Hereditarily Just Infinite Profinite Groups that are Not Virtually Pro- p

Submitted by

Sarah Elizabeth Anne Phyllis Middleton

for the degree of Doctor of Philosophy
of the
Royal Holloway, University of London

Declaration

I, Sarah Elizabeth Anne Phyllis Middleton, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated.

Signed........................(Sarah Elizabeth Anne Phyllis Middleton)
Date:
to my parents

Abstract

A profinite group G is just infinite if it is infinite and every non-trivial closed normal subgroup of G is open, and hereditarily just infinite if every open subgroup is just infinite. Hereditarily just infinite profinite groups that are not virtually pro-p were first described by J. S. Wilson, in his recent paper 'Large hereditarily just infinite groups', in 2010. These profinite groups are inverse limits of finite groups that are iterated wreath products. The iterated wreath products are constructed from finite non-abelian simple groups, using two types of transitive actions; one of which is specified and the other is left unspecified.

The main results of this thesis are the complete characterisation of the closed normal subgroups and the closed subnormal subgroups of such hereditarily just infinite profinite groups, introduced by Wilson. Using positive finite generation work of M. Quick, we see that these profinite groups, in the majority of instances, are positively finitely generated and therefore finitely generated. Recent results by N. Nikolov and D. Segal show that all the normal and subnormal subgroups of such a hereditarily just infinite group, described by Wilson, are automatically closed provided the profinite group is finitely generated. Therefore the characterisations of normal and subnormal subgroups cover all normal and subnormal subgroups of the majority of Wilson's groups.

The characterisation of the subnormal subgroups is interesting because it is dependent on the choices for the unspecified transitive actions, used to construct these profinite groups. A starting point for describing the subnormal subgroups is to make a choice for the unspecified transitive actions. In this way, some restricted constructions of Wilson's groups have all their subnormal subgroups forming chains, where the subnormal subgroups are squeezed between consecutive normal subgroups.

We have examined the possibility of describing maximal subgroups of Wilson's hereditarily just infinite groups. M. Bhattacharjee has worked on maximal subgroups of iterated wreath products of alternating groups with degree ≥ 5, constructed using the natural actions of the alternating groups. We have applied Bhattacharjee's techniques and described maximal subgroups for certain first finite iterated wreath products, in the construction of Wilson's groups. In so doing, we indirectly extend Bhattacharjee's work, whose view point is that of finite generation. This is because we count the exact number of conjugacy classes of maximal subgroups and the exact number of maximal subgroups, for a very small subclass of Bhattacharjee's wreath products.

Acknowledgement

I would like to thank my supervisor, Benjamin Klopsch, who has provided me with excellent supervision. I am also very grateful to him for proofreading this thesis. My thanks also go to Mark Wildon for highlighting significant errors in my upgrade document. This project would not have been possible without the studentship funded by EPSRC.

Contents

1 Introduction 7
1．1 Contributions 8
1．1．1 Normal and subnormal subgroups of Wilson groups 8
1．1．2 Normal and subnormal subgroup growth of Wilson groups 13
1．1．3 Maximal subgroups of Wilson groups 13
1．1．4 Finite generation for Wilson groups 16
1．2 Thesis outline 16
2 Preliminaries 19
2．1 Wreath products 19
2．1．1 Minimal normal subgroups of some wreath products 20
2．2 Subnormal subgroups 22
2．2．1 Normal subgroups of some direct products 22
2．3 Maximal subgroups 22
2．3．1 The alternating groups 22
2．4 The normaliser of a direct product in a wreath product 23
2．5 Profinite groups 24
2．6 Subgroup growth 27
2．7 Positive finite generation 27
3 Infinite iterated wreath products．．．々 A_{m} 々 A_{m} 々．．．A_{m} ，where $m \geq 5$ 29
3．1 Introduction 29
3．2 Construction 30
3．3 Properties 31
3．4 Just infinite 32
3．4．1 The normal subgroups 32
4 Wilson groups 35
4．1 Wilson＇s construction 35
4．2 Verifying hereditarily just infinite and not virtually pro－p 37
5 Normal subgroups 39
5．1 General Wilson groups 39
6 Subnormal subgroups 45
6．1 Introduction 45
6．2 Particular Wilson groups 47
6．3 Infinite iterated wreath products \ldots 々 A_{m} 々 A_{m} 々 \ldots 々 A_{m} 59
6．3．1 The subnormal length 69
6．4 General Wilson groups 74
7 Subnormal subgroup growth 86
7．1 General Wilson groups 86
7．2 Infinite iterated wreath products \ldots 々 A_{m} 々 A_{m} 々 \ldots 々 A_{m} 92
8 Maximal subgroups 95
8．1 Introduction 95
8．2 Finite wreath products $A_{m} 乙 A_{m}$ ，where $m \geq 5$ 96
8．3 Finite wreath products $A_{m} \backslash A_{m} \backslash A_{m}$ ，where $m \geq 5$ 111
8．4 Particular first Wilson quotients G_{1} 117
9 Finite generation and PMSG 122
10 Open problems 124
Bibliography 126
A Bhattacharjee＇s Lemma 130

Chapter 1

Introduction

This thesis is built on a recent paper by J. S. Wilson, entitled 'Large hereditarily just infinite groups'; see the reference [32]. We are particularly interested in hereditarily just infinite profinite groups. For the general theory of profinite groups there are two books, both of which are entitled 'Profinite Groups'. One book is by J. S. Wilson [30] and the other book is by L. Ribes and P. Zalesskii [26].

A profinite group G is just infinite if it is infinite and every non-trivial closed normal subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is just infinite. The simplest examples of abstract ${ }^{1}$ hereditarily just infinite groups are the infinite cyclic group and the infinite dihedral group $D_{\infty}=\left\langle x, y: x^{2}=y^{2}=1\right\rangle$. More complicated examples are the groups $\operatorname{SL}(n, \mathbb{Z})$ modulo their centre, for $n \geq 3$, refer to [20]. Examples of profinite hereditarily just infinite groups are \mathbb{Z}_{p} and $\operatorname{SL}\left(n, \mathbb{Z}_{p}\right)$ modulo their centre, for $n \geq 3$. Many of the groups introduced by R. I. Grigorchuk [9] and N. Gupta and S. Sidki [10] that act on trees are just infinite. A readable account describing the first Grigorchuk group is given by P. de la Harpe, in [6, Ch. VIII].

For profinite groups, a just infinite group is the analogue of a simple group in the setting of finite groups. Therefore it is natural that we want to classify just infinite profinite groups or, if this is not possible, describe them in some suitable fashion.

It has been shown, refer to [29] and [31], that certain just infinite groups can be embedded, as subgroups of finite index, in permutational wreath products of a hereditarily just infinite group and a finite group. Therefore the study of these just infinite profinite groups reduces to the study of hereditarily just infinite profinite groups.

For some prime p, a profinite group is pro- p if every open normal subgroup has index equal to some power of p. A profinite group is virtually pro- p if it has an open normal subgroup that is pro- p. All hereditarily just infinite profinite groups prior to Wilson's

[^0]recent construction, in [32], were virtually pro-p groups. The following theorem by Wilson shows that there are hereditarily just infinite profinite groups of a new kind.

Theorem 1.1 (Wilson [32]). There exists a hereditarily just infinite profinite group with the property that all composition factors of finite continuous images are non-abelian. In particular, the group is not virtually pro-p.

Every finitely generated profinite group is countably based. See [30, pg. 54] for the general definition of a countably based profinite group. The following corollary is also given by Wilson.

Corollary 1.2 (Wilson [32]). There exists a hereditarily just infinite profinite group in which every countably based profinite group can be embedded, as a closed subgroup.

Therefore the groups that arise from Theorem 1.1 are also notable because they are very 'large', since every countably based profinite group can be embedded in at least one of them.

A result similar to Corollary 1.2 has featured, in the pro- p setting, where the Nottingham group already existed as a hereditarily just infinite group. R. Camina [4] proved that every countably based pro-p group can be embedded, as a closed subgroup, in the Nottingham group. The Nottingham group was introduced to group theory by D. L. Johnson [12] and I. O. York [34], themselves motivated by an article of S. A. Jennings [11].

In this thesis, we shall call the groups of Theorem 1.1 Wilson groups and their construction Wilson's construction. Wilson groups and their construction are explained in detail in Section 4.1. The hereditarily just infinite profinite group of Corollary 1.2 is a specific Wilson group, as given in Section 4.2. Wilson groups are new and their construction is very interesting, therefore they deserve further investigation.

1.1 Contributions

This thesis has set about to investigate structural properties of Wilson groups.

1.1.1 Normal and subnormal subgroups of Wilson groups

Our main contribution is a complete classification of the closed subnormal subgroups of an arbitrary Wilson group. As a subcase, we have completely classified the closed normal subgroups of an arbitrary Wilson group. In fact, for a finitely generated ${ }^{2}$ Wilson group all subnormal subgroups are automatically closed and therefore, for these groups,

[^1]we have completely classified all their subnormal subgroups. We determine that the majority of Wilson groups are finitely generated, refer to Chapter 9 .

In order to lay out these results, we first briefly describe Wilson's construction from which Wilson groups arise; refer to Section 4.1 for further details of Wilson's construction.

Let $X_{0}, X_{1}, X_{2}, \ldots$ be an infinite sequence of finite non-abelian simple groups. Set $G_{0}=X_{0}$. We construct the finite groups G_{n}, for $n \in \mathbb{N}$, from iterated wreath products of the groups $X_{0}, X_{1}, X_{2}, \ldots$. Each wreath product G_{n} is formed via two types of actions. One of which is unspecified and the other type of action is specified.

Suppose a group G_{n-1}, for $n \in \mathbb{N}$, with a faithful transitive permutation representation of degree d_{n} has been constructed. Let $L_{n}=X_{n}^{\left(d_{n}\right)}$, for $n \in \mathbb{N}$, the direct product of d_{n} copies of X_{n}. Wilson defines a specified transitive permutation representation of the group $L_{n} G_{n-1}$ on the set L_{n} (see the action (4.1) in Section 4.1). Let $M_{n}=X_{n}^{\left(\left|L_{n}\right|\right)}$, for $n \in \mathbb{N}$, the direct product of $\left|L_{n}\right|$ copies of X_{n}. Form

$$
G_{n}=X_{n} \imath_{L_{n}}\left(X_{n} \imath_{\Omega_{d_{n}}} G_{n-1}\right),
$$

where $\Omega_{d_{n}}=\left\{1,2, \ldots, d_{n}\right\}$. That is, written as semidirect products,

$$
G_{n}=M_{n} \rtimes\left(L_{n} \rtimes G_{n-1}\right) .
$$

A Wilson group is an inverse limit of such finite groups G_{n}, for $n \geq 0$, as described above. We call the groups G_{n} Wilson quotients. This becomes evident later when the infinite groups $\ldots M_{n+2} L_{n+2} M_{n+1} L_{n+1}$, for $n \geq 0$, are found to be normal subgroups of a Wilson group.

Corollary 5.3 displays the result of the complete classification of the closed normal subgroups of an arbitrary Wilson group. This is derived from the complete classification of the normal subgroups of the finite groups G_{n}, as in Theorem 5.1. For the purpose of what follows we define $M_{0}=G_{0}$.

Theorem 5.1. Let G_{n}, for $n \geq 0$, be the finite groups as defined above. For $j \in$ $\{0,1, \ldots, n\}$, define

$$
P_{j}^{n}=M_{n} \rtimes \ldots \rtimes\left(M_{j+1} \rtimes L_{j+1}\right)
$$

and define

$$
Q_{j}^{n}=M_{n} \rtimes \ldots \rtimes\left(M_{j+1} \rtimes\left(L_{j+1} \rtimes M_{j}\right)\right) .
$$

Then the normal subgroups of G_{n} are precisely the groups P_{j}^{n} and Q_{j}^{n}. In particular,
they form a complete chain

$$
\{1\}=P_{n}^{n} \subsetneq Q_{n}^{n} \subsetneq P_{n-1}^{n} \subsetneq \ldots \subsetneq Q_{1}^{n} \subsetneq P_{0}^{n} \subsetneq Q_{0}^{n}=G_{n} .
$$

Corollary 5.3. Let $G=\lim _{\longleftarrow}\left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n} as defined above. For $j \geq 0$, define

$$
P_{j}=\lim _{\leftarrow}\left(P_{j}^{n}\right)_{n \rightarrow \infty}
$$

and define

$$
Q_{j}=\lim _{\leftarrow}\left(Q_{j}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of G.
Then the non-trivial closed normal subgroups of G are precisely the groups P_{j} and Q_{j}. In particular, they form a complete chain

$$
\ldots \subsetneq Q_{n+1} \subsetneq P_{n} \subsetneq Q_{n} \subsetneq P_{n-1} \subsetneq \ldots \subsetneq Q_{1} \subsetneq P_{0} \subsetneq Q_{0}=G .
$$

The normal subgroups of a Wilson group forming such a rigid chain is noteworthy and the same property is shared by the groups \mathbb{Z}_{p} and $\operatorname{SL}\left(n, \mathbb{Z}_{p}\right)$. The Nottingham group, in comparison, say, has its normal subgroups almost forming a chain (see Remark 5.4 in Section 5.1).

We found that the determination of the subnormal subgroups of a Wilson group depended directly on the nature of the unspecified permutation representations of the groups G_{n}. That is, whether the subnormal subgroups of the groups G_{n}, for $n \in \mathbb{N}$, have all their orbits containing at least two elements.

Here we only present the results of an easier situation, where the subnormal subgroups of the groups G_{n} are guaranteed to have all their orbits containing at least two elements. This is achieved, for instance, by taking the unspecified permutation representations of the groups G_{n} to be the actions of the groups on themselves by right multiplication. The complete characterisation of the closed subnormal subgroups of these particular Wilson groups is displayed in Corollary 6.6.

The complete characterisation of the closed subnormal subgroups of a general Wilson group has been achieved and the results can be found in Section 6.4. It is not presented here because it involves additional notation that is difficult to read, which indicates orbits containing at least two elements.

Again, the description of the closed subnormal subgroups of these particular Wilson groups relies on the description of the subnormal subgroups of the finite groups G_{n}. Theorem 6.4 lays out the complete classification of the subnormal subgroups of the groups G_{n} having the right regular action in Wilson's construction. Their characteri-
sation involves recalling the normal subgroups P_{j}^{n} and Q_{j}^{n}, for $j \in\{0,1, \ldots, n\}$, of G_{n}, as defined above.

Theorem 6.4. Let G_{n}, for $n \geq 0$, be the finite groups as defined above. In the Wilson construction, assume that the unspecified action of the group G_{n}, for $n \geq 0$, is taken to be right multiplication on itself.

For $j \in\{0,1, \ldots, n-1\}$, define

$$
S_{j}^{n}\left(I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes X_{j+1}^{I_{d_{j+1}}} \leq P_{j}^{n}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

and define

$$
S_{n}^{n}=\{1\} .
$$

For $j \in\{1,2, \ldots, n\}$, define

$$
T_{j}^{n}\left(I_{L_{j}}\right)=P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}} \leq Q_{j}^{n}, \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j}
$$

and define

$$
T_{0}^{n}=G_{n} .
$$

Then the subnormal subgroups of G_{n} are precisely the groups $S_{j}^{n}\left(I_{d_{j+1}}\right), S_{n}^{n}, T_{j}^{n}\left(I_{L_{j}}\right)$ and T_{0}^{n}. In particular, for all $I_{d_{1}}, I_{L_{1}}, \ldots, I_{d_{n}}$ and $I_{L_{n}}$, they form chains

$$
\begin{aligned}
S_{n}^{n}=P_{n}^{n} \subsetneq T_{n}^{n}\left(I_{L_{n}}\right) \subseteq Q_{n}^{n} \subsetneq S_{n-1}^{n}\left(I_{d_{n}}\right) \subseteq & P_{n-1}^{n} \subsetneq \ldots \\
& \subseteq P_{1}^{n} \subsetneq T_{1}^{n}\left(I_{L_{1}}\right) \subseteq Q_{1}^{n} \subsetneq S_{0}^{n}\left(I_{d_{1}}\right) \subseteq P_{0}^{n}
\end{aligned}
$$

The subnormal length in G_{n} of the group $S_{j}^{n}\left(I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{d_{j+1}}=\Omega_{d_{j+1}}\left(\text { implying that } S_{j}^{n}\left(I_{d_{j+1}}\right)=P_{j}^{n}\right), \\ 2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}}\end{cases}
$$

The subnormal length in G_{n} of the group $T_{j}^{n}\left(I_{L_{j}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{L_{j}}=L_{j}\left(\text { implying that } T_{j}^{n}\left(I_{L_{j}}\right)=Q_{j}^{n}\right) \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j}\end{cases}
$$

Recall the normal subgroups P_{j} and Q_{j}, for $j \geq 0$, of a Wilson group, as defined above.

Corollary 6.6. Let $G=\underset{\leftarrow}{\lim }\left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n} as defined
above. In the Wilson construction, assume that the unspecified action of the group G_{n}, for $n \geq 0$, is taken to be right multiplication on itself.

For $j \geq 0$, define

$$
S_{j}\left(I_{d_{j+1}}\right)=\lim _{\leftarrow}\left(S_{j}^{n}\left(I_{d_{j+1}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

regarded as subgroups of G.
For $j \geq 1$, define

$$
T_{j}\left(I_{L_{j}}\right)=\lim _{\leftarrow}\left(T_{j}^{n}\left(I_{L_{j}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j} \text {, }
$$

and define

$$
T_{0}=\lim _{\leftarrow}\left(T_{0}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of G.
Then the non-trivial closed subnormal subgroups of G are precisely the groups $S_{j}\left(I_{d_{j+1}}\right), T_{j}\left(I_{L_{j}}\right)$ and T_{0}. In particular, for all $I_{d_{1}}, I_{L_{1}}, \ldots, I_{d_{n}}, I_{L_{n}}, I_{d_{n+1}}, \ldots$, they form chains

$$
\begin{aligned}
\ldots \subsetneq S_{n}\left(I_{d_{n+1}}\right) \subseteq P_{n} \subsetneq T_{n}\left(I_{L_{n}}\right) \subseteq Q_{n} \subsetneq & S_{n-1}\left(I_{d_{n}}\right) \subseteq P_{n-1} \subsetneq \ldots \\
& \ldots \subseteq P_{1} \subsetneq T_{1}\left(I_{L_{1}}\right) \subseteq Q_{1} \subsetneq S_{0}\left(I_{d_{1}}\right) \subseteq P_{0} .
\end{aligned}
$$

The subnormal length in G of the group $S_{j}\left(I_{d_{j+1}}\right)$ is

$$
\left\{\begin{array}{ll}
1 & \text { if } I_{d_{j+1}}=\Omega_{d_{j+1}} \\
2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}}
\end{array} \text { (implying that } S_{j}\left(I_{d_{j+1}}\right)=P_{j}\right),
$$

The subnormal length in G of the group $T_{j}\left(I_{L_{j}}\right)$ is

$$
\begin{cases}1 & \text { if } \left.I_{L_{j}}=L_{j} \text { (implying that } T_{j}\left(I_{L_{j}}\right)=Q_{j}\right), \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j} .\end{cases}
$$

For these restricted Wilson groups, the subnormal subgroups form chains where the subnormal subgroups are squeezed between consecutive normal subgroups. A pictorial description of this conclusion is shown in Figure 6.1 of Section 6.2.

1.1.2 Normal and subnormal subgroup growth of Wilson groups

A type of normal subgroup growth and subnormal subgroup growth has been measured for an arbitrary Wilson group, using a lower bound for the size of the finite groups G_{n}, as follows:

Theorem 7.1. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. Suppose there exists a constant c such that $\left|X_{i}\right| \leq c$, for all $i \geq 0$.

Then

$$
\underbrace{4^{4}}_{n+2}{ }^{{ }^{4}} \leq\left|G_{n}\right| \leq \underbrace{\tilde{c}^{\tilde{c}^{\cdot}}}_{2 n+2},
$$

where $\tilde{c}=3 c$.
The number of normal subgroups of a Wilson group G of index at most $\left|G_{n}\right|$ is

$$
S_{\left|G_{n}\right|}^{\triangleleft}(G)=2 n+2,
$$

for $n \geq 0$. This growth is very slow, that is slower than the functions $\underbrace{\log \log \ldots \log }_{r}\left|G_{n}\right|$ for any fixed r.

The number of subnormal subgroups of a Wilson group G of index at most $\left|L_{n} G_{n-1}\right|$, for $n \geq 1$, that is $S_{\left|L_{n} G_{n-1}\right|}^{\triangleleft \triangleleft}(G)$, is less than or equal to the number

$$
2^{\left|X_{n}\right|^{d_{n}}}+\sum_{j=1}^{n} 2^{d_{j}}+\sum_{j=2}^{n} 2^{d_{j}-2}\left(2^{\left|X_{j-1}\right|^{d_{j-1}}}-2\right),
$$

which is roughly the size of the group G_{n}, although somewhat smaller.

1.1.3 Maximal subgroups of Wilson groups

We now summarise the little information that we have obtained towards maximal subgroups of Wilson groups. In Theorem 8.11, we have described the maximal subgroups of certain Wilson quotients G_{1}. That is, the first Wilson quotients

$$
G_{1}=X_{1} \imath_{L_{1}}\left(X_{1} \imath_{d_{d_{1}}} G_{0}\right)
$$

such that the finite non-abelian simple groups $G_{0}=X_{0}$ and X_{1} are taken to be the alternating group A_{m} with degree $m \geq 5$, and the unspecified permutation representation of the group G_{0} is chosen to be the natural action of the alternating group.

Theorem 8.11. Let $G_{1}=A_{m} \imath_{A_{m}^{(m)}}\left(A_{m} \imath_{\Omega^{*[1]}} A_{m}\right)$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$, for some $m \geq 5$. Denote the base group $A_{m}^{\left(\left|A_{m}\right|^{m}\right)}=: B$ and the permuting top group
$A_{m}^{(m)} A_{m}=: T$. The group T acts on the set $A_{m}^{(m)}$ according to the action defined in (4.1) (see Section 4.1). Therefore $G_{1}=B \rtimes T$.

Define

$$
M_{0}(K)=B \rtimes K \text {, where } K \text { is a maximal subgroup of } T \text {. }
$$

Consider the normaliser

$$
N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right),
$$

with the equivalence classes Ω_{i}, for $1 \leq i \leq s$ and $s \neq\left|A_{m}\right|^{m}$, of a T-congruence on $A_{m}^{(m)}$ having $\left|\Omega_{i}\right|=l$, and where

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) l+2}\left(x_{i}\right), \varphi_{(i-1) l+3}\left(x_{i}\right), \ldots, \varphi_{i l}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\}, \text { for } 1 \leq i \leq s
$$

and

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for }(i-1) l+2 \leq j \leq i l .
$$

Define

$$
M_{2}(L)=L^{\left(\left|A_{m}\right|^{m}\right)} \rtimes T \text {, where } L \text { is a maximal subgroup of } A_{m} \text {. }
$$

Then the groups $M_{0}(K)$ and $M_{2}(L)^{g}$, where $g \in B$, are maximal subgroups of G_{1} and every maximal subgroup of G_{1} is one of the groups $M_{0}(K), N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right)$ or $M_{2}(L)^{g}$, where $g \in B$.

This initial step was taken with a view to describing the maximal subgroups of Wilson groups where the finite non-abelian simple groups X_{i}, for $i \geq 0$, are taken to be the alternating group A_{m} with degree $m \geq 5$, and the unspecified permutation representations of the groups G_{n}, for $n \geq 0$, are chosen to be the natural actions of the alternating groups. We do have some idea of what these maximal subgroups look like even though this work has been left unfinished.

The techniques used to find these maximal subgroups has lain in M. Bhattacharjee's work on maximal subgroups of iterated wreath products of alternating groups of degree $m \geq 5$, constructed using the natural actions of the alternating groups; see the reference [3]. M. Quick generalised Bhattacharjee's work to iterated wreath products of arbitrary finite non-abelian simple groups; refer to papers [24] and [25].

Bhattacharjee's work required her to obtain upper bounds for the number of conjugacy classes of maximal subgroups of the wreath products that she considers. In studying the wreath product $W_{1}=A_{m} \beth_{\Omega^{*}[1]} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$ and $m \geq 5$, which is a small subcase of Bhattacharjee's wreath products, we contribute a little more information regarding counting the precise number of conjugacy classes of maximal subgroups of W_{1}.

In Theorem 8.3, we have classified the maximal subgroups of the wreath product W_{1} up to conjugation. They are conjugates of three types of subgroups and it is enough to conjugate by elements of the base group. The proof of this theorem uses a result by C. Parker and M. Quick [23] to exclude the possibility of maximal subgroups of W_{1} which complement the base group.

Theorem 8.3. Let $W_{1}=A_{m}{\Sigma_{\Omega^{*[1]}}} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$, for some $m \geq 5$ and $m \neq 6$. Denote the base group $A_{m}^{(m)}=: B$ and the permuting top group $A_{m}=: T$. Therefore $W_{1}=B \rtimes T$.

Define

$$
M_{0}(L)=B \rtimes L \text {, where } L \text { is a maximal subgroup of } A_{m} \text {. }
$$

Define

$$
M_{1}=\left\{(x, x, \ldots, x): x \in A_{m}\right\} \times T .
$$

Define

$$
M_{2}(L)=L^{(m)} \rtimes T \text {, where } L \text { is a maximal subgroup of } A_{m} .
$$

Then the groups $M_{0}(L), M_{1}^{g}$, where $g \in B$, and $M_{2}(L)^{g}$, where $g \in B$, are maximal subgroups of W_{1} and every maximal subgroup of W_{1} is one of these.

We count exactly one conjugacy class in W_{1} of maximal subgroups of the form M_{1}^{g}, where $g \in B$ (see Remark 8.7, Section 8.2). We finalise Bhattacharjee's work and prove that the number of conjugacy classes in W_{1} of maximal subgroups of the form $M_{2}(L)^{g}$, where $g \in B$, is the same as the number of conjugacy classes in A_{m} of maximal subgroups L of A_{m} (see Remark 8.8, Section 8.2).

Additionally, due to classifying all the maximal subgroups of W_{1} by conjugation, we have been able to count them precisely.

Corollary 8.4. Let W_{1} be the group as defined in Theorem 8.3. Then the number of maximal subgroups of the form:

- M_{1}^{g}, where $g \in B$, is $\left|A_{m}\right|^{m-1}$;
- $M_{2}(L)^{g}$, where L is a maximal subgroup of A_{m} and $g \in B$, is

$$
\sum_{L \leq \max A_{m}}\left|A_{m}: L\right|^{m-1}
$$

where the summation runs over all maximal subgroups of A_{m}.

1.1.4 Finite generation for Wilson groups

Using M. Quick's work [25], we see that the Wilson groups $\underset{\leftarrow}{\lim }\left(G_{n}\right)_{n \geq 0}$ such that $\left|G_{0}\right|>35$! are positively finitely generated by two elements. Therefore any Wilson group is finitely generated provided $\left|G_{0}\right|>35$!.

1.2 Thesis outline

We now set out to the reader how the material of this thesis is organised within the chapters. Notations, definitions and basic group theory results, required for the understanding of this thesis, are contained in Chapter 2.

Chapter 3 considers a motivating example of just infinite profinite groups, which are not hereditarily just infinite, that are not virtually pro- p. We denote these groups, which are infinite iterated wreath products of alternating groups, by W. Their construction is very similar to that of Wilson's construction.

The techniques used to characterise the normal subgroups of the groups W are the same techniques that are used to characterise the normal subgroups of an arbitrary Wilson group. In chapter 3, we completely characterise the normal subgroups of the groups W and in so doing show that these groups are just infinite. We give an explanation as to why the groups W are not hereditarily just infinite and are not virtually pro- p.

In chapter 4 we give a detailed description of Wilson's construction, as described by J. S. Wilson in his paper [32]. Chapter 4 then explains how an arbitrary Wilson group arises from such a construction. The proofs of Theorem 1.1 and Corollary 1.2, found in [32], are briefly discussed. In particular, it is reasoned why the Wilson groups are not virtually pro- p.

We look at the structure of Wilson groups by first finding their normal subgroups. Chapter 5 contains a complete characterisation of the closed normal subgroups of any arbitrary Wilson group.

Since a normal subgroup of a group is also a subnormal subgroup of that group, to continue investigating the structure of Wilson groups, it is natural to consider subnormal subgroups. Every open subgroup of a pro-p group is subnormal. Therefore it is also appropriate to study subnormal subgroups of Wilson groups because we are not in the pro- p setting, where studying all the open subgroups provides all the subnormal subgroups.

Work concerning the subnormal subgroups of Wilson groups is contained in Chapter 6 . This is the prime chapter of the thesis. The chapter is formed in three parts, since describing subnormal subgroups of Wilson groups was found to be rather complicated.

The results of the section after the introduction, Section 6.2, only applies to particular Wilson groups. That is, Wilson groups where the unspecified permutation representations of the finite groups G_{n}, in Wilson's construction, are taken to be the action of the groups on themselves by right multiplication. This guarantees that subnormal subgroups of the groups G_{n} have all their orbits containing at least two elements. The closed subnormal subgroups of these particular Wilson groups are completely characterised in Section 6.2. In fact, this characterisation holds for all Wilson groups such that the actions of the subnormal subgroups of the groups G_{n}, in their construction, have all their orbits containing at least two elements.

In Section 6.3, to give an indication of the path to take for finding subnormal subgroups of a general Wilson group, we find the subnormal subgroups of the just infinite profinite groups W first described in Section 3.2. We do this because the actions of subnormal subgroups of the finite groups W_{n}, involved in the construction of groups W, can have orbits of one element. Section 6.3 completely classifies the subnormal subgroups of the groups W. In particular, a recursive formula is given to calculate subnormal length.

The main results of this thesis are contained in Section 6.4. Here the closed subnormal subgroups of any arbitrary Wilson group have been completely classified. For an arbitrary Wilson group, the actions of subnormal subgroups of the finite groups G_{n} involved in the construction may have orbits of one element. The characterisation has been achieved by using Corollary 6.9 , which has been developed previously in Section 6.3.

