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Abstract

A profinite group G is just infinite if it is infinite and every non-trivial closed normal

subgroup of G is open, and hereditarily just infinite if every open subgroup is just

infinite. Hereditarily just infinite profinite groups that are not virtually pro-p were first

described by J. S. Wilson, in his recent paper ‘Large hereditarily just infinite groups’,

in 2010. These profinite groups are inverse limits of finite groups that are iterated

wreath products. The iterated wreath products are constructed from finite non-abelian

simple groups, using two types of transitive actions; one of which is specified and the

other is left unspecified.

The main results of this thesis are the complete characterisation of the closed normal

subgroups and the closed subnormal subgroups of such hereditarily just infinite profinite

groups, introduced by Wilson. Using positive finite generation work of M. Quick, we

see that these profinite groups, in the majority of instances, are positively finitely

generated and therefore finitely generated. Recent results by N. Nikolov and D. Segal

show that all the normal and subnormal subgroups of such a hereditarily just infinite

group, described by Wilson, are automatically closed provided the profinite group is

finitely generated. Therefore the characterisations of normal and subnormal subgroups

cover all normal and subnormal subgroups of the majority of Wilson’s groups.

The characterisation of the subnormal subgroups is interesting because it is de-

pendent on the choices for the unspecified transitive actions, used to construct these

profinite groups. A starting point for describing the subnormal subgroups is to make

a choice for the unspecified transitive actions. In this way, some restricted construc-

tions of Wilson’s groups have all their subnormal subgroups forming chains, where the

subnormal subgroups are squeezed between consecutive normal subgroups.

We have examined the possibility of describing maximal subgroups of Wilson’s

hereditarily just infinite groups. M. Bhattacharjee has worked on maximal subgroups

of iterated wreath products of alternating groups with degree ≥ 5, constructed using the

natural actions of the alternating groups. We have applied Bhattacharjee’s techniques

and described maximal subgroups for certain first finite iterated wreath products, in

the construction of Wilson’s groups. In so doing, we indirectly extend Bhattacharjee’s

work, whose view point is that of finite generation. This is because we count the exact

number of conjugacy classes of maximal subgroups and the exact number of maximal

subgroups, for a very small subclass of Bhattacharjee’s wreath products.
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Chapter 1

Introduction

This thesis is built on a recent paper by J. S. Wilson, entitled ‘Large hereditarily just

infinite groups’; see the reference [32]. We are particularly interested in hereditarily

just infinite profinite groups. For the general theory of profinite groups there are two

books, both of which are entitled ‘Profinite Groups’. One book is by J. S. Wilson [30]

and the other book is by L. Ribes and P. Zalesskii [26].

A profinite group G is just infinite if it is infinite and every non-trivial closed normal

subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is just

infinite. The simplest examples of abstract1 hereditarily just infinite groups are the

infinite cyclic group and the infinite dihedral group D∞ = 〈x, y : x2 = y2 = 1〉. More

complicated examples are the groups SL(n,Z) modulo their centre, for n ≥ 3, refer

to [20]. Examples of profinite hereditarily just infinite groups are Zp and SL(n,Zp)

modulo their centre, for n ≥ 3. Many of the groups introduced by R. I. Grigorchuk [9]

and N. Gupta and S. Sidki [10] that act on trees are just infinite. A readable account

describing the first Grigorchuk group is given by P. de la Harpe, in [6, Ch. VIII].

For profinite groups, a just infinite group is the analogue of a simple group in the

setting of finite groups. Therefore it is natural that we want to classify just infinite

profinite groups or, if this is not possible, describe them in some suitable fashion.

It has been shown, refer to [29] and [31], that certain just infinite groups can

be embedded, as subgroups of finite index, in permutational wreath products of a

hereditarily just infinite group and a finite group. Therefore the study of these just

infinite profinite groups reduces to the study of hereditarily just infinite profinite groups.

For some prime p, a profinite group is pro-p if every open normal subgroup has index

equal to some power of p. A profinite group is virtually pro-p if it has an open normal

subgroup that is pro-p. All hereditarily just infinite profinite groups prior to Wilson’s

1An abstract group is a group without a topology.
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1.1. Contributions 1. Introduction

recent construction, in [32], were virtually pro-p groups. The following theorem by

Wilson shows that there are hereditarily just infinite profinite groups of a new kind.

Theorem 1.1 (Wilson [32]). There exists a hereditarily just infinite profinite group with

the property that all composition factors of finite continuous images are non-abelian.

In particular, the group is not virtually pro-p.

Every finitely generated profinite group is countably based. See [30, pg. 54] for the

general definition of a countably based profinite group. The following corollary is also

given by Wilson.

Corollary 1.2 (Wilson [32]). There exists a hereditarily just infinite profinite group

in which every countably based profinite group can be embedded, as a closed subgroup.

Therefore the groups that arise from Theorem 1.1 are also notable because they are

very ‘large’, since every countably based profinite group can be embedded in at least

one of them.

A result similar to Corollary 1.2 has featured, in the pro-p setting, where the Not-

tingham group already existed as a hereditarily just infinite group. R. Camina [4]

proved that every countably based pro-p group can be embedded, as a closed sub-

group, in the Nottingham group. The Nottingham group was introduced to group

theory by D. L. Johnson [12] and I. O. York [34], themselves motivated by an article

of S. A. Jennings [11].

In this thesis, we shall call the groups of Theorem 1.1 Wilson groups and their

construction Wilson’s construction. Wilson groups and their construction are explained

in detail in Section 4.1. The hereditarily just infinite profinite group of Corollary 1.2

is a specific Wilson group, as given in Section 4.2. Wilson groups are new and their

construction is very interesting, therefore they deserve further investigation.

1.1 Contributions

This thesis has set about to investigate structural properties of Wilson groups.

1.1.1 Normal and subnormal subgroups of Wilson groups

Our main contribution is a complete classification of the closed subnormal subgroups

of an arbitrary Wilson group. As a subcase, we have completely classified the closed

normal subgroups of an arbitrary Wilson group. In fact, for a finitely generated2 Wilson

group all subnormal subgroups are automatically closed and therefore, for these groups,

2A finitely generated profinite group means it is topologically finitely generated, see Section 2.5.
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1.1. Contributions 1. Introduction

we have completely classified all their subnormal subgroups. We determine that the

majority of Wilson groups are finitely generated, refer to Chapter 9.

In order to lay out these results, we first briefly describe Wilson’s construction

from which Wilson groups arise; refer to Section 4.1 for further details of Wilson’s

construction.

Let X0, X1, X2, . . . be an infinite sequence of finite non-abelian simple groups. Set

G0 = X0. We construct the finite groups Gn, for n ∈ N, from iterated wreath products

of the groups X0, X1, X2, . . . . Each wreath product Gn is formed via two types of

actions. One of which is unspecified and the other type of action is specified.

Suppose a group Gn−1, for n ∈ N, with a faithful transitive permutation representa-

tion of degree dn has been constructed. Let Ln = X
(dn)
n , for n ∈ N, the direct product

of dn copies of Xn. Wilson defines a specified transitive permutation representation of

the group LnGn−1 on the set Ln (see the action (4.1) in Section 4.1). Let Mn = X
(|Ln|)
n ,

for n ∈ N, the direct product of |Ln| copies of Xn. Form

Gn = Xn oLn (Xn oΩdn
Gn−1),

where Ωdn = {1, 2, . . . , dn}. That is, written as semidirect products,

Gn = Mn o (Ln oGn−1).

A Wilson group is an inverse limit of such finite groups Gn, for n ≥ 0, as described

above. We call the groups Gn Wilson quotients. This becomes evident later when the

infinite groups . . .Mn+2Ln+2Mn+1Ln+1, for n ≥ 0, are found to be normal subgroups

of a Wilson group.

Corollary 5.3 displays the result of the complete classification of the closed normal

subgroups of an arbitrary Wilson group. This is derived from the complete classification

of the normal subgroups of the finite groups Gn, as in Theorem 5.1. For the purpose

of what follows we define M0 = G0.

Theorem 5.1. Let Gn, for n ≥ 0, be the finite groups as defined above. For j ∈
{0, 1, . . . , n}, define

Pn
j = Mn o . . .o (Mj+1 o Lj+1)

and define

Qn
j = Mn o . . .o (Mj+1 o (Lj+1 oMj)).

Then the normal subgroups of Gn are precisely the groups Pn
j and Qn

j . In particular,

9



1.1. Contributions 1. Introduction

they form a complete chain

{1} = Pn
n ( Qn

n ( Pn
n−1 ( . . . ( Qn

1 ( Pn
0 ( Qn

0 = Gn.

Corollary 5.3. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn as defined

above. For j ≥ 0, define

Pj = lim
←−

(Pn
j )n→∞

and define

Qj = lim
←−

(Qn
j )n→∞,

regarded as subgroups of G.

Then the non-trivial closed normal subgroups of G are precisely the groups Pj

and Qj. In particular, they form a complete chain

. . . ( Qn+1 ( Pn ( Qn ( Pn−1 ( . . . ( Q1 ( P0 ( Q0 = G.

The normal subgroups of a Wilson group forming such a rigid chain is noteworthy

and the same property is shared by the groups Zp and SL(n,Zp). The Nottingham

group, in comparison, say, has its normal subgroups almost forming a chain (see Re-

mark 5.4 in Section 5.1).

We found that the determination of the subnormal subgroups of a Wilson group

depended directly on the nature of the unspecified permutation representations of the

groups Gn. That is, whether the subnormal subgroups of the groups Gn, for n ∈ N,

have all their orbits containing at least two elements.

Here we only present the results of an easier situation, where the subnormal sub-

groups of the groups Gn are guaranteed to have all their orbits containing at least

two elements. This is achieved, for instance, by taking the unspecified permutation

representations of the groups Gn to be the actions of the groups on themselves by right

multiplication. The complete characterisation of the closed subnormal subgroups of

these particular Wilson groups is displayed in Corollary 6.6.

The complete characterisation of the closed subnormal subgroups of a general Wil-

son group has been achieved and the results can be found in Section 6.4. It is not

presented here because it involves additional notation that is difficult to read, which

indicates orbits containing at least two elements.

Again, the description of the closed subnormal subgroups of these particular Wilson

groups relies on the description of the subnormal subgroups of the finite groups Gn.

Theorem 6.4 lays out the complete classification of the subnormal subgroups of the

groups Gn having the right regular action in Wilson’s construction. Their characteri-

10



1.1. Contributions 1. Introduction

sation involves recalling the normal subgroups Pn
j and Qn

j , for j ∈ {0, 1, . . . , n}, of Gn,

as defined above.

Theorem 6.4. Let Gn, for n ≥ 0, be the finite groups as defined above. In the Wilson

construction, assume that the unspecified action of the group Gn, for n ≥ 0, is taken

to be right multiplication on itself.

For j ∈ {0, 1, . . . , n− 1}, define

Sn
j (Idj+1

) = Qn
j+1 oX

Idj+1

j+1 ≤ Pn
j , where ∅ 6= Idj+1

⊆ Ωdj+1
,

and define

Sn
n = {1}.

For j ∈ {1, 2, . . . , n}, define

Tn
j (ILj ) = Pn

j oX
ILj

j ≤ Qn
j , where ∅ 6= ILj ⊆ Lj,

and define

Tn
0 = Gn.

Then the subnormal subgroups of Gn are precisely the groups Sn
j (Idj+1

), Sn
n , Tn

j (ILj )

and Tn
0 . In particular, for all Id1, IL1, . . . , Idn and ILn, they form chains

Sn
n = Pn

n ( Tn
n (ILn) ⊆ Qn

n ( Sn
n−1(Idn) ⊆ Pn

n−1 ( . . .

⊆ Pn
1 ( Tn

1 (IL1) ⊆ Qn
1 ( Sn

0 (Id1) ⊆ Pn
0 .

The subnormal length in Gn of the group Sn
j (Idj+1

) is1 if Idj+1
= Ωdj+1

(implying that Sn
j (Idj+1

) = Pn
j ),

2 if Idj+1
( Ωdj+1

.

The subnormal length in Gn of the group Tn
j (ILj ) is1 if ILj = Lj (implying that Tn

j (ILj ) = Qn
j ),

2 if ILj ( Lj.

Recall the normal subgroups Pj and Qj , for j ≥ 0, of a Wilson group, as defined

above.

Corollary 6.6. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn as defined

11



1.1. Contributions 1. Introduction

above. In the Wilson construction, assume that the unspecified action of the group Gn,

for n ≥ 0, is taken to be right multiplication on itself.

For j ≥ 0, define

Sj(Idj+1
) = lim

←−
(Sn

j (Idj+1
))n→∞, where ∅ 6= Idj+1

⊆ Ωdj+1
,

regarded as subgroups of G.

For j ≥ 1, define

Tj(ILj ) = lim
←−

(Tn
j (ILj ))n→∞, where ∅ 6= ILj ⊆ Lj,

and define

T0 = lim
←−

(Tn
0 )n→∞,

regarded as subgroups of G.

Then the non-trivial closed subnormal subgroups of G are precisely the groups

Sj(Idj+1
), Tj(ILj ) and T0. In particular, for all Id1, IL1, . . . , Idn, ILn, Idn+1, . . . ,

they form chains

. . . ( Sn(Idn+1) ⊆ Pn ( Tn(ILn) ⊆ Qn ( Sn−1(Idn) ⊆ Pn−1 ( . . .

. . . ⊆ P1 ( T1(IL1) ⊆ Q1 ( S0(Id1) ⊆ P0.

The subnormal length in G of the group Sj(Idj+1
) is1 if Idj+1

= Ωdj+1
(implying that Sj(Idj+1

) = Pj),

2 if Idj+1
( Ωdj+1

.

The subnormal length in G of the group Tj(ILj ) is1 if ILj = Lj (implying that Tj(ILj ) = Qj),

2 if ILj ( Lj.

For these restricted Wilson groups, the subnormal subgroups form chains where the

subnormal subgroups are squeezed between consecutive normal subgroups. A pictorial

description of this conclusion is shown in Figure 6.1 of Section 6.2.

12



1.1. Contributions 1. Introduction

1.1.2 Normal and subnormal subgroup growth of Wilson groups

A type of normal subgroup growth and subnormal subgroup growth has been measured

for an arbitrary Wilson group, using a lower bound for the size of the finite groups Gn,

as follows:

Theorem 7.1. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1.

Suppose there exists a constant c such that |Xi| ≤ c, for all i ≥ 0.

Then

44. .
.
4︸ ︷︷ ︸

n+2

≤ |Gn| ≤ c̃c̃
. .

.
c̃︸︷︷︸

2n+2

,

where c̃ = 3c.

The number of normal subgroups of a Wilson group G of index at most |Gn| is

SC
|Gn|(G) = 2n+ 2,

for n ≥ 0. This growth is very slow, that is slower than the functions log log . . . log︸ ︷︷ ︸
r

|Gn|

for any fixed r.

The number of subnormal subgroups of a Wilson groupG of index at most |LnGn−1|,
for n ≥ 1, that is SCC

|LnGn−1|(G), is less than or equal to the number

2|Xn|dn +
n∑

j=1

2dj +
n∑

j=2

2dj−2(2|Xj−1|dj−1 − 2),

which is roughly the size of the group Gn, although somewhat smaller.

1.1.3 Maximal subgroups of Wilson groups

We now summarise the little information that we have obtained towards maximal sub-

groups of Wilson groups. In Theorem 8.11, we have described the maximal subgroups

of certain Wilson quotients G1. That is, the first Wilson quotients

G1 = X1 oL1 (X1 oΩd1
G0)

such that the finite non-abelian simple groups G0 = X0 and X1 are taken to be the al-

ternating group Am with degree m ≥ 5, and the unspecified permutation representation

of the group G0 is chosen to be the natural action of the alternating group.

Theorem 8.11. Let G1 = Am oA(m)
m

(Am oΩ∗[1] Am), where Ω∗[1] = {1, 2, . . . ,m}, for

some m ≥ 5. Denote the base group A
(|Am|m)
m =: B and the permuting top group

13



1.1. Contributions 1. Introduction

A
(m)
m Am =: T . The group T acts on the set A

(m)
m according to the action defined in

(4.1) (see Section 4.1). Therefore G1 = B o T .

Define

M0(K) = B oK, where K is a maximal subgroup of T .

Consider the normaliser

NG1(D1 ×D2 × . . .×Ds),

with the equivalence classes Ωi, for 1 ≤ i ≤ s and s 6= |Am|m, of a T -congruence on

A
(m)
m having |Ωi| = l, and where

Di = {(xi, ϕ(i−1)l+2(xi), ϕ(i−1)l+3(xi), . . . , ϕil(xi)) : xi ∈ Am}, for 1 ≤ i ≤ s,

and

ϕj ∈ Aut(Am), for (i− 1)l + 2 ≤ j ≤ il.

Define

M2(L) = L(|Am|m) o T , where L is a maximal subgroup of Am.

Then the groups M0(K) and M2(L)g, where g ∈ B, are maximal subgroups of G1

and every maximal subgroup of G1 is one of the groups M0(K), NG1(D1×D2×. . .×Ds)

or M2(L)g, where g ∈ B.

This initial step was taken with a view to describing the maximal subgroups of

Wilson groups where the finite non-abelian simple groups Xi, for i ≥ 0, are taken

to be the alternating group Am with degree m ≥ 5, and the unspecified permutation

representations of the groups Gn, for n ≥ 0, are chosen to be the natural actions of the

alternating groups. We do have some idea of what these maximal subgroups look like

even though this work has been left unfinished.

The techniques used to find these maximal subgroups has lain in M. Bhattachar-

jee’s work on maximal subgroups of iterated wreath products of alternating groups of

degree m ≥ 5, constructed using the natural actions of the alternating groups; see the

reference [3]. M. Quick generalised Bhattacharjee’s work to iterated wreath products

of arbitrary finite non-abelian simple groups; refer to papers [24] and [25].

Bhattacharjee’s work required her to obtain upper bounds for the number of con-

jugacy classes of maximal subgroups of the wreath products that she considers. In

studying the wreath product W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m} and

m ≥ 5, which is a small subcase of Bhattacharjee’s wreath products, we contribute a

little more information regarding counting the precise number of conjugacy classes of

maximal subgroups of W1 .

14



1.1. Contributions 1. Introduction

In Theorem 8.3, we have classified the maximal subgroups of the wreath product

W1 up to conjugation. They are conjugates of three types of subgroups and it is enough

to conjugate by elements of the base group. The proof of this theorem uses a result

by C. Parker and M. Quick [23] to exclude the possibility of maximal subgroups of W1

which complement the base group.

Theorem 8.3. Let W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m}, for some m ≥ 5

and m 6= 6. Denote the base group A
(m)
m =: B and the permuting top group Am =: T .

Therefore W1 = B o T .

Define

M0(L) = B o L, where L is a maximal subgroup of Am.

Define

M1 = {(x, x, . . . , x) : x ∈ Am} × T .

Define

M2(L) = L(m) o T , where L is a maximal subgroup of Am.

Then the groups M0(L), Mg
1 , where g ∈ B, and M2(L)g, where g ∈ B, are maximal

subgroups of W1 and every maximal subgroup of W1 is one of these.

We count exactly one conjugacy class in W1 of maximal subgroups of the form Mg
1 ,

where g ∈ B (see Remark 8.7, Section 8.2). We finalise Bhattacharjee’s work and

prove that the number of conjugacy classes in W1 of maximal subgroups of the form

M2(L)g, where g ∈ B, is the same as the number of conjugacy classes in Am of maximal

subgroups L of Am (see Remark 8.8, Section 8.2).

Additionally, due to classifying all the maximal subgroups of W1 by conjugation,

we have been able to count them precisely.

Corollary 8.4. Let W1 be the group as defined in Theorem 8.3. Then the number of

maximal subgroups of the form:

• Mg
1 , where g ∈ B, is |Am|m−1;

• M2(L)g, where L is a maximal subgroup of Am and g ∈ B, is∑
L≤maxAm

|Am : L|m−1,

where the summation runs over all maximal subgroups of Am.

15



1.2. Thesis outline 1. Introduction

1.1.4 Finite generation for Wilson groups

Using M. Quick’s work [25], we see that the Wilson groups lim
←−

(Gn)n≥0 such that

|G0| > 35! are positively finitely generated by two elements. Therefore any Wilson

group is finitely generated provided |G0| > 35!.

1.2 Thesis outline

We now set out to the reader how the material of this thesis is organised within the

chapters. Notations, definitions and basic group theory results, required for the under-

standing of this thesis, are contained in Chapter 2.

Chapter 3 considers a motivating example of just infinite profinite groups, which

are not hereditarily just infinite, that are not virtually pro-p. We denote these groups,

which are infinite iterated wreath products of alternating groups, by W . Their con-

struction is very similar to that of Wilson’s construction.

The techniques used to characterise the normal subgroups of the groups W are the

same techniques that are used to characterise the normal subgroups of an arbitrary

Wilson group. In chapter 3, we completely characterise the normal subgroups of the

groups W and in so doing show that these groups are just infinite. We give an expla-

nation as to why the groups W are not hereditarily just infinite and are not virtually

pro-p.

In chapter 4 we give a detailed description of Wilson’s construction, as described

by J. S. Wilson in his paper [32]. Chapter 4 then explains how an arbitrary Wilson

group arises from such a construction. The proofs of Theorem 1.1 and Corollary 1.2,

found in [32], are briefly discussed. In particular, it is reasoned why the Wilson groups

are not virtually pro-p.

We look at the structure of Wilson groups by first finding their normal subgroups.

Chapter 5 contains a complete characterisation of the closed normal subgroups of any

arbitrary Wilson group.

Since a normal subgroup of a group is also a subnormal subgroup of that group, to

continue investigating the structure of Wilson groups, it is natural to consider subnor-

mal subgroups. Every open subgroup of a pro-p group is subnormal. Therefore it is

also appropriate to study subnormal subgroups of Wilson groups because we are not

in the pro-p setting, where studying all the open subgroups provides all the subnormal

subgroups.

Work concerning the subnormal subgroups of Wilson groups is contained in Chap-

ter 6. This is the prime chapter of the thesis. The chapter is formed in three parts, since

describing subnormal subgroups of Wilson groups was found to be rather complicated.
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The results of the section after the introduction, Section 6.2, only applies to partic-

ular Wilson groups. That is, Wilson groups where the unspecified permutation repre-

sentations of the finite groups Gn, in Wilson’s construction, are taken to be the action

of the groups on themselves by right multiplication. This guarantees that subnormal

subgroups of the groups Gn have all their orbits containing at least two elements. The

closed subnormal subgroups of these particular Wilson groups are completely charac-

terised in Section 6.2. In fact, this characterisation holds for all Wilson groups such

that the actions of the subnormal subgroups of the groups Gn, in their construction,

have all their orbits containing at least two elements.

In Section 6.3, to give an indication of the path to take for finding subnormal

subgroups of a general Wilson group, we find the subnormal subgroups of the just

infinite profinite groups W first described in Section 3.2. We do this because the

actions of subnormal subgroups of the finite groups Wn, involved in the construction

of groups W , can have orbits of one element. Section 6.3 completely classifies the

subnormal subgroups of the groups W . In particular, a recursive formula is given to

calculate subnormal length.

The main results of this thesis are contained in Section 6.4. Here the closed sub-

normal subgroups of any arbitrary Wilson group have been completely classified. For

an arbitrary Wilson group, the actions of subnormal subgroups of the finite groups

Gn involved in the construction may have orbits of one element. The characterisa-

tion has been achieved by using Corollary 6.9, which has been developed previously in

Section 6.3.

The normal subgroup growth and the subnormal subgroup growth of a Wilson group

have been worked on, in Section 7.1 of Chapter 7. Since the normal subgroups and the

subnormal subgroups of the finite Wilson quotients Gn have been completely classified,

it was natural to count the number of normal subgroups and subnormal subgroups of

a Wilson group up to index at most |Gn|, for n ≥ 0. We give upper and lower bounds

for the size of Gn in order to make statements about the rate of types of growth.

In Section 7.2, the number of subnormal subgroups of the infinite iterated wreath

products W constructed from the alternating group Am, have been counted by using

a correspondence to the number of subtrees of the infinite m-regular rooted tree.

Another type of subgroup of a group is a maximal subgroup. We would have

liked to have investigated the structure of Wilson’s groups further by finding their

maximal subgroups. Chapter 8 looks at maximal subgroups of Wilson groups. Again,

to gain ideas of how to proceed, we resort to examining the maximal subgroups of the

easier example of the infinite iterated wreath products of alternating groups W first

described in Section 3.2. In particular, Section 8.2 examines the maximal subgroups
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of the finite group W1 used to construct W and Section 8.3 goes on to examine the

maximal subgroups of the finite group W2 used to construct W .

In Section 8.4, information from Section 8.2 and Section 8.3 is used to describe

the maximal subgroups of the first Wilson quotients G1 = X1 oL1 (X1 oΩd1
G0) such

that G0 = X0 and X1 are taken to be the alternating groups, and the unspecified

permutation representation of the group G0 is chosen to be the natural action of the

alternating group.

Chapter 9 concerns positive finite generation, and therefore finite generation of

Wilson groups. As an analogy, the finite generation of the infinite iterated wreath

products W is considered.

Open problems which have evolved from the work produced in this thesis are listed

in Chapter 10. They are referred to within the body of the thesis when they come to

light.
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Chapter 2

Preliminaries

The purpose of this chapter is to set out the notations, definitions and basic group

theory results required for the understanding of the thesis.

2.1 Wreath products

Both the just infinite groups in Chapter 3 and the Wilson groups are constructed from

permutational wreath products, therefore it is beneficial to recall the definition.

Definition 2.1. Let U be a finite permutation group acting on a finite set Ω. Let X

be a finite group. Define

V =
∏
ω∈Ω

Xω,

where Xω
∼= X for all ω ∈ Ω.

The wreath product of X by U , denoted X oΩ U , is the semidirect product V o U .

The group U acts on V by

(xω)ω∈Ω
u = (xω·u−1)ω∈Ω,

where u ∈ U and (xω)ω∈Ω ∈ V . The normal subgroup V is called the base group of the

wreath product. The group U is sometimes referred to as the top group of the wreath

product.

Let X and Y be permutation groups acting on the sets Ω1 and Ω2 respectively.

The wreath product constructed from the permutation groups X and Y is again a

permutation group and it acts on the set Ω1 × Ω2. When we wish to view the wreath

product as such, it is called the permutational wreath product.
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2.1.1 Minimal normal subgroups of some wreath products

In this subsection, we consider wreath products only where the base group is a product

of finite non-abelian simple groups. The fact (3.1) in [32] describes minimal normal

subgroups of these wreath products when the action is transitive. Lemma 2.3, below, is

a generalisation of this fact (3.1), since it does not assume that the action is transitive.

It says that the minimal normal subgroups of such wreath products X oΩU are contained

in V and each corresponds to a U -orbit. This lemma is applied in Proposition 6.8 for

the classification of subnormal subgroups of Wilson groups and subnormal subgroups

of the just infinite iterated wreath products W considered in Chapter 3.

First we need a preliminary lemma to help in the proof of Lemma 2.3. (Lemma 2.2

is also used later in the proof of Proposition 6.2.)

Lemma 2.2. Let U be a finite permutation group acting on a finite set Ω with orbits

Ω1,Ω2, . . . ,Ωr. Let X be a finite non-abelian simple group. Define the permutational

wreath product G = X oΩ U . Denote the base group of the wreath product as V =∏
ω∈ΩXω, where Xω

∼= X for all ω ∈ Ω.

Define

Ni = {(xω)ω∈Ω ∈ V : xω = 1 if ω 6∈ Ωi} ,

for each i = 1, 2, . . . , r. Suppose that N is a normal subgroup of G.

To show that N contains Ni, for each i = 1, 2, . . . , r, it is sufficient to prove that

N contains the coordinate subgroup

Vω1 = {(yω)ω∈Ω ∈ V : yω = 1 if ω 6= ω1}

for at least one ω1 ∈ Ωi.

Proof. Since Ni =
∏

ω1∈Ωi
Vω1 , it is enough to show that N contains the coordinate

subgroups Vω1 , for every ω1 ∈ Ωi. In fact, it is enough to show that N contains Vω1 for

at least one ω1 ∈ Ωi. This is because U acts transitively on the orbit Ωi and, for any

u ∈ U , we have V u
ω1

= Vω1·u−1 .

Lemma 2.3. Let group G = X oΩ U be the permutational wreath product as defined in

Lemma 2.2.

Then the minimal normal subgroups of G are contained in V and are precisely the

groups

N1 = {(xω)ω∈Ω ∈ V : xω = 1 if ω /∈ Ω1} ,

N2 = {(xω)ω∈Ω ∈ V : xω = 1 if ω /∈ Ω2} ,
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2.1. Wreath products 2. Preliminaries

...

Nr = {(xω)ω∈Ω ∈ V : xω = 1 if ω /∈ Ωr} .

Proof. We want to show that the minimal normal subgroups of G are precisely the

groups N1, N2, . . . , Nr. Obviously, this will imply that the minimal normal subgroups

of G are contained in V .

