Example 3.4.4 whose logical clauses are: v1 ∨ v2,

v2 ∨ v3 ∨ v4 and v1 ∨ v4.

A positive representation of this instance is the following:

[v1, v2, v3, v4][−,−,−,−]

⟨v1, v2⟩, ⟨T, T ⟩, ⟨T, F ⟩, ⟨F, T ⟩

⟨v2, v3, v4⟩, ⟨T, T, T ⟩, ⟨T, F, T ⟩, ⟨T, F, F ⟩, ⟨F, T, T ⟩, ⟨F, T, F ⟩, ⟨F, F, T ⟩, ⟨F, F, F ⟩

⟨v1, v4⟩, ⟨T, T ⟩, ⟨T, F ⟩, ⟨F, T ⟩

59

A negative representation of this instance is the following:

[v1, v2, v3, v4][+,−,+,+]

⟨v1, v2⟩, ⟨F, F ⟩

⟨v2, v3, v4⟩, ⟨T, T, F ⟩

⟨v1, v4⟩, ⟨F, F ⟩

A mixed representation of this instance may be the following:

[v1, v2, v3, v4][−,−,+,+]

T, ⟨v1, v2⟩, ⟨T, T ⟩, ⟨T, F ⟩, ⟨F, T ⟩

F, ⟨v2, v3, v4⟩, ⟨T, T, F ⟩

F, ⟨v1, v4⟩, ⟨F, F ⟩

A GDNF representation of this instance may be the following:

[v1, v2, v3, v4][−,−,−,−]

⟨v1, v2⟩, {T} × {F, T} ,

{F, T} × {T}

⟨v2, v3, v4⟩, {F} × {F, T} × {F, T} ,

{F, T} × {F} × {F, T} ,

{F, T} × {F, T} × {T}

⟨v1, v4⟩, {T} × {F, T} ,

{F, T} × {T}

60

In order to refer to a class of instances under one of these representations, we define the

following:

Definition 5.2.4. For any class C of CSPs we denote by:

• Positive(C) the set of positive representations of these instances.

• Negative(C) the set of negative representations of these instances.

• Mixed(C) the set of mixed representations of these instances.

• GDNF(C) the set of GDNF representations of these instances.

We can now consider the relative tractability of classes of instances under these representations.

Definition 5.2.5. For a representation, Θ, we say that a class T of Θ instances is tractable if

there exists a solution algorithm that runs in time polynomial in the size of the input Θ instance.

A representation Θ is more structurally tractable than a representation Θ′ if every struc-

tural class of CPSs that is Θ′ tractable is also Θ tractable.

As complexity of solution is defined relative to the input size, the relative succinctness of

representations is important.

Definition 5.2.6. Let Θ and Θ′ be two methods for representing CSPs. We say that Θ′ is as

succinct as Θ if there is a polynomial p for which, given any instance P represented in Θ with

size |P |Θ there exists a representation of P in Θ′ of size at most p (|P |Θ).

Corollary 5.2.7. Let Θ′ be a representation that is as succinct as a representation Θ and let

there be a polynomial time reduction from Θ to Θ′. Any class which is structurally tractable for

Θ′ is also structurally tractable for Θ.

In other words, where polynomial time reductions are known and as the representation becomes

(strictly) more succinct, the tractable structural classes become smaller. This allows us to make

a very important observation following Grohe’s theorem (Theorem 3.4.9).

Corollary 5.2.8. Assuming that W[1] is not FPT. Let H be a recursively enumerable class of

relational structures with bounded arity. Negative(H), Mixed(H) and GDNF(H) are tractable for

any bounded domain size if and only if tw(Core(H)) <∞.

Proof. For bounded arity and domain size, the positive representation is as succinct as each

of these three other representations and polynomial time reductions from these to the positive

representation exist.

61

For any succinct representation, it is thus only classes of structures with unbounded arity, or

classes of CSPs with unbounded domain size, whose tractability must still be characterised. In

the case of GDNF, such a characterisation has been found [CG06].

Theorem 5.2.9 (Theorem 14 of Chen and Grohe [CG06]). Assuming that W[1] is not FPT. Let

H be a recursively enumerable class of relational structures. Then GDNF(H) is tractable if and

only if the cores of the structures in H have bounded incidence width (recall Definition 3.4.6).

5.3 Interaction Width of Relational Structures

In earlier work, we defined Interaction Width in relation to hypergraphs by considering the effects

of a mixed representation on structural decompositions [HCG06].

The following example shows that when considering succinct representations it is not enough

to consider just the hypergraph structure.

Example 5.3.1. Consider any class H of hypergraphs of unbounded arity. The class includes the

hypergraph structure of each of the relational structures {Ai | i = 1, 2, . . .}, where An has universe

{1, . . . , n} and relations R1, . . . , Rn, where each Ri = {⟨1, . . . , n⟩}. Since An is a core and has

incidence width precisely n we know, by Theorem 5.2.9, that the class GDNF(H) is intractable.

On the other hand, consider the class of relational structures {Bi | i = 1, 2, . . .}, where Bn has

universe {1, . . . , n} and just one n-ary relation containing just one tuple. This class of relational

structures has unbounded arity but the set of GDNF instances permitting some structure in this

class is tractable.

So, just considering hypergraph structure there are no tractable structural classes of unbounded

arity. By considering relational structure we find many tractable structural classes.

To compare our results with those presented by Chen and Grohe for GDNF [CG06], whose

results relate to the cores of the structures, we now define Interaction Width with respect to

relational structures [CGH09].

When considering only the hypergraph of a CSP, a region is a maximal set of variables with

the following property: No hypergraph edge contains some, but not all, of these variables. By

considering the relational structure, these regions may be further refined.

The notion of Interaction Width is the same for both versions: the maximum number of distinct

regions occurring on any constraint in the CSP.

62

Definition 5.3.2. Let S = ⟨U,R1, . . . , Rm⟩ be a relational structure. We say that {v′, w′} ⊆ U

is S-similar to {v, w} ⊆ U if there exists some Ri ∈ {R1, . . . , Rm} and t, t′ ∈ Ri where for some

j, k we have that t [j, k] = ⟨v, w⟩ and t′ [j, k] = ⟨v′, w′⟩.

For the relational structure S with universe U , S-similar is a symmetric binary relation over

the set of unordered pairs from U . For each pair of variables in the universe, it defines the set of

pairs with which they can be interchanged in at least one relation. Trivially, every pair of variables

that both occur together in a tuple of some relation is S-similar-related to itself.1

Example 5.3.3. Let R1, R2 and R3 be three relations over the universe

U = {va, vb, vc, vd, ve, vf , vg, vh, vi, vj , vk}:

R1 = {⟨va, vb, vc, vd⟩, ⟨ve, vf , vc, vd⟩}

R2 = {⟨ve, vf , vg, vh⟩, ⟨vi, vj , vg, vh⟩}

R3 = {⟨vj , vk⟩}

Now let SA and SB be two relational structures:

SA = ⟨U \ {vk} , R1, R2⟩

SB = ⟨U,R1, R2, R3⟩

In SA, {va, vb} is SA-similar to {ve, vf} because R1 contains ⟨va, vb, vc, vd⟩ and ⟨ve, vf , vc, vd⟩.

Likewise, in SB , {va, vb} is also SB-similar to {ve, vf}.

The SA-similar and SB-similar relations for SA and SB from Example 5.3.3 are shown in

Figure 5.1 on page 65.

Definition 5.3.4. Let S = ⟨U,R1, . . . , Rm⟩ be a relational structure. The equivalence relation

S-equivalent is the transitive closure of S-similar.

For a relational structure S, the S-equivalent relation partitions all possible unordered pairs

from the universe into disjoint equivalence classes. We will enforce the condition that if a pair of

variables in some class are in the same interaction region, then this must also be true for all other

pairs of variables in that class.

The SA-equivalent and SB-equivalent relations for SA and SB are shown in Figure 5.2.

1This also holds, without affecting the result, if we allow the unordered pairs to include the multisets where
v = w.

63

Definition 5.3.5. For any relational structure S = ⟨U,R1, . . . , Rm⟩ we define, for any vertex

v ∈ U , τ(v) to be {⟨i, t⟩ | t ∈ Ri, v ∈ set(t)}.

For each variable in the universe of a relational structure, the τ function gives a maximal set

of pairs consisting of: a tuple from a relation of which the variable is a member, and an identifier

telling us which relation this tuple is a member of. For SA of Example 5.3.3, τA (va) would be the

set {⟨1, ⟨va, vb, vc, vd⟩⟩}. Two variables can only be in the same region if their τ functions are the

same, that is, they must always appear together in the same tuples of the same relations in the

relational structure. As τA (vb) is also {⟨1, ⟨va, vb, vc, vd⟩⟩} in SA, va and vb may be members of

the same region provided that all other conditions are met.

The results of the τ functions as applied to the variables in SA and SB are shown in Figure 5.3.

Definition 5.3.6. Let S be a relational structure over universe U . We say that v ∈ U and w ∈ U

are τ -equivalent if either v = w or, for every set {v′, w′} ⊆ U which is S-equivalent-related to

{v, w}, we have τ (v′) = τ (w′). This is an equivalence relation for U and we denote by IntReg(v)

the interaction region, or τ -equivalent class, of v.

Figures 5.2 and 5.3 show that in SA, the pair {va, vb} is SA-equivalent-related to {va, vb},

{ve, vf}, and {vi, vj} and that the τA function applied to both va and vb is {1, ⟨va, vb, vc, vd⟩}. As

the τA function also matches for ve and vf , and vi and vj , it follows that va and vb are in the

same interaction region. However, in SB , va and vb are not in the same interaction region. Due to

SB-equivalent, we would require that the τB function matches on vi and vj , which is not the case.

The interaction regions for SA and SB are shown in Figure 5.4.

Analogous to the hypergraph definition, the interaction width of a relational structure is the

maximum number of regions occurring on any relational tuple.

Definition 5.3.7. Let S = ⟨U,R1, . . . , Rm⟩ be a relational structure over universe U = {v1, . . . , vk}.

The interaction width of S is:

intw(S) =
i=1,...,m
max

⟨v1,...,vk⟩∈Ri

|{IntReg(v1), . . . , IntReg(vk)}| .

For a class, H, of relational structures, we denote by intw(H) the maximum interaction width

of any structure in H. We say that intw(H) =∞ if the interaction width is unbounded.

64

There are many similarities between SA and SB. Let S ∈ {SA, SB}. We have:

{va, vb} is S-similar-related to {va, vb} and {ve, vf}
{va, vc} . . . {va, vc} and {vc, ve}
{va, vd} . . . {va, vd} and {vd, ve}
{vb, vc} . . . {vb, vc} and {vc, vf}
{vb, vd} . . . {vb, vd} and {vd, vf}
{vc, vd} . . . {vc, vd}
{vc, ve} . . . {va, vc} and {vc, ve}
{vc, vf} . . . {vb, vc} and {vc, vf}
{vd, ve} . . . {va, vd} and {vd, ve}
{vd, vf} . . . {vb, vd} and {vd, vf}
{ve, vf} . . . {va, vb}, {ve, vf} and {vi, vj}
{ve, vg} . . . {ve, vg} and {vg, vi}
{ve, vh} . . . {ve, vh} and {vh, vi}
{vf , vg} . . . {vf , vg} and {vg, vj}
{vf , vh} . . . {vf , vh} and {vh, vj}
{vg, vh} . . . {vg, vh}
{vg, vi} . . . {ve, vg} and {vg, vi}
{vg, vj} . . . {vf , vg} and {vg, vj}
{vh, vi} . . . {ve, vh} and {vh, vi}
{vh, vj} . . . {vf , vh} and {vh, vj}
{vi, vj} . . . {ve, vf} and {vi, vj}

In SB only, {vj , vk} is SB-similar-related to {vj , vk}.

Figure 5.1: The SA-similar and SB-similar relations for SA and SB from Example 5.3.3

65

There are many similarities between SA and SB. Let S ∈ {SA, SB}. We have:

{va, vb} is S-equivalent-related to {va, vb}, {ve, vf} and {vi, vj}
{va, vc} . . . {va, vc} and {vc, ve}
{va, vd} . . . {va, vd} and {vd, ve}
{vb, vc} . . . {vb, vc} and {vc, vf}
{vb, vd} . . . {vb, vd} and {vd, vf}
{vc, vd} . . . {vc, vd}
{vc, ve} . . . {va, vc} and {vc, ve}
{vc, vf} . . . {vb, vc} and {vc, vf}
{vd, ve} . . . {va, vd} and {vd, ve}
{vd, vf} . . . {vb, vd} and {vd, vf}
{ve, vf} . . . {va, vb}, {ve, vf} and {vi, vj}
{ve, vg} . . . {ve, vg} and {vg, vi}
{ve, vh} . . . {ve, vh} and {vh, vi}
{vf , vg} . . . {vf , vg} and {vg, vj}
{vf , vh} . . . {vf , vh} and {vh, vj}
{vg, vh} . . . {vg, vh}
{vg, vi} . . . {ve, vg} and {vg, vi}
{vg, vj} . . . {vf , vg} and {vg, vj}
{vh, vi} . . . {ve, vh} and {vh, vi}
{vh, vj} . . . {vf , vh} and {vh, vj}
{vi, vj} . . . {va, vb}, {ve, vf} and {vi, vj}

In SB only, {vj , vk} is SB-equivalent-related to {vj , vk}.

Figure 5.2: The SA-equivalent and SB-equivalent relations for SA and SB from Example 5.3.3

There are many similarities between SA and SB. Let τ ∈ {τA, τB}. We have:

τ(va) = {⟨1, ⟨va, vb, vc, vd⟩⟩}
τ(vb) = {⟨1, ⟨va, vb, vc, vd⟩⟩}
τ(vc) = {⟨1, ⟨va, vb, vc, vd⟩⟩, ⟨1, ⟨ve, vf , vc, vd⟩⟩}
τ(vd) = {⟨1, ⟨va, vb, vc, vd⟩⟩, ⟨1, ⟨ve, vf , vc, vd⟩⟩}
τ(ve) = {⟨1, ⟨ve, vf , vc, vd⟩⟩, ⟨2, ⟨ve, vf , vg, vh⟩⟩}
τ(vf) = {⟨1, ⟨ve, vf , vc, vd⟩⟩, ⟨2, ⟨ve, vf , vg, vh⟩⟩}
τ(vg) = {⟨2, ⟨ve, vf , vg, vh⟩⟩, ⟨2, ⟨vi, vj , vg, vh⟩⟩}
τ(vh) = {⟨2, ⟨ve, vf , vg, vh⟩⟩, ⟨2, ⟨vi, vj , vg, vh⟩⟩}
τ(vi) = {⟨2, ⟨vi, vj , vg, vh⟩⟩}

SA:

τA(vj) = {⟨2, ⟨vi, vj , vg, vh⟩⟩}

SB :

τB(vj) = {⟨2, ⟨vi, vj , vg, vh⟩⟩, ⟨3, ⟨vj , vk⟩⟩}
τB(vk) = {⟨3, ⟨vj , vk⟩⟩}

Figure 5.3: The τ functions for the variables of SA and SB in Example 5.3.3

66

The Regions of SA:

IntReg(va) = IntReg(vb) = {va, vb}
IntReg(vc) = IntReg(vd) = {vc, vd}
IntReg(ve) = IntReg(vf) = {ve, vf}
IntReg(vg) = IntReg(vh) = {vg, vh}
IntReg(vi) = IntReg(vj) = {vi, vj}

The Regions of SB:

IntReg(va) = {va}
IntReg(vb) = {vb}

IntReg(vc) = IntReg(vd) = {vc, vd}
IntReg(ve) = {ve}
IntReg(vf) = {vf}

IntReg(vg) = IntReg(vh) = {vg, vh}
IntReg(vi) = {vi}
IntReg(vj) = {vj}
IntReg(vk) = {vk}

Figure 5.4: The Interaction Regions for the Relational Structures in Example 5.3.3

We can now define the resultant relational structure that is produced by merging the variables

in each interaction region. By construction, the τ -equivalent relation induces an equivalence on

the columns of the relations of any relational structure. Hence the following are well defined.

Definition 5.3.8. Let S = ⟨U,R1, . . . , Rm⟩ be a relational structure. For any Ri in R1, . . . , Rm

choose mergeCol(Ri) to be any tuple of indices of representatives of the distinct τ -equivalent classes

of the columns of Ri.

For any t ∈ Ri we now define mergeCol(t) to be the tuple of τ -equivalent classes of the variables

in t, which occur at the indices of the tuple mergeCol(Ri). Then Mrg(Ri) = {mergeCol(t) | t ∈

Ri}.

We can then define the merged structure of S to be

Mrg(S) = ⟨{IntReg(v) | v ∈ U},Mrg(R1), . . . ,Mrg(Rm)⟩ .

For a class, H, of relational structures, we denote by Mrg(H) the set of merged structures of

the structures in H.

Any CSP that permits a relational structure, S, may be merged so that is permits the merged

structure of S by merging the variables in each interaction region. The merged structures for SA
and SB are shown in Figure 5.5.

67

Mrg(SA) = ⟨{{va, vb} , {vc, vd} , {ve, vf} , {vg, vh} , {vi, vj}} ,
R1 = {⟨{va, vb} , {vc, vd}⟩, ⟨{ve, vf} , {vc, vd}⟩} ,
R2 = {⟨{ve, vf} , {vg, vh}⟩, ⟨{vi, vj} , {vg, vh}⟩}⟩

Mrg(SB) = ⟨{{va} , {vb} , {vc, vd} , {ve} , {vf} , {vg, vh} , {vi} , {vj} , {vk}} ,
R1 = {⟨{va} , {vb} , {vc, vd}⟩, ⟨{ve} , {vf} , {vc, vd}⟩} ,
R2 = {⟨{ve} , {vf} , {vg, vh}⟩, ⟨{vi} , {vj} , {vg, vh}⟩} ,
R3 = {⟨{vj} , {vk}⟩}⟩

Figure 5.5: The Merged Structures of SA and SB from Example 5.3.3

It is our assertion that merging the variables in each interaction region allows for a polynomial

conversion from the Mixed representation to the Positive representation for classes of bounded

interaction width. This gives a natural extension of Grohe’s result stated as Theorem 3.4.9 that

allows classes of unbounded arity and, in particular, includes the class of CSP instances with

precisely one constraint.

Theorem 5.3.9. Assuming that W[1] is not FPT. Let H be any recursively enumerable class of

relational structures with bounded interaction width, and let C be the class of CSPs which permit

a structure in H. The class Mixed(C) is tractable if and only if tw(Core(Mrg(H))) <∞.

By using an auxiliary structure, the extended merged structure, that allows us to ‘unmerge’ an

instance of the required type by providing both the number and names of the variables in each

region, we are firstly able to prove this theorem in one direction.

Definition 5.3.10. Let S = ⟨U,R1, . . . , Rm⟩ be a relational structure, and let the list of regions

IntReg(v1), . . . , IntReg(vq) be an enumeration of the distinct τ -equivalent classes. For i = 1, . . . , q

we define the binary relation IntRegi = {⟨IntReg(vi), y⟩ | y ∈ IntReg(vi)}.

We define the extended merged structure of S, ExtMrg(S), to be

⟨U ∪ {IntReg(v) | v ∈ U},Mrg(R1), . . . ,Mrg(Rm), IntReg1, . . . , IntRegq⟩ .

Proposition 5.3.11. Assuming that W[1] is not FPT. Let H be any recursively enumerable class

of relational structures with bounded interaction width, and let C be the class of CSPs which permit

a structure in H. The class Mixed(C) is intractable if tw(Core(Mrg(H))) =∞.

Proof. By definition, Positive(C) is a subset of Mixed(C), so it is enough to show that Positive(C)

is intractable if tw(Core(Mrg(H))) =∞.

For all S ∈ H, Mrg(S) is a substructure of ExtMrg(S) by definition. So, tw(Core(ExtMrg(H))) ≥

tw(Core(Mrg(H))).

68

By definition, the arity of Mrg(H) is equal to intw(H). The construction of ExtMrg(H)

only adds binary constraints to Mrg(H). So, ExtMrg(H) has bounded arity. By Grohe’s result,

Theorem 3.4.9, Positive(C) is intractable.

Given any instance P in Positive(C), for each assignment to an interaction region variable in

the extended merged structure, we choose a representative assignment for each of the variables in

that interaction region, allowed by P . We use these extensions to generate constraint tuples in an

‘unmerged’ version of P .