The normal subgroup growth and the subnormal subgroup growth of a Wilson group have been worked on, in Section 7.1 of Chapter 7 . Since the normal subgroups and the subnormal subgroups of the finite Wilson quotients G_{n} have been completely classified, it was natural to count the number of normal subgroups and subnormal subgroups of a Wilson group up to index at most $\left|G_{n}\right|$, for $n \geq 0$. We give upper and lower bounds for the size of G_{n} in order to make statements about the rate of types of growth.

In Section 7.2, the number of subnormal subgroups of the infinite iterated wreath products W constructed from the alternating group A_{m}, have been counted by using a correspondence to the number of subtrees of the infinite m-regular rooted tree.

Another type of subgroup of a group is a maximal subgroup. We would have liked to have investigated the structure of Wilson's groups further by finding their maximal subgroups. Chapter 8 looks at maximal subgroups of Wilson groups. Again, to gain ideas of how to proceed, we resort to examining the maximal subgroups of the easier example of the infinite iterated wreath products of alternating groups W first described in Section 3.2. In particular, Section 8.2 examines the maximal subgroups
of the finite group W_{1} used to construct W and Section 8.3 goes on to examine the maximal subgroups of the finite group W_{2} used to construct W.

In Section 8.4, information from Section 8.2 and Section 8.3 is used to describe the maximal subgroups of the first Wilson quotients $G_{1}=X_{1} \imath_{L_{1}}\left(X_{1} \imath_{\Omega_{d_{1}}} G_{0}\right)$ such that $G_{0}=X_{0}$ and X_{1} are taken to be the alternating groups, and the unspecified permutation representation of the group G_{0} is chosen to be the natural action of the alternating group.

Chapter 9 concerns positive finite generation, and therefore finite generation of Wilson groups. As an analogy, the finite generation of the infinite iterated wreath products W is considered.

Open problems which have evolved from the work produced in this thesis are listed in Chapter 10. They are referred to within the body of the thesis when they come to light.

Chapter 2

Preliminaries

The purpose of this chapter is to set out the notations, definitions and basic group theory results required for the understanding of the thesis.

2.1 Wreath products

Both the just infinite groups in Chapter 3 and the Wilson groups are constructed from permutational wreath products, therefore it is beneficial to recall the definition.

Definition 2.1. Let U be a finite permutation group acting on a finite set Ω. Let X be a finite group. Define

$$
V=\prod_{\omega \in \Omega} X_{\omega},
$$

where $X_{\omega} \cong X$ for all $\omega \in \Omega$.
The wreath product of X by U, denoted $X \imath_{\Omega} U$, is the semidirect product $V \rtimes U$. The group U acts on V by

$$
\left(x_{\omega}\right)_{\omega \in \Omega}{ }^{u}=\left(x_{\omega \cdot u^{-1}}\right)_{\omega \in \Omega},
$$

where $u \in U$ and $\left(x_{\omega}\right)_{\omega \in \Omega} \in V$. The normal subgroup V is called the base group of the wreath product. The group U is sometimes referred to as the top group of the wreath product.

Let X and Y be permutation groups acting on the sets Ω_{1} and Ω_{2} respectively. The wreath product constructed from the permutation groups X and Y is again a permutation group and it acts on the set $\Omega_{1} \times \Omega_{2}$. When we wish to view the wreath product as such, it is called the permutational wreath product.

2.1.1 Minimal normal subgroups of some wreath products

In this subsection, we consider wreath products only where the base group is a product of finite non-abelian simple groups. The fact (3.1) in [32] describes minimal normal subgroups of these wreath products when the action is transitive. Lemma 2.3, below, is a generalisation of this fact (3.1), since it does not assume that the action is transitive. It says that the minimal normal subgroups of such wreath products $X \imath_{\Omega} U$ are contained in V and each corresponds to a U-orbit. This lemma is applied in Proposition 6.8 for the classification of subnormal subgroups of Wilson groups and subnormal subgroups of the just infinite iterated wreath products W considered in Chapter 3.

First we need a preliminary lemma to help in the proof of Lemma 2.3. (Lemma 2.2 is also used later in the proof of Proposition 6.2.)

Lemma 2.2. Let U be a finite permutation group acting on a finite set Ω with orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$. Let X be a finite non-abelian simple group. Define the permutational wreath product $G=X \imath_{\Omega} U$. Denote the base group of the wreath product as $V=$ $\prod_{\omega \in \Omega} X_{\omega}$, where $X_{\omega} \cong X$ for all $\omega \in \Omega$.

Define

$$
N_{i}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \notin \Omega_{i}\right\},
$$

for each $i=1,2, \ldots, r$. Suppose that N is a normal subgroup of G.
To show that N contains N_{i}, for each $i=1,2, \ldots, r$, it is sufficient to prove that N contains the coordinate subgroup

$$
V_{\omega_{1}}=\left\{\left(y_{\omega}\right)_{\omega \in \Omega} \in V: y_{\omega}=1 \text { if } \omega \neq \omega_{1}\right\}
$$

for at least one $\omega_{1} \in \Omega_{i}$.
Proof. Since $N_{i}=\prod_{\omega_{1} \in \Omega_{i}} V_{\omega_{1}}$, it is enough to show that N contains the coordinate subgroups $V_{\omega_{1}}$, for every $\omega_{1} \in \Omega_{i}$. In fact, it is enough to show that N contains $V_{\omega_{1}}$ for at least one $\omega_{1} \in \Omega_{i}$. This is because U acts transitively on the orbit Ω_{i} and, for any $u \in U$, we have $V_{\omega_{1}}^{u}=V_{\omega_{1} \cdot u^{-1}}$.

Lemma 2.3. Let group $G=X \imath_{\Omega} U$ be the permutational wreath product as defined in Lemma 2.2.

Then the minimal normal subgroups of G are contained in V and are precisely the groups

$$
\begin{aligned}
& N_{1}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \notin \Omega_{1}\right\}, \\
& N_{2}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \notin \Omega_{2}\right\},
\end{aligned}
$$

$$
N_{r}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \notin \Omega_{r}\right\} .
$$

Proof. We want to show that the minimal normal subgroups of G are precisely the groups $N_{1}, N_{2}, \ldots, N_{r}$. Obviously, this will imply that the minimal normal subgroups of G are contained in V.

Let $i \in\{1,2, \ldots, r\}$. Since $G=V U$, to check that N_{i} is normal it is sufficient to show that $\left[N_{i}, V\right] \subseteq N_{i}$ and $\left[N_{i}, U\right] \subseteq N_{i}$.

To show $\left[N_{i}, V\right] \subseteq N_{i}$, let $\underline{x}=\left(x_{\omega}\right)_{\omega \in \Omega} \in N_{i}$ and $\underline{y}=\left(y_{\omega}\right)_{\omega \in \Omega} \in V$. Setting $\Delta:=\Omega \backslash \Omega_{i}$ we have $\underline{x}=\left(\left(x_{\omega}\right)_{\omega \in \Omega_{i}},(1)_{\omega \in \Delta}\right)$ and $\underline{y}=\left(\left(y_{\omega}\right)_{\omega \in \Omega_{i}},\left(y_{\omega}\right)_{\omega \in \Delta}\right)$. So $[\underline{x}, \underline{y}]=$ $\left(\left[x_{\omega}, y_{\omega}\right]\right)_{\omega \in \Omega}$ can be written as

$$
\left(\left(\left[x_{\omega}, y_{\omega}\right]\right)_{\omega \in \Omega_{i}},\left(\left[1, y_{\omega}\right]\right)_{\omega \in \Delta}\right)=\left(\left(\left[x_{\omega}, y_{\omega}\right]\right)_{\omega \in \Omega_{i}},(1)_{\omega \in \Delta}\right) \in N_{i} .
$$

To show $\left[N_{i}, U\right] \subseteq N_{i}$, let $\underline{x}=\left(x_{\omega}\right)_{\omega \in \Omega} \in N_{i}$ and $u \in U$. Setting $\Delta:=\Omega \backslash \Omega_{i}$ we have $\underline{x}=\left(\left(x_{\omega}\right)_{\omega \in \Omega_{i}},(1)_{\omega \in \Delta}\right)$. Since Ω_{i} is a U-orbit, this allows us to write $[\underline{x}, u]=\underline{x}^{-1} \cdot \underline{x}^{u}$ as

$$
\left(\left(x_{\omega}^{-1}\right)_{\omega \in \Omega_{i}},\left(1^{-1}\right)_{\omega \in \Delta}\right) \cdot\left(\left(x_{\omega \cdot u^{-1}}\right)_{\omega \in \Omega_{i}},(1)_{\omega \in \Delta}\right)=\left(\left(x_{\omega}^{-1} x_{\omega \cdot u^{-1}}\right)_{\omega \in \Omega_{i}},(1)_{\omega \in \Delta}\right) \in N_{i} .
$$

Next we show that N_{i} is minimal normal in G. For this, we need that the normal closure in G of any non-trivial element $\underline{x}=\left(x_{\omega}\right)_{\omega \in \Omega} \in N_{i}$ is equal to N_{i}.
(*) Choose $\omega_{1} \in \Omega_{i}$ such that $x_{\omega_{1}} \neq 1$. Since X is non-abelian simple it has trivial centre and we can find $y \in X$ such that $\left[x_{\omega_{1}}, y\right] \neq 1$. Consider $\underline{y}=\left(y_{\omega}\right)_{\omega \in \Omega} \in V$ with $y_{\omega}=y$ if $\omega=\omega_{1}$ and $y_{\omega}=1$ otherwise. Then $[\underline{x}, \underline{y}] \in\langle\underline{x}\rangle^{\bar{G}}$ can be written as $\left(\left(\left[x_{\omega}, y\right]\right)_{\omega \in\left\{\omega_{1}\right\}},(1)_{\omega \in \Omega \backslash\left\{\omega_{1}\right\}}\right) \neq 1$. As X is simple, the normal closure of $[\underline{x}, \underline{y}]$ in V is equal to $V_{\omega_{1}}$. Therefore $V_{\omega_{1}} \subseteq\langle\underline{x}\rangle^{G}$ and Lemma 2.2 proves the claim.

It remains to prove that every minimal normal subgroup of G is one of $N_{1}, N_{2}, \ldots, N_{r}$. Let N be a minimal normal subgroup of G.

Suppose $N \subseteq V$. We can find $1 \neq \underline{x}=\left(x_{\omega}\right)_{\omega \in \Omega} \in N$. Replacing $\langle\underline{x}\rangle^{G}$ by N in argument $(*)$ implies $N_{i} \subseteq N$, for one $i=1,2, \ldots, r$.

Now suppose $N \nsubseteq V$. Then we can find $u \underline{x}=u\left(x_{\omega}\right)_{\omega \in \Omega} \in N$ with $u \in U \backslash\{1\}$ and $\underline{x} \in V$. Since $u \neq 1$, we can obtain $\omega_{1} \in \Omega$ such that $\omega_{2}:=\omega_{1} \cdot u \neq \omega_{1}$. Choose $y \in X \backslash\{1\}$. Consider $\underline{y}=\left(y_{\omega}\right) \in V$ with $y_{\omega}=y$ if $\omega=\omega_{1}$ and $y_{\omega}=1$ otherwise. Then
$[\underline{y}, u \underline{x}]=\underline{y}^{-1}\left(\underline{x}^{-1} \underline{y}^{u} \underline{x}\right) \in N$ can be written as

$$
\begin{align*}
\left(\left(y^{-1}\right)_{\omega=\omega_{1}},(1)_{\omega=\omega_{2}},\right. & \left.(1)_{\omega \in \Omega \backslash\left\{\omega_{1}, \omega_{2}\right\}}\right) . \\
& \left(\left(x_{\omega_{1}}^{-1} \cdot 1 \cdot x_{\omega_{1}}\right)_{\omega=\omega_{1}},\left(x_{\omega_{2}}^{-1} \cdot y \cdot x_{\omega_{2}}\right)_{\omega=\omega_{2}},\left(x_{\omega}^{-1} \cdot 1 \cdot x_{\omega}\right)_{\omega \in \Omega \backslash\left\{\omega_{1}, \omega_{2}\right\}}\right) \\
= & \left(\left(y^{-1}\right)_{\omega=\omega_{1}},\left(y^{x_{\omega_{2}}}\right)_{\omega=\omega_{2}},(1)_{\omega \in \Omega \backslash\left\{\omega_{1}, \omega_{2}\right\}}\right) . \tag{2.1}
\end{align*}
$$

Since $y \neq 1$, we have $\left(\left(y^{-1}\right)_{\omega=\omega_{1}},\left(y^{x_{\omega_{2}}}\right)_{\omega=\omega_{2}},(1)_{\omega \in \Omega \backslash\left\{\omega_{1}, \omega_{2}\right\}}\right) \neq 1$. As X is simple, the normal closure of $[\underline{y}, u \underline{x}]$ in V contains $V_{\omega_{1}}$. Therefore $V_{\omega_{1}} \subseteq N$ and Lemma 2.2 proves the claim.

2.2 Subnormal subgroups

A subgroup T of a group G is subnormal in G if there exists subgroups

$$
G=T_{0} \geq T_{1} \geq \ldots \geq T_{k}=T \text { such that } T_{i} \unlhd T_{i-1},
$$

for each $i=1,2, \ldots, k$. When k is the smallest possible number with this feature one says that T is subnormal of length k in G.

2.2.1 Normal subgroups of some direct products

To describe subnormal subgroups in Chapter 6, we will need to know the normal subgroups of a direct product of finite non-abelian simple groups. Therefore we will frequently make use of the following fact.

Lemma 2.4. A normal subgroup of a direct product of non-abelian simple groups is a direct product of some of its factors.

2.3 Maximal subgroups

A proper subgroup M of a group G is maximal in G if there exists no proper subgroup L of G strictly containing M.

2.3.1 The alternating groups

In Chapter 8, the classification of the maximal subgroups of wreath products of alternating groups involves the maximal subgroups of alternating groups. The O'Nan-Scott Theorem can be used to classify all the maximal subgroups of A_{m}, the alternating
group of degree m; see [33, Sec. 2.6] for a very readable version. It appeared as a classification of the maximal subgroups of the symmetric group at a conference in Santa Cruz on finite groups [28]. A maximal subgroup L of A_{m} is of one of the following six types.
(a) $\left(S_{l} \times S_{k}\right) \cap A_{m}$, with $m=l+k$ and $l \neq k$ (intransitive type);
(b) $\left(S_{l} \backslash S_{k}\right) \cap A_{m}$, with $m=l k, l>1$ and $k>1$ (imprimitive type);
(c) $\operatorname{AGL}_{k}(p) \cap A_{m}$, with $m=p^{k}$ and p a prime (affine type);
(d) $\left(H^{k} .\left(\operatorname{Out}(H) \times S_{k}\right)\right) \cap A_{m}$, with H a non-abelian simple group, $k \geq 2$ and $m=$ $|H|^{k-1}$ (diagonal type);
(e) $\left(S_{l} \backslash S_{k}\right) \cap A_{m}$, with $m=l^{k}, l \geq 5$ and $k>1$, excluding the case where L is imprimitive on $\Omega^{*[1]}=\{1,2, \ldots, m\}$ (product action type);
(f) $H \triangleleft L \leq \operatorname{Aut}(H)$, with H a non-abelian simple group, $H \neq A_{m}$ and L acting primitively on $\Omega^{*[1]}=\{1,2, \ldots, m\}$ (almost simple type).

Here, S_{l} denotes the symmetric group of degree $l ; \operatorname{AGL}_{k}(p)$ denotes the affine general linear group over the field of order $p ; \operatorname{Out}(H)$ denotes the outer automorphism group of H; and $\operatorname{Aut}(H)$ denotes the automorphism group of H.

However, not all the subgroups of type (a) to (f) may be maximal in A_{m}. The paper [16] by M. W. Liebeck, C. E. Praeger and J. Saxl says that such groups L are in general maximal and gives an explicit list of exceptions.

2.4 The normaliser of a direct product in a wreath product

The following result occurs in the proof of Theorem 8.3, in Section 8.2, where the maximal subgroups of the groups $W_{1}=A_{m} \sum_{\Omega^{*[1]}} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$ and $m \geq 5$, are characterised up to conjugation. The result shows that the normaliser in the wreath product $X z_{\Omega} U$ of the direct product H^{Ω}, where H is a subgroup of X, can be computed from the normaliser of H in X.

Lemma 2.5. Let U be a finite permutation group acting on a finite set $\Omega=\{1,2, \ldots, n\}$. Let X be a finite group. Define the permutational wreath product $G=X z_{\Omega} U$.

Suppose H is a subgroup of X. Then

$$
N_{G}\left(H^{\Omega}\right)=\left(N_{X}(H)\right)^{\Omega} U=\left(N_{X}(H)\right)^{\Omega} \rtimes U .
$$

Proof. Now $\left(g_{1}, g_{2}, \ldots, g_{n}\right) s \in N_{G}\left(H^{\Omega}\right)$
if and only if $\left(H^{\Omega}\right)^{\left(g_{1}, g_{2}, \ldots, g_{n}\right) s}=\left(H^{g_{1}} \times H^{g_{2}} \times \ldots \times H^{g_{n}}\right)^{s}=H^{\Omega}$,
if and only if $H^{g_{i}}=H$, for all $i \in \Omega$,
if and only if $g_{i} \in N_{X}(H)$, for all $i \in \Omega$,
if and only if $\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in\left(N_{X}(H)\right)^{\Omega}$.

Then $N_{G}\left(H^{\Omega}\right)=\left(N_{X}(H)\right)^{\Omega} U$. Further, $\left(N_{X}(H)\right)^{\Omega} U=\left(N_{X}(H)\right)^{\Omega} \rtimes U$ as $\left(N_{X}(H)\right)^{\Omega}$ is the intersection of $N_{G}\left(H^{\Omega}\right)$ with the base group X^{Ω}.

2.5 Profinite groups

In this section, we define the concept of profinite groups and give some basic properties. There are many characterisations of a profinite group; see [15, Ch. I] for a readable overview of profinite theory that is more specific to profinite groups. However, the prevalent one of this thesis is that of a profinite group being an inverse limit of finite groups.

A directed set is a partially ordered set I with respect to \preceq with the property that for all $i, j \in I$ there exists $k \in I$ such that $i \preceq k$ and $j \preceq k$. For our work any directed set is taken to be the set $\mathbb{N} \cup\{0\}$ with respect to the ordinary order-relation \leq.

Definition 2.6. An inverse system $\left(G_{i}, \varphi_{i j}\right)$ of topological groups indexed by a directed set I consists of a collection G_{i}, for $i \in I$, of topological groups and a collection of continuous group homomorphisms $\varphi_{i j}: G_{j} \longrightarrow G_{i}$ defined whenever $i \preceq j$, for $i, j \in I$, satisfying

$$
\varphi_{i i}=\operatorname{id}_{G_{i}} \text { and } \varphi_{i j} \varphi_{j k}=\varphi_{i k}
$$

whenever $i \preceq j \preceq k$, for $i, j, k \in I$.
Definition 2.7. An inverse limit of an inverse system $\left(G_{i}, \varphi_{i j}\right)$ of topological groups is a topological group G with a collection of continuous group homomorphisms φ_{i} : $G \longrightarrow G_{i}$, for all $i \in I$, such that

$$
\varphi_{i j} \varphi_{j}=\varphi_{i}
$$

whenever $i \preceq j$, for $i, j \in I$.
In addition, the inverse limit has the following universal property: whenever H is a topological group and $\psi_{i}: H \longrightarrow G_{i}$, for all $i \in I$, is a collection of continuous group homomorphisms satisfying $\varphi_{i j} \psi_{j}=\psi_{i}$ whenever $i \preceq j$, for $i, j \in I$, then there is a unique continuous group homomorphism $\psi: H \longrightarrow G$ such that $\varphi_{i} \psi=\psi_{i}$ for each i.

The inverse limit is denoted by $\underset{\leftarrow}{\lim }\left(G_{i}\right)_{i \in I}$.
The maps $\varphi_{i}: G \longrightarrow G_{i}$ of the inverse limit are not necessarily surjective, however, without loss of generality, the maps φ_{i} can be defined as being surjective. Therefore the inverse limit $\lim _{\longleftarrow}\left(G_{i}\right)_{i \in I}$ is the group

$$
\left\{\left(g_{i}\right)_{i \in I} \in \prod_{i \in I} G_{i}: \varphi_{i j}\left(g_{j}\right)=g_{i} \text { whenever } i \preceq j\right\},
$$

which is a subgroup of the direct product $\prod_{i \in I} G_{i}$. We will see that for the profinite groups considered in our work the maps φ_{i} are always surjective.

Definition 2.8. A profinite group is the inverse limit of an inverse system of finite groups.

Finite groups G_{i}, for $i \in I$, are regarded as topological groups with the discrete topology. Then the direct product $\prod_{i \in I} G_{i}$ is a topological group when given the product topology. In this way, the inverse limit $\lim \left(G_{i}\right)_{i \in I}$, with the induced topology, becomes a topological group. Hence profinite groups are topological groups.

Another characterisation is that a profinite group is a compact Hausdorff topological group such that every open neighbourhood of the identity element contains an open subgroup. Therefore the open subsets of a profinite group G are precisely those sets which can be written as unions of cosets $g N$ of open normal subgroups $N \unlhd_{o} G$.

Let G be any group. Define

$$
I=\{N \unlhd G: N \text { has finite index in } G\}
$$

with respect to reverse inclusion. That is, $N \preceq M$ if and only if $M \subseteq N$. Now I is a directed set because the intersection of two normal subgroups of finite index is a normal subgroup of finite index. Define the natural projections

$$
\varphi_{N M}: \frac{G}{M} \longrightarrow \frac{G}{N}
$$

whenever $N \preceq M$. The finite quotients G / N and maps $\varphi_{N M}$ form a natural inverse system. The inverse limit $\widehat{G}:=\lim _{\leftarrow}(G / N)$ of this inverse system is a profinite group. The group \widehat{G} is called the profinite completion of G.

Let p be a fixed prime. The normal subgroups of \mathbb{Z} whose index is a power of p are
of the form $p^{i} \mathbb{Z}$, for $i \in \mathbb{N}$. The finite quotient groups $\mathbb{Z} / p^{i} \mathbb{Z}$ and natural projections

$$
\varphi_{i j}: \frac{\mathbb{Z}}{p^{j} \mathbb{Z}} \longrightarrow \frac{\mathbb{Z}}{p^{i} \mathbb{Z}}
$$

whenever $p^{j} \mathbb{Z} \subseteq p^{i} \mathbb{Z}$ form an inverse system. The inverse limit $\mathbb{Z}_{p}:=\underset{\leftarrow}{\lim \mathbb{Z}} / p^{i} \mathbb{Z}$ of this inverse system is called the group of p-adic integers. Each element of \mathbb{Z}_{p} has a unique p-adic expansion

$$
a_{0}+a_{1} p+a_{2} p^{2}+\ldots=\left(\ldots a_{2} a_{1} a_{0}\right)_{p},
$$

where $a_{i} \in\{0,1, \ldots, p-1\}$ are called p-adic digits.
Definition 2.9. Let p be a fixed prime. A pro-p group is a topological group that is isomorphic to the inverse limit of finite p-groups.

Lemma 2.10. Let G be a profinite group.
Then every open subgroup of G is closed.
The contrapositive of the following result is used in Section 3.3 to prove that the infinite iterated wreath products W, constructed from alternating groups, are not hereditarily just infinite. The result is also used in showing that the groups W (in Section 3.4) are just infinite.

Lemma 2.11. Let G be a profinite group. Suppose H is a closed subgroup of G.
Then H is an open subgroup of G if and only if H has finite index in G.
The following result, found in [30, Lem. 0.3.1 (h)], is used to describe normal subgroups and subnormal subgroups of the profinite groups present in the thesis.

Lemma 2.12. Let G be a compact topological group. Suppose X_{i}, for $i \in I$, is a collection of closed subsets of G with the property that for all $i, j \in I$ there exists $k \in I$ such that $X_{k} \subseteq X_{i} \cap X_{j}$.

If Y is a closed subset of G then

$$
\left(\bigcap_{i \in I} X_{i}\right) Y=\bigcap_{i \in I} X_{i} Y .
$$

Let X be a subset of a profinite group G. We say that X generates G (topologically) if the subgroup generated by X is dense in G. The profinite group G is finitely generated (topologically) if it contains a finite subset X that generates G (topologically). We usually refer to topological generating sets as generating sets because we mostly consider profinite groups as topological groups.

A profinite group has a property virtually if it has an open normal subgroup with that property.

A profinite group G is just infinite if it is infinite and every non-trivial closed normal subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is just infinite.

2.6 Subgroup growth

Studying subgroup growth of a group G involves considering the growth rate of the function

$$
n \rightarrow s_{n}(G),
$$

where $s_{n}(G)$ denotes the number of subgroups of index at most n in G. Subgroup growth gives a rough classification of groups into growth types.

A group G has polynomial subgroup growth of degree c if there exists a constant c such that

$$
s_{n}(G) \leq n^{c} \text { for all } n
$$

In particular, we say that the growth type is linear if the constant $c=1$. In this thesis, we are concerned with other subgroup counting functions, which are:
$s_{n}^{\triangleleft}(G)$ denotes the number of normal subgroups of index at most n in G;
$s_{n}^{\triangleleft \triangleleft}(G)$ denotes the number of subnormal subgroups of index at most n in G;
$m_{n}(G)$ denotes the number of maximal subgroups of index n in G.
The language of growth types is extended to these functions in a natural way.

2.7 Positive finite generation

A profinite group G has a natural compact topology, induced by the discrete topology on the finite groups in the inverse system. Therefore it has a finite Haar measure μ, which is determined uniquely by the algebraic structure of G. We normalise this measure so that $\mu(G)=1$ and we can consider G as a probability space. Thus we can define

$$
P(G, k)=\mu\left\{\left(g_{1}, g_{2}, \ldots, g_{k}\right) \in G^{(k)}: g_{1}, g_{2}, \ldots, g_{k} \text { topologically generate } G\right\},
$$

for any positive integer k, where μ also denotes the product measure on $G^{(k)}$. The Haar measure on profinite groups is discussed in [8, Ch. 18].

A profinite group G is positively finitely generated (PFG) if, for some k, the probability $P(G, k)$ that k randomly chosen elements of G topologically generate G is positive. This term was formally introduced with A. Mann's paper [18] and PFG groups were surveyed in [17, Ch. 11].

Chapter 3

Infinite iterated wreath products \ldots ．．．A_{m} 々 A_{m} 々．．．〉 A_{m} ，where $m \geq 5$

3．1 Introduction

Until recently all known hereditarily just infinite profinite groups were virtually pro－p groups．However，if one looks at just infinite profinite groups then it is not difficult to construct some that are not virtually pro－p groups．This chapter briefly describes some such just infinite profinite groups，which have been studied，in particular，by M．Bhattacharjee［3］．This is useful because their construction has similarities with that of Wilson＇s construction．The same techniques used to show that these groups are just infinite will be used to show that the groups constructed by Wilson are just infinite．

The just infinite profinite groups in this chapter are constructed from inverse limits of iterated wreath products of alternating groups．The properties described below remain true whether the alternating groups involved in the construction are allowed to vary or not．However，for ease of reading，the alternating groups are taken to be the same．In fact，the properties described still hold if the alternating groups are generalised to any arbitrary finite non－abelian simple group．The actions of these non－ abelian simple groups would be required to be faithful and transitive．

3．2 The construction

We now construct the just infinite profinite groups．Fix the alphabet $A=\{1,2, \ldots, m\}$ ， where $m \geq 5$ ．We define the sets

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in A\right\},
$$

for each $j=1,2, \ldots$ ．Here $i_{1} i_{2} \ldots i_{j}$ denotes a sequence of numbers and not a product of numbers．The symbol $*$ used for concatenation is written in order to remind the reader of this．

Set $W_{0}=A_{m}$ ，the alternating group of degree m ．The group A_{m} acts naturally on the set $\Omega^{*[1]}=\{1,2, \ldots, m\}$ ．We form the permutational wreath product $A_{m}{ }_{\Omega^{*[1]}} A_{m}$ ， which we denote by W_{1} ．This group is described as the semidirect product $W_{1}=$ $A_{m}^{(m)} \rtimes W_{0}$ ，where W_{0} acts on $A_{m}^{(m)}$ by permuting the factors．

We observe that W_{1} acts naturally on the finite m－regular rooted tree of length 2 ． This has been depicted in Figure 3.1 for $m=5$ ．In this action the root vertex \emptyset is fixed and the group W_{1} acts by coordinate permutations on the bottom layer of 25 vertices．

Figure 3．1：The wreath product $A_{5} 乙 A_{5}=\left(A_{5} \times A_{5} \times A_{5} \times A_{5} \times A_{5}\right) \rtimes A_{5}$ acting naturally on the 5 －regular rooted tree of length 2 ．

Now the group W_{1} acts naturally on m^{2} elements．We can then form the permu－ tational wreath product $A_{m} \mathrm{I}_{\Omega^{*}[2]} A_{m} \mathrm{I}_{\Omega^{*[1]}} A_{m}$ ，which we denote by W_{2} ．This is the semidirect product $W_{2}=A_{m}^{\left(m^{2}\right)} \rtimes W_{1}$ ．The process can be continued to form the nth iterated wreath product

$$
W_{n}=A_{m} \imath_{\Omega^{*[n]}} \cdots z_{\Omega^{*}[2]} A_{m} \imath_{\Omega^{*[1]}} A_{m} .
$$

This is the same as the semidirect product $W_{n}=A_{m}^{\left(m^{n}\right)} \rtimes W_{n-1}$ ，for $n \geq 1$ ．
We construct a group W as the inverse limit of a sequence of finite groups $\left(W_{n}\right)_{n \geq 0}$
and the natural projections

$$
\theta_{n}: W_{n}=A_{m}^{\left(m^{n}\right)} \rtimes W_{n-1} \longrightarrow W_{n-1},
$$

for $n \geq 1$. The limit $W=\underset{\leftarrow}{\lim }\left(W_{n}\right)_{n \geq 0}$ has the natural projections $\phi_{n}: W \longrightarrow W_{n}$, for $n \geq 0$.