Let i ∈ {1, 2, . . . , r}. Since G = V U , to check that Ni is normal it is sufficient to

show that [Ni, V ] ⊆ Ni and [Ni, U ] ⊆ Ni.

To show [Ni, V ] ⊆ Ni, let x = (xω)ω∈Ω ∈ Ni and y = (yω)ω∈Ω ∈ V . Setting

∆ := Ω\Ωi we have x = ((xω)ω∈Ωi , (1)ω∈∆) and y = ((yω)ω∈Ωi , (yω)ω∈∆). So [x, y] =

([xω, yω])ω∈Ω can be written as

(
([xω, yω])ω∈Ωi , ([1, yω])ω∈∆

)
=
(
([xω, yω])ω∈Ωi , (1)ω∈∆

)
∈ Ni.

To show [Ni, U ] ⊆ Ni, let x = (xω)ω∈Ω ∈ Ni and u ∈ U . Setting ∆ := Ω\Ωi we have

x = ((xω)ω∈Ωi , (1)ω∈∆). Since Ωi is a U -orbit, this allows us to write [x, u] = x−1 · xu

as

(
(x−1

ω )ω∈Ωi , (1
−1)ω∈∆

)
·
(
(xω·u−1)ω∈Ωi , (1)ω∈∆

)
=
(
(x−1

ω xω·u−1)ω∈Ωi , (1)ω∈∆

)
∈ Ni.

Next we show that Ni is minimal normal in G. For this, we need that the normal

closure in G of any non-trivial element x = (xω)ω∈Ω ∈ Ni is equal to Ni.

(∗) Choose ω1 ∈ Ωi such that xω1 6= 1. Since X is non-abelian simple it has trivial

centre and we can find y ∈ X such that [xω1 , y] 6= 1. Consider y = (yω)ω∈Ω ∈ V
with yω = y if ω = ω1 and yω = 1 otherwise. Then [x, y] ∈ 〈x〉G can be written

as (([xω, y])ω∈{ω1}, (1)ω∈Ω\{ω1}) 6= 1. As X is simple, the normal closure of [x, y]

in V is equal to Vω1 . Therefore Vω1 ⊆ 〈x〉G and Lemma 2.2 proves the claim.

It remains to prove that every minimal normal subgroup ofG is one ofN1, N2, . . . , Nr.

Let N be a minimal normal subgroup of G.

Suppose N ⊆ V . We can find 1 6= x = (xω)ω∈Ω ∈ N . Replacing 〈x〉G by N in

argument (∗) implies Ni ⊆ N , for one i = 1, 2, . . . , r.

Now suppose N 6⊆ V . Then we can find ux = u(xω)ω∈Ω ∈ N with u ∈ U\{1}
and x ∈ V . Since u 6= 1, we can obtain ω1 ∈ Ω such that ω2 := ω1 · u 6= ω1. Choose

y ∈ X\{1}. Consider y = (yω) ∈ V with yω = y if ω = ω1 and yω = 1 otherwise. Then
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2.2. Subnormal subgroups 2. Preliminaries

[y, ux] = y−1(x−1yux) ∈ N can be written as

(
(y−1)ω=ω1 , (1)ω=ω2 , (1)ω∈Ω\{ω1,ω2}

)
·(

(x−1
ω1
.1.xω1)ω=ω1 , (x

−1
ω2
.y.xω2)ω=ω2 , (x

−1
ω .1.xω)ω∈Ω\{ω1,ω2}

)

=
(
(y−1)ω=ω1 , (y

xω2 )ω=ω2 , (1)ω∈Ω\{ω1,ω2}
)
. (2.1)

Since y 6= 1, we have ((y−1)ω=ω1 , (y
xω2 )ω=ω2 , (1)ω∈Ω\{ω1,ω2}) 6= 1. As X is simple,

the normal closure of [y, ux] in V contains Vω1 . Therefore Vω1 ⊆ N and Lemma 2.2

proves the claim.

2.2 Subnormal subgroups

A subgroup T of a group G is subnormal in G if there exists subgroups

G = T0 ≥ T1 ≥ . . . ≥ Tk = T such that Ti E Ti−1,

for each i = 1, 2, . . . , k. When k is the smallest possible number with this feature one

says that T is subnormal of length k in G.

2.2.1 Normal subgroups of some direct products

To describe subnormal subgroups in Chapter 6, we will need to know the normal

subgroups of a direct product of finite non-abelian simple groups. Therefore we will

frequently make use of the following fact.

Lemma 2.4. A normal subgroup of a direct product of non-abelian simple groups is a

direct product of some of its factors.

2.3 Maximal subgroups

A proper subgroup M of a group G is maximal in G if there exists no proper subgroup

L of G strictly containing M .

2.3.1 The alternating groups

In Chapter 8, the classification of the maximal subgroups of wreath products of alter-

nating groups involves the maximal subgroups of alternating groups. The O’Nan-Scott

Theorem can be used to classify all the maximal subgroups of Am, the alternating
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2.4. The normaliser of a direct product in a wreath product 2. Preliminaries

group of degree m; see [33, Sec. 2.6] for a very readable version. It appeared as a clas-

sification of the maximal subgroups of the symmetric group at a conference in Santa

Cruz on finite groups [28]. A maximal subgroup L of Am is of one of the following six

types.

(a) (Sl × Sk) ∩Am, with m = l + k and l 6= k (intransitive type);

(b) (Sl o Sk) ∩Am, with m = lk, l > 1 and k > 1 (imprimitive type);

(c) AGLk(p) ∩Am, with m = pk and p a prime (affine type);

(d) (Hk.(Out(H) × Sk)) ∩ Am, with H a non-abelian simple group, k ≥ 2 and m =

|H|k−1 (diagonal type);

(e) (Sl o Sk) ∩ Am, with m = lk, l ≥ 5 and k > 1, excluding the case where L is

imprimitive on Ω∗[1] = {1, 2, . . . ,m} (product action type);

(f) H C L ≤ Aut(H), with H a non-abelian simple group, H 6= Am and L acting

primitively on Ω∗[1] = {1, 2, . . . ,m} (almost simple type).

Here, Sl denotes the symmetric group of degree l; AGLk(p) denotes the affine

general linear group over the field of order p; Out(H) denotes the outer automorphism

group of H; and Aut(H) denotes the automorphism group of H.

However, not all the subgroups of type (a) to (f) may be maximal in Am. The

paper [16] by M. W. Liebeck, C. E. Praeger and J. Saxl says that such groups L are in

general maximal and gives an explicit list of exceptions.

2.4 The normaliser of a direct product in a wreath prod-

uct

The following result occurs in the proof of Theorem 8.3, in Section 8.2, where the

maximal subgroups of the groups W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m} and

m ≥ 5, are characterised up to conjugation. The result shows that the normaliser in

the wreath product X oΩ U of the direct product HΩ, where H is a subgroup of X, can

be computed from the normaliser of H in X.

Lemma 2.5. Let U be a finite permutation group acting on a finite set Ω = {1, 2, . . . , n}.
Let X be a finite group. Define the permutational wreath product G = X oΩ U .

Suppose H is a subgroup of X. Then

NG(HΩ) = (NX(H))ΩU = (NX(H))Ω o U .
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Proof. Now (g1, g2, . . . , gn)s ∈ NG(HΩ)

if and only if (HΩ)(g1,g2,...,gn)s = (Hg1 ×Hg2 × . . .×Hgn)s = HΩ,

if and only if Hgi = H, for all i ∈ Ω,

if and only if gi ∈ NX(H), for all i ∈ Ω,

if and only if (g1, g2, . . . , gn) ∈ (NX(H))Ω.

Then NG(HΩ) = (NX(H))ΩU . Further, (NX(H))ΩU = (NX(H))Ω o U as (NX(H))Ω

is the intersection of NG(HΩ) with the base group XΩ.

2.5 Profinite groups

In this section, we define the concept of profinite groups and give some basic properties.

There are many characterisations of a profinite group; see [15, Ch. I] for a readable

overview of profinite theory that is more specific to profinite groups. However, the

prevalent one of this thesis is that of a profinite group being an inverse limit of finite

groups.

A directed set is a partially ordered set I with respect to � with the property that

for all i, j ∈ I there exists k ∈ I such that i � k and j � k. For our work any directed

set is taken to be the set N ∪ {0} with respect to the ordinary order-relation ≤.

Definition 2.6. An inverse system (Gi, ϕij) of topological groups indexed by a directed

set I consists of a collection Gi, for i ∈ I, of topological groups and a collection of

continuous group homomorphisms ϕij : Gj −→ Gi defined whenever i � j, for i, j ∈ I,

satisfying

ϕii = idGi and ϕijϕjk = ϕik

whenever i � j � k, for i, j, k ∈ I.

Definition 2.7. An inverse limit of an inverse system (Gi, ϕij) of topological groups

is a topological group G with a collection of continuous group homomorphisms ϕi :

G −→ Gi, for all i ∈ I, such that

ϕijϕj = ϕi

whenever i � j, for i, j ∈ I.

In addition, the inverse limit has the following universal property: whenever H is

a topological group and ψi : H −→ Gi, for all i ∈ I, is a collection of continuous group

homomorphisms satisfying ϕijψj = ψi whenever i � j, for i, j ∈ I, then there is a

unique continuous group homomorphism ψ : H −→ G such that ϕiψ = ψi for each i.
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The inverse limit is denoted by lim
←−

(Gi)i∈I .

The maps ϕi : G −→ Gi of the inverse limit are not necessarily surjective, however,

without loss of generality, the maps ϕi can be defined as being surjective. Therefore

the inverse limit lim
←−

(Gi)i∈I is the group

{
(gi)i∈I ∈

∏
i∈I

Gi : ϕij(gj) = gi whenever i � j

}
,

which is a subgroup of the direct product
∏

i∈I Gi. We will see that for the profinite

groups considered in our work the maps ϕi are always surjective.

Definition 2.8. A profinite group is the inverse limit of an inverse system of finite

groups.

Finite groups Gi, for i ∈ I, are regarded as topological groups with the discrete

topology. Then the direct product
∏

i∈I Gi is a topological group when given the

product topology. In this way, the inverse limit lim
←−

(Gi)i∈I , with the induced topology,

becomes a topological group. Hence profinite groups are topological groups.

Another characterisation is that a profinite group is a compact Hausdorff topological

group such that every open neighbourhood of the identity element contains an open

subgroup. Therefore the open subsets of a profinite group G are precisely those sets

which can be written as unions of cosets gN of open normal subgroups N Eo G.

Let G be any group. Define

I = {N EG : N has finite index in G}

with respect to reverse inclusion. That is, N � M if and only if M ⊆ N . Now I

is a directed set because the intersection of two normal subgroups of finite index is a

normal subgroup of finite index. Define the natural projections

ϕNM :
G

M
−→ G

N

whenever N � M . The finite quotients G/N and maps ϕNM form a natural inverse

system. The inverse limit Ĝ := lim
←−

(G/N) of this inverse system is a profinite group.

The group Ĝ is called the profinite completion of G.

Let p be a fixed prime. The normal subgroups of Z whose index is a power of p are
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of the form piZ, for i ∈ N. The finite quotient groups Z/piZ and natural projections

ϕij :
Z
pjZ
−→ Z

piZ

whenever pjZ ⊆ piZ form an inverse system. The inverse limit Zp := lim
←−

Z/piZ of this

inverse system is called the group of p-adic integers. Each element of Zp has a unique

p-adic expansion

a0 + a1p+ a2p
2 + . . . = (. . . a2a1a0)p,

where ai ∈ {0, 1, . . . , p− 1} are called p-adic digits.

Definition 2.9. Let p be a fixed prime. A pro-p group is a topological group that is

isomorphic to the inverse limit of finite p-groups.

Lemma 2.10. Let G be a profinite group.

Then every open subgroup of G is closed.

The contrapositive of the following result is used in Section 3.3 to prove that the in-

finite iterated wreath products W , constructed from alternating groups, are not heredi-

tarily just infinite. The result is also used in showing that the groups W (in Section 3.4)

are just infinite.

Lemma 2.11. Let G be a profinite group. Suppose H is a closed subgroup of G.

Then H is an open subgroup of G if and only if H has finite index in G.

The following result, found in [30, Lem. 0.3.1 (h)], is used to describe normal sub-

groups and subnormal subgroups of the profinite groups present in the thesis.

Lemma 2.12. Let G be a compact topological group. Suppose Xi, for i ∈ I, is a

collection of closed subsets of G with the property that for all i, j ∈ I there exists k ∈ I
such that Xk ⊆ Xi ∩Xj.

If Y is a closed subset of G then(⋂
i∈I
Xi

)
Y =

⋂
i∈I
XiY .

Let X be a subset of a profinite group G. We say that X generates G (topologically)

if the subgroup generated by X is dense in G. The profinite group G is finitely generated

(topologically) if it contains a finite subset X that generates G (topologically). We

usually refer to topological generating sets as generating sets because we mostly consider

profinite groups as topological groups.
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A profinite group has a property virtually if it has an open normal subgroup with

that property.

A profinite group G is just infinite if it is infinite and every non-trivial closed normal

subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is

just infinite.

2.6 Subgroup growth

Studying subgroup growth of a group G involves considering the growth rate of the

function

n→ sn(G),

where sn(G) denotes the number of subgroups of index at most n in G. Subgroup growth

gives a rough classification of groups into growth types.

A group G has polynomial subgroup growth of degree c if there exists a constant c

such that

sn(G) ≤ nc for all n.

In particular, we say that the growth type is linear if the constant c = 1. In this thesis,

we are concerned with other subgroup counting functions, which are:

sCn (G) denotes the number of normal subgroups of index at most n in G;

sCC
n (G) denotes the number of subnormal subgroups of index at most n in G;

mn(G) denotes the number of maximal subgroups of index n in G.

The language of growth types is extended to these functions in a natural way.

2.7 Positive finite generation

A profinite groupG has a natural compact topology, induced by the discrete topology on

the finite groups in the inverse system. Therefore it has a finite Haar measure µ, which

is determined uniquely by the algebraic structure of G. We normalise this measure so

that µ(G) = 1 and we can consider G as a probability space. Thus we can define

P (G, k) = µ
{

(g1, g2, . . . , gk) ∈ G(k) : g1, g2, . . . , gk topologically generate G
}
,

for any positive integer k, where µ also denotes the product measure on G(k). The

Haar measure on profinite groups is discussed in [8, Ch. 18].
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A profinite groupG is positively finitely generated (PFG) if, for some k, the probabil-

ity P (G, k) that k randomly chosen elements of G topologically generate G is positive.

This term was formally introduced with A. Mann’s paper [18] and PFG groups were

surveyed in [17, Ch. 11].
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Chapter 3

Infinite iterated wreath products

. . . o Am o Am o . . . o Am, where m ≥ 5

3.1 Introduction

Until recently all known hereditarily just infinite profinite groups were virtually pro-p

groups. However, if one looks at just infinite profinite groups then it is not difficult

to construct some that are not virtually pro-p groups. This chapter briefly describes

some such just infinite profinite groups, which have been studied, in particular, by

M. Bhattacharjee [3]. This is useful because their construction has similarities with

that of Wilson’s construction. The same techniques used to show that these groups

are just infinite will be used to show that the groups constructed by Wilson are just

infinite.

The just infinite profinite groups in this chapter are constructed from inverse limits

of iterated wreath products of alternating groups. The properties described below

remain true whether the alternating groups involved in the construction are allowed

to vary or not. However, for ease of reading, the alternating groups are taken to be

the same. In fact, the properties described still hold if the alternating groups are

generalised to any arbitrary finite non-abelian simple group. The actions of these non-

abelian simple groups would be required to be faithful and transitive.

29



3.2. Construction 3. Infinite iterated wreath products . . . oAm oAm o . . . oAm, where m ≥ 5

3.2 The construction

We now construct the just infinite profinite groups. Fix the alphabet A = {1, 2, . . . ,m},
where m ≥ 5. We define the sets

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ A} ,

for each j = 1, 2, . . . . Here i1i2 . . . ij denotes a sequence of numbers and not a product

of numbers. The symbol ∗ used for concatenation is written in order to remind the

reader of this.

Set W0 = Am, the alternating group of degree m. The group Am acts naturally on

the set Ω∗[1] = {1, 2, . . . ,m}. We form the permutational wreath product Am oΩ∗[1] Am,

which we denote by W1. This group is described as the semidirect product W1 =

A
(m)
m oW0, where W0 acts on A

(m)
m by permuting the factors.

We observe that W1 acts naturally on the finite m-regular rooted tree of length 2.

This has been depicted in Figure 3.1 for m = 5. In this action the root vertex ∅ is fixed

and the group W1 acts by coordinate permutations on the bottom layer of 25 vertices.

A5 A5 A5 A5 A5

A5

∅

Figure 3.1: The wreath product A5 o A5 = (A5 × A5 × A5 × A5 × A5) o A5 acting
naturally on the 5-regular rooted tree of length 2.

Now the group W1 acts naturally on m2 elements. We can then form the permu-

tational wreath product Am oΩ∗[2] Am oΩ∗[1] Am, which we denote by W2. This is the

semidirect product W2 = A
(m2)
m oW1. The process can be continued to form the nth

iterated wreath product

Wn = Am oΩ∗[n] . . . oΩ∗[2] Am oΩ∗[1] Am.

This is the same as the semidirect product Wn = A
(mn)
m oWn−1, for n ≥ 1.

We construct a group W as the inverse limit of a sequence of finite groups (Wn)n≥0
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and the natural projections

θn : Wn = A(mn)
m oWn−1 −→Wn−1,

for n ≥ 1. The limit W = lim
←−

(Wn)n≥0 has the natural projections φn : W −→Wn, for

n ≥ 0.

We give a pictorial description of the inverse limit W in Figure 3.2, below. The

limit is indexed by the set N ∪ {0} with respect to the ordinary order-relation ≤.

W = lim
←−

Wn

Wn

= A
(mn)
m oWn−1

W2

= A
(m2)
m oW1

W1

= A
(m)
m oW0

W0

φn φ2 φ1 φ0

θn+1 θn θ3 θ2 θ1

Figure 3.2: A pictorial description of the inverse limit W .

3.3 Verifying not hereditarily just infinite and not virtu-

ally pro-p

We now verify that all such groups W , as defined above, are not hereditarily just

infinite. Fix m ≥ 5. Define

U = ker(φ0 : W −→W0) ∼= W (m),

where W (m) denotes the direct product of m copies of W . Now U is an open subgroup of

W because φ0 is a continuous map. However, N ∼= W (m−1) is a closed normal subgroup

of U such that the index U/N ∼= W is infinite. The contrapositive of Lemma 2.11

implies that N cannot be open in U .

The fact that the groups W are not virtually pro-p, for some prime p, is because

the groups Wn are constructed from wreath products of non-abelian simple group Am.
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3.4 Verifying just infinite

The rest of this chapter is concerned with determining the normal subgroups of the

profinite groups W , as defined above. This is completed in Corollary 3.3. In particular,

this shows that the profinite groups W are just infinite.

In Corollary 3.3, the non-trivial closed normal subgroups of a group W are denoted

by Vj , for j ≥ 0. Due to the definition of these subgroups Vj , their indices in W can

easily be calculated. We have the indices |W : Vj | = |Wj−1|, for j ≥ 1, and the index

|W : V0| = 1. All the indices are finite. The profinite group W is just infinite using

Lemma 2.11.

Our work has been restricted in Corollary 3.3 to closed normal subgroups because we

rely on Lemma 2.12, which only applies to normal subgroups that are closed. However,

a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups

of a group W , since it is finitely generated (see Chapter 9), are automatically closed.

Therefore the characterisation of normal subgroups, in Corollary 3.3, covers all the

normal subgroups of the groups W .

3.4.1 The normal subgroups

Initially, we proceed in Theorem 3.2 by determining all the normal subgroups of the

finite groups Wn. The construction of Wn = A
(mn)
m oWn−1 gives an indication of the

outcome.

The proof of Theorem 3.2 uses the following lemma.

Lemma 3.1. Let the finite groups Wn, for n ≥ 0, be as defined above.

The unique minimal normal subgroup of Wn is the group A
(mn)
m .

This lemma comes directly from a standard fact about permutational wreath prod-

ucts, see [32, (3.1)] or Lemma 2.3. That is because Wn−1 acts transitively on mn

elements and also the kernel of the action of Wn on A
(mn)
m is A

(mn)
m .

Theorem 3.2. Let Wn, for n ≥ 0, be the finite groups as defined in Section 3.2. For

j ∈ {1, 2, . . . , n+ 1}, define

V n
j = ker(Wn −→Wj−1) = A(mn)

m o . . .o (A(mj+1)
m oA(mj)

m ) ≤Wn,

and define

V n
0 = Wn.

Then the normal subgroups of Wn are precisely the groups V n
j and V n

0 . In particular,
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they form a complete chain

{1} = V n
n+1 ( V n

n ( . . . ( V n
1 ( V n

0 = Wn.

Proof. We first prove that V n
j are normal subgroups of Wn. The homomorphisms

Wn −→Wj−1 have kernels V n
j , for j ∈ {1, 2, . . . , n+ 1}.

We now prove, by induction on n, that V n
j are the only normal subgroups of Wn.

Suppose N E Wn. For n = 0, all the normal subgroups of W0 are V 0
1 = {1} and

V 0
0 = W0 holds as W0 is simple.

Now suppose n ≥ 1. If N = {1} then N = V n
n+1. Assume N 6= {1}. We have

A
(mn)
m ⊆ N , since the group A

(mn)
m is the unique minimal normal subgroup of Wn, by

Lemma 3.1. Then there are two possibilities: A
(mn)
m = N and A

(mn)
m ( N .

For A
(mn)
m = N we are done, as N = V n

n . We now look at the other possibility

A
(mn)
m = V n

n ( N . The group V n
n is the kernel of the homomorphism θn : Wn −→Wn−1.

Then there is a one-to-one correspondence between the set of normal subgroups of Wn

containing V n
n and normal subgroups of Wn−1. By induction, we know that N is one

of the groups V n
j .

Corollary 3.3. Let W = lim
←−

(Wn)n≥0 be the inverse limit of the groups Wn as defined

in Section 3.2. For j ≥ 0, define

Vj = lim
←−

(V n
j )n→∞,

regarded as subgroups of W .

Then the non-trivial closed normal subgroups of W are precisely the groups Vj. In

particular, they form a complete chain

. . . ( Vn+2 ( Vn+1 ( Vn ( . . . ( V1 ( V0 = W .

Proof. Theorem 3.2 showed that V n
j , for j ∈ {0, 1, . . . , n + 1}, are all the normal

subgroups of Wn and that they form the chain

{1} = V n
n+1 ( V n

n ( . . . ( V n
1 ( V n

0 = Wn.

We recall that there is an inverse system of surjective homomorphisms θn : Wn −→
Wn−1, for n ≥ 1, such that

θn(V n
j ) =

V n−1
j for 0 ≤ j ≤ n,

{1} for j = n+ 1.
(3.1)
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Let M EW be a non-trivial closed normal subgroup of W . Since W is an inverse

limit, we can find n ≥ 0 such that the image of M in Wn under the natural projection

φn : W −→ Wn is non-trivial. (This argument is used in the proof of (2.2) in [32].)

Therefore φn(M) = V n
j , for some j ∈ {0, 1, . . . , n}.

We claim that M = Vj . Since M is closed, it is enough to show that φm(M) = V m
j ,

for all m ≥ n. Then φm(M) = φm(Vj) implies kerφmM = kerφmVj , for all m ≥ n.

Thus

M =

( ⋂
m≥n

kerφm

)
M =

⋂
m≥n

(
kerφmM

)
=
⋂
m≥n

(
kerφmVj

)
=

( ⋂
m≥n

kerφm

)
Vj = Vj ,

using Lemma 2.12.

Clearly φm(M) = V m
j is true for m = n. Now suppose m > n. From

{1} 6= V m−1
j = φm−1(M) = θm(φm(M))

and mapping (3.1), we conclude φm(M) = V m
j .

Remark. The non-trivial normal subgroups of W can be written as Vj+1 = ker(φj :

W −→Wj), for j ≥ 0, and V0 = ker(W −→ {1}).
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Chapter 4

Wilson groups

4.1 Wilson’s construction

We now describe the hereditarily just infinite profinite groups constructed by Wilson

in [32], which are not virtually pro-p. This construction provides numerous examples

of groups with the properties described in Theorem 1.1.

Let X0, X1, X2, . . . be any infinite sequence of finite non-abelian simple groups.

Set G0 = X0. The group G0 has a faithful transitive permutation representation of

some degree d1. For instance, when G0 acts on itself by right multiplication, and then

d1 = |G0|.
Suppose a group Gn−1, for n ∈ N, with a faithful transitive permutation representa-

tion of degree dn has been constructed. We construct the group Gn by two operations

of taking permutational wreath products.

First let Ln = X
(dn)
n , for n ∈ N, the direct product of dn copies of Xn. We form

the first permutational wreath product

Xn oΩdn
Gn−1, where Ωdn = {1, 2, . . . , dn}.

This group is described as the semidirect product Ln oGn−1, where Gn−1 acts on Ln

by permuting the factors.

Next we define a transitive permutation representation ϕ of LnGn−1 on the set Ln,

with the subgroup Ln transitive. The ingredients are the action of Ln on itself by right

multiplication and the action of Gn−1 on Ln by conjugation. The action ϕ is

lϕ(l′g) = (ll′)g, where l ∈ Ln and l′g ∈ LnGn−1. (4.1)

Let Mn = X
(|Ln|)
n , for n ∈ N, the direct product of |Ln| copies of Xn. Now we form
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4.1. Wilson’s construction 4. Wilson groups

the second permutational wreath product

Xn oLn (LnGn−1),

which we denote by Gn. The group Gn is described as the semidirect product Mn o
(LnGn−1), where the group LnGn−1 permutes the factors of Mn according to the per-

mutation representation ϕ.

We now form the inverse limit G of the groups Gn as described above. The resulting

group G is one of the groups having the properties stated in Theorem 1.1. We will refer

to the groups arising from such a construction as Wilson groups. More specifically, a

Wilson group G is the inverse limit of a sequence (Gn)n≥0 of finite groups as defined

above and the natural projections

θn : Gn = (MnLn) oGn−1 −→ Gn−1,

for n ≥ 1. The limit G = lim
←−

(Gn)n≥0 has the natural projections φn : G −→ Gn, for

n ≥ 0.

The following, Figure 4.1, illustrates Wilson’s construction in detail, passing from

the finite group G1 to the finite group G0.

G
φ1

G1 G0

θ1
X0

L1 = X
(d1)
1

M1 = X
(|L1|)
1

Figure 4.1: A pictorial description of Wilson’s construction at level G1.

We give an overview of the inverse limit G of a Wilson group in Figure 4.2, below.
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The limit is indexed by the set N∪ {0} with respect to the ordinary order-relation ≤ .

G = lim
←−

Gn

Gn

= MnLn oGn−1

G2

= M2L2 oG1

G1

= M1L1 oG0

G0

φn φ2 φ1 φ0

θn+1 θn θ3 θ2 θ1

Figure 4.2: A pictorial description of the inverse limit G of a Wilson group.

4.2 Verifying hereditarily just infinite and not virtually

pro-p

In this section, we briefly explain the proofs of Theorem 1.1 and Corollary 1.2, in

Chapter 1. For further details the reader may refer to the original source of Wilson’s

paper [32].

Wilson develops the criterion (2.2) in [32], which says that the inverse limit of

certain finite groups is either virtually abelian or hereditarily just infinite. Applying

this criterion to the groups Gn as defined above, he shows that the Wilson groups are

hereditarily just infinite by ruling out the possibility of them being virtually abelian. A

Wilson group has all the composition factors of the finite continuous images non-abelian

because the groups Gn are constructed from semidirect products of direct products of

non-abelian simple groups X0, X1, . . . , Xn.

We explain why the Wilson groups are not virtually pro-p, for some prime p. For

a contradiction, suppose that a Wilson group G is virtually pro-p. We find a pro-p

open normal subgroup N of G. Let K be an open normal subgroup of N . Then

N/K is a finite p-group. Therefore all the composition factors of N/K are cyclic of

order p. So G/K would have cyclic composition factors. That is G/K would have

abelian composition factors. This contradicts the fact that all composition factors of

finite continuous images of G are non-abelian.

It has been seen that every countably based profinite group can be embedded in
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the product ∏
n≥5

An = A5 ×A6 ×A7 × . . .

of alternating groups, refer to [30, (4.1.6)]. To prove Corollary 1.2, that every countably

based profinite group can be embedded in a specific hereditarily just infinite profinite

group, it suffices to embed the product
∏

n≥5An in a specific Wilson group. For this

embedding to take place, certain choices for Xn are required in the construction of this

specific Wilson group. They are specified as Xn = An+5, for each n ≥ 0.

The following technical result is used to prove that the Wilson groups are heredi-

tarily just infinite, see [32, (3.2)].

Lemma 4.1 (Wilson [32]). Let the finite groups Ln, Mn, for n ≥ 1, and Gn, for n ≥ 0,

be as defined above.

(a) The unique minimal normal subgroup of Gn, for n ≥ 1, is Mn.

(b) The unique minimal normal subgroup of LnGn−1, for n ≥ 1, is Ln.