This reduction ‘unmerges’ P into an instance of Positive(C) in polynomial time. Positive(C) is

thereby shown to be an intractable subset of Mixed(C).

In order to prove the case where tw(Core(Mrg(H))) < ∞ we will provide, and perform a

formal complexity analysis of, a method by which a given instance in Mixed(C) may be solved in

polynomial time with respect to its input size. This is an involved proof which requires systematic

analysis of non-trivial algorithms, and we suggest that the reader familiarise themselves with the

computational model presented in Chapter 4 first. We then bring these complexity results together

on Page 116 to give a short proof completing that of Theorem 5.3.9.

Overview of Method

Given as input a relational structure S and a CSP P in the mixed representation that permits S,

we give a general method for constructing a derived CSP P ′ in the positive representation that

permits Mrg(S) such that any solution to P ′ can be transformed to a solution to P in polynomial

time with respect to the size of P . Furthermore, if there is a solution to P , then there will be a

solution to P ′.

We start by determining the interaction regions of the relational structure S. To generate P ′

we merge P with respect to the interaction regions of S, and then convert each constraint that is in

the negative representation to a constraint in the positive representation. It may not be possible

to directly convert each of these constraints in the case where domains inferred from the merged

relations do not contain all of the values which may occur in a solution. In these cases, we must

synthesise constraints in such a way as to preserve solutions and allow P ′ to permit the relational

structure Mrg(S). To do this, we run two pre-processing steps before merging: one to convert

any negative constraints to positive where there is already a positively represented constraint

with the same relation, and the other to construct a partition of the constraints in P such that

if all the constraints in the same part have the same relation, then the relational structure S is

permitted. This is not necessarily the actual partition that P has, as many partitions may satisfy

69

the requirement, but it is the strictest in that it contains the smallest possible number of parts

that would permit S. Once P has been merged, we run a post-processing step which constructs a

partition of the merged constraints in Mrg(P). It does this by starting with the partition made

for P and separating parts where the way in which the constraints have been merged with respect

to Mrg(S) indicate that constraints could not be in the same part. Again, this gives the strictest

partition that would allow Mrg(P) to permit Mrg(S).

We now convert any negatively represented constraints in Mrg(P) into equivalent positively

represented constraints where we have enough information about the domains to do so. The

constraints for which we cannot do this are those which contain some variable which only occurs

in the scope of negatively represented constraints, and which has values in its domain which

may occur in a solution, but which do not occur in any of the disallowed assignments. However,

because the domains of these variables contain some value which may occur in any solution to the

remaining variables, the constraints whose scopes contain these variables cannot be placing any

restrictions onto any subsets of their scope which does not contain these variables. We give these

variables a special ‘∗’ domain which only contains a single value and then synthesise positively

represented constraints in such as way as not to place any additional restrictions on solutions, but

such that the resulting converted instance, P ′, still permits Mrg(S). To do this, we refer to the

partition we constructed earlier.

Any solution to P ′ now has the special ‘∗’ value assigned to the merged variables for which

we know any solution to the remaining merged variables must extend, so actual values can be

found by generating and testing until we find one that is permitted by the constraints we were

unable to directly convert. The values assigned to the merged variables then translate directly to

assignments to sets of unmerged variables in P

70

Analysis

Definition 5.3.12 (p). Let P = ⟨V,D,C⟩ be a CSP instance in Mixed(H), and let S = ⟨U,R1 . . . Rm⟩

be a relational structure permitted by P . For each variable v ∈ V , the domain D (v) contains all

values that may be assigned to v. The parameters of P and S are defined as follows:

r : the largest arity of any constraint in C. By Definition 3.4.1, it is also the largest arity of any

relation in R1 . . . Rm.

k : the largest number of values in any domain in D.

n : the number of variables in V . By Definition 3.4.1, it is also the number of variables in U .

c : the number of constraints in C.

t : the number of tuples in the constraint in C with the greatest number of tuples.

m : the number of relations in S.

w : the interaction width of S.

Variable names and domain values are of constant size, so are assumed to have a size of 1.

All parameters are assumed to have a value of at least 1.

It is valid to assume that all parameters have a value of at least one as if any, other than t, have

no value, then the CSP cannot have a solution. A valid CSP in the Mixed representation may have

no tuples in any of its constraints, however in this case they must be a combination of negatively

represented ‘anything goes’ constraints, or positively represented ‘all disallowed’ constraints. If

they are all negatively represented ‘anything goes’ constraints, then the solution is trivial, i.e.

assign any domain value to each of the variables, and if this is not the case (i.e. there is at least

one ‘all disallowed’ constraint), then there cannot be a solution.

It is also valid to assume that all variables of the input CSP have domains of type ‘−’. If the

input CSP did contain a variable whose domain was of type ‘+’, then that variable could only be

in the scopes of negatively represented constraints, and have at least one unlisted domain value.

Any unlisted domain values are equivalent within a domain, and so could be replaced with a single

value. If there is more than one variable whose domain is ‘+’, then these can all be converted to

‘−’ domains independently as there can be no restriction on the simultaneous assignment of any

of these unlisted domain values to these variables.

Throughout this section we will provide the implementations (with respect to the compu-

tational model in Chapter 4) of the major data structures that are assumed by the presented

algorithms. This removes the need to redefine these structures in the analysis of each algorithm

that uses them, and ensures that they are consistent between algorithms.

The purpose of the algorithms and complexity analyses presented in this section is to prove our

71

assertion that merging the variables in each interaction region allows for a polynomial conversion

from the Mixed representation to the Positive representation for classes of bounded interaction

width. As such, the simplicity of algorithms and data structures has been preferred to optimal

efficiency.

We start by considering the four algorithms used to determine the interaction regions of a

relational structure: ‘Generate S-similar’ (Algorithm 2), ‘Generate S-equivalent’ (Algorithm 3),

‘Generate Tau Relation’ (Algorithm 4), and ‘Generate Interaction Regions’ (Algorithm 5).

Generate S-similar

Algorithm 2: Generate S-similar

input : A relational structure S = ⟨U,R1, . . . Rm⟩
output: SSimilar - A function from each {v, w} in U × U to the set

{{v′, w′} | {v, w} is S-similar-related to {v′, w′}}
1 begin
2 SSimilar← ∅
3 foreach {v, w} ∈ U × U do
4 SSimilar ({v, w})← ∅
5 foreach Ri ∈ {R1, . . . , Rm} do
6 foreach j ← 1 . . .Arity (Ri) do
7 foreach k ← 1 . . .Arity (Ri) do
8 foreach t1 ∈ Ri do
9 foreach t2 ∈ Ri do

10 SSimilar ({t1 [j] , t1 [k]})←
11 SSimilar ({t1 [j] , t1 [k]}) ∪ {t2 [j] , t2 [k]}

12 return SSimilar

Data Structure 5.3.13. : Relational Structure

Let S = ⟨U,R1 . . . Rm⟩ be a relational structure. The universe, U , is stored as an array of n

variable names, and each relation, Ri, is stored as an array of at most c tuples. Each tuple is

stored as an array of at most r variable names. By Definition 4.0.4, the size of the array for U is

O (n), for each tuple is O (r), and so for each Ri is O (c.r). The relational structure S is stored

as the array for the universe followed by at most m relation arrays, so the combined size of a

relational structure is O (n+m.c.r). y

72

Data Structure 5.3.14. : S-similar and S-equivalent

Let S = ⟨U,R1 . . . Rm⟩ be a relational structure. Both S-similar and S-equivalent are stored

as an associative array that maps from pairs of variables in the universe, U , to the set of pairs of

variables that they are either S-similar-related to or S-equivalent-related to. So, there are n2 pairs

of variables over U in the key array, and the value array itself contains arrays each of which may

contain at most n2 pairs of variables. By Definition 4.0.4, each of the arrays in the value array is

of size O
(
n2

)
, so by Definition 4.0.15 the sizes of the key and value arrays are O

(
n2

)
and O

(
n4

)
respectively. The combined size of the associative array is therefore O

(
n4

)
. y

Algorithm Analysis 5.3.15. : Generate S-similar (Algorithm 2)

By Proposition 4.0.16, the construction of SSimilar (Data Structure 5.3.14) on line 2 is O (1) time.

The loop on line 3 will execute at most n2 times. For each execution of the associative array

insertion statement on line 4, the insertion key will be unique and the value is an empty array of

size at most n2. The key is a pair so, by Proposition 4.0.19, each insertion into SSimilar is O (1)

time.

The loop on line 5 will execute at most m times, the loop on line 6 at most r times, and the

loop on line 7 at most r times. For a relational structure permitted by P , the total number of

tuples in each relation is bounded by the number of constraints, so the loop on line 8 will execute

at most c times, and the loop on line 9 at most c times.

Construction of each pair of variables for both the keys and values on lines 10 and 11 requires

two array lookups by index, which by Proposition 4.0.6 are O (1) time, and by Proposition 4.0.2

reading each variable is O (1) time.

The key is a constant sized pair so, by Proposition 4.0.17, lookup of the corresponding mapped

set in SSimilar on lines 10 and 11 is O
(
n2

)
time. By Proposition 4.0.13, as the result replaces

one of the input sets and the other input set always has only a single binary element, the union

operation on lines 10 and 11 is O
(
n2

)
time.

We can now summarise the time complexity analysis for Algorithm 2 (Generate S-similar):

O
(
n2 +m.r2.c2

(
n2 + n2

))
= O

(
n2 +m.r2.c2.n2

)
= O

(
m.r2.c2.n2

)
y

73

Lemma 5.3.16. Given a relational structure S = ⟨U,R1, . . . Rm⟩ as input, Algorithm 2 (‘Generate

S-similar’) outputs the S-similar relation.

Proof. The construction of S-similar requires that the variables in every pair of positions for every

pair of tuples are considered for every relation. The loops on lines 5 to 9 ensure that this condition

is met. The union operation on line 10 then ensures that every unique pair considered is then

recorded.

Generate S-equivalent

Algorithm 3: Generate S-equivalent
input : A relational structure S = ⟨U,R1, . . . Rm⟩
input : SSimilar - A function from each {v, w} in U × U to the set

{{v′, w′} | {v, w} is S-similar-related to {v′, w′}}
output: SEquivalent - A function from each {v, w} in U × U to the set

{{v′, w′} | {v, w} is S-equivalent-related to {v′, w′}}
1 begin
2 SEquivalent← ∅
3 Pairs← Domain (SSimilar)as List
4 N ← |Pairs|

/* Transitive closure algorithm requires matrix data structures */

5 M0 ← a new N ×N Boolean matrix
6 foreach i← 1 . . . N do /* Convert SSimilar to matrix data structure */

7 foreach j ← 1 . . . N do
8 if i = j or Pairs [j] ∈ SSimilar (Pairs [i]) then
9 M0 [i] [j]← true

10 else
11 M0 [i] [j]← false

12 foreach k ← 1 . . . N do /* Perform transitive closure */

13 Mk ← a new N ×N Boolean matrix
14 foreach i← 1 . . . N do
15 foreach j ← 1 . . . N do
16 Mk [i] [j]←Mk−1 [i] [j] ∨

(
Mk−1 [i] [k] ∧Mk−1 [k] [j]

)
17 foreach i← 1 . . . N do /* Convert from matrix data structure */

18 SEquivalent (Pair [i])← ∅
19 foreach j ← 1 . . . N do
20 if Mn [i] [j] = true then
21 SEquivalent (Pair [i])← SEquivalent (Pair [i]) ∪ {Pair [j]}

22 return SEquivalent

74

Algorithm Analysis 5.3.17. : Generate S-equivalent (Algorithm 3)

By Proposition 4.0.16, the construction of SEquivalent (Data Structure 5.3.14) on line 2 is O (1)

time. Neither Pairs nor SSimilar are modified during the execution of the algorithm. As such, the

array of keys in SSimilar may be used as the data structure for Pairs and the operation on line 3

requires no more than a unit time assignment to record the memory offset location to a register,

so O (1) time. By Definition 4.0.4, the number of elements in Pairs is already recorded as part

of the array of keys in SSimilar, and is at most n2. Recording this value for N on line 4 is O (1)

time.

An N ×N Boolean array can be represented as a length N array of length N Boolean arrays.

By Proposition 4.0.5, construction of an empty array is O (1) time, so construction of the outer

array is O (1) time. To this array, at most n2 inner arrays are added. By Proposition 4.0.5,

construction of each inner array is also O (1) time, and by Proposition 4.0.8 inserting each empty

inner array into the outer array is O (1). The algorithm does not require the inner arrays to be

initialised at this point as all values will subsequently be written to before being read. As such,

the construction of the N ×N Boolean array on line 5 requires O
(
n2

)
time.

Lines 6 to 16 describe a known adaptation of the Floyd-Warshall algorithm for computing the

transitive closure of a directed graph [CLRS09]. When given an N × N Boolean matrix, this

algorithm is known to execute exactly N3 operations, so here executes exactly n6 operations as

the matrix is n2 × n2, so is Θ
(
n6

)
time.

The loop on line 17 will execute at most n2 times. For each execution of the associative array

insertion statement on line 18, the insertion key will be unique and the value is an empty array

of size at most n2. The key is a pair so, by Proposition 4.0.19, each insertion into SEquivalent is

O (1) time.

The loop on line 19 will execute at most n2 times. On line 20, finding the base address of the

inner array at the ith position of the outer array, followed by the base address of the Boolean

value at the jth position of the inner array. By Proposition 4.0.6, both these operations are O (1)

time. By Proposition 4.0.2, reading this value then requires O (1) time, and by Proposition 4.0.3

comparing it to true also requires O (1) time. Evaluation of the condition on line 20 is therefore

O (1) time.

On line 21, the lookups by index of Pairs required to determine the base addresses of the keys

and values are O (1) by Proposition 4.0.6. The key is a pair of variables so, by Proposition 4.0.17,

lookup of the corresponding mapped set in SEquivalent is O
(
n2

)
. By Proposition 4.0.13, as the

75

result replaces one of the input sets and the other input set always has only a single binary element,

the union operation is O
(
n2

)
.

We can now summarise the time complexity analysis for Algorithm 3 (Generate S-equivalent):
O
(
n2

)
+Θ

(
n6

)
+O

(
n2

(
n2

(
n2 + n2

)))
= O

(
n2

)
+Θ

(
n6

)
+O

(
n6

)
= O

(
n6

)
y

Lemma 5.3.18. Given a relational structure S = ⟨U,R1, . . . Rm⟩, and the S-similar relation as

input, Algorithm 3 (‘Generate S-equivalent’) outputs the S-equivalent relation.

Proof. S-equivalent is the transitive closure of the S-similar relation. Lines 6 to 16 describe a known

adaptation of the Floyd-Warshall algorithm for computing the transitive closure of a directed

graph [CLRS09]. Lines 17 to 21 then perform a translation from the internal matrix structure of

this algorithm to our more explicit S-equivalent data structure as defined in Data Structure 5.3.14.

Generate Tau Relation

Algorithm 4: Generate Tau Relation

input : A relational structure S = ⟨U,R1, . . . Rm⟩
output: Tau - A function from each v in U to the set of tuples {⟨i, t⟩ | t ∈ Ri, v ∈ set(t)}

1 begin
2 Tau← ∅
3 foreach v ∈ U do
4 Tau (v)← ∅
5 foreach Ri ∈ {R1, . . . , Rm} do
6 foreach t ∈ Ri do
7 foreach v ∈ t do
8 Tau (v)← Tau (v) ∪ {⟨i, t⟩}

9 return Tau

Data Structure 5.3.19. : τ relation

Let P = ⟨V,D,C⟩ be a CSP instance, and let S = ⟨U,R1 . . . Rm⟩ be a relational structure

permitted by P . The τ relation for S is stored as an associative array that maps from the n

variables in U to a set of pairs. Each pair consists of a tuple from one of the relations in R1 . . . Rm,

and an integer, i ∈ 1 . . .m, identifying which relation the tuple is from. Each tuple has at most r

76

members, so the size of each pair is O (r). By Definition 3.4.1, the total number of tuples which

may belong to a relation of a relational structure permitted by P is bounded by the number of

constraints, so each set may contain at most c.m pairs. By Definition 4.0.4, the size of each set is

O (r.c.m). By Definition 4.0.15, the array of keys is O (n), and the array of values is O (r.c.m.n),

so the combined size of the associative array is O (r.c.m.n). y

Algorithm Analysis 5.3.20. : Generate Tau Relation (Algorithm 4)

By Proposition 4.0.16, the construction of Tau (Data Structure 5.3.19) on line 2 is O (1) time. The

loop on line 3 will execute at most n times. For each execution of the associative array insertion

statement on line 4, the insertion key will be unique and the value is an empty array of size at

most O (r.c.m). The key is a single variable so, by Proposition 4.0.19, each insertion into Tau is

O (1) time.

The loop on line 5 will execute at most m times, the loop on line 6 at most c times, and the

loop on line 7 at most r times.

The key is a single variable so, by Proposition 4.0.17, lookup of the corresponding mapped set

in Tau on line 8 is O (n) time. By Proposition 4.0.13, as the result replaces one of the input sets

and the other input set always has only a single pair of size O (r), the union operation on line 8

is O
(
c.m.r2

)
.

We can now summarise the time complexity analysis for Algorithm 4 (Generate Tau Relation):

O (n) +O
(
m.c.r

(
c.m.r2

))
= O (n) +O

(
m2.c2.r3

)
= O

(
n+m2.c2.r3

)
y

Lemma 5.3.21. Given a relational structure S = ⟨U,R1, . . . Rm⟩ as input, the algorithm ‘Generate

Tau Relation’ (Algorithm 4) outputs the τ relation.

Proof. For each variable in U , the τ relation lists as pairs the tuples of the relational structure

containing that variable, along with an identifier describing which relation the tuple is a member

of. This requires us to consider each tuple in each relation for each variable, which is performed

by the loops on lines 4 to 6. The union operation on line 8 ensures that each tuple is recorded.

77

Generate Interaction Regions

Algorithm 5: Generate Interaction Regions

input : A relational structure S = ⟨U,R1, . . . , Rm⟩
output: Regions - A function from each v in U to the set of variables X ⊆ U such that

∀x ∈ X,x is in the same region as v

1 begin
2 SSimilar← Generate S-similar (S)
3 SEquivalent← Generate S-equivalent (SSimilar)
4 Tau← Generate Tau Relation (S)
5 Regions← ∅
6 Pairs← Domain (SEquivalent)
7 foreach v ∈ U do
8 Regions (v)← {v}
9 foreach {v, w} ∈ Pairs do /* Check for τ-equivalance */

10 equiv← true
11 foreach {v′, w′} ∈ SEquivalent ({v, w}) do
12 if Tau (v′) ̸= Tau (w′) then
13 equiv← false

14 if equiv = true then
15 Regions (v)← Regions (v) ∪ {w}
16 Regions (w)← Regions (w) ∪ {v}

17 return Regions

Data Structure 5.3.22. : Interaction Regions

The interaction regions are stored as an associative array that maps from variables in the

universe to the set of variables that are in the same interaction region. The key array contains

the the n variables of U , and the value array contains n arrays each of which contains at most

r variables. By Definition 4.0.15 the sizes of the key and value arrays are O (n) and O (n.r)

respectively. The combined size of the associative array is therefore O (n.r). y

Algorithm Analysis 5.3.23. : Generate Interaction Regions (Algorithm 5)

On line 2 we call Algorithm 2 (Generate S-similar) whose time complexity is shown to beO
(
m.r2.c2.n2

)
in Algorithm Analysis 5.3.15. On line 3 we call Algorithm 3 (Generate S-equivalent) whose time

complexity is shown to be O
(
n6

)
in Algorithm Analysis 5.3.17. On line 4 we call Algorithm 4 (Gen-

erate Tau Relation) whose time complexity is shown to be O
(
n+m2.c2.r3

)
in Algorithm Analy-

sis 5.3.20.

78

By Proposition 4.0.16, the construction of Regions (Data Structure 5.3.22) on line 5 is O (1)

time. Neither Pairs nor SEquivalent are modified during the execution of the algorithm. As such,

the array of keys in SEquivalent may be used as the data structure for Pairs and the operation

on line 6 requires no more than a unit time assignment to record the memory offset location to a

register. By Definition 4.0.4, the number of elements in Pairs is already recorded as part of the

array of keys in SEquivalent, and is at most n2.

The loop on line 7 will execute at most n times. Each execution of the associative array

insertion statement on line 3, can be considered as an operation to insert an empty set as the

value, followed by adding a single element to the value array. For the first operation, the insertion

key will be unique and the value is an empty array of size at most O (r). The key is a single

variable so, by Proposition 4.0.19, each insertion into Regions is O (1) time. For the second

operation, the base address of the value array has already been determined in the first operation

so, by Proposition 4.0.8, inserting the single variable to the value array is O (1) time.