We give a pictorial description of the inverse limit W in Figure 3.2, below. The limit is indexed by the set $\mathbb{N} \cup\{0\}$ with respect to the ordinary order-relation \leq.

Figure 3.2: A pictorial description of the inverse limit W.

3.3 Verifying not hereditarily just infinite and not virtually pro- p

We now verify that all such groups W, as defined above, are not hereditarily just infinite. Fix $m \geq 5$. Define

$$
U=\operatorname{ker}\left(\phi_{0}: W \longrightarrow W_{0}\right) \cong W^{(m)},
$$

where $W^{(m)}$ denotes the direct product of m copies of W. Now U is an open subgroup of W because ϕ_{0} is a continuous map. However, $N \cong W^{(m-1)}$ is a closed normal subgroup of U such that the index $U / N \cong W$ is infinite. The contrapositive of Lemma 2.11 implies that N cannot be open in U.

The fact that the groups W are not virtually pro- p, for some prime p, is because the groups W_{n} are constructed from wreath products of non-abelian simple group A_{m}.

3.4 Verifying just infinite

The rest of this chapter is concerned with determining the normal subgroups of the profinite groups W, as defined above. This is completed in Corollary 3.3. In particular, this shows that the profinite groups W are just infinite.

In Corollary 3.3, the non-trivial closed normal subgroups of a group W are denoted by V_{j}, for $j \geq 0$. Due to the definition of these subgroups V_{j}, their indices in W can easily be calculated. We have the indices $\left|W: V_{j}\right|=\left|W_{j-1}\right|$, for $j \geq 1$, and the index $\left|W: V_{0}\right|=1$. All the indices are finite. The profinite group W is just infinite using Lemma 2.11.

Our work has been restricted in Corollary 3.3 to closed normal subgroups because we rely on Lemma 2.12, which only applies to normal subgroups that are closed. However, a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups of a group W, since it is finitely generated (see Chapter 9), are automatically closed. Therefore the characterisation of normal subgroups, in Corollary 3.3, covers all the normal subgroups of the groups W.

3.4.1 The normal subgroups

Initially, we proceed in Theorem 3.2 by determining all the normal subgroups of the finite groups W_{n}. The construction of $W_{n}=A_{m}^{\left(m^{n}\right)} \rtimes W_{n-1}$ gives an indication of the outcome.

The proof of Theorem 3.2 uses the following lemma.
Lemma 3.1. Let the finite groups W_{n}, for $n \geq 0$, be as defined above.
The unique minimal normal subgroup of W_{n} is the group $A_{m}^{\left(m^{n}\right)}$.
This lemma comes directly from a standard fact about permutational wreath products, see [32, (3.1)] or Lemma 2.3. That is because W_{n-1} acts transitively on m^{n} elements and also the kernel of the action of W_{n} on $A_{m}^{\left(m^{n}\right)}$ is $A_{m}^{\left(m^{n}\right)}$.

Theorem 3.2. Let W_{n}, for $n \geq 0$, be the finite groups as defined in Section 3.2. For $j \in\{1,2, \ldots, n+1\}$, define

$$
V_{j}^{n}=\operatorname{ker}\left(W_{n} \longrightarrow W_{j-1}\right)=A_{m}^{\left(m^{n}\right)} \rtimes \ldots \rtimes\left(A_{m}^{\left(m^{j+1}\right)} \rtimes A_{m}^{\left(m^{j}\right)}\right) \leq W_{n}
$$

and define

$$
V_{0}^{n}=W_{n}
$$

Then the normal subgroups of W_{n} are precisely the groups V_{j}^{n} and V_{0}^{n}. In particular,
they form a complete chain

$$
\{1\}=V_{n+1}^{n} \subsetneq V_{n}^{n} \subsetneq \ldots \subsetneq V_{1}^{n} \subsetneq V_{0}^{n}=W_{n}
$$

Proof. We first prove that V_{j}^{n} are normal subgroups of W_{n}. The homomorphisms $W_{n} \longrightarrow W_{j-1}$ have kernels V_{j}^{n}, for $j \in\{1,2, \ldots, n+1\}$.

We now prove, by induction on n, that V_{j}^{n} are the only normal subgroups of W_{n}. Suppose $N \unlhd W_{n}$. For $n=0$, all the normal subgroups of W_{0} are $V_{1}^{0}=\{1\}$ and $V_{0}^{0}=W_{0}$ holds as W_{0} is simple.

Now suppose $n \geq 1$. If $N=\{1\}$ then $N=V_{n+1}^{n}$. Assume $N \neq\{1\}$. We have $A_{m}^{\left(m^{n}\right)} \subseteq N$, since the group $A_{m}^{\left(m^{n}\right)}$ is the unique minimal normal subgroup of W_{n}, by Lemma 3.1. Then there are two possibilities: $A_{m}^{\left(m^{n}\right)}=N$ and $A_{m}^{\left(m^{n}\right)} \subsetneq N$.

For $A_{m}^{\left(m^{n}\right)}=N$ we are done, as $N=V_{n}^{n}$. We now look at the other possibility $A_{m}^{\left(m^{n}\right)}=V_{n}^{n} \subsetneq N$. The group V_{n}^{n} is the kernel of the homomorphism $\theta_{n}: W_{n} \longrightarrow W_{n-1}$. Then there is a one-to-one correspondence between the set of normal subgroups of W_{n} containing V_{n}^{n} and normal subgroups of W_{n-1}. By induction, we know that N is one of the groups V_{j}^{n}.

Corollary 3.3. Let $W=\lim _{\longleftarrow}\left(W_{n}\right)_{n \geq 0}$ be the inverse limit of the groups W_{n} as defined in Section 3.2. For $j \geq 0$, define

$$
V_{j}=\lim _{\longleftarrow}\left(V_{j}^{n}\right)_{n \rightarrow \infty}
$$

regarded as subgroups of W.
Then the non-trivial closed normal subgroups of W are precisely the groups V_{j}. In particular, they form a complete chain

$$
\ldots \subsetneq V_{n+2} \subsetneq V_{n+1} \subsetneq V_{n} \subsetneq \ldots \subsetneq V_{1} \subsetneq V_{0}=W
$$

Proof. Theorem 3.2 showed that V_{j}^{n}, for $j \in\{0,1, \ldots, n+1\}$, are all the normal subgroups of W_{n} and that they form the chain

$$
\{1\}=V_{n+1}^{n} \subsetneq V_{n}^{n} \subsetneq \ldots \subsetneq V_{1}^{n} \subsetneq V_{0}^{n}=W_{n}
$$

We recall that there is an inverse system of surjective homomorphisms $\theta_{n}: W_{n} \longrightarrow$ W_{n-1}, for $n \geq 1$, such that

$$
\theta_{n}\left(V_{j}^{n}\right)= \begin{cases}V_{j}^{n-1} & \text { for } 0 \leq j \leq n \tag{3.1}\\ \{1\} & \text { for } j=n+1\end{cases}
$$

Let $M \unlhd W$ be a non-trivial closed normal subgroup of W. Since W is an inverse limit, we can find $n \geq 0$ such that the image of M in W_{n} under the natural projection $\phi_{n}: W \longrightarrow W_{n}$ is non-trivial. (This argument is used in the proof of (2.2) in [32].) Therefore $\phi_{n}(M)=V_{j}^{n}$, for some $j \in\{0,1, \ldots, n\}$.

We claim that $M=V_{j}$. Since M is closed, it is enough to show that $\phi_{m}(M)=V_{j}^{m}$, for all $m \geq n$. Then $\phi_{m}(M)=\phi_{m}\left(V_{j}\right)$ implies $\operatorname{ker} \phi_{m} M=\operatorname{ker} \phi_{m} V_{j}$, for all $m \geq n$. Thus

$$
\begin{aligned}
M & =\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) M=\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} M\right) \\
& =\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} V_{j}\right)=\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) V_{j}=V_{j}
\end{aligned}
$$

using Lemma 2.12.
Clearly $\phi_{m}(M)=V_{j}^{m}$ is true for $m=n$. Now suppose $m>n$. From

$$
\{1\} \neq V_{j}^{m-1}=\phi_{m-1}(M)=\theta_{m}\left(\phi_{m}(M)\right)
$$

and mapping (3.1), we conclude $\phi_{m}(M)=V_{j}^{m}$.
Remark. The non-trivial normal subgroups of W can be written as $V_{j+1}=\operatorname{ker}\left(\phi_{j}\right.$: $\left.W \longrightarrow W_{j}\right)$, for $j \geq 0$, and $V_{0}=\operatorname{ker}(W \longrightarrow\{1\})$.

Chapter 4

Wilson groups

4.1 Wilson's construction

We now describe the hereditarily just infinite profinite groups constructed by Wilson in [32], which are not virtually pro- p. This construction provides numerous examples of groups with the properties described in Theorem 1.1.

Let $X_{0}, X_{1}, X_{2}, \ldots$ be any infinite sequence of finite non-abelian simple groups. Set $G_{0}=X_{0}$. The group G_{0} has a faithful transitive permutation representation of some degree d_{1}. For instance, when G_{0} acts on itself by right multiplication, and then $d_{1}=\left|G_{0}\right|$.

Suppose a group G_{n-1}, for $n \in \mathbb{N}$, with a faithful transitive permutation representation of degree d_{n} has been constructed. We construct the group G_{n} by two operations of taking permutational wreath products.

First let $L_{n}=X_{n}^{\left(d_{n}\right)}$, for $n \in \mathbb{N}$, the direct product of d_{n} copies of X_{n}. We form the first permutational wreath product

$$
X_{n} \backslash \Omega_{d_{n}} G_{n-1}, \text { where } \Omega_{d_{n}}=\left\{1,2, \ldots, d_{n}\right\} .
$$

This group is described as the semidirect product $L_{n} \rtimes G_{n-1}$, where G_{n-1} acts on L_{n} by permuting the factors.

Next we define a transitive permutation representation φ of $L_{n} G_{n-1}$ on the set L_{n}, with the subgroup L_{n} transitive. The ingredients are the action of L_{n} on itself by right multiplication and the action of G_{n-1} on L_{n} by conjugation. The action φ is

$$
\begin{equation*}
l \varphi\left(l^{\prime} g\right)=\left(l l^{\prime}\right)^{g}, \text { where } l \in L_{n} \text { and } l^{\prime} g \in L_{n} G_{n-1} . \tag{4.1}
\end{equation*}
$$

Let $M_{n}=X_{n}^{\left(\left|L_{n}\right|\right)}$, for $n \in \mathbb{N}$, the direct product of $\left|L_{n}\right|$ copies of X_{n}. Now we form
the second permutational wreath product

$$
X_{n} \imath_{L_{n}}\left(L_{n} G_{n-1}\right)
$$

which we denote by G_{n}. The group G_{n} is described as the semidirect product $M_{n} \rtimes$ $\left(L_{n} G_{n-1}\right)$, where the group $L_{n} G_{n-1}$ permutes the factors of M_{n} according to the permutation representation φ.

We now form the inverse limit G of the groups G_{n} as described above. The resulting group G is one of the groups having the properties stated in Theorem 1.1. We will refer to the groups arising from such a construction as Wilson groups. More specifically, a Wilson group G is the inverse limit of a sequence $\left(G_{n}\right)_{n \geq 0}$ of finite groups as defined above and the natural projections

$$
\theta_{n}: G_{n}=\left(M_{n} L_{n}\right) \rtimes G_{n-1} \longrightarrow G_{n-1}
$$

for $n \geq 1$. The limit $G=\underset{\longleftarrow}{\lim }\left(G_{n}\right)_{n \geq 0}$ has the natural projections $\phi_{n}: G \longrightarrow G_{n}$, for $n \geq 0$.

The following, Figure 4.1, illustrates Wilson's construction in detail, passing from the finite group G_{1} to the finite group G_{0}.

Figure 4.1: A pictorial description of Wilson's construction at level G_{1}.

We give an overview of the inverse limit G of a Wilson group in Figure 4.2, below.

The limit is indexed by the set $\mathbb{N} \cup\{0\}$ with respect to the ordinary order-relation \leq.

Figure 4.2: A pictorial description of the inverse limit G of a Wilson group.

4.2 Verifying hereditarily just infinite and not virtually pro- p

In this section, we briefly explain the proofs of Theorem 1.1 and Corollary 1.2, in Chapter 1. For further details the reader may refer to the original source of Wilson's paper [32].

Wilson develops the criterion (2.2) in [32], which says that the inverse limit of certain finite groups is either virtually abelian or hereditarily just infinite. Applying this criterion to the groups G_{n} as defined above, he shows that the Wilson groups are hereditarily just infinite by ruling out the possibility of them being virtually abelian. A Wilson group has all the composition factors of the finite continuous images non-abelian because the groups G_{n} are constructed from semidirect products of direct products of non-abelian simple groups $X_{0}, X_{1}, \ldots, X_{n}$.

We explain why the Wilson groups are not virtually pro- p, for some prime p. For a contradiction, suppose that a Wilson group G is virtually pro- p. We find a pro- p open normal subgroup N of G. Let K be an open normal subgroup of N. Then N / K is a finite p-group. Therefore all the composition factors of N / K are cyclic of order p. So G / K would have cyclic composition factors. That is G / K would have abelian composition factors. This contradicts the fact that all composition factors of finite continuous images of G are non-abelian.

It has been seen that every countably based profinite group can be embedded in
the product

$$
\prod_{n \geq 5} A_{n}=A_{5} \times A_{6} \times A_{7} \times \ldots
$$

of alternating groups, refer to [30, (4.1.6)]. To prove Corollary 1.2 , that every countably based profinite group can be embedded in a specific hereditarily just infinite profinite group, it suffices to embed the product $\prod_{n \geq 5} A_{n}$ in a specific Wilson group. For this embedding to take place, certain choices for X_{n} are required in the construction of this specific Wilson group. They are specified as $X_{n}=A_{n+5}$, for each $n \geq 0$.

The following technical result is used to prove that the Wilson groups are hereditarily just infinite, see [32, (3.2)].

Lemma 4.1 (Wilson [32]). Let the finite groups L_{n}, M_{n}, for $n \geq 1$, and G_{n}, for $n \geq 0$, be as defined above.
(a) The unique minimal normal subgroup of G_{n}, for $n \geq 1$, is M_{n}.
(b) The unique minimal normal subgroup of $L_{n} G_{n-1}$, for $n \geq 1$, is L_{n}.

The proof is elementary, but an important ingredient used from the construction of G_{n} is that the wreath product actions are transitive. Alternatively, the proof follows immediately from Lemma 2.3.

Lemma 4.1 is used in Chapter 5 to characterise the normal subgroups of the Wilson groups.

Chapter 5

Normal subgroups

5.1 General Wilson groups

In this chapter, we complete the characterisation of the closed normal subgroups of an arbitrary Wilson group. The characterisation holds for any choice of X_{i}, for $i \geq 0$, and for any choice of faithful transitive permutation representation of G_{n}, for $n \geq 1$, in the construction of a Wilson group.

Our work has been restricted in Lemma 5.2 to closed normal subgroups because we rely on Lemma 2.12, which only applies to normal subgroups that are closed. However, a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups of a finitely generated Wilson group are automatically closed. Therefore the characterisation of normal subgroups, in Corollary 5.3, covers all the normal subgroups of any Wilson group provided the first group in Wilson's construction has size $\left|G_{0}\right|>35$! (see Chapter 9).

In finding the normal subgroups, we can see directly that all the Wilson groups are just infinite, which is implicit from [32,(3.3)]. Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4.1. In Corollary 5.3, the non-trivial closed normal subgroups of G are denoted by P_{j} and Q_{j}, for $j \geq 0$. Due to the definition of these subgroups P_{j} and Q_{j}, their indices in G can easily be calculated. We have the indices $\left|G: P_{j}\right|=\left|G_{j}\right|$, for $j \geq 0$, and $\left|G: Q_{j}\right|=\left|L_{j} G_{j-1}\right|$, for $j \geq 1$, and the index $\left|G: Q_{0}\right|=1$. All the indices are finite. The profinite group G is just infinite using Lemma 2.11.

To describe normal subgroups of G, our strategy will be to first determine the normal subgroups of the finite groups G_{n}. As a motivation, the description of $G_{n}=$ $M_{n} \rtimes\left(L_{n} \rtimes G_{n-1}\right)$ implies $M_{n} \unlhd G_{n}$ and $M_{n} L_{n} \unlhd G_{n}$, for every $n \geq 1$. Therefore G_{n} has at least two types of normal subgroups.

For the purpose of what follows we define $M_{0}=G_{0}$.
Theorem 5.1. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. For $j \in\{0,1, \ldots, n\}$, define

$$
P_{j}^{n}=M_{n} \rtimes \ldots \rtimes\left(M_{j+1} \rtimes L_{j+1}\right)
$$

and define

$$
Q_{j}^{n}=M_{n} \rtimes \ldots \rtimes\left(M_{j+1} \rtimes\left(L_{j+1} \rtimes M_{j}\right)\right)
$$

Then the normal subgroups of G_{n} are precisely the groups P_{j}^{n} and Q_{j}^{n}. In particular, they form a complete chain

$$
\{1\}=P_{n}^{n} \subsetneq Q_{n}^{n} \subsetneq P_{n-1}^{n} \subsetneq \ldots \subsetneq Q_{1}^{n} \subsetneq P_{0}^{n} \subsetneq Q_{0}^{n}=G_{n}
$$

Proof. We first prove that P_{j}^{n} and Q_{j}^{n} are normal subgroups of G_{n}. The homomorphisms $G_{n} \longrightarrow G_{j}$ have kernels P_{j}^{n}, for $j \in\{0,1, \ldots, n\}$. The homomorphisms $G_{n} \longrightarrow G_{j} / M_{j}$ have kernels Q_{j}^{n}, for $j \in\{0,1, \ldots, n\}$.

We now prove, by induction on n, that P_{j}^{n} and Q_{j}^{n} are the only normal subgroups of G_{n}. Suppose $N \unlhd G_{n}$. For $n=0$, all the normal subgroups of G_{0} are $P_{0}^{0}=\{1\}$ and $Q_{0}^{0}=G_{0}$ holds as G_{0} is simple.

Now suppose $n \geq 1$. If $N=\{1\}$ then $N=P_{n}^{n}$. Assume $N \neq\{1\}$. We have $M_{n} \subseteq N$, since the group M_{n} is the unique minimal normal subgroup of G_{n}, by Lemma 4.1 (a). Then there are two possibilities: $M_{n}=N$ and $M_{n} \subsetneq N$.

For $M_{n}=N$ we are done, as $N=Q_{n}^{n}$. For $M_{n} \subsetneq N$ we have $M_{n} L_{n} \subseteq N$ because L_{n} is the unique minimal normal subgroup of $L_{n} G_{n-1}$, by Lemma 4.1 (b). From $M_{n} L_{n} \subseteq N$ we have two cases. That is $M_{n} L_{n}=N$ implies $N=P_{n-1}^{n}$ and we are done. Alternatively $M_{n} L_{n}=P_{n-1}^{n} \subsetneq N$. Now P_{n-1}^{n} is the kernel of the homomorphism $\theta_{n}: G_{n} \longrightarrow G_{n-1}$. Then there is a one-to-one correspondence between the set of normal subgroups of G_{n} containing P_{n-1}^{n} and normal subgroups of G_{n-1}. By induction, we know that N is one of the groups P_{j}^{n} or Q_{j}^{n}.

Figure 5.1, below, illustrates the chain of normal subgroups of the finite groups G_{n}, for $n \geq 0$.

Figure 5.1: The chain of normal subgroups of the finite group G_{n}.

Lemma 5.2 is required due to the two different types of notation for the normal subgroups of G_{n}.

Lemma 5.2. Given finite groups G_{n}, for $n \geq 0$, in which all the normal subgroups form a chain

$$
\{1\}=N_{2 n+2}^{n} \subsetneq N_{2 n+1}^{n} \subsetneq \ldots \subsetneq N_{2}^{n} \subsetneq N_{1}^{n}=G_{n}
$$

and an inverse system of surjective homomorphisms $\theta_{n}: G_{n} \longrightarrow G_{n-1}$, for $n \geq 1$, such that

$$
\theta_{n}\left(N_{i}^{n}\right)= \begin{cases}N_{i}^{n-1} & \text { for } 1 \leq i \leq 2 n, \tag{5.1}\\ \{1\} & \text { for } i \in\{2 n+1,2 n+2\}\end{cases}
$$

Then the inverse limit $G=\underset{\longleftarrow}{\lim }\left(G_{n}\right)_{n \geq 0}$ has non-trivial closed normal subgroups precisely $N_{i}=\lim _{\leftarrow}\left(N_{i}^{n}\right)_{n \rightarrow \infty}$, for $i \geq 1$, regarded as subgroups of G.

Proof. Let $M \unlhd G$ be a non-trivial closed normal subgroup of G. Since G is an inverse limit, we can find $n \geq 0$ such that the image of M in G_{n} under $\phi_{n}: G \longrightarrow G_{n}$ is non-trivial. Therefore $\phi_{n}(M)=N_{i}^{n}$, for some $i \in\{1,2, \ldots, 2 n+1\}$.

We claim that $M=N_{i}$. Since M is closed, it is enough to show that $\phi_{m}(M)=N_{i}^{m}$, for all $m \geq n$. Then $\phi_{m}(M)=\phi_{m}\left(N_{i}\right)$ implies $\operatorname{ker} \phi_{m} M=\operatorname{ker} \phi_{m} N_{i}$, for all $m \geq n$. Thus

$$
\begin{aligned}
M & =\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) M=\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} M\right) \\
& =\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} N_{i}\right)=\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) N_{i}=N_{i},
\end{aligned}
$$

using Lemma 2.12.
Clearly $\phi_{m}(M)=N_{i}^{m}$ is true for $m=n$. Now suppose $m>n$. From

$$
\{1\} \neq N_{i}^{m-1}=\phi_{m-1}(M)=\theta_{m}\left(\phi_{m}(M)\right)
$$

and mapping (5.1), we conclude $\phi_{m}(M)=N_{i}^{m}$.
Corollary 5.3. Let $G=\lim _{\leftarrow}\left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n} as defined in Section 4.1. For $j \geq 0$, define

$$
P_{j}=\lim _{\leftarrow}\left(P_{j}^{n}\right)_{n \rightarrow \infty}
$$

and define

$$
Q_{j}=\lim _{\leftarrow}\left(Q_{j}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of G.
Then the non-trivial closed normal subgroups of G are precisely the groups P_{j} and Q_{j}. In particular, they form a complete chain

$$
\ldots \subsetneq Q_{n+1} \subsetneq P_{n} \subsetneq Q_{n} \subsetneq P_{n-1} \subsetneq \ldots \subsetneq Q_{1} \subsetneq P_{0} \subsetneq Q_{0}=G .
$$

Proof. We apply Lemma 5.2 to the groups G_{n}, for $n \geq 0$, of Wilson's construction and their normal subgroups. Define

$$
N_{i}^{n}= \begin{cases}Q_{\lfloor(i-1) / 2\rfloor}^{n} & \text { if } i \text { is odd }, \\ P_{\lfloor(i-1) / 2\rfloor}^{n} & \text { if } i \text { is even },\end{cases}
$$

where $i \in\{1,2, \ldots, 2 n+2\}$. For each n, these normal subgroups of G_{n} were defined in Theorem 5.1. It was shown that these are all the normal subgroups of G_{n} and they form a chain.

The definition of the groups N_{i}^{n} also shows that the second condition for Lemma 5.2 is satisfied. For $1 \leq i \leq 2 n+2$,

$$
\theta_{n}\left(N_{i}^{n}\right)=\left\{\begin{array}{l}
\theta_{n}\left(Q_{\lfloor(i-1) / 2\rfloor}^{n}\right)=Q_{\lfloor(i-1) / 2\rfloor}^{n-1}=N_{i}^{n-1} \text { if } i \text { is odd, } \\
\theta_{n}\left(P_{\lfloor(i-1) / 2\rfloor}^{n}\right)=P_{\lfloor(i-1) / 2\rfloor}^{n-1}=N_{i}^{n-1} \text { if } i \text { is even. }
\end{array}\right.
$$

We take $Q_{n}^{n-1}, P_{n}^{n-1}, N_{2 n+1}^{n-1}$ and $N_{2 n+2}^{n-1}$ to be the trivial group $\{1\}$.
Remark 5.4. Fix a prime number p and let K be a finite field of characteristic $p>2$. The Nottingham group over K is the group $\mathcal{N}(K):=t+t^{2} K[[t]]$ of normalised formal power series over K under substitution. For every $i \in \mathbb{N}$, the sets $\mathcal{N}_{i}(K):=t+t^{i+1} K[[t]]$ are normal subgroups of $\mathcal{N}(K)$ and they form a chain

$$
\ldots \subsetneq \mathcal{N}_{3}(K) \subsetneq \mathcal{N}_{2}(K) \subsetneq \mathcal{N}_{1}(K)=\mathcal{N}(K) .
$$

The Nottingham group is a pro- p group. This is because it is the inverse limit of the inverse system of finite p-groups $\mathcal{N}(K) / \mathcal{N}_{i}(K)$ and natural projections

$$
\mathcal{N}(K) / \mathcal{N}_{i+1}(K) \longrightarrow \mathcal{N}(K) / \mathcal{N}_{i}(K)
$$

for $i \in \mathbb{N}$, recall Section 2.5. The Nottingham group is a hereditarily just infinite group; see R. Camina [5].

For each $r \geq 0$, there are also $p+1$ non-trivial normal subgroups \mathcal{H} of $\mathcal{N}(K)$ such that $\mathcal{N}_{p^{r}+3}(K) \subsetneq \mathcal{H} \subsetneq \mathcal{N}_{p^{r}+1}(K)$; referred to by B. Klopsch in [14]. Therefore the
chain of normal subgroups of a Wilson group is more rigid than in the Nottingham group, where the normal subgroups almost form a chain.

An analogy with the Nottingham group poses many interesting questions for the Wilson groups and we include some of them in Question 2 of Chapter 10.

Chapter 6

Subnormal subgroups

6.1 Introduction

This chapter works on the task of characterising the subnormal subgroups of Wilson groups.

Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4.1. As before when describing the normal subgroups, our strategy will be to first determine the subnormal subgroups of the finite groups G_{n}. For ease of calculation, we will also consider a particular subgroup H_{n} of G_{n} such that there exists surjective homomorphisms $G_{n} \longrightarrow H_{n} \longrightarrow G_{n-1}$. That is, we define

$$
H_{n}=L_{n} \rtimes G_{n-1},
$$

for every $n \geq 1$.
Remark. Using the newly defined groups H_{n}, the non-trivial normal subgroups of G can be written as $P_{j}=\operatorname{ker}\left(\phi_{j}: G \longrightarrow G_{j}\right)$, for $j \geq 0, Q_{j}=\operatorname{ker}\left(G \longrightarrow H_{j}\right)$, for $j \geq 1$, and $Q_{0}=\operatorname{ker}(G \longrightarrow\{1\})$.

The groups G_{n}, in the construction of a Wilson group, are formed from two types of transitive actions. One type are the unspecified actions of the groups G_{n-1}, for $n \geq 1$, on a set of d_{n} elements. The other type of transitive actions are the groups $L_{n} G_{n-1}$, for $n \geq 1$, acting on the sets L_{n} by the action defined in (4.1), from Section 4.1.

In the action (4.1), a subnormal subgroup of L_{n} acts on L_{n} by right multiplication and therefore the orbits of a non-trivial subnormal subgroup have at least two elements. However, the action of a subnormal subgroup of G_{n-1} on d_{n} elements may have orbits of one element, that is the action has fixed points. We illustrate this latter conclusion with the following example.

Example 6.1. Take a transitive and faithful action of X_{n-1} on a set Λ. Define $X_{n-1}^{[i]}=$ X_{n-1} and $\Lambda_{i}=\{(\lambda, i): \lambda \in \Lambda\}$, for $i=1,2, \ldots,\left|L_{n-1}\right|$, noting that $\Lambda_{i} \cong \Lambda$ as X_{n-1}-spaces. Let $M_{n-1}=X_{n-1}^{\left(\left|L_{n-1}\right|\right)}$ act on the set $\bigcup_{i=1}^{\left|L_{n-1}\right|} \Lambda_{i}$, where $X_{n-1}^{[i]}$, for each $i=1,2, \ldots,\left|L_{n-1}\right|$, acts on Λ_{i} by the chosen action.

Recall $G_{n-1}=X_{n-1} \imath_{L_{n-1}}\left(L_{n-1} G_{n-2}\right)$ is a wreath product and the part $L_{n-1} G_{n-2}$ acts transitively on the set L_{n-1}, according to the action (4.1). Set $\bigcup_{i=1}^{\left|L_{n-1}\right|} \Lambda_{i}=\Omega_{d_{n}}$. Consequently, the group G_{n-1} acts transitively on the set $\Omega_{d_{n}}$ by the natural permutational wreath product action, as explained in Section 2.1.

Non-trivial elements of $L_{n-1} G_{n-2}$ acting on the set L_{n-1}, according to the action (4.1), can have fixed points. However, these elements do move at least one other point and so this action is faithful. Consequently, the full action of the group G_{n-1} on the set $\Omega_{d_{n}}$ is faithful.

Now the action of the subnormal subgroup $X_{n-1} \times 1 \times \ldots \times 1 \subseteq M_{n-1}$ of G_{n-1} on $\Omega_{d_{n}}$ has many fixed points.

The above observation has an effect on the characterisation of the subnormal subgroups of Wilson groups which we now explain. Suppose K is a subnormal subgroup of $H_{n}=L_{n} G_{n-1}$ such that $K \nsubseteq L_{n}$. Then $L_{n} K / L_{n}$ is isomorphic to a subnormal subgroup U of G_{n-1}. We consider the orbits of the action of U on d_{n} elements. As shown in Example 6.1, some orbits may have only one element. We see later in Corollary 6.9, within Section 6.3, to satisfy the condition of normality, the subnormal subgroup K must contain all the factors of $L_{n}=X_{n}^{\left(d_{n}\right)}$ which correspond to the U-orbits that contain at least two elements.