The proof is elementary, but an important ingredient used from the construction of

Gn is that the wreath product actions are transitive. Alternatively, the proof follows

immediately from Lemma 2.3.

Lemma 4.1 is used in Chapter 5 to characterise the normal subgroups of the Wilson

groups.
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Chapter 5

Normal subgroups

5.1 General Wilson groups

In this chapter, we complete the characterisation of the closed normal subgroups of an

arbitrary Wilson group. The characterisation holds for any choice of Xi, for i ≥ 0, and

for any choice of faithful transitive permutation representation of Gn, for n ≥ 1, in the

construction of a Wilson group.

Our work has been restricted in Lemma 5.2 to closed normal subgroups because we

rely on Lemma 2.12, which only applies to normal subgroups that are closed. However,

a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups of

a finitely generated Wilson group are automatically closed. Therefore the characteri-

sation of normal subgroups, in Corollary 5.3, covers all the normal subgroups of any

Wilson group provided the first group in Wilson’s construction has size |G0| > 35! (see

Chapter 9).

In finding the normal subgroups, we can see directly that all the Wilson groups

are just infinite, which is implicit from [32, (3.3)]. Let G be a Wilson group arising

as an inverse limit of finite groups Gn as defined in Section 4.1. In Corollary 5.3, the

non-trivial closed normal subgroups of G are denoted by Pj and Qj , for j ≥ 0. Due to

the definition of these subgroups Pj and Qj , their indices in G can easily be calculated.

We have the indices |G : Pj | = |Gj |, for j ≥ 0, and |G : Qj | = |LjGj−1|, for j ≥ 1, and

the index |G : Q0| = 1. All the indices are finite. The profinite group G is just infinite

using Lemma 2.11.

To describe normal subgroups of G, our strategy will be to first determine the

normal subgroups of the finite groups Gn. As a motivation, the description of Gn =

Mn o (Ln o Gn−1) implies Mn E Gn and MnLn E Gn, for every n ≥ 1. Therefore Gn

has at least two types of normal subgroups.
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For the purpose of what follows we define M0 = G0.

Theorem 5.1. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1. For

j ∈ {0, 1, . . . , n}, define

Pn
j = Mn o . . .o (Mj+1 o Lj+1)

and define

Qn
j = Mn o . . .o (Mj+1 o (Lj+1 oMj)).

Then the normal subgroups of Gn are precisely the groups Pn
j and Qn

j . In particular,

they form a complete chain

{1} = Pn
n ( Qn

n ( Pn
n−1 ( . . . ( Qn

1 ( Pn
0 ( Qn

0 = Gn.

Proof. We first prove that Pn
j and Qn

j are normal subgroups of Gn. The homo-

morphisms Gn −→ Gj have kernels Pn
j , for j ∈ {0, 1, . . . , n}. The homomorphisms

Gn −→ Gj/Mj have kernels Qn
j , for j ∈ {0, 1, . . . , n}.

We now prove, by induction on n, that Pn
j and Qn

j are the only normal subgroups

of Gn. Suppose N EGn. For n = 0, all the normal subgroups of G0 are P 0
0 = {1} and

Q0
0 = G0 holds as G0 is simple.

Now suppose n ≥ 1. IfN = {1} thenN = Pn
n . AssumeN 6= {1}. We haveMn ⊆ N ,

since the group Mn is the unique minimal normal subgroup of Gn, by Lemma 4.1 (a).

Then there are two possibilities: Mn = N and Mn ( N .

For Mn = N we are done, as N = Qn
n. For Mn ( N we have MnLn ⊆ N because

Ln is the unique minimal normal subgroup of LnGn−1, by Lemma 4.1 (b). From

MnLn ⊆ N we have two cases. That is MnLn = N implies N = Pn
n−1 and we are

done. Alternatively MnLn = Pn
n−1 ( N . Now Pn

n−1 is the kernel of the homomorphism

θn : Gn −→ Gn−1. Then there is a one-to-one correspondence between the set of normal

subgroups of Gn containing Pn
n−1 and normal subgroups of Gn−1. By induction, we

know that N is one of the groups Pn
j or Qn

j .

Figure 5.1, below, illustrates the chain of normal subgroups of the finite groups Gn,

for n ≥ 0.

40



5.1. General Wilson groups 5. Normal subgroups

Gn = Qn
0

Pn
0

Qn
1

Pn
1

Qn
2

Pn
2

M0

L1

M1

L2

M2

G0

G1

G2

Pn
n−1

Qn
n

{1} = Pn
n

Figure 5.1: The chain of normal subgroups of the finite group Gn.
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Lemma 5.2 is required due to the two different types of notation for the normal

subgroups of Gn.

Lemma 5.2. Given finite groups Gn, for n ≥ 0, in which all the normal subgroups

form a chain

{1} = Nn
2n+2 ( Nn

2n+1 ( . . . ( Nn
2 ( Nn

1 = Gn

and an inverse system of surjective homomorphisms θn : Gn −→ Gn−1, for n ≥ 1, such

that

θn(Nn
i ) =

Nn−1
i for 1 ≤ i ≤ 2n,

{1} for i ∈ {2n+ 1, 2n+ 2}.
(5.1)

Then the inverse limit G = lim
←−

(Gn)n≥0 has non-trivial closed normal subgroups

precisely Ni = lim
←−

(Nn
i )n→∞, for i ≥ 1, regarded as subgroups of G.

Proof. Let M EG be a non-trivial closed normal subgroup of G. Since G is an inverse

limit, we can find n ≥ 0 such that the image of M in Gn under φn : G −→ Gn is

non-trivial. Therefore φn(M) = Nn
i , for some i ∈ {1, 2, . . . , 2n+ 1}.

We claim that M = Ni. Since M is closed, it is enough to show that φm(M) = Nm
i ,

for all m ≥ n. Then φm(M) = φm(Ni) implies kerφmM = kerφmNi, for all m ≥ n.

Thus

M =

( ⋂
m≥n

kerφm

)
M =

⋂
m≥n

(
kerφmM

)
=
⋂
m≥n

(
kerφmNi

)
=

( ⋂
m≥n

kerφm

)
Ni = Ni,

using Lemma 2.12.

Clearly φm(M) = Nm
i is true for m = n. Now suppose m > n. From

{1} 6= Nm−1
i = φm−1(M) = θm(φm(M))

and mapping (5.1), we conclude φm(M) = Nm
i .

Corollary 5.3. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn as defined

in Section 4.1. For j ≥ 0, define

Pj = lim
←−

(Pn
j )n→∞

and define

Qj = lim
←−

(Qn
j )n→∞,

42



5.1. General Wilson groups 5. Normal subgroups

regarded as subgroups of G.

Then the non-trivial closed normal subgroups of G are precisely the groups Pj

and Qj. In particular, they form a complete chain

. . . ( Qn+1 ( Pn ( Qn ( Pn−1 ( . . . ( Q1 ( P0 ( Q0 = G.

Proof. We apply Lemma 5.2 to the groups Gn, for n ≥ 0, of Wilson’s construction and

their normal subgroups. Define

Nn
i =

Qn
b(i−1)/2c if i is odd,

Pn
b(i−1)/2c if i is even,

where i ∈ {1, 2, . . . , 2n + 2}. For each n, these normal subgroups of Gn were defined

in Theorem 5.1. It was shown that these are all the normal subgroups of Gn and they

form a chain.

The definition of the groups Nn
i also shows that the second condition for Lemma 5.2

is satisfied. For 1 ≤ i ≤ 2n+ 2,

θn(Nn
i ) =

θn(Qn
b(i−1)/2c) = Qn−1

b(i−1)/2c = Nn−1
i if i is odd,

θn(Pn
b(i−1)/2c) = Pn−1

b(i−1)/2c = Nn−1
i if i is even.

We take Qn−1
n , Pn−1

n , Nn−1
2n+1 and Nn−1

2n+2 to be the trivial group {1}.

Remark 5.4. Fix a prime number p and let K be a finite field of characteristic p > 2.

The Nottingham group over K is the group N (K) := t+ t2K[[t]] of normalised formal

power series over K under substitution. For every i ∈ N, the setsNi(K) := t+ti+1K[[t]]

are normal subgroups of N (K) and they form a chain

. . . ( N3(K) ( N2(K) ( N1(K) = N (K).

The Nottingham group is a pro-p group. This is because it is the inverse limit of

the inverse system of finite p-groups N (K)/Ni(K) and natural projections

N (K)/Ni+1(K) −→ N (K)/Ni(K),

for i ∈ N, recall Section 2.5. The Nottingham group is a hereditarily just infinite group;

see R. Camina [5].

For each r ≥ 0, there are also p+ 1 non-trivial normal subgroups H of N (K) such

that Npr+3(K) ( H ( Npr+1(K); referred to by B. Klopsch in [14]. Therefore the
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chain of normal subgroups of a Wilson group is more rigid than in the Nottingham

group, where the normal subgroups almost form a chain.

An analogy with the Nottingham group poses many interesting questions for the

Wilson groups and we include some of them in Question 2 of Chapter 10.
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Chapter 6

Subnormal subgroups

6.1 Introduction

This chapter works on the task of characterising the subnormal subgroups of Wilson

groups.

Let G be a Wilson group arising as an inverse limit of finite groups Gn as defined

in Section 4.1. As before when describing the normal subgroups, our strategy will

be to first determine the subnormal subgroups of the finite groups Gn. For ease of

calculation, we will also consider a particular subgroup Hn of Gn such that there exists

surjective homomorphisms Gn −→ Hn −→ Gn−1. That is, we define

Hn = Ln oGn−1,

for every n ≥ 1.

Remark. Using the newly defined groups Hn, the non-trivial normal subgroups of G

can be written as Pj = ker(φj : G −→ Gj), for j ≥ 0, Qj = ker(G −→ Hj), for j ≥ 1,

and Q0 = ker(G −→ {1}).

The groups Gn, in the construction of a Wilson group, are formed from two types of

transitive actions. One type are the unspecified actions of the groups Gn−1, for n ≥ 1,

on a set of dn elements. The other type of transitive actions are the groups LnGn−1,

for n ≥ 1, acting on the sets Ln by the action defined in (4.1), from Section 4.1.

In the action (4.1), a subnormal subgroup of Ln acts on Ln by right multiplication

and therefore the orbits of a non-trivial subnormal subgroup have at least two elements.

However, the action of a subnormal subgroup of Gn−1 on dn elements may have orbits

of one element, that is the action has fixed points. We illustrate this latter conclusion

with the following example.
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Example 6.1. Take a transitive and faithful action of Xn−1 on a set Λ. Define X
[i]
n−1 =

Xn−1 and Λi = {(λ, i) : λ ∈ Λ}, for i = 1, 2, . . . , |Ln−1|, noting that Λi
∼= Λ as

Xn−1-spaces. Let Mn−1 = X
(|Ln−1|)
n−1 act on the set

⋃|Ln−1|
i=1 Λi, where X

[i]
n−1, for each

i = 1, 2, . . . , |Ln−1|, acts on Λi by the chosen action.

Recall Gn−1 = Xn−1 oLn−1 (Ln−1Gn−2) is a wreath product and the part Ln−1Gn−2

acts transitively on the set Ln−1, according to the action (4.1). Set
⋃|Ln−1|

i=1 Λi = Ωdn .

Consequently, the group Gn−1 acts transitively on the set Ωdn by the natural permu-

tational wreath product action, as explained in Section 2.1.

Non-trivial elements of Ln−1Gn−2 acting on the set Ln−1, according to the action

(4.1), can have fixed points. However, these elements do move at least one other point

and so this action is faithful. Consequently, the full action of the group Gn−1 on the

set Ωdn is faithful.

Now the action of the subnormal subgroup Xn−1 × 1× . . .× 1 ⊆Mn−1 of Gn−1 on

Ωdn has many fixed points.

The above observation has an effect on the characterisation of the subnormal sub-

groups of Wilson groups which we now explain. Suppose K is a subnormal subgroup

of Hn = LnGn−1 such that K 6⊆ Ln. Then LnK/Ln is isomorphic to a subnormal sub-

group U of Gn−1. We consider the orbits of the action of U on dn elements. As shown

in Example 6.1, some orbits may have only one element. We see later in Corollary 6.9,

within Section 6.3, to satisfy the condition of normality, the subnormal subgroup K

must contain all the factors of Ln = X
(dn)
n which correspond to the U -orbits that

contain at least two elements.

Section 6.2 characterises the subnormal subgroups of particular Wilson groups

where a choice for the unspecified actions of Gn−1, for n ≥ 1, on a set of dn ele-

ments is made. This choice guarantees that subnormal subgroups of Gn−1 have all

their orbits containing at least two elements.

Later, in Section 6.4 we characterise the subnormal subgroups of an arbitrary Wilson

group, that is, where the actions of the groups Gn−1 remain unspecified. Consider the

action of the groups Gj on the sets Ωdj+1
= {1, 2, . . . , dj+1}, for j ≥ 1. The description

of some subnormal subgroups of a general Wilson group (see Section 6.4) involves the

set {
ω ∈ Ωdj+1

: ω ·X
ILj

j 6= {ω}
}

, where ∅ 6= ILj ⊆ Lj ;

the notation ω ·X
ILj

j denotes the orbit of ω under the action of the group X
ILj

j ≤ Gj .

Let g ∈ Gj . The support of g is the set of points of Ωdj+1
which are not fixed by g
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and it is denoted by supp(g). So we write

supp(g) =
{
ω ∈ Ωdj+1

: ω · g 6= ω
}
.

Therefore the reader could consider the set {ω ∈ Ωdj+1
: ω ·X

ILj

j 6= {ω}} as the support

of the group X
ILj

j ≤ Gj .

We make a short remark about notation, which occurs in the classification of sub-

normal subgroups of the Wilson groups (see Section 6.2 and Section 6.4) and subnormal

subgroups of the infinite iterated wreath products W of alternating groups (see Sec-

tion 6.3).

Let X be a group and let Ω be a set. Then

XΩ = {f |f : Ω −→ X} ∼= {(xω)ω∈Ω : xω ∈ X} .

Let I ⊆ Ω. Write ∆ := Ω\I. To define XI we extend all functions f from I to X by

setting f̃(∆) = {1}. Therefore

XI ∼= {(xω)ω∈I × (1)ω∈∆ : xω ∈ X} .

In so doing, it is acceptable to write XI ⊆ XΩ.

6.2 Particular Wilson groups

In this section Wilson’s construction is limited by specifying that the group Gn−1, for

n ≥ 1, acts on itself by right multiplication. Therefore dn = |Gn−1|, for n ≥ 1. This is a

faithful and transitive action and so satisfying the conditions of Wilson’s construction.

Implicitly, the action of a non-trivial subnormal subgroup of Gn−1 on dn elements

now has all its orbits containing at least two elements. Hence the characterisation of

subnormal subgroups has been simplified.

Theorem 6.4 determines the subnormal subgroups of the finite groups Gn for this

restricted construction. Then Corollary 6.6 completely classifies the closed subnormal

subgroups of the Wilson groups that arise from this particular construction.

The inductive argument of Corollary 6.7, using the result by N. Nikolov and D. Se-

gal [22, Cor. 1.15], shows that all subnormal subgroups of a Wilson group are automat-

ically closed provided the first group in Wilson’s construction has size |G0| > 35!, and

hence the Wilson group is finitely generated (see Chapter 9). Therefore the character-

isation of subnormal subgroups, in Corollary 6.6, covers all the subnormal subgroups

of our particular restricted Wilson groups provided |G0| > 35!.
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For the restriction, it is found that the subnormal subgroups of these Wilson groups

are squeezed between consecutive normal subgroups. Therefore there are relatively

few compared to the Nottingham group, which is a pro-p group and here every open

subgroup is subnormal, refer to [27, 5.2.4]. At the end of this section, Figure 6.1 depicts

the subnormal subgroups of these Wilson groups lying between the normal subgroups.

Also, it is found that the subnormal length for a Wilson group is at most 3 (found

later in Corollary 6.17), and therefore is bounded. This is in contrast to the Nottingham

group, where the subnormal length is unbounded, and is proved with the following short

argument.

First note that there are finite p-groups G which have subnormal subgroups of

arbitrarily large subnormal length in G. Now fix a finite p-group G with a subnor-

mal subgroup H of subnormal length l in G. By a theorem of C. Leedham-Green

and A. Weiss, see [4], G embeds as a subgroup into the Nottingham group N . So

we may assume that G ≤ N . There is an open normal subgroup N of N such that

G ∩N = {1}, since G is finite and [30, Cor. 1.2.4 (iii)]. This implies GN/N ∼= G and,

as H ∩N = {1}, also HN/N ∼= H. Consider S = HN . Any chain

N = T0 D T1 D . . .D Tk−1 D Tk = S

showing that S has subnormal length ≤ k in N intersects to a chain

GN = T0 ∩GN D T1 ∩GN D . . .D Tk−1 ∩GN D Tk ∩GN = S.

Therefore HN/N ∼= H has subnormal length ≤ k in GN/N ∼= G. Thus k ≥ l and S

has subnormal length ≥ l in N .

To prove Theorem 6.4, determining the subnormal subgroups of the finite groups

Gn of Wilson’s restricted construction, we use Proposition 6.2 concerning subnormal

subgroups of permutational wreath products as defined in Lemma 2.2 of Section 2.1.

We recall the definition. Let U be a finite permutation group acting on a finite set

Ω with orbits Ω1,Ω2, . . . ,Ωr. Let X be a finite non-abelian simple group. Define the

permutational wreath product G = X oΩ U . Denote the base group of the wreath

product as V .

In Proposition 6.2, the assumption is made that each of the U -orbits has at least

two elements. Then the subnormal subgroups K of G such that V K = G contain the

base group V . Proposition 6.2 can be readily applied to the circumstance where U is

taken to be a subnormal subgroup of Gn−1 acting on Gn−1 by right multiplication.

Proposition 6.2. Let group G = X oΩ U be the permutational wreath product as de-

fined in Lemma 2.2. Assume that each of the U -orbits Ω1,Ω2, . . . ,Ωr has at least two
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elements. Suppose K is a subnormal subgroup of G such that V K = G.

Then V ⊆ K. In particular, this gives K = G.

Proof. We first show that we can assume K EG. Since K is subnormal in G, we have

G = T0DT1D . . .DTk−1DTk = K. Without loss of generality, suppose this is a shortest

chain. This means G 6= T1, T1 6= T2, . . . , Tk−1 6= K.

Consider the beginning of the chain G D T1. Now V K = G implies V T1 = G.

We apply the proposition, which we assume to be true for the special case where the

subnormal subgroup is actually normal, to T1. This gives T1 = G. Therefore there

is no such shortest chain involving the Ti, for i = 1, 2, . . . , k − 1, of subnormal length

greater than 1. Thus K EG.

To prove V ⊆ K, it is sufficient to show that each of the minimal normal subgroups

of G is contained in K. Let i ∈ {1, 2, . . . , r}. Let ω1, ω2 ∈ Ωi such that ω1 and ω2 are

distinct. We can find u ∈ U such that ω1 · u = ω2 because U acts transitively on Ωi.

As V K = G, we can obtain x ∈ V such that ux = u(xω)ω∈Ω ∈ K. Choose y ∈ X\{1}.
Consider y = (yω) ∈ V with yω = y if ω = ω1 and yω = 1 otherwise.

Then [y, ux] ∈ K is similarly written as the element (2.1), in the final paragraph

of the proof for Lemma 2.3. Continuing the argument, as written in the proof of

Lemma 2.3 gives the required result.

The proof of Theorem 6.4 (and later the proof of Theorem 6.15) also makes use of

the following result.

Lemma 6.3. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1. Recall

that the group Gn−1 has a faithful transitive action on Ωdn.

Then each of the Mn−1-orbits has at least two elements.

Proof. Since Gn−1 acts transitively on Ωdn and Mn−1EGn−1, all the Mn−1-orbits have

the same size. This common size cannot be one because Mn−1 is not trivial and Gn−1

acts faithfully on Ωdn . Therefore each of the Mn−1-orbits has at least two elements.

For the following, recall the normal subgroups Pn
j and Qn

j , for j ∈ {0, 1, . . . , n},
of Gn, defined in Theorem 5.1.

Theorem 6.4. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1. In the

Wilson construction, assume that the unspecified action of the group Gn, for n ≥ 0, is

taken to be right multiplication on itself.

For j ∈ {0, 1, . . . , n− 1}, define

Sn
j (Idj+1

) = Qn
j+1 oX

Idj+1

j+1 ≤ Pn
j , where ∅ 6= Idj+1

⊆ Ωdj+1
,
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and define

Sn
n = {1}.

For j ∈ {1, 2, . . . , n}, define

Tn
j (ILj ) = Pn

j oX
ILj

j ≤ Qn
j , where ∅ 6= ILj ⊆ Lj,

and define

Tn
0 = Gn.

Then the subnormal subgroups of Gn are precisely the groups Sn
j (Idj+1

), Sn
n , Tn

j (ILj )

and Tn
0 . In particular, for all Id1, IL1, . . . , Idn and ILn, they form chains

Sn
n = Pn

n ( Tn
n (ILn) ⊆ Qn

n ( Sn
n−1(Idn) ⊆ Pn

n−1 ( . . .

⊆ Pn
1 ( Tn

1 (IL1) ⊆ Qn
1 ( Sn

0 (Id1) ⊆ Pn
0 .

The subnormal length in Gn of the group Sn
j (Idj+1

) is1 if Idj+1
= Ωdj+1

(implying that Sn
j (Idj+1

) = Pn
j ),

2 if Idj+1
( Ωdj+1

.

The subnormal length in Gn of the group Tn
j (ILj ) is1 if ILj = Lj (implying that Tn

j (ILj ) = Qn
j ),

2 if ILj ( Lj.

Proof. We first check that the groups Sn
j (Idj+1

), Sn
n , Tn

j (ILj ) and Tn
0 are all subnormal

subgroups of Gn. Obviously Sn
n = {1} C Gn and Tn

0 = Gn E Gn. For any ∅ 6=
Idj+1

⊆ Ωdj+1
, we have

Sn
j (Idj+1

) = Qn
j+1 oX

Idj+1

j+1 EQn
j+1 o Lj+1 = Pn

j CGn, (6.1)

as X
Idj+1

j+1 E Lj+1. For any ∅ 6= ILj ⊆ Lj , we have

Tn
j (ILj ) = Pn

j oX
ILj

j E Pn
j oMj = Qn

j CGn, (6.2)

as X
ILj

j EMj .

If Idj+1
= Ωdj+1

then Sn
j (Idj+1

) = Pn
j and the subnormal series (6.1) reduces to a

chain of length 1. Similarly, if ILj = Lj then Tn
j (ILj ) = Qn

j and the subnormal series
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(6.2) reduces to a chain of length 1. For all other Sn
j (Idj+1

) we have displayed the

shortest length of a subnormal series (6.1) because Pn
j is the smallest normal subgroup

of Gn containing Sn
j (Idj+1

) and Sn
j (Idj+1

) is not normal in Gn. A similar argument

holds for all other Tn
j (ILj ).

Recall the definition of the groups Hn = LnGn−1, for n ≥ 1, as defined at the

beginning of Section 6.1. Due to Hn
∼= Gn/Mn, the theorem we are currently proving

also implicitly makes a statement about the subnormal subgroups of Hn. We now

prove, by induction on n, that every subnormal subgroup of Gn is one of the groups

listed. Hence the subnormal subgroups ofHn are homomorphic images of the subnormal

subgroups of Gn listed between Qn
n and Qn

0 under the canonical map Gn −→ Hn.

For n = 0, all the subnormal subgroups of G0 are {1} = S0
0 and G0 = T 0

0 holds as

G0 is simple. Although it will also follow from the general argument below, we now

prove separately the implicit claim for H1.

Suppose K is a subnormal subgroup of H1. Then L1K/L1 is a subnormal subgroup

of H1/L1
∼= G0. Since G0 is simple, we know

L1K/L1
∼= {1} or L1K/L1

∼= G0.

For the case L1K/L1
∼= {1}, we have K ⊆ L1. Then K is subnormal in L1 = X

(d1)
1 .

There are two possibilities, either K = {1} ∼= M1T
1
1 (IL1)/M1, for any ∅ 6= IL1 ⊆ L1,

or, since L1 is a product of non-abelian simple groups X1, using Theorem 2.4, we have

K = X
Id1
1 is the image of S1

0(Id1), for some ∅ 6= Id1 ⊆ Ωd1 , under the canonical map

G1 −→ H1. Due to H1
∼= G1/M1, there are subnormal subgroups of H1 of this form.

For the case L1K/L1
∼= G0, we have L1K = L1 o G0. Since G0 acts transitively

on Ωd1 , there is exactly one G0-orbit Ωd1 . Proposition 6.2 gives L1 ⊆ K. Therefore

K = L1 oG0
∼= T 1

0 /M1. For n = 1, the result holds for H1.

Suppose that the result holds for Gn−1. Now we prove the result for Hn. Let K be

a subnormal subgroup of Hn. Then there are two cases:

K ⊆ Ln (case 1), and K 6⊆ Ln (case 2).

Case 1.

For K ⊆ Ln, we have K is subnormal in Ln = X
(dn)
n . There are two possibilities,

either K = {1} ∼= MnT
n
n (ILn)/Mn, for any ∅ 6= ILn ⊆ Ln, or, since Ln is a

product of non-abelian simple groups Xn, using Theorem 2.4, we have K = X
Idn
n

is the image of Sn
n−1(Idn), for some ∅ 6= Idn ⊆ Ωdn , under the canonical map

Gn −→ Hn.
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Case 2.

Now suppose K 6⊆ Ln. We know {1} 6∼= LnK/Ln is a subnormal subgroup of

Hn/Ln
∼= Gn−1. Then there are two possibilities:

LnK/Ln ⊆ LnMn−1/Ln (case 2a),

and

LnK/Ln 6⊆ LnMn−1/Ln (case 2b).

Case 2a.

For LnK/Ln ⊆ LnMn−1/Ln, we have {1} 6∼= LnK/Ln is subnormal in

LnMn−1/Ln
∼= Mn−1. So

LnK/Ln
∼= X

ILn−1

n−1 = Tn−1
n−1 (ILn−1),

for some ∅ 6= ILn−1 ⊆ Ln−1. Put Tn−1
n−1 (ILn−1) =: T . Then LnK = Ln o T .

Specifying that Gn−1 acts on itself by right multiplication ensures that each

of the T -orbits has at least two elements. Also K ⊆ LnT and so K is sub-

normal in LnT . Proposition 6.2 gives Ln ⊆ K. Therefore K = Ln o T is

the image of Tn
n−1(ILn−1) under the canonical map Gn −→ Hn.

Case 2b.

For LnK/Ln 6⊆ LnMn−1/Ln, we have LnK/Ln is subnormal in Hn/Ln
∼=

Gn−1 and is not contained in LnMn−1/Ln. By induction, we have LnK/Ln
∼=

Sn−1
j (Idj+1

), for some j ∈ {0, 1, . . . , n−2}, or LnK/Ln
∼= Tn−1

j (ILj ), for some

j ∈ {1, 2, . . . , n− 2}, or LnK/Ln
∼= Tn−1

0 .

We denote this isomorphic copy of LnK/Ln in Gn−1 by R. Then LnK =

Ln o R. Observe that Mn−1 ⊆ R. Each of the orbits of Mn−1 in its action

upon Ωdn , and hence each of the orbits of R in its action upon Ωdn , has

at least two elements (see Lemma 6.3). Therefore Proposition 6.2 can be

applied irrespective of the chosen actions for the groups Gn−1 on Ωdn .

Also K ⊆ LnR and so K is subnormal in LnR. Proposition 6.2 gives Ln ⊆ K
and so K = Ln o R. Therefore K is the image of Sn

j (Idj+1
) under the

canonical map Gn −→ Hn, for some j ∈ {0, 1, . . . , n−2}, or K is the image of

Tn
j (ILj ) under the canonical map Gn −→ Hn, for some j ∈ {1, 2, . . . , n− 2},

or K ∼= Tn
0 /Mn.

Suppose that the result holds for Hn. Now we prove the result for Gn. Let K be a
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subnormal subgroup of Gn. Then there are two cases:

K ⊆Mn (case 1), and K 6⊆Mn (case 2).

Case 1.

For K ⊆Mn, we have K is subnormal in Mn = X
(|Ln|)
n . There are two possibili-

ties, either K = {1} = Sn
n , or, using Theorem 2.4, we have K = X

ILn
n = Tn

n (ILn),

for some ∅ 6= ILn ⊆ Ln.

Case 2.

Now suppose K 6⊆ Mn. We know {1} 6∼= MnK/Mn is a subnormal subgroup of

Gn/Mn
∼= Hn. Then there are two possibilities:

MnK/Mn ⊆MnLn/Mn (case 2a),

and

MnK/Mn 6⊆MnLn/Mn (case 2b).

Case 2a.

For MnK/Mn ⊆ MnLn/Mn, we have {1} 6∼= MnK/Mn is subnormal in

MnLn/Mn
∼= Ln. So

MnK/Mn
∼= X

Idn
n ,

for some ∅ 6= Idn ⊆ Ωdn , which is the image of Sn
n−1(Idn) under the canonical

map Gn −→ Hn. Put Sn
n−1(Idn) =: S. Then MnK = S.