The loop on line 9 will execute at most n2 times. By Proposition 4.0.2 storing the Boolean

value on line 10 is O (1) time.

The loop on line 11 will execute at most n2 times. The Tau Relation data structure (Data Struc-

ture 5.3.19) is an associative array mapping from variables to sets of at most c.m data structures

of size O (r). The condition on line 12 is evaluating whether two of the set arrays stored as values

in the Tau associative array are equivalent. By Proposition 4.0.17, the lookup of each value array

by a single variable key is O (n) time, and by Proposition 4.0.12 determining whether these two

sets are equivalent requires O
(
(c.m)

2
r
)
time. By Proposition 4.0.2 storing the Boolean value on

line 13 is O (1) time.

The condition on line 14 is comparing two Boolean values, so by Proposition 4.0.3 is O (1)

time. On lines 15 and 16, the keys are single variables so, by Proposition 4.0.17, lookup of the

corresponding mapped sets requires O (n) time. By Proposition 4.0.13, as the results replace one

of the input sets, and the other input sets contain a single unary element, the union operations

on line 15 and 16 are O
(
1.r.12

)
, so O (r) time.

79

We can now summarise the time complexity analysis for Algorithm 5 (Generate Interaction

Regions):

O
(
m.r2.c2.n2 + n6 + n+m2.c2.r3 +

(
n+ n2

(
n2

(
2.n+ 2.

(
(c.m)

2
.r
))

+ 2.r
)))

= O
(
m.r2.c2.n2 + n6 +m2.c2.r3 +

(
n+ n2

(
n2

(
n+ c2.m2.r

)
+ r

)))
= O

(
m.r2.c2.n2 + n6 +m2.c2.r3 +

(
n+ n2

(
n3 + n2.c2.m2.r + r

)))
= O

(
m.r2.c2.n2 + n6 +m2.c2.r3 + n+ n5 + n4.c2.m2.r + n2.r

)
= O

(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r

)
y

Lemma 5.3.24. Given a relational structure S = ⟨U,R1, . . . Rm⟩ represented using Data Struc-

ture 5.3.13, the S-equivalent relation represented using Data Structure 5.3.14, and the τ -equivalent

relation represented using Data Structure 5.3.19 as input, the algorithm ‘Generate Interaction Re-

gions’ (Algorithm 5) outputs the interaction regions of S.

Proof. The interaction region for a given variable v in U should contain the set of variables whose

pairing with v has the property that both members of all S-equivalent-related pairs have the same

τ relation. Trivially, the interaction region for v should contain v, and this case is covered by the

initialisation process on lines 4 and 5. The domain of SEquivalent contains all binary combinations

of the variables in U , so the loops on line 6 and 8 ensure that the τ equality check on line 9 is

performed for all S-equivalent pairs of all possible pairs in U . The set unions on lines 12 and 13

ensure that the resultant relationship between the two variables in a pair is recorded against both

variables.

For a relational structure S = ⟨U,R1 . . . Rm⟩ to be permitted by a CSP it must be true that

whenever the scopes of two constraints are in the same Ri the constraints have the same relation.

For the theoretical model of a CSP, where all relations are listed as allowed tuples over the

product of a universal domain, it is clear when two relations are the same. However, in the mixed

representation the constraint relations may be expressed as either allowed or disallowed tuples

over the product of the individual domains of the variables in the scope. It is no longer clear

when two constraint relations are the same in the mixed representation because the information

about the restriction imposed by a constraint is now distributed between its relation and the

domains of the variables in its scope. We call two constraint relations in the mixed representation

equivalent if they are the same when represented in the positive representation. Our conversion

method requires that we are able to identify which constraints in the input CSP have equivalent

relations without converting their representations, so here we present the constraint and CSP data

structures, and the algorithms by which this can be achieved for the three types of comparison:

80

positive to positive, positive to negative, and negative to negative. Note that these algorithms will

only work when comparing constraints that are over variables whose domains list all values which

may be assigned to that variable (i.e. have type ‘−’). This is true for all constraints in the input

CSP, but may not be the case for constraints in intermediate CSP structures in our method.

A constraint relation in the positive representation lists all of the allowed assignments over the

scope variables, and the domains of these variables must at least contain any values in the assign-

ments. Having any extra values in the domains does not change the set of allowed assignments,

so the domains do not need to be considered. As such, comparing the relations of two positive

constraints is straightforward: They must have the same arity, and contain the same assignments

(tuples). This method is given in Algorithm 6 (‘Compare Positive Constraint Relations’).

Compare Positive Constraint Relations

Algorithm 6: Compare Positive Constraint Relations

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : ca - A constraint in C in the positive representation
input : cb - A constraint in C in the positive representation
output: Boolean - TRUE if ca and cb have equivalent relations, else FALSE

1 begin
2 if |σ (ca) | ̸= |σ (cb) | then
3 return FALSE

4 if |ρ (ca) | ̸= |ρ (cb) | then
5 return FALSE

6 foreach t ∈ ρ (ca) do
7 if t ̸∈ ρ (cb) then
8 return FALSE

9 return TRUE

Data Structure 5.3.25. : Constraint

Let c = ⟨σ, ρ⟩ be a constraint. The scope, σ, is stored as an array of r variable names so, by

Definition 4.0.4, is of size O (r). Each tuple in the relation, ρ, is stored as an r-ary array of values

such that the value in each position corresponds to the variable in the same position in the scope

array. By Definition 4.0.4, the size of each tuple array is O (r). The relation is stored as an array

of t tuple arrays so, by Definition 4.0.4, the size of the relation array is O (t.r). A single register

is used to store the representation type of the constraint, so the size of the combined constraint

structure is O (r + t.r + 1), so O (t.r). y

81

Data Structure 5.3.26. : CSP

Let ⟨V,D,C⟩ be a CSP instance. The variables, V , are stored as an array of n variable names

so, by Definition 4.0.4, is of size O (n). The domain, D, is stored as an associative array that

maps from the n variable names to an array of at most k domain values, plus a single register

to denote the type of the domain. By Definition 4.0.4, the size of each value array is O (k) so,

by Definition 4.0.15, the size of the associative array is O (n+ k.n), so O (k.n). The constraints,

C, are stored as an array of c constraint structures as described in Data Structure 5.3.25 so,

by Definition 4.0.4, the size of the constraint array is O (t.r.c). The size of the combined CSP

structure is therefore O (n+ k.n+ t.r.c), so O (k.n+ t.r.c). y

Algorithm Analysis 5.3.27. : Compare Positive Constraint Relations (Algorithm 6)

By Data Structure 5.3.25 for a constraint, each scope on line 2 is stored as an array containing

at most r variable names so by Definition 4.0.4 for an array, determining the size of each scope

takes O (1) time. By Definition 4.0.1 for a RAM, comparing two integers takes O (1) time.

Again by Data Structure 5.3.25 for a constraint, each relation on line 4 is stored as an array

containing at most t tuples of at most r values so by Definition 4.0.4 for an array, determining

the size of each relation takes O (1) time. Comparing two integers takes O (1) time.

The loop on line 6 will execute at most t times. By Proposition 4.0.11 checking membership

of a tuple of size at most O(r) in a relation array containing at most t tuples requires O(r.t) time.

We can now summarise the time complexity analysis for Algorithm 6 (Compare Positive Con-

straint Relations):

O (t (r.t))

= O
(
t2.r

)
y

In a negatively represented constraint, the Cartesian product of the domains defines the set

of possible assignments from which the listed disallowed assignments are removed. It is still

straightforward to compare two constraint relations when one is in the positive representation and

the other is in the negative representation because the positively represented relation provides

the complete list of allowed assignments. Whether the Cartesian product of the domains in the

negatively represented constraint could support all of the allowed assignments in the positively

represented relation can be determined by checking whether the values in the unary projections

of the positively represented relation are present in the appropriate domains of the negatively

represented constraint. The number of assignments that the negatively represented relation would

82

express if it were in the positive representation can be determined by subtracting the number of

disallowed assignments from the number that would be allowed by the Cartesian product of the

domains. If the number of allowed assignments minus the number of disallowed assignments equals

the number of allowed assignments in the positively represented relation, then we simply need to

check that none of the positively allowed assignments is in the set of disallowed assignments. This

method is given in Algorithm 7 (‘Compare Positive and Negative Constraint Relations’).

Compare Positive and Negative Constraint Relations

Algorithm 7: Compare Positive and Negative Constraint Relations

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : ca - A constraint in C in the positive representation
input : cb - A constraint in C in the negative representation
output: Boolean - TRUE if ca and cb have equivalent relations, else FALSE

1 begin
2 if |σ (ca) | ̸= |σ (cb) | then
3 return FALSE

4 foreach v ∈ σ (ca) do /* Check all values occurring in the Positive */

5 i← position of v in σ (ca) /* representation are in the domains of the */

6 v′ ← σ (cb) [i] /* variables in the Negative representation */

7 foreach t ∈ ρ (ca) do
8 if Πvt ̸∈ D (v′) then
9 return FALSE

10 count ← 1
11 foreach v ∈ σ (cb) do
12 count ← count ×|D (v) |
13 if count −|ρ (cb) | ̸= |ρ (ca) | then
14 return FALSE

15 foreach t ∈ ρ (ca) do
16 if t ∈ ρ (cb) then
17 return FALSE

18 return TRUE

Algorithm Analysis 5.3.28. : Compare Positive and Negative Constraint Relations

(Algorithm 7)

By Data Structure 5.3.25 for a constraint, each scope on line 2 is stored as an array containing

at most r variable names so by Definition 4.0.4 for an array, determining the size of each scope

83

takes O (1) time. By Definition 4.0.1 for a RAM, comparing two integers takes O (1) time.

The loop on line 4 will execute at most r times. By Proposition 4.0.11 finding the index of an

element in a scope array on line 5 requires O(r) time. By Proposition 4.0.6 addressing a variable

in a scope array by index on line 6 is O(1) time. The loop on line 7 will execute at most t times.

The position of v is already known (i), so by Proposition 4.0.10 projecting the tuple on line 8

requires O (1) time. By Data Structure 5.3.26, a domain is an associative array mapping from

variables to arrays of values, so by Proposition 4.0.17 finding D (v′) requires O(n) time, and by

Proposition 4.0.11 checking membership of a value then takes O(k) time.

Assigning a value to a counter on line 10 is O(1). The loop on line 11 will execute at most r

times. Looking up the domain of v on line 12 requires O(n) time, and determining the size of the

value array is O(1) time. By Data Structure 5.3.26, constraint relations are stored as arrays, so

determining the size of each relation on line 13 is O(1) time, and the integer arithmetic required

to evaluate the condition requires O(1) time. The loop on line 15 will execute at most t times. A

tuple contains at most r values, and a relation contains at most t tuples, so by Proposition 4.0.11

determining membership on line 16 requires O(r.t) time.

We can now summarise the time complexity analysis for Algorithm 7 (Compare Positive and

Negative Constraint Relations):

O (r (r + t (n+ k)) + r (n) + t (r.t))

= O
(
r (r + t.n+ t.k) + r.n+ t2.r

)
= O

(
r2 + t.n.r + t.k.r + t2.r

)
y

Comparing the relations of two negatively represented constraints is more complicated because

the Cartesian product of the domains for each constraint may be different, and we do not have a

positively represented constraint that provides the set of allowed assignments. However, it is still

possible to determine whether two negatively represented constraints have equivalent relations by

performing two symmetrical checks. Firstly, if a disallowed assignment in one relation is a member

of the Cartesian product of the domains of the other, then the other relation must also have this

disallowed assignment. This check is given in Algorithm 8 (‘Check Disallowed Assignments’).

Secondly, if for some position in the scope the domain of the variable in one constraint contains

a value which is not in the domain of the other corresponding variable, then that relation must

contain all extensions to the variable being assigned that value as disallowed assignments because

they are implicitly disallowed by not being in the Cartesian product of allowed assignments in the

other constraint. This check is given in Algorithm 9 (‘Check Extra Domain Values’), and the full

comparison method is given in Algorithm 10 (‘Compare Negative Constraint Relations’).

84

Check Disallowed Assignments

Algorithm 8: Check Disallowed Assignments

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : ca - A constraint in C in the negative representation
input : cb - A constraint in C in the negative representation
output: Boolean - TRUE if ca and cb meet condition one, else FALSE

1 begin
2 foreach t ∈ ρ (ca) do
3 inProduct ← TRUE
4 foreach v ∈ σ (ca) do
5 i← position of v in σ (ca)
6 v′ ← σ (cb) [i]
7 if Πvt ̸∈ D (v′) then
8 inProduct ← FALSE

9 if inProduct = TRUE then
10 if t ̸∈ ρ (cb) then
11 return FALSE

12 return TRUE

Algorithm Analysis 5.3.29. : Check Disallowed Assignments (Algorithm 8)

The loop on line 2 will execute at most t times. Assigning a Boolean value to a variable is O(1)

time. The loop on line 4 will execute at most r times. By Proposition 4.0.11 finding the index of an

element in a scope array on line 5 requires O(r) time. By Proposition 4.0.6 addressing a variable

in a scope array by index on line 6 is O(1) time. The position of v is already known (i), so by

Proposition 4.0.10 projecting the tuple on line 7 requires O (1) time. By Data Structure 5.3.26, a

domain is an associative array mapping from variables to arrays of values, so by Proposition 4.0.17

finding D (v′) requires O(n) time, and by Proposition 4.0.11 checking membership of a value then

takes O(k) time. Assigning the Boolean value on line 8 is O(1) time. Evaluating the condition of

a Boolean variable on line 9 requires O(1) time. A tuple contains at most r values, and a relation

contains at most t tuples, so by Proposition 4.0.11 determining membership on line 10 requires

O(r.t) time.

85

We can now summarise the time complexity analysis for Algorithm 8 (Check Disallowed As-

signments):

O (t (r (r + n+ k) + r.t))

= O
(
t
(
r2 + r.n+ r.k + r.t

))
= O

(
t.r2 + t.r.n+ t.r.k + r.t2

)
y

Check Extra Domain Values

Algorithm 9: Check Extra Domain Values

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : ca - A constraint in C in the negative representation
input : cb - A constraint in C in the negative representation
output: Boolean - TRUE if ca and cb meet condition two, else FALSE

1 begin
2 foreach v ∈ σ (ca) do
3 foreach d ∈ D (v) do
4 i← position of v in σ (ca)
5 v′ ← σ (cb) [i]
6 if d ̸∈ D (v′) then /* Check v assigned d can never be allowed */

7 expected ← 1
8 foreach v′′ ∈ σ (ca) do
9 if v ̸= v′′ then

10 expected ← expected ×|D (v′′) |

11 actual ← 0
12 foreach t ∈ ρ (ca) do
13 if Πvt = d then
14 actual ← actual +1

15 if actual ̸= expected then
16 return FALSE

17 return TRUE

Algorithm Analysis 5.3.30. : Check Extra Domain Values (Algorithm 9)

The loop on line 2 will execute at most r times. By Data Structure 5.3.26, a domain is an

associative array mapping from variables to arrays of values, so by Proposition 4.0.17 finding

D (v) requires O(n) time. For each iteration of the loop on line 2, the loop on line 3 will execute

at most k times. By Proposition 4.0.11 finding the index of an element in a scope array on line 4

86

requires O(r) time. By Proposition 4.0.6 addressing a variable in a scope array by index on line

5 is O(1) time. Again by Proposition 4.0.17, finding D (v′) on line 6 requires O(n) time, and by

Proposition 4.0.11 checking membership is O(k) time. By Definition 4.0.1 for a RAM, Setting the

integer variable on line 7 is O(1) time.

The loop on line 8 will execute at most r times. By Proposition 4.0.3 comparing two variable

names is O (1) time. By Proposition 4.0.17, finding D (v′′) on line 10 requires O(n) time. By

Definition 4.0.4, determining the size of the value array is O(1) time, and performing the integer

arithmetic to update the value of ‘expected’ is O(1) time.

Setting the integer variable on line 11 is O(1) time. The loop on line 12 will execute at most

t times. The position of v is already known (i), so by Proposition 4.0.10 projecting the tuple on

line 13 requires O (1) time, and comparing the result to the domain value requires O(1) time. The

condition on line 15 can be evaluated using integer arithmetic, so is O(1) time.

We can now summarise the time complexity analysis for Algorithm 9 (Check Extra Domain

Values):

O (r (n+ k (r + n+ k + r.n+ t)))

= O
(
r
(
n+ k.r + k.n+ k2 + k.r.n+ k.t

))
= O

(
n.r + k.r2 + k.n.r + k2.r + k.r2.n+ k.t.r

)
= O

(
k.n.r + k2.r + k.r2.n+ k.t.r

)
y

Compare Negative Constraint Relations

Algorithm 10: Compare Negative Constraint Relations

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : ca - A constraint in C in the negative representation
input : cb - A constraint in C in the negative representation
output: Boolean - TRUE if ca and cb have equivalent relations, else FALSE

1 begin
2 if |σ (ca) | ̸= |σ (cb) | then
3 return FALSE

4 result ← Check Disallowed Assignments (ca, cb)
5 result ← result ∧ Check Disallowed Assignments (cb, ca)
6 result ← result ∧ Check Extra Domain Values (ca, cb)
7 result ← result ∧ Check Extra Domain Values (cb, ca)
8 return result

87

Algorithm Analysis 5.3.31. : Compare Negative Constraint Relations (Algorithm 10)

By Data Structure 5.3.25 for a constraint, each scope on line 2 is stored as an array containing

at most r variable names so by Definition 4.0.4 for an array, determining the size of each scope

takes O (1) time. By Definition 4.0.1 for a RAM, comparing two integers takes O (1) time.

On lines 4 and 5 we call Algorithm 8 (Check Disallowed Assignments) whose time complexity

is shown to be O
(
t.r2 + t.r.n+ t.r.k + r.t2

)
in Algorithm Analysis 5.3.29.

On lines 6 and 7 we call Algorithm 9 (Check Extra Domain Values) whose time complexity is

shown to be O
(
k.n.r + k2.r + k.r2.n+ k.t.r

)
in Algorithm Analysis 5.3.30.

By Definition 4.0.1 for a RAM, assignments to a Boolean variable and evaluation of logical

operators can be performed in O(1) time.

We can now summarise the time complexity analysis for Algorithm 10 (Compare Negative

Constraint Relations):

O
(
2.
(
t.r2 + t.r.n+ t.r.k + r.t2

)
+ 2.

(
k.n.r + k2.r + k.r2.n+ k.t.r

))
= O

(
t.r2 + t.r.n+ t.r.k + r.t2 + k.n.r + k2.r + k.r2.n+ k.t.r

)
= O

(
t.r2 + t.r.n+ t.r.k + r.t2 + k.n.r + k2.r + k.r2.n

)
y

Now that we are able to identify when two constraints have equivalent relations, we can perform

our first pre-processing step on the input CSP, which is to look for any negatively represented

constraints whose relations are equivalent to that of some positively represented constraint. If

we find such a negatively represented constraint, then we can replace its relation with a copy of

the positive equivalent. In the input CSP all domains are of type ‘−’, so there is no need to

change the domains of the variables in the scope of the constraint whose relation is changed as

to have equivalent relations the domains must already contain all values occurring in the set of

allowed assignments. We perform this action using Algorithm 11 (‘Replace Equivalent Negative

Constraints’).

88

Replace Equivalent Negative Constraints

Algorithm 11: Replace Equivalent Negative Constraints

input : A CSP ⟨V,D,C⟩ in the mixed representation
output: A CSP ⟨V,D,C⟩ in the mixed representation

1 begin
2 foreach c ∈ C do
3 if constraint type of c is positive then
4 foreach c′ ∈ C do
5 if constraint type of c′ is negative then
6 if Compare Positive and Negative Constraint Relations (c, c′) then
7 ρ (c′)← ρ (c)
8 set constraint type of c′ to positive

9 return ⟨V,D,C⟩

Algorithm Analysis 5.3.32. : Replace Equivalent Negative Constraints (Algorithm 11)

The loop on line 2 will execute at most c times. By Data Structure 5.3.25 the type of a constraint

is stored in a single register, so determining the type of a constraint on line 3 is O(1) time. For

each iteration of the loop on line 2, the loop on line 4 will execute at most c times. Again, the

type of a constraint can be determined on line 5 in O(1) time.