Section 6.2 characterises the subnormal subgroups of particular Wilson groups where a choice for the unspecified actions of G_{n-1}, for $n \geq 1$, on a set of d_{n} elements is made. This choice guarantees that subnormal subgroups of G_{n-1} have all their orbits containing at least two elements.

Later, in Section 6.4 we characterise the subnormal subgroups of an arbitrary Wilson group, that is, where the actions of the groups G_{n-1} remain unspecified. Consider the action of the groups G_{j} on the sets $\Omega_{d_{j+1}}=\left\{1,2, \ldots, d_{j+1}\right\}$, for $j \geq 1$. The description of some subnormal subgroups of a general Wilson group (see Section 6.4) involves the set

$$
\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot X_{j}^{I_{L_{j}}} \neq\{\omega\}\right\}, \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j}
$$

the notation $\omega \cdot X_{j}^{I_{L_{j}}}$ denotes the orbit of ω under the action of the group $X_{j}^{I_{L_{j}}} \leq G_{j}$.
Let $g \in G_{j}$. The support of g is the set of points of $\Omega_{d_{j+1}}$ which are not fixed by g
and it is denoted by $\operatorname{supp}(g)$. So we write

$$
\operatorname{supp}(g)=\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot g \neq \omega\right\} .
$$

Therefore the reader could consider the set $\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot X_{j}^{I_{L_{j}}} \neq\{\omega\}\right\}$ as the support of the group $X_{j}^{I_{L_{j}}} \leq G_{j}$.

We make a short remark about notation, which occurs in the classification of subnormal subgroups of the Wilson groups (see Section 6.2 and Section 6.4) and subnormal subgroups of the infinite iterated wreath products W of alternating groups (see Section 6.3).

Let X be a group and let Ω be a set. Then

$$
X^{\Omega}=\{f \mid f: \Omega \longrightarrow X\} \cong\left\{\left(x_{\omega}\right)_{\omega \in \Omega}: x_{\omega} \in X\right\} .
$$

Let $I \subseteq \Omega$. Write $\Delta:=\Omega \backslash I$. To define X^{I} we extend all functions f from I to X by setting $\tilde{f}(\Delta)=\{1\}$. Therefore

$$
X^{I} \cong\left\{\left(x_{\omega}\right)_{\omega \in I} \times(1)_{\omega \in \Delta}: x_{\omega} \in X\right\}
$$

In so doing, it is acceptable to write $X^{I} \subseteq X^{\Omega}$.

6.2 Particular Wilson groups

In this section Wilson's construction is limited by specifying that the group G_{n-1}, for $n \geq 1$, acts on itself by right multiplication. Therefore $d_{n}=\left|G_{n-1}\right|$, for $n \geq 1$. This is a faithful and transitive action and so satisfying the conditions of Wilson's construction. Implicitly, the action of a non-trivial subnormal subgroup of G_{n-1} on d_{n} elements now has all its orbits containing at least two elements. Hence the characterisation of subnormal subgroups has been simplified.

Theorem 6.4 determines the subnormal subgroups of the finite groups G_{n} for this restricted construction. Then Corollary 6.6 completely classifies the closed subnormal subgroups of the Wilson groups that arise from this particular construction.

The inductive argument of Corollary 6.7, using the result by N. Nikolov and D. Segal [22, Cor. 1.15], shows that all subnormal subgroups of a Wilson group are automatically closed provided the first group in Wilson's construction has size $\left|G_{0}\right|>35$!, and hence the Wilson group is finitely generated (see Chapter 9). Therefore the characterisation of subnormal subgroups, in Corollary 6.6, covers all the subnormal subgroups of our particular restricted Wilson groups provided $\left|G_{0}\right|>35$!.

For the restriction, it is found that the subnormal subgroups of these Wilson groups are squeezed between consecutive normal subgroups. Therefore there are relatively few compared to the Nottingham group, which is a pro-p group and here every open subgroup is subnormal, refer to [27, 5.2.4]. At the end of this section, Figure 6.1 depicts the subnormal subgroups of these Wilson groups lying between the normal subgroups.

Also, it is found that the subnormal length for a Wilson group is at most 3 (found later in Corollary 6.17), and therefore is bounded. This is in contrast to the Nottingham group, where the subnormal length is unbounded, and is proved with the following short argument.

First note that there are finite p-groups G which have subnormal subgroups of arbitrarily large subnormal length in G. Now fix a finite p-group G with a subnormal subgroup H of subnormal length l in G. By a theorem of C. Leedham-Green and A. Weiss, see [4], G embeds as a subgroup into the Nottingham group \mathcal{N}. So we may assume that $G \leq \mathcal{N}$. There is an open normal subgroup N of \mathcal{N} such that $G \cap N=\{1\}$, since G is finite and [30, Cor. 1.2.4 (iii)]. This implies $G N / N \cong G$ and, as $H \cap N=\{1\}$, also $H N / N \cong H$. Consider $S=H N$. Any chain

$$
\mathcal{N}=T_{0} \unrhd T_{1} \unrhd \ldots \unrhd T_{k-1} \unrhd T_{k}=S
$$

showing that S has subnormal length $\leq k$ in \mathcal{N} intersects to a chain

$$
G N=T_{0} \cap G N \unrhd T_{1} \cap G N \unrhd \ldots \unrhd T_{k-1} \cap G N \unrhd T_{k} \cap G N=S
$$

Therefore $H N / N \cong H$ has subnormal length $\leq k$ in $G N / N \cong G$. Thus $k \geq l$ and S has subnormal length $\geq l$ in \mathcal{N}.

To prove Theorem 6.4, determining the subnormal subgroups of the finite groups G_{n} of Wilson's restricted construction, we use Proposition 6.2 concerning subnormal subgroups of permutational wreath products as defined in Lemma 2.2 of Section 2.1. We recall the definition. Let U be a finite permutation group acting on a finite set Ω with orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$. Let X be a finite non-abelian simple group. Define the permutational wreath product $G=X z_{\Omega} U$. Denote the base group of the wreath product as V.

In Proposition 6.2, the assumption is made that each of the U-orbits has at least two elements. Then the subnormal subgroups K of G such that $V K=G$ contain the base group V. Proposition 6.2 can be readily applied to the circumstance where U is taken to be a subnormal subgroup of G_{n-1} acting on G_{n-1} by right multiplication.

Proposition 6.2. Let group $G=X z_{\Omega} U$ be the permutational wreath product as defined in Lemma 2.2. Assume that each of the U-orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$ has at least two
elements. Suppose K is a subnormal subgroup of G such that $V K=G$.
Then $V \subseteq K$. In particular, this gives $K=G$.
Proof. We first show that we can assume $K \unlhd G$. Since K is subnormal in G, we have $G=T_{0} \unrhd T_{1} \unrhd \ldots \unrhd T_{k-1} \unrhd T_{k}=K$. Without loss of generality, suppose this is a shortest chain. This means $G \neq T_{1}, T_{1} \neq T_{2}, \ldots, T_{k-1} \neq K$.

Consider the beginning of the chain $G \unrhd T_{1}$. Now $V K=G$ implies $V T_{1}=G$. We apply the proposition, which we assume to be true for the special case where the subnormal subgroup is actually normal, to T_{1}. This gives $T_{1}=G$. Therefore there is no such shortest chain involving the T_{i}, for $i=1,2, \ldots, k-1$, of subnormal length greater than 1 . Thus $K \unlhd G$.

To prove $V \subseteq K$, it is sufficient to show that each of the minimal normal subgroups of G is contained in K. Let $i \in\{1,2, \ldots, r\}$. Let $\omega_{1}, \omega_{2} \in \Omega_{i}$ such that ω_{1} and ω_{2} are distinct. We can find $u \in U$ such that $\omega_{1} \cdot u=\omega_{2}$ because U acts transitively on Ω_{i}. As $V K=G$, we can obtain $\underline{x} \in V$ such that $u \underline{x}=u\left(x_{\omega}\right)_{\omega \in \Omega} \in K$. Choose $y \in X \backslash\{1\}$. Consider $\underline{y}=\left(y_{\omega}\right) \in V$ with $y_{\omega}=y$ if $\omega=\omega_{1}$ and $y_{\omega}=1$ otherwise.

Then $[y, u \underline{x}] \in K$ is similarly written as the element (2.1), in the final paragraph of the proof for Lemma 2.3. Continuing the argument, as written in the proof of Lemma 2.3 gives the required result.

The proof of Theorem 6.4 (and later the proof of Theorem 6.15) also makes use of the following result.

Lemma 6.3. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. Recall that the group G_{n-1} has a faithful transitive action on $\Omega_{d_{n}}$.

Then each of the M_{n-1}-orbits has at least two elements.
Proof. Since G_{n-1} acts transitively on $\Omega_{d_{n}}$ and $M_{n-1} \unlhd G_{n-1}$, all the M_{n-1}-orbits have the same size. This common size cannot be one because M_{n-1} is not trivial and G_{n-1} acts faithfully on $\Omega_{d_{n}}$. Therefore each of the M_{n-1}-orbits has at least two elements.

For the following, recall the normal subgroups P_{j}^{n} and Q_{j}^{n}, for $j \in\{0,1, \ldots, n\}$, of G_{n}, defined in Theorem 5.1.

Theorem 6.4. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. In the Wilson construction, assume that the unspecified action of the group G_{n}, for $n \geq 0$, is taken to be right multiplication on itself.

For $j \in\{0,1, \ldots, n-1\}$, define

$$
S_{j}^{n}\left(I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes X_{j+1}^{I_{d_{j+1}}} \leq P_{j}^{n}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

and define

$$
S_{n}^{n}=\{1\} .
$$

For $j \in\{1,2, \ldots, n\}$, define

$$
T_{j}^{n}\left(I_{L_{j}}\right)=P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}} \leq Q_{j}^{n} \text {, where } \emptyset \neq I_{L_{j}} \subseteq L_{j} \text {, }
$$

and define

$$
T_{0}^{n}=G_{n} .
$$

Then the subnormal subgroups of G_{n} are precisely the groups $S_{j}^{n}\left(I_{d_{j+1}}\right), S_{n}^{n}, T_{j}^{n}\left(I_{L_{j}}\right)$ and T_{0}^{n}. In particular, for all $I_{d_{1}}, I_{L_{1}}, \ldots, I_{d_{n}}$ and $I_{L_{n}}$, they form chains

$$
\begin{aligned}
S_{n}^{n}=P_{n}^{n} \subsetneq T_{n}^{n}\left(I_{L_{n}}\right) \subseteq Q_{n}^{n} \subsetneq S_{n-1}^{n}\left(I_{d_{n}}\right) \subseteq & P_{n-1}^{n} \subsetneq \ldots \\
& \subseteq P_{1}^{n} \subsetneq T_{1}^{n}\left(I_{L_{1}}\right) \subseteq Q_{1}^{n} \subsetneq S_{0}^{n}\left(I_{d_{1}}\right) \subseteq P_{0}^{n} .
\end{aligned}
$$

The subnormal length in G_{n} of the group $S_{j}^{n}\left(I_{d_{j+1}}\right)$ is

$$
\left\{\begin{array}{ll}
1 & \text { if } I_{d_{j+1}}=\Omega_{d_{j+1}} \\
2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}}
\end{array} \text { (implying that } S_{j}^{n}\left(I_{d_{j+1}}\right)=P_{j}^{n}\right),
$$

The subnormal length in G_{n} of the group $T_{j}^{n}\left(I_{L_{j}}\right)$ is

$$
\begin{cases}1 & \text { if } \left.I_{L_{j}}=L_{j} \text { (implying that } T_{j}^{n}\left(I_{L_{j}}\right)=Q_{j}^{n}\right), \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j} .\end{cases}
$$

Proof. We first check that the groups $S_{j}^{n}\left(I_{d_{j+1}}\right), S_{n}^{n}, T_{j}^{n}\left(I_{L_{j}}\right)$ and T_{0}^{n} are all subnormal subgroups of G_{n}. Obviously $S_{n}^{n}=\{1\} \triangleleft G_{n}$ and $T_{0}^{n}=G_{n} \unlhd G_{n}$. For any $\emptyset \neq$ $I_{d_{j+1}} \subseteq \Omega_{d_{j+1}}$, we have

$$
\begin{equation*}
S_{j}^{n}\left(I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes X_{j+1}^{I_{d_{j+1}}} \unlhd Q_{j+1}^{n} \rtimes L_{j+1}=P_{j}^{n} \triangleleft G_{n}, \tag{6.1}
\end{equation*}
$$

as $X_{j+1}^{I_{d_{j+1}}} \unlhd L_{j+1}$. For any $\emptyset \neq I_{L_{j}} \subseteq L_{j}$, we have

$$
\begin{equation*}
T_{j}^{n}\left(I_{L_{j}}\right)=P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}} \unlhd P_{j}^{n} \rtimes M_{j}=Q_{j}^{n} \triangleleft G_{n}, \tag{6.2}
\end{equation*}
$$

as $X_{j}^{I_{L_{j}}} \unlhd M_{j}$.
If $I_{d_{j+1}}=\Omega_{d_{j+1}}$ then $S_{j}^{n}\left(I_{d_{j+1}}\right)=P_{j}^{n}$ and the subnormal series (6.1) reduces to a chain of length 1. Similarly, if $I_{L_{j}}=L_{j}$ then $T_{j}^{n}\left(I_{L_{j}}\right)=Q_{j}^{n}$ and the subnormal series
(6.2) reduces to a chain of length 1 . For all other $S_{j}^{n}\left(I_{d_{j+1}}\right)$ we have displayed the shortest length of a subnormal series (6.1) because P_{j}^{n} is the smallest normal subgroup of G_{n} containing $S_{j}^{n}\left(I_{d_{j+1}}\right)$ and $S_{j}^{n}\left(I_{d_{j+1}}\right)$ is not normal in G_{n}. A similar argument holds for all other $T_{j}^{n}\left(I_{L_{j}}\right)$.

Recall the definition of the groups $H_{n}=L_{n} G_{n-1}$, for $n \geq 1$, as defined at the beginning of Section 6.1. Due to $H_{n} \cong G_{n} / M_{n}$, the theorem we are currently proving also implicitly makes a statement about the subnormal subgroups of H_{n}. We now prove, by induction on n, that every subnormal subgroup of G_{n} is one of the groups listed. Hence the subnormal subgroups of H_{n} are homomorphic images of the subnormal subgroups of G_{n} listed between Q_{n}^{n} and Q_{0}^{n} under the canonical map $G_{n} \longrightarrow H_{n}$.

For $n=0$, all the subnormal subgroups of G_{0} are $\{1\}=S_{0}^{0}$ and $G_{0}=T_{0}^{0}$ holds as G_{0} is simple. Although it will also follow from the general argument below, we now prove separately the implicit claim for H_{1}.

Suppose K is a subnormal subgroup of H_{1}. Then $L_{1} K / L_{1}$ is a subnormal subgroup of $H_{1} / L_{1} \cong G_{0}$. Since G_{0} is simple, we know

$$
L_{1} K / L_{1} \cong\{1\} \text { or } L_{1} K / L_{1} \cong G_{0}
$$

For the case $L_{1} K / L_{1} \cong\{1\}$, we have $K \subseteq L_{1}$. Then K is subnormal in $L_{1}=X_{1}^{\left(d_{1}\right)}$. There are two possibilities, either $K=\{1\} \cong M_{1} T_{1}^{1}\left(I_{L_{1}}\right) / M_{1}$, for any $\emptyset \neq I_{L_{1}} \subseteq L_{1}$, or, since L_{1} is a product of non-abelian simple groups X_{1}, using Theorem 2.4, we have $K=X_{1}^{I_{d_{1}}}$ is the image of $S_{0}^{1}\left(I_{d_{1}}\right)$, for some $\emptyset \neq I_{d_{1}} \subseteq \Omega_{d_{1}}$, under the canonical map $G_{1} \longrightarrow H_{1}$. Due to $H_{1} \cong G_{1} / M_{1}$, there are subnormal subgroups of H_{1} of this form.

For the case $L_{1} K / L_{1} \cong G_{0}$, we have $L_{1} K=L_{1} \rtimes G_{0}$. Since G_{0} acts transitively on $\Omega_{d_{1}}$, there is exactly one G_{0}-orbit $\Omega_{d_{1}}$. Proposition 6.2 gives $L_{1} \subseteq K$. Therefore $K=L_{1} \rtimes G_{0} \cong T_{0}^{1} / M_{1}$. For $n=1$, the result holds for H_{1}.

Suppose that the result holds for G_{n-1}. Now we prove the result for H_{n}. Let K be a subnormal subgroup of H_{n}. Then there are two cases:

$$
K \subseteq L_{n}(\text { case } 1), \text { and } K \nsubseteq L_{n}(\text { case } 2)
$$

Case 1.
For $K \subseteq L_{n}$, we have K is subnormal in $L_{n}=X_{n}^{\left(d_{n}\right)}$. There are two possibilities, either $K=\{1\} \cong M_{n} T_{n}^{n}\left(I_{L_{n}}\right) / M_{n}$, for any $\emptyset \neq I_{L_{n}} \subseteq L_{n}$, or, since L_{n} is a product of non-abelian simple groups X_{n}, using Theorem 2.4, we have $K=X_{n}^{I_{d_{n}}}$ is the image of $S_{n-1}^{n}\left(I_{d_{n}}\right)$, for some $\emptyset \neq I_{d_{n}} \subseteq \Omega_{d_{n}}$, under the canonical map $G_{n} \longrightarrow H_{n}$.

Case 2.
Now suppose $K \nsubseteq L_{n}$. We know $\{1\} \nsubseteq L_{n} K / L_{n}$ is a subnormal subgroup of $H_{n} / L_{n} \cong G_{n-1}$. Then there are two possibilities:

$$
L_{n} K / L_{n} \subseteq L_{n} M_{n-1} / L_{n}(\text { case } 2 \mathrm{a})
$$

and

$$
L_{n} K / L_{n} \nsubseteq L_{n} M_{n-1} / L_{n}(\text { case } 2 \mathrm{~b})
$$

Case $2 a$.
For $L_{n} K / L_{n} \subseteq L_{n} M_{n-1} / L_{n}$, we have $\{1\} \not \approx L_{n} K / L_{n}$ is subnormal in $L_{n} M_{n-1} / L_{n} \cong M_{n-1}$. So

$$
L_{n} K / L_{n} \cong X_{n-1}^{I_{L_{n-1}}}=T_{n-1}^{n-1}\left(I_{L_{n-1}}\right)
$$

for some $\emptyset \neq I_{L_{n-1}} \subseteq L_{n-1}$. Put $T_{n-1}^{n-1}\left(I_{L_{n-1}}\right)=: T$. Then $L_{n} K=L_{n} \rtimes T$.
Specifying that G_{n-1} acts on itself by right multiplication ensures that each of the T-orbits has at least two elements. Also $K \subseteq L_{n} T$ and so K is subnormal in $L_{n} T$. Proposition 6.2 gives $L_{n} \subseteq K$. Therefore $K=L_{n} \rtimes T$ is the image of $T_{n-1}^{n}\left(I_{L_{n-1}}\right)$ under the canonical map $G_{n} \longrightarrow H_{n}$.

Case $2 b$.
For $L_{n} K / L_{n} \nsubseteq L_{n} M_{n-1} / L_{n}$, we have $L_{n} K / L_{n}$ is subnormal in $H_{n} / L_{n} \cong$ G_{n-1} and is not contained in $L_{n} M_{n-1} / L_{n}$. By induction, we have $L_{n} K / L_{n} \cong$ $S_{j}^{n-1}\left(I_{d_{j+1}}\right)$, for some $j \in\{0,1, \ldots, n-2\}$, or $L_{n} K / L_{n} \cong T_{j}^{n-1}\left(I_{L_{j}}\right)$, for some $j \in\{1,2, \ldots, n-2\}$, or $L_{n} K / L_{n} \cong T_{0}^{n-1}$.
We denote this isomorphic copy of $L_{n} K / L_{n}$ in G_{n-1} by R. Then $L_{n} K=$ $L_{n} \rtimes R$. Observe that $M_{n-1} \subseteq R$. Each of the orbits of M_{n-1} in its action upon $\Omega_{d_{n}}$, and hence each of the orbits of R in its action upon $\Omega_{d_{n}}$, has at least two elements (see Lemma 6.3). Therefore Proposition 6.2 can be applied irrespective of the chosen actions for the groups G_{n-1} on $\Omega_{d_{n}}$.
Also $K \subseteq L_{n} R$ and so K is subnormal in $L_{n} R$. Proposition 6.2 gives $L_{n} \subseteq K$ and so $K=L_{n} \rtimes R$. Therefore K is the image of $S_{j}^{n}\left(I_{d_{j+1}}\right)$ under the canonical $\operatorname{map} G_{n} \longrightarrow H_{n}$, for some $j \in\{0,1, \ldots, n-2\}$, or K is the image of $T_{j}^{n}\left(I_{L_{j}}\right)$ under the canonical map $G_{n} \longrightarrow H_{n}$, for some $j \in\{1,2, \ldots, n-2\}$, or $K \cong T_{0}^{n} / M_{n}$.

Suppose that the result holds for H_{n}. Now we prove the result for G_{n}. Let K be a
subnormal subgroup of G_{n}. Then there are two cases:

$$
K \subseteq M_{n} \text { (case } 1 \text {), and } K \nsubseteq M_{n} \text { (case } 2 \text {). }
$$

Case 1.
For $K \subseteq M_{n}$, we have K is subnormal in $M_{n}=X_{n}^{\left(\left|L_{n}\right|\right)}$. There are two possibilities, either $K=\{1\}=S_{n}^{n}$, or, using Theorem 2.4, we have $K=X_{n}^{I_{L_{n}}}=T_{n}^{n}\left(I_{L_{n}}\right)$, for some $\emptyset \neq I_{L_{n}} \subseteq L_{n}$.

Case 2.
Now suppose $K \nsubseteq M_{n}$. We know $\{1\} \not \nexists M_{n} K / M_{n}$ is a subnormal subgroup of $G_{n} / M_{n} \cong H_{n}$. Then there are two possibilities:

$$
M_{n} K / M_{n} \subseteq M_{n} L_{n} / M_{n}(\text { case } 2 \mathrm{a}),
$$

and

$$
\left.M_{n} K / M_{n} \nsubseteq M_{n} L_{n} / M_{n} \text { (case } 2 \mathrm{~b}\right) .
$$

Case 2a.
For $M_{n} K / M_{n} \subseteq M_{n} L_{n} / M_{n}$, we have $\{1\} \not \approx M_{n} K / M_{n}$ is subnormal in $M_{n} L_{n} / M_{n} \cong L_{n}$. So

$$
M_{n} K / M_{n} \cong X_{n}^{I_{d_{n}}},
$$

for some $\emptyset \neq I_{d_{n}} \subseteq \Omega_{d_{n}}$, which is the image of $S_{n-1}^{n}\left(I_{d_{n}}\right)$ under the canonical $\operatorname{map} G_{n} \longrightarrow H_{n}$. Put $S_{n-1}^{n}\left(I_{d_{n}}\right)=: S$. Then $M_{n} K=S$.
Right multiplication by L_{n} on itself in the action (4.1) implies that each of the orbits of $X_{n}^{I_{d_{n}}}$ in its action upon L_{n} has at least two elements. In the action of $X_{n}^{I_{d_{n}}}$ on L_{n}, each non-trivial element of $X_{n}^{I_{d_{n}}}$ acts fixed point freely. Therefore this action is faithful.
Also $K \subseteq S$ and so K is subnormal in S. Proposition 6.2 gives $M_{n} \subseteq K$. Therefore $K=S=S_{n-1}^{n}\left(I_{d_{n}}\right)$.

Case $2 b$.
For $M_{n} K / M_{n} \nsubseteq M_{n} L_{n} / M_{n}$, we have $M_{n} K / M_{n}$ is subnormal in $G_{n} / M_{n} \cong$ H_{n} and is not contained in $M_{n} L_{n} / M_{n}$. By induction, we have $M_{n} K / M_{n}=$ $T_{j}^{n}\left(I_{L_{j}}\right) / M_{n}$, for some $j \in\{1,2, \ldots, n-1\}$, or $M_{n} K / M_{n}=S_{j}^{n}\left(I_{d_{j+1}}\right) / M_{n}$, for some $j \in\{0,1, \ldots, n-2\}$, or $M_{n} K / M_{n}=T_{0}^{n} / M_{n}$.
We denote this description of $M_{n} K / M_{n}$ in H_{n} by R / M_{n}. Then $M_{n} K=R$. Again, right multiplication by L_{n} on itself in the action (4.1) implies that
each of the orbits of R / M_{n} in its action upon L_{n} has at least two elements. In fact, since $L_{n} \subseteq R$, there is only one $\left(R / M_{n}\right)$-orbit, that is L_{n}.

In the action (4.1), non-trivial elements of R / M_{n} acting on L_{n} can have fixed points however these elements do move at least one other point. Therefore this action is faithful.

Also $K \subseteq R$ and so K is subnormal in R. Proposition 6.2 gives $M_{n} \subseteq K$ and so $K=R$. Therefore $K=T_{j}^{n}\left(I_{L_{j}}\right)$, for some $j \in\{1,2, \ldots, n-1\}$, or $K=S_{j}^{n}\left(I_{d_{j+1}}\right)$, for some $j \in\{0,1, \ldots, n-2\}$, or $K=T_{0}^{n}$.

Similarly as for the normal subgroups, our work has been restricted in Lemma 6.5 to closed subnormal subgroups because we rely on Lemma 2.12, which only applies to subnormal subgroups that are closed.

Lemma 6.5 is required due to the two different types of notation for the subnormal subgroups of G_{n}.

Lemma 6.5. Given finite groups G_{n}, for $n \geq 0$, in which all the normal subgroups form a chain

$$
\{1\}=N_{2 n+2}^{n} \subsetneq N_{2 n+1}^{n} \subsetneq \ldots \subsetneq N_{2}^{n} \subsetneq N_{1}^{n}=G_{n},
$$

and an inverse system of surjective homomorphisms $\theta_{n}: G_{n} \longrightarrow G_{n-1}$, for $n \geq 1$, such that

$$
\theta_{n}\left(N_{i}^{n}\right)= \begin{cases}N_{i}^{n-1} & \text { for } 1 \leq i \leq 2 n \\ \{1\} & \text { for } i \in\{2 n+1,2 n+2\}\end{cases}
$$

Let \mathcal{P}^{i}, for $i \in\{1,2, \ldots, 2 n+1\}$, be finite disjoint index sets.
Suppose the non-trivial subnormal subgroups K_{I}^{n} of G_{n} are parameterised by I, where $\emptyset \neq I \in \mathcal{P}^{i}$, such that $N_{i+1}^{n} \subsetneq K_{I}^{n} \subseteq N_{i}^{n}$, and

$$
\theta_{n}\left(K_{I}^{n}\right)= \begin{cases}K_{I}^{n-1} & \text { for } I \in \mathcal{P}^{1}, \mathcal{P}^{2}, \ldots, \mathcal{P}^{2 n-1}, \tag{6.3}\\ \{1\} & \text { for } I \in \mathcal{P}^{2 n}, \mathcal{P}^{2 n+1} .\end{cases}
$$

Then the inverse limit $G=\underset{\leftarrow}{\lim }\left(G_{n}\right)_{n \geq 0}$ has non-trivial closed subnormal subgroups precisely $K_{I}=\lim _{\leftarrow}\left(K_{I}^{n}\right)_{n \rightarrow \infty}$, where $\emptyset \neq I \in \mathcal{P}^{i}$ for $i \geq 1$, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse limit, we can find $n \geq 0$ such that the image of M in G_{n} under $\phi_{n}: G \longrightarrow G_{n}$ is non-trivial. Therefore $\phi_{n}(M)=K_{I}^{n}$, where $\emptyset \neq I \in \mathcal{P}^{i}$, for some $i \in\{1,2, \ldots, 2 n+1\}$.

We claim that $M=K_{I}$. Since M is closed, it is enough to show that $\phi_{m}(M)=K_{I}^{m}$, for all $m \geq n$. Then $\phi_{m}(M)=\phi_{m}\left(K_{I}\right)$ implies $\operatorname{ker} \phi_{m} M=\operatorname{ker} \phi_{m} K_{I}$, for all $m \geq n$.

Thus

$$
\begin{aligned}
M & =\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) M=\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} M\right) \\
& =\bigcap_{m \geq n}\left(\operatorname{ker} \phi_{m} K_{I}\right)=\left(\bigcap_{m \geq n} \operatorname{ker} \phi_{m}\right) K_{I}=K_{I},
\end{aligned}
$$

using Lemma 2.12.
Clearly $\phi_{m}(M)=K_{I}^{m}$ is true for $m=n$. Now suppose $m>n$. From

$$
\{1\} \neq K_{I}^{m-1}=\phi_{m-1}(M)=\theta_{m}\left(\phi_{m}(M)\right)
$$

and mapping (6.3), we conclude $\phi_{m}(M)=K_{I}^{m}$.
For the following, recall the normal subgroups P_{j} and Q_{j}, for $j \geq 0$, of a Wilson group G, defined in Corollary 5.3.

Corollary 6.6. Let $G=\lim \left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n} as defined in Section 4.1. In the Wilson construction, assume that the unspecified action of the group G_{n}, for $n \geq 0$, is taken to be right multiplication on itself.