Right multiplication by Ln on itself in the action (4.1) implies that each

of the orbits of X
Idn
n in its action upon Ln has at least two elements. In

the action of X
Idn
n on Ln, each non-trivial element of X

Idn
n acts fixed point

freely. Therefore this action is faithful.

Also K ⊆ S and so K is subnormal in S. Proposition 6.2 gives Mn ⊆ K.

Therefore K = S = Sn
n−1(Idn).

Case 2b.

For MnK/Mn 6⊆ MnLn/Mn, we have MnK/Mn is subnormal in Gn/Mn
∼=

Hn and is not contained in MnLn/Mn. By induction, we have MnK/Mn =

Tn
j (ILj )/Mn, for some j ∈ {1, 2, . . . , n − 1}, or MnK/Mn = Sn

j (Idj+1
)/Mn,

for some j ∈ {0, 1, . . . , n− 2}, or MnK/Mn = Tn
0 /Mn.

We denote this description of MnK/Mn in Hn by R/Mn. Then MnK = R.

Again, right multiplication by Ln on itself in the action (4.1) implies that
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each of the orbits of R/Mn in its action upon Ln has at least two elements.

In fact, since Ln ⊆ R, there is only one (R/Mn)-orbit, that is Ln.

In the action (4.1), non-trivial elements of R/Mn acting on Ln can have fixed

points however these elements do move at least one other point. Therefore

this action is faithful.

Also K ⊆ R and so K is subnormal in R. Proposition 6.2 gives Mn ⊆ K

and so K = R. Therefore K = Tn
j (ILj ), for some j ∈ {1, 2, . . . , n − 1}, or

K = Sn
j (Idj+1

), for some j ∈ {0, 1, . . . , n− 2}, or K = Tn
0 .

Similarly as for the normal subgroups, our work has been restricted in Lemma 6.5

to closed subnormal subgroups because we rely on Lemma 2.12, which only applies to

subnormal subgroups that are closed.

Lemma 6.5 is required due to the two different types of notation for the subnormal

subgroups of Gn.

Lemma 6.5. Given finite groups Gn, for n ≥ 0, in which all the normal subgroups

form a chain

{1} = Nn
2n+2 ( Nn

2n+1 ( . . . ( Nn
2 ( Nn

1 = Gn,

and an inverse system of surjective homomorphisms θn : Gn −→ Gn−1, for n ≥ 1, such

that

θn(Nn
i ) =

Nn−1
i for 1 ≤ i ≤ 2n,

{1} for i ∈ {2n+ 1, 2n+ 2}.

Let P i, for i ∈ {1, 2, . . . , 2n+ 1}, be finite disjoint index sets.

Suppose the non-trivial subnormal subgroups Kn
I of Gn are parameterised by I,

where ∅ 6= I ∈ P i, such that Nn
i+1 ( Kn

I ⊆ Nn
i , and

θn(Kn
I ) =

Kn−1
I for I ∈ P1,P2, . . . ,P2n−1,

{1} for I ∈ P2n,P2n+1.
(6.3)

Then the inverse limit G = lim
←−

(Gn)n≥0 has non-trivial closed subnormal subgroups

precisely KI = lim
←−

(Kn
I )n→∞, where ∅ 6= I ∈ P i for i ≥ 1, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse

limit, we can find n ≥ 0 such that the image of M in Gn under φn : G −→ Gn is

non-trivial. Therefore φn(M) = Kn
I , where ∅ 6= I ∈ P i, for some i ∈ {1, 2, . . . , 2n+ 1}.

We claim that M = KI . Since M is closed, it is enough to show that φm(M) = Km
I ,

for all m ≥ n. Then φm(M) = φm(KI) implies kerφmM = kerφmKI , for all m ≥ n.
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Thus

M =

( ⋂
m≥n

kerφm

)
M =

⋂
m≥n

(
kerφmM

)
=
⋂
m≥n

(
kerφmKI

)
=

( ⋂
m≥n

kerφm

)
KI = KI ,

using Lemma 2.12.

Clearly φm(M) = Km
I is true for m = n. Now suppose m > n. From

{1} 6= Km−1
I = φm−1(M) = θm(φm(M))

and mapping (6.3), we conclude φm(M) = Km
I .

For the following, recall the normal subgroups Pj and Qj , for j ≥ 0, of a Wilson

group G, defined in Corollary 5.3.

Corollary 6.6. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn as defined

in Section 4.1. In the Wilson construction, assume that the unspecified action of the

group Gn, for n ≥ 0, is taken to be right multiplication on itself.

For j ≥ 0, define

Sj(Idj+1
) = lim

←−
(Sn

j (Idj+1
))n→∞, where ∅ 6= Idj+1

⊆ Ωdj+1
,

regarded as subgroups of G.

For j ≥ 1, define

Tj(ILj ) = lim
←−

(Tn
j (ILj ))n→∞, where ∅ 6= ILj ⊆ Lj,

and define

T0 = lim
←−

(Tn
0 )n→∞,

regarded as subgroups of G.

Then the non-trivial closed subnormal subgroups of G are precisely the groups

Sj(Idj+1
), Tj(ILj ) and T0. In particular, for all Id1, IL1, . . . , Idn, ILn, Idn+1, . . . ,

they form chains

. . . ( Sn(Idn+1) ⊆ Pn ( Tn(ILn) ⊆ Qn ( Sn−1(Idn) ⊆ Pn−1 ( . . .

. . . ⊆ P1 ( T1(IL1) ⊆ Q1 ( S0(Id1) ⊆ P0.
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The subnormal length in G of the group Sj(Idj+1
) is1 if Idj+1

= Ωdj+1
(implying that Sj(Idj+1

) = Pj),

2 if Idj+1
( Ωdj+1

.

The subnormal length in G of the group Tj(ILj ) is1 if ILj = Lj(implying that Tj(ILj ) = Qj),

2 if ILj ( Lj.

Proof. We apply Lemma 6.5 to the groups Gn, for n ≥ 0, of Wilson’s construction with

the specified actions, and to their subnormal subgroups.

For the finite index sets we take the power sets of Ωdj and Lj , for 1 ≤ j ≤ n, and

note that P1 = {1}. We remark that arbitrary sets A1 and A2 can be made disjoint

when the elements x ∈ A1 and y ∈ A2 are labelled as (1, x) and (2, y).

Define

Kn
I =

Sn
(i−2)/2(Id(i−2)/2+1

) if i is even,

Tn
(i−1)/2(IL(i−1)/2

) if i is odd,

where ∅ 6= I ∈ P i for i ∈ {2, 3, . . . , 2n + 1}, and define Kn
I = Tn

0 for ∅ 6= I ∈ P1. For

each n, these subnormal subgroups of Gn were defined in Theorem 6.4. It was shown

that these are all the non-trivial subnormal subgroups of Gn and they form chains.

The definition of the groups Kn
I also shows that the second condition for Lemma 6.5

is satisfied. For 2 ≤ i ≤ 2n+ 1, where ∅ 6= I ∈ P i,

θn(Kn
I ) =

θn(Sn
(i−2)/2(Id(i−2)/2+1

)) = Sn−1
(i−2)/2(Id(i−2)/2+1

) = Kn−1
I if i is even,

θn(Tn
(i−1)/2(IL(i−1)/2

)) = Tn−1
(i−1)/2(IL(i−1)/2

) = Kn−1
I if i is odd.

We take Sn−1
n−1(Idn), Tn−1

n (ILn), Kn−1
I for ∅ 6= I ∈ P2n, and Kn−1

I for ∅ 6= I ∈ P2n+1 to

be the trivial group {1}. Also θn(Kn
I ) = θn(Tn

0 ) = Tn−1
0 = Kn−1

I for ∅ 6= I ∈ P1.

Below, Corollary 6.7 tells us which Wilson groups we know to have all their sub-

normal subgroups closed.

Corollary 6.7. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn, as defined

in Section 4.1, such that |G0| > 35!.

Every subnormal subgroup of G is closed in G.

Proof. Let K be an abstract subnormal subgroup of G. We argue by induction on the
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subnormal length l of K in G. So

G = N0 DN1 D . . .DNl−1 DNl = K.

For l = 1 we have K E G. Since |G0| > 35!, we have that G is finitely generated

(see Chapter 9). Applying the result by N. Nikolov and D. Segal [22, Cor. 1.15], the

normal subgroup K is closed in G.

Suppose the result holds for l > 1. Note that Nl−1 has subnormal length l−1 in G.

By induction, the subnormal subgroup Nl−1 is closed in G. From the classification

Corollary 6.17, all the closed subnormal subgroups of a general Wilson group have

finite index, therefore Nl−1 is open in G. Then Nl−1 is a hereditarily just infinite

profinite group, since G is hereditarily just infinite, and also Nl−1 is finitely generated,

see [30, Prop. 4.3.1]. Applying again the result [22, Cor. 1.15], the subnormal subgroup

K is closed in Nl−1 and therefore K is closed in G.

The following diagram illustrates the chains of subnormal subgroups of Wilson

groups constructed such that Gn, for n ≥ 0, acts on itself by right multiplication. The

diagram includes the chain of normal subgroups for any arbitrary Wilson group. Ad-

ditionally, these chains of subnormal subgroups hold for any Wilson group constructed

such that the actions of the non-trivial subnormal subgroups of the groups Gn, for

n ≥ 1, have all their orbits containing at least two elements.

Remark. The subnormal subgroup lattice in Figure 6.1 is very symmetric. However,

there are no subnormal subgroups between the groups P0 and G. This is because G0

is a simple group. Wilson’s construction can be slightly modified to make the lattice

more symmetrical. Instead of starting the construction with G0 = X0, set G0 to be a

direct product of the finite non-abelian simple group X0. That is G0 = X
(d0)
0 . All the

previous arguments hold while some extra normal subgroups are produced of the form

P0 oX
Id0
0 , where ∅ 6= Id0 ( {1, 2, . . . , d0}.
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G = Q0 = T0

P0 = S0(Ωd1)

Q1 = T1(L1)

S0(Id1)

P1 = S1(Ωd2)

T1(IL1)

Q2 = T2(L2)

S1(Id2)

Qn = Tn(Ln)

Pn = Sn(Ωdn+1)

Tn(ILn)

Tn(I ′Ln
)

for I ′Ln
( ILn

Tn(ILn)

Qn+1 = Tn+1(Ln+1)

Sn(Idn+1)

Sn(I ′dn+1
)

for I ′dn+1
( Idn+1

Sn(Idn+1)

Figure 6.1: The subnormal subgroup lattice of particular Wilson groups.
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6.3 Infinite iterated wreath products . . . oAm oAm o . . . oAm,

where m ≥ 5

We recall the just infinite profinite groups W defined in Section 3.2. Fix the alphabet

A = {1, 2, . . . ,m}, where m ≥ 5. We define the sets

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ A} ,

for each j = 1, 2, . . . , where i1i2 . . . ij denotes a sequence of numbers and not a product.

Set W0 = Am. We form the iterated wreath products

Wn = Am oΩ∗[n] . . . oΩ∗[2] Am oΩ∗[1] Am,

for n ≥ 1. They are the same as the semidirect products Wn = A
(mn)
m oWn−1. A

group W = lim
←−

(Wn)n≥0 is constructed as the inverse limit of a sequence of finite

groups (Wn)n≥0.

The action of a subnormal subgroup of Wn−1 on mn elements may have orbits of one

element, that is the action has fixed points. Similarly for a general Wilson group G, the

action of a subnormal subgroup of Gn−1 on dn elements may have orbits of one element.

To progress in the characterisation of subnormal subgroups of a general Wilson group,

it would be most beneficial to describe the subnormal subgroups of the just infinite

groups W .

We recall the permutational wreath products X oΩ U as defined in Lemma 2.2 of

Section 2.1. That is, where U is a finite permutation group acting on a finite set

Ω with orbits Ω1,Ω2, . . . ,Ωr and X is a finite non-abelian simple group. We need

a generalisation of Proposition 6.2, found in the previous section, which makes no

assumption as to the number of elements in each of the U -orbits. That is, a U -orbit

can have one element. Proposition 6.8 says that the subnormal subgroups K of X oΩ U
such that V K = X oΩ U contain all the minimal normal subgroups of X oΩ U that

correspond to orbits which have at least two elements.

Proposition 6.8. Consider the permutational wreath product X oΩ U as defined in

Lemma 2.2. The base group is denoted V =
∏

ω∈ΩXω, where Xω
∼= X for all ω ∈ Ω.

Define

Y = {(xω)ω∈Ω ∈ V : xω = 1 if ω · U = {ω}} ;

the notation ω · U denotes the orbit of ω under the action of the group U . Let G be a

subgroup of X oΩ U such that Y ⊆ G and V G = X oΩ U .

Suppose K is a subnormal subgroup of G such that V K = X oΩ U . Then Y ⊆ K.
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Proof. We first show that we can reduce to the case where the subnormal subgroup K

is normal in G. Since K is subnormal in G, we have G = T0DT1D . . .DTk−1DTk = K.

Without loss of generality, suppose this is a shortest chain. This means G 6= T1, T1 6=
T2, . . . , Tk−1 6= K.

Consider the beginning of the chainGDT1. Now V K = X oΩU implies V T1 = X oΩU .

We apply the proposition, which we assume to be true for the special case where the

subnormal subgroup is actually normal, to T1. This gives Y ⊆ T1. Replacing G by T1

satisfies the conditions of the proposition. We inductively have Y ⊆ K.

Let Ω1,Ω2, . . . ,Ωr be the U -orbits which have at least two elements. By Lemma 2.3,

we have the corresponding minimal normal subgroups N1, N2, . . . , Nr of X oΩ U . Ob-

viously Y = N1 ×N2 × . . . ×Nr. We now show that N1, N2, . . . , Nr are also minimal

normal subgroups of G. Let i ∈ {1, 2, . . . , r}. Since Ni ⊆ Y ⊆ G ⊆ X oΩ U and

Ni EX oΩ U , we have Ni EG.

Next we show that Ni is minimal normal in G. For this we need that the normal

closure in G of any non-trivial element x = (xω)ω∈Ω ∈ Ni is equal to Ni. Choose

ω1 ∈ Ωi such that xω1 6= 1. We follow argument (∗) in the proof of Lemma 2.3, which

supplies an element y with certain properties. Noting that since Ωi is a U -orbit which

has at least two elements, we have y ∈ Y ⊆ G. We take the normal closure of [x, y]

in Y to gain Vω1 ⊆ 〈x〉G. For all ω2 ∈ Ωi with ω1 6= ω2 we can find u ∈ U such that

ω1 · u = ω2 because U acts transitively on Ωi. As V G = X oΩ U , we can obtain v ∈ V
such that vu ∈ G. Then Vω2 = V u

ω1
= V

vu
ω1 ⊆ 〈x〉G.

To prove Y ⊆ K, it is sufficient to show that each of the minimal normal subgroups

N1, N2, . . . , Nr of G is contained in K. Let i ∈ {1, 2, . . . , r}. Let ω1, ω2 ∈ Ωi such

that ω1 and ω2 are distinct. We can find u ∈ U such that ω1 · u = ω2 because U

acts transitively on Ωi. As V K = X oΩ U , we can obtain x ∈ V such that ux =

u(xω)ω∈Ω ∈ K. Choose y ∈ X\{1} and consider y = (yω) ∈ Y ⊆ G with yω = y if

ω = ω1 and yω = 1 otherwise.

Then [y, ux] ∈ K is similarly written as the element (2.1), in the final paragraph of

the proof for Lemma 2.3. Now we know that K contains a non-trivial element from Ni.

We have found that Ni is a minimal normal subgroup of G and since K is a normal

subgroup of G, we have Ni is contained in K.

The following corollary is a special case of Proposition 6.8, regarding subnormal

subgroups for a particular group G.

Corollary 6.9. Consider the permutational wreath product X oΩ U as defined in

Lemma 2.2. The base group is denoted V =
∏

ω∈ΩXω, where Xω
∼= X for all ω ∈ Ω.
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Define

Y = {(xω)ω∈Ω ∈ V : xω = 1 if ω · U = {ω}} ;

the notation ω · U denotes the orbit of ω under the action of the group U .

Suppose K is a subnormal subgroup of X oΩ U such that V K = X oΩ U . Then

Y ⊆ K.

Proof. Apply Proposition 6.8 where G = X oΩ U .

Theorem 6.10 determines the subnormal subgroups of any arbitrary group Wn, for

n ≥ 0. In the proof, Corollary 6.9 is applied to the circumstance where U is taken to

be a subnormal subgroup of Wn−1 acting on mn elements.

At the end of this section, Corollary 6.11 completely classifies the subnormal sub-

groups of the inverse limits W of the finite groups Wn. The characterisation covers

all the subnormal subgroups of the groups W , as shown by Corollary 6.12. Then

Figure 6.2, also at the end of this section, gives a pictorial description of one such

subnormal subgroup.

For the description of subnormal subgroups, we now define some new notation which

is required. The reader can refer to Figure 3.1, in Section 3.2, to visualise the geometric

meaning of these concepts.

As before, fix the alphabet A = {1, 2, . . . ,m}. We have the set

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ A} ,

for each j = 1, 2, . . . , which can be interpreted as the vertices on the jth layer of the

m-regular rooted tree. In particular, this means that Ω∗[0] = {∅}.
For j = 1, 2, . . . , denote the orbits of the base group A

(mj)
m of Wj , acting on the

(j + 1)th layer Ω∗[j+1], as

Ω
∗[j+1]
i1i2...ij

= {i1i2 . . . ijij+1 : ij+1 ∈ A} ,

where i1, i2, . . . , ij ∈ A are fixed. In particular, this means that the orbit of W0 = Am

acting on Ω∗[1] is Ω
∗[1]
∅ = {1, 2, . . . ,m}.

For the following, recall the normal subgroups V n
j , for j ∈ {1, 2, . . . , n+ 1}, and V n

0

of Wn, defined in Theorem 3.2.

Theorem 6.10. Let Wn, for n ≥ 0, be the finite groups as defined in Section 3.2. For

j ∈ {1, 2, . . . , n}, define

Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) = A

I∗[n]∪∆∗[n]
m o . . .o (A

I∗[j+1]∪∆∗[j+1]
m oA

I∗[j]
m ) ≤Wn,
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where

∅ 6= I∗[j] ⊆ Ω∗[j],

∆∗[j+1] =
⋃

i1i2...ij∈I∗[j]

Ω
∗[j+1]
i1i2...ij

, I∗[j+1] ⊆ Ω∗[j+1]\∆∗[j+1],

∆∗[j+2] =
⋃

i1i2...ij+1∈∆∗[j+1]∪I∗[j+1]

Ω
∗[j+2]
i1i2...ij+1

, I∗[j+2] ⊆ Ω∗[j+2]\∆∗[j+2],

...
...

∆∗[n] =
⋃

i1i2...in−1∈∆∗[n−1]∪I∗[n−1]

Ω
∗[n]
i1i2...in−1

, I∗[n] ⊆ Ω∗[n]\∆∗[n],

and define

Un
n+1 = {1}

and

Un
0 = Wn.

Then the subnormal subgroups of Wn are precisely the groups Un
n+1, Un

0

and Un
j (I∗[j], I∗[j+1], . . . , I∗[n]).

The subnormal length in Wn of the group Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) is bounded above

by n − j + 2. (See Theorem 6.14, later, which gives a recursive formula for the exact

subnormal length.)

Proof. We first check that the groups Un
j (I∗[j], I∗[j+1], . . . , I∗[n]), U

n
n+1 and Un

0 are all

subnormal subgroups of Wn. Obviously Un
n+1 = {1}CWn and Un

0 = Wn EWn.

We claim

Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) EA(mn)

m Un−1
j (I∗[j], I∗[j+1], . . . , I∗[n−1])

EA(mn)
m A(mn−1)

m Un−2
j (I∗[j], I∗[j+1], . . . , I∗[n−2]) E . . .

EA(mn)
m A(mn−1)

m . . . A(mj+1)
m U j

j (I∗[j]) E V n
j CWn. (6.4)

It is sufficient to show, for k ∈ {j + 1, j + 2, . . . , n}, that

Uk
j (I∗[j], I∗[j+1], . . . , I∗[k])

= A
I∗[k]∪∆∗[k]
m o (A

I∗[k−1]∪∆∗[k−1]
m o . . .o (A

I∗[j+1]∪∆∗[j+1]
m oA

I∗[j]
m ))

EA(mk)
m o (A

I∗[k−1]∪∆∗[k−1]
m o . . .o (A

I∗[j+1]∪∆∗[j+1]
m oA

I∗[j]
m ))

= A(mk)
m Uk−1

j (I∗[j], I∗[j+1], . . . , I∗[k−1]).
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Put

Uk−1
j (I∗[j], I∗[j+1], . . . , I∗[k−1]) =: U.

From Lemma 2.3, we see that A
I∗[k]∪∆∗[k]
m is a product of some minimal normal sub-

groups of A
(mk)
m o U and so A

I∗[k]∪∆∗[k]
m is normal in A

(mk)
m o U . It is left to show

[A
(mk)
m , U ] ⊆ AI∗[k]∪∆∗[k]

m . This holds as U moves points in the set ∆∗[k] and fixes points

in the sets I∗[k] and Ω∗[k]\(I∗[k] ∪∆∗[k]).

The subnormal length in Wn of any group Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) is ≤ n− j + 2

because the subnormal series (6.4) has length n− j + 2.

We now prove, by induction on n, that every subnormal subgroup of Wn is one of

the groups listed. For n = 0, all the subnormal subgroups of W0 are {1} = U0
1 and

W0 = U0
0 holds as W0 is simple.

Suppose that the result holds for Wn−1. Now we prove the result for Wn. Let K

be a subnormal subgroup of Wn. Then there are two cases:

K ⊆ A(mn)
m (case 1), and K 6⊆ A(mn)

m (case 2).

Case 1.

For K ⊆ A
(mn)
m , we have K is subnormal in A

(mn)
m . There are two possibilities,

either K = {1} = Un
n+1, or, using Theorem 2.4, we have K = A

I∗[n]
m = Un

n (I∗[n]),

for some ∅ 6= I∗[n] ⊆ Ω∗[n].

Case 2.

Now suppose K 6⊆ A
(mn)
m . We know {1} 6∼= A

(mn)
m K/A

(mn)
m is a subnormal sub-

group of Wn/A
(mn)
m

∼= Wn−1. Then, by induction, we have

A(mn)
m K/A(mn)

m
∼= Un−1

j (I∗[j], I∗[j+1], . . . , I∗[n−1]),

for some j ∈ {1, 2, . . . , n− 1}, or A
(mn)
m K/A

(mn)
m

∼= Un−1
0 .

We denote this isomorphic copy of A
(mn)
m K/A

(mn)
m in Wn−1 by U . Then A

(mn)
m K =

A
(mn)
m o U . If U = Un−1

j (I∗[j], I∗[j+1], . . . , I∗[n−1]), for some j ∈ {1, 2, . . . , n −
1}, then ∆∗[j+1], ∆∗[j+2], . . . ,∆∗[n] are all defined. If U = Un−1

0 then we set

∆∗[n] = Ω∗[n]. The elements of the set Ω∗[n]\∆∗[n] are fixed points for the action

of U on Ω∗[n]. Also K ⊆ A(mn)
m U and so K is subnormal in A

(mn)
m U . Corollary 6.9

gives {
(xω)ω∈Ω[n] ∈ A(mn)

m : xω = 1 if ω · U = {ω}
}

= A
∆∗[n]
m ⊆ K.
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We have found that

A
Ω∗[n]\∆∗[n]
m K = A

Ω∗[n]\∆∗[n]
m A

∆∗[n]
m U. (6.5)

To finalise the characterisation of K, observe that K∩AΩ∗[n]\∆∗[n]
m U is a subnormal

subgroup of A
Ω∗[n]\∆∗[n]
m U ∼= A

Ω∗[n]\∆∗[n]
m ×U and that it projects onto the factor U .

Using Lemma 2.4, there exists some subset I∗[n] ⊆ Ω∗[n]\∆∗[n] such that K ∩

A
Ω∗[n]\∆∗[n]
m U = A

I∗[n]
m U ∼= A

I∗[n]
m × U . From this and the fact that A

∆∗[n]
m ≤ K,

we establish K = A
I∗[n]
m A

∆∗[n]
m U . Thus K = Un

j (I∗[j], I∗[j+1], . . . , I∗[n]), for some

j ∈ {1, 2, . . . , n− 1}, or K = Un
0 .

For the following, recall the normal subgroups Vj , for j ≥ 0, of a group W , defined

in Corollary 3.3.

Corollary 6.11. Let W = lim
←−

(Wn)n≥0 be the inverse limit of the groups Wn as defined

in Section 3.2. For j ≥ 1, define

Uj(I∗[j], I∗[j+1], I∗[j+2], . . .) = lim
←−

(Un
j (I∗[j], I∗[j+1], . . . , I∗[n]))n→∞,

where

∅ 6= I∗[j] ⊆ Ω∗[j],

∆∗[j+1] =
⋃

i1i2...ij∈I∗[j]

Ω
∗[j+1]
i1i2...ij

, I∗[j+1] ⊆ Ω∗[j+1]\∆∗[j+1],

∆∗[j+2] =
⋃

i1i2...ij+1∈∆∗[j+1]∪I∗[j+1]

Ω
∗[j+2]
i1i2...ij+1

, I∗[j+2] ⊆ Ω∗[j+2]\∆∗[j+2],

...
...

and define

U0 = lim
←−

(Un
0 )n→∞,

regarded as subgroups of W .

Then the non-trivial closed subnormal subgroups of W are precisely the groups

Uj(I∗[j], I∗[j+1], I∗[j+2], . . .) and U0.

The subnormal length in W of the group Uj(I∗[j], I∗[j+1], I∗[j+2], . . .) is bounded above

by n− j + 2 for I∗[n] ( Ω∗[n]\∆∗[n] and I∗[n+1] = Ω∗[n+1]\∆∗[n+1].
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Proof. Let K be a non-trivial closed subnormal subgroup of W . The profinite group W

has the chain of open normal subgroups . . . ( V2 ( V1 ( V0 = W , see [26, Thm. 2.1.3].

These open normal subgroups form a base for the topology on W . Therefore, as K is

a closed subgroup, we have K = lim
←−

(ViK/Vi)i→∞, refer to [30, Thm. 1.2.5 (a)]. From

Theorem 6.10, we know that ViK/Vi is determined by a finite chain of sets I∗[j], I∗[j+1],

. . . , I∗[i−1], for some j ∈ {0, 1, 2, . . . , i}. Thus K is parametrised by the infinite chain

of sets I∗[j], I∗[j+1], I∗[j+2], . . . .

Remark (regarding the proof of Corollary 6.11). The infinite iterated wreath product

W , constructed from alternating groups Am, can be encoded differently using m-adic

integers. (Refer to Section 2.5 for a description of the m-adic integers.)

The group W is viewed as acting naturally on the infinite m-regular rooted tree,

that is where every vertex has m children (see P. de la Harpe [6, pg. 211-212]). However,

each path of the tree corresponds uniquely to an element of the m-adic integers Zm.

Therefore the collection of all these paths is Zm.

For Uj(I∗[j], I∗[j+1], I∗[j+2], . . .), we can now think of each I∗[j], I∗[j+1], I∗[j+2], . . .

as prescribing a subset of the m-adic integers. In particular, each of these subsets of

the m-adic integers is a union of cosets because everything from some point onwards is

included. Unions of cosets are exactly the open subsets of Zm. Therefore I∗[j], I∗[j+1],

I∗[j+2], . . . can be interpreted as open subsets of Zm.

Corollary 6.11 can be proved from knowing that the m-adic integers has an infinite

number of open subsets. Whether one subnormal subgroup is contained in another can

be read off from the index sets I∗[j], I∗[j+1], I∗[j+2], . . . . In the new interpretation of W ,

one subnormal subgroup is contained in another when its open sets are contained in

the others open sets.

Below, Corollary 6.12 tells us that all the subnormal subgroups of the groups W

are closed. For this we note, a normal subgroup N of a profinite group G is virtually

dense in G if the closure of N is open in G.

Corollary 6.12. Let W = lim
←−

(Wn)n≥0 be the inverse limit of the groups Wn as defined

in Section 3.2.

Every subnormal subgroup of W is closed in W .

Proof. Let K be an abstract subnormal subgroup of W . We argue by induction on the

subnormal length l of K in W . So

W = N0 DN1 D . . .DNl−1 DNl = K.
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For l = 1 we have K EW . Applying the result by N. Nikolov and D. Segal [22,

Cor. 1.15], the normal subgroup K is closed in W .

Suppose the result holds for l > 1. Note that Nl−1 has subnormal length l − 1

in W . By induction, the subnormal subgroup Nl−1 is closed in W . From the clas-

sification Corollary 6.11, all the closed subnormal subgroups of W have finite index,

therefore Nl−1 is open in W . Thus Nl−1 is a finitely generated profinite group, see [30,

Prop. 4.3.1].