On line 6 we call Algorithm 7 (Compare Positive and Negative Constraint Relations) whose

time complexity is shown to be O
(
r2 + t.n.r + t.k.r + t2.r

)
in Algorithm Analysis 5.3.28. As by

Data Structure 5.3.25 the relation is an array in which the tuples are arrays ordered with respect

to a separate scope array, the relation for c on line 7 may be replaced by copying the relation for

c′ directly. By Proposition 4.0.2, reading and writing a relation Data Structure is O(t.r). Setting

the type of the constraint on line 8 requires writing to a single register, so is O(1) time.

We can now summarise the time complexity analysis for Algorithm 11 (Replace Equivalent

Negative Constraints):

O
(
c
(
c
(
r2 + t.n.r + t.k.r + t2.r + t.r

)))
= O

(
c2

(
r2 + t.n.r + t.k.r + t2.r

))
= O

(
c2.r2 + c2.t.n.r + c2.t.k.r + c2.t2.r

)
y

89

Lemma 5.3.33. Let P be a CSP in the mixed representation. Applying Algorithm 11 (‘Replace

Equivalent Negative Constraints’) to P does not change the solutions to P and does not change

the set of relational structures permitted by P .

Proof. Algorithm 11 only replaces constraint relations when they are equivalent, i.e. permit the

same assignments, so does not change the set of solutions or permitted relational structures.

In a later algorithm (Restore Removed Constraints) we will need to know which negatively

represented constraints that we have not been able to directly convert after merging must have the

same relation in order to permit the desired relational structure. As such, the second pre-processing

step is to build a partition for the negatively represented constraints in the input CSP. This is

only an approximation of how the negatively represented constraints are partitioned to permit

the input relational structure because the parts we create are coarse, and so may have constraints

grouped together which should not be. However, it does guarantee that any two constraints which

must be in the same part, are in the same part. If Algorithm 11 (‘Replace Equivalent Negative

Constraints’) has been run on the CSP being considered, then the partition also has the property

that every part contains either negatively represented or positively represented constraints, but

not both.

Data Structure 5.3.34. : Constraint Partition

Let P = ⟨V,D,C⟩ be a CSP, and let C0 ∩ . . . ∩Cx be a partition of the constraints in C. The

partition is stored as an associative array mapping each constraint c in C to an array containing

the set of constraints which are in the same part as c. By Data Structure 5.3.25, a constraint is of

size O (t.r). The key array may contain at most c constraints, so is of size O (c.t.r). Each value in

the value array is an array containing at most c constraints, so is also of size O (c.t.r). The value

array therefore has size O
(
c2.t.r

)
, and the size of the combined constraint partition structure is

O
(
c.t.r + c2.t.r

)
, so O

(
c2.t.r

)
. y

90

Create Approximate Partition

Algorithm 12: Create Approximate Partition

input : A CSP ⟨V,D,C⟩ in the mixed representation
output: Partition - a function from each c in C to a set of constraints

1 begin
2 Partition ← ∅
3 foreach c ∈ C do
4 Partition(c)← ∅
5 if constraint type of c is negative then
6 foreach c′ ∈ C do
7 if constraint type of c′ is negative then
8 if Compare Negative Constraint Relations(c, c′) = TRUE then
9 Partition(c)← Partition(c) ∪ {c′}

10 else
11 foreach c′ ∈ C do
12 if constraint type of c′ is positive then
13 if Compare Positive Constraint Relations(c, c′) = TRUE then
14 Partition(c)← Partition(c) ∪ {c′}

15 return Partition

Algorithm Analysis 5.3.35. : Create Approximate Partition (Algorithm 12)

By Data Structure 5.3.34, Partition is an associative array that maps from at most c constraints to

arrays containing at most c constraints. By Proposition 4.0.16, constructing an empty associative

array on line 2 requires O(1) time.

The loop on line 3 will execute at most c times. For each execution of the associative array

insertion statement on line 4, the insertion key will be unique and the value is an empty array

of size at most O(c.t.r). The key is a constraint of size O (t.r), so by Proposition 4.0.19, each

insertion into Partition is O(t.r) time. By Data Structure 5.3.25 the type of a constraint is stored

in a single register, so determining the type of a constraint on line 5 is O(1) time.

The loop on line 6 will execute at most c times. Again, determining the type of a constraint

on line 7 is O(1) time. On line 7 we call Algorithm 10 (Compare Negative Constraint Relations)

whose time complexity is shown to be O
(
t.r2 + t.r.n+ t.r.k + r.t2 + k.n.r + k2.r + k.r2.n

)
in Al-

gorithm Analysis 5.3.31. The comparison of the result to a Boolean value is O(1) time. The

Partition associative array has at most c keys which are constraints of size O(t.r), so by Propo-

91

sition 4.0.17 addressing the corresponding value array is O(c.t.r) time. c′ can not already exist

in the value array for c, so the union operation on line 9 can be performed as an insert which by

Proposition 4.0.8 is O(t.r) time.

The loop on line 11 will execute at most c times. Again, determining the type of a constraint

on line 12 is O(1) time. On line 13 we call Algorithm 6 (Compare Positive Constraint Relations)

whose time complexity is shown to be O
(
t2.r

)
in Algorithm Analysis 5.3.27. The comparison of

the result to a Boolean value is O(1) time. The Partition associative array has at most c keys

which are constraints of size O(t.r), so by Proposition 4.0.17 addressing the corresponding value

array is O(c.t.r) time. c′ can not already exist in the value array for c, so the union operation on

line 14 can be performed as an insert which by Proposition 4.0.8 is O(t.r) time.

We can now summarise the time complexity analysis for Algorithm 12 (Create Approximate

Partition):

O
(
c
(
t.r + c

(
t.r2 + t.r.n+ t.r.k + r.t2 + k.n.r + k2.r + k.r2.n+ t.r

)
+ c

(
t2.r + t.r

)))
= O

(
c
(
t.r + c.t.r2 + c.t.r.n+ c.t.r.k + c.r.t2 + c.k.n.r + c.k2.r + c.k.r2.n+ c.t.r + c.t2.r

))
= O

(
c2.t.r2 + c2.t.r.n+ c2.t.r.k + c2.r.t2 + c2.k.n.r + c2.k2.r + c2.k.r2.n

)
y

Lemma 5.3.36. Let P = ⟨V,D,C⟩ be a CSP given in the mixed representation, and let S =

⟨U,R1, . . . , Rm⟩ be a relational structure permitted by P . Given P as input, Algorithm 12 (‘Create

Approximate Partition’) constructs a partition of C such that for each c1, c2 ∈ C, if σ (c1) and

σ (c2) are both in Ri, for some i, then they are both in the same part in the partition.

Proof. By Definition 3.4.1, two constraint scopes may only appear in the same relation of a

relational structure if they have the same constraint relation. By construction in Algorithm 12,

two constraints are only placed into the same part if their constraint relations are equivalent.

Merge

Given the input CSP P and permitted relational structure S, Algorithm 13 (‘Merge’) combines

the variables of P such that the variables in each interaction region of S are replaced with a

single variable. The constraint relations are combined accordingly by being replaced with their

projections onto the subsets of their scopes which are combined to form a region.

The domain for each new region variable cannot be constructed from the Cartesian product

of the domains of the original variables which have been combined to form the region because the

class containing the original CSP may have unbounded arity, and so an unbounded number of

92

variables in any given region. Instead, the domain of each region is constructed as the union of

the projections of all the merged constraints onto that region. If the region is in the scope of a

positively represented constraint, then this projection will contain all the allowed assignments, and

so the domain is of type ‘−’. However, if the region is only in the scope of negatively represented

constraints, then the set of values which may occur in a solution may not be in the union of the

projections. This can be checked by evaluating whether the domain of the region variable contains

the same number of values as would have been generated by taking the Cartesian product of the

domains of the variables combined to form the region. If all values have been generated by the

projections, then the domain is of type ‘−’. However, if this is not the case, then all the missing

values are equivalent in so much as there is no constraint which disallows them, and so a partial

assignment to all other region variables can always be extended to any one of these values on this

region variable, so the domain is of type ‘+’.

Data Structure 5.3.37. : Merged Constraint

Let c = ⟨σ, ρ⟩ be a constraint, and let c′ = ⟨σ′, ρ′⟩ be a merged instance of c. The merged

scope, σ′, contains the regions on σ, of which there are at most w by Definition 5.3.7. Each region

may contain at most r variable names, so by Definition 4.0.4 the size of the array representing

σ′ is O (r.w). Each tuple in ρ′ is formed from the projections of a tuple in ρ onto the regions in

σ′, so there are at most w projections, each onto at most r variables. By Definition 4.0.4, the

array representing each tuple in ρ′ will be of size O (w.r). There are at most t tuples in ρ, and

there will be the same number in ρ′, so by Definition 4.0.4 the size of the array representing ρ′ is

O (w.r.t). A single register is used to store the representation type of the constraint, so the size

of the combined merged constraint structure is therefore O (r.w + w.r.t+ 1), so O (w.r.t). y

A constraint and the corresponding merged constraint will contain the same number of variable

and value symbols. However, the distribution of these symbols between regions may vary, so the

fixed size array structures used in this analysis must allow space for all possible combinations. For

example, there will still be a total of r variable names in each structure, but an allowance is made

for up to r variable names to be listed in each of the w regions. A more efficient structure could

be employed, such as one using delimiters, but would only provide a linear improvement in space.

93

Algorithm 13: Merge

input : A CSP ⟨V,D,C⟩ in the Mixed representation
input : A relational structure S
output: A CSP ⟨V ′, D′, C ′⟩ - the merged version of ⟨V,D,C⟩

1 begin
2 Regions← Generate Interaction Regions (S)
3 V ′ ← ∅
4 D′ ← ∅
5 C ′ ← ∅
6 foreach v ∈ V do
7 region← Regions (v) , regionDomain← ∅
8 set domain type of regionDomain to ‘undefined’
9 foreach c ∈ C do /* Form the merged domains */

10 if region ⊆ σ (c) then
11 foreach f ∈ ρ (c) do
12 regionDomain← regionDomain ∪

{
f|region

}
13 if representation of c is positive then
14 set domain type of regionDomain to ‘−’

15 if domain type of regionDomain is ‘undefined’ then
16 set domain type of regionDomain to ‘−’
17 count← 1 /* If the region contains negative constraints */

18 foreach v ∈ region do /* determine domain type by counting */

19 count← count× |D (v)|
20 if count > |regionDomain| then
21 set domain type of regionDomain to ‘+’

22 V ′ ← V ′ ∪ {region}
23 D′ ← D′ ∪ {region 7→ regionDomain}
24 foreach c ∈ C do /* Merge the constraints */

25 σ′ ← ∅
26 ρ′ ← ∅
27 foreach region ∈ Keys (D′) do
28 if region ⊆ σ (c) then
29 σ′ ← σ′ ∪ {region}

30 foreach f ∈ ρ (c) do
31 ρ′ ← ρ′ ∪

{∪
w∈σ′

{
w 7→ f|w

}}
32 C ′ ← C ′ ∪ {⟨σ′, ρ′⟩}
33 return ⟨V ′, D′, C ′⟩

94

Data Structure 5.3.38. : Merged CSP

Let P = ⟨V,D,C⟩ be a CSP instance, and let P ′ = ⟨V ′, D′, C ′⟩ be a merged instance of

P . The variables, V ′, are now regions which contain at most r variable names, and there may

be at most n regions. By Definition 4.0.4, the array representing V ′ is of size O (r.n). The

domain D′ is an associative array which contains mappings from the region variables in V ′ to the

projections of the constraint relations in C onto those regions, plus a single register to denote

the type of the domain. These projections may each be as large as the projection onto the full

scope for c constraints, i.e. may contain the original relations of at most c constraints, in each of

which there are at most t tuples of arity r so, by Definition 4.0.4, the size of each value array is

O (r.t.c). By Definition 4.0.15, the size of the associative array is O (r.n+ r.t.c.n), so O (r.t.c.n).

The constraints, C ′, are stored as an array of c merged constraint structures as described in

Data Structure 5.3.37 so, by Definition 4.0.4, the size of this array is O (w.r.t.c). The size of the

combined merged CSP structure is therefore O (r.n+ r.t.c.n+ w.r.t.c), so O (r.t.c.n+ w.r.t.c). y

Algorithm Analysis 5.3.39. : Merge (Algorithm 13)

On line 2 we call Algorithm 5 (Generate Interaction Regions) whose time complexity is shown to

be O
(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r

)
in Algorithm Analysis 5.3.23.

The data structures that will contain the merged CSP are initialised on lines 3 to 5. By

Data Structure 5.3.37 for a merged constraint and Data Structure 5.3.38 for a merged CSP, the

maximum size of each array is known for a given CSP instance. By Proposition 4.0.5, construction

of each empty array is O (1) time.

The loop on line 6 will execute at most n times. For each iteration of the loop on line 6,

the assignment to region on line 7 requires a lookup by variable name in the associative array of

Regions. By Proposition 4.0.17, this is O (n) time. By Definition 5.3.38 the domain for a variable

in a merged CSP is of size O (r.t.c). By Proposition 4.0.5, construction of regionDomain on line

7 is O (1) time. By Definition 5.3.38 the type of a domain is stored in a single register, so by

Proposition 4.0.2 setting the type of the domain is O (1) time.

For each iteration of the loop on line 6, the loop on line 9 will execute at most c times. Each

region contains at most n variable names, and each scope contains at most r variable names, so

by Proposition 4.0.11 evaluating the subset condition on line 10 by checking for membership of

each variable is O (r.n).

On lines 11 and 12 the projection of each tuple in the relation of c onto the region is described

using functional notation. For the array based constraint structure defined in Data Structure 5.3.25

95

the positions of the values in each tuple corresponding to the variables in the region can be

determined from the positions of the variables in the scope. By Proposition 4.0.11, finding the

position of a variable name in the scope is O (r). This is done for each variable name in the region,

so building the list of at most r positions is O
(
r2
)
time. By construction, the variable names in

the region will be in the same order as they occur in the scope so, by Proposition 4.0.10, each

tuple array can be projected onto these positions in O (r) time. By Proposition 4.0.13 performing

the set union to ensure uniqueness when adding a projected tuple to regionDomain (which can

contain at most c.t members) is O
(
c.t.r2

)
time. There are at most t tuples, so performing all

operations equivalent to lines 11 and 12 is O
(
r2
)
+O

(
c.t2.r2

)
, so O

(
c.t2.r2

)
time.

By Data Structure 5.3.25 for a constraint, the type of a constraint is stored in a single register,

so by Proposition 4.0.2, the condition on line 13 is O (1) time. Similarly, by Data Structure 5.3.26,

the type of a domain is stored in a single register, so by Proposition 4.0.2, the assignment on line

14 is O (1) time.

By Data Structure 5.3.25, the type of a domain is stored in a single register, so by Proposi-

tion 4.0.2, the condition on line 15 is O (1) time and the assignment on line 16 are both O (1)

time. The assignment on line 17 is writing to a single register, so by Proposition 4.0.2 is O (1)

time.

The loop on line 18 will execute at most r times as the maximum size of any region is r. By

Definition 4.0.4, determining the size of the array representing D (v) is O (1) time. By Propo-

sition 4.0.2, both reading and writing the value of ‘count’ is O (1) time. By Definition 4.0.1,

performing multiplication is O (1) time, so the assignment on line 19 is O (1) time.

By Definition 4.0.4, determining the size of the array representing regionDomain is O (1) time,

and by Proposition 4.0.2 reading the value of ‘count’ is O (1) time, so the condition on line 20 can

be evaluated in O (1) time. By Data Structure 5.3.38, the type of a domain is stored in a single

register, so by Proposition 4.0.2 the assignment on line 21 is O (1) time.

By Data Structure 5.3.38, V ′ may contain at most n regions, each of size at most r so, by

Proposition 4.0.13, performing the set union on line 22 requires O
(
n.r2

)
time.

On line 23 the domain for the region is recorded in D′. By Data Structure 5.3.38, D′ is

represented as an associative array which may contain at most n keys of size at most r each

mapping to an array if size O (r.t.c). As the region of each variable is processed by the loop on

line 6, and variables may share the same region, the region key may already exist in the keys

of D′. By Proposition 4.0.11 determining whether the key is already in the array is O (r.n),

and if it is not then by Proposition 4.0.18 inserting the key region to regionDomain mapping is

96

O (r + c.t.r) time. Note that by construction, whenever the same region is processed multiple

times, its regionDomain will always be the same. An auxiliary structure could be maintained to

ensure that we only process each unique region once, but the cost of this will be equivalent to that

of checking membership of the key array of D′ and in the worst case each region will be unique.

The loop on line 24 will execute at most c times. Data Structure 5.3.37 states that σ′ and ρ′

are of size O (r.w) and O (w.r.t) respectively, so by Proposition 4.0.5 initialising them to empty

sets on lines 25 and 26 is O (1) time.

By Data Structure 5.3.38, D′ is an associative array whose key array contains at most n

elements of size at most r, so the loop on line 27 will execute at most n times. The condition on

line 27 is checking if the region array is a subset of a scope array. Both a region and a scope may

contain at most r variable names. By Proposition 4.0.11 determining whether a variable name

is in the scope array requires O (r) time, so checking whether each variable name in a region is

in a scope requires O
(
r2
)
time. At most r regions could satisfy the condition on line 28, so by

Proposition 4.0.13, the set union on line 29 can be performed in O
(
r2
)
time.

On lines 30 and 31 the merging of each tuple in ρ (c) to correspond to the merged scope

is described using functional notation. For the array based constraint and merged constraint

structures in Data Structure 5.3.25 and Data Structure 5.3.37 respectively, each merged tuple is

constructed by concatenating the projections of an original tuple onto each set of region variables.

The positions of the values in each original tuple corresponding to the variables in a region can be

determined from the positions of the variables in the original scope. By Proposition 4.0.11 finding

the position of a variable name in the original scope requires O (r) time. This is done for each

variable name in a region, so building the list of at most r positions for each region in σ′ is O
(
r2
)

time. By construction, the variable names in the region will be in the same order as they occur in

the scope so, by Proposition 4.0.10, each tuple array can be projected onto these positions in O (r)

time. By Definition 5.3.7 there may be at most w regions in σ′, so this must be performed for at

most w region variables, and for at most t tuples. So, performing the relation merging operation

on lines 30 and 31 is O
(
r2.r.w.t

)
, so O

(
r3.w.t

)
time.

By Data Structure 5.3.37, the size of a merged constraint is O (w.r.t) By Proposition 4.0.13,

performing the set union operation on line 32 is O
(
c. (w.r.t)

2
)
, so O

(
c.w2.r2.t2

)
time.

97

We can now summarise the time complexity analysis for Algorithm 13 (Merge):

O
(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r

)
+

O
(
n
(
n+ c

(
r.n+ c.t2.r2

)
+ r + n.r2 + r.n+ (r + c.t.r)

)
+

c
(
n
(
r2 + r2

)
.r3.w.t+ c.w2.r2.t2

))
= O

(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r+

n
(
n+ c.r.n+ c2.t2.r2 + n.r2 + c.t.r

)
+ c

(
n.r5.w.t+ c.w2.r2.t2

))
= O

(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r+

n2 + c.r.n2 + c2.t2.r2.n+ n.r2 + c.t.r.n+ c.n.r5.w.t+ c2.w2.r2.t2
)

= O
(
m.r2.c2.n2 + n6 +m2.c2.r3 + n4.c2.m2.r+

c2.t2.r2.n+ c.n.r5.w.t+ c2.w2.r2.t2
)

y

Lemma 5.3.40. Let P = ⟨V,D,C⟩ be a CSP, and let S = ⟨U,R1, . . . , Rm⟩ be a relational structure

permitted by P . Given P and S as input, Algorithm 13 (‘Merge’) outputs the merged CSP P ′ =

⟨V ′, D′, C ′⟩ such that, P ′ permits the relational structure Mrg(S) = ⟨U ′, R′
1, . . . , R

′
m⟩.

Proof. By Definition 3.4.1, for P ′ to permit the relational structure Mrg(S) we must have that

V ′ = U ′ and there is a partition C ′ = C ′
1 ∪ . . . ∪ C ′

m where for each Ci every constraint in Ci has

the same relation and R′
i = {σ | ⟨σ, ρ⟩ ∈ C ′

i}.

By Definition 5.3.8, the universe of Mrg(S) is the set of regions. Each variable in the original

CSP is mapped to the region which contains it in ‘Regions’. Each original variable is considered

by the loop on line 6, and its corresponding region is added to the set of variables of the merged

CSP, V ′, on line 22 such that V ′ is the set of regions. Hence, V ′ = U ′.