For $j \geq 0$, define

$$
S_{j}\left(I_{d_{j+1}}\right)=\lim _{\leftarrow}\left(S_{j}^{n}\left(I_{d_{j+1}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

regarded as subgroups of G.
For $j \geq 1$, define

$$
T_{j}\left(I_{L_{j}}\right)=\lim _{\leftarrow}\left(T_{j}^{n}\left(I_{L_{j}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j} \text {, }
$$

and define

$$
T_{0}=\lim _{\leftarrow}\left(T_{0}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of G.
Then the non-trivial closed subnormal subgroups of G are precisely the groups $S_{j}\left(I_{d_{j+1}}\right), T_{j}\left(I_{L_{j}}\right)$ and T_{0}. In particular, for all $I_{d_{1}}, I_{L_{1}}, \ldots, I_{d_{n}}, I_{L_{n}}, I_{d_{n+1}}, \ldots$, they form chains

$$
\begin{aligned}
\ldots \subsetneq S_{n}\left(I_{d_{n+1}}\right) \subseteq P_{n} \subsetneq T_{n}\left(I_{L_{n}}\right) \subseteq Q_{n} \subsetneq & S_{n-1}\left(I_{d_{n}}\right) \subseteq P_{n-1} \subsetneq \ldots \\
& \ldots \subseteq P_{1} \subsetneq T_{1}\left(I_{L_{1}}\right) \subseteq Q_{1} \subsetneq S_{0}\left(I_{d_{1}}\right) \subseteq P_{0} .
\end{aligned}
$$

The subnormal length in G of the group $S_{j}\left(I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } \left.I_{d_{j+1}}=\Omega_{d_{j+1}} \text { (implying that } S_{j}\left(I_{d_{j+1}}\right)=P_{j}\right), \\ 2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}} .\end{cases}
$$

The subnormal length in G of the group $T_{j}\left(I_{L_{j}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{L_{j}}=L_{j}\left(\text { implying that } T_{j}\left(I_{L_{j}}\right)=Q_{j}\right), \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j} .\end{cases}
$$

Proof. We apply Lemma 6.5 to the groups G_{n}, for $n \geq 0$, of Wilson's construction with the specified actions, and to their subnormal subgroups.

For the finite index sets we take the power sets of $\Omega_{d_{j}}$ and L_{j}, for $1 \leq j \leq n$, and note that $\mathcal{P}^{1}=\{1\}$. We remark that arbitrary sets A_{1} and A_{2} can be made disjoint when the elements $x \in A_{1}$ and $y \in A_{2}$ are labelled as $(1, x)$ and $(2, y)$.

Define

$$
K_{I}^{n}=\left\{\begin{array}{l}
S_{(i-2) / 2}^{n}\left(I_{d_{(i-2) / 2+1}}\right) \text { if } i \text { is even }, \\
T_{(i-1) / 2}^{n}\left(I_{L_{(i-1) / 2}}\right) \text { if } i \text { is odd },
\end{array}\right.
$$

where $\emptyset \neq I \in \mathcal{P}^{i}$ for $i \in\{2,3, \ldots, 2 n+1\}$, and define $K_{I}^{n}=T_{0}^{n}$ for $\emptyset \neq I \in \mathcal{P}^{1}$. For each n, these subnormal subgroups of G_{n} were defined in Theorem 6.4. It was shown that these are all the non-trivial subnormal subgroups of G_{n} and they form chains.

The definition of the groups K_{I}^{n} also shows that the second condition for Lemma 6.5 is satisfied. For $2 \leq i \leq 2 n+1$, where $\emptyset \neq I \in \mathcal{P}^{i}$,

$$
\theta_{n}\left(K_{I}^{n}\right)=\left\{\begin{array}{l}
\theta_{n}\left(S_{(i-2) / 2}^{n}\left(I_{d_{(i-2) / 2+1}}\right)\right)=S_{(i-2) / 2}^{n-1}\left(I_{d_{(i-2) / 2+1}}\right)=K_{I}^{n-1} \text { if } i \text { is even, } \\
\theta_{n}\left(T_{(i-1) / 2}^{n}\left(I_{L_{(i-1) / 2}}\right)\right)=T_{(i-1) / 2}^{n-1}\left(I_{L_{(i-1) / 2}}\right)=K_{I}^{n-1} \text { if } i \text { is odd }
\end{array}\right.
$$

We take $S_{n-1}^{n-1}\left(I_{d_{n}}\right), T_{n}^{n-1}\left(I_{L_{n}}\right), K_{I}^{n-1}$ for $\emptyset \neq I \in \mathcal{P}^{2 n}$, and K_{I}^{n-1} for $\emptyset \neq I \in \mathcal{P}^{2 n+1}$ to be the trivial group \{1\}. Also $\theta_{n}\left(K_{I}^{n}\right)=\theta_{n}\left(T_{0}^{n}\right)=T_{0}^{n-1}=K_{I}^{n-1}$ for $\emptyset \neq I \in \mathcal{P}^{1}$.

Below, Corollary 6.7 tells us which Wilson groups we know to have all their subnormal subgroups closed.

Corollary 6.7. Let $G=\lim \left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n}, as defined in Section 4.1, such that $\left|G_{0}\right|>35$!.

Every subnormal subgroup of G is closed in G.
Proof. Let K be an abstract subnormal subgroup of G. We argue by induction on the
subnormal length l of K in G. So

$$
G=N_{0} \unrhd N_{1} \unrhd \ldots \unrhd N_{l-1} \unrhd N_{l}=K .
$$

For $l=1$ we have $K \unlhd G$. Since $\left|G_{0}\right|>35$!, we have that G is finitely generated (see Chapter 9). Applying the result by N. Nikolov and D. Segal [22, Cor. 1.15], the normal subgroup K is closed in G.

Suppose the result holds for $l>1$. Note that N_{l-1} has subnormal length $l-1$ in G. By induction, the subnormal subgroup N_{l-1} is closed in G. From the classification Corollary 6.17, all the closed subnormal subgroups of a general Wilson group have finite index, therefore N_{l-1} is open in G. Then N_{l-1} is a hereditarily just infinite profinite group, since G is hereditarily just infinite, and also N_{l-1} is finitely generated, see [30, Prop. 4.3.1]. Applying again the result [22, Cor. 1.15], the subnormal subgroup K is closed in N_{l-1} and therefore K is closed in G.

The following diagram illustrates the chains of subnormal subgroups of Wilson groups constructed such that G_{n}, for $n \geq 0$, acts on itself by right multiplication. The diagram includes the chain of normal subgroups for any arbitrary Wilson group. Additionally, these chains of subnormal subgroups hold for any Wilson group constructed such that the actions of the non-trivial subnormal subgroups of the groups G_{n}, for $n \geq 1$, have all their orbits containing at least two elements.

Remark. The subnormal subgroup lattice in Figure 6.1 is very symmetric. However, there are no subnormal subgroups between the groups P_{0} and G. This is because G_{0} is a simple group. Wilson's construction can be slightly modified to make the lattice more symmetrical. Instead of starting the construction with $G_{0}=X_{0}$, set G_{0} to be a direct product of the finite non-abelian simple group X_{0}. That is $G_{0}=X_{0}^{\left(d_{0}\right)}$. All the previous arguments hold while some extra normal subgroups are produced of the form $P_{0} \rtimes X_{0}^{I_{d_{0}}}$, where $\emptyset \neq I_{d_{0}} \subsetneq\left\{1,2, \ldots, d_{0}\right\}$.

Figure 6.1: The subnormal subgroup lattice of particular Wilson groups.

where $m \geq 5$

We recall the just infinite profinite groups W defined in Section 3.2. Fix the alphabet $A=\{1,2, \ldots, m\}$, where $m \geq 5$. We define the sets

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in A\right\}
$$

for each $j=1,2, \ldots$, where $i_{1} i_{2} \ldots i_{j}$ denotes a sequence of numbers and not a product. Set $W_{0}=A_{m}$. We form the iterated wreath products

$$
W_{n}=A_{m} l_{\Omega^{*[n]}} \cdots \imath_{\Omega^{*}[2]} A_{m} z_{\Omega^{*[1]}} A_{m},
$$

for $n \geq 1$. They are the same as the semidirect products $W_{n}=A_{m}^{\left(m^{n}\right)} \rtimes W_{n-1}$. A group $W=\underset{\longleftarrow}{\lim }\left(W_{n}\right)_{n \geq 0}$ is constructed as the inverse limit of a sequence of finite groups $\left(W_{n}\right)_{n \geq 0}$.

The action of a subnormal subgroup of W_{n-1} on m^{n} elements may have orbits of one element, that is the action has fixed points. Similarly for a general Wilson group G, the action of a subnormal subgroup of G_{n-1} on d_{n} elements may have orbits of one element. To progress in the characterisation of subnormal subgroups of a general Wilson group, it would be most beneficial to describe the subnormal subgroups of the just infinite groups W.

We recall the permutational wreath products $X z_{\Omega} U$ as defined in Lemma 2.2 of Section 2.1. That is, where U is a finite permutation group acting on a finite set Ω with orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$ and X is a finite non-abelian simple group. We need a generalisation of Proposition 6.2, found in the previous section, which makes no assumption as to the number of elements in each of the U-orbits. That is, a U-orbit can have one element. Proposition 6.8 says that the subnormal subgroups K of $X \imath_{\Omega} U$ such that $V K=X \imath_{\Omega} U$ contain all the minimal normal subgroups of $X \imath_{\Omega} U$ that correspond to orbits which have at least two elements.

Proposition 6.8. Consider the permutational wreath product $X \Sigma_{\Omega} U$ as defined in Lemma 2.2. The base group is denoted $V=\prod_{\omega \in \Omega} X_{\omega}$, where $X_{\omega} \cong X$ for all $\omega \in \Omega$. Define

$$
Y=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \cdot U=\{\omega\}\right\} ;
$$

the notation $\omega \cdot U$ denotes the orbit of ω under the action of the group U. Let G be a subgroup of $X z_{\Omega} U$ such that $Y \subseteq G$ and $V G=X \imath_{\Omega} U$.

Suppose K is a subnormal subgroup of G such that $V K=X \imath_{\Omega} U$. Then $Y \subseteq K$.

Proof. We first show that we can reduce to the case where the subnormal subgroup K is normal in G. Since K is subnormal in G, we have $G=T_{0} \unrhd T_{1} \unrhd \ldots \unrhd T_{k-1} \unrhd T_{k}=K$. Without loss of generality, suppose this is a shortest chain. This means $G \neq T_{1}, T_{1} \neq$ $T_{2}, \ldots, T_{k-1} \neq K$.

Consider the beginning of the chain $G \unrhd T_{1}$. Now $V K=X{ }_{\Omega} U$ implies $V T_{1}=X{ }_{\Omega} U$. We apply the proposition, which we assume to be true for the special case where the subnormal subgroup is actually normal, to T_{1}. This gives $Y \subseteq T_{1}$. Replacing G by T_{1} satisfies the conditions of the proposition. We inductively have $Y \subseteq K$.

Let $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{r}$ be the U-orbits which have at least two elements. By Lemma 2.3, we have the corresponding minimal normal subgroups $N_{1}, N_{2}, \ldots, N_{r}$ of $X z_{\Omega} U$. Obviously $Y=N_{1} \times N_{2} \times \ldots \times N_{r}$. We now show that $N_{1}, N_{2}, \ldots, N_{r}$ are also minimal normal subgroups of G. Let $i \in\{1,2, \ldots, r\}$. Since $N_{i} \subseteq Y \subseteq G \subseteq X \imath_{\Omega} U$ and $N_{i} \unlhd X \imath_{\Omega} U$, we have $N_{i} \unlhd G$.

Next we show that N_{i} is minimal normal in G. For this we need that the normal closure in G of any non-trivial element $\underline{x}=\left(x_{\omega}\right)_{\omega \in \Omega} \in N_{i}$ is equal to N_{i}. Choose $\omega_{1} \in \Omega_{i}$ such that $x_{\omega_{1}} \neq 1$. We follow argument $(*)$ in the proof of Lemma 2.3, which supplies an element \underline{y} with certain properties. Noting that since Ω_{i} is a U-orbit which has at least two elements, we have $\underline{y} \in Y \subseteq G$. We take the normal closure of $[\underline{x}, \underline{y}]$ in Y to gain $V_{\omega_{1}} \subseteq\langle\underline{x}\rangle^{G}$. For all $\omega_{2} \in \Omega_{i}$ with $\omega_{1} \neq \omega_{2}$ we can find $u \in U$ such that $\omega_{1} \cdot u=\omega_{2}$ because U acts transitively on Ω_{i}. As $V G=X \imath_{\Omega} U$, we can obtain $\underline{v} \in V$ such that $\underline{v} u \in G$. Then $V_{\omega_{2}}=V_{\omega_{1}}^{u}=V_{\omega_{1}}^{v u} \subseteq\langle\underline{x}\rangle^{G}$.

To prove $Y \subseteq K$, it is sufficient to show that each of the minimal normal subgroups $N_{1}, N_{2}, \ldots, N_{r}$ of G is contained in K. Let $i \in\{1,2, \ldots, r\}$. Let $\omega_{1}, \omega_{2} \in \Omega_{i}$ such that ω_{1} and ω_{2} are distinct. We can find $u \in U$ such that $\omega_{1} \cdot u=\omega_{2}$ because U acts transitively on Ω_{i}. As $V K=X \imath_{\Omega} U$, we can obtain $\underline{x} \in V$ such that $u \underline{x}=$ $u\left(x_{\omega}\right)_{\omega \in \Omega} \in K$. Choose $y \in X \backslash\{1\}$ and consider $\underline{y}=\left(y_{\omega}\right) \in Y \subseteq G$ with $y_{\omega}=y$ if $\omega=\omega_{1}$ and $y_{\omega}=1$ otherwise.

Then $[\underline{y}, u \underline{x}] \in K$ is similarly written as the element (2.1), in the final paragraph of the proof for Lemma 2.3. Now we know that K contains a non-trivial element from N_{i}. We have found that N_{i} is a minimal normal subgroup of G and since K is a normal subgroup of G, we have N_{i} is contained in K.

The following corollary is a special case of Proposition 6.8, regarding subnormal subgroups for a particular group G.

Corollary 6.9. Consider the permutational wreath product $X \tau_{\Omega} U$ as defined in Lemma 2.2. The base group is denoted $V=\prod_{\omega \in \Omega} X_{\omega}$, where $X_{\omega} \cong X$ for all $\omega \in \Omega$.

Define

$$
Y=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \in V: x_{\omega}=1 \text { if } \omega \cdot U=\{\omega\}\right\} ;
$$

the notation $\omega \cdot U$ denotes the orbit of ω under the action of the group U ．
Suppose K is a subnormal subgroup of $X \imath_{\Omega} U$ such that $V K=X \imath_{\Omega} U$ ．Then $Y \subseteq K$ ．

Proof．Apply Proposition 6.8 where $G=X \imath_{\Omega} U$ ．
Theorem 6.10 determines the subnormal subgroups of any arbitrary group W_{n} ，for $n \geq 0$ ．In the proof，Corollary 6.9 is applied to the circumstance where U is taken to be a subnormal subgroup of W_{n-1} acting on m^{n} elements．

At the end of this section，Corollary 6.11 completely classifies the subnormal sub－ groups of the inverse limits W of the finite groups W_{n} ．The characterisation covers all the subnormal subgroups of the groups W ，as shown by Corollary 6．12．Then Figure 6．2，also at the end of this section，gives a pictorial description of one such subnormal subgroup．

For the description of subnormal subgroups，we now define some new notation which is required．The reader can refer to Figure 3．1，in Section 3．2，to visualise the geometric meaning of these concepts．

As before，fix the alphabet $A=\{1,2, \ldots, m\}$ ．We have the set

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in A\right\}
$$

for each $j=1,2, \ldots$ ，which can be interpreted as the vertices on the j th layer of the m－regular rooted tree．In particular，this means that $\Omega^{*[0]}=\{\emptyset\}$ ．

For $j=1,2, \ldots$ ，denote the orbits of the base group $A_{m}^{\left(m^{j}\right)}$ of W_{j} ，acting on the $(j+1)$ th layer $\Omega^{*[j+1]}$ ，as

$$
\Omega_{i_{1} i_{2} \ldots i_{j}}^{*[j+1]}=\left\{i_{1} i_{2} \ldots i_{j} i_{j+1}: i_{j+1} \in A\right\},
$$

where $i_{1}, i_{2}, \ldots, i_{j} \in A$ are fixed．In particular，this means that the orbit of $W_{0}=A_{m}$ acting on $\Omega^{*[1]}$ is $\Omega_{\emptyset}^{*[1]}=\{1,2, \ldots, m\}$ ．

For the following，recall the normal subgroups V_{j}^{n} ，for $j \in\{1,2, \ldots, n+1\}$ ，and V_{0}^{n} of W_{n} ，defined in Theorem 3．2．

Theorem 6．10．Let W_{n} ，for $n \geq 0$ ，be the finite groups as defined in Section 3．2．For $j \in\{1,2, \ldots, n\}$ ，define

$$
U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)=A_{m}^{I_{*[n]} \cup \Delta_{*[n]}} \rtimes \ldots \rtimes\left(A_{m}^{I_{*[j+1]} \cup \Delta_{*[j+1]}} \rtimes A_{m}^{I_{*[j]}}\right) \leq W_{n}
$$

where

$$
\begin{array}{rlrl}
\Delta_{*[j+1]} & =\bigcup_{i_{1} i_{2} \ldots i_{j} \in I_{*[j]}} \Omega_{i_{1} i_{2} \ldots i_{j}}^{*[j+1]}, & \emptyset \neq I_{*[j]} \subseteq \Omega^{*[j]}, \\
\Delta_{*[j+2]} & =I_{i_{1}[j+1]} \subseteq \Omega^{*[j+1]} \backslash \Delta_{*[j+1]}, \\
\vdots & \Omega_{i_{1} i_{1} \ldots i_{j+1} \in \Delta_{*[j+1]}^{*[j+2]} \cup I_{*[j+1}}, & I_{*[j+2]} \subseteq \Omega^{*[j+2]} \backslash \Delta_{*[j+2]}, \\
\Delta_{*[n]} & =\bigcup_{i_{1} i_{2} \ldots i_{n-1} \in \Delta_{*[n-1]} \cup I_{*[n-1]}} \Omega_{i_{1} i_{2} \ldots i_{n-1}}^{*[n]}, & I_{*[n]} \subseteq \Omega^{*[n]} \backslash \Delta_{*[n]},
\end{array}
$$

and define

$$
U_{n+1}^{n}=\{1\}
$$

and

$$
U_{0}^{n}=W_{n} .
$$

Then the subnormal subgroups of W_{n} are precisely the groups U_{n+1}^{n}, U_{0}^{n} and $U_{j}^{n}\left(I_{* j j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$.

The subnormal length in W_{n} of the group $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$ is bounded above by $n-j+2$. (See Theorem 6.14, later, which gives a recursive formula for the exact subnormal length.)

Proof. We first check that the groups $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right), U_{n+1}^{n}$ and U_{0}^{n} are all subnormal subgroups of W_{n}. Obviously $U_{n+1}^{n}=\{1\} \triangleleft W_{n}$ and $U_{0}^{n}=W_{n} \unlhd W_{n}$.

We claim

$$
\begin{align*}
& U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right) \unlhd A_{m}^{\left(m^{n}\right)} U_{j}^{n-1}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n-1]}\right) \\
& \quad \unlhd A_{m}^{\left(m^{n}\right)} A_{m}^{\left(m^{n-1}\right)} U_{j}^{n-2}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n-2]}\right) \unlhd \ldots \\
& \tag{6.4}\\
& \quad \unlhd A_{m}^{\left(m^{n}\right)} A_{m}^{\left(m^{n-1}\right)} \ldots A_{m}^{\left(m^{j+1}\right)} U_{j}^{j}\left(I_{*[j]}\right) \unlhd V_{j}^{n} \triangleleft W_{n} .
\end{align*}
$$

It is sufficient to show, for $k \in\{j+1, j+2, \ldots, n\}$, that

$$
\begin{aligned}
& U_{j}^{k}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[k]}\right) \\
&=A_{m}^{I_{[k]} \cup \Delta_{*[k]}} \rtimes\left(A_{m}^{I_{*[k-1]} \cup \Delta_{*[k-1]}} \rtimes\right.\left.\ldots \rtimes\left(A_{m}^{I_{*[j+1]} \cup \Delta_{*[j+1]}} \rtimes A_{m}^{I_{*[j]}}\right)\right) \\
& \unlhd A_{m}^{\left(m^{k}\right)} \rtimes\left(A_{m}^{I_{*[k-1]} \cup \Delta_{*[k-1]}} \rtimes \ldots \rtimes\left(A_{m}^{I_{*[j+1]} \cup \Delta_{*[j+1]}} \rtimes A_{m}^{I_{*[j]}}\right)\right) \\
&=A_{m}^{\left(m^{k}\right)} U_{j}^{k-1}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[k-1]}\right) .
\end{aligned}
$$

Put

$$
U_{j}^{k-1}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[k-1]}\right)=: U .
$$

From Lemma 2.3, we see that $A_{m}^{I_{*}[k]} \cup \Delta_{*[k]}$ is a product of some minimal normal subgroups of $A_{m}^{\left(m^{k}\right)} \rtimes U$ and so $A_{m}^{I_{*[k]} \cup \Delta_{*[k]}}$ is normal in $A_{m}^{\left(m^{k}\right)} \rtimes U$. It is left to show $\left[A_{m}^{\left(m^{k}\right)}, U\right] \subseteq A_{m}^{I_{*[k]} \cup \Delta_{*[k]}}$. This holds as U moves points in the set $\Delta_{*[k]}$ and fixes points in the sets $I_{*[k]}$ and $\Omega^{*[k]} \backslash\left(I_{*[k]} \cup \Delta_{*[k]}\right)$.

The subnormal length in W_{n} of any group $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$ is $\leq n-j+2$ because the subnormal series (6.4) has length $n-j+2$.

We now prove, by induction on n, that every subnormal subgroup of W_{n} is one of the groups listed. For $n=0$, all the subnormal subgroups of W_{0} are $\{1\}=U_{1}^{0}$ and $W_{0}=U_{0}^{0}$ holds as W_{0} is simple.

Suppose that the result holds for W_{n-1}. Now we prove the result for W_{n}. Let K be a subnormal subgroup of W_{n}. Then there are two cases:

$$
K \subseteq A_{m}^{\left(m^{n}\right)}(\text { case } 1), \text { and } K \nsubseteq A_{m}^{\left(m^{n}\right)} \text { (case 2). }
$$

Case 1.
For $K \subseteq A_{m}^{\left(m^{n}\right)}$, we have K is subnormal in $A_{m}^{\left(m^{n}\right)}$. There are two possibilities, either $K=\{1\}=U_{n+1}^{n}$, or, using Theorem 2.4, we have $K=A_{m}^{I_{*[n]}}=U_{n}^{n}\left(I_{*[n]}\right)$, for some $\emptyset \neq I_{*[n]} \subseteq \Omega^{*[n]}$.

Case 2.
Now suppose $K \nsubseteq A_{m}^{\left(m^{n}\right)}$. We know $\{1\} \not \approx A_{m}^{\left(m^{n}\right)} K / A_{m}^{\left(m^{n}\right)}$ is a subnormal subgroup of $W_{n} / A_{m}^{\left(m^{n}\right)} \cong W_{n-1}$. Then, by induction, we have

$$
A_{m}^{\left(m^{n}\right)} K / A_{m}^{\left(m^{n}\right)} \cong U_{j}^{n-1}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n-1]}\right),
$$

for some $j \in\{1,2, \ldots, n-1\}$, or $A_{m}^{\left(m^{n}\right)} K / A_{m}^{\left(m^{n}\right)} \cong U_{0}^{n-1}$.
We denote this isomorphic copy of $A_{m}^{\left(m^{n}\right)} K / A_{m}^{\left(m^{n}\right)}$ in W_{n-1} by U. Then $A_{m}^{\left(m^{n}\right)} K=$ $A_{m}^{\left(m^{n}\right)} \rtimes U$. If $U=U_{j}^{n-1}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n-1]}\right)$, for some $j \in\{1,2, \ldots, n-$ $1\}$, then $\Delta_{*[j+1]}, \Delta_{*[j+2]}, \ldots, \Delta_{*[n]}$ are all defined. If $U=U_{0}^{n-1}$ then we set $\Delta_{*[n]}=\Omega^{*[n]}$. The elements of the set $\Omega^{*[n]} \backslash \Delta_{*[n]}$ are fixed points for the action of U on $\Omega^{*[n]}$. Also $K \subseteq A_{m}^{\left(m^{n}\right)} U$ and so K is subnormal in $A_{m}^{\left(m^{n}\right)} U$. Corollary 6.9 gives

$$
\left\{\left(x_{\omega}\right)_{\omega \in \Omega^{[n]}} \in A_{m}^{\left(m^{n}\right)}: x_{\omega}=1 \text { if } \omega \cdot U=\{\omega\}\right\}=A_{m}^{\Delta_{*[n]}} \subseteq K .
$$

We have found that

$$
\begin{equation*}
A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} K=A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} A_{m}^{\Delta_{*[n]}} U . \tag{6.5}
\end{equation*}
$$

To finalise the characterisation of K, observe that $K \cap A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} U$ is a subnormal subgroup of $A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} U \cong A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} \times U$ and that it projects onto the factor U. Using Lemma 2.4, there exists some subset $I_{*[n]} \subseteq \Omega^{*[n]} \backslash \Delta_{*[n]}$ such that $K \cap$ $A_{m}^{\Omega^{*[n]} \backslash \Delta_{*[n]}} U=A_{m}^{I_{*[n]}} U \cong A_{m}^{I_{*[n]}} \times U$. From this and the fact that $A_{m}^{\Delta_{*[n]}} \leq K$, we establish $K=A_{m}^{I_{*[n]}} A_{m}^{\Delta_{*[n]}} U$. Thus $K=U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$, for some $j \in\{1,2, \ldots, n-1\}$, or $K=U_{0}^{n}$.

For the following, recall the normal subgroups V_{j}, for $j \geq 0$, of a group W, defined in Corollary 3.3.

Corollary 6.11. Let $W=\lim _{\leftarrow}\left(W_{n}\right)_{n \geq 0}$ be the inverse limit of the groups W_{n} as defined in Section 3.2. For $j \geq 1$, define

$$
U_{j}\left(I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots\right)=\lim _{\leftarrow}^{\leftarrow}\left(U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)\right)_{n \rightarrow \infty},
$$

where

$$
\begin{array}{lrl}
\Delta_{*[j+1]}=\bigcup_{i_{1} i_{2} \ldots i_{j} \in I_{*[j]}} \Omega_{i_{1} i_{2} \ldots i_{j}}^{*[j+1]}, & \emptyset \neq I_{*[j]} \subseteq \Omega^{*[j]}, \\
\Delta_{*[j+2]}=I_{*[j+1]} \subseteq \Omega^{*[j+1]} \backslash \Delta_{*[j+1]}, \\
\bigcup_{i_{1} i_{2} \ldots i_{j+1} \in \Delta_{*[j+1]} \cup I_{*[j+1]}} \Omega_{i_{1} i_{2} \ldots i_{j+1}}^{*[j+2]}, & I_{*[j+2]} \subseteq \Omega^{*[j+2]} \backslash \Delta_{*[j+2]},
\end{array}
$$

and define

$$
U_{0}=\lim _{\leftarrow}\left(U_{0}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of W.
Then the non-trivial closed subnormal subgroups of W are precisely the groups $U_{j}\left(I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots\right)$ and U_{0}.

The subnormal length in W of the group $U_{j}\left(I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots\right)$ is bounded above by $n-j+2$ for $I_{*[n]} \subsetneq \Omega^{*[n]} \backslash \Delta_{*[n]}$ and $I_{*[n+1]}=\Omega^{*[n+1]} \backslash \Delta_{*[n+1]}$.

Proof. Let K be a non-trivial closed subnormal subgroup of W. The profinite group W has the chain of open normal subgroups $\ldots \subsetneq V_{2} \subsetneq V_{1} \subsetneq V_{0}=W$, see [26, Thm. 2.1.3]. These open normal subgroups form a base for the topology on W. Therefore, as K is a closed subgroup, we have $K=\lim _{\leftarrow}\left(V_{i} K / V_{i}\right)_{i \rightarrow \infty}$, refer to [30, Thm. 1.2 .5 (a)]. From Theorem 6.10, we know that $V_{i} K / \overleftarrow{V_{i}}$ is determined by a finite chain of sets $I_{*[j]}, I_{*[j+1]}$, $\ldots, I_{*[i-1]}$, for some $j \in\{0,1,2, \ldots, i\}$. Thus K is parametrised by the infinite chain of sets $I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots$.

Remark (regarding the proof of Corollary 6.11). The infinite iterated wreath product W, constructed from alternating groups A_{m}, can be encoded differently using m-adic integers. (Refer to Section 2.5 for a description of the m-adic integers.)

The group W is viewed as acting naturally on the infinite m-regular rooted tree, that is where every vertex has m children (see P. de la Harpe [6, pg. 211-212]). However, each path of the tree corresponds uniquely to an element of the m-adic integers \mathbb{Z}_{m}. Therefore the collection of all these paths is \mathbb{Z}_{m}.

For $U_{j}\left(I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots\right)$, we can now think of each $I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots$ as prescribing a subset of the m-adic integers. In particular, each of these subsets of the m-adic integers is a union of cosets because everything from some point onwards is included. Unions of cosets are exactly the open subsets of \mathbb{Z}_{m}. Therefore $I_{*[j]}, I_{*[j+1]}$, $I_{*[j+2]}, \ldots$ can be interpreted as open subsets of \mathbb{Z}_{m}.

Corollary 6.11 can be proved from knowing that the m-adic integers has an infinite number of open subsets. Whether one subnormal subgroup is contained in another can be read off from the index sets $I_{*[j]}, I_{*[j+1]}, I_{*[j+2]}, \ldots$. In the new interpretation of W, one subnormal subgroup is contained in another when its open sets are contained in the others open sets.

Below, Corollary 6.12 tells us that all the subnormal subgroups of the groups W are closed. For this we note, a normal subgroup N of a profinite group G is virtually dense in G if the closure of N is open in G.

Corollary 6.12. Let $W=\underset{\leftarrow}{\lim }\left(W_{n}\right)_{n \geq 0}$ be the inverse limit of the groups W_{n} as defined in Section 3.2.