Consider K E Nl−1. The closure of K in Nl−1 has finite index in Nl−1, by Corol-

lary 6.11, and so K is a virtually dense normal subgroup of Nl−1.

Let U be an open subgroup of Nl−1. Then U is a finitely generated profinite group.

So all its finite quotients are continuous quotients, refer to [21]. The normal subgroup

CoreW (U) =
⋂

g∈W
Ug is open in W , as U is open in W and by Lemma 2.10. Therefore

CoreW (U) has finite index in U , using Lemma 2.10.

If U had an infinite abelian quotient then CoreW (U) would have an infinite abelian

quotient. But the only composition factors of finite quotients of CoreW (U) are isomor-

phic to Am because all the composition factors of W are isomorphic to Am.

If U had a quotient isomorphic to an infinite product of non-abelian finite simple

groups then CoreW (U) would map onto an infinite product of non-abelian finite simple

groups, using Lemma 2.4. But then CoreW (U) must map onto arbitrarily long products

Am ×Am × . . .×Am and so CoreW (U) cannot be finitely generated.

Finally, U cannot map onto any connected Lie groups because U is totally discon-

nected, see [30, Cor. 1.2.4 (iv)]. Thus the theorem of N. Nikolov and D. Segal [22,

Thm. 1.14 ] implies that K has finite index in Nl−1. So K is open in Nl−1, refer to [21],

and hence K is closed in W , using Lemma 2.10.

It is standard to view the group W as acting on the infinite m-regular rooted tree,

where every vertex has m children. P. de la Harpe [6, pg. 211-212] gives an introduction

to groups acting on these trees. Taking m = 5, we now use this tree to illustrate an

example of a subnormal subgroup of W . The following diagram is a pictorial description
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of the subnormal subgroup

. . .o
(
A

(53)
5 ×A(53)

5 ×A(53)
5 ×A(53)

5 ×A(53)
5

)
o
(
A

(52)
5 × ({1} ×A5 ×A5 ×A5 ×A5)×A(5)

5 ×A
(5)
5

×(A5 ×A5 × {1} ×A5 ×A5)×A(5)
5 ×A

(52)
5 ×A(52)

5 ×A(52)
5

)
o
(
A

(5)
5 × ({1} ×A5 ×A5 × {1} × {1})×A(5)

5 ×A
(5)
5 ×A

(5)
5

)
o (A5 × {1} ×A5 ×A5 ×A5)

of W . It is represented by the black squares being the index sets which select the

factors A5 of the subnormal subgroup.
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Figure 6.2: A subnormal subgroup of W represented on the infinite 5-regular rooted
tree.
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6.3.1 The subnormal length

We have only seen an upper bound for the subnormal length in the profinite groups W ,

refer to Theorem 6.10. The exact subnormal length of a subnormal subgroup of Wn,

and hence of W , is given by the recursive formula in Theorem 6.14. Later, we see some

examples, Figure 6.3 and Figure 6.4, to show how the formula works.

First, Lemma 6.13, below, is required. As a consequence of this lemma, the subnor-

mal subgroups of a direct product of iterated wreath products of non-abelian simple

groups are similarly direct products of the same form.

Lemma 6.13. Let Wni, for ni ≥ 0, be the groups as defined in Section 3.2. Recall

the normal subgroups V ni
ji

, for ji ∈ {1, 2, . . . , ni + 1}, and V ni
0 of Wni, defined in

Theorem 3.2.

The normal subgroups of any direct product

Wn1 ×Wn2 × . . .×Wnr

are precisely the groups

V n1
j1
× V n2

j2
× . . .× V nr

jr
.

Proof. Let N be normal subgroup of Wn1 ×Wn2 × . . .×Wnr . The normal subgroup N

projects onto a normal subgroup, say V ni
ji

, in the ith factor Wni . Clearly

N ⊆ V n1
j1
× V n2

j2
× . . .× V nr

jr
.

We claim

N ⊇ V n1
j1
× V n2

j2
× . . .× V nr

jr
.

It suffices to show, for all i ∈ {1, 2, . . . , r},

N ⊇ {1} × . . .× {1} × V ni
ji
× {1} × . . .× {1}.

Suppose V ni
ji
6= {1}. Since N projects onto V ni

ji
in the Wni factor, there is an

x = (x1, x2, . . . , xr) ∈ N

such that xi ∈ V ni
ji

but xi 6∈ V ni
ji+1.

By considering [x, y]z for elements y = (1, . . . , 1, yi, 1, . . . , 1) with yi ∈ Wni in the

ith position and arbitrary z, we see that N contains the subgroup

{1} × . . .× {1} × 〈[xi,Wni ]〉Wni × {1} × . . .× {1}.
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By the classification of normal subgroups of Wni , Theorem 3.2, it is left to show that

there exists yi ∈Wni such that [xi, yi] 6∈ V ni
ji+1.

Now V ni
ji
/V ni

ji+1
∼= AN

m for some N and xi 6≡ 1 mod V ni
ji+1 gives a non-trivial element

of the factor group. As Z(V ni
ji
/V ni

ji+1) ∼= Z(AN
m) ∼= Z(Am)N = 1, hence there exists

yi ∈ V ni
ji

such that [xi, yi] 6≡ 1 mod V ni
ji+1 and this yi will do.

For the purpose of the following formula, set I∗[i] = ∅, for i < j, and ∆∗[i] = ∅, for

i ≤ j, and I∗[n+1] ∪∆∗[n+1] = Ω∗[n+1].

Theorem 6.14. Let Wn, for n ≥ 0, be the finite groups as defined in Section 3.2. For

j ∈ {1, 2, . . . , n}, recall the subnormal subgroups

Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) = A

I∗[n]∪∆∗[n]
m o . . .o (A

I∗[j+1]∪∆∗[j+1]
m oA

I∗[j]
m ),

where

∅ 6= I∗[j] ⊆ Ω∗[j],

∆∗[j+1] =
⋃

i1i2...ij∈I∗[j]

Ω
∗[j+1]
i1i2...ij

, I∗[j+1] ⊆ Ω∗[j+1]\∆∗[j+1],

∆∗[j+2] =
⋃

i1i2...ij+1∈∆∗[j+1]∪I∗[j+1]

Ω
∗[j+2]
i1i2...ij+1

, I∗[j+2] ⊆ Ω∗[j+2]\∆∗[j+2],

...
...

∆∗[n] =
⋃

i1i2...in−1∈∆∗[n−1]∪I∗[n−1]

Ω
∗[n]
i1i2...in−1

, I∗[n] ⊆ Ω∗[n]\∆∗[n],

of Wn, as defined in Theorem 6.10.

The subnormal length of Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) in Wn is given by the formula

max
i1i2...in

|{l0, l1, . . . , ln}| ,

where i1i2 . . . in runs through all paths in the rooted tree up to level n, and

l0 = l(∅),

lr+1 = lr + l(i1i2 . . . ilr), for 0 ≤ r < n,
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with

l(i1i2 . . . ik) = min
{
l | 0 ≤ l ≤ n+ 1− k such that

∃i′k+1, i
′
k+2, . . . , i

′
k+l : i1i2 . . . iki

′
k+1i

′
k+2 . . . i

′
k+l ∈ I∗[k+l] ∪∆∗[k+l]

}
.

Proof. We prove the formula for the subnormal length in Wn by induction on n. For

n = 1, the subnormal subgroups U1
1 (I∗[1]) of W1 have subnormal length1 if I∗[1] = Ω∗[1] (implying that U1

1 (I∗[1]) = V 1
1 ),

2 if Idj+1
( Ω∗[1],

which are the same lengths given by the formula.

Suppose the formula holds for Wm, for m < n. Now we prove the formula for Wn.

Let Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) be a subnormal subgroup of Wn and we denote

Un
j (I∗[j], I∗[j+1], . . . , I∗[n]) =: U . The unique smallest normal subgroup of Wn that

contains the subnormal subgroup U is V n
j . The subnormal length of U in Wn is equal

to

1 + the subnormal length of U in V n
j .

Notice

V n
j
∼= Wn−j ×Wn−j × . . .×Wn−j︸ ︷︷ ︸

mj times

.

By Lemma 6.13, there is a unique smallest normal subgroup N1 of Wn−j ×Wn−j ×
. . . ×Wn−j containing the subnormal subgroup U . Since N1 is isomorphic to a direct

product of groups of the form Wni , using Lemma 6.13, there is again a unique smallest

normal subgroup N2 of N1 containing U and we descend so on. The formula for the

subnormal length records how many steps this procedure requires until we reach U .

The subnormal length of U in V n
j
∼= Wn−j × Wn−j × . . . × Wn−j is computed

recursively as the maximum of the subnormal lengths of the intersection of U with each

factor isomorphic to Wn−j in that factor isomorphic to Wn−j . The possible choices for

descending to such factors are parameterized by the paths i1i2 . . . in.
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We apply the formula of Theorem 6.14, below, to calculate the subnormal length for

two examples of subnormal subgroups of W5. The subnormal subgroups are illustrated

using the simpler 2-regular rooted tree, since the formula does not depend on the degree

of the alternating groups used to construct Wn.

The subnormal subgroups are represented by the black squares being the index sets

which select the factors Am of the subnormal subgroup. The black dots on the rooted

trees remind the reader that for the purpose of the formula we take I∗[6]∪∆∗[6] = Ω∗[6].

Figure 6.3: A subnormal subgroup U5
1 (I∗[1], I∗[2], . . . , I∗[5]) of W5 represented on the

rooted tree of length 6.

Using the formula for the highlighted path i1i2 . . . i5 on the far right of the tree, in

Figure 6.3, gives:

l0 = l(∅) = 1,

l1 = l0 + l(i1) = 1 + 3 = 4,

l2 = l1 + l(i1i2i3i4) = 4 + 2 = 6,

l3 = l2 + l(i1i2i3i4i5i6) = 6 + 0 = 6.

This path produces the maximum |{l0, l1, . . . , l3}| = 3, and hence the subnormal length

is 3.
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The following example is to show how the subnormal length can grow with n. It

shows the largest possible subnormal length in W5.

Figure 6.4: A subnormal subgroup of W5 of subnormal length 6.

Using the formula for the highlighted path i1i2 . . . i5 on the far right of the tree, in

Figure 6.4, gives:

l0 = l(∅) = 1,

l1 = l0 + l(i1) = 1 + 1 = 2,

l2 = l1 + l(i1i2) = 2 + 1 = 3,

l3 = l2 + l(i1i2i3) = 3 + 1 = 4,

l4 = l3 + l(i1i2i3i4) = 4 + 1 = 5,

l5 = l4 + l(i1i2i3i4i5) = 5 + 1 = 6.

This path produces the maximum |{l0, l1, . . . , l5}| = 6, and hence the subnormal length

is 6.
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6.4 General Wilson groups

In this section, we complete the characterisation of the subnormal subgroups of an

arbitrary Wilson group. The characterisation holds for any choice of Xi, for i ≥ 0,

and for any choice of faithful transitive permutation representation of Gn, for n ≥ 1,

in the construction of a Wilson group. Here we do not have the previously imposed

restrictions, of Section 6.2, for the groups Gn−1, for n ≥ 1, acting on themselves by

right multiplication. Thus the action of a subnormal subgroup of Gn−1 on dn elements

may have orbits of one element.

Theorem 6.15 determines the subnormal subgroups of the finite groups Gn for the

general Wilson construction. To prove this theorem, we apply Corollary 6.9. Taking U

to be a subnormal subgroup of Gn−1 acting on dn elements, the corollary holds when

the subnormal subgroup has orbits of one element.

Corollary 6.17 completely classifies the closed subnormal subgroups of a general

Wilson group. Then Corollary 6.7 shows that all subnormal subgroups of a Wilson

group are automatically closed provided the first group in Wilson’s construction has

size |G0| > 35!, and hence the Wilson group is finitely generated (see Chapter 9).

Therefore the characterisation of subnormal subgroups, in Corollary 6.17, covers all

the subnormal subgroups of any Wilson group provided |G0| > 35!.

At the end of this section, Figure 6.5 gives a pictorial illustration of the subnormal

subgroups of a general Wilson group. In comparison with the particular Wilson groups

studied in Section 6.2, the subnormal subgroups are still squeezed between normal

subgroups, however not consecutively; recall Figure 6.1.

For the following, recall the normal subgroups Pn
j and Qn

j , for j ∈ {0, 1, . . . , n},
of Gn, defined in Theorem 5.1. We define L0 = {1} for the working of the subsequent

proof.

Theorem 6.15. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1.

For j ∈ {0, 1, . . . , n− 1}, define

Sn
j (Idj+1

) = Qn
j+1 oX

Idj+1

j+1 ≤ Pn
j , where ∅ 6= Idj+1

⊆ Ωdj+1
,

and define

Sn
n = {1}.

For j ∈ {1, 2, . . . , n− 1}, define

Tn
j (ILj , Idj+1

) = Qn
j+1 o (X

Idj+1
∪∆dj+1

j+1 oX
ILj

j ) ≤ Qn
j , where ∅ 6= ILj ⊆ Lj,
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∆dj+1
= {ω ∈ Ωdj+1

: ω ·X
ILj

j 6= {ω}} and Idj+1
⊆ Ωdj+1

\∆dj+1

(the notation ω ·X
ILj

j denotes the orbit of ω under the action of the group X
ILj

j ≤ Gj),

and define

Tn
n (ILn) = X

ILn
n , where ∅ 6= ILn ⊆ Ln,

and

Tn
0 = Gn.

Then the subnormal subgroups of Gn are precisely the groups Sn
j (Idj+1

), Sn
n ,

Tn
j (ILj , Idj+1

), Tn
n (ILn) and Tn

0 .

In particular, for all j ∈ {1, 2, . . . , n− 1}, Idj , ILj and Idj+1
, they form chains

Qn
j+1 ( Tn

j (ILj , Idj+1
) ⊆ Qn

j ( Sn
j−1(Idj ) ⊆ P

n
j−1.

Also, for all Idn and ILn, they form chains

Sn
n = Pn

n ( Tn
n (ILn) ⊆ Qn

n ( Sn
n−1(Idn) ⊆ Pn

n−1.

The subnormal length in Gn of the group Sn
j (Idj+1

) is1 if Idj+1
= Ωdj+1

(implying that Sn
j (Idj+1

) = Pn
j ),

2 if Idj+1
( Ωdj+1

.

The subnormal length in Gn of the group Tn
j (ILj , Idj+1

) is
1 if ILj = Lj(implying that Tn

j (ILj , Idj+1
) = Qn

j ),

2 if ILj ( Lj and Idj+1
∪∆dj+1

is a union of Mj-orbits,

3 if ILj ( Lj and Idj+1
∪∆dj+1

is not a union of Mj-orbits.

The subnormal length in Gn of the group Tn
n (ILn) is1 if ILn = Ln(implying that Tn

n (ILn) = Qn
n),

2 if ILn ( Ln.

We remark in the above definition of ∆dj+1
the dependency on ILj is implicit.

Proof. We first check that the groups Sn
j (Idj+1

), Sn
n , Tn

j (ILj , Idj+1
), Tn

n (ILn) and Tn
0

are all subnormal subgroups of Gn. Obviously Sn
n = {1}CGn and Tn

0 = Gn EGn. For
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any ∅ 6= ILn ⊆ Ln, we have

Tn
n (ILn) = X

ILn
n EMn = Qn

n CGn, (6.6)

using Theorem 2.4. For any ∅ 6= Idj+1
⊆ Ωdj+1

, we have

Sn
j (Idj+1

) = Qn
j+1 oX

Idj+1

j+1 EQn
j+1 o Lj+1 = Pn

j CGn, (6.7)

as X
Idj+1

j+1 E Lj+1.

For any ∅ 6= ILj ⊆ Lj and Idj+1
⊆ Ωdj+1

\∆dj+1
, we show that

Tn
j (ILj , Idj+1

) E Pn
j oX

ILj

j EQn
j CGn. (6.8)

We have Pn
j oX

ILj

j E Pn
j oMj = Qn

j , as X
ILj

j EMj . For

Tn
j (ILj , Idj+1

) = Qn
j+1 o (X

Idj+1
∪∆dj+1

j+1 oX
ILj

j )E

Qn
j+1 o (Lj+1 oX

ILj

j ) = Pn
j oX

ILj

j ,

we need to show that X
Idj+1

∪∆dj+1

j+1 o X
ILj

j E Lj+1 o X
ILj

j . From Lemma 2.3, we

see that X
Idj+1

∪∆dj+1

j+1 is a product of some minimal normal subgroups of Lj+1 o

X
ILj

j and so X
Idj+1

∪∆dj+1

j+1 is normal in Lj+1 o X
ILj

j . It is now left to show that

[Lj+1, X
ILj

j ] ⊆ X
Idj+1

∪∆dj+1

j+1 . This holds as X
ILj

j moves points in the set ∆dj+1
and

fixes points in the sets Idj+1
and Ωdj+1

\(Idj+1
∪∆dj+1

).

We check that the subnormal lengths given in the statement of the theorem are

correct for the groups Tn
n (ILn) and Sn

j (Idj+1
). If ILn = Ln then Tn

n (ILn) = Qn
n and

the subnormal series (6.6) reduces to a chain of length 1. Similarly, if Idj+1
= Ωdj+1

then Sn
j (Idj+1

) = Pn
j and the subnormal series (6.7) reduces to chain of length 1. For

all other Tn
n (ILn) we have displayed the shortest length of a subnormal series (6.6)

because Qn
n is the smallest normal subgroup of Gn containing Tn

n (ILn) and Tn
n (ILn) is

not normal in Gn. A similar argument holds for all other Sn
j (Idj+1

).

We check that the subnormal lengths given in the statement of the theorem are cor-

rect for the groups Tn
j (ILj , Idj+1

). If ILj = Lj then ∆dj+1
= Ωdj+1

because Lemma 6.3

implies that the action of X
Lj

j = Mj on Ωdj+1
has no fixed points. So Tn

j (ILj , Idj+1
) =

Qn
j and the subnormal series (6.8) reduces to a chain of length 1.

If ILj ( Lj and Idj+1
∪∆dj+1

is a union of Mj-orbits then the subnormal series (6.8)
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reduces to

Tn
j (ILj , Idj+1

) CQn
j CGn,

a chain of length 2, as Mj normalises X
Idj+1

∪∆dj+1

j+1 . This is the shortest length of

a subnormal series because Qn
j is the smallest normal subgroup of Gn containing

Tn
j (ILj , Idj+1

) and Tn
j (ILj , Idj+1

) is not normal in Gn.

If ILj ( Lj and Idj+1
∪ ∆dj+1

is not a union of Mj-orbits we check that we have

displayed the shortest length 3 of a subnormal series (6.8) for Tn
j (ILj , Idj+1

). This

is because Qn
j is the smallest normal subgroup of Gn containing Tn

j (ILj , Idj+1
). Also

Tn
j (ILj , Idj+1

) is not normal in Qn
j since Mj does not normalise X

Idj+1
∪∆dj+1

j+1 .

Recall the definition of the groups Hn = LnGn−1, for n ≥ 1, as defined at the

beginning of Section 6.1. Due to Hn
∼= Gn/Mn, the theorem we are currently proving

also implicitly makes a statement about the subnormal subgroups of Hn. We now

prove, by induction on n, that every subnormal subgroup of Gn is one of the groups

listed. Hence the subnormal subgroups ofHn are homomorphic images of the subnormal

subgroups of Gn listed between Qn
n and Qn

0 under the canonical map Gn −→ Hn.

For n = 0, all the subnormal subgroups of G0 are {1} = S0
0 and G0 = T 0

0 = T 0
0 (IL0),

where IL0 = {1} (we have set L0 = {1}), holds as G0 is simple. Although it will also

follow from the general argument below, we now prove separately the implicit claim

for H1.

Suppose K is a subnormal subgroup of H1. Then L1K/L1 is a subnormal subgroup

of H1/L1
∼= G0. Since G0 is simple, we know

L1K/L1
∼= {1} or L1K/L1

∼= G0.

For the case L1K/L1
∼= {1}, we have K ⊆ L1. Then K is subnormal in L1 = X

(d1)
1 .

There are two possibilities, either K = {1} ∼= M1T
1
1 (IL1)/M1, for any ∅ 6= IL1 ⊆ L1, or,

using Theorem 2.4, we have K = X
Id1
1 is the image of S1

0(Id1), for some ∅ 6= Id1 ⊆ Ωd1 ,

under the canonical map G1 −→ H1. Due to H1
∼= G1/M1, there are subnormal

subgroups of H1 of this form.

For the case L1K/L1
∼= G0, we have L1K = L1 oG0. Since G0 acts faithfully and

transitively on Ωd1 , there is exactly one G0-orbit of size at least two. Proposition 6.2

gives L1 ⊆ K. Therefore K = L1 oG0
∼= T 1

0 /M1. For n = 1, the result holds for H1.

Suppose that the result holds for Gn−1. Now we prove the result for Hn. Let K be

a subnormal subgroup of Hn. Then there are two cases:

K ⊆ Ln (case 1), and K 6⊆ Ln (case 2).
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Case 1.

For K ⊆ Ln, we have K is subnormal in Ln = X
(dn)
n . There are two possibilities,

either K = {1} ∼= MnT
n
n (ILn)/Mn, for any ∅ 6= ILn ⊆ Ln, or, using Theorem 2.4,

we have K = X
Idn
n is the image of Sn

n−1(Idn), for some ∅ 6= Idn ⊆ Ωdn , under the

canonical map Gn −→ Hn.

Case 2.

Now suppose K 6⊆ Ln. We know {1} 6∼= LnK/Ln is a subnormal subgroup of

Hn/Ln
∼= Gn−1. Then there are two possibilities:

LnK/Ln ⊆ LnMn−1/Ln (case 2a),

and

LnK/Ln 6⊆ LnMn−1/Ln (case 2b).

Case 2a

For LnK/Ln ⊆ LnMn−1/Ln, we have {1} 6∼= LnK/Ln is subnormal in

LnMn−1/Ln
∼= Mn−1. So

LnK/Ln
∼= X

ILn−1

n−1 = Tn−1
n−1 (ILn−1),

for some ∅ 6= ILn−1 ⊆ Ln−1. Put

Tn−1
n−1 (ILn−1) =: T.

Then LnK = Ln o T .

The action of T on Ωdn may have fixed points. Also K ⊆ LnT and so K is

subnormal in LnT . Corollary 6.9 gives

{
(xω)ω∈Ωdn

∈ Ln : xω = 1 if ω · T = {ω}
}

= X
∆dn
n ⊆ K.

We have found that

X
Ωdn\∆dn
n K = X

Ωdn\∆dn
n X

∆dn
n T. (6.9)

To finalise the characterisation of K, observe that K ∩XΩdn\∆dn
n T is a sub-

normal subgroup of X
Ωdn\∆dn
n T ∼= X

Ωdn\∆dn
n × T and that it projects onto

the factor T . Using Lemma 2.4, there exists some subset Idn ⊆ Ωdn\∆dn

such that K∩XΩdn\∆dn
n T = X

Idn
n T ∼= X

Idn
n ×T . From this and the fact that

X
∆dn
n ≤ K, we establish K = X

Idn
n X

∆dn
n T . Therefore K = X

Idn∪∆dn
n oT is
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the image of Tn
n−1(ILn−1 , Idn) under the canonical map Gn −→ Hn.

Case 2b.

For LnK/Ln 6⊆ LnMn−1/Ln, we have LnK/Ln is subnormal in Hn/Ln
∼=

Gn−1 and is not contained in LnMn−1/Ln. By induction, we have LnK/Ln
∼=

Sn−1
j (Idj+1

), for some j ∈ {0, 1, . . . , n − 2}, or LnK/Ln
∼= Tn−1

j (ILj , Idj+1
),

for some j ∈ {1, 2, . . . , n− 2}, or LnK/Ln
∼= Tn−1

0 .

We denote this isomorphic copy of LnK/Ln in Gn−1 by R. Then LnK =

Ln o R. Observe that Mn−1 ⊆ R. Each of the orbits of Mn−1 in its action

upon Ωdn , and hence each of the orbits of R in its action upon Ωdn , has at

least two elements (see Lemma 6.3). Also K ⊆ LnR and so K is subnormal

in LnR.

Proposition 6.2 gives Ln ⊆ K and so K = Ln o R. Therefore K is the

image of Sn
j (Idj+1

) under the canonical map Gn −→ Hn, for some j ∈
{0, 1, . . . , n − 2}, or K is the image of Tn

j (ILj , Idj+1
) under the canonical

map Gn −→ Hn, for some j ∈ {1, 2, . . . , n− 2}, or K ∼= Tn
0 /Mn.

Suppose that the result holds for Hn. Now we prove the result for Gn. Let K be a

subnormal subgroup of Gn. Then there are two cases:

K ⊆Mn (case 1), and K 6⊆Mn (case 2).

Case 1.

For K ⊆ Mn, we have K is a subnormal subgroup of Mn = X
(|Ln|)
n . There

are two possibilities, either K = {1} = Sn
n , or, using Theorem 2.4 we have

K = X
ILn
n = Tn

n (ILn), for some ∅ 6= ILn ⊆ Ln.

Case 2.

Now suppose K 6⊆ Mn. We know {1} 6∼= MnK/Mn is a subnormal subgroup of

Gn/Mn
∼= Hn. Then there are the two possibilities:

MnK/Mn ⊆MnLn/Mn (case 2a),

and

MnK/Mn 6⊆MnLn/Mn (case 2b).

Case 2a.

For MnK/Mn ⊆ MnLn/Mn, we have {1} 6∼= MnK/Mn is subnormal in
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MnLn/Mn
∼= Ln. So

MnK/Mn
∼= X

Idn
n ,

for some ∅ 6= Idn ⊆ Ωdn , which is the image of Sn
n−1(Idn) under the canonical

map Gn −→ Hn. Put Sn
n−1(Idn) =: S. Then MnK = S.

As said in the proof of the analogue case for Theorem 6.4, right multiplication

by Ln on itself in the action (4.1) implies that each of the orbits of X
Idn
n

in its action upon Ln has at least two elements. In the action of X
Idn
n on

Ln, each non-trivial element of X
Idn
n acts fixed point freely. Therefore this

action is faithful.

Also K ⊆ S and so K is subnormal in S. Proposition 6.2 gives Mn ⊆ K.

Therefore K = S = Sn
n−1(Idn).

Case 2b.

For MnK/Mn 6⊆ MnLn/Mn, we have MnK/Mn is subnormal in Gn/Mn
∼=

Hn and is not contained in MnLn/Mn. By induction, we have MnK/Mn =

Tn
j (ILj , Idj+1

)/Mn, for some j ∈ {1, 2, . . . , n− 1}, or MnK/Mn =

Sn
j (Idj+1

)/Mn, for some j ∈ {0, 1, . . . , n− 2}, or MnK/Mn = Tn
0 /Mn.

We denote this description of MnK/Mn in Hn by R/Mn. Then MnK = R.

Again, right multiplication by Ln on itself in the action (4.1) implies that

each of the orbits of R/Mn in its action upon Ln has at least two elements.

We claim separately that each of the (X
Idn∪∆dn
n X

ILn−1
n )-orbits has at least

two elements. Obviously X
ILn−1
n is not the trivial group because ILn−1 6= ∅.

The action of 1 6= X
ILn−1
n on Ωdn is faithful and therefore at least one point

is moved. So ∆dn 6= ∅. Thus X
Idn∪∆dn
n is not the trivial group.

In the action (4.1), non-trivial elements of R/Mn acting on Ln can have fixed

points however these elements do move at least one other point. Therefore

this action is faithful.

Also K ⊆ R and so K is subnormal in R. Proposition 6.2 gives Mn ⊆ K

and so K = R. Therefore K = Tn
j (ILj , Idj+1

), for some j ∈ {1, 2, . . . , n− 1},
or K = Sn

j (Idj+1
), for some j ∈ {0, 1, . . . , n− 2}, or K = Tn

0 .

Again, our work has been restricted in Lemma 6.16 to closed subnormal subgroups

because we rely on Lemma 2.12, which only applies to subnormal subgroups that are

closed.
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Lemma 6.16 is required due to the two different types of notation for the subnormal

subgroups of Gn.

Lemma 6.16. Given finite groups Hn, for n ≥ 1, in which all the normal subgroups

form a chain

{1} = Nn
2n+1 ( Nn

2n ( . . . ( Nn
2 ( Nn

1 = Hn,

and an inverse system of surjective homomorphisms ψn : Hn −→ Hn−1, for n ≥ 2,

such that

ψn(Nn
i ) =

Nn−1
i for 1 ≤ i ≤ 2n− 1,

{1} for i ∈ {2n, 2n+ 1}.

Let P i, Qi and Ri, for i ∈ {1, 2, . . . , n}, be finite disjoint index sets.