By construction on lines 24 to 32, each constraint c ∈ C is merged with respect to the regions

to produce c′ ∈ C ′ such that if σ (c) ∈ Ri then σ (c′) ∈ R′
i. Hence, P ′ permits the relational

structure Mrg(S).

Lemma 5.3.41. Let P = ⟨V,D,C⟩ be a CSP, and let S = ⟨U,R1, . . . , Rm⟩ be a relational structure

permitted by P . Given P and S as input, Algorithm 13 (‘Merge’) outputs the merged CSP P ′ =

⟨V ′, D′, C ′⟩ such that, any solution to P ′ can be transformed to a solution to P , and if there is no

solution to P ′, then there is no solution to P .

Proof. By construction on lines 24 to 32, each tuple in the relation of a constraint is merged

with respect to each region of the variables in the scope such that the set of mappings from the

variables in the region to values is replaced with a single mapping from the region to that set of

mappings. A constraint can therefore be unmerged in polynomial time by replacing the single

98

mapping with the set of mappings it maps to. As such, each constraint in C is equivalent to the

merged constraint it corresponds to in C ′ as there is a polynomial time transformation between

assignments.

By Definition 5.3.6, variables can only be members of the same region of S if they never appear

separately in any scope of a CSP that permits S and are only members of a single region. So, by

construction of P ′, variables are merged consistently between constraints.

Joining all constraints in C gives the set of solutions to P , and joining all constraints in C ′

gives the set of solutions to P ′. As all constraints are individually equivalent with their merged

counterparts, and variables merged are consistent between constraints, there is a polynomial trans-

formation between the solutions of P and P ′ and they are equivalent.

Create Improved Merged Partition

Once the original CSP has been merged by Algorithm 13, the constraint partition constructed

by Algorithm 12 needs to be reevaluated. The first reason for this is that the constraints need to

be replaced with the merged versions. This is straightforward as there is a one-to-one mapping

between original and merged constraints, and our algorithm assumes that the constraints are kept

in the same order. More importantly, merging of the CSP with respect to the interaction regions of

the relational structure provides more information about the actual partitioning of the constraints.

As such, we can now identify the parts, or sets of constraints which much share the same relation

in order to permit the desired relational structure, with greater accuracy. This reevaluation of the

partition is performed by Algorithm 14 (‘Create Improved Merged Partition’).

Data Structure 5.3.42. : Merged Constraint Partition

Let P = ⟨V,D,C⟩ be a merged CSP, and let C0 ∩ . . . ∩ Cx be a partition of the merged

constraints in C. The partition is stored as an associative array mapping each merged constraint

c in C to an array containing the set of merged constraints which are in the same part as c. By

Data Structure 5.3.37, a merged constraint is of size O (w.r.t). The key array may contain at most

c merged constraints, so is of size O (c.w.r.t). Each value in the value array is an array containing

at most c merged constraints, so is also of size O (c.w.r.t). The value array therefore has size

O
(
c2.w.r.t

)
, and the size of the combined constraint partition structure is O

(
c.w.r.t+ c2.w.r.t

)
,

so O
(
c2.w.r.t

)
. y

99

Algorithm 14: Create Improved Merged Partition

input : A CSP ⟨V,D,C⟩ in the mixed representation
input : A CSP ⟨V ′, D′, C ′⟩ - the merged version of ⟨V,D,C⟩
input : Partition - a function from each c in C to a set of constraints
output: MergedPartition - a function from each c′ in C ′ to a set of constraints

1 begin
2 MergedPartition ← ∅
3 foreach c ∈ C do
4 i← position of c in C
5 mrgc← C ′[i]
6 MergedPartition(mrgc)← ∅
7 foreach c′ ∈ Partition(c) do
8 j ← position of c′ in C
9 mrgc′ ← C ′[j]

10 compatible ← |σ (mrgc) | = |σ (mrgc′) |
11 if compatible = TRUE then /* If the scope sizes match */

12 foreach q = 0 . . . |σ (mrgc) | − 1 do /* check the merged positions */

13 if |σ (mrgc) [q]| ̸= |σ (mrgc′) [q]| then
14 compatible ← FALSE

15 if compatible = TRUE then
16 foreach y = 0 . . . |σ (mrgc) [q]| − 1 do
17 foreach z = 0 . . . |σ (mrgc′) [q]| − 1 do
18 if position of σ (mrgc) [q][y] in σ (c) ̸= position of

σ (mrgc′) [q][z] in σ (c′) then
19 compatible ← FALSE

20 if compatible = TRUE then
21 MergedPartition(mrgc)← MergedPartition(mrgc) ∪ {mrgc′}

22 return MergedPartition

Algorithm Analysis 5.3.43. : Create Improved Merged Partition (Algorithm 14)

By Data Structure 5.3.42, MergedPartition is an associative array that maps from at most c

merged constraints to arrays containing at most c merged constraints. By Proposition 4.0.16,

constructing an empty associative array on line 2 requires O(1) time.

The loop on line 3 will execute at most c times. By Data Structure 5.3.26, C is an array of c

constraints of size at most O(t.r). By Proposition 4.0.11 finding the index of an element in C on

line 4 requires O(c.t.r) time. By Data Structure 5.3.38, C ′ is an array of c merged constraints of

size at most O(w.r.t), so by Proposition 4.0.6 addressing a merged constraint in C ′ by index on

line 5 is O(1) time. For each execution of the associative array insertion statement on line 6, the

100

insertion key will be unique and the value is an empty array of size at most O(c.w.r.t). The key

is a constraint of size O (w.r.t), so by Proposition 4.0.19, each insertion into Partition is O(w.r.t)

time.

The keys of Partition are constraints, so by Proposition 4.0.17, addressing a value array by

key in Partition on line 7 is O(c.t.r). The loop on line 7 will execute at most c times. By

Proposition 4.0.11 finding the index of an element in C on line 8 requires O(c.t.r) time. By

Proposition 4.0.6 addressing a merged constraint in C ′ by index on line 9 is O(1) time. The

scopes of the merged constraints on line 10 are stored as arrays, so by Definition 4.0.4 determining

their size is O(1) time, and assigning a Boolean value to ‘compatible’ is O(1) time.

Evaluating the Boolean value on line 11 is O(1) time. The loop on line 12 will execute at

most w times. By Definition 4.0.4 both addressing by index and determining the size of an array

requires O(1) time, so evaluating the condition on line 13 is O(1) time. Setting the Boolean value

on line 14 is O(1) time.

Evaluating the Boolean value on line 15 is O(1) time. The loop on line 16 will execute at most

r times. The loop on line 17 will execute at most r times. By Proposition 4.0.6 addressing an

array on line 18 is O(1) time. By Proposition 4.0.11 finding the index of a variable in the scope

of a constraint is O(r) time. Comparing the indices on line 18 requires O(1) time. Setting the

Boolean value on line 19 is O(1) time.

Evaluating the Boolean value on line 20 is O(1) time. The addressing into MergedPosition on

line 21 is always addressing the value array at the last inserted key at this point in the algorithm,

so by Proposition 4.0.6 the value array can always be addressed at an index corresponding to the

current size of the array in O(1) time. The union operation on line 21 will always be adding a value

which cannot already be in the set, so can be performed as an insertion which by Proposition 4.0.8

requires O(w.r.t) time.

We can now summarise the time complexity analysis for Algorithm 14 (Create Improved

Merged Partition):

O (c (c.t.r + w.r.t+ c.t.r + c (c.t.r + w.r.r.2r + w.r.t)))

= O
(
c
(
c2.t.r + c.w.r3 + c.w.r.t

))
= O

(
c3.t.r + c2.w.r3 + c2.w.r.t

)
y

Lemma 5.3.44. Let P = ⟨V,D,C⟩ be a CSP in the mixed representation, let S = ⟨U,R1, . . . , Rm⟩

be a relational structure permitted by P , and let Partition be a partition of C ′′ ⊆ C constructed

by Algorithm 12 (’Create Approximate Partition’) for P . Let P ′ = ⟨V ′, D′, C ′⟩ be a merged CSP

in the mixed representation, and let Mrg(S) = ⟨U ′, R′
1, . . . , R

′
m⟩ be a relational structure permitted

101

by P . Given P , P ′ and Partition as input, Algorithm 14 (‘Create Improved Merged Partition’)

constructs a partition of C ′ such that for each c′1, c
′
2 ∈ C ′, if σ (c′1) and σ (c′2) are both in R′

i, for

some i, then they are both in the same part in the partition.

Proof. By Definition 5.3.8, the merged structure of a relational structure S is constructed such

that each R′
i ∈ Mrg(S) is the merged version of Ri. As such, two merged scopes can only be in the

same R′
i if their corresponding unmerged scopes were in the same Ri. By Lemma 5.3.36, Partition

is constructed such that for each c1, c2 ∈ C ′′, c1 and c2 are in the same part if σ (c1) and σ (c2)

are both in some Ri.

To satisfy Mrg(S), the merged scopes in P ′ can only not be in the same partitions as their

corresponding unmerged scopes in P if the construction of the merged structure Mrg(S) has

merged different positions of the original scopes. Algorithm 14 enforces this by checking that the

scopes contain the same number of merged regions on line 10, that the sizes of the regions are the

same on line 13, and that the positions of variables in the original scopes which are now in the

regions are the same on line 18.

Convert to Positive

We now employ Algorithm 15 (‘Convert to Positive’) as a first pass in generating a positively

represented version of the merged CSP. This algorithm inverts the relations for any negatively

represented constraints for which there is enough domain knowledge to generate the Cartesian

product of possible allowed assignments, and removes those constrains for which there is not

enough information. As the constraints removed are those which contain a variable in their scope

which is only involved in negatively represented constraints, and for which the lack of domain

information indicates must contain some value for which every solution to the remaining variables

must extend (i.e. has a ‘+’ domain), these constraints impose no restriction on the remainder of

their scope that is not already expressed by a constraint which can be converted (or is already in

the positive representation). This means that the set of solutions to the variables whose domains

are of type ‘−’ is not affected by the removal of these constraints.

The domains of type ‘+’ are then converted to the special type ‘∗’ which contains a single

special value that is not restricted by any of the constraints, and can therefore always be assigned.

102

Algorithm 15: Convert to Positive

input : A CSP ⟨V,D,C⟩ - a merged CSP in the Mixed representation
output: A CSP ⟨V ′, D′, C ′⟩ - a merged CSP in the Positive representation
output: RemovedConstraints - a set of Negatively represented constraints

1 begin
2 V ′ ← V
3 D′ ← D
4 RemovedConstraints← ∅
5 foreach v ∈ V ′ do
6 if domain type of D′ (v) is ‘+’ then /* Can only be involved in */

7 foreach c ∈ C do /* negative constraints */

8 if v ∈ σ (c) then /* and these can’t be directly converted */

9 RemovedConstraints← RemovedConstraints ∪ {c}
10 C ← C \ {c}

11 set domain type of D′ (v) to ‘∗’

12 C ′ ← ∅
13 foreach c ∈ C do
14 if constraint type of c is ‘Negative’ then /* Invert the relation */

15 a← |σ (c) |
16 newRelation← {⟨f1, . . . , fa⟩ | fi ∈ D′ (σ (c) [i]) for all 1 ≤ i ≤ a}
17 foreach tuple ∈ ρ (c) do
18 newRelation← newRelation \ {tuple}
19 c′ ← ⟨σ (c) , newRelation⟩
20 set constraint type of c′ to ‘Positive’
21 C ′ ← C ′ ∪ {c′}
22 else
23 C ′ ← C ′ ∪ {c} /* Already positive */

24 return ⟨V ′, D′, C ′⟩
25 return RemovedConstraints

103

When converting a mixed instance to the positive representation, more space may be required

to store the tuples than is available in the merged constraint data structure (Data Structure 5.3.37)

as the Cartesian product of the inferred domains may contain more than t tuples. As such, we

now introduce the Maximal Merged data structures.

Data Structure 5.3.45. : Maximal Merged Constraint

Let c = ⟨σ, ρ⟩ be a constraint, and let c′ = ⟨σ′, ρ′⟩ be a merged instance of c. The maximal

merged constraint structure is the same as the merged constraint structure (Data Structure 5.3.37)

except that it allows the relation ρ′ to contain the maximum possible number of tuples, that is

the number of tuples in the Cartesian product of the domains of the variables in σ′. As per

Data Structures 5.3.37 and 5.3.38, the size of the scope array is O (r.w), and each domain in a

merged CSP may contain at most t.c elements of size O (r). By Definition 5.3.7, the arity of a

merged constraint is at most the interaction width, w, so a relation array formed by the Cartesian

product of the domains may contain at most (t.c)
w
tuple arrays, each of which contains at most

w elements of size O (r), so is of size O (tw.cw.r.w). The combined size of the maximal merged

constraint structure is therefore O (r.w + tw.cw.r.w), so O (tw.cw.r.w). y

Data Structure 5.3.46. : Maximal Merged CSP

Let P = ⟨V,D,C⟩ be a CSP instance, and let P ′ = ⟨V ′, D′, C ′⟩ be a merged instance of P . The

maximal merged CSP structure is the same as the merged CSP structure (Data Structure 5.3.38)

except that the constraint array contains maximal merged constraints. As such, the size of V ′ is

O (r.n), and the size of D′ is O (r.n+ r.t.c.n), so O (r.t.c.n). C ′ is now stored as an array of at

most c merged constraint structures as described in Data Structure 5.3.45, so by Definition 4.0.4

is of size O (c (tw.cw.r.w)), so O
(
tw.cw+1.r.w

)
. The size of the combined maximal merged CSP

structure is therefore O
(
r.n+ r.t.c.n+ tw.cw+1.r.w

)
, so O

(
r.t.c.n+ tw.cw+1.r.w

)
. y

Algorithm Analysis 5.3.47. : Convert to Positive (Algorithm 15)

The input CSP, ⟨V,D,C⟩, is not required after execution of this algorithm and will be modified.

Setting V ′ and D′ on line 2 and 3 requires setting a single register for each to the base address of

V and D respectively, so by Proposition 4.0.2 requires O (1) time. RemovedConstraints on line 4

will hold any constraints removed from C, so is an array of size O (w.r.t.c). By Proposition 4.0.5,

construction of RemovedConstraints in its initial empty state requires O (1) time.

By Data Structure 5.3.38, there are at most n variables (regions) in V ′, so the loop on line 5 will

execute at most n times. By Proposition 4.0.17 finding D′ (v) in the associative array representing

104

the domain requires O
(
r.n2

)
time, and by Proposition 4.0.2 reading the single register required

for the condition on line 6 is then O (1) time.

The loop on line 7 will execute at most c times. On line 8, v is a region so has size O (r), and

σ (c) may contain at most w regions. By Proposition 4.0.11, determining whether v is a member

of σ (c) requires O (r.w) time. Each constraint can only be removed from C at most once, so

the set union on line 9 to add the constraint to RemovedConstraints can be performed by simply

inserting the constraint, which by Proposition 4.0.8 is O (w.r.t) time. By Proposition 4.0.14, the

set difference operation on line 10 is O
(
1.c. (w.r.t)

2
)
, so O

(
c.w2.r2.t2

)
time.

By Proposition 4.0.17 finding D′ (v) in the associative array representing the domain requires

O
(
r.n2

)
time, and by Proposition 4.0.2 setting the single register for the domain type on line 11

is O (1) time.

Any negatively represented merged constraints remaining in C will now be inverted to form

their positive equivalents. An inverted constraint may contain at most all of the tuples pro-

duced from the Cartesian product of the domains of the variables in its scope, which may be

more than t. As such, ⟨V ′, D′, C ′⟩ is required to be implemented as a maximal merged CSP

(Data Structure 5.3.46. V ′ and D′ remain unchanged, but C ′ is now of size O
(
tw.cw+1.r.w

)
. By

Proposition 4.0.5, constructing the empty array for C ′ on line 12 is O (1) time.

The loop on line 13 will execute at most c times. Determining the constraint type of c on line

14 requires reading a single register which by Proposition 4.0.2 is O (1) time. By Definition 4.0.4

the number of elements in an array is stored in a register of the array so, by Proposition 4.0.2,

determining the number of elements in a scope on line 15 is O (1) time.

By Definition 5.3.7, the arity of a merged constraint is at most w, so newRelation can be

constructed on line 16 by constructing a series of at most w intermediate relations, the first

of which contains the set of unary tuples corresponding to each domain value in the domain

of the first scope member. Each subsequent relation then contains the set of tuples formed by

extending each tuple in its predecessor to each domain value in the domain of the next scope

member. The final relation constructed in this manner will be newRelation. Each domain may

contain at most t.c elements of size at most r so, in general, the construction of each intermediate

relation requires reading (t.c)
w−1

tuples of size O (w.r) and then writing (t.c)
w

tuples of size

O (w.r). By Proposition 4.0.2, each construction in general is O
(
tw−1.cw−1.w.r

)
+O (tw.cw.w.r),

so O (tw.cw.w.r) time. This is performed at most w times, so requires O
(
tw+1.cw+1.w2.r

)
time in

total.

The loop on line 17 will execute at most t times. By Proposition 4.0.14, the set difference

105

operation on line 18 requires O
(
1. (t.c)

w
. (w.r)

2
)
, so O

(
tw.cw.w2.r2

)
time.

On line 19, c′ is constructed by copying the scope of c and newRelation to form a new constraint

structure as per Data Structure 5.3.45. By Proposition 4.0.2, both reading and writing of the scope

and relation requires time O (r.w) and O (tw.cw.r.w) respectively, so O (tw.cw.r.w) time overall.

By Proposition 4.0.2 setting the single register for the constraint type on line 27 is O (1) time. As

each constraint in C is processed only once by the loop on line 13, the set union on line 21 can be

performed by simply inserting c′ in to C, which by Proposition 4.0.8 requires time O (tw.cw.r.w).

On line 23 a merged constraint (Data Structure 5.3.37) is added to a set of maximal merged

constraints (Data Structure 5.3.45). As the maximal merges constraint structure is larger, c will

fit in the space reserved for a each constraint in C ′. Also, as the only difference between the

two structures is the maximum number of tuples in the relation array, c can be converted to the

correct type simply by updating the maximum size register on the array once it is in place, which

by Proposition 4.0.2 is O (1) time. As with the set union on line 28, each constraint in C is only

processed once, so c can simply be inserted into C ′, which by Proposition 4.0.8 requires O (w.r.t)

time.

We can now summarise the time complexity analysis for Algorithm 15 (Convert to Positive):

O
(
n
(
r.n2 + c

(
r.w + w.r.t+ c.w2.r2.t2

)
+ r.n2

)
+

c
(
tw+1.cw+1.w2.r + t

(
tw.cw.w2.r2

)
+ tw.cw.r.w + tw.cw.r.w + w.r.t

))
= O

(
n
(
r.n2 + c

(
w.r.t+ c.w2.r2.t2

))
+ c

(
tw+1.cw+1.w2.r + t

(
tw.cw.w2.r2

)))
= O

(
n
(
r.n2 + c.w2.r2.t2

)
+ c

(
tw+1.cw+1.w2.r + tw+1.cw.w2.r2

))
= O

(
r.n3 + n.c.w2.r2.t2 + tw+1.cw+1.w2.r + tw+1.cw.w2.r

)
y

Lemma 5.3.48. Let P = ⟨V,D,C⟩ be a merged CSP as constructed by Algorithm 13 (‘Merge’).

Given P as input, Algorithm 15 (‘Convert to Positive’) outputs the CSP P ′ = ⟨V ′, D′, C ′⟩ such

that any assignment to V ′ \ {v′ | D′ (v′) is of type ‘ ∗ ’} that is a partial assignment to P ′ is also

a partial assignment to P .

Proof. Let v be a variable in V such that D (v) is of type ‘+’, and let c be a constraint such

that v ⊆ σ (c). c must be in the negative representation by construction of P , and must allow

all assignments to σ (c) \ {v} as if it did not then there must be a disallowed assignment listed

in the relation for each value in D (v) which could be in a solution, and hence D (v) would be

of type ‘−’. As such, each negative constraint with a variable in its scope that has a domain of

type ‘+’ imposes no restrictions on the allowed assignments to any subset of its scope. V ′ = V

as Algorithm 13 does not alter the set of variables. All of the variables with domains of type ‘+’

106

are changed to type ‘∗’ on line 11 of Algorithm 15, so removing any such constraint cannot affect

partial assignments over V ′ \ {v′ | D′ (v′) is of type ‘ ∗ ’}.