Every subnormal subgroup of W is closed in W.
Proof. Let K be an abstract subnormal subgroup of W. We argue by induction on the subnormal length l of K in W. So

$$
W=N_{0} \unrhd N_{1} \unrhd \ldots \unrhd N_{l-1} \unrhd N_{l}=K .
$$

For $l=1$ we have $K \unlhd W$ ．Applying the result by N．Nikolov and D．Segal［22， Cor．1．15］，the normal subgroup K is closed in W ．

Suppose the result holds for $l>1$ ．Note that N_{l-1} has subnormal length $l-1$ in W ．By induction，the subnormal subgroup N_{l-1} is closed in W ．From the clas－ sification Corollary 6．11，all the closed subnormal subgroups of W have finite index， therefore N_{l-1} is open in W ．Thus N_{l-1} is a finitely generated profinite group，see［30， Prop．4．3．1］．

Consider $K \unlhd N_{l-1}$ ．The closure of K in N_{l-1} has finite index in N_{l-1} ，by Corol－ lary 6．11，and so K is a virtually dense normal subgroup of N_{l-1} ．

Let U be an open subgroup of N_{l-1} ．Then U is a finitely generated profinite group． So all its finite quotients are continuous quotients，refer to［21］．The normal subgroup $\operatorname{Core}_{W}(U)=\bigcap_{g \in W} U^{g}$ is open in W ，as U is open in W and by Lemma 2．10．Therefore $\operatorname{Core}_{W}(U)$ has finite index in U ，using Lemma 2．10．

If U had an infinite abelian quotient then $\operatorname{Core}_{W}(U)$ would have an infinite abelian quotient．But the only composition factors of finite quotients of $\operatorname{Core}_{W}(U)$ are isomor－ phic to A_{m} because all the composition factors of W are isomorphic to A_{m} ．

If U had a quotient isomorphic to an infinite product of non－abelian finite simple groups then $\operatorname{Core}_{W}(U)$ would map onto an infinite product of non－abelian finite simple groups，using Lemma 2．4．But then $\operatorname{Core}_{W}(U)$ must map onto arbitrarily long products $A_{m} \times A_{m} \times \ldots \times A_{m}$ and so $\operatorname{Core}_{W}(U)$ cannot be finitely generated．

Finally，U cannot map onto any connected Lie groups because U is totally discon－ nected，see［30，Cor．1．2．4（iv）］．Thus the theorem of N．Nikolov and D．Segal［22， Thm． 1.14 ］implies that K has finite index in N_{l-1} ．So K is open in N_{l-1} ，refer to［21］， and hence K is closed in W ，using Lemma 2．10．

It is standard to view the group W as acting on the infinite m－regular rooted tree， where every vertex has m children．P．de la Harpe［6，pg．211－212］gives an introduction to groups acting on these trees．Taking $m=5$ ，we now use this tree to illustrate an example of a subnormal subgroup of W ．The following diagram is a pictorial description
of the subnormal subgroup

$$
\begin{aligned}
& \ldots \rtimes\left(A_{5}^{\left(5^{3}\right)} \times A_{5}^{\left(5^{3}\right)} \times A_{5}^{\left(5^{3}\right)} \times A_{5}^{\left(5^{3}\right)} \times A_{5}^{\left(5^{3}\right)}\right) \\
& \quad \rtimes\left(A_{5}^{\left(5^{2}\right)} \times\left(\{1\} \times A_{5} \times A_{5} \times A_{5} \times A_{5}\right) \times A_{5}^{(5)} \times A_{5}^{(5)}\right. \\
& \left.\times\left(A_{5} \times A_{5} \times\{1\} \times A_{5} \times A_{5}\right) \times A_{5}^{(5)} \times A_{5}^{\left(5^{2}\right)} \times A_{5}^{\left(5^{2}\right)} \times A_{5}^{\left(5^{2}\right)}\right) \\
& \times\left(A_{5}^{(5)} \times\left(\{1\} \times A_{5} \times A_{5} \times\{1\} \times\{1\}\right) \times A_{5}^{(5)} \times A_{5}^{(5)} \times A_{5}^{(5)}\right) \\
& \\
& \quad \rtimes\left(A_{5} \times\{1\} \times A_{5} \times A_{5} \times A_{5}\right)
\end{aligned}
$$

of W. It is represented by the black squares being the index sets which select the factors A_{5} of the subnormal subgroup.

Figure 6.2: A subnormal subgroup of W represented on the infinite 5-regular rooted tree.

6．3．1 The subnormal length

We have only seen an upper bound for the subnormal length in the profinite groups W ， refer to Theorem 6．10．The exact subnormal length of a subnormal subgroup of W_{n} ， and hence of W ，is given by the recursive formula in Theorem 6．14．Later，we see some examples，Figure 6.3 and Figure 6．4，to show how the formula works．

First，Lemma 6．13，below，is required．As a consequence of this lemma，the subnor－ mal subgroups of a direct product of iterated wreath products of non－abelian simple groups are similarly direct products of the same form．

Lemma 6．13．Let $W_{n_{i}}$ ，for $n_{i} \geq 0$ ，be the groups as defined in Section 3．2．Recall the normal subgroups $V_{j_{i}}^{n_{i}}$ ，for $j_{i} \in\left\{1,2, \ldots, n_{i}+1\right\}$ ，and $V_{0}^{n_{i}}$ of $W_{n_{i}}$ ，defined in Theorem 3．2．

The normal subgroups of any direct product

$$
W_{n_{1}} \times W_{n_{2}} \times \ldots \times W_{n_{r}}
$$

are precisely the groups

$$
V_{j_{1}}^{n_{1}} \times V_{j_{2}}^{n_{2}} \times \ldots \times V_{j_{r}}^{n_{r}} .
$$

Proof．Let N be normal subgroup of $W_{n_{1}} \times W_{n_{2}} \times \ldots \times W_{n_{r}}$ ．The normal subgroup N projects onto a normal subgroup，say $V_{j_{i}}^{n_{i}}$ ，in the i th factor $W_{n_{i}}$ ．Clearly

$$
N \subseteq V_{j_{1}}^{n_{1}} \times V_{j_{2}}^{n_{2}} \times \ldots \times V_{j_{r}}^{n_{r}} .
$$

We claim

$$
N \supseteq V_{j_{1}}^{n_{1}} \times V_{j_{2}}^{n_{2}} \times \ldots \times V_{j_{r}}^{n_{r}} .
$$

It suffices to show，for all $i \in\{1,2, \ldots, r\}$ ，

$$
N \supseteq\{1\} \times \ldots \times\{1\} \times V_{j_{i}}^{n_{i}} \times\{1\} \times \ldots \times\{1\} .
$$

Suppose $V_{j_{i}}^{n_{i}} \neq\{1\}$ ．Since N projects onto $V_{j_{i}}^{n_{i}}$ in the $W_{n_{i}}$ factor，there is an

$$
x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in N
$$

such that $x_{i} \in V_{j_{i}}^{n_{i}}$ but $x_{i} \notin V_{j_{i}+1}^{n_{i}}$ ．
By considering $[x, y]^{z}$ for elements $y=\left(1, \ldots, 1, y_{i}, 1, \ldots, 1\right)$ with $y_{i} \in W_{n_{i}}$ in the i th position and arbitrary z ，we see that N contains the subgroup

$$
\{1\} \times \ldots \times\{1\} \times\left\langle\left[x_{i}, W_{n_{i}}\right]\right\rangle^{W_{n_{i}}} \times\{1\} \times \ldots \times\{1\} .
$$

By the classification of normal subgroups of $W_{n_{i}}$ ，Theorem 3．2，it is left to show that there exists $y_{i} \in W_{n_{i}}$ such that $\left[x_{i}, y_{i}\right] \notin V_{j_{i}+1}^{n_{i}}$ ．

Now $V_{j_{i}}^{n_{i}} / V_{j_{i}+1}^{n_{i}} \cong A_{m}^{N}$ for some N and $x_{i} \not \equiv 1 \bmod V_{j_{i}+1}^{n_{i}}$ gives a non－trivial element of the factor group．As $Z\left(V_{j_{i}}^{n_{i}} / V_{j_{i}+1}^{n_{i}}\right) \cong Z\left(A_{m}^{N}\right) \cong Z\left(A_{m}\right)^{N}=1$ ，hence there exists $y_{i} \in V_{j_{i}}^{n_{i}}$ such that $\left[x_{i}, y_{i}\right] \not \equiv 1 \bmod V_{j_{i}+1}^{n_{i}}$ and this y_{i} will do．

For the purpose of the following formula，set $I_{*[i]}=\emptyset$ ，for $i<j$ ，and $\Delta_{*[i]}=\emptyset$ ，for $i \leq j$ ，and $I_{*[n+1]} \cup \Delta_{*[n+1]}=\Omega^{*[n+1]}$ ．

Theorem 6．14．Let W_{n} ，for $n \geq 0$ ，be the finite groups as defined in Section 3．2．For $j \in\{1,2, \ldots, n\}$ ，recall the subnormal subgroups

$$
U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)=A_{m}^{I_{*[n]} \cup \Delta_{*[n]}} \rtimes \ldots \rtimes\left(A_{m}^{I_{*[j+1]} \cup \Delta_{*[j+1]}} \rtimes A_{m}^{I_{*[j]}}\right),
$$

where

$$
\begin{aligned}
\Delta_{*[j+1]} & =\bigcup_{i_{1} i_{2} \ldots i_{j} \in I_{*[j]}} \Omega_{i_{1} i_{2} \ldots i_{j}}^{*[j+1]}, & I_{*[j+1]} \subseteq \Omega^{*[j+1]} \backslash \Delta_{*[j+1]} \\
\Delta_{*[j+2]} & =\bigcup_{i_{1} i_{2} \ldots i_{j+1} \in \Delta_{*[j+1]} \cup I_{*[j+1]}} \Omega_{i_{1} i_{2} \ldots\left[i_{j+1}\right.}^{*[j+2]}, & I_{*[j+2]} \subseteq \Omega^{*[j+2]} \backslash \Delta_{*[j+2]}, \\
& \vdots & \vdots \\
\Delta_{*[n]} & =\bigcup_{i_{1} i_{2} \ldots i_{n-1} \in \Delta_{*[n-1]} \cup I_{*[n-1]}} \Omega_{i_{1} i_{2} \ldots i_{n-1}}^{*[n]}, & I_{*[n]} \subseteq \Omega^{*[n]} \backslash \Delta_{*[n]}
\end{aligned}
$$

of W_{n} ，as defined in Theorem 6．10．
The subnormal length of $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$ in W_{n} is given by the formula

$$
\max _{i_{1} i_{2} \ldots i_{n}}\left|\left\{l_{0}, l_{1}, \ldots, l_{n}\right\}\right|,
$$

where $i_{1} i_{2} \ldots i_{n}$ runs through all paths in the rooted tree up to level n ，and

$$
\begin{gathered}
l_{0}=l(\emptyset) \\
l_{r+1}=l_{r}+l\left(i_{1} i_{2} \ldots i_{l_{r}}\right), \text { for } 0 \leq r<n
\end{gathered}
$$

with

$$
\begin{aligned}
l\left(i_{1} i_{2} \ldots i_{k}\right)= & \min \{l \mid 0 \leq l \leq n+1-k \text { such that } \\
& \left.\exists i_{k+1}^{\prime}, i_{k+2}^{\prime}, \ldots, i_{k+l}^{\prime}: i_{1} i_{2} \ldots i_{k} i_{k+1}^{\prime} i_{k+2}^{\prime} \ldots i_{k+l}^{\prime} \in I_{*[k+l]} \cup \Delta_{*[k+l]}\right\} .
\end{aligned}
$$

Proof. We prove the formula for the subnormal length in W_{n} by induction on n. For $n=1$, the subnormal subgroups $U_{1}^{1}\left(I_{*[1]}\right)$ of W_{1} have subnormal length

$$
\begin{cases}1 & \text { if } I_{*[1]}=\Omega^{*[1]}\left(\text { implying that } U_{1}^{1}\left(I_{*[1]}\right)=V_{1}^{1}\right) \\ 2 & \text { if } I_{d_{j+1}} \subsetneq \Omega^{*[1]}\end{cases}
$$

which are the same lengths given by the formula.
Suppose the formula holds for W_{m}, for $m<n$. Now we prove the formula for W_{n}. Let $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)$ be a subnormal subgroup of W_{n} and we denote $U_{j}^{n}\left(I_{*[j]}, I_{*[j+1]}, \ldots, I_{*[n]}\right)=: U$. The unique smallest normal subgroup of W_{n} that contains the subnormal subgroup U is V_{j}^{n}. The subnormal length of U in W_{n} is equal to

$$
1+\text { the subnormal length of } U \text { in } V_{j}^{n} \text {. }
$$

Notice

$$
V_{j}^{n} \cong \underbrace{W_{n-j} \times W_{n-j} \times \ldots \times W_{n-j}}_{m^{j} \text { times }} .
$$

By Lemma 6.13, there is a unique smallest normal subgroup N_{1} of $W_{n-j} \times W_{n-j} \times$ $\ldots \times W_{n-j}$ containing the subnormal subgroup U. Since N_{1} is isomorphic to a direct product of groups of the form $W_{n_{i}}$, using Lemma 6.13, there is again a unique smallest normal subgroup N_{2} of N_{1} containing U and we descend so on. The formula for the subnormal length records how many steps this procedure requires until we reach U.

The subnormal length of U in $V_{j}^{n} \cong W_{n-j} \times W_{n-j} \times \ldots \times W_{n-j}$ is computed recursively as the maximum of the subnormal lengths of the intersection of U with each factor isomorphic to W_{n-j} in that factor isomorphic to W_{n-j}. The possible choices for descending to such factors are parameterized by the paths $i_{1} i_{2} \ldots i_{n}$.

We apply the formula of Theorem 6.14 ，below，to calculate the subnormal length for two examples of subnormal subgroups of W_{5} ．The subnormal subgroups are illustrated using the simpler 2－regular rooted tree，since the formula does not depend on the degree of the alternating groups used to construct W_{n} ．

The subnormal subgroups are represented by the black squares being the index sets which select the factors A_{m} of the subnormal subgroup．The black dots on the rooted trees remind the reader that for the purpose of the formula we take $I_{*[6]} \cup \Delta_{*[6]}=\Omega^{*[6]}$ ．

Figure 6．3：A subnormal subgroup $U_{1}^{5}\left(I_{*[1]}, I_{*[2]}, \ldots, I_{*[5]}\right)$ of W_{5} represented on the rooted tree of length 6 ．

Using the formula for the highlighted path $i_{1} i_{2} \ldots i_{5}$ on the far right of the tree，in Figure 6．3，gives：

$$
\begin{aligned}
& l_{0}=l(\emptyset)=1 \\
& l_{1}=l_{0}+l\left(i_{1}\right)=1+3=4 \\
& l_{2}=l_{1}+l\left(i_{1} i_{2} i_{3} i_{4}\right)=4+2=6 \\
& l_{3}=l_{2}+l\left(i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}\right)=6+0=6
\end{aligned}
$$

This path produces the maximum $\left|\left\{l_{0}, l_{1}, \ldots, l_{3}\right\}\right|=3$ ，and hence the subnormal length is 3 ．

The following example is to show how the subnormal length can grow with n ．It shows the largest possible subnormal length in W_{5} ．

Figure 6．4：A subnormal subgroup of W_{5} of subnormal length 6.

Using the formula for the highlighted path $i_{1} i_{2} \ldots i_{5}$ on the far right of the tree，in Figure 6．4，gives：

$$
\begin{aligned}
& l_{0}=l(\emptyset)=1, \\
& l_{1}=l_{0}+l\left(i_{1}\right)=1+1=2, \\
& l_{2}=l_{1}+l\left(i_{1} i_{2}\right)=2+1=3, \\
& l_{3}=l_{2}+l\left(i_{1} i_{2} i_{3}\right)=3+1=4, \\
& l_{4}=l_{3}+l\left(i_{1} i_{2} i_{3} i_{4}\right)=4+1=5, \\
& l_{5}=l_{4}+l\left(i_{1} i_{2} i_{3} i_{4} i_{5}\right)=5+1=6 .
\end{aligned}
$$

This path produces the maximum $\left|\left\{l_{0}, l_{1}, \ldots, l_{5}\right\}\right|=6$ ，and hence the subnormal length is 6 ．

6.4 General Wilson groups

In this section, we complete the characterisation of the subnormal subgroups of an arbitrary Wilson group. The characterisation holds for any choice of X_{i}, for $i \geq 0$, and for any choice of faithful transitive permutation representation of G_{n}, for $n \geq 1$, in the construction of a Wilson group. Here we do not have the previously imposed restrictions, of Section 6.2 , for the groups G_{n-1}, for $n \geq 1$, acting on themselves by right multiplication. Thus the action of a subnormal subgroup of G_{n-1} on d_{n} elements may have orbits of one element.

Theorem 6.15 determines the subnormal subgroups of the finite groups G_{n} for the general Wilson construction. To prove this theorem, we apply Corollary 6.9. Taking U to be a subnormal subgroup of G_{n-1} acting on d_{n} elements, the corollary holds when the subnormal subgroup has orbits of one element.

Corollary 6.17 completely classifies the closed subnormal subgroups of a general Wilson group. Then Corollary 6.7 shows that all subnormal subgroups of a Wilson group are automatically closed provided the first group in Wilson's construction has size $\left|G_{0}\right|>35$!, and hence the Wilson group is finitely generated (see Chapter 9). Therefore the characterisation of subnormal subgroups, in Corollary 6.17, covers all the subnormal subgroups of any Wilson group provided $\left|G_{0}\right|>35$!.

At the end of this section, Figure 6.5 gives a pictorial illustration of the subnormal subgroups of a general Wilson group. In comparison with the particular Wilson groups studied in Section 6.2, the subnormal subgroups are still squeezed between normal subgroups, however not consecutively; recall Figure 6.1.

For the following, recall the normal subgroups P_{j}^{n} and Q_{j}^{n}, for $j \in\{0,1, \ldots, n\}$, of G_{n}, defined in Theorem 5.1. We define $L_{0}=\{1\}$ for the working of the subsequent proof.

Theorem 6.15. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1.
For $j \in\{0,1, \ldots, n-1\}$, define

$$
S_{j}^{n}\left(I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes X_{j+1}^{I_{d_{j+1}}} \leq P_{j}^{n}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

and define

$$
S_{n}^{n}=\{1\} .
$$

For $j \in\{1,2, \ldots, n-1\}$, define

$$
T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes\left(X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}} \rtimes X_{j}^{I_{L_{j}}}\right) \leq Q_{j}^{n} \text {, where } \emptyset \neq I_{L_{j}} \subseteq L_{j},
$$

$$
\Delta_{d_{j+1}}=\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot X_{j}^{I_{L_{j}}} \neq\{\omega\}\right\} \text { and } I_{d_{j+1}} \subseteq \Omega_{d_{j+1}} \backslash \Delta_{d_{j+1}}
$$

(the notation $\omega \cdot X_{j}^{I_{L_{j}}}$ denotes the orbit of ω under the action of the group $X_{j}^{I_{L_{j}}} \leq G_{j}$), and define

$$
T_{n}^{n}\left(I_{L_{n}}\right)=X_{n}^{I_{L_{n}}} \text {, where } \emptyset \neq I_{L_{n}} \subseteq L_{n} \text {, }
$$

and

$$
T_{0}^{n}=G_{n} .
$$

Then the subnormal subgroups of G_{n} are precisely the groups $S_{j}^{n}\left(I_{d_{j+1}}\right)$, S_{n}^{n}, $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right), T_{n}^{n}\left(I_{L_{n}}\right)$ and T_{0}^{n}.

In particular, for all $j \in\{1,2, \ldots, n-1\}, I_{d_{j}}, I_{L_{j}}$ and $I_{d_{j+1}}$, they form chains

$$
Q_{j+1}^{n} \subsetneq T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right) \subseteq Q_{j}^{n} \subsetneq S_{j-1}^{n}\left(I_{d_{j}}\right) \subseteq P_{j-1}^{n} .
$$

Also, for all $I_{d_{n}}$ and $I_{L_{n}}$, they form chains

$$
S_{n}^{n}=P_{n}^{n} \subsetneq T_{n}^{n}\left(I_{L_{n}}\right) \subseteq Q_{n}^{n} \subsetneq S_{n-1}^{n}\left(I_{d_{n}}\right) \subseteq P_{n-1}^{n} .
$$

The subnormal length in G_{n} of the group $S_{j}^{n}\left(I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{d_{j+1}}=\Omega_{d_{j+1}}\left(\text { implying that } S_{j}^{n}\left(I_{d_{j+1}}\right)=P_{j}^{n}\right), \\ 2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}}\end{cases}
$$

The subnormal length in G_{n} of the group $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{L_{j}}=L_{j}\left(\text { implying that } T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)=Q_{j}^{n}\right), \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j} \text { and } I_{d_{j+1}} \cup \Delta_{d_{j+1}} \text { is a union of } M_{j} \text {-orbits, } \\ 3 & \text { if } I_{L_{j}} \subsetneq L_{j} \text { and } I_{d_{j+1}} \cup \Delta_{d_{j+1}} \text { is not a union of } M_{j} \text {-orbits. }\end{cases}
$$

The subnormal length in G_{n} of the group $T_{n}^{n}\left(I_{L_{n}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{L_{n}}=L_{n}\left(\text { implying that } T_{n}^{n}\left(I_{L_{n}}\right)=Q_{n}^{n}\right), \\ 2 & \text { if } I_{L_{n}} \subsetneq L_{n}\end{cases}
$$

We remark in the above definition of $\Delta_{d_{j+1}}$ the dependency on $I_{L_{j}}$ is implicit.
Proof. We first check that the groups $S_{j}^{n}\left(I_{d_{j+1}}\right), S_{n}^{n}, T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right), T_{n}^{n}\left(I_{L_{n}}\right)$ and T_{0}^{n} are all subnormal subgroups of G_{n}. Obviously $S_{n}^{n}=\{1\} \triangleleft G_{n}$ and $T_{0}^{n}=G_{n} \unlhd G_{n}$. For
any $\emptyset \neq I_{L_{n}} \subseteq L_{n}$, we have

$$
\begin{equation*}
T_{n}^{n}\left(I_{L_{n}}\right)=X_{n}^{I_{L_{n}}} \unlhd M_{n}=Q_{n}^{n} \triangleleft G_{n} \tag{6.6}
\end{equation*}
$$

using Theorem 2.4. For any $\emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}}$, we have

$$
\begin{equation*}
S_{j}^{n}\left(I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes X_{j+1}^{I_{d_{j+1}}} \unlhd Q_{j+1}^{n} \rtimes L_{j+1}=P_{j}^{n} \triangleleft G_{n} \tag{6.7}
\end{equation*}
$$

as $X_{j+1}^{I_{d_{j+1}}} \unlhd L_{j+1}$.
For any $\emptyset \neq I_{L_{j}} \subseteq L_{j}$ and $I_{d_{j+1}} \subseteq \Omega_{d_{j+1}} \backslash \Delta_{d_{j+1}}$, we show that

$$
\begin{equation*}
T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right) \unlhd P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}} \unlhd Q_{j}^{n} \triangleleft G_{n} \tag{6.8}
\end{equation*}
$$

We have $P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}} \unlhd P_{j}^{n} \rtimes M_{j}=Q_{j}^{n}$, as $X_{j}^{I_{L_{j}}} \unlhd M_{j}$. For

$$
\begin{aligned}
& T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)=Q_{j+1}^{n} \rtimes\left(X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}} \rtimes X_{j}^{I_{L_{j}}}\right) \unlhd \\
& Q_{j+1}^{n} \rtimes\left(L_{j+1} \rtimes X_{j}^{I_{L_{j}}}\right)=P_{j}^{n} \rtimes X_{j}^{I_{L_{j}}},
\end{aligned}
$$

we need to show that $X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}} \rtimes X_{j}^{I_{L_{j}}} \unlhd L_{j+1} \rtimes X_{j}^{I_{L_{j}}}$. From Lemma 2.3, we see that $X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}}$ is a product of some minimal normal subgroups of $L_{j+1} \rtimes$ $X_{j}^{I_{L_{j}}}$ and so $X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}}$ is normal in $L_{j+1} \rtimes X_{j}^{I_{L_{j}}}$. It is now left to show that $\left[L_{j+1}, X_{j}^{I_{L_{j}}}\right] \subseteq X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}}$. This holds as $X_{j}^{I_{L_{j}}}$ moves points in the set $\Delta_{d_{j+1}}$ and fixes points in the sets $I_{d_{j+1}}$ and $\Omega_{d_{j+1}} \backslash\left(I_{d_{j+1}} \cup \Delta_{d_{j+1}}\right)$.

We check that the subnormal lengths given in the statement of the theorem are correct for the groups $T_{n}^{n}\left(I_{L_{n}}\right)$ and $S_{j}^{n}\left(I_{d_{j+1}}\right)$. If $I_{L_{n}}=L_{n}$ then $T_{n}^{n}\left(I_{L_{n}}\right)=Q_{n}^{n}$ and the subnormal series (6.6) reduces to a chain of length 1 . Similarly, if $I_{d_{j+1}}=\Omega_{d_{j+1}}$ then $S_{j}^{n}\left(I_{d_{j+1}}\right)=P_{j}^{n}$ and the subnormal series (6.7) reduces to chain of length 1 . For all other $T_{n}^{n}\left(I_{L_{n}}\right)$ we have displayed the shortest length of a subnormal series (6.6) because Q_{n}^{n} is the smallest normal subgroup of G_{n} containing $T_{n}^{n}\left(I_{L_{n}}\right)$ and $T_{n}^{n}\left(I_{L_{n}}\right)$ is not normal in G_{n}. A similar argument holds for all other $S_{j}^{n}\left(I_{d_{j+1}}\right)$.

We check that the subnormal lengths given in the statement of the theorem are correct for the groups $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$. If $I_{L_{j}}=L_{j}$ then $\Delta_{d_{j+1}}=\Omega_{d_{j+1}}$ because Lemma 6.3 implies that the action of $X_{j}^{L_{j}}=M_{j}$ on $\Omega_{d_{j+1}}$ has no fixed points. So $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)=$ Q_{j}^{n} and the subnormal series (6.8) reduces to a chain of length 1.

If $I_{L_{j}} \subsetneq L_{j}$ and $I_{d_{j+1}} \cup \Delta_{d_{j+1}}$ is a union of M_{j}-orbits then the subnormal series (6.8)
reduces to

$$
T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right) \triangleleft Q_{j}^{n} \triangleleft G_{n},
$$

a chain of length 2 , as M_{j} normalises $X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}}$. This is the shortest length of a subnormal series because Q_{j}^{n} is the smallest normal subgroup of G_{n} containing $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ and $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ is not normal in G_{n}.

If $I_{L_{j}} \subsetneq L_{j}$ and $I_{d_{j+1}} \cup \Delta_{d_{j+1}}$ is not a union of M_{j}-orbits we check that we have displayed the shortest length 3 of a subnormal series (6.8) for $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$. This is because Q_{j}^{n} is the smallest normal subgroup of G_{n} containing $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$. Also $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ is not normal in Q_{j}^{n} since M_{j} does not normalise $X_{j+1}^{I_{d_{j+1}} \cup \Delta_{d_{j+1}}}$.

Recall the definition of the groups $H_{n}=L_{n} G_{n-1}$, for $n \geq 1$, as defined at the beginning of Section 6.1. Due to $H_{n} \cong G_{n} / M_{n}$, the theorem we are currently proving also implicitly makes a statement about the subnormal subgroups of H_{n}. We now prove, by induction on n, that every subnormal subgroup of G_{n} is one of the groups listed. Hence the subnormal subgroups of H_{n} are homomorphic images of the subnormal subgroups of G_{n} listed between Q_{n}^{n} and Q_{0}^{n} under the canonical map $G_{n} \longrightarrow H_{n}$.

For $n=0$, all the subnormal subgroups of G_{0} are $\{1\}=S_{0}^{0}$ and $G_{0}=T_{0}^{0}=T_{0}^{0}\left(I_{L_{0}}\right)$, where $I_{L_{0}}=\{1\}$ (we have set $L_{0}=\{1\}$), holds as G_{0} is simple. Although it will also follow from the general argument below, we now prove separately the implicit claim for H_{1}.

Suppose K is a subnormal subgroup of H_{1}. Then $L_{1} K / L_{1}$ is a subnormal subgroup of $H_{1} / L_{1} \cong G_{0}$. Since G_{0} is simple, we know

$$
L_{1} K / L_{1} \cong\{1\} \text { or } L_{1} K / L_{1} \cong G_{0} .
$$

For the case $L_{1} K / L_{1} \cong\{1\}$, we have $K \subseteq L_{1}$. Then K is subnormal in $L_{1}=X_{1}^{\left(d_{1}\right)}$. There are two possibilities, either $K=\{1\} \cong M_{1} T_{1}^{1}\left(I_{L_{1}}\right) / M_{1}$, for any $\emptyset \neq I_{L_{1}} \subseteq L_{1}$, or, using Theorem 2.4, we have $K=X_{1}^{I_{d_{1}}}$ is the image of $S_{0}^{1}\left(I_{d_{1}}\right)$, for some $\emptyset \neq I_{d_{1}} \subseteq \Omega_{d_{1}}$, under the canonical map $G_{1} \longrightarrow H_{1}$. Due to $H_{1} \cong G_{1} / M_{1}$, there are subnormal subgroups of H_{1} of this form.

For the case $L_{1} K / L_{1} \cong G_{0}$, we have $L_{1} K=L_{1} \rtimes G_{0}$. Since G_{0} acts faithfully and transitively on $\Omega_{d_{1}}$, there is exactly one G_{0}-orbit of size at least two. Proposition 6.2 gives $L_{1} \subseteq K$. Therefore $K=L_{1} \rtimes G_{0} \cong T_{0}^{1} / M_{1}$. For $n=1$, the result holds for H_{1}.