Suppose the non-trivial subnormal subgroups Kn
p and Kn

q,r of Hn are parameterised

by p, q and r, where ∅ 6= p ∈ P i, ∅ 6= q ∈ Qi and r ∈ Ri, such that Nn
2i+1 ( Kn

r ,K
n
p,q ⊆

Nn
2i−1, and

ψn(Kn
p ) =

Kn−1
p for p ∈ P1,P2, . . . ,Pn−1,

{1} for p ∈ Pn,
(6.10)

and

ψn(Kn
q,r) =

Kn−1
q,r for q ∈ Q1,Q2, . . . ,Qn−1 and r ∈ R1,R2, . . . ,Rn−1,

{1} for q ∈ Qn and r ∈ Rn.
(6.11)

Then the inverse limit G = lim
←−

(Hn)n≥1 has non-trivial closed subnormal subgroups

precisely Kp = lim
←−

(Kn
p )n→∞ and Kq,r = lim

←−
(Kn

q,r)n→∞, where ∅ 6= p ∈ P i, ∅ 6= q ∈ Qi

and r ∈ Ri for i ≥ 1, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse

limit, we can find n ≥ 1 such that the image of M in Hn under πn : G −→ Hn is

non-trivial. Therefore πn(M) = Kn
p or πn(M) = Kn

q,r, where ∅ 6= p ∈ P i, ∅ 6= q ∈ Qi

and r ∈ Ri, for some i ∈ {1, 2, . . . , n}.
We claim that M = Kp or M = Kq,r. Since M is closed, it is enough to show

that πm(M) = Km
p , for all m ≥ n, or πm(M) = Km

q,r, for all m ≥ n. Then πm(M) =

πm(Kp) implies kerπmM = kerπmKp, for all m ≥ n, or πm(M) = πm(Kq,r) implies
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kerπmM = kerπmKq,r, for all m ≥ n. Thus

M =

( ⋂
m≥n

kerπm

)
M =

⋂
m≥n

(
kerπmM

)
=
⋂
m≥n

(
kerπmKp

)
=

( ⋂
m≥n

kerπm

)
Kp = Kp

or similarly M = Kq,r, using Lemma 2.12.

Clearly πm(M) = Km
p or πm(M) = Km

q,r is true for m = n. Now suppose m > n.

From

{1} 6= Km−1
p = πm−1(M) = ψm(πm(M))

and mapping (6.10), we conclude πm(M) = Km
p . Or from

{1} 6= Km−1
q,r = πm−1(M) = ψm(πm(M))

and mapping (6.11), we conclude that πm(M) = Km
q,r.

For the following, recall the normal subgroups Pj and Qj , for j ≥ 0, of a Wilson

group G, defined in Corollary 5.3.

Corollary 6.17. Let G = lim
←−

(Gn)n≥0 be the inverse limit of the groups Gn as defined

in Section 4.1.

For j ≥ 0, define

Sj(Idj+1
) = lim

←−
(Sn

j (Idj+1
))n→∞, where ∅ 6= Idj+1

⊆ Ωdj+1
,

regarded as subgroups of G.

For j ≥ 1, define

Tj(ILj , Idj+1
) = lim

←−
(Tn

j (ILj , Idj+1
))n→∞, where ∅ 6= ILj ⊆ Lj,

∆dj+1
= {ω ∈ Ωdj+1

: ω ·X
ILj

j 6= {ω}} and Idj+1
⊆ Ωdj+1

\∆dj+1
,

and define

T0 = lim
←−

(Tn
0 )n→∞,

regarded as subgroups of G.

Then the non-trivial closed subnormal subgroups of G are precisely the groups

Sj(Idj+1
), Tj(ILj , Idj+1

) and T0. In particular, for all j ≥ 1, Idj , ILj and Idj+1
, they
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form chains

Tj(ILj , Idj+1
) ⊆ Qj ( Sj−1(Idj ) ⊆ Pj−1.

The subnormal length in G of the group Sj(Idj+1
) is1 if Idj+1

= Ωdj+1
(implying that Sj(Idj+1

) = Pj),

2 if Idj+1
( Ωdj+1

.

The subnormal length in G of the group Tj(ILj , Idj+1
) is

1 if ILj = Lj(implying that Tj(ILj , Idj+1
) = Qj),

2 if ILj ( Lj and Idj+1
∪∆dj+1

is a union of Mj-orbits,

3 if ILj ( Lj and Idj+1
∪∆dj+1

is not a union of Mj-orbits.

Proof. We apply Lemma 6.16 to the groups Hn, for n ≥ 1, of Wilson’s construction and

their subnormal subgroups. For the finite index sets we take the power sets of Ωdj , Lj

and Ωdj+1
\∆dj+1

, for 1 ≤ j ≤ n − 1, and Ωdn . Note that Q1 = {1} and R1 = ∅. We

remark that arbitrary sets A1 and A2 can be made disjoint when the elements x ∈ A1

and y ∈ A2 are labelled as (1, x) and (2, y).

Define Kn
p = Sn

i−1(Idi)/Mn, where ∅ 6= p ∈ P i for i ∈ {1, 2, . . . , n}, Kn
q,r =

Tn
i−1(ILi−1 , Idi)/Mn, where ∅ 6= q ∈ Qi and r ∈ Ri for i ∈ {2, 3, . . . , n}, and Kn

q,r =

Tn
0 /Mn, where ∅ 6= q ∈ Q1 and r ∈ R1. For each n, these subnormal subgroups of Hn

were defined in Theorem 6.15. It was shown that these are all the non-trivial subnormal

subgroups of Hn and they form chains.

The definition of the groups Kn
p and Kn

q,r also shows that the second condition

for Lemma 6.16 is satisfied. For 1 ≤ i ≤ n, where ∅ 6= p ∈ P i, we have ψn(Kn
p ) =

ψn(Sn
i−1(Idi)/Mn) = Sn−1

i−1 (Idi)/Mn−1 = Kn−1
p . We take Sn−1

n−1(Idn)/Mn−1 and Kn−1
p

for ∅ 6= p ∈ Pn to be the trivial group {1}. For 2 ≤ i ≤ n, where ∅ 6= q ∈ Qi and

r ∈ Ri, we have

ψn(Kn
q,r) = ψn(Tn

i−1(ILi−1 , Idi)/Mn) = Tn−1
i−1 (ILi−1 , Idi)/Mn−1 = Kn−1

q,r .

We take Tn−1
n−1 (ILn−1 , Idn)/Mn−1 and Kn−1

q,r for ∅ 6= q ∈ Qn and r ∈ Rn to be the trivial

group {1}. Also ψn(Kn
q,r) = ψn(Tn

0 /Mn) = Tn−1
0 /Mn−1 = Kn−1

q,r for ∅ 6= q ∈ Q1 and

r ∈ R1.

Remark. The indices of the closed subnormal subgroups of the Wilson groups are finite,

due to the definition of the subnormal subgroups. Therefore the subnormal subgroups

of the Wilson groups are open, using Lemma 2.11.
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6.4. General Wilson groups 6. Subnormal subgroups

Remark. The results of this section, every closed subnormal subgroup of a Wilson group

is of finite index, provide an alternative proof to the proof of [32, (3.3)], Wilson groups

are hereditarily just infinite.

Let G be a Wilson group. Suppose H is an open subgroup of G and N is a closed

normal subgroup of H. So K = CoreG(H) is an open normal subgroup of G, using

Lemma 2.10. Then N ∩K is a closed subnormal subgroup of G. From Corollary 6.17,

we know that N ∩K has finite index in G. Hence N has finite index in G and so H is

just infinite.

The following diagram illustrates the chains of subnormal subgroups of a general

Wilson group.
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6.4. General Wilson groups 6. Subnormal subgroups

G = Q0 = T0

P0 = S0(Ωd1)

Q1 = T1(L1,Ωd2\∆d2)

S0(Id1)

P1 = S1(Ωd2)

T1(IL1 ,Ωd2\∆d2)

Q2 = T2(L2,Ωd3\∆d3)

S1(Id2)

T1(IL1 , Id2)

T1(IL1 ,Ωd2\∆d2)

T1(IL1 , Id2)

for Id2 ( Ωd2\∆d2

Qn = Tn(Ln,Ωdn+1\∆dn+1)

Pn = Sn(Ωdn+1)

Tn(ILn ,Ωdn+1\∆dn+1)

Tn(I ′Ln
,Ωdn+1\∆′dn+1

)

for I ′Ln
( ILn , where ∆′dn+1

=

{ω ∈ Ωdn+1 : ω ·X
I′Ln
n 6= {ω}}

Tn(ILn ,Ωn+1\∆dn+1)

Qn+1 = Tn+1(Ln+1,Ωn+2\∆dn+2)

Sn(Idn+1)

Sn(I ′dn+1
)

for I ′dn+1
( Idn+1

Sn(Idn+1)

Tn(ILn , Idn+1)

Figure 6.5: The subnormal subgroup lattice of an arbitrary Wilson group.
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Chapter 7

Subnormal subgroup growth

7.1 General Wilson groups

Let G be a Wilson group arising as an inverse limit of finite groups Gn as defined in

Section 4.1. The number of normal subgroups of the Wilson quotient Gn is 2n + 2,

for n ≥ 0. Therefore the Wilson group G has 2n + 2 normal subgroups of index at

most |Gn|.
Define the number of normal subgroups of G of index at most |Gn| as

SC
|Gn|(G) = 2n+ 2,

for n ≥ 0, which is a step function. This normal subgroup growth is very slow because

the number SC
|Gn|(G) is much smaller than the number |Gn| = |Xn||Xn|dn |Xn|dn |Gn−1|.

By choosing carefully the finite non-abelian simple groups Xi, for i ≥ 0, namely Xi

very large, we could make this growth function SC
|Gn|(G) grow as slow as we like.

We give an alternative description of the normal subgroup growth of a Wilson

group. Recall the normal subgroups Pn, for n ≥ 0, of a Wilson group G, defined in

Corollary 5.3. Define the number of normal subgroups of G of index at most |G : Pn|
by SC

|G:Pn|(G). So the growth function SC
|G:Pn|(G) = 2n+ 2 is linear in n.

Theorem 7.1, below, gives an estimate for the size of the groups Gn, for n ≥ 0.

Using the lower bound for |Gn| in this theorem, we can make a more precise statement

regarding normal subgroup growth of a Wilson group G. Since

2n+ 2 ≤ 44. .
.
4︸ ︷︷ ︸

n+2

,

we have that SC
|Gn|(G) grows very slowly, that is slower than the functions
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log log . . . log︸ ︷︷ ︸
r

|Gn| for any fixed r.

Theorem 7.1. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1.

Suppose there exists a constant c such that |Xi| ≤ c, for all i ≥ 0.

Then

44. .
.
4︸ ︷︷ ︸

n+2

≤ |Gn| ≤ c̃c̃
. .

.
c̃︸︷︷︸

2n+2

,

where c̃ = 3c.

Proof. First we confirm the lower bound

44. .
.
4︸ ︷︷ ︸

n+2

for |Gn|. We have |Xn| ≥ 60 ≥ 25 because Xn is a finite non-abelian simple group.

Then

|Gn| = |Xn||Xn|dn |Xn|dn |Gn−1|

≥ (25)25dn+dn |Gn−1|

≥ (25)25dn
. (7.1)

The degree d1 of the faithful transitive action of G0 = X0 is such that d1 ≥ 5 ≥ 4,

as the minimal degree of a faithful transitive permutation representation of A5 is 5.

Therefore dn ≥ 4, for n ≥ 1. Now

|Gn−1| ≤ dn! ≤ dndn (7.2)

because the permutation representation of Gn−1 of degree dn is faithful. Then

dn
3/2 ≥ dn(log2 dn)

5
≥ log2 |Gn−1|

5
, using (7.2),

≥ 25dn−1 , using (7.1).

So dn ≥ 2(10/3)dn−1 ≥ 4dn−1 . Therefore, by induction,

dn ≥ 44. .
.
4︸ ︷︷ ︸

n

(7.3)
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and

|Gn| ≥ 6060dn ≥ 44. .
.
4︸ ︷︷ ︸

n+2

.

Now we confirm the upper bound

c̃c̃
. .

.
c̃︸︷︷︸

2n+2

, where c̃ = 3c,

for |Gn|. Suppose there exists a constant c such that |Xi| ≤ c, for all i ≥ 0. Then

|Gn| = |Xn||Xn|dn |Xn|dn |Gn−1|

≤ c(cdn+dn)|Gn−1|

≤ c(cdn+dn)dn
dn , using (7.2),

= c(cdn+dn+dn logc dn)

≤ c3cdn

≤ (3c)(3c)dn

Now

dn ≤ |Gn−1| ≤ (3c)(3c)dn−1

because the permutation representation of Gn−1 of degree dn is transitive. Therefore,

putting c̃ = 3c, by induction,

dn ≤ c̃c̃
. .

.
c̃︸︷︷︸

2n

and

|Gn| ≤ c̃c̃
dn ≤ c̃c̃

. .
.
c̃︸︷︷︸

2n+2

.

We now consider subnormal subgroup growth of Wilson groups. The following

theorem gives a formula for the number of subnormal subgroups of Gn in terms of dj

and Xj , for 1 ≤ j ≤ n. The power set notation P(X) is used to denote the set of all

subsets of the set X.

Theorem 7.2. Let Gn, for n ≥ 0, be the finite groups as defined in Section 4.1. Then
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the number of subnormal subgroups of Gn, for n ≥ 1, is

2|Xn||Ωdn
|
+

n∑
j=1

2
|Ωdj
|
+

n∑
j=2

 ∑
I∈P(X

Ωdj−1
j−1 )\{∅,X

Ωdj−1
j−1 }

2
|Ωdj
\∆dj

(I)|

 , (7.4)

where ∅ 6= I ( X
Ωdj−1

j−1 and ∆dj (I) = {ω ∈ Ωdj : ω ·Xj−1
I 6= {ω}}.

Proof. We prove the result by induction on n. Recall the subnormal subgroups of Gn

defined in Theorem 6.15. The subnormal subgroups of G1 are:

T 1
1 (IL1) = X

IL1
1 , where ∅ 6= IL1 ⊆ L1;

S1
0(Id1) = Q1

1 oX
Id1
1 , where ∅ 6= Id1 ⊆ Ωd1 ;

S1
1 = {1} and T 1

0 = G1.

The number of subnormal subgroups of G1 is |P(L1)\{∅}| + |P(Ωd1)\{∅}| + 2.

When recalling that L1 = X
Ωd1
1 , this number can be written as |P(X

Ωd1
1 )\{∅}| +

|P(Ωd1)\{∅}|+ 2. Since X1 and Ωd1 are finite, the number of subnormal subgroups of

G1 becomes (
2|X1|

|Ωd1
|
− 1
)

+
(

2|Ωd1
| − 1

)
+ 2

= 2|X1|
|Ωd1

|
+ 2|Ωd1

|.

Now putting n = 1 into the formula (7.4) shows that the result holds for G1.

Suppose the result is true for Gn−1. The subnormal subgroups of Gn are:

(a)

Tn
n (ILn) = X

ILn
n , where ∅ 6= ILn ⊆ Ln;

(b)

Sn
n−1(Idn) = Qn

n oX
Idn
n , where ∅ 6= Idn ⊆ Ωdn ;

(c)

Tn
n−1(ILn−1 , Idn) = Qn

n o (X
Idn∪∆dn
n oX

ILn−1

n−1 ), where ∅ 6= ILn−1 ⊆ Ln−1,

∆dn = {ω ∈ Ωdn : ω ·X
ILn−1

n−1 6= {ω}} and Idn ⊆ Ωdn\∆dn ;

and, by induction,
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(d)

MnLnS
n−1
j (Idj+1

), where ∅ 6= Idj+1
⊆ Ωdj+1

, for j ∈ {0, 1, . . . , n− 2};

MnLnT
n−1
j (ILj , Idj+1

), where ∅ 6= ILj ⊆ Lj ,

∆dj+1
= {ω ∈ Ωdj+1

: ω ·X
ILj

j 6= {ω}} and Idj+1
⊆ Ωdj+1

\∆dj+1
,

for j ∈ {1, 2, . . . , n− 2};

MnLnT
n−1
0 = Gn and

MnLnS
n−1
n−1

MnLn

∼= {1}.

We count the number of subnormal subgroups of each type (a) to (d):

(a) |P(Ln)\{∅}|;

(b) |P(Ωdn)\{∅}|;

(c)
∑

ILn−1
∈P(Ln−1)\{∅,Ln−1}

|P(Ωdn\∆dn(ILn−1))|+ 1;

(d) the number of subnormal subgroups of Gn−1 − |P(Ln−1)\{∅}|.

Recalling that Li = X
Ωdi
i , the number of subnormal subgroups of Gn is equal to

|P(X
Ωdn
n )\{∅}|

+ |P(Ωdn)\∅|

+
∑

I∈P(X
Ωdn−1
n−1 )\{∅,X

Ωdn−1
n−1 }

|P(Ωdn\∆dn(I))|+ 1

+ the number of subnormal subgroups of Gn−1 − |P(X
Ωdn−1

n−1 )\{∅}|.
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Using that Ωj and Xj , for 0 ≤ j ≤ n, are finite, this number can be written as(
2|Xn||Ωdn

|
− 1
)

+
(

2|Ωdn | − 1
)

+
∑

I∈P(X
Ωdn−1
n−1 )\{∅,X

Ωdn−1
n−1 }

|P(Ωdn\∆dn(I))|+ 1

+

2|Xn−1|
|Ωdn−1

|
+

n−1∑
j=1

2
|Ωdj
|
+

n−1∑
j=2

 ∑
I∈P(X

Ωdj−1
j−1 )\{∅,X

Ωdj−1
j−1 }

2
|Ωdj
\∆dj

(I)|




−
(

2|Xn−1|
|Ωdn−1

|
− 1
)

= 2|Xn||Ωdn
|
+ 2|Ωdn |

+
∑

I∈P(X
Ωdn−1
n−1 )\{∅,X

Ωdn−1
n−1 }

|P(Ωdn\∆dn(I))|

+

n−1∑
j=1

2
|Ωdj
|
+

n−1∑
j=2

 ∑
I∈P(X

Ωdj−1
j−1 )\{∅,X

Ωdj−1
j−1 }

2
|Ωdj
\∆dj

(I)|



= 2|Xn||Ωdn
|
+

n∑
j=1

2
|Ωdj
|
+

n∑
j=2

 ∑
I∈P(X

Ωdj−1
j−1 )\{∅,X

Ωdj−1
j−1 }

2
|Ωdj
\∆dj

(I)|

 .

We now give an upper bound to the number (7.4). We have that X
ILj−1

j−1 , where

∅ 6= ILj−1 ⊆ Lj−1, acts faithfully on Ωdj because Gj−1 acts faithfully on Ωdj . So

∆dj = {ω ∈ Ωdj : ω · X
ILj−1

j−1 6= {ω}} contains at least two points. Therefore the

maximal size of Ωdj\∆dj is |Ωdj | − 2. Thus the Wilson quotient Gn has less than or

equal to

2|Xn|dn +

n∑
j=1

2dj +

n∑
j=2

2dj−2(2|Xj−1|dj−1 − 2) (7.5)
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subnormal subgroups.

Recall the definition of the groups Hn = LnGn−1, for n ≥ 1, as defined at the

beginning of Section 6.1. From the classification in Section 6.4, any subnormal subgroup

of a Wilson group G that has index at most |Hn| contains Qn = ker(φn : G → Hn).

Thus the number of subnormal subgroups of a Wilson group of index at most |Hn|, for

n ≥ 1, is less than or equal to the number (7.5).

In this expression (7.5), the term
∑n

j=1 2dj is very small in comparison with the

other two terms. These two terms 2|Xn|dn and
∑n

j=2 2dj−2(2|Xj−1|dj−1−2) look similar in

size. Since the dj , for j ≥ 1, increase in value (refer to (7.3) in the proof of Theorem 7.1),

the term 2|Xn|dn is the largest in the expression (7.5).

Define the number of subnormal subgroups of a Wilson group G of index at most

|Hn| as SCC
|Hn|(G). Using Theorem 7.1, we can conclude that SCC

|Hn|(G), which is less

than the number (7.5), is roughly the size of the group Gn, although somewhat smaller.

Therefore for some constant d we have SCC
|Hn|(G) ≤ d|Gn|, for n ≥ 1.

7.2 Infinite iterated wreath products . . . oAm oAm o . . . oAm,

where m ≥ 5

Recall the just infinite profinite groups W = lim
←−

(Wn)n≥0, where

Wn = Am oΩ∗[n] . . . oΩ∗[2] Am oΩ∗[1] Am,

for n ≥ 1, and where

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ {1, 2, . . . ,m}},

for each j = 1, 2, . . . , and W0 = Am, as defined in Section 3.2. It is standard to view

the group W as acting on the infinite m-regular rooted tree, that is where every vertex

has m children (see P. de la Harpe [6, pg. 211-212]). We denote this tree by T .

The subnormal subgroups of these groups are completely characterised in Sec-

tion 6.3. Every non-trivial subnormal subgroup of W has index of the form |Am|k,

for some k ≥ 1. The number of subnormal subgroups of W with index |Am|k, for

k ≥ 1, is equal to the number of subtrees of T that have the same root and k vertices

(or equivalently k − 1 edges). The following diagram is an example to illustrate this

statement.

For m = 5, we consider the same subnormal subgroup of W that has been depicted

previously in Figure 6.2, found towards the end of Section 6.3. Below, Figure 7.1
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Figure 7.1: The index of a subnormal subgroup of W represented as a subtree of T .

represents the index of this subnormal subgroup as the highlighted subtree of the

infinite tree T . The index in W of this subnormal subgroup is |A5|7.
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We denote the number of subnormal subgroups of W with index |Am|k by ãCC
k (W ).

The number of subtrees of T that have the same root and k vertices is the same as the

Fuss-Catalan number
1

(m− 1)k + 1

(
mk

k

)
,

refer to [1, Prop. 3.1]. Therefore the number of non-trivial subnormal subgroups of W

with index at most |Am|n, for some n, is equal to the sum

n∑
k=1

ãCC
k (W ) =

n∑
k=1

1

(m− 1)k + 1

(
mk

k

)
.

For further research concerning the subnormal subgroup growth of the groups W , see

Chapter 10, Question 3.
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Chapter 8

Maximal subgroups

8.1 Introduction

We now wish to investigate maximal subgroups of Wilson groups. Let G be a Wilson

group arising as an inverse limit of finite groups Gn as defined in Section 4.1. We would

first like to determine the maximal subgroups of the finite groups Gn.

Fix the alphabet A = {1, 2, . . . ,m}, where m ≥ 5. For n ≥ 1, recall the iterated

wreath products

Wn = Am oΩ∗[n] . . . oΩ∗[2] Am oΩ∗[1] Am,

first defined in Section 3.2, where

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ A},

for each j = 1, 2, . . . , n. Here again i1i2 . . . ij denotes a sequence of numbers and not a

product of numbers.

The groups Gn and Wn are both constructed from wreath products of finite non-

abelian simple groups using transitive actions. Therefore determining maximal sub-

groups of the groups Gn is likely to involve the same techniques that are used to

determine maximal subgroups of the groups Wn.

M. Bhattacharjee [3] has produced information on maximal subgroups of iterated

wreath products that are constructed from alternating groups of degree at least 5. Her

wreath products are a little different from our wreath products Wn, in that the alter-

nating groups are allowed to vary giving Amk
o. . .oAm2 oAm1 , where m1,m2, . . . ,mk ≥ 5.

The natural action of the alternating groups is used to form Bhattacharjee’s wreath

products and the natural action of the alternating groups is used to form the wreath

products Wn.
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Bhattacharjee’s view point is that of finite generation of inverse limits of such wreath

products. Her method requires her to analyse maximal subgroups, of the wreath prod-

ucts, which modulo the base group project onto the top group. She obtains upper

bounds for the number of conjugacy classes of these maximal subgroups. Bhattachar-

jee’s results fall short of a complete classification of such maximal subgroups.

8.2 Finite wreath products Am o Am, where m ≥ 5

We now consider the maximal subgroups of the finite groups Wn, for n ≥ 1. As we

want to see how techniques can be applied to the groups Gn, the easiest step is to look

at the first wreath product W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m} and m ≥ 5.

Theorem 8.3 describes the maximal subgroups of W1. The proof of this theorem

is a special case of Bhattacharjee’s work in [3, pg. 316 - 321]. This is because she

works more generally applying to wreath products where the top group can also be an

iterated wreath product. There are differences, some very subtle, between our work

and Bhattacharjee’s work, which we now go on to explain.

The proof of Theorem 8.3 separates the possibilities for the maximal subgroups

of W1 into types, referred to as Case 1, Case 2a, Case 2b and Case 2c. The Case 1

type found in Theorem 8.3 does not occur in Bhattacharjee’s work because she is only

concerned with maximal subgroups that modulo the base group project onto the top

group.

In Theorem 8.3, the proof concerning the maximal subgroups of type Case 2a is

new and different from Bhattacharjee’s proof. It is also a little more self-contained

than Bhattacharjee’s, since it does not rely on Lemma 2.3 from [2] (alternatively, see

the Appendix of our thesis for this lemma). Instead, because we can specify double-

transpositions from Am and work with them directly, we implicitly produce a proof

that the action of Am on Ω∗[1] = {1, 2, . . . ,m} is primitive, see Lemma 8.2. Later in

this section we go further to provide accurate results for the counting of these types

of maximal subgroups (see Remark 8.5) and the counting of conjugacy classes of these

types of maximal subgroups (see Remark 8.7).

The proof of the maximal subgroups of type Case 2b in Theorem 8.3 is contained

in Bhattacharjee’s work and we have possibly written it in a more readable fashion.

However, later in this section we do produce extra information regarding the counting

of these maximal subgroups (see Remark 8.6) and the counting of conjugacy classes of

these maximal subgroups (see Remark 8.8).

Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.3 is

new and different from Bhattacharjee’s proof. This is because we use the more recent
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results of C. Parker and M. Quick [23] to rule out the possibility of maximal subgroups

of this type. Theorem A(i) of [23] gives a set of conditions for a wreath product to

have a maximal subgroup which complements the base group. In Theorem 8.3, we will

show that one of these conditions fails to hold for our wreath product W1.

To help the readers understanding, we now state the theorem of Parker and Quick.

Theorem 8.1 (Parker and Quick [23]). Let X and Y be groups with Y acting on the

finite set Ω where |Ω| > 1. Let W = X oΩ Y be the wreath product of X by Y with

respect to this action and let K be the base group of W .

The wreath product W has a maximal subgroup which is a complement to K if and

only if the following conditions hold:

(a) X is a non-abelian simple group,

(b) Y acts transitively on Ω,

(c) there exists a surjective homomorphism φ : StY (ω) −→ X from the stabiliser of

a point ω ∈ Ω in Y to X, and

(d) if we view φ as a map StY (ω) −→ Aut(X), identifying X with its group of inner

automorphisms, then φ is not the restriction of a homomorphism H −→ Aut(X)

for any subgroup H of Y properly containing StY (ω).

On several occasions, the following lemma is applied in the proof of Theorem 8.3.

Lemma 8.2. Let W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m}, for some m ≥ 5.

Denote the base group A
(m)
m =: B and the permuting top group Am =: T .

Suppose H is a subgroup of W1 such that

(i) HB = W1, and

(ii) H ∩B is a proper subdirect product in B.

Then

H ∩B = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

where ϕj ∈ Aut(Am), for 2 ≤ j ≤ m.

We remark that the group {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am}, where ϕj ∈
Aut(Am), for 2 ≤ j ≤ m, is referred to as a diagonal subgroup of the direct product∏m

i=1A
(i)
m of alternating groups.
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Proof. We claim that the first coordinate of an element of H ∩ B determines all the

other coordinates of that element. For a contradiction, suppose

(x, y1, ∗, . . . , ∗), (x, y2, ∗, . . . , ∗) ∈ H ∩B

such that y1 6= y2. Then

(x, y1, ∗, . . . , ∗)(x, y2, ∗, . . . , ∗)−1 = (1, y1y
−1
2 , ∗, . . . , ∗) ∈ H ∩B

with y1y
−1
2 6= 1. Put y3 = y1y

−1
2 .

For t = (13)(45) ∈ T we find b = (b1, b2, . . . , bm) ∈ B such that tb ∈ H (using

condition (i)). So

(1, y3, ∗, . . . , ∗)tb = (∗, yb23 , 1, ∗, . . . , ∗) ∈ H ∩B.

Put ỹ3 = yb23 . If [yh3 , ỹ3] = 1, for all h ∈ Am, then [k, ỹ3] = 1, for all k ∈ 〈y3〉Am .

Now 〈y3〉Am = Am, since y3 6= 1 and Am is simple. Therefore ỹ3 ∈ Z(Am) = {1}.
Contradicting ỹ3 6= 1, as y3 6= 1. Thus there exists h ∈ Am such that [yh3 , ỹ3] 6= 1. We

can find (∗, h, ∗, . . . , ∗) ∈ H ∩ B because H ∩ B projects onto Am in each coordinate

(using condition (ii)). Then

(1, y3, ∗, . . . , ∗)(∗,h,∗,...,∗) = (1, yh3 , ∗, . . . , ∗) ∈ H ∩B

and

[(1, yh3 , ∗, . . . , ∗), (∗, ỹ3, 1, ∗, . . . , ∗)] = (1, [yh3 , ỹ3], 1, ∗, . . . , ∗) ∈ H ∩B.

Put y4 = [yh3 , ỹ3].