Lemma 5.3.49. Let P = ⟨V,D,C⟩ be a merged CSP as constructed by Algorithm 13 (‘Merge’),

and let Mrg(S) be a relational structure permitted by P . Given P as input, Algorithm 15 (‘Convert

to Positive’) outputs the CSP P ′ = ⟨V ′, D′, C ′⟩ and set of removed constraints C− such that the

CSP ⟨V ′, D′, C ′ ∪ C−⟩ permits Mrg(S).

Proof. V ′ = V as Algorithm 15 does not alter the set of variables. C ′ ∪ C− = C as for each

c ∈ C Algorithm 15 either removes c from C and places it into C−, changes the relation to an

equivalent positive relation, or does not alter c. As such, any relational structure permitted by P

is permitted by ⟨V ′, D′, C ′ ∪ C−⟩.

Restore Removed Constraints

Algorithm 15 (‘Convert to Positive’) has generated a positively represented CSP whose solu-

tions can be transformed into solutions to the original unmerged instance. However, by removing

constraints it no longer permits the same class of relational structures, so no longer permits the

merged structure that we require of it in order to appeal to Grohe’s Theorem 3.4.9 in our final

proof. To correct this, we run Algorithm 16 which uses the information we constructed earlier

in the merged partition to synthesise constraint relations for the removed constraints which will

preserve solutions and also meet the conditions necessary for the positive instance to permit our

desired relational structure.

The domains of all the variables involved in the removed constraints have domains which are

either of type ‘−’ or ‘∗’, so we can build a Cartesian product from these domains. Replacing

each removed constraint with ‘anything goes’ over its scope would not affect the solutions, but is

unlikely to meet the requirements needed to permit the desired relational structure as either not

all constraints in the same part of the partition have been removed, or some removed constraints in

the same part have different domain types for some position in their scopes. As such, Algorithm 16

collates information about each constraint in the same part in order to generate a single relation

which satisfies all required restrictions. This is possible because the construction of the merged

structure ensures that all regions impose the same restriction.

107

Algorithm 16: Restore Removed Constraints

input : A CSP ⟨V,D,C⟩ - a merged CSP in the positive representation
input : RemovedConstraints - a set of merged constraints in the negative representation
input : MergedPartition - a function from each c′ in C ′ to a set of constraints
output: A CSP ⟨V,D,C⟩ - a merged CSP in the positive representation

1 begin
2 foreach c ∈ RemovedConstraints do
3 foreach c′ ∈ MergedPartition(c) do /* Check whether some part */

4 foreach i = 0 . . . |σ (c) | − 1 do /* has the full domain */

5 if domain type of D (σ (c′) [i]) is ‘−’ then
6 D (σ (c) [i])← D (σ (c′) [i])

7 a← |σ (c) |
8 newRelation← {⟨f1, . . . , fa⟩ | fi ∈ D′ (σ (c) [i]) for all 1 ≤ i ≤ a}
9 hasStar ← FALSE

10 foreach v ∈ σ (c) do
11 if domain type of D (v) is ‘∗’ then
12 hasStar ← TRUE

13 if hasStar = FALSE then /* The constraint can be directly converted */

14 foreach t ∈ ρ (c) do
15 newRelation← newRelation \ {t}

16 c← ⟨σ (c) , newRelation⟩
17 set constraint type of c to positive
18 C = C ∪ {c}
19 return ⟨V,D,C⟩

Algorithm Analysis 5.3.50. : Restore Removed Constraints (Algorithm 16)

The loop on line 2 will execute at most c times. By Data Structure 5.3.42, MergedPartition is

an associative array mapping from at most c merged constraints to arrays each containing at most

c merged constraints. By Data Structure 5.3.37, a merged constraint is of size O(w.r.t), so by

Proposition 4.0.17 addressing the corresponding value array for a given key on line 3 is O(c.w.r.t)

time. The loop on line 3 will execute at most c times, and the loop on line 4 will execute at most

w times.

The input CSP ⟨V,D,C⟩ is implemented as a maximal merged CSP (Data Structure 5.3.46, so

D is an associative array mapping at most n region keys of size O(r) to values of size O(r.t.c.n).

By Proposition 4.0.6, addressing an array by index is O(1), so by Proposition 4.0.17 finding a

domain in the associative array representing the domain on line 5 requires O
(
n.r2

)
time, and by

Proposition 4.0.2 reading the single register required for the condition on line 5 is then O (1) time.

Similarly, finding a domain in the associative array representing the domain on line 6requires

108

O
(
n.r2

)
time, and by Proposition 4.0.2 replacing the domain values requires O (r.t.c) time.

By Definition 4.0.4 the number of elements in an array is stored in a register of the array so,

by Proposition 4.0.2, determining the number of elements in a scope on line 7 is O (1) time. By

Definition 5.3.7, the arity of a merged constraint is at most w, so newRelation can be constructed

on line 8 by constructing a series of at most w intermediate relations, the first of which contains the

set of unary tuples corresponding to each domain value in the domain of the first scope member.

Each subsequent relation then contains the set of tuples formed by extending each tuple in its

predecessor to each domain value in the domain of the next scope member. The final relation

constructed in this manner will be newRelation. Each domain may contain at most t.c elements

of size at most r so, in general, the construction of each intermediate relation requires reading

(t.c)
w−1

tuples of size O (w.r) and then writing (t.c)
w
tuples of size O (w.r). By Proposition 4.0.2,

each construction in general is O
(
tw−1.cw−1.w.r

)
+O (tw.cw.w.r), so O (tw.cw.w.r) time. This is

performed at most w times, so requires O
(
tw+1.cw+1.w2.r

)
time in total.

Setting the Boolean value on line 9 is O(1) time. The loop on line 10 will execute at most w

times. By Proposition 4.0.17 finding a domain in the associative array representing the domain

on line 11 requires O
(
n.r2

)
time, and by Proposition 4.0.2 reading the single register required for

the condition on line 11 is then O (1) time. Setting the Boolean value on line 12 is O(1) time.

Evaluating the Boolean value on line 13 is O(1) time. The loop on line 14 will execute at most t

times. By Proposition 4.0.14, the set difference operation on line 15 requires O
(
1. (t.c)

w
. (w.r)

2
)
,

so O
(
tw.cw.w2.r2

)
time.

On line 16, c is constructed by copying the scope of c and newRelation to form a new constraint

structure as per Data Structure 5.3.45. By Proposition 4.0.2, both reading and writing of the scope

and relation requires time O (r.w) and O (tw.cw.r.w) respectively, so O (tw.cw.r.w) time overall.

By Proposition 4.0.2 setting the single register for the constraint type on line 17 is O (1) time. As

each constraint in C is processed only once by the loop on line 2, the set union on line 18can be

performed by simply inserting c in to C, which by Proposition 4.0.8 requires time O (tw.cw.r.w).

109

We can now summarise the time complexity analysis for Algorithm 16 (Restore Removed

Constraints):

O
(
c
(
c.w.r.t+ c

(
w
(
n.r2 + n.r2 + r.t.c

))
+ tw+1.cw+1.w2.r + w

(
n.r2

)
+t

(
tw.cw.w2.r2

)
+ tw.cw.r.w + tw.cw.r.w

))
= O

(
c
(
c.w.r.t+ c

(
w.n.r2 + w.r.t.c

)
+ tw+1.cw+1.w2.r + w.n.r2

+tw+1.cw.w2.r2 + tw.cw.r.w
))

= O
(
c
(
c.w.n.r2 + w.r.t.c2 + tw+1.cw+1.w2.r + tw+1.cw.w2.r2

))
= O

(
c2.w.n.r2 + w.r.t.c3 + tw+1.cw+2.w2.r + tw+1.cw+1.w2.r2

)
y

Lemma 5.3.51. Let P be a CSP in the mixed representation that contains no negatively repre-

sented constraints for which there is a positive constraint with the equivalent relation also in P , and

let Partition be the partition generated for P by Algorithm 12 (‘Create Approximate Partition’).

Let P ′ be the merged CSP generated from P by Algorithm 13 (‘Merge’), and MergedPartition

be the partition generated for P ′ by Algorithm 14 (‘Create Improved Merged Partition’). Let

P ′′ = ⟨V ′′, D′′, C ′′⟩ be a merged CSP in the positive representation and C− be a set of negatively

represented constraints as constructed for P ′′ by Algorithm 15 (‘Convert to Positive’). Let Mrg(S)

be a relational structure permitted by ⟨V ′′, D′′, C ′′ ∪ C−⟩. Given P ′′, C− and MergedPartition as

inputs, Algorithm 16 (‘Restore Removed Constraints’) returns a CSP P ′′ = ⟨V ′′, D′′, C+⟩ such

that:

1. P ′′ is in the positive representation

2. P ′′ permits Mrg(S)

3. any assignment to V ′′ \ {v′′ | D′′ (v′′) is of type ‘ ∗ ’} that is a partial assignment to P ′′ is

also a partial assignment to P ′.

Proof. P ′′ will be in the positive representation as all constraints in C− are converted to the

positive representation by Algorithm 16 (‘Restore Removed Constraints’) before being added to

C+.

By construction in Algorithm 12 (‘Create Approximate Partition’), Partition contains all nega-

tively represented constraints in P . So, by construction in Algorithm 14 (‘Create Improved Merged

Partition’), MergedPartition contains all negatively represented constraints in P ′. Algorithm 15

does not add negatively represented constraints, so MergedPartition contains all constraints which

are in C−.

110

By Lemma 5.3.49 and Lemma 5.3.44, P ′′ will permit Mrg(S) if each negative constraint in C−

is converted to positive in such a way as its relation is equivalent to all other constraints in the

same part of MergedPartition. This is required to satisfy item 2.

By the argument in the proof of Lemma 5.3.48, replacing each constraint in C− with the

positively represented constraint whose allowed tuples are the Cartesian product of the domains

of the variables in the scope will satisfy item 3, but may violate the partition condition required

for item 2.

To meet the conditions required for both items 1 and 2 to be satisfied, the positive constraints

to replace those in C− must be synthesised such that they they have the equivalent relation as any

other constraint in the same part of MergedPartition, and only place a restriction on any subset

of their scope where the correct restriction is known.

Algorithm 16 achieves this in the following way for each c− ∈ C−:

• If any other constraints in the same part of MergedPartition have a domain of type ‘−’ at

the same position that c− has a domain of type ‘∗’, then this ‘∗’ domain can be replaced

with the ‘−’. The variable with the ‘−’ domain must have been in a positively represented

constraint and so this domain lists all of the allowed values that were considered equivalent

but not listed in the ‘+’ domain that was converted to a ‘∗’ by Algorithm 15 (‘Convert to

Positive’). This is performed on lines 3 to 6.

• The relation of c− is now replaced with the Cartesian product of its domains. If its scope no

longer contains any variables whose domains are of type ‘∗’, then the disallowed assignments

must be removed from the new product relation so as to provide the correct restrictions

to the values for the variables which previously has a domain of type ‘∗’. The constraints

in the same part of MergedPartition all had the same set of disallowed assignments by

construction of MergedPartition, so this is consistent for all constraints in the same part.

This is performed on lines 7 to 16.

Unmerge Solution

The positive instance we have constructed can now be solved. By Grohe’s result 3.4.9, finding

a solution is tractable for the class of CSPs whose arity is bounded, if the core of the relational

structure they permit has bounded treewidth. This is true for any instance constructed using our

method if the original instance is in the class of CSPs with bounded interaction width.

111

Algorithm 17: Unmerge Solution

input : A CSP ⟨V,D,C⟩ in the Mixed representation
input : A CSP ⟨V ′, D′, C ′⟩ - a merged CSP in the Positive representation
input : C ′′ - a set of merged constraints in the Negative representation
input : S′ - A solution to ⟨V ′, D′, C ′⟩
output: S - a solution to ⟨V,D,C⟩

1 begin
2 S ← ∅
3 foreach v′ ∈ V ′ do
4 if domain type of D′ (v′) is not ‘∗’ then
5 S ← S ∪ S′ (v′)

6 else
7 disallowedAssignments← ∅
8 foreach c′′ ∈ C ′′ do
9 disallowedAssignments← disallowedAssignments ∪Πv′ρ (c′′)

10 Stack← [∅]
11 found← false
12 repeat /* Generate and test assignments */

13 currentAssignment← pop from Stack
14 if |currentAssignment| = |v′| then
15 if currentAssignment ̸∈ disallowedAssignments then
16 found← true

17 else
18 v ← v′ [|currentAssignment|]
19 foreach k ∈ D (v) do
20 push currentAssignment ∪ {v 7→ k} to Stack

21 until found = true
22 S ← S ∪ currentAssignment

23 return S

Data Structure 5.3.52. : Assignment

Let P = ⟨V,D,C⟩ be a CSP instance. An assignment to X ⊆ V is stored as two arrays. The

first array contains the at most n variable names in X, and the second contains at most n values

such that for each position, i = 0 . . . |X|−1, the value in position i is in the domain of the variable

in position i of the variable array. By Definition 4.0.4, the size of each array is O (n). y

Data Structure 5.3.53. : Merged Assignment Let P = ⟨V,D,C⟩ be a merged CSP

instance. Similar to Data Structure 5.3.52, a merged assignment to X ⊆ V is stored as two arrays.

The first array contains the at most n region variables in X, which by Data Structure 5.3.38 are

112

of size O (r), so by Definition 4.0.4 the array is of size O (r.n). The second array contains the at

most n values such that for each position, i, the value in position i is in the domain of the region

variable in position i of the variable array. Each domain value is of size O (r), so the value array

is of size O (r.n). y

Algorithm Analysis 5.3.54. : Unmerge (Algorithm 17)

By Data Structure 5.3.52, the size of a solution assignment to an unmerged CSP is O (n), so

by Proposition 4.0.5 constructing the variable and value arrays for S on line 2 is O (1) time.

There may be as many variables in a merged CSP as in the original instance, so the loop on

line 3 will execute at most n times. By Proposition 4.0.17, finding the base address of a domain

in the maximal merged CSP (Data Structure 5.3.46) for a given merged variable requires O
(
r.n2

)
time, and by Proposition 4.0.2, reading the single register for the domain type on line 4 is O (1)

time.

In Data Structure 5.3.53, each element in the value array of a merged solution assignment

is an assignment for the variables of the region in the corresponding variable array. By Propo-

sition 4.0.11, finding the index of v′ in the variable array of S′ requires O
(
r.n2

)
time, and by

Proposition 4.0.6 addressing the element in the value array by this index is O (1) time. By Defini-

tion 5.3.7, each original variable may only occur in a single region, so the at most r variables (and

corresponding at most r values) in S′ (v′) may simply be inserted into S. By Proposition 4.0.2,

reading each variable and value is O (1) time, and by Proposition 4.0.8, inserting each variable

and value is also O (1) time. The operation on line 5 will therefore require O
(
r.n2 (r + r)

)
, so

O
(
r2.n2

)
time.

disallowedAssignments is used to hold the unary projections of the, at most c, constraints in C ′′

onto v′. By Data Structure 5.3.37 for a merged constraint, each unary projection contains at most t

tuples of size r, so disallowedAssignments is of size O (c.t.r), and by Proposition 4.0.5 construction

of disallowedAssignments on line 7 is O (1) time. The loop on line 8 will execute at most c times.

By Proposition 4.0.11, finding the index of v′ in the scope array of c′′ requires O
(
r2.w

)
time.

By Proposition 4.0.10, projecting each tuple of ρ (c′′) onto this index position is O (r) time, so

projecting ρ (c′′) onto this position is O (t.r) time. By Proposition 4.0.13, performing the set

union between this projection and disallowedAssignments requires O
(
t. (c.t) .r2

)
, so O

(
c.t2.r2

)
time. The operation on line 9 will therefore require O

(
r2.w + t.r + c.t2.r2

)
, so O

(
r2.w + c.t2.r2

)
time.

Insertions are always made into the first available position in an array, as per Definition 4.0.4,

113

so a stack may be implemented using an array such that push is equivalent to insertion and pop is

equivalent to removing the last populated element. The stack on line 10 is used to build candidate

assignments to the variables of the region v′, so during execution may contain a sequence of∑r
i=1 k.i tuples each of size at most r, so is of size O

(
k.r2

)
and by Proposition 4.0.5 requires

O (1) time to construct. By Proposition 4.0.2, setting the Boolean flag on line 11 is O (1) time.

During execution of the loop on line 12, the algorithm is either in a state where it is constructing

assignments by pushing elements onto the stack, or it is tearing down assignments from the stack

back to a point where it can resume construction. If constructing assignments, it may need at

most r iterations of the loop to build assignments to the full set of region variables in v′, and if

tearing down assignments it may need at most k.r iterations of the loop to reach a state where

it can restart construction. In the worst case, all assignments in disallowedAssignments will be

constructed before finding a satisfying assignment, so at most c.t+ 1 assignments. Therefore, the

loop on line 12 will execute at most (c.t+ 1) (r + k.r) times, so O (c.t.k.r) times.

By Definition 4.0.4 for an array, determining the index of the last element is O (1) time. By

Proposition 4.0.2 reading and then storing the last element from Stack on line 13 is O (r) time,

and by Proposition 4.0.9 deleting it from the array is O (1) time. By Definition 4.0.4, the current

number of elements is stored in a register of an array, so the comparison of the number of elements

on line 14 is O (1) time.

By Proposition 4.0.11 determining whether currentAssignment is a member of disallowedAs-

signments requires O
(
c.t.r2

)
time. By Proposition 4.0.2, setting the Boolean flag on line 16 is

O (1) time.

By Definition 4.0.4, the current number of elements in an array is stored in a single register of

an array, size of current on line 18 is O (1). The size of current is then used as the index to address

a single element in v′, which by Proposition 4.0.6 is O (1) time. By Proposition 4.0.2 reading an

then storing the single element from v′ (which is a single variable name from V) is O (1) time.

By Proposition 4.0.17, finding D (v) in the non-merged CSP structure (Data Structure 5.3.26)

requires O
(
n2

)
time. The loop on line 19 will then execute at most k times.

By Proposition 4.0.2, making a clone of currentAssignment to be pushed onto the stack is

O (r) time. The mapping from variable to value is implicit as we maintain the variable ordering

in currentAssignment, and a mapping from v cannot already exist in currentAssignment at this

point, so the union on line 20 may simply be performed by inserting k into the clone of cur-

rentAssignment, which by Proposition 4.0.8 is O (1) time. By Proposition 4.0.8, pushing the clone

of currentAssignment onto the stack is O (r) time. Therefore, the operation on line 20 requires

114

O (r + r), so O (r) time.

The condition on line 21 requires reading the single register for the found flag and the single

register storing the current size of Stack, which by Proposition 4.0.2 are both O (1) time. Evalu-

ating the OR condition then requires integer arithmetic, which by Definition 4.0.1 for a RAM is

O (1).

Data Structure 5.3.52 for an assignment consists of a variable array and a corresponding value

array. On line 22, the variables for which currentAssignment has been constructed cannot already

be in S, so the set union operation can be performed by simply inserting each original variable in

the region variable v′ into the variable array of S, and each value in the currentAssignment into

the value array of S. By Proposition 4.0.8, each insertion is O (1) time, so the operation on line

22 requires O (r + r), so O (r) time.

We can now summarise the time complexity analysis for Algorithm 17 (Unmerge):

O
(
n
(
r.n2 + r2.n2 + c

(
r2.w + c.t2.r2

)
+ c.t.k.r

(
r + c.t.r2 + n2 + k.r

)
+ r

))
= O

(
n
(
r2.n2 + c.r2.w + c2.t2.r2 + c2.t2.k.r3 + c.t.k.r.n2 + c.t.k2.r2

))
= O

(
r2.n3 + c.r2.w.n+ c2.t2.r2.n+ c2.t2.k.r3.n+ c.t.k.r.n3 + c.t.k2.r2.n

)
= O

(
c.r2.w.n+ c2.t2.k.r3.n+ c.t.k.r.n3 + c.t.k2.r2.n

)
y

Lemma 5.3.55. Let P = ⟨V,D,C⟩ be a CSP in the mixed representation, and S be a relational

structure permitted by P . Let P ′ = ⟨V ′, D′, C ′⟩ be a CSP in the positive representation that

permits Mrg(S) constructed by Algorithm 16 (‘Restore Removed Constraints’), and let C− be the

set of negatively represented constraints generated by Algorithm 15 (‘Convert to Positive’). Given

P , P ′, C−, and S′ a solution to P ′, Algorithm 17 (‘Unmerge Solution’) generates a solution to P .