Suppose that the result holds for G_{n-1}. Now we prove the result for H_{n}. Let K be a subnormal subgroup of H_{n}. Then there are two cases:

$$
\left.K \subseteq L_{n}(\text { case } 1), \text { and } K \nsubseteq L_{n} \text { (case } 2\right) .
$$

Case 1.
For $K \subseteq L_{n}$, we have K is subnormal in $L_{n}=X_{n}^{\left(d_{n}\right)}$. There are two possibilities, either $K=\{1\} \cong M_{n} T_{n}^{n}\left(I_{L_{n}}\right) / M_{n}$, for any $\emptyset \neq I_{L_{n}} \subseteq L_{n}$, or, using Theorem 2.4, we have $K=X_{n}^{I_{d_{n}}}$ is the image of $S_{n-1}^{n}\left(I_{d_{n}}\right)$, for some $\emptyset \neq I_{d_{n}} \subseteq \Omega_{d_{n}}$, under the canonical map $G_{n} \longrightarrow H_{n}$.

Case 2.
Now suppose $K \nsubseteq L_{n}$. We know $\{1\} \nsubseteq L_{n} K / L_{n}$ is a subnormal subgroup of $H_{n} / L_{n} \cong G_{n-1}$. Then there are two possibilities:

$$
L_{n} K / L_{n} \subseteq L_{n} M_{n-1} / L_{n}(\text { case } 2 \mathrm{a})
$$

and

$$
L_{n} K / L_{n} \nsubseteq L_{n} M_{n-1} / L_{n}(\text { case } 2 \mathrm{~b})
$$

Case 2a
For $L_{n} K / L_{n} \subseteq L_{n} M_{n-1} / L_{n}$, we have $\{1\} \not \approx L_{n} K / L_{n}$ is subnormal in $L_{n} M_{n-1} / L_{n} \cong M_{n-1}$. So

$$
L_{n} K / L_{n} \cong X_{n-1}^{I_{L_{n-1}}}=T_{n-1}^{n-1}\left(I_{L_{n-1}}\right)
$$

for some $\emptyset \neq I_{L_{n-1}} \subseteq L_{n-1}$. Put

$$
T_{n-1}^{n-1}\left(I_{L_{n-1}}\right)=: T
$$

Then $L_{n} K=L_{n} \rtimes T$.
The action of T on $\Omega_{d_{n}}$ may have fixed points. Also $K \subseteq L_{n} T$ and so K is subnormal in $L_{n} T$. Corollary 6.9 gives

$$
\left\{\left(x_{\omega}\right)_{\omega \in \Omega_{d_{n}}} \in L_{n}: x_{\omega}=1 \text { if } \omega \cdot T=\{\omega\}\right\}=X_{n}^{\Delta_{d_{n}}} \subseteq K
$$

We have found that

$$
\begin{equation*}
X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} K=X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} X_{n}^{\Delta_{d_{n}}} T \tag{6.9}
\end{equation*}
$$

To finalise the characterisation of K, observe that $K \cap X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} T$ is a subnormal subgroup of $X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} T \cong X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} \times T$ and that it projects onto the factor T. Using Lemma 2.4, there exists some subset $I_{d_{n}} \subseteq \Omega_{d_{n}} \backslash \Delta_{d_{n}}$ such that $K \cap X_{n}^{\Omega_{d_{n}} \backslash \Delta_{d_{n}}} T=X_{n}^{I_{d_{n}}} T \cong X_{n}^{I_{d_{n}}} \times T$. From this and the fact that $X_{n}^{\Delta_{d_{n}}} \leq K$, we establish $K=X_{n}^{I_{d_{n}}} X_{n}^{\Delta_{d_{n}}} T$. Therefore $K=X_{n}^{I_{d_{n}} \cup \Delta_{d_{n}}} \rtimes T$ is
the image of $T_{n-1}^{n}\left(I_{L_{n-1}}, I_{d_{n}}\right)$ under the canonical map $G_{n} \longrightarrow H_{n}$.

Case $2 b$.
For $L_{n} K / L_{n} \nsubseteq L_{n} M_{n-1} / L_{n}$, we have $L_{n} K / L_{n}$ is subnormal in $H_{n} / L_{n} \cong$ G_{n-1} and is not contained in $L_{n} M_{n-1} / L_{n}$. By induction, we have $L_{n} K / L_{n} \cong$ $S_{j}^{n-1}\left(I_{d_{j+1}}\right)$, for some $j \in\{0,1, \ldots, n-2\}$, or $L_{n} K / L_{n} \cong T_{j}^{n-1}\left(I_{L_{j}}, I_{d_{j+1}}\right)$, for some $j \in\{1,2, \ldots, n-2\}$, or $L_{n} K / L_{n} \cong T_{0}^{n-1}$.
We denote this isomorphic copy of $L_{n} K / L_{n}$ in G_{n-1} by R. Then $L_{n} K=$ $L_{n} \rtimes R$. Observe that $M_{n-1} \subseteq R$. Each of the orbits of M_{n-1} in its action upon $\Omega_{d_{n}}$, and hence each of the orbits of R in its action upon $\Omega_{d_{n}}$, has at least two elements (see Lemma 6.3). Also $K \subseteq L_{n} R$ and so K is subnormal in $L_{n} R$.

Proposition 6.2 gives $L_{n} \subseteq K$ and so $K=L_{n} \rtimes R$. Therefore K is the image of $S_{j}^{n}\left(I_{d_{j+1}}\right)$ under the canonical map $G_{n} \longrightarrow H_{n}$, for some $j \in$ $\{0,1, \ldots, n-2\}$, or K is the image of $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ under the canonical $\operatorname{map} G_{n} \longrightarrow H_{n}$, for some $j \in\{1,2, \ldots, n-2\}$, or $K \cong T_{0}^{n} / M_{n}$.

Suppose that the result holds for H_{n}. Now we prove the result for G_{n}. Let K be a subnormal subgroup of G_{n}. Then there are two cases:

$$
K \subseteq M_{n}(\text { case } 1), \text { and } K \nsubseteq M_{n}(\text { case } 2)
$$

Case 1.
For $K \subseteq M_{n}$, we have K is a subnormal subgroup of $M_{n}=X_{n}^{\left(\left|L_{n}\right|\right)}$. There are two possibilities, either $K=\{1\}=S_{n}^{n}$, or, using Theorem 2.4 we have $K=X_{n}^{I_{L_{n}}}=T_{n}^{n}\left(I_{L_{n}}\right)$, for some $\emptyset \neq I_{L_{n}} \subseteq L_{n}$.

Case 2.
Now suppose $K \nsubseteq M_{n}$. We know $\{1\} \nsubseteq M_{n} K / M_{n}$ is a subnormal subgroup of $G_{n} / M_{n} \cong H_{n}$. Then there are the two possibilities:

$$
M_{n} K / M_{n} \subseteq M_{n} L_{n} / M_{n}(\text { case } 2 \mathrm{a})
$$

and

$$
M_{n} K / M_{n} \nsubseteq M_{n} L_{n} / M_{n}(\text { case } 2 \mathrm{~b})
$$

Case $2 a$.
For $M_{n} K / M_{n} \subseteq M_{n} L_{n} / M_{n}$, we have $\{1\} \not \approx M_{n} K / M_{n}$ is subnormal in

$$
M_{n} L_{n} / M_{n} \cong L_{n} . \text { So } \quad M_{n} K / M_{n} \cong X_{n}^{I_{d_{n}}},
$$

for some $\emptyset \neq I_{d_{n}} \subseteq \Omega_{d_{n}}$, which is the image of $S_{n-1}^{n}\left(I_{d_{n}}\right)$ under the canonical map $G_{n} \longrightarrow H_{n}$. Put $S_{n-1}^{n}\left(I_{d_{n}}\right)=: S$. Then $M_{n} K=S$.
As said in the proof of the analogue case for Theorem 6.4, right multiplication by L_{n} on itself in the action (4.1) implies that each of the orbits of $X_{n}^{I_{d_{n}}}$ in its action upon L_{n} has at least two elements. In the action of $X_{n}^{I_{d_{n}}}$ on L_{n}, each non-trivial element of $X_{n}^{I_{d_{n}}}$ acts fixed point freely. Therefore this action is faithful.

Also $K \subseteq S$ and so K is subnormal in S. Proposition 6.2 gives $M_{n} \subseteq K$. Therefore $K=S=S_{n-1}^{n}\left(I_{d_{n}}\right)$.

Case $2 b$.
For $M_{n} K / M_{n} \nsubseteq M_{n} L_{n} / M_{n}$, we have $M_{n} K / M_{n}$ is subnormal in $G_{n} / M_{n} \cong$ H_{n} and is not contained in $M_{n} L_{n} / M_{n}$. By induction, we have $M_{n} K / M_{n}=$ $T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right) / M_{n}$, for some $j \in\{1,2, \ldots, n-1\}$, or $M_{n} K / M_{n}=$ $S_{j}^{n}\left(I_{d_{j+1}}\right) / M_{n}$, for some $j \in\{0,1, \ldots, n-2\}$, or $M_{n} K / M_{n}=T_{0}^{n} / M_{n}$.
We denote this description of $M_{n} K / M_{n}$ in H_{n} by R / M_{n}. Then $M_{n} K=R$. Again, right multiplication by L_{n} on itself in the action (4.1) implies that each of the orbits of R / M_{n} in its action upon L_{n} has at least two elements. We claim separately that each of the $\left(X_{n}^{I_{d_{n}} \cup \Delta_{d_{n}}} X_{n}^{I_{L_{n-1}}}\right)$-orbits has at least two elements. Obviously $X_{n}^{I_{L_{n-1}}}$ is not the trivial group because $I_{L_{n-1}} \neq \emptyset$. The action of $1 \neq X_{n}^{I_{L_{n-1}}}$ on $\Omega_{d_{n}}$ is faithful and therefore at least one point is moved. So $\Delta_{d_{n}} \neq \emptyset$. Thus $X_{n}^{I_{d_{n}} \cup \Delta_{d_{n}}}$ is not the trivial group.
In the action (4.1), non-trivial elements of R / M_{n} acting on L_{n} can have fixed points however these elements do move at least one other point. Therefore this action is faithful.

Also $K \subseteq R$ and so K is subnormal in R. Proposition 6.2 gives $M_{n} \subseteq K$ and so $K=R$. Therefore $K=T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)$, for some $j \in\{1,2, \ldots, n-1\}$, or $K=S_{j}^{n}\left(I_{d_{j+1}}\right)$, for some $j \in\{0,1, \ldots, n-2\}$, or $K=T_{0}^{n}$.

Again, our work has been restricted in Lemma 6.16 to closed subnormal subgroups because we rely on Lemma 2.12, which only applies to subnormal subgroups that are closed.

Lemma 6.16 is required due to the two different types of notation for the subnormal subgroups of G_{n}.

Lemma 6.16. Given finite groups H_{n}, for $n \geq 1$, in which all the normal subgroups form a chain

$$
\{1\}=N_{2 n+1}^{n} \subsetneq N_{2 n}^{n} \subsetneq \ldots \subsetneq N_{2}^{n} \subsetneq N_{1}^{n}=H_{n},
$$

and an inverse system of surjective homomorphisms $\psi_{n}: H_{n} \longrightarrow H_{n-1}$, for $n \geq 2$, such that

$$
\psi_{n}\left(N_{i}^{n}\right)= \begin{cases}N_{i}^{n-1} & \text { for } 1 \leq i \leq 2 n-1 \\ \{1\} & \text { for } i \in\{2 n, 2 n+1\}\end{cases}
$$

Let $\mathcal{P}^{i}, \mathcal{Q}^{i}$ and \mathcal{R}^{i}, for $i \in\{1,2, \ldots, n\}$, be finite disjoint index sets.
Suppose the non-trivial subnormal subgroups K_{p}^{n} and $K_{q, r}^{n}$ of H_{n} are parameterised by p, q and r, where $\emptyset \neq p \in \mathcal{P}^{i}, \emptyset \neq q \in \mathcal{Q}^{i}$ and $r \in \mathcal{R}^{i}$, such that $N_{2 i+1}^{n} \subsetneq K_{r}^{n}, K_{p, q}^{n} \subseteq$ $N_{2 i-1}^{n}$, and

$$
\psi_{n}\left(K_{p}^{n}\right)= \begin{cases}K_{p}^{n-1} & \text { for } p \in \mathcal{P}^{1}, \mathcal{P}^{2}, \ldots, \mathcal{P}^{n-1} \tag{6.10}\\ \{1\} & \text { for } p \in \mathcal{P}^{n}\end{cases}
$$

and

$$
\psi_{n}\left(K_{q, r}^{n}\right)= \begin{cases}K_{q, r}^{n-1} & \text { for } q \in \mathcal{Q}^{1}, \mathcal{Q}^{2}, \ldots, \mathcal{Q}^{n-1} \text { and } r \in \mathcal{R}^{1}, \mathcal{R}^{2}, \ldots, \mathcal{R}^{n-1}, \tag{6.11}\\ \{1\} & \text { for } q \in \mathcal{Q}^{n} \text { and } r \in \mathcal{R}^{n}\end{cases}
$$

Then the inverse limit $G=\lim _{\leftarrow}\left(H_{n}\right)_{n \geq 1}$ has non-trivial closed subnormal subgroups precisely $K_{p}=\underset{\leftarrow}{\lim }\left(K_{p}^{n}\right)_{n \rightarrow \infty}$ and $K_{q, r}=\lim _{\longleftarrow}\left(K_{q, r}^{n}\right)_{n \rightarrow \infty}$, where $\emptyset \neq p \in \mathcal{P}^{i}, \emptyset \neq q \in \mathcal{Q}^{i}$ and $r \in \mathcal{R}^{i}$ for $i \geq 1$, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse limit, we can find $n \geq 1$ such that the image of M in H_{n} under $\pi_{n}: G \longrightarrow H_{n}$ is non-trivial. Therefore $\pi_{n}(M)=K_{p}^{n}$ or $\pi_{n}(M)=K_{q, r}^{n}$, where $\emptyset \neq p \in \mathcal{P}^{i}, \emptyset \neq q \in \mathcal{Q}^{i}$ and $r \in \mathcal{R}^{i}$, for some $i \in\{1,2, \ldots, n\}$.

We claim that $M=K_{p}$ or $M=K_{q, r}$. Since M is closed, it is enough to show that $\pi_{m}(M)=K_{p}^{m}$, for all $m \geq n$, or $\pi_{m}(M)=K_{q, r}^{m}$, for all $m \geq n$. Then $\pi_{m}(M)=$ $\pi_{m}\left(K_{p}\right)$ implies $\operatorname{ker} \pi_{m} M=\operatorname{ker} \pi_{m} K_{p}$, for all $m \geq n$, or $\pi_{m}(M)=\pi_{m}\left(K_{q, r}\right)$ implies
$\operatorname{ker} \pi_{m} M=\operatorname{ker} \pi_{m} K_{q, r}$, for all $m \geq n$. Thus

$$
\begin{aligned}
M & =\left(\bigcap_{m \geq n} \operatorname{ker} \pi_{m}\right) M=\bigcap_{m \geq n}\left(\operatorname{ker} \pi_{m} M\right) \\
& =\bigcap_{m \geq n}\left(\operatorname{ker} \pi_{m} K_{p}\right)=\left(\bigcap_{m \geq n} \operatorname{ker} \pi_{m}\right) K_{p}=K_{p}
\end{aligned}
$$

or similarly $M=K_{q, r}$, using Lemma 2.12.
Clearly $\pi_{m}(M)=K_{p}^{m}$ or $\pi_{m}(M)=K_{q, r}^{m}$ is true for $m=n$. Now suppose $m>n$. From

$$
\{1\} \neq K_{p}^{m-1}=\pi_{m-1}(M)=\psi_{m}\left(\pi_{m}(M)\right)
$$

and mapping (6.10), we conclude $\pi_{m}(M)=K_{p}^{m}$. Or from

$$
\{1\} \neq K_{q, r}^{m-1}=\pi_{m-1}(M)=\psi_{m}\left(\pi_{m}(M)\right)
$$

and mapping (6.11), we conclude that $\pi_{m}(M)=K_{q, r}^{m}$.
For the following, recall the normal subgroups P_{j} and Q_{j}, for $j \geq 0$, of a Wilson group G, defined in Corollary 5.3.

Corollary 6.17. Let $G=\lim \left(G_{n}\right)_{n \geq 0}$ be the inverse limit of the groups G_{n} as defined in Section 4.1.

For $j \geq 0$, define

$$
S_{j}\left(I_{d_{j+1}}\right)=\lim _{\leftarrow}\left(S_{j}^{n}\left(I_{d_{j+1}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}},
$$

regarded as subgroups of G.
For $j \geq 1$, define

$$
\begin{gathered}
T_{j}\left(I_{L_{j}}, I_{d_{j+1}}\right)=\lim _{\leftarrow}\left(T_{j}^{n}\left(I_{L_{j}}, I_{d_{j+1}}\right)\right)_{n \rightarrow \infty}, \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j}, \\
\Delta_{d_{j+1}}=\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot X_{j}^{I_{L_{j}}} \neq\{\omega\}\right\} \text { and } I_{d_{j+1}} \subseteq \Omega_{d_{j+1}} \backslash \Delta_{d_{j+1}},
\end{gathered}
$$

and define

$$
T_{0}=\lim _{\leftarrow}\left(T_{0}^{n}\right)_{n \rightarrow \infty},
$$

regarded as subgroups of G.
Then the non-trivial closed subnormal subgroups of G are precisely the groups $S_{j}\left(I_{d_{j+1}}\right), T_{j}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ and T_{0}. In particular, for all $j \geq 1, I_{d_{j}}, I_{L_{j}}$ and $I_{d_{j+1}}$, they
form chains

$$
T_{j}\left(I_{L_{j}}, I_{d_{j+1}}\right) \subseteq Q_{j} \subsetneq S_{j-1}\left(I_{d_{j}}\right) \subseteq P_{j-1}
$$

The subnormal length in G of the group $S_{j}\left(I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{d_{j+1}}=\Omega_{d_{j+1}}\left(\text { implying that } S_{j}\left(I_{d_{j+1}}\right)=P_{j}\right), \\ 2 & \text { if } I_{d_{j+1}} \subsetneq \Omega_{d_{j+1}}\end{cases}
$$

The subnormal length in G of the group $T_{j}\left(I_{L_{j}}, I_{d_{j+1}}\right)$ is

$$
\begin{cases}1 & \text { if } I_{L_{j}}=L_{j}\left(\text { implying that } T_{j}\left(I_{L_{j}}, I_{d_{j+1}}\right)=Q_{j}\right) \\ 2 & \text { if } I_{L_{j}} \subsetneq L_{j} \text { and } I_{d_{j+1}} \cup \Delta_{d_{j+1}} \text { is a union of } M_{j} \text {-orbits, } \\ 3 & \text { if } I_{L_{j}} \subsetneq L_{j} \text { and } I_{d_{j+1}} \cup \Delta_{d_{j+1}} \text { is not a union of } M_{j} \text {-orbits. }\end{cases}
$$

Proof. We apply Lemma 6.16 to the groups H_{n}, for $n \geq 1$, of Wilson's construction and their subnormal subgroups. For the finite index sets we take the power sets of $\Omega_{d_{j}}, L_{j}$ and $\Omega_{d_{j+1}} \backslash \Delta_{d_{j+1}}$, for $1 \leq j \leq n-1$, and $\Omega_{d_{n}}$. Note that $\mathcal{Q}^{1}=\{1\}$ and $\mathcal{R}^{1}=\emptyset$. We remark that arbitrary sets A_{1} and A_{2} can be made disjoint when the elements $x \in A_{1}$ and $y \in A_{2}$ are labelled as $(1, x)$ and $(2, y)$.

Define $K_{p}^{n}=S_{i-1}^{n}\left(I_{d_{i}}\right) / M_{n}$, where $\emptyset \neq p \in \mathcal{P}^{i}$ for $i \in\{1,2, \ldots, n\}, K_{q, r}^{n}=$ $T_{i-1}^{n}\left(I_{L_{i-1}}, I_{d_{i}}\right) / M_{n}$, where $\emptyset \neq q \in \mathcal{Q}^{i}$ and $r \in \mathcal{R}^{i}$ for $i \in\{2,3, \ldots, n\}$, and $K_{q, r}^{n}=$ T_{0}^{n} / M_{n}, where $\emptyset \neq q \in \mathcal{Q}^{1}$ and $r \in \mathcal{R}^{1}$. For each n, these subnormal subgroups of H_{n} were defined in Theorem 6.15. It was shown that these are all the non-trivial subnormal subgroups of H_{n} and they form chains.

The definition of the groups K_{p}^{n} and $K_{q, r}^{n}$ also shows that the second condition for Lemma 6.16 is satisfied. For $1 \leq i \leq n$, where $\emptyset \neq p \in \mathcal{P}^{i}$, we have $\psi_{n}\left(K_{p}^{n}\right)=$ $\psi_{n}\left(S_{i-1}^{n}\left(I_{d_{i}}\right) / M_{n}\right)=S_{i-1}^{n-1}\left(I_{d_{i}}\right) / M_{n-1}=K_{p}^{n-1}$. We take $S_{n-1}^{n-1}\left(I_{d_{n}}\right) / M_{n-1}$ and K_{p}^{n-1} for $\emptyset \neq p \in \mathcal{P}^{n}$ to be the trivial group $\{1\}$. For $2 \leq i \leq n$, where $\emptyset \neq q \in \mathcal{Q}^{i}$ and $r \in \mathcal{R}^{i}$, we have

$$
\psi_{n}\left(K_{q, r}^{n}\right)=\psi_{n}\left(T_{i-1}^{n}\left(I_{L_{i-1}}, I_{d_{i}}\right) / M_{n}\right)=T_{i-1}^{n-1}\left(I_{L_{i-1}}, I_{d_{i}}\right) / M_{n-1}=K_{q, r}^{n-1}
$$

We take $T_{n-1}^{n-1}\left(I_{L_{n-1}}, I_{d_{n}}\right) / M_{n-1}$ and $K_{q, r}^{n-1}$ for $\emptyset \neq q \in \mathcal{Q}^{n}$ and $r \in \mathcal{R}^{n}$ to be the trivial group $\{1\}$. Also $\psi_{n}\left(K_{q, r}^{n}\right)=\psi_{n}\left(T_{0}^{n} / M_{n}\right)=T_{0}^{n-1} / M_{n-1}=K_{q, r}^{n-1}$ for $\emptyset \neq q \in \mathcal{Q}^{1}$ and $r \in \mathcal{R}^{1}$.

Remark. The indices of the closed subnormal subgroups of the Wilson groups are finite, due to the definition of the subnormal subgroups. Therefore the subnormal subgroups of the Wilson groups are open, using Lemma 2.11.

Remark. The results of this section, every closed subnormal subgroup of a Wilson group is of finite index, provide an alternative proof to the proof of [32, (3.3)], Wilson groups are hereditarily just infinite.

Let G be a Wilson group. Suppose H is an open subgroup of G and N is a closed normal subgroup of H. So $K=\operatorname{Core}_{G}(H)$ is an open normal subgroup of G, using Lemma 2.10. Then $N \cap K$ is a closed subnormal subgroup of G. From Corollary 6.17, we know that $N \cap K$ has finite index in G. Hence N has finite index in G and so H is just infinite.

The following diagram illustrates the chains of subnormal subgroups of a general Wilson group.

Figure 6.5: The subnormal subgroup lattice of an arbitrary Wilson group.

Chapter 7

Subnormal subgroup growth

7.1 General Wilson groups

Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4.1. The number of normal subgroups of the Wilson quotient G_{n} is $2 n+2$, for $n \geq 0$. Therefore the Wilson group G has $2 n+2$ normal subgroups of index at most $\left|G_{n}\right|$.

Define the number of normal subgroups of G of index at most $\left|G_{n}\right|$ as

$$
S_{\left|G_{n}\right|}^{\triangleleft}(G)=2 n+2,
$$

for $n \geq 0$, which is a step function. This normal subgroup growth is very slow because the number $S_{\left|G_{n}\right|}^{\triangleleft}(G)$ is much smaller than the number $\left|G_{n}\right|=\left|X_{n}\right|^{\left|X_{n}\right|^{d_{n}}}\left|X_{n}\right|^{d_{n}}\left|G_{n-1}\right|$. By choosing carefully the finite non-abelian simple groups X_{i}, for $i \geq 0$, namely X_{i} very large, we could make this growth function $S_{\left|G_{n}\right|}^{\triangleleft}(G)$ grow as slow as we like.

We give an alternative description of the normal subgroup growth of a Wilson group. Recall the normal subgroups P_{n}, for $n \geq 0$, of a Wilson group G, defined in Corollary 5.3. Define the number of normal subgroups of G of index at most $\left|G: P_{n}\right|$ by $S_{\left|G: P_{n}\right|}^{\triangleleft}(G)$. So the growth function $S_{\left|G: P_{n}\right|}^{\triangleleft}(G)=2 n+2$ is linear in n.

Theorem 7.1, below, gives an estimate for the size of the groups G_{n}, for $n \geq 0$. Using the lower bound for $\left|G_{n}\right|$ in this theorem, we can make a more precise statement regarding normal subgroup growth of a Wilson group G. Since

$$
2 n+2 \leq \underbrace{4^{4}}_{n+2},
$$

we have that $S_{\left|G_{n}\right|}^{\triangleleft}(G)$ grows very slowly, that is slower than the functions
$\underbrace{\log \log \ldots \log }_{r}\left|G_{n}\right|$ for any fixed r.
Theorem 7.1. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. Suppose there exists a constant c such that $\left|X_{i}\right| \leq c$, for all $i \geq 0$.

Then

$$
\underbrace{4^{4 \cdot{ }^{4}}}_{n+2} \leq\left|G_{n}\right| \leq \underbrace{\tilde{c}^{\tilde{c}^{\cdot}}}_{2 n+2}
$$

where $\tilde{c}=3 c$.
Proof. First we confirm the lower bound

$$
\underbrace{4^{4 \cdot}}_{n+2}
$$

for $\left|G_{n}\right|$. We have $\left|X_{n}\right| \geq 60 \geq 2^{5}$ because X_{n} is a finite non-abelian simple group. Then

$$
\begin{align*}
\left|G_{n}\right| & =\left|X_{n}\right|^{\left|X_{n}\right|^{d_{n}}}\left|X_{n}\right|^{d_{n}}\left|G_{n-1}\right| \\
& \geq\left(2^{5}\right)^{2^{5 d_{n}}+d_{n}}\left|G_{n-1}\right| \\
& \geq\left(2^{5}\right)^{2^{5 d_{n}}} \tag{7.1}
\end{align*}
$$

The degree d_{1} of the faithful transitive action of $G_{0}=X_{0}$ is such that $d_{1} \geq 5 \geq 4$, as the minimal degree of a faithful transitive permutation representation of A_{5} is 5 . Therefore $d_{n} \geq 4$, for $n \geq 1$. Now

$$
\begin{equation*}
\left|G_{n-1}\right| \leq d_{n}!\leq d_{n}^{d_{n}} \tag{7.2}
\end{equation*}
$$

because the permutation representation of G_{n-1} of degree d_{n} is faithful. Then

$$
\begin{aligned}
d_{n}{ }^{3 / 2} & \geq \frac{d_{n}\left(\log _{2} d_{n}\right)}{5} \geq \frac{\log _{2}\left|G_{n-1}\right|}{5}, \operatorname{using}(7.2) \\
& \geq 2^{5 d_{n-1}}, \operatorname{using}(7.1)
\end{aligned}
$$

So $d_{n} \geq 2^{(10 / 3) d_{n-1}} \geq 4^{d_{n-1}}$. Therefore, by induction,

$$
\begin{equation*}
d_{n} \geq \underbrace{4^{4 \cdot}}_{n} \tag{7.3}
\end{equation*}
$$

and

$$
\left|G_{n}\right| \geq 60^{60^{d_{n}}} \geq \underbrace{4^{4{ }^{4}}}_{n+2}
$$

Now we confirm the upper bound

$$
\underbrace{\tilde{c}^{\tilde{c}}}_{2 n+2}, \text { where } \tilde{c}=3 c \text {, }
$$

for $\left|G_{n}\right|$. Suppose there exists a constant c such that $\left|X_{i}\right| \leq c$, for all $i \geq 0$. Then

$$
\begin{aligned}
\left|G_{n}\right| & =\left|X_{n}\right|^{\left|X_{n}\right|^{d_{n}}}\left|X_{n}\right|^{d_{n}}\left|G_{n-1}\right| \\
& \leq c^{\left(c^{d_{n}}+d_{n}\right)}\left|G_{n-1}\right| \\
& \leq c^{\left(c^{d_{n}}+d_{n}\right)} d_{n}^{d_{n}}, \operatorname{using}(7.2), \\
& =c^{\left(c^{d_{n}}+d_{n}+d_{n} \log _{c} d_{n}\right)} \\
& \leq c^{3 c^{d_{n}}} \\
& \leq(3 c)^{(3 c)^{d_{n}}}
\end{aligned}
$$

Now

$$
d_{n} \leq\left|G_{n-1}\right| \leq(3 c)^{(3 c)^{d_{n-1}}}
$$

because the permutation representation of G_{n-1} of degree d_{n} is transitive. Therefore, putting $\tilde{c}=3 c$, by induction,

$$
d_{n} \leq \underbrace{\tilde{c}^{\tilde{c}} \cdot{ }^{\tilde{c}}}_{2 n}
$$

and

$$
\left|G_{n}\right| \leq \tilde{c}^{\tilde{c}^{d_{n}}} \leq \underbrace{\tilde{c}^{\tilde{c}} \cdot \bar{c}}_{2 n+2} .
$$

We now consider subnormal subgroup growth of Wilson groups. The following theorem gives a formula for the number of subnormal subgroups of G_{n} in terms of d_{j} and X_{j}, for $1 \leq j \leq n$. The power set notation $\mathcal{P}(X)$ is used to denote the set of all subsets of the set X.