For t = (14)(35) ∈ T we find b = (b1, b2, . . . , bm) ∈ B such that tb ∈ H. So

(1, y4, 1, ∗, . . . , ∗)tb = (∗, yb24 , ∗, 1, 1, ∗, . . . , ∗) ∈ H ∩B.

Put ỹ4 = yb24 . There exists h ∈ Am such that [yh4 , ỹ4] 6= 1 and we can find (∗, h, ∗, . . . , ∗) ∈
H ∩B because H ∩B projects onto Am in each coordinate. Then

(1, y4, 1, ∗, . . . , ∗)(∗,h,∗,...,∗) = (1, yh4 , 1, ∗, . . . , ∗) ∈ H ∩B

and

[(1, yh4 , 1, ∗, . . . , ∗), (∗, ỹ4, ∗, 1, 1, ∗, . . . , ∗)] = (1, [yh4 , ỹ4], 1, 1, 1, ∗, . . . , ∗) ∈ H ∩B.
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The process can be iterated n − 3 times to obtain (1, yn, 1, 1, . . . , 1) ∈ H ∩ B with

yn 6= 1. Since H ∩ B projects onto Am in each coordinate, we have (∗, g, ∗, . . . , ∗) ∈
H ∩B, for all g ∈ Am. Then

(1, yn, 1, 1, . . . , 1)(∗,g,∗,...,∗) = (1, ygn, 1, 1, . . . , 1) ∈ H ∩B,

for all g ∈ Am. Therefore

{1} × 〈yn〉Am × {1} × {1} × . . .× {1}

= {1} ×Am × {1} × {1} × . . .× {1} ⊆ H ∩B,

as yn 6= 1 and Am is simple. For all t ∈ T we have tb ∈ H, for some b ∈ B, and

conjugating by tb ∈ H implies A
(m)
m ⊆ H ∩B. This contradicts B 6⊆ H. Thus

H ∩B = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

where ϕj : Am −→ Am are maps, for 2 ≤ j ≤ m. That is H ∩B ∼= Am.

In fact, H ∩B being a subdirect product in B implies that each of the maps ϕj is

surjective. Since ϕj are surjective maps between the same finite set, they are injective.

Now

(x, ϕ2(x), ϕ3(x), . . . , ϕm(x))(y, ϕ2(y), ϕ3(y), . . . , ϕm(y))

= (xy, ϕ2(x)ϕ2(y), ϕ3(x)ϕ3(y), . . . , ϕm(x)ϕm(y)) ∈ H ∩B

and, as the first coordinate of an element of H ∩B determines all its other coordinates,

this element is equal to (xy, ϕ2(xy), ϕ3(xy), . . . , ϕm(xy)). Therefore ϕj(x)ϕj(y) =

ϕj(xy), for every x, y ∈ Am, for 2 ≤ j ≤ m, and the maps ϕj are homomorphisms.

Hence

ϕj ∈ Aut(Am), for 2 ≤ j ≤ m.

Theorem 8.3 classifies the maximal subgroups of W1 up to conjugation. The max-

imal subgroups are conjugates of three types of subgroups and the theorem tells us

that it is enough to conjugate by the elements of the base group B. The degree of

the alternating groups has been restricted to m 6= 6 because the proof of the theorem

makes use of the fact that Aut(Am) ∼= Sm, for m ≥ 4 and m 6= 6.

We now state Theorem 8.3 and we prove this theorem over the next several pages.
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Theorem 8.3. Let W1 = Am oΩ∗[1] Am, where Ω∗[1] = {1, 2, . . . ,m}, for some m ≥ 5

and m 6= 6. Denote the base group A
(m)
m =: B and the permuting top group Am =: T .

Therefore W1 = B o T .

Define

M0(L) = B o L, where L is a maximal subgroup of Am.

Define

M1 = {(x, x, . . . , x) : x ∈ Am} × T .

Define

M2(L) = L(m) o T , where L is a maximal subgroup of Am.

Then the groups M0(L), Mg
1 , where g ∈ B, and M2(L)g, where g ∈ B, are maximal

subgroups of W1 and every maximal subgroup of W1 is one of these.

Proof. Let M be a maximal subgroup of W1. Then there are two possibilities:

B ⊆M (case 1), and B 6⊆M (case 2).

Case 1.

Suppose B ⊆ M . Since B EW1, we have the surjective group homomorphism

W1 −→ W1/B ∼= T . A group homomorphism preserves inclusion of subgroups.

Then there is a one-to-one correspondence between the maximal subgroups of

W1 containing B and the maximal subgroups of T . Therefore M = BL, where

L is a maximal subgroup of T . Now L normalising B and B ∩ L = {1} implies

M = B o L. Hence M = M0(L).

Case 2.

Suppose B 6⊆ M . Obviously M ⊆ BM ⊆ W1. Since M is a maximal subgroup

of W1, we have M = BM or BM = W1. However, M = BM contradicts B 6⊆M .

Therefore

BM = W1.

Then B EW1, by the 2nd isomorphism theorem, gives

M/(M ∩B) ∼= BM/B = (B o T )/B ∼= T.

So for all t ∈ T there exists b ∈ B such that bt ∈M .

Let i, j ∈ Ω∗[1]. We choose t ∈ T such that ti = j, since T acts transitively on

the set Ω∗[1]. For this t ∈ T , we find b ∈ B such that tb ∈M . For 1 ≤ i ≤ m, let

πi be the projection map from B onto the ith factor of B. Then πj((M ∩B)tb) =
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πi(M ∩B)bj , where b = (b1, b2, . . . , bm) ∈ B. Thus the projections of M ∩B into

the m factors of B are conjugate in Am.

Define

Ki := πi(M ∩B) ≤ Am, for 1 ≤ i ≤ m.

Therefore

M ∩B ≤ K1 ×K2 × . . .×Km.

Case 2 can be separated into three possibilities because the groups Ki are all

conjugate subgroups of Am.

(case 2a) Let the group K1 = Am. Then Kj = A
bj
m = Am, for all

j ∈ Ω∗[1].

(case 2b) Let the group K1 6= {1} and K1 6= Am. Then Kj = K
bj
1 6=

{1} and Kj = K
bj
1 6= Am, for all j ∈ Ω∗[1].

(case 2c) Let the group K1 = {1}. Then Kj = {1}bj = {1}, for all

j ∈ Ω∗[1].

Case 2a.

Assume the groups Ki = Am, for all i ∈ Ω∗[1]. Then M ∩ B is a proper

subdirect product in B. Setting H = M , Lemma 8.2 tells us that

M ∩B = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

where ϕj ∈ Aut(Am), for 2 ≤ j ≤ m.

We first consider a special case where ϕj = idAm , for all 2 ≤ j ≤ m. That is

M ∩B = {(x, x, . . . , x) : x ∈ Am}.

We prove that if M is a maximal subgroup such that M∩B = {(x, x, . . . , x) :

x ∈ Am} then T is contained in M .

Let (x, x, . . . , x) ∈ M ∩ B and bt ∈ M , where b = (b1, b2, . . . , bm) ∈ B and

t ∈ T . Then

(x, x, . . . , x)bt = (xb1 , xb2 , . . . , xbm)t ∈M ∩B.

Therefore xb1 = xb2 = . . . = xbm . So xbib
−1
j = x, for all i, j ∈ Ω∗[1]. Since

this holds for all x ∈ Am, we have bib
−1
j ∈ Z(Am) = {1}, for all i, j ∈ Ω∗[1].
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Therefore bi = bj , for all i, j ∈ Ω∗[1]. Now b = (b1, b1, . . . , b1) ∈ M and so

t = b−1(bt) ∈M . Since this holds for all t ∈ T , we have T ⊆M .

Therefore M = (M∩B)T . Now BEW1 implies M∩BEM , and B∩T = {1}
implies (M ∩ B) ∩ T = {1}. In fact, T ≤ M gives this particular maximal

subgroup as the semidirect product M = (M ∩B) o T .

Furthermore, T E M because T acting by conjugation on the elements

(x, x, . . . , x) permutes the coordinates and, since the coordinates are all the

same, permuting them leaves the elements (x, x, . . . , x) unchanged. There-

fore we actually have the direct product M = (M ∩B)×T . Thus M = M1,

recalling that M1 = {(x, x, . . . , x) : x ∈ Am} × T .

We check that M1 is a maximal subgroup of W1. Clearly M1 is a proper

subgroup of W1 because it does not contain all the elements of the base

group B.

We now show, for all g ∈ W1\M1, that 〈{g} ∪M1〉 = W1. Take g = bt ∈
W1\M1, where b ∈ B and t ∈ T . Then

g̃ = gt−1 = b ∈ B\(B ∩M1),

as t ∈ M1. Therefore g̃ = (x1, x2, . . . , xm) with xj 6= x1 for some j ∈ Ω∗[1].

Since

〈{g} ∪M1〉 = 〈{g̃} ∪M1〉,

we will consider the group 〈{g̃} ∪M1〉. For a contradiction, suppose that

〈{g̃}∪M1〉 (W1. We can apply Lemma 8.2 to the group 〈{g̃}∪M1〉, setting

H = 〈{g̃} ∪M1〉. Condition (i) holds because T ⊆ M1 ⊆ H. Condition (ii)

holds because if H ∩ B = B we would not have H ( W1. Thus the first

coordinate of an element of H ∩ B determines all the other coordinates of

that element. This contradicts g̃ ∈ H and (x1, x1, . . . , x1) ∈ H.

Now we look more generally at the maximal subgroups M such that

M ∩B = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

where ϕj ∈ Aut(Am), for 2 ≤ j ≤ m. For m ≥ 4, with the exception

of m = 6, it is known that Aut(Am) ∼= Sm, where Sm acts on Am by

conjugation. Therefore

M ∩B = {(x, xg2 , xg3 , . . . , xgm) : x ∈ Am},
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where gj ∈ Sm, for 2 ≤ j ≤ m.

For t = (123) ∈ T we find b = (b1, b2, . . . , bm) ∈ B such that tb ∈M . Also

(xgmbmg−1
m , (xgmbmg−1

m )g2 , . . . , (xgmbmg−1
m )gm−1 , xgmbm)

is an element in M ∩B. Multiplying the inverse of this element by

(x, xg2 , . . . , xgm)tb gives the element

(xgmbmg−1
m , xgmbmg−1

m g2 , . . . , xgmbmg−1
m gm−1 , xgmbm)−1·

(xg3b1 , xb2 , xg2b3 , xg4b4 , xg5b5 , . . . , xgmbm)

= ((xgmbmg−1
m )−1xg3b1 , (xgmbmg−1

m g2)−1xb2 , (xgmbmg−1
m g3)−1xg2b3 ,

(xgmbmg−1
m g4)−1xg4b4 , (xgmbmg−1

m g5)−1xg5b5 , . . . ,

(xgmbmg−1
m gm−1)−1xgm−1bm−1 , 1),

which is in M ∩B, for all x ∈ Am. Since the mth coordinate of this element

is equal to 1, all the coordinates of this element are equal to 1. From the

1st coordinate, we deduce that xgmbmg−1
m = xg3b1 , for all x ∈ Am. Then

gmbmg
−1
m = g3b1 because CSm(Am) = {1}. Considering this equation mod-

ulo Am, we obtain that 1 ≡ g3 (mod Am), as b1, bm ∈ Am. Working sim-

ilarly, the 2nd coordinate gives g2 ≡ 1 (mod Am) and the 3rd coordinate

gives g3 ≡ g2 (mod Am). This argument can be applied repeatedly, taking

in turn t as each of the 3-cycles in Am. Therefore it is deduced that

1 ≡ g2 ≡ . . . ≡ gm (mod Am).

So g2, g3, . . . , gm ∈ Am because 1 ∈ Am.

Now

M ∩B = {(x, x, . . . , x) : x ∈ Am}g,

where g = (1, g2, g3, . . . , gm) ∈ B. Then

(M ∩B)g
−1

= Mg−1 ∩Bg−1
= Mg−1 ∩B = {(x, x, . . . , x) : x ∈ Am}.

So Mg−1
is a maximal subgroup of W1 such that Mg−1 ∩B = {(x, x, . . . , x) :

x ∈ Am}. Therefore T ⊆ Mg−1
and Mg−1

= M1. Hence M = Mg
1 , where

g = (1, g2, g3, . . . , gm) ∈ B.
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Case 2b.

Assume the groups Ki 6= {1} and Ki 6= Am, for all i ∈ Ω∗[1]. We choose

g = (g1, g2, . . . , gm) ∈ B such that

Kg1
1 = Kg2

2 = . . . = Kgm
m = L 6= Am,

as the groups Ki are all conjugate subgroups in Am. Then πi((M ∩B)g) =

πi(M
g ∩B) = L, for 1 ≤ i ≤ m, and so

Mg ∩B ≤ L(m).

Instead, we now study the maximal subgroup Mg of W1.

We claim that Mg is contained in the normaliser of L(m) in W1. Let

(l1, l2, . . . , lm) ∈ L(m) and bt ∈ Mg, where b = (b1, b2, . . . , bm) ∈ B and

t ∈ T . Then

(l1, l2, . . . , lm)bt = (lb11 , l
b2
2 , . . . , l

bm
m )t.

We need to show that lbii ∈ L, for each i ∈ Ω∗[1]. Since Mg ∩B projects onto

L in each coordinate, in Mg ∩B there will be elements (∗, . . . , ∗, li, ∗, . . . , ∗)
where li is in the ith position, for each i ∈ Ω∗[1]. Conjugating by the same

element bt ∈Mg gives

(∗, . . . , ∗, li, ∗, . . . , ∗)bt = (∗, . . . , ∗, lbii , ∗, . . . , ∗)
t ∈Mg ∩B.

Again since Mg∩B projects onto L in each coordinate, we have proved that

lbii ∈ L, for each i ∈ Ω∗[1].

Now

Mg ≤ NW1(L(m)) ≤W1.

As Mg is a maximal subgroup of W1, we have that Mg = NW1(L(m)) or

NW1(L(m)) = W1. If NW1(L(m)) = W1 then (NAm(L))(m) o T = A
(m)
m o T ,

by Lemma 2.5. So NAm(L) = Am and L E NAm(L) = Am. Since Am is

simple, this implies the contradiction that L = {1} or L = Am. Therefore

Mg = NW1(L(m)) = (NAm(L))(m) o T.

Obviously Mg∩B = (NAm(L))(m). So Mg∩B ≤ L(m) gives (NAm(L))(m) ≤
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L(m). As L ≤ NAm(L), we have

NAm(L) = L. (8.1)

Therefore Mg = L(m) o T .

Here L must be a maximal subgroup of Am because if it was not then we

can find a maximal subgroup L′ lying between L and Am. Then (L′)(m) oT
is a group properly containing Mg but is not W1, and contradicting that

Mg is maximal in W1. So Mg = M2(L), recalling that M2(L) = L(m) o T ,

where L is a maximal subgroup of Am. Hence M = M2(L)g
−1

, where g ∈ B.

We check that any choice of maximal subgroup L of Am leads to M2(L) being

a maximal subgroup of W1. Clearly M2(L) is a proper subgroup of W1, since

L is maximal in Am we can find x ∈ Am\L so that (x, 1, 1, . . . , 1) 6∈M2(L).

We now show, for all g ∈ W1\M2(L), that 〈{g} ∪ M2(L)〉 = W1. Take

g = bt ∈W1\M2(L), where b ∈ B and t ∈ T . Then

g̃ = gt−1 = b ∈ B\(B ∩M2(L)),

as t ∈M2(L). Therefore g̃ = (y1, y2, . . . , ym) where without loss of generality

y1 6∈ L. Since

〈{g} ∪M2(L)〉 = 〈{g̃} ∪M2(L)〉,

we will consider the group 〈{g̃}∪M2(L)〉. We have 〈y1, L〉 = Am because L is

maximal in Am. Therefore 〈{g̃} ∪M2(L)〉 contains elements (h, ∗, . . . , ∗) for

any h ∈ Am. Since L 6= {1}, there exists (l, 1, . . . , 1) ∈ L(m) ⊆ 〈{g̃}∪M2(L)〉
with l 6= 1. Then

(l, 1, . . . , 1)(h,∗,...,∗) = (lh, 1, . . . , 1) ∈ 〈{g̃} ∪M2(L)〉,

for all h ∈ Am. Therefore

〈l〉Am × {1} × . . .× {1} = Am × {1} × . . .× {1} ⊆ 〈{g̃} ∪M2(L)〉,

as l 6= 1 and Am is simple. Applying the action of T implies that B ⊆
〈{g̃} ∪M2(L)〉. So 〈{g̃} ∪M2(L)〉 = W1 and this confirms that M2(L) is a

maximal subgroup of W1.

Case 2c.

Assume the groups Ki = {1}, for all i ∈ Ω∗[1]. Therefore M ∩B = {1}. Also
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since BM = W1, we have that in this case the maximal subgroup M is a

complement for the base group B in W1.

We show that condition (c) of Theorem 8.1 does not hold. In applying

this theorem to our group W1, we have that X = Am and Y = Am. The

stabiliser of any point i ∈ Ω∗[1] under the action of Am is isomorphic to Am−1.

Thus there can be no surjective homomorphism from the stabiliser of a point

i ∈ Ω∗[1] under the action of Am to the group Am. Hence W1 has no maximal

subgroups which complement the base group and Case 2c does not occur.

Remark. Theorem 8.3 implies that there are three types of maximal subgroups of W1.

• Maximal subgroups M of the form M0(L) have the property that M ∩B is equal

to B (Case 1).

Maximal subgroups M that are conjugates of:

• M1 have the property that M ∩B is a proper subdirect product in B (Case 2a);

• M2(L) have the property that M ∩ B projects onto a maximal subgroup of Am

in each coordinate (Case 2b).

Remark. The groups M0(L) are semidirect products of M0(L) ∩ B = B by L. The

groups Mg
1 , where g ∈ B, are semidirect products of Mg

1 ∩B by T g. The groups M2(L)g,

where g ∈ B, are semidirect products of M2(L)g ∩B by T g.

Therefore all the maximal subgroups M of W1 are semidirect products of M ∩ B
by a suitable non-trivial complement.

In [3], Bhattacharjee finds upper bounds for the number of conjugacy classes of

maximal subgroups of the wreath products that she is considering. We are able to

do a little more because our wreath products W1 are a very specific subclass of Bhat-

tacharjee’s wreath products. Since we have classified the maximal subgroups of W1 up

to conjugation, we can count explicitly the number of them using the orbit-stabiliser

theorem. These numbers are displayed below in Corollary 8.4.

Corollary 8.4. Let W1 be the group as defined in Theorem 8.3. Then the number of

maximal subgroups M of W1 with the property that M ∩B:

• is equal to B is precisely the number of maximal subgroups of Am (Case 1);

• is a proper subdirect product in B is precisely |Am|m−1 (Case 2a);
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• projects onto a maximal subgroup of Am in each coordinate is precisely∑
L≤maxAm

|Am : L|m−1,

where the summation runs over all maximal subgroups of Am (Case 2b).

Proof.

Case 2a.

Maximal subgroups of W1 of the type in Case 2a are all of the form Mg
1 , where

g ∈ B. We calculate the number of distinct maximal subgroups of this type.

The group B in W1 acts on the orbit {Mg
1 : g ∈ B} by conjugation. The orbit-

stabiliser theorem says that the length of this orbit is |B : NB(M1)|. Therefore

we compute the normaliser of M1 in B.

To simplify workings we notice that a conjugate of an element of M1 is in B if

and only if the element of M1 is in B. We need to find elements (g1, g2, . . . , gm) ∈
B where for all x ∈ Am there exists y ∈ Am such that (xg1 , xg2 , . . . , xgm) =

(y, y, . . . , y). That is xgi = xgj , for all x ∈ Am and for all i, j ∈ Ω∗[1]. So

xgig
−1
j = x, for all x ∈ Am, and gig

−1
j ∈ Z(Am) = {1}, for all i, j ∈ Ω∗[1]. Then

gi = gj , for all i, j ∈ Ω∗[1].

We check that T (g1,g1,...,g1) ⊆M1. In fact T (g1,g1,...,g1) = T . Therefore

NB(M1) = {(g1, g1, . . . , g1) : g1 ∈ Am} ∼= Am.

The number of distinct conjugates Mg
1 , where g ∈ B, is |Am|m/|Am| = |Am|m−1.

Case 2b.

Maximal subgroups of W1 of the type in Case 2b are all of the form M2(L)g,

where L is a maximal subgroup of Am and g ∈ B. We calculate the number of

distinct maximal subgroups of this type. For fixed L, the group B in W1 acts

on the orbit {M2(L)g : g ∈ B} by conjugation. The orbit-stabiliser theorem

says that the length of this orbit is |B : NB(M2(L))|. Therefore we compute the

normaliser of M2(L) in B.

Again, to simplify workings we use the fact that a conjugate of an element of

M2(L) is in B if and only if the element of M2(L) is in B. We need to find

elements (g1, g2, . . . , gm) ∈ B where for all (l1, l2, . . . , lm) ∈ L(m) we have

(l1, l2, . . . , lm)(g1,g2,...,gm) = (lg1
1 , l

g2
2 , . . . , l

gm
m ) ∈ L(m).
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That is lgii ∈ L, for all li ∈ L and for all i ∈ Ω∗[1]. So gi ∈ NAm(L), for all

i ∈ Ω∗[1].

From result (8.1), we know that NAm(L) = L. Then (g1, g2, . . . , gm) ∈ L(m) gives

T (g1,g2,...,gm) ⊆M2(L). Therefore NB(M2(L)) ⊆ (NAm(L))(m) = L(m).

Now M2(L) ⊆ NW1(M2(L)) implies

L(m) = M2(L) ∩B ⊆ NW1(M2(L)) ∩B = NB(M2(L)).

Thus NB(M2(L)) = L(m). The number of distinct conjugates M2(L)g, where

g ∈ B, is |Am : L|m.

The conjugacy class of M2(L̃) in B, for another maximal subgroup L̃ of Am, may

be the same as the conjugacy class of M2(L) in B. This will occur when L̃ is

a conjugate of L in Am. The number of conjugates of L in Am is |Am : L|, by

result (8.1). Hence the total number of distinct maximal subgroups of W1 of the

type given in Case 2b is
∑

L≤maxAm

|Am : L|m−1.

Remark. As was seen in Case 2a, the maximal subgroups Mg
1 are parametrised by the

cosets {(x, x, . . . , x) : x ∈ Am}g, where g ∈ B. Therefore we can describe them using

the coset representatives gi ∈ B, for 1 ≤ i ≤ |Am|m−1.

Similarly, as was seen in Case 2b, the maximal subgroups M2(L)g can be described

using the coset representatives gi ∈ B, for 1 ≤ i ≤ |Am : L|m.

Remark. It would be interesting to know which of the three types of maximal subgroups

of W1 is the largest class.

The number ∑
L≤maxAm

|Am : L|m−1

of maximal subgroups of type Case 2b is calculated by summing numbers that are at

least 1 as we run through all the maximal subgroups of Am. Therefore the number of

maximal subgroups of type Case 2b is larger than the number of maximal subgroups

of type Case 1.

It is left open as to whether the number |Am|m−1 of maximal subgroups of type

Case 2a is larger than the number of maximal subgroups of type Case 2b.

Remark 8.5. We analyse Bhattacharjee’s paper [3] with respect to counting the number

of maximal subgroups M of W1 with the property that M ∩ B is a proper subdirect

product in B (Case 2a).
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Since the only non-trivial T -congruence1 on Ω∗[1] is Ω∗[1], Bhattacharjee describes

these maximal subgroups as NW1(D1), where

D1 = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

for some ϕj ∈ Aut(Am), for 2 ≤ j ≤ m. She estimates the number of conjugacy

classes of these maximal subgroups by calculating the number of conjugacy classes of

the groups D1. Instead, we use Bhattacharjee’s best description of NW1(D1) to count

the number of possible maximal subgroups of this type.

The groups D1 are uniquely determined by the maps ϕ2, ϕ3, . . . and ϕm. However,

not all choices of ϕj ∈ Aut(Am) may lead to NW1(D1) being maximal. Therefore

Bhattacharjee’s work only goes so far as to produce the overestimate of |Sm|m−1, for

m 6= 6, maximal subgroups of this type. Corollary 8.4 counts the exact number of these

maximal subgroups as |Am|m−1. The difference of values occurs because Theorem 8.3

checks that the maximal subgroups are actually maximal and Bhattacharjee’s work

does not require such checking.

We comment further that subgroups of Bhattacharjee’s description NW1(D1) which

are not maximal must therefore be contained in maximal subgroups of the formM0(L) =

BoL. So NW1(D1) is maximal if BNW1(D1) = W1. The subgroups NW1(D1) that are

not maximal are those which D1 = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am} for some

1 6= ϕj ∈ Aut(Am)/ Inn(Am) = Out(Am).

Remark 8.6. We analyse Bhattacharjee’s paper [3] with respect to counting the number

of maximal subgroups M of W1 with the property that M ∩B projects onto a maximal

subgroup of Am in each coordinate (Case 2b).

Bhattacharjee’s method and therefore best description of these types of subgroups

is the same as that of Theorem 8.3. She then estimates the number of conjugacy classes

of these maximal subgroups. Bhattacharjee’s usage does not necessitate her to conclude

that she has enough information to proceed in the counting of these types of groups.

Since Theorem 8.3 has shown that any maximal subgroup L of Am leads to these

groups being maximal, Corollary 8.4 has counted the exact number of these types of

maximal subgroups as
∑

L≤maxAm

|Am : L|m−1.

Remark 8.7. We use Theorem 8.3 to count the exact number of conjugacy classes of

maximal subgroups M of W1 with the property that M ∩ B is a proper subdirect

product in B (Case 2a).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group

1A T-congruence on Ω is a T -invariant equivalence relation. That is, for t ∈ T and Ωi, there exists
Ωj such that tΩi = Ωj ; where Ωi are the equivalence classes.
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and not just the base group, in order to compare with Bhattacharjee we conjugate by

elements of the whole group W1. We show that the maximal subgroups Mg
1 , where

g ∈ B, as described in Theorem 8.3, form exactly one conjugacy class in W1. For

bt ∈W1, where b ∈ B and t ∈ T , we have (Mg
1 )bt = M

t(t−1gbt)
1 = M

(gb)t

1 and (gb)t ∈ B.

For W1, Bhattacharjee’s work leads to the maximal subgroups of the type in Case 2a

being NW1(D1), where

D1 = {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am},

for some ϕj ∈ Aut(Am), for 2 ≤ j ≤ m. The inner automorphisms of Am give

rise to a single conjugacy class of groups D1 in B. Any 1 6= ϕj ∈ Out(Am) leads

to a single distinct conjugacy class. Therefore the number of conjugacy classses of

subgroups of the form D1 in B is |Out(Am)|m−1. Since |Out(Am)| = 2, for m 6= 6,

an upper bound for the number of distinct conjugacy classes of maximal subgroups of

type Case 2a is 2m−1. Therefore Bhattacharjee’s work only goes so far as to produce

this overestimate, whereas, our work calculates precisely one conjugacy class.

Remark 8.8. We use Theorem 8.3 to count the exact number of conjugacy classes of

maximal subgroups M of W1 with the property that M ∩ B projects onto a maximal

subgroup of Am in each coordinate (Case 2b).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group

and not just the base group, in order to compare with Bhattacharjee we conjugate by

elements of the whole group W1. We claim that M2(L1) is conjugate to M2(L2) in W1

if and only if the maximal subgroups L1 and L2 of Am are conjugate in Am.

Suppose M2(L1) and M2(L2) are conjugate in W1. Then M2(L1)bt = M2(L2) for

some bt ∈W1, where b = (b1, b2, . . . , bm) ∈ B and t ∈ T . So

(L
(m)
1 o T )bt = (L

(m)
1 )bt o T bt = L

(m)
2 o T.

Intersecting with B gives (L
(m)
1 )bt = L

(m)
2 . Therefore there exists some bi ∈ Am such

that Lbi
1 = L2.

Suppose L1 and L2 are conjugate in Am. Then Lg
1 = L2 for some g ∈ Am. Therefore

M2(L1)(g,g,...,g) = (L
(m)
1 )(g,g,...,g) o T (g,g,...,g)

= (Lg
1)(m) o T = (L2)(m) o T = M2(L2),

where (g, g, . . . , g) ∈ B.

Thus the number of conjugacy classes in W1 of maximal subgroups of the form

M2(L)g, where g ∈ B, is the same as the number of conjugacy classes in Am of maximal
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subgroups L of Am. The number of conjugacy classes of maximal subgroups of Am

can be worked out from the classification of maximal subgroups of Am as set out in

Section 2.3.

Bhattacharjee states that finding an upper bound for the number of distinct con-

jugacy classes in W1 of these types of maximal subgroups reduces to finding an upper

bound for the number of distinct conjugacy classes in Am of maximal subgroups of Am.

She overestimates the number of conjugacy classes because she is not required to prove

that her statement is necessary and sufficient, which we have done above.

8.3 Finite wreath products Am o Am o Am, where m ≥ 5

We continue the work of determining the maximal subgroups of the finite groups Wn,

with a view to applying these techniques to the groups Gn of Wilson’s construction.