Proof. Algorithm 15 sets the domain of a region variable, v′ ∈ V ′ to ‘∗’ if it only occurs in the

scope of negatively represented constraints, and the relations of those constraints do not contain

all values that may be assigned to v′ in a solution to P ′. This infers that there is at least one

value assignable to the v′ which any partial assignment to V ′ \{v′} can extend to in order to form

a solution to P ′. These values are generated by Algorithm 17 on lines 7 to 21 by building each

possible region value from the domains of the original variables from P in the region and testing

whether this value is allowed by the removed constraints. The values from the original domains

used to build the region value are then the mappings to the original variables in the solution to

P and are added on line 22.

For the variables in S′′ whose domains are not of type ‘∗’, each value in S′′ maps directly to a

value that is itself a set of mappings from original variables in P to values.

115

Solve Mixed CSP

Any solution found to the positive instance we have constructed will have the special star value

assigned to those variables with a domain type of ‘*’. We can convert these to actual values for

which the solution is still valid by generating candidate values for the region variable from the

domains of the original instance variables that were merged to form the region. We can then test

these values against the negatively represented constraints that were removed to check if they are

valid (i.e. not disallowed by the removed constraints). We will only have to generate and test at

most the number of disallowed assignments plus one before we find a valid value.

The values assigned to the merged variables can then be directly transformed into assignments

to original variables by unmerging them such that the full assignment is a solution to the original

instance.

Algorithm 18: Solve Mixed CSP

input : A CSP ⟨V,D,C⟩ in the Mixed representation
input : S - a relational structure permitted by ⟨V,D,C⟩
output: S - a solution to CSP ⟨V,D,C⟩

1 begin
2 ⟨V,D,C⟩ ← Replace Equivalent Negative Constraints (⟨V,D,C⟩)
3 Partition← Create Approximate Partition (⟨V,D,C⟩)
4 ⟨V ′, D′, C ′⟩ ← Merge (⟨V,D,C⟩, S)
5 MergedPartition←
6 Create Improved Merged Partition (⟨V,D,C⟩, ⟨V ′, D′, C ′⟩,Partition)
7 ⟨V ′′, D′′, C ′′⟩,Removed← Convert to Positive (⟨V ′, D′, C ′⟩)
8 ⟨V ′′, D′′, C ′′⟩ ←
9 Restore Removed Constraints (⟨V ′′, D′′, C ′′⟩,Removed,MergedPartition)

10 S′′ ← SOLVE (⟨V ′′, D′′, C ′′⟩)
11 S ← Unmerge (⟨V,D,C⟩, ⟨V ′′, D′′, C ′′⟩,Removed, S′′)
12 return S

Proposition 5.3.56. Assuming that W[1] is not FPT. Let H be any recursively enumerable class

of relational structures with bounded interaction width, and let C be the class of CSPs which permit

a structure in H. The class Mixed(C) is tractable if tw(Core(Mrg(H))) <∞.

Proof. Let C′ be the class of CSPs which permit a structure in Mrg(H). By Definition 5.3.8, the

class Mrg(H) has bounded arity as the class H has bounded interaction width. By Grohe’s result,

Theorem 3.4.9, the class Positive(C′) is tractable if tw(Core(Mrg(H))) <∞.

116

Let P be any instance in Mixed(C), and S be a structure in H permitted by P . We will show

that P can be reduced to a derived instance P ′ in Positive(C′) in polynomial time with respect

to the size of P , and that a solution to P can then be constructed from any solution to P ′ in

polynomial time with respect to the size of P by executing Algorithm 18 (‘Solve Mixed CSP’).

The size of S = ⟨U,R1, . . . , Rm⟩ is always smaller than the size of P = ⟨V,D,C⟩ as by Def-

inition 3.4.1: U = V , the union of the Ri relations can contain no more scopes than there are

constraints in C, and there can be no more non-empty Ri’s than there are constraints in C. As

such, any algorithm which is polynomial with respect to the size of S is also polynomial with

respect to the size of P .

By Lemma 5.3.33, Algorithm 11 (‘Replace Equivalent Negative Constraints’) does not change

the solutions of P , and does not change the relational structures permitted by P . Constraints in

Mixed(C) may be represented using either positive or negative relations, and P still permits S, so

P is still in Mixed(C). By Algorithm Analysis 5.3.32, Algorithm 11 runs in polynomial time with

respect to the size of P .

Algorithm 12 (‘Create Approximate Partition’) does not modify P and by Algorithm Analy-

sis 5.3.35 runs in polynomial time with respect to the size of P .

Algorithm 13 (‘Merge’) constructs the derived CSP, Mrg(P) = ⟨V ′, D′, C ′⟩. By Lemma 5.3.40,

Mrg(P) is in Mixed(C′), and by Lemma 5.3.41, any solution to Mrg(P) can be transformed to

a solution to P , and if there is no solution to Mrg(P), then there is no solution to P . By

Algorithm Analysis 5.3.39, Algorithm 13 runs in polynomial time with respect to the size of P .

Algorithm 14 (‘Create Improved Merged Partition’) does not modify Mrg(P) and by Algo-

rithm Analysis 5.3.43 runs in polynomial time with respect to the size of P .

Algorithm 15 (‘Convert to Positive’) constructs the derived positively represented instance,

Positive(Mrg(P)) = ⟨V ′′, D′′, C ′′⟩, and a set of negatively represented constraints, C−. By

Lemma 5.3.48, the set of partial assignments to V ′′ \ {v | D (v) is of type ‘ ∗ ’} is the same in

Mrg(P) and Positive(Mrg(P)), and each partial assignment extends to a solution in both. By

Lemma 5.3.49, the CSP ⟨V ′′, D′′, C ′′ ∪ C−⟩ permits the relational structure Mrg(S). By Algo-

rithm Analysis 5.3.47, Algorithm 15 runs in polynomial time with respect to the size of P .

Algorithm 16 (‘Restore Removed Constraints’) constructs P ′ from Positive(Mrg(P)) and C−.

By Lemma 5.3.51, P ′ is in Positive(C′), and the set of partial assignments on the variables V ′′ \

{v | D (v) is of type ‘ ∗ ’} is the same in Mrg(P) and P ′, and each partial assignment extends to

a solution in both. By Algorithm Analysis 5.3.50, Algorithm 16 runs in polynomial time with

respect to the size of P .

117

P ′ is in Positive(C′) and may be solved using any appropriate algorithm as per Grohe’s re-

sult 3.4.9. If there is no solution to P ′, then there is no solution to P .

By Lemma 5.3.55, Algorithm 17 (‘Unmerge Solution’) transforms a solution to P ′ into a

solution to P . By Algorithm Analysis 5.3.54, Algorithm 17 runs in polynomial time with respect

to the size of P .

We may now restate from page 68, and provide a proof for, the main theorem of this chapter.

Theorem 5.3.9. Assuming that W[1] is not FPT. Let H be any recursively enumerable class of

relational structures with bounded interaction width, and let C be the class of CSPs which permit

a structure in H. The class Mixed(C) is tractable if and only if tw(Core(Mrg(H))) <∞.

Proof. By Proposition 5.3.11, Mixed(C) is intractable if tw(Core(Mrg(H))) = ∞. By Proposi-

tion 5.3.56, Mixed(C) is tractable if tw(Core(Mrg(H))) < ∞. Therefore, Mixed(C) is tractable if

and only if tw(Core(Mrg(H))) <∞.

5.4 Application to Hypergraphs

A hypergraph is equivalent to a relational structure whose relations each contain only a single

tuple, that is, each hyperedge forms the sole tuple in its own relation. The interaction width

of a hypergraph is therfore the interaction width of this equivalent relational structure. Recall

Example 5.3.1 which demonstrates that there are less tractable classes defined for hypergraphs

than relational structures. This simplified view of interaction width allows us to generate novel

structurally tractable classes for the mixed representation by adding the additional requirement of

bounded interaction width to current structurally tractable classes for the positive representation.

These classes are simple applications of Theorem 5.3.9.

118

If we were to construct the dual hypergraph H ′, of a hypergraph H, the multiset of edges in

H ′ may contain duplicates as several edges in H may share the same vertex.

Definition 5.4.1. The dual hypergraph [Dec03] of a hypergraph H = ⟨V,E⟩, is the hypergraph

H ′ = ⟨E,Z⟩ such that, for each v in V , there exists an edge in the multiset Z which is itself the

set of edges in E that contain v. That is ∀v ∈ V, {e ∈ E | v ∈ e} ∈ Z.

It follows from the definition that an interaction region corresponds to each set of edges in

the dual which are over the same set of dual vertices. So, the interaction width is the maximum

number of dual edges which any of the dual vertices is contained in2. This does not help with

identifying regions as regions are not always merged to a single dual vertex. However, constructing

the dual hypergraph of H ′ (that is, the dual of the dual), results in a hypergraph which is the

equivalent of the original hypergraph H, but with merged vertices forming a single ‘dual-dual’

vertex.

Definition 5.4.2. For a hypergraph, ⟨V,E⟩, we define the restriction to a set of vertices, V ′ ⊆ V ,

to be the induced hypergraph ⟨V ′, E′⟩ where E′ = {e ∩ V ′ | e ∈ E}.

Theorem 5.4.3. Let H = ⟨V,E⟩ be a hypergraph and let Ξ be an acyclic guarded decomposition

of H of width k. Let V ′ ⊆ V and H ′ be the restriction of H to V ′. There exists an acyclic guarded

decomposition, Ξ′, of width at most k for H ′

We are also able to find the acyclic guarded decomposition for H ′ from the acyclic guarded

decomposition for H.

Proof. We are required to show that for any V ′ ⊆ V we can construct a guarded decomposition,

Ξ′, which is acyclic and which has width at most k.

Construct Ξ′ such that for every guarded block ⟨λ, χ⟩ ∈ Ξ there is a guarded block ⟨λ′, χ′⟩ ∈ Ξ′

such that λ′ = {e ∩ V ′ | e ∈ λ} and χ′ = χ ∩ V ′.

For Ξ′ to be a guarded decomposition of H ′, it needs to be a complete guarded cover of H ′. Ξ

is a complete guarded cover of H, so for every edge e ∈ E, there exists ⟨λ, χ⟩ ∈ Ξ with e ∈ λ and

e ⊆ χ. By our construction, we may remove vertices from a hyperedge e to give e′, and by doing

so we also remove the same vertices from the edges in λ and from χ so that e′ ∈ λ′ and e′ ⊆ χ′.

So, Ξ′ is a complete guarded cover and therefore is a guarded decomposition of H ′.

As Ξ is acyclic, its blocks form an acyclic set of hyperedges, A, over V . If we let A′ be the set

of hyperedges formed by removing the vertices not in V ′ from A, then it is clear that if performing

2The interaction width is similar to the maximum valency of any dual vertex, except that interaction width
counts unary dual hyperedges as well as outward connections from the dual vertices.

119

Graham’s Algorithm (Algorithm 1) on A results in an empty set (indicating that A is acyclic),

then performing Graham’s Algorithm on A′ will also result in an empty set. As our construction

is such that the blocks of Ξ′ form A′, Ξ′ is acyclic.

Finally, we show Ξ′ has width at most k. Ξ has a width of k, so its largest guard has k edges

in it. Our construction does not add edges, (although edges may be removed or merged if all of

the vertices in the edge are removed,) so by construction Ξ′ must have width at most k.

In particular, this theorem allows us to restrict a hypergraph to a set of vertices such that

there is exactly one vertex in each region.

Proposition 5.4.4. The restriction of a hypergraph to a subset of its vertices does not increase

interaction width.

Proof. From Definition 5.3.7, the interaction width is the maximum number of regions associated

with a hyperedge. Removing vertices from all hyperedges in which they belong cannot increase

the number of regions associated with a hyperedge.

As such, we find that we can restrict a hypergraph without modifying its structural width

parameters, that is, both decomposition width and interaction width.

For the mixed representation, we may apply the transformation used by the proof of tractability

in Theorem 5.3.9 to convert such instances to the positive representation (without changing the

decomposition or interaction widths).

We can see that for any tractably identifiable structural decomposition, such as bounded width

hypertrees [GLS99], we generate a new tractable class with respect to the mixed representation.

Corollary 5.4.5. Let D be a tractably identifiable structural decomposition and H the family

of hypergraphs of width k with respect to D and interaction width i. The class of CSPs whose

structure is in H and represented with respect to the mixed representation is tractable.

Corollary 5.4.5 defines structurally tractable classes for the mixed representation with respect

to bounded interaction width. Theorem 5.3.9 states that any tractable class defined in these terms

must have bounded treewidth of the cores of the merged structures. As such, for the mixed rep-

resentation, any structural decomposition reduces to treewidth under bounded interaction width.

It appears that the interactions between constraints may well be of some importance for sensible

representations.

120

5.5 Tractable Classes of SAT

k-SAT is the subclass of SAT in which each clause contains at most k literals.

2-SAT is NL-complete [Pap94]. 3-SAT is known to be NP -compete [Kar72] and k-SAT can

be reduced to 3-SAT, so k-SAT, k ≥ 3 is in general NP -complete.

Example 5.5.1. A Horn clause is a clause which may contain no more than one positive literal.

HORN-SAT is the subclass of k-SAT in which all clauses are Horn clauses. HORN-SAT is

interesting (and useful) as it is P -complete [Pap94]. Jeavons and Cooper show that HORN-SAT

is equivalent to Max-Closed [JC95].

Each clause in a SAT instance only disallows a single assignment. There can be no polynomial-

time conversion from SAT clauses to the positive representation as this would lead to a possible

exponential blow-up in the size of an instance unless the arity is bound. That is, unless only a

finite subset of the language is considered.

Szeider [Sze03] (Corollary 1) has developed a structural tractability result for SAT which is

based on incidence width (the treewidth of the incidence graph). He has shown that any class of

SAT instances with bounded incidence width is fixed parameter tractable.

We can show that, even just for SAT, this class is incomparable with bounded interaction

width, so there are two distinct structural tractability results for SAT. However, ours has a natural

extension to domains of larger size, so we hope may be applicable to other practical problems.

In the examples that follow, we consider families of hypergraphs and simplify the notion of

an incidence graph by assuming a single constraint on each hyperedge so that we can define an

incidence graph of a hypergraph rather than a CSP. This is a reasonable simplification as it does

not increase the treewidth of the incidence graph and CSPs exist for each hypergraph under this

assumption.

Consider the hypergraph Hn = ⟨Vn, En⟩, shown in Figure 5.6 (left), with vertices:

Vn = {v1, v2, . . . vn, w1, w2, . . . , wn}

and edges:

En = {e = {v1, v2, . . . , vn} , f1 = {v1, w1} , f2 = {v2, w2} , . . . , fn = {vn, wn}} .

The interaction width of Hn is n, since the edge e = {v1, v2, . . . , vn} has a separate interaction

with each of the n edges f1, f2, . . ., fn.

121

fn

v1

v2

vn

w2

wn

...
...

w1 f1

f2

fn

e

v1

v2

vn

...

w1

w2
...

wn

e

f1

f2
...

Figure 5.6: (left) The hypergraph Hn. (right) The incidence graph Hn
∗ of Hn.

Consider instead the incidence graph Hn
∗ of Hn, given in Figure 5.6 (right). It is straightfor-

ward to show that the treewidth of Hn
∗ is 1. An ordering of the vertices of Hn

∗ that witnesses

this fact is:

[e, v1, f1, w1, v2, f2, w2, . . . , vn, fn, wn] .

Let H be the family of hypergraphs {Hi | i ∈ N}. The infinite class H shows that Szeider’s

result (bounded treewidth of the incidence graph) dominates bounded interaction width (in the

sense given by Gottlob et al. [GLS00]) when considering only classes of SAT instances.

To show domination in the other direction we consider a slightly different hypergraph, Jn =

⟨Vn, Fn⟩, shown in Figure 5.7 (left), with vertices the same as Hn, that is:

Vn = {v1, v2, . . . vn, w1, w2, . . . , wn}

and edges:

Fn = {ei = {v1, v2, . . . , vn, wi} | i = 1, 2, . . . , n} .

The interaction width of Jn is 2, since for each i, the relational tuple ei has only two interaction

regions, {v1, v2, . . . , vn} and {wi}.

Consider instead the incidence graph Jn
∗ of Jn, given in Figure 5.7 (right). The treewidth of

Jn
∗ is at least n, since the vertices v1, v2, . . ., vn, e1, e2, . . ., en of Jn

∗ form a complete bipartite

subgraph on {v1, v2, . . . , vn} and {e1, e2, . . . , en}. An ordering of the vertices of Jn
∗ that has

122

en

v1

v2

vn

...

w2

wn

...

w1 e1

e2

en

v1

v2

vn

...

w1

w2
...

wn

...

e1

e2

Figure 5.7: (left) The hypergraph Jn. (right) The incidence graph Jn
∗ of Jn.

treewidth n is:

[v1, v2, . . . , vn, e1, e2, . . . , en, w1, w2, . . . , wn] .

Therefore, the treewidth of Jn
∗ is exactly n.

Let J be the family of hypergraphs {Ji | i ∈ N}. The infinite class J shows that bounded

interaction width dominates bounded treewidth of the incidence graph when considering only

classes of SAT instances.

In this section we have shown that bounded interaction width is incomparable to bounded

treewidth of the incidence graph for SAT instances. Also, the two families H and J show that

non-trivial examples of each tractable class exist. It is interesting to note that in both of these cases

the (hyper)graphs are acyclic. For CSPs represented with respect to the positive representation

we could state that both families are subclasses of the tractable acyclic class. However, we cannot

apply the acyclic solution algorithm to SAT instances.

5.6 Place in the Succinctness Hierarchy

The main result of this section will be to show that the mixed representation is strictly more struc-

turally tractable than the GDNF representation. We also show that the positive representation is

strictly more structurally tractable than the mixed representation.

We do this by demonstrating the succinctness relation between these three representations and

123

appealing to Corollary 5.2.7. We will then exhibit appropriate classes of relational structures to

distinguish their structural tractability.

Proposition 5.6.1. The GDNF representation is as succinct as the mixed representation which

is as succinct as the positive representation.

Proof. By Definition 5.2.6, since any instance in the positive representation can be given in the

mixed representation with only a linear size increase (by remaining in the positive representation

and adding the necessary representation flag), it follows immediately that the mixed is as succinct

as the positive.

Given a positively represented constraint we can use the straightforward construction of Chen

and Grohe [CG06] which generates a product of unary sets for each allowed assignment. This may

be done in linear time, and the resulting GDNF representation of the constraint is (approximately)

the same size.

Given a negatively represented constraint we can use a result by Katsirelos and Walsh [KW07].

They show that any negatively represented constraint may be converted to an equivalent GDNF

representation of the constraint, with a polynomial number of set products in polynomial time

using a simple algorithm which descends a decision tree with a polynomial number of leaves.

A mixed representation of a constraint can either be a positive representation, or a negative

representation, so we are done.

Theorem 5.6.2. The positive representation is strictly more structurally tractable than the mixed

representation which is strictly more structurally tractable than the GDNF representation.

Proof. By Proposition 5.6.1 and Corollary 5.2.7 we have that the positive representation is more

structurally tractable than the mixed representation which is more structurally tractable than the

GDNF representation.

We show strictness by exhibiting appropriate classes of relational structures.

We saw in Example 5.0.20 the class of acyclic structures is not tractable for the negative

representation. This implies that it is not tractable for the mixed representation. This serves

to show that the positive representation is strictly more structurally tractable than the mixed

representation.

Consider the relational structure Hn = ⟨Vn, E1, E2, . . . , En⟩ where the universe is:

Vn = {v1, v2, . . . vn, w1
1, w

1
2, w

2
2, . . . , w

1
n, . . . , w

n
n}

124

wn
n

v1

v2

vn

...
...

w1
2 w2

2

e1

e2

w1
n w2

n · · · wn
n en

w1
1

v1

v2

vn

...

...

e′1

e′2

e′n

...

...

w1
1

w1
2

w2
2

w1
n

Figure 5.8: (left) H(Hn) (right) IncG(Hn)

and the relations are:

E1 = {e1 = ⟨v1, v2, . . . , vn, w1
1⟩}

E2 = {e2 = ⟨v1, v2, . . . , vn, w1
2, w

2
2⟩}

...

En = {en = ⟨v1, v2, . . . , vn, w1
n, . . . , w

n
n⟩}

We depict the structural hypergraph, H(Hn), of Hn in Figure 5.8 (left).

The interaction width of Hn is 2, since for each i, the relational tuple ei has only two interaction

regions, {v1, v2, . . . , vn} and {w1
i , . . . , w

i
i}.

What is more, it is straightforward to show that the merged structure of Hn is tree-structured,

so the treewidth of the merged structure of Hn is 1.

By consideration of the arities of the relations we can see that each of these relational structures

is a core. So, to determine the tractability of these structures for the GDNF representation, we

have only to consider their incidence width.

The incidence graph, IncG(Hn), of Hn is the bipartite graph ⟨V ′
n, E

′
n⟩ such that V ′

n = Vn ∪

L(Hn), where

L(Hn) = {e′1 = ⟨1, e1⟩, e′2 = ⟨2, e2⟩, . . . , e′n = ⟨n, en⟩}, and

125

E′
n = {⟨v1, e′1⟩, . . . , ⟨vn, e′1⟩, ⟨w1

1, e
′
1⟩}

∪ {⟨v1, e′2⟩, . . . , ⟨vn, e′2⟩, ⟨w1
2, e

′
2⟩, ⟨w2

2, e
′
2⟩}

...

∪ {⟨v1, e′n⟩, . . . , ⟨vn, e′n⟩, ⟨w1
n, e

′
n⟩, . . . , ⟨wn

n, e
′
n⟩} .

We depict the incidence graph, IncG(Hn), of Hn in Figure 5.8 (right). Since the vertices

{v1, v2, . . . , vn} and {e′1, e′2, . . . , e′n} of IncG(Hn) form a complete bipartite subgraph, the treewidth

of IncG(Hn) is at least n.

Let H be the class of relational structures {Hi | i = 1, 2, . . .}. The infinite class H has bounded

interaction width together with bounded treewidth of the merged structures, but has unbounded

treewidth of the incidence graphs. As such, the structural class of CSPs defined by H is not

tractable with respect to the GDNF representation. However, it is tractable with respect to the

mixed representation.

In this section we have described a class of structures which is not tractable for the GDNF

representation, yet is tractable for the mixed representation. This class shows that the mixed

representation provides novel tractable structural classes. In particular, since the mixed represen-

tation naturally extends SAT, this provides a useful result, extending known structural tractability

results for SAT, in particular Szeider’s result shown earlier [Sze03].

5.7 Not a Dichotomy

It might be hoped that bounded interaction width would provide a dichotomy for tractable struc-

tural classes in the mixed representation. In this section we show that, unfortunately, this is not

the case.

Consider the relational structure Jn = ⟨Vn, Fn, G1, . . . , Gn⟩ where

Vn = {v1, v2, . . . vn, w1
1, w

1
2, w

2
2, . . . , w

1
n, . . . , w

n
n}

126

wn
n

v1

v2

vn

...
...

g1

fn

w2
2w1

2

w1
n w2

n wn
n· · ·

w1
1

g2

gn

v1

v2

vn

...

f ′
n

g′1

g′2
...

g′n
...

...

w1
1

w1
2

w2
2

w1
n

Figure 5.9: (left) H(Jn) (right) IncG(Jn).

and the relations are:

Fn = {fn = ⟨v1, v2, . . . , vn⟩}

G1 = {g1 = ⟨v1, w1
1⟩}

G2 = {g2 = ⟨v2, w1
2, w

2
2⟩}

...

Gn = {gn = ⟨vn, w1
n, . . . , w

n
n⟩}

We depict the structural hypergraph, H(Jn), of Jn in Figure 5.9 (left).

The interaction width of Jn is n, since the relational tuple fn has a separate interaction with

each of the n hyperedges g1, g2, . . . , gn.

Consideration of the arities of the relations is enough to show that these relational structures

are cores, so to determine if this class of structures is tractable for the GDNF representation we

need only consider their incidence width.

Consider the incidence graph, IncG(Jn), of Jn which is the bipartite graph ⟨W,F ′
n⟩ such that

W = Vn ∪ L(Jn), where

L(Jn) = {f ′
n = ⟨1, fn⟩, g′1 = ⟨2, g1⟩, g′2 = ⟨3, g2⟩, . . . , g′n = ⟨n+ 1, gn⟩}, and

127

F ′
n = {⟨v1, f ′

n⟩, . . . , ⟨vn, f ′
n⟩}

∪ {⟨v1, g′1⟩, ⟨w1
1, g

′
1⟩}

∪ {⟨v2, g′2⟩, ⟨w1
2, g

′
2⟩, ⟨w2

2, g
′
2⟩}

...

∪ {⟨vn, g′n⟩, ⟨w1
n, g

′
n⟩ . . . , ⟨wn

n, g
′
n⟩} .

We depict the incidence graph, IncG(Jn), of Jn in Figure 5.9 (right). It is straightforward to

show that the treewidth of IncG(Jn) is 1. An ordering of the vertices of IncG(Jn) that witnesses

this fact is

[f ′
n, v1, g

′
1, w

1
1, v2, g

′
2, w

1
2, w

2
2, . . . , vn, g

′
n, w

1
n, . . . , w

n
n] .

Let J be the class of relational structures {Ji | i = 1, 2, . . .}. The infinite class J has un-

bounded interaction width, and hence unbounded treewidth of the cores of the merged structures,

but has bounded treewidth of the incidence graphs. Hence, we cannot say using our results for

the mixed representation (by interaction width) that this class of relational structures defines a

tractable structural class with respect to the mixed representation. However, it is tractable for

the GDNF representation and thus, by reduction, is tractable for the mixed representation. This

demonstrates that interaction width alone is not sufficient to provide a dichotomy for the tractable

structural classes for the mixed representation.

128

Chapter 6

Conclusions and Further Work

The work in this thesis was motivated by the apparent disconnect between the constraint repre-

sentations used for theoretical tractability results, and those used by constraint practitioners. We

have seen that acyclicity is fundamental to structural tractability results, but that it is not, in

general, a sufficient condition for tractability for more succinct representations.

In order to improve our understanding and ability to address this issue, we have considered

the conditions necessary to apply existing structural tractability results to more succinct repre-

sentations. In particular, we have considered the mixed representation as it allows us to succinctly

specify SAT instances.

We showed that existing structural tractability results are applicable in the case where instances

in a more succinct representation can be converted in polynomial time into equivalent instances

in the positive representation, in such a way as to preserve existing structural width properties.

We determined that the difficulty of performing such a conversion was related to the number

and nature of the distinct interactions a constraint is involved in, and so developed the notion of

interaction width as a measurement of this property. We were then able to develop the algorithms

necessary to perform this polynomial time conversion for classes of bounded interaction width

by merging the variables involved in each interaction. As we had defined interaction width for

relational structures, we could then appeal to a result by Grohe [Gro07] to give a dichotomy for

the mixed representation: that the class of CSPs permitting a relational structure with bounded

interaction width are tractable if and only if the treewidth of the core of their merged structure

is bounded.

Chen and Grohe [CG06] had previously shown that there is a simple width based character-

isation of structurally tractable classes for the GDNF representation which provides a complete

129

dichotomy: classes permitting relational structures whose cores do not have bounded incidence

width are W[1] hard. Szeider [Sze03] has also developed a structural tractability result for SAT:

that any class of SAT instances with bounded incidence width is fixed parameter tractable. We

have shown that the tractable classes we have defined for the mixed representation, and therefore

SAT, are novel by demonstrating that they are incomparable to both of these existing results.

Observe that the examples of Sections 5.6 and 5.7 are acyclic. We know that acyclicity is

not enough to guarantee tractability for succinct representations. In these cases it is the addi-

tional restriction imposed by, respectively, interaction width together with the treewidth of the core

of the merged structure and incidence width that gives tractability for the appropriate succinct

representations.

The results presented in this thesis provide a significant contribution to our understanding

of the conditions for tractability under succinct representations. Understanding why tractability

results may be different for a class of CSPs under different representations moves us closer to being

able to decouple the reasons for tractability from the effects of representation. We have shown, at

least for the representations considered here, that the number and manner of interactions between

constraints is an important property that can provide a necessary condition for tractability.

Further Work

For the GDNF representation, the tractability characterisation given by Chen and Grohe [CG06]

is a complete dichotomy. However, we do not yet have a dichotomy for structural classes of mixed

representations of CSPs, except in the special case of bounded interaction width.

We have shown that the hierarchy of structural tractability is strict for positive, mixed and

GDNF representations, and have used this characterisation to construct novel structurally tractable

classes for SAT. Unfortunately, we cannot yet show whether or not the negative representation is

more structurally tractable than the mixed representation, which would complete the hierarchy.

It would also be interesting to evaluate the effects of applying a minimum description length

principle to the mixed representation. That is, only allowing constraints to be represented using

the smaller of either the positive or negative representations. However, this may be considered an

unusual restriction as it is unlikely to be enforced in practice.

In this thesis we have been concerned with a single succinct representation, mixed, and previous

work has also been been restricted to single succinct representations considered in isolation. This

is because we rely on knowledge of the succinct representation in order to perform the conversion

130

to the positive representation. As such, these results have shown that structural restrictions can

lead to the applicability of existing tractability results for single succinct representations. As the

mixed representation is the combination of the positive and negative representations, it may be

that there are larger combinations of different representations for which tractable classes may be

defined under some structural restriction. It may be considered that the results follow from the

combination of a structural and a representational restriction, and it would be interesting fur-

ther work to investigate whether there are properties of more general representational restrictions

which allow similar results. For instance, the solvers commonly used in practice are constraint

propagators whose input languages consist of global constraints. The nature of global constraints

is such that they do not follow such a consistently defined single representation, and it is an inter-

esting question as to what restrictions to a language of global constraints may enable structural

tractability results to be applied.

The algorithm analysis framework described in Chapter 4 was invaluable for maintaining the

consistency of the complexity analyses in Chapter 5. The construction of this framework was

necessary as no suitable existing catalogue of data structures and operational complexities was

found to be available. The expansion of this framework beyond the structures and operations

necessary to analyse the algorithms contained in this thesis may result in a useful resource.

131

Bibliography

[AGG05] Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree-width and related hypert-

graph invariants. In 2005 European Conference on Combinatorics, Graph Theory and

Applications (EuroComb ’05), 2005.

[BBJ07] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cambridge

University Press, 2007.

[BCDP07] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global con-

straint catalogue: Past, present and future. Constraints, 12(1):21–62, 2007.

[BCSvB01] Adam Beacham, Xinguang Chen, Jonathan Sillito, and Peter van Beek. Constraint

programming lessons learned from crossword puzzles. In In Proceedings of the 14th

Canadian Conference on Artificial Intelligence, pages 78–87, 2001.

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic

database schemes. Journal of the ACM, 30:479–513, 1983.

[BGKK10] Andrei A. Bulatov, Martin Grohe, Phokion G. Kolaitis, and Andrei Krokhin. 09441

abstracts collection – the constraint satisfaction problem: Complexity and approx-

imability. In Andrei A. Bulatov, Martin Grohe, Phokion G. Kolaitis, and Andrei

Krokhin, editors, The Constraint Satisfaction Problem: Complexity and Approxima-

bility, number 09441 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[BR97] C. Bessière and J-C. Régin. Arc consistency for general constraint networks: prelimi-

nary results. In Proceedings of IJCAI’97, pages 398–404, Nagoya, Japan, 1997.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Comput. Surv., 24(3):293–318, September 1992.

132

[CG06] Hubie Chen and Martin Grohe. Constraint satisfaction with succinctly specified re-

lations. In Nadia Creignou, Phokion Kolaitis, and Heribert Vollmer, editors, Com-

plexity of Constraints, number 06401 in Dagstuhl Seminar Proceedings, Dagstuhl,

Germany, 2006. Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany.

[CGH09] David A. Cohen, Martin J. Green, and Chris Houghton. Constraint representations

and structural tractability. In Ian P. Gent, editor, CP, volume 5732 of Lecture Notes

in Computer Science, pages 289–303. Springer, 2009.

[CJG05] David A. Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural

tractability for constraint satisfaction and spread cut decomposition. In IJCAI, pages

72–77, 2005.

[CJG08] David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural

tractability for constraint satisfaction problems. Journal of Computer and System

Sciences, 74:721–743, 2008. Earlier, uncorrected, version appears in Proceedings of

IJCAI’05, pp. 72–77.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Coh04] David A. Cohen. Tractable decision for a constraint language implies tractable search.

Constraints, 9(3):219–229, 2004.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,

New York, NY, USA, 1971. ACM.

[CRR72] Stephen A. Cook, Robert, and A. Reckhow. Journal of computer and system sciences

7, 354–375 (1973) time bounded random access machines, 1972.

[CV12] Nadia Creignou and Heribert Vollmer. Parameterized complexity of weighted satisfia-

bility problems. In Alessandro Cimatti and Roberto Sebastiani, editors, SAT, volume

7317 of Lecture Notes in Computer Science, pages 341–354. Springer, 2012.

[Dec92] Rina Dechter. Constraint Networks. In Stuart C. Shapiro, editor, Encyclopedia of

Artificial Intelligence, volume 1. Addison-Wesley Publishing Company, 1992.

133

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[dK92] Johan de Kleer. An improved incremental algorithm for generating prime implicates.

In Proceedings of the tenth national conference on Artificial intelligence, AAAI’92,

pages 780–785. AAAI Press, 1992.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DP89] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence,

38:353–366, 1989.

[EFW+02] Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov, and Bruce

Samuels. The adaptive constraint engine. In In: CP 02 Principles and Practice of

Constraint Programming, pages 525–540. Springer, 2002.

[End10] Herbert B. Enderton. Computability Theory: An Introduction to Recursion Theory.

Academic Press, 1st edition, 2010.

[Fer09] Maribel Fernndez. Models of Computation: An Introduction to Computability Theory.

Springer Publishing Company, Incorporated, 1st edition, 2009.

[FJHM05] Alan M. Frisch, Christopher Jefferson, Bernadette Mart́ınez Hernández, and Ian

Miguel. The rules of constraint modelling. In IJCAI, pages 109–116, 2005.

[FM01] Filippo Focacci and Michela Milano. Global cut framework for removing symmetries.

In CP ’01: Proceedings of the 7th International Conference on Principles and Practice

of Constraint Programming, pages 77–92, London, UK, 2001. Springer-Verlag.

[Fre78] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,

21:958–966, 1978.

[Fre82] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,

29(1):24–32, 1982.

[Gas79] John Gary Gaschnig. Performance measurement and analysis of certain search algo-

rithms. PhD thesis, 1979.

134

[GB65] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM,

12(4):516–524, October 1965.

[GGM+05] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and Francesco Scarcello.

Hypertree decompositions: Structure, algorithms, and applications. In WG, pages

1–15, 2005.

[GJ79] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, CA., 1979.

[GJC94] Marc Gyssens, Peter Jeavons, and David A. Cohen. Decomposing constraint satisfac-

tion problems using database techniques. Artificial Intelligence, 66(1):57–89, 1994.

[GLS99] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposi-

tion methods. In Proceedings of the 16th International Joint Conference on Artificial

Intelligence (IJCAI), pages 394–399. Morgan Kaufmann, 1999.

[GLS00] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural

CSP decomposition methods. Artif. Intell., 124(2):243–282, 2000.

[GM99] Martin Grohe and Julian Mariño. Definability and descriptive complexity on databases

of bounded tree-width. Lecture Notes in Computer Science, 1540:70–82, 1999.

[GM06] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In

SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete

algorithm, pages 289–298, New York, NY, USA, 2006. ACM.

[GMS09] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree de-

compositions: NP-hardness and tractable variants. J. ACM, 56(6), 2009.

[Gra79] M H. Graham. On the universal relation. Technical report, University of Toronto,

Toronto, Ontario, Canada, 1979.

[Gro07] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems

seen from the other side. J. ACM, 54(1):1, 2007.

[GSMT98] Carla P. Gomes, Bart Selman, Ken McAloon, and Carol Tretkoff. Randomization in

backtrack search: Exploiting heavy-tailed profiles for solving hard scheduling prob-

lems. In AIPS, pages 208–213, 1998.

135

[GW94] Ian P. Gent and Toby Walsh. The SAT phase transition. In Proceedings of the Eleventh

European Conference on Artificial Intelligence (ECAI’94), pages 105–109, 1994.

[GW02] Ian P. Gent and Toby Walsh. Satisfiability in the year 2000. J. Autom. Reasoning,

28(2):99, 2002.

[HCG06] Chris Houghton, David A. Cohen, and Martin J. Green. The effect of constraint

representation on structural tractability. In Principles and Practice of Constraint

Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France,

September 25-29, 2006, Proceedings, volume 4204, pages 726–730, 2006.

[HE79] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. In Proc. of the 6th IJCAI, pages 356–364, Tokio, Japan, 1979.

[HS02] Warwick Harvey and Peter Stuckey. Improving linear constraint propagation by chang-

ing constraint representation, 2002.

[HW84] G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford

science publications. Clarendon Press, 1984.

[JC95] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial

Intelligence, 79(2):327–339, 1995.

[JCG96] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A test for tractability. In Proceedings 2nd

International Conference on Constraint Programming—CP’96 (Boston, August 1996),

volume 1118 of Lecture Notes in Computer Science, pages 267–281. Springer-Verlag,

1996.

[JCG97] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.

Journal of the ACM, 44:527–548, 1997.

[JJNV89] P. Janssen, P. Jegou, B. Nouguier, and M.C. Vilarem. A filtering process for general

constraint satisfaction problems: achieving pair-wise consistency using an associated

binary representation. In Proceedings of the IEEE Workshop on Tools for Artificial

Intelligence, pages 420–427, 1989.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, pages 85–103, 1972.

136

[KB05] George Katsirelos and Fahiem Bacchus. Generalized NoGoods in CSPs. In AAAI,

pages 390–396, 2005.

[KvB97] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algo-

rithms. Artificial Intelligence, 89:365–387, 1997.

[KW07] George Katsirelos and TobyWalsh. A compression algorithm for large arity extensional

constraints. In Principles and Practice of Constraint Programming – CP 2007, volume

4741 of Lecture Notes in Computer Science, pages 379–393. Springer-Verlag, 2007.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell

System Technical Journal, 38(4):985–999, 1959.

[Mac77] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–

118, 1977.

[Mon74] U. Montanari. Networks of constraints: Fundamental properties and applications to

picture processing. Information Sciences, 7:95–132, 1974.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational

Intelligence, 9(3):268–299, November 1993.

[RDP90] F. Rossi, V. Dahr, and C. Petrie. On the equivalence of constraint satisfaction prob-

lems. In Proceedings of the European Conference on Artificial Intelligence (ECAI90),

August 1990. Also MCC Technical Report ACT-AI-222-89.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-

ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,

USA, 2006.

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom in Con-

straint Satisfaction. In Alan Borning, editor, Proceedings of the Second International

Workshop on Principles and Practice of Constraint Programming, PPCP’94, Rosario,

Orcas Island, Washington, USA, volume 874, pages 10–20, 1994.

[Sze03] Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico

Giunchiglia and Armando Tacchella, editors, Theory and Applications of Satisfiability

Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May

137

5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science,

pages 188–202, 2003.

[TCC+91] William M. Taylor, Peter Cheeseman, Peter Cheeseman, Bob Kanefsky, and Bob

Kanefsky. Where the really hard problems are. In J. Mylopoulos and R. Reiter

(Eds.), Proceedings of 12th International Joint Conference on AI (IJCAI-91),Volume

1, pages 331–337. Morgan Kauffman, 1991.

[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

[Tur36] Alan M. Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proc. London Math. Soc., 2(42), 1936.

[US94] Toms E. Uribe and Mark E. Stickel. Ordered binary decision diagrams and the davis-

putnam procedure. In Proc. of the 1st International Conference on Constraints in

Computaional Logics, pages 34–49. Springer-Verlag, 1994.

[vHK06] Willem-Jan van Hoeve and Irit Katriel. Global constraints. In F. Rossi, P. van Beek,

and T. Walsh, editors, Handbook of Constraint Programming, chapter 6. Elsevier,

2006.

[vN93] John von Neumann. First draft of a report on the edvac. IEEE Ann. Hist. Comput.,

15(4):27–75, October 1993.

[WGS03] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case com-

plexity. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on

Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 1173–1178. Morgan

Kaufmann, 2003.

[YAAP03] Jun Yuan, Ken Albin, Adnan Aziz, and Carl Pixley. Constraint synthesis for environ-

ment modeling in functional verification. In DAC, pages 296–299. ACM, 2003.

[ZS94] Hantao Zhang and Mark E. Stickel. Implementing the davis-putnam algorithm by

tries. Technical report, Artificia Intelligence Center, SRI International, Menlo, 1994.

138