The next natural step is to look at the second wreath product

W2 = Am oΩ∗[2] (Am oΩ∗[1] Am),

where

Ω∗[1] = {1, 2, . . . ,m} and Ω∗[2] = {i1i2 : i1, i2 ∈ {1, 2, . . . ,m}},

and m ≥ 5. The top group Am oΩ∗[1] Am of this iterated wreath product is the group

W1. Therefore we can write

W2 = Am oΩ∗[2] W1.

Theorem 8.10 describes the maximal subgroups of W2. They are described by using

the work of Bhattacharjee [3], and Parker and Quick [23], and our analysis for proving

Theorem 8.3. Similarly, the proof of Theorem 8.10 separates the possibilities for the

maximal subgroups of W2 into types, referred to as Case 1, Case 2a, Case 2b and

Case 2c. The proof concerning the maximal subgroups of type Case 2a is taken from

Bhattacharjee’s work in [3]. To obtain a self-contained analogue for Case 2a, as in

W1 of the previous section, was found to be too complicated and seemed unnecessary

considering we have the work of Bhattacharjee. Therefore since we do not use the fact

that Aut(Am) ∼= Sm, for m ≥ 4 and m 6= 6, Theorem 8.10 holds for m ≥ 5.

In the previous section, for W1 the maximal subgroups M of type Case 2a had

M ∩ B equal to a single diagonal subgroup2. From paper [3, pg. 316], we see that

this is because Am acts primitively on Ω∗[1] = {1, 2, . . . ,m} and so Ω∗[1] is the only

2The group {(x, ϕ2(x), ϕ3(x), . . . , ϕm(x)) : x ∈ Am}, where ϕj ∈ Aut(Am), for 2 ≤ j ≤ m, is

referred to as a diagonal subgroup of the direct product
∏m

i=1 A
(i)
m of alternating groups.
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non-trivial Am-congruence3 on Ω∗[1]. However, for W2 the subgroup A
(m)
m o Am acts

imprimitively on the set Ω∗[2] = {i1i2 : i1, i2 ∈ {1, 2, . . . ,m}}; see Lemma 8.9 below.

Therefore the maximal subgroups M , of W2, of type Case 2a can have M ∩B equal to

a direct product of more than one diagonal subgroup.

Lemma 8.9. Let A
(m)
m oAm act naturally on Ω∗[2] = {i1i2 : i1, i2 ∈ {1, 2, . . . ,m}}, for

m ≥ 3. Then

{1i2 : i2 ∈ {1, 2, . . . ,m}} , {2i2 : i2 ∈ {1, 2, . . . ,m}} , . . . , {mi2 : i2 ∈ {1, 2, . . . ,m}}

is the only non-trivial system of blocks.

Proof. Fix 11 ∈ Ω∗[2]. Recall W1 = A
(m)
m o Am. Since the group W1 acts transitively

on Ω∗[2], there is a one-to-one correspondence between the non-trivial systems of blocks

and the subgroups H such that StW1(11) ( H ( W1, where StW1(11) is the stabiliser

of 11 in W1. Now

StW1(11) = Am−1 × (A(m−1)
m oAm−1). (8.2)

We claim H = A
(m)
m o Am−1 is the only subgroup such that StW1(11) ( H ( W1.

We write B = A
(m)
m for the base group of W1.

If Am−1
∼= B StW1(11)/B ( BH/B then BH/B ∼= Am, as Am−1 is a maximal

subgroup of Am, for m ≥ 3. A short calculation, similar to that used in the proof of

Lemma 8.2, shows that B ⊆ H. So we have the contradiction H = W1.

Therefore B StW1(11)/B = BH/B. Then StW1(11) ( H implies Am−1 ×A(m−1)
m =

StW1(11)∩B ( H ∩B. We have B ⊆ H, since Am−1 ×A(m−1)
m is a maximal subgroup

of B, for m ≥ 3. Hence the claim is proved.

The proof of the maximal subgroups of type Case 2b in Theorem 8.10 is contained

in Bhattacharjee’s work. Our work on the maximal subgroups of type Case 2c in the

proof of Theorem 8.10 is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.10. Let W2 = Am oΩ∗[2] (Am oΩ∗[1] Am), where Ω∗[1] = {1, 2, . . . ,m} and

Ω∗[2] = {i1i2 : i1, i2 ∈ {1, 2, . . . ,m}}, for some m ≥ 5. Denote the base group A
(m2)
m =:

B and the permuting top group W1 =: T . Therefore W2 = B o T .

Define

M0(K) = B oK, where K is a maximal subgroup of W1.

3A T-congruence on Ω is a T -invariant equivalence relation. That is, for t ∈ T and Ωi, there exists
Ωj such that tΩi = Ωj ; where Ωi are the equivalence classes.
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Consider the normaliser

NW2(D1),

where

D1 = {(x, ϕ2(x), ϕ3(x), . . . , ϕm2(x)) : x ∈ Am}

and

ϕj ∈ Aut(Am), for 2 ≤ j ≤ m2.

Consider the normaliser

NW2(D1 ×D2 × . . .×Dm),

where

Di = {(xi, ϕ(i−1)m+2(xi), ϕ(i−1)m+3(xi), . . . , ϕim(xi)) : xi ∈ Am}, for 1 ≤ i ≤ m,

and

ϕj ∈ Aut(Am), for (i− 1)m+ 2 ≤ j ≤ im.

Define

M2(L) = L(m) o T , where L is a maximal subgroup of Am.

Then the groups M0(K) and M2(L)g, where g ∈ B, are maximal subgroups of W2

and every maximal subgroup of W2 is one of the groups M0(K), NW2(D1), NW2(D1 ×
D2 × . . .×Dm) or M2(L)g, where g ∈ B.

Proof. Let M be a maximal subgroup of W2. Then there are two possibilities:

B ⊆M (case 1), and B 6⊆M (case 2).

Case 1.

Suppose B ⊆ M . Using the same reasoning as Case 1 of the proof for Theo-

rem 8.10 gives M = BoK, where K is a maximal subgroup of W1. The maximal

subgroups of W1 have been classified in Theorem 8.3.

Case 2.

Suppose B 6⊆M . Since M is maximal, we have

BM = W2.

Again using the facts M/(M ∩ B) ∼= T and T acts transitively on the set Ω∗[2],

we see that the projections of M ∩B into the m2 factors of B must be conjugate

in Am.

113



8.3. Finite wreath products Am oAm oAm, where m ≥ 5 8. Maximal subgroups

Denote Ki as the projection of M ∩ B into the ith factor of B, for 1 ≤ i ≤ m2.

Case 2 can be separated into three possibilities because the groups Ki are all

conjugate subgroups of Am.

(case 2a) The groups Ki = Am, for all i ∈ Ω∗[2].

(case 2b) The groups Ki 6= {1} and Ki 6= Am, for all i ∈ Ω∗[2].

(case 2c) The groups Ki = {1}, for all i ∈ Ω∗[2].

Case 2a.

We follow Bhattacharjee’s work [3, pg. 316 - 317] to characterise the maximal

subgroups M such that M ∩B is a proper subdirect product in B.

Since M ∩ B is a subdirect product of a collection of non-abelian simple

groups it can be written as

M ∩B = D1 ×D2 × . . .×Ds,

where

Ω∗[2] = Ω1 ∪ Ω2 ∪ . . . ∪ Ωs

is a partition of Ω∗[2] and each Di(∼= Am) is a diagonal subgroup of the direct

product AΩi
m (see [2, Lem. 2.3] or the Appendix of our thesis). The partition

of Ω∗[2] gives rise to a T -congruence on Ω∗[2].

Using Lemma 8.9, there are three possibilities for s: s = 1, s = m or

s = m2. The possibility of s = m2 is excluded because we would have the

contradiction M ∩B = B. Therefore s = 1 or s = m.

If s = 1 then

M ∩B = D1 = {(x, ϕ2(x), ϕ3(x), . . . , ϕm2(x)) : x ∈ Am},

where

ϕj ∈ Aut(Am), for 2 ≤ j ≤ m2.

If s = m then each diagonal subgroup Di is of the form

Di = {(xi, ϕ(i−1)m+2(xi), ϕ(i−1)m+3(xi), . . . , ϕim(xi)) : xi ∈ Am},

where

ϕj ∈ Aut(Am), for (i− 1)m+ 2 ≤ j ≤ im.
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So

M ∩B = {(x1, ϕ2(x1), . . . , ϕm(x1),

x2, ϕm+2(x2), . . . , ϕ2m(x2),

. . . ,

xm, ϕ(m−1)m+2(xm), . . . , ϕm2(xm)) : x1, x2, . . . , xm ∈ Am},

where ϕj ∈ Aut(Am).

Now M ∩ B EM implies that M is contained in the normaliser of M ∩ B
in W2. As M is a maximal subgroup of W2, we have M = NW2(M ∩ B) or

NW2(M ∩B) = W2. If the normaliser equals W2 then

M ∩B ENW2(M ∩B) = W2.

Since T acts transitively on m2 elements, there is only one T -orbit and

Lemma 2.3 gives M ∩B = B. This contradicts B 6⊆M .

Thus if there is a maximal subgroup M such that M ∩ B = D1, we must

have

M = NW2(D1).

and if there is a maximal subgroup M such that M∩B = D1×D2×. . .×Dm,

we must have

M = NW2(D1 ×D2 × . . .×Dm).

Case 2b.

Analogous methods of Bhattacharjee and of Case 2b of the proof for The-

orem 8.3 can be used to describe the maximal subgroups M such that

Ki 6= {1} and Ki 6= Am, for all i ∈ Ω∗[2].

For B := A
(m2)
m and T := W1, the same methods of Theorem 8.3 give

M = NW2(L(m2))g
−1

= ((NAm(L))(m2) o T )g
−1

= (L(m2) o T )g
−1
,

where L is a maximal subgroup of Am and g ∈ B. Bhattacharjee’s analysis

[3, pg. 318] gives

M = NW2(K1 ×K2 × . . .×Km2).

Choosing g = (g1, g2, . . . , gm2) ∈ B such that Kg1
1 = Kg2

2 = . . . = K
gm2

m2 = L,
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we have

M = NW2(K1 ×K2 × . . .×Km2)

= NW2(Lg−1
1 × Lg−1

2 × . . .× Lg−1

m2 )

= NW2(L(m2))g
−1

= (L(m2) o T )g
−1

= (L(m2))g
−1

o T g−1

= (K1 ×K2 × . . .×Km2) o T g−1
.

The same methods of Theorem 8.3 check that these groups are maximal.

Case 2c.

Assume the groups Ki = {1}, for all i ∈ Ω∗[2]. Since M ∩ B = {1}, the

maximal subgroup M is a complement for the base group B in W2. We

show that condition (c) of Theorem 8.1 does not hold. In applying this

theorem to our group W2, we have that X = Am and Y = W1.

The stabilisers of any two points in Ω∗[2] under the action of W1 are con-

jugate, since the action is transitive. The stabiliser of any point i ∈ Ω∗[2]

under the action of W1 is conjugate to

Am−1 × (A(m−1)
m oAm−1) = Am−1 × (Am oAm−1);

refer to (8.2).

We look at a potential surjective homomorphism φ from Am−1×(Am oAm−1)

onto Am. Now Am−1 × {1} ∼= Am−1 is a normal subgroup of Am−1 × (Am o
Am−1). Since φ is surjective, the normal subgroup Am−1 must be mapped

to a normal subgroup of Am. The simple group Am only has two normal

subgroups and Am−1 cannot be mapped to Am because it is too small.

Therefore Am−1 maps to {1} and it is in the kernel of φ.

It is now satisfactory to study the surjective homomorphism Am oAm−1 −→
Am. From the 1st isomorphism theorem, due to size, we see that this sur-

jective homomorphism has to have a non-trivial kernel. From Lemma 2.3,

since the natural action of Am−1 is transitive there is only one orbit, the

unique minimal normal subgroup of Am oAm−1 is the direct product A
(m−1)
m .

The kernel of this homomorphism, being a normal subgroup, must con-

tain A
(m−1)
m . Therefore a subgroup of Am−1 would have to map onto Am

which is impossible.
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Thus there can be no surjective homomorphism from the stabiliser of a point

i ∈ Ω∗[2] under the action of W1 to the group Am. Hence W2 has no maximal

subgroups which complement the base group and Case 2c does not occur.

8.4 Particular first Wilson quotients G1

Let Gn be the Wilson quotients as defined in Section 4.1. Recall that X0 and X1 are

finite non-abelian simple groups. Also G0 = X0 has a faithful transitive action on

the set Ωd1 = {1, 2, . . . , d1} and L1 = X
(d1)
1 . We would like to describe the maximal

subgroups of the first Wilson quotients

G1 = X1 oL1 (X1 oΩd1
G0),

where the top group X1 oΩd1
G0 = L1G0 acts on the set L1 according to the transitive

action defined in (4.1), found in Section 4.1.

In order to apply the same techniques that are used to determine maximal subgroups

of the groups W1 and W2, we take X0 = X1 = Am, where m ≥ 5. We also take the

faithful transitive action of the group G0 = Am to be the natural action. Therefore we

now study the first Wilson quotients

G1 = Am oA(m)
m

(Am oΩ∗[1] Am),

where the top group Am oΩ∗[1] Am = A
(m)
m Am acts on the set A

(m)
m according to the

transitive action (4.1). These groups are more specific than the groups of Section 6.2

because, in their construction, the groups X0 and X1 have been specified. Notice that

the top groups of the Wilson quotients G1 are the groups W1 and therefore

G1 = Am oA(m)
m

W1.

Theorem 8.11 describes the maximal subgroups of these particular first Wilson

quotients G1. They are described by using the work of Bhattacharjee [3], and Parker

and Quick [23], and our analysis for proving Theorem 8.3. Similarly, the proof of

Theorem 8.11 separates the possibilities for the maximal subgroups of G1 into types,

referred to as Case 1, Case 2a, Case 2b and Case 2c. The proof concerning the maximal

subgroups of type Case 2a is taken from Bhattacharjee’s work in [3]. The proof of the

maximal subgroups of type Case 2b in Theorem 8.11 is contained in Bhattacharjee’s
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work. Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.11

is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.11. Let G1 = AmoA(m)
m

(AmoΩ∗[1]Am), where Ω∗[1] = {1, 2, . . . ,m}, for some

m ≥ 5. Denote the base group A
(|Am|m)
m =: B and the permuting top group W1 =: T .

The group T acts on the set A
(m)
m according to the action defined in (4.1). Therefore

G1 = B o T .

Define

M0(K) = B oK, where K is a maximal subgroup of W1.

Consider the normaliser

NG1(D1 ×D2 × . . .×Ds),

with the equivalence classes Ωi, for 1 ≤ i ≤ s and s 6= |Am|m, of a T -congruence on

A
(m)
m having |Ωi| = l, and where

Di = {(xi, ϕ(i−1)l+2(xi), ϕ(i−1)l+3(xi), . . . , ϕil(xi)) : xi ∈ Am}, for 1 ≤ i ≤ s,

and

ϕj ∈ Aut(Am), for (i− 1)l + 2 ≤ j ≤ il.

Define

M2(L) = L(|Am|m) o T , where L is a maximal subgroup of Am.

Then the groups M0(K) and M2(L)g, where g ∈ B, are maximal subgroups of G1

and every maximal subgroup of G1 is one of the groups M0(K), NG1(D1×D2×. . .×Ds)

or M2(L)g, where g ∈ B.

Proof. Let M be a maximal subgroup of G1. Then there are two possibilities:

B ⊆M (case 1), and B 6⊆M (case 2).

Case 1.

Suppose B ⊆M . Using the same reasoning as Case 1 of the proof for Theorem 8.3

gives M = BoK, where K is a maximal subgroup of W1. The maximal subgroups

of W1 have been classified in Theorem 8.3.

Case 2.

Suppose B 6⊆M . Since M is maximal, we have

BM = G1.
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Again using the facts M/(M ∩B) ∼= T and T acts transitively on the set A
(m)
m , we

see that the projections of M ∩B into the |Am|m factors of B must be conjugate

in Am.

Denote Ki as the projection of M ∩B into the ith factor of B, for 1 ≤ i ≤ |Am|m.

Case 2 can be separated into three possibilities because the groups Ki are all

conjugate subgroups of Am.

(case 2a) The groups Ki = Am, for all i ∈ A(m)
m .

(case 2b) The groups Ki 6= {1} and Ki 6= Am, for all i ∈ A(m)
m .

(case 2c) The groups Ki = {1}, for all i ∈ A(m)
m .

Case 2a.

We follow Bhattacharjee’s work [3, pg. 316 - 317] to characterise the maximal

subgroups M such that M ∩B is a proper subdirect product in B.

Since M ∩ B is a subdirect product of a collection of non-abelian simple

groups it can be written as

M ∩B = D1 ×D2 × . . .×Ds,

where the partition of

A(m)
m = Ω1 ∪ Ω2 ∪ . . . ∪ Ωs

is a T -congruence on A
(m)
m and each Di(∼= Am) is a diagonal subgroup of the

direct product AΩi
m . We have s 6= |Am|m because B 6⊆M . Let |Ωi| = l, say,

for all 1 ≤ i ≤ s. Then

Di = {(xi, ϕ(i−1)l+2(xi), ϕ(i−1)l+3(xi), . . . , ϕil(xi)) : xi ∈ Am},

where

ϕj ∈ Aut(Am), for (i− 1)l + 2 ≤ j ≤ il.

Therefore

M ∩B = {(x1, ϕ2(x1), . . . , ϕl(x1),

x2, ϕl+2(x2), . . . , ϕ2l(x2), . . . ,

xs, ϕ(s−1)l+2(xs), . . . , ϕsl(xs)) : x1, x2, . . . , xs ∈ Am},
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where ϕj ∈ Aut(Am).

Following the same argument in the proof for Case 2a of Theorem 8.10, if

there is a maximal subgroup M such that M ∩B = D1×D2× . . .×Ds then

it is equal to the normaliser of D1 ×D2 × . . .×Ds in G1. That is

M = NG1(D1 ×D2 × . . .×Ds).

Case 2b.

Analogous methods of Bhattacharjee and of Case 2b of the proof for The-

orem 8.3 can be used to describe the maximal subgroups M such that

Ki 6= {1} and Ki 6= Am, for all i ∈ A(m)
m .

For B := A
(|Am|m)
m and T := W1, the same methods of Theorem 8.3 give

M = NG1(L(|Am|m))g
−1

= ((NAm(L))(|Am|m) o T )g
−1

= (L(|Am|m) o T )g
−1
,

where L is a maximal subgroup of Am and g ∈ B. Bhattacharjee’s analysis

[3, pg. 318] gives

M = NG1(K1 ×K2 × . . .×K|Am|m).

The same methods of Theorem 8.3 check that these groups are maximal.

Case 2c.

Assume the groups Ki = {1}, for all i ∈ A
(m)
m . Since M ∩ B = {1}, the

maximal subgroup M is a complement for the base group B in G1. In

this instance, we show that condition (c) of Theorem 8.1 does hold but

condition (d) of Theorem 8.1 does not hold. Applying the theorem to the

group G1 gives X = Am, Y = W1 and Ω = A
(m)
m .

The stabilisers of any two points in A
(m)
m under the action of W1 are conju-

gate, since the action is transitive. The stabiliser of the point (1, . . . , 1) ∈
A

(m)
m under the action of W1 is the group of elements (g1, g2, . . . , gm)t ∈W1,

where (g1, g2, . . . , gm) ∈ A(m)
m and t ∈ Am, such that

(1, 1, . . . , 1)(g1, g2, . . . , gm)t = (1, 1, . . . , 1).

That is (g1, g2, . . . , gm)t = (1, 1, . . . , 1) and so the stabiliser is the top group

Am of W1. Therefore the stabiliser of any point of A
(m)
m in W1 is a conjugate

of Am. Thus there are surjective homomorphisms φ from these stabilisers

to Am and condition (c) holds.
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However we now show that condition (d) of Theorem 8.1 does not hold.

The stabiliser Ay
m, for some y ∈ W1, satisfies W1 = A

(m)
m o (Ay

m). Any

surjective homomorphism φ : Ay
m −→ Am can be formed as the restriction

of a homomorphism A
(m)
m o Ay

m −→ Am, where the base group A
(m)
m lies

in the kernel. Hence condition d) is not satisfied and G1 has no maximal

subgroups which complement the base group. Therefore Case 2c does not

occur.

For further research concerning the maximal subgroups of these first Wilson quo-

tients, refer to Chapter 10, Question 4.
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Chapter 9

Finite generation and PMSG

In [3], M. Bhattacharjee has produced a result regarding finite generation of an inverse

limit of iterated wreath products of finite alternating groups of degree at least 5 formed

using the natural action. That is, the profinite groups lim
←−

(Amk
o . . . oAm2 oAm1), where

mi ≥ 5, are generated by two random elements with positive probability and the

probability approaches 1 as the size of m1 tends to infinity. Therefore the profinite

groups W , constructed from iterated wreath products of the same alternating group,

in Section 3.2 are positively finitely generated by two elements.

M. Quick [24] extends Bhattacharjee’s work by first replacing the alternating groups

in the wreath products with arbitrary finite non-abelian simple groups Gi, for i ≥ 0.

The standard action is used when forming each iterated wreath product, that is the top

group of the wreath product acting on itself by right multiplication. Quick concludes

that the profinite groups, which are the inverse limits lim
←−

(Gk o . . . o G1 o G0) of these

iterated wreath products, are positively finitely generated. The probability of gener-

ating these profinite groups with two random elements is positive and approaches 1 as

the order of G0 tends to infinity.

In the paper [25], Quick generalises further to iterated wreath products of finite

non-abelian simple groups Gi, for i ≥ 0, each constructed from any faithful transitive

actions. Similarly, the profinite groups lim
←−

(Gk o . . . o G1 o G0) constructed from these

iterated wreath products are positively finitely generated by two random elements

provided |G0| > 35!. Again this probability approaches 1 as the order of G0 tends to

infinity.

Let G be a Wilson group arising as an inverse limit of finite groups Gn as defined

in Section 4.1. The iterated wreath products Gn = Xn oLn (LnGn−1) are formed from

the transitive actions (4.1), found in Section 4.1, of the groups LnGn−1 on Ln, for

n ≥ 1. Non-trivial elements of the group LnGn−1 acting by (4.1) on the set Ln can
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have fixed points however these elements do move at least one other point. Therefore

the action (4.1) is faithful. Thus all the wreath products Gn are constructed with

faithful transitive actions.

Hence Quick’s result, in [25], can be applied to the Wilson groups. That is, the

Wilson groups lim
←−

(Gn)n≥0 such that |G0| > 35! are positively finitely generated by two

elements.

Consequently, these particular Wilson groups are finitely generated because there

must be at least one collection of two elements that generate them. For future research

concerning finite generation of Wilson groups, refer to Question 1 and Question 5,

Chapter 10.

Recall, from Section 2.6, that mn(G) denotes the number of closed maximal sub-

groups of a profinite group G with index n. A profinite group G has polynomial maximal

subgroup growth (PMSG) if there exists a constant c such that

mn(G) ≤ nc for all n.

A result by A. Mann and A. Shalev [19] implies that the Wilson groups such that |G0| >
35!, since they are positively finitely generated, have polynomial maximal subgroup

growth. Question 6 of Chapter 10 gives an idea of further work on polynomial maximal

subgroup growth of Wilson groups.
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Chapter 10

Open problems

1) We know that the Wilson groups lim
←−

(Gn)n≥0, as defined in Section 4.1, are finitely

generated provided |G0| > 35!; refer to Chapter 9. Is any arbitrary Wilson group

finitely generated?

2) Remark 5.4, in Section 5.1, compares the Nottingham group to the Wilson groups

with regard to chains of normal subgroups. There are many interesting questions

that have been resolved for the Nottingham group and these could be investigated

for the Wilson groups. We outline a few below.

Let G be a Wilson group arising as an inverse limit of finite groups Gn as defined

in Section 4.1.

• The lower central series is an important filtration for the Nottingham group

that gives a graded Lie ring, see [5]. Is there a similar chain of characteristic

subgroups for G and a substitute for an associated Lie ring for G?

• The Nottingham group is finitely presented; refer to M. V. Ershov [7]. Is

there a finite or countably recursive presentation for G?

• The automorphism group of the Nottingham group has been determined;

refer to B. Klopsch [13]. What are the automorphisms of G?

3) Recall the just infinite profinite groups W = lim
←−

(Wn)n≥0, where

Wn = Am oΩ∗[n] . . . oΩ∗[2] Am oΩ∗[1] Am,

for n ≥ 1, and where

Ω∗[j] = {i1i2 . . . ij : i1, i2, . . . , ij ∈ {1, 2, . . . ,m}},
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for each j = 1, 2, . . . , and W0 = Am, as defined in Section 3.2.

In Section 7.2, it was found that the number of non-trivial subnormal subgroups

of W with index at most |Am|n, for some n, is equal to the sum

n∑
k=1

1

(m− 1)k + 1

(
mk

k

)
.

What can be deduced about the subnormal subgroup growth of these groups?

4) In Section 8.4, we considered the first Wilson quotients

G1 = Am oA(m)
m

(Am oΩ∗[1] Am) = Am oA(m)
m

W1.

The top group Am oΩ∗[1] Am = A
(m)
m Am of G1 acts on the set A

(m)
m according to

the transitive action (4.1).

The maximal subgroups of these Wilson quotients have been described in Theo-

rem 8.11. There are maximal subgroups of the form

NG1(D1 ×D2 × . . .×Ds),

with the equivalence classes Ωi, for 1 ≤ i ≤ s and s 6= |Am|m, of a (A
(m)
m Am)-

congruence on A
(m)
m having |Ωi| = l, and where

Di = {(xi, ϕ(i−1)l+2(xi), ϕ(i−1)l+3(xi), . . . , ϕil(xi)) : xi ∈ Am},

for 1 ≤ i ≤ s, and ϕj ∈ Aut(Am), for (i− 1)l + 2 ≤ j ≤ il.

Can we further describe these maximal subgroups by finding the (A
(m)
m Am)-

congruence on A
(m)
m ?

5) The Wilson groups lim
←−

(Gn)n≥0, as defined in Section 4.1, are positively finitely

generated by two random elements provided |G0| > 35!; refer to Chapter 9.

Allowing for a larger number of generators, is a general Wilson group positively

finitely generated?

6) Recall, from Section 2.6, that mn(G) denotes the number of closed maximal

subgroups of a profinite group G with index n, and G has polynomial maximal

subgroup growth if there exists a constant c such that

mn(G) ≤ nc for all n.
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In Chapter 9, it was stated that the Wilson groups lim
←−

(Gn)n≥0, as defined in

Section 4.1, such that |G0| > 35!, have polynomial maximal subgroup growth.

What is the degree c of the polynomial maximal subgroup growth of these Wilson

groups?
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Appendix A

Bhattacharjee’s Lemma

For the reader’s understanding we include the Lemma 2.3 from Bhattacharjee’s D. Phil.

Thesis [2].

Lemma A.1 (Bhattacharjee [2]). Let I := {1, 2, . . . ,m} and for every i ∈ I let Gi be

a simple group. If H ≤ G1 ×G2 × . . .×Gm is a subdirect product then

H ∼= D1 ×D2 × . . .×Dk,

with k ≤ m and where there exist distinct i1, i2, . . . , ik ∈ I such that Di
∼= Gij for each

i = 1, 2, . . . , k.

Furthermore, if the groups Gi are all non-abelian simple then there is a partition

I =
k⋃

j=1

Ij

of I such that all Gi for i ∈ Ij are isomorphic and such that Dj is the diagonal subgroup

of
∏

i∈Ij Gi.

Proof. Let us proceed by induction on m. It is trivially true for m = 1. Let us assume

that the lemma is true for a family of less than m simple groups.

If Gm ≤ H then

H = (H ∩ (G1 ×G2 × . . .×Gm−1))×Gm.

But the first term in this expression is itself a subdirect product involving m−1 simple

groups and hence is a direct product by induction. (This is because
∏

i(H ∩ (G1×G2×
. . .×Gm−1)) =

∏
iH ∩Gi = Gi, for 1 ≤ i ≤ m− 1.) So in this case the lemma holds.

Otherwise, Gm 6≤ H so that Gm ∩ H = {1} as Gm is simple and Gm ∩ H E Gm.
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Therefore, the projection

G1 ×G2 × . . .×Gm −→ G1 ×G2 × . . .×Gm−1

maps H injectively into a subdirect product with fewer factors, which, by inductive

hypothesis, is a direct product. Hence the first part of the lemma is proved.

To prove the rest of the lemma, define

Ij = {i ∈ I : Dj projects non-trivially onto Gi} .

We need to show that this defines a partition on I. Clearly, I =
⋃k

j=1 Ij as H is a

subdirect product. If possible, let i ∈ Ij1∩Ij2 for distinct j1, j2 ∈ {1, 2, . . . , k}. Then the

groups Dj1 and Dj2 both project non-trivially onto Gi. Let y1 ∈ Dj1 and y2 ∈ Dj2 be

such that their projection x1 and x2 respectively in Gi do not commute. Such elements

exist since Gi is non-abelian and simple. But y1 and y2 commute as they belong to

distinct factors in a direct product. This contradiction proves the lemma.
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