Theorem 7.2. Let G_{n}, for $n \geq 0$, be the finite groups as defined in Section 4.1. Then
the number of subnormal subgroups of G_{n}, for $n \geq 1$, is

$$
\begin{equation*}
2^{\left|X_{n}\right|^{\left|\Omega_{d_{n}}\right|}}+\sum_{j=1}^{n} 2^{\left|\Omega_{d_{j}}\right|}+\sum_{j=2}^{n}\left(\sum_{\substack{\Omega_{d_{j}-1}} \backslash\left\{\mathcal{P}^{\Omega}\left(X_{j-1}^{\Omega_{d_{j}-1}}\right\}\right.} 2^{\left|\Omega_{d_{j}} \backslash \Delta_{d_{j}}(I)\right|}\right), \tag{7.4}
\end{equation*}
$$

where $\emptyset \neq I \subsetneq X_{j-1}^{\Omega_{d_{j-1}}}$ and $\Delta_{d_{j}}(I)=\left\{\omega \in \Omega_{d_{j}}: \omega \cdot X_{j-1}{ }^{I} \neq\{\omega\}\right\}$.
Proof. We prove the result by induction on n. Recall the subnormal subgroups of G_{n} defined in Theorem 6.15. The subnormal subgroups of G_{1} are:

$$
\begin{gathered}
T_{1}^{1}\left(I_{L_{1}}\right)=X_{1}^{I_{L_{1}}}, \text { where } \emptyset \neq I_{L_{1}} \subseteq L_{1} ; \\
S_{0}^{1}\left(I_{d_{1}}\right)=Q_{1}^{1} \rtimes X_{1}^{I_{d_{1}}}, \text { where } \emptyset \neq I_{d_{1}} \subseteq \Omega_{d_{1}} ; \\
S_{1}^{1}=\{1\} \text { and } T_{0}^{1}=G_{1} .
\end{gathered}
$$

The number of subnormal subgroups of G_{1} is $\left|\mathcal{P}\left(L_{1}\right) \backslash\{\emptyset\}\right|+\left|\mathcal{P}\left(\Omega_{d_{1}}\right) \backslash\{\emptyset\}\right|+2$. When recalling that $L_{1}=X_{1}^{\Omega_{d_{1}}}$, this number can be written as $\left|\mathcal{P}\left(X_{1}^{\Omega_{d_{1}}}\right) \backslash\{\emptyset\}\right|+$ $\left|\mathcal{P}\left(\Omega_{d_{1}}\right) \backslash\{\emptyset\}\right|+2$. Since X_{1} and $\Omega_{d_{1}}$ are finite, the number of subnormal subgroups of G_{1} becomes

$$
\begin{aligned}
& \left(2^{\left.\left|X_{1}\right|\right|^{\left|\Omega_{d_{1}}\right|}}-1\right)+\left(2^{\left|\Omega_{d_{1}}\right|}-1\right)+2 \\
& =2^{\left|X_{1}\right|^{\left|\Omega_{d_{1}}\right|}+2^{\left|\Omega_{d_{1}}\right|} .}
\end{aligned}
$$

Now putting $n=1$ into the formula (7.4) shows that the result holds for G_{1}.
Suppose the result is true for G_{n-1}. The subnormal subgroups of G_{n} are:
(a)

$$
T_{n}^{n}\left(I_{L_{n}}\right)=X_{n}^{I_{L_{n}}} \text {, where } \emptyset \neq I_{L_{n}} \subseteq L_{n}
$$

(b)

$$
S_{n-1}^{n}\left(I_{d_{n}}\right)=Q_{n}^{n} \rtimes X_{n}^{I_{d_{n}}} \text {, where } \emptyset \neq I_{d_{n}} \subseteq \Omega_{d_{n}} \text {; }
$$

(c)

$$
\begin{aligned}
T_{n-1}^{n}\left(I_{L_{n-1}}, I_{d_{n}}\right)= & Q_{n}^{n} \rtimes\left(X_{n}^{I_{d_{n}} \cup \Delta_{d_{n}}} \rtimes X_{n-1}^{I_{L_{n-1}}}\right), \text { where } \emptyset \neq I_{L_{n-1}} \subseteq L_{n-1}, \\
& \Delta_{d_{n}}=\left\{\omega \in \Omega_{d_{n}}: \omega \cdot X_{n-1}^{I_{L_{n-1}}} \neq\{\omega\}\right\} \text { and } I_{d_{n}} \subseteq \Omega_{d_{n}} \backslash \Delta_{d_{n}} ;
\end{aligned}
$$

and, by induction,
(d)

$$
M_{n} L_{n} S_{j}^{n-1}\left(I_{d_{j+1}}\right), \text { where } \emptyset \neq I_{d_{j+1}} \subseteq \Omega_{d_{j+1}}, \quad \text { for } j \in\{0,1, \ldots, n-2\}
$$

$$
\begin{aligned}
& M_{n} L_{n} T_{j}^{n-1}\left(I_{L_{j}}, I_{d_{j+1}}\right), \text { where } \emptyset \neq I_{L_{j}} \subseteq L_{j}, \\
& \Delta_{d_{j+1}}=\left\{\omega \in \Omega_{d_{j+1}}: \omega \cdot X_{j}^{I_{L_{j}}} \neq\{\omega\}\right\} \text { and } I_{d_{j+1}} \subseteq \Omega_{d_{j+1}} \backslash \Delta_{d_{j+1}}, \\
& \quad \text { for } j \in\{1,2, \ldots, n-2\} ;
\end{aligned}
$$

$$
M_{n} L_{n} T_{0}^{n-1}=G_{n} \text { and } \frac{M_{n} L_{n} S_{n-1}^{n-1}}{M_{n} L_{n}} \cong\{1\} .
$$

We count the number of subnormal subgroups of each type (a) to (d):
(a) $\left|\mathcal{P}\left(L_{n}\right) \backslash\{\emptyset\}\right|$;
(b) $\left|\mathcal{P}\left(\Omega_{d_{n}}\right) \backslash\{\emptyset\}\right|$;
(c) $\sum_{I_{L_{n-1}} \in \mathcal{P}\left(L_{n-1}\right) \backslash\left\{\emptyset, L_{n-1}\right\}}\left|\mathcal{P}\left(\Omega_{d_{n}} \backslash \Delta_{d_{n}}\left(I_{L_{n-1}}\right)\right)\right|+1$;
(d) the number of subnormal subgroups of $G_{n-1}-\left|\mathcal{P}\left(L_{n-1}\right) \backslash\{\emptyset\}\right|$.

Recalling that $L_{i}=X_{i}^{\Omega_{d_{i}}}$, the number of subnormal subgroups of G_{n} is equal to

$$
\begin{aligned}
& \left|\mathcal{P}\left(X_{n}^{\Omega_{d_{n}}}\right) \backslash\{\emptyset\}\right| \\
+ & \left|\mathcal{P}\left(\Omega_{d_{n}}\right) \backslash \emptyset\right| \\
+ & \sum_{I \in \mathcal{P}\left(X_{n-1}^{\Omega_{d_{n}-1}}\right) \backslash\left\{\emptyset, X_{n-1}^{\left.\Omega_{d_{n}-1}\right\}}\right.}\left|\mathcal{P}\left(\Omega_{d_{n}} \backslash \Delta_{d_{n}}(I)\right)\right|+1 \\
+ & \text { the number of subnormal subgroups of } G_{n-1}-\left|\mathcal{P}\left(X_{n-1}^{\Omega_{d_{n-1}}}\right) \backslash\{\emptyset\}\right| .
\end{aligned}
$$

Using that Ω_{j} and X_{j}, for $0 \leq j \leq n$, are finite, this number can be written as

$$
\begin{aligned}
& \left(2^{\left|X_{n}\right|^{\left|\Omega_{d_{n}}\right|}}-1\right) \\
& +\left(2^{\left|\Omega_{d_{n}}\right|}-1\right) \\
& \left.+\sum_{\substack{ }} \mid \mathcal{P}\left(X_{n-1}^{\Omega_{d_{n}-1}}\right) \backslash\left\{\emptyset, X_{n-1}^{\Omega_{d_{n-1}}}\right\}<1 \Omega_{d_{n}} \backslash \Delta_{d_{n}}(I)\right) \mid+1 \\
& +\left[2^{\left|X_{n-1}\right|^{\left|\Omega_{d_{n-1}}\right|}}+\sum_{j=1}^{n-1} 2^{\left|\Omega_{d_{j}}\right|}+\sum_{j=2}^{n-1}\left(\sum_{\substack{ \\
\Omega_{d_{j-1}}}} 2_{\left\{\emptyset, X_{j-1}^{\left.\Omega_{d_{j-1}}\right\}}\right.} 2^{\left|\Omega_{d_{j}} \backslash \Delta_{d_{j}}(I)\right|}\right)\right] \\
& -\left(2^{\left|X_{n-1}\right|^{\left|\Omega_{d_{n-1}}\right|}}-1\right) \\
& =2^{\left|X_{n}\right|^{\left|\Omega_{d_{n}}\right|}}+2^{\left|\Omega_{d_{n}}\right|} \\
& +\sum_{I \in \mathcal{P}\left(X_{n-1}^{\Omega_{d_{n}-1}}\right) \backslash\left\{\emptyset, X_{n-1}^{\left.\Omega_{d_{n-1}}\right\}}\right.}\left|\mathcal{P}\left(\Omega_{d_{n}} \backslash \Delta_{d_{n}}(I)\right)\right| \\
& +\sum_{j=1}^{n-1} 2^{\left|\Omega_{d_{j}}\right|}+\sum_{j=2}^{n-1}\left(\sum_{\substack{ \\
I \in \mathcal{P}\left(X_{j-1}^{\Omega_{d_{j-1}}}\right) \backslash\left\{\emptyset, X_{j-1}^{\Omega_{d_{j-1}}}\right\}}} 2^{\left|\Omega_{d_{j}} \backslash \Delta_{d_{j}}(I)\right|}\right) \\
& =2^{\left|X_{n}\right|^{\left|\Omega_{d_{n}}\right|}}+\sum_{j=1}^{n} 2^{\left|\Omega_{d_{j}}\right|}+\sum_{j=2}^{n}\left(\sum_{I \in \mathcal{P}\left(X_{j-1}^{\Omega_{d_{j-1}}}\right) \backslash\left\{\emptyset, X_{j-1}^{\left.\Omega_{d_{j-1}}\right\}}\right.} 2^{\left|\Omega_{d_{j}} \backslash \Delta_{d_{j}}(I)\right|}\right) .
\end{aligned}
$$

We now give an upper bound to the number (7.4). We have that $X_{j-1}^{I_{L_{j-1}}}$, where $\emptyset \neq I_{L_{j-1}} \subseteq L_{j-1}$, acts faithfully on $\Omega_{d_{j}}$ because G_{j-1} acts faithfully on $\Omega_{d_{j}}$. So $\Delta_{d_{j}}=\left\{\omega \in \Omega_{d_{j}}: \omega \cdot X_{j-1}^{I_{L_{j-1}}} \neq\{\omega\}\right\}$ contains at least two points. Therefore the maximal size of $\Omega_{d_{j}} \backslash \Delta_{d_{j}}$ is $\left|\Omega_{d_{j}}\right|-2$. Thus the Wilson quotient G_{n} has less than or equal to

$$
\begin{equation*}
2^{\left|X_{n}\right|^{d_{n}}}+\sum_{j=1}^{n} 2^{d_{j}}+\sum_{j=2}^{n} 2^{d_{j}-2}\left(2^{\left|X_{j-1}\right|^{d_{j-1}}}-2\right) \tag{7.5}
\end{equation*}
$$

subnormal subgroups．
Recall the definition of the groups $H_{n}=L_{n} G_{n-1}$ ，for $n \geq 1$ ，as defined at the beginning of Section 6．1．From the classification in Section 6．4，any subnormal subgroup of a Wilson group G that has index at most $\left|H_{n}\right|$ contains $Q_{n}=\operatorname{ker}\left(\phi_{n}: G \rightarrow H_{n}\right)$ ． Thus the number of subnormal subgroups of a Wilson group of index at most $\left|H_{n}\right|$ ，for $n \geq 1$ ，is less than or equal to the number（7．5）．

In this expression（7．5），the term $\sum_{j=1}^{n} 2^{d_{j}}$ is very small in comparison with the other two terms．These two terms $2^{\left|X_{n}\right|^{d_{n}}}$ and $\sum_{j=2}^{n} 2^{d_{j}-2}\left(2^{\left|X_{j-1}\right|^{d_{j-1}}}-2\right)$ look similar in size．Since the d_{j} ，for $j \geq 1$ ，increase in value（refer to（7．3）in the proof of Theorem 7．1）， the term $2^{\left|X_{n}\right|^{d_{n}}}$ is the largest in the expression（7．5）．

Define the number of subnormal subgroups of a Wilson group G of index at most $\left|H_{n}\right|$ as $S_{\left|H_{n}\right|}^{\triangleleft \triangleleft}(G)$ ．Using Theorem 7．1，we can conclude that $S_{\left|H_{n}\right|}^{\triangleleft \triangleleft}(G)$ ，which is less than the number（7．5），is roughly the size of the group G_{n} ，although somewhat smaller． Therefore for some constant d we have $S_{\left|H_{n}\right|}^{\triangleleft \triangleleft}(G) \leq d\left|G_{n}\right|$ ，for $n \geq 1$ ．

7．2 Infinite iterated wreath products $\ldots \swarrow A_{m}$ 久 A_{m} 〕．．．々 A_{m} ， where $m \geq 5$

Recall the just infinite profinite groups $W=\underset{\leftarrow}{\lim }\left(W_{n}\right)_{n \geq 0}$ ，where

$$
W_{n}=A_{m} l_{\Omega^{*[n]}} \cdots l_{\Omega^{*}[2]} A_{m} z_{\Omega^{*[1]}} A_{m},
$$

for $n \geq 1$ ，and where

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in\{1,2, \ldots, m\}\right\},
$$

for each $j=1,2, \ldots$ ，and $W_{0}=A_{m}$ ，as defined in Section 3．2．It is standard to view the group W as acting on the infinite m－regular rooted tree，that is where every vertex has m children（see P．de la Harpe［6，pg．211－212］）．We denote this tree by T ．

The subnormal subgroups of these groups are completely characterised in Sec－ tion 6．3．Every non－trivial subnormal subgroup of W has index of the form $\left|A_{m}\right|^{k}$ ， for some $k \geq 1$ ．The number of subnormal subgroups of W with index $\left|A_{m}\right|^{k}$ ，for $k \geq 1$ ，is equal to the number of subtrees of T that have the same root and k vertices （or equivalently $k-1$ edges）．The following diagram is an example to illustrate this statement．

For $m=5$ ，we consider the same subnormal subgroup of W that has been depicted previously in Figure 6．2，found towards the end of Section 6．3．Below，Figure 7.1

Figure 7.1: The index of a subnormal subgroup of W represented as a subtree of T.
represents the index of this subnormal subgroup as the highlighted subtree of the infinite tree T. The index in W of this subnormal subgroup is $\left|A_{5}\right|^{7}$.

We denote the number of subnormal subgroups of W with index $\left|A_{m}\right|^{k}$ by $\widetilde{a}_{k}^{\triangleleft \triangleleft}(W)$. The number of subtrees of T that have the same root and k vertices is the same as the Fuss-Catalan number

$$
\frac{1}{(m-1) k+1}\binom{m k}{k}
$$

refer to [1, Prop. 3.1]. Therefore the number of non-trivial subnormal subgroups of W with index at most $\left|A_{m}\right|^{n}$, for some n, is equal to the sum

$$
\sum_{k=1}^{n} \widetilde{a}_{k}^{\triangleleft \triangleleft}(W)=\sum_{k=1}^{n} \frac{1}{(m-1) k+1}\binom{m k}{k} .
$$

For further research concerning the subnormal subgroup growth of the groups W, see Chapter 10, Question 3.

Chapter 8

Maximal subgroups

8.1 Introduction

We now wish to investigate maximal subgroups of Wilson groups. Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4.1. We would first like to determine the maximal subgroups of the finite groups G_{n}.

Fix the alphabet $A=\{1,2, \ldots, m\}$, where $m \geq 5$. For $n \geq 1$, recall the iterated wreath products

$$
W_{n}=A_{m} \imath_{\Omega^{*}[n]} \ldots z_{\Omega^{*}[2]} A_{m} \imath_{\Omega^{*}[1]} A_{m},
$$

first defined in Section 3.2, where

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in A\right\},
$$

for each $j=1,2, \ldots, n$. Here again $i_{1} i_{2} \ldots i_{j}$ denotes a sequence of numbers and not a product of numbers.

The groups G_{n} and W_{n} are both constructed from wreath products of finite nonabelian simple groups using transitive actions. Therefore determining maximal subgroups of the groups G_{n} is likely to involve the same techniques that are used to determine maximal subgroups of the groups W_{n}.
M. Bhattacharjee [3] has produced information on maximal subgroups of iterated wreath products that are constructed from alternating groups of degree at least 5. Her wreath products are a little different from our wreath products W_{n}, in that the alternating groups are allowed to vary giving $A_{m_{k}}\left\langle\ldots \backslash A_{m_{2}}\left\langle A_{m_{1}}\right.\right.$, where $m_{1}, m_{2}, \ldots, m_{k} \geq 5$. The natural action of the alternating groups is used to form Bhattacharjee's wreath products and the natural action of the alternating groups is used to form the wreath products W_{n}.

Bhattacharjee's view point is that of finite generation of inverse limits of such wreath products. Her method requires her to analyse maximal subgroups, of the wreath products, which modulo the base group project onto the top group. She obtains upper bounds for the number of conjugacy classes of these maximal subgroups. Bhattacharjee's results fall short of a complete classification of such maximal subgroups.

8.2 Finite wreath products $A_{m} \backslash A_{m}$, where $m \geq 5$

We now consider the maximal subgroups of the finite groups W_{n}, for $n \geq 1$. As we want to see how techniques can be applied to the groups G_{n}, the easiest step is to look at the first wreath product $W_{1}=A_{m}{l_{\Omega^{*[1] ~}}} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$ and $m \geq 5$.

Theorem 8.3 describes the maximal subgroups of W_{1}. The proof of this theorem is a special case of Bhattacharjee's work in [3, pg. 316-321]. This is because she works more generally applying to wreath products where the top group can also be an iterated wreath product. There are differences, some very subtle, between our work and Bhattacharjee's work, which we now go on to explain.

The proof of Theorem 8.3 separates the possibilities for the maximal subgroups of W_{1} into types, referred to as Case 1, Case 2a, Case 2b and Case 2c. The Case 1 type found in Theorem 8.3 does not occur in Bhattacharjee's work because she is only concerned with maximal subgroups that modulo the base group project onto the top group.

In Theorem 8.3, the proof concerning the maximal subgroups of type Case 2 a is new and different from Bhattacharjee's proof. It is also a little more self-contained than Bhattacharjee's, since it does not rely on Lemma 2.3 from [2] (alternatively, see the Appendix of our thesis for this lemma). Instead, because we can specify doubletranspositions from A_{m} and work with them directly, we implicitly produce a proof that the action of A_{m} on $\Omega^{*[1]}=\{1,2, \ldots, m\}$ is primitive, see Lemma 8.2. Later in this section we go further to provide accurate results for the counting of these types of maximal subgroups (see Remark 8.5) and the counting of conjugacy classes of these types of maximal subgroups (see Remark 8.7).

The proof of the maximal subgroups of type Case 2 b in Theorem 8.3 is contained in Bhattacharjee's work and we have possibly written it in a more readable fashion. However, later in this section we do produce extra information regarding the counting of these maximal subgroups (see Remark 8.6) and the counting of conjugacy classes of these maximal subgroups (see Remark 8.8).

Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.3 is new and different from Bhattacharjee's proof. This is because we use the more recent
results of C. Parker and M. Quick [23] to rule out the possibility of maximal subgroups of this type. Theorem A(i) of [23] gives a set of conditions for a wreath product to have a maximal subgroup which complements the base group. In Theorem 8.3, we will show that one of these conditions fails to hold for our wreath product W_{1}.

To help the readers understanding, we now state the theorem of Parker and Quick.
Theorem 8.1 (Parker and Quick [23]). Let X and Y be groups with Y acting on the finite set Ω where $|\Omega|>1$. Let $W=X z_{\Omega} Y$ be the wreath product of X by Y with respect to this action and let K be the base group of W.

The wreath product W has a maximal subgroup which is a complement to K if and only if the following conditions hold:
(a) X is a non-abelian simple group,
(b) Y acts transitively on Ω,
(c) there exists a surjective homomorphism $\phi: \mathrm{St}_{Y}(\omega) \longrightarrow X$ from the stabiliser of a point $\omega \in \Omega$ in Y to X, and
(d) if we view ϕ as a map $\operatorname{St}_{Y}(\omega) \longrightarrow \operatorname{Aut}(X)$, identifying X with its group of inner automorphisms, then ϕ is not the restriction of a homomorphism $H \longrightarrow \operatorname{Aut}(X)$ for any subgroup H of Y properly containing $\operatorname{St}_{Y}(\omega)$.

On several occasions, the following lemma is applied in the proof of Theorem 8.3.
Lemma 8.2. Let $W_{1}=A_{m} \sum_{\Omega^{*[1]}} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$, for some $m \geq 5$. Denote the base group $A_{m}^{(m)}=: B$ and the permuting top group $A_{m}=: T$.

Suppose H is a subgroup of W_{1} such that
(i) $H B=W_{1}$, and
(ii) $H \cap B$ is a proper subdirect product in B.

Then

$$
H \cap B=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\},
$$

where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$.
We remark that the group $\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}$, where $\varphi_{j} \in$ $\operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$, is referred to as a diagonal subgroup of the direct product $\prod_{i=1}^{m} A_{m}^{(i)}$ of alternating groups.

Proof. We claim that the first coordinate of an element of $H \cap B$ determines all the other coordinates of that element. For a contradiction, suppose

$$
\left(x, y_{1}, *, \ldots, *\right),\left(x, y_{2}, *, \ldots, *\right) \in H \cap B
$$

such that $y_{1} \neq y_{2}$. Then

$$
\left(x, y_{1}, *, \ldots, *\right)\left(x, y_{2}, *, \ldots, *\right)^{-1}=\left(1, y_{1} y_{2}^{-1}, *, \ldots, *\right) \in H \cap B
$$

with $y_{1} y_{2}^{-1} \neq 1$. Put $y_{3}=y_{1} y_{2}^{-1}$.
For $t=(13)(45) \in T$ we find $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ such that $t b \in H$ (using condition (i)). So

$$
\left(1, y_{3}, *, \ldots, *\right)^{t b}=\left(*, y_{3}^{b_{2}}, 1, *, \ldots, *\right) \in H \cap B .
$$

Put $\widetilde{y_{3}}=y_{3}^{b_{2}}$. If $\left[y_{3}^{h}, \widetilde{y_{3}}\right]=1$, for all $h \in A_{m}$, then $\left[k, \widetilde{y_{3}}\right]=1$, for all $k \in\left\langle y_{3}\right\rangle^{A_{m}}$. Now $\left\langle y_{3}\right\rangle^{A_{m}}=A_{m}$, since $y_{3} \neq 1$ and A_{m} is simple. Therefore $\widetilde{y_{3}} \in Z\left(A_{m}\right)=\{1\}$. Contradicting $\widetilde{y_{3}} \neq 1$, as $y_{3} \neq 1$. Thus there exists $h \in A_{m}$ such that $\left[y_{3}^{h}, \widetilde{y_{3}}\right] \neq 1$. We can find $(*, h, *, \ldots, *) \in H \cap B$ because $H \cap B$ projects onto A_{m} in each coordinate (using condition (ii)). Then

$$
\left(1, y_{3}, *, \ldots, *\right)^{(*, h, *, \ldots, *)}=\left(1, y_{3}^{h}, *, \ldots, *\right) \in H \cap B
$$

and

$$
\left[\left(1, y_{3}^{h}, *, \ldots, *\right),\left(*, \widetilde{y_{3}}, 1, *, \ldots, *\right)\right]=\left(1,\left[y_{3}^{h}, \widetilde{y_{3}}\right], 1, *, \ldots, *\right) \in H \cap B
$$

Put $y_{4}=\left[y_{3}^{h}, \widetilde{y_{3}}\right]$.
For $t=(14)(35) \in T$ we find $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ such that $t b \in H$. So

$$
\left(1, y_{4}, 1, *, \ldots, *\right)^{t b}=\left(*, y_{4}^{b_{2}}, *, 1,1, *, \ldots, *\right) \in H \cap B
$$

Put $\widetilde{y_{4}}=y_{4}^{b_{2}}$. There exists $h \in A_{m}$ such that $\left[y_{4}^{h}, \widetilde{y_{4}}\right] \neq 1$ and we can find $(*, h, *, \ldots, *) \in$ $H \cap B$ because $H \cap B$ projects onto A_{m} in each coordinate. Then

$$
\left(1, y_{4}, 1, *, \ldots, *\right)^{(*, h, *, \ldots, *)}=\left(1, y_{4}^{h}, 1, *, \ldots, *\right) \in H \cap B
$$

and

$$
\left[\left(1, y_{4}^{h}, 1, *, \ldots, *\right),\left(*, \widetilde{y_{4}}, *, 1,1, *, \ldots, *\right)\right]=\left(1,\left[y_{4}^{h}, \widetilde{y_{4}}\right], 1,1,1, *, \ldots, *\right) \in H \cap B .
$$

The process can be iterated $n-3$ times to obtain $\left(1, y_{n}, 1,1, \ldots, 1\right) \in H \cap B$ with $y_{n} \neq 1$. Since $H \cap B$ projects onto A_{m} in each coordinate, we have $(*, g, *, \ldots, *) \in$ $H \cap B$, for all $g \in A_{m}$. Then

$$
\left(1, y_{n}, 1,1, \ldots, 1\right)^{(*, g, *, \ldots, *)}=\left(1, y_{n}^{g}, 1,1, \ldots, 1\right) \in H \cap B
$$

for all $g \in A_{m}$. Therefore

$$
\begin{aligned}
& \{1\} \times\left\langle y_{n}\right\rangle^{A_{m}} \times\{1\} \times\{1\} \times \ldots \times\{1\} \\
& =\{1\} \times A_{m} \times\{1\} \times\{1\} \times \ldots \times\{1\} \subseteq H \cap B
\end{aligned}
$$

as $y_{n} \neq 1$ and A_{m} is simple. For all $t \in T$ we have $t b \in H$, for some $b \in B$, and conjugating by $t b \in H$ implies $A_{m}^{(m)} \subseteq H \cap B$. This contradicts $B \nsubseteq H$. Thus

$$
H \cap B=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}
$$

where $\varphi_{j}: A_{m} \longrightarrow A_{m}$ are maps, for $2 \leq j \leq m$. That is $H \cap B \cong A_{m}$.
In fact, $H \cap B$ being a subdirect product in B implies that each of the maps φ_{j} is surjective. Since φ_{j} are surjective maps between the same finite set, they are injective. Now

$$
\begin{aligned}
& \left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right)\left(y, \varphi_{2}(y), \varphi_{3}(y), \ldots, \varphi_{m}(y)\right) \\
& \quad=\left(x y, \varphi_{2}(x) \varphi_{2}(y), \varphi_{3}(x) \varphi_{3}(y), \ldots, \varphi_{m}(x) \varphi_{m}(y)\right) \in H \cap B
\end{aligned}
$$

and, as the first coordinate of an element of $H \cap B$ determines all its other coordinates, this element is equal to $\left(x y, \varphi_{2}(x y), \varphi_{3}(x y), \ldots, \varphi_{m}(x y)\right)$. Therefore $\varphi_{j}(x) \varphi_{j}(y)=$ $\varphi_{j}(x y)$, for every $x, y \in A_{m}$, for $2 \leq j \leq m$, and the maps φ_{j} are homomorphisms. Hence

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for } 2 \leq j \leq m
$$

Theorem 8.3 classifies the maximal subgroups of W_{1} up to conjugation. The maximal subgroups are conjugates of three types of subgroups and the theorem tells us that it is enough to conjugate by the elements of the base group B. The degree of the alternating groups has been restricted to $m \neq 6$ because the proof of the theorem makes use of the fact that $\operatorname{Aut}\left(A_{m}\right) \cong S_{m}$, for $m \geq 4$ and $m \neq 6$.

We now state Theorem 8.3 and we prove this theorem over the next several pages.

Theorem 8.3. Let $W_{1}=A_{m} \imath_{\Omega^{*[1]}} A_{m}$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$, for some $m \geq 5$ and $m \neq 6$. Denote the base group $A_{m}^{(m)}=: B$ and the permuting top group $A_{m}=: T$. Therefore $W_{1}=B \rtimes T$.

Define

$$
M_{0}(L)=B \rtimes L \text {, where } L \text { is a maximal subgroup of } A_{m} .
$$

Define

$$
M_{1}=\left\{(x, x, \ldots, x): x \in A_{m}\right\} \times T
$$

Define

$$
M_{2}(L)=L^{(m)} \rtimes T \text {, where } L \text { is a maximal subgroup of } A_{m} .
$$

Then the groups $M_{0}(L), M_{1}^{g}$, where $g \in B$, and $M_{2}(L)^{g}$, where $g \in B$, are maximal subgroups of W_{1} and every maximal subgroup of W_{1} is one of these.

Proof. Let M be a maximal subgroup of W_{1}. Then there are two possibilities:

$$
B \subseteq M \text { (case } 1 \text {), and } B \nsubseteq M \text { (case } 2 \text {). }
$$

Case 1.
Suppose $B \subseteq M$. Since $B \unlhd W_{1}$, we have the surjective group homomorphism $W_{1} \longrightarrow W_{1} / B \cong T$. A group homomorphism preserves inclusion of subgroups. Then there is a one-to-one correspondence between the maximal subgroups of W_{1} containing B and the maximal subgroups of T. Therefore $M=B L$, where L is a maximal subgroup of T. Now L normalising B and $B \cap L=\{1\}$ implies $M=B \rtimes L$. Hence $M=M_{0}(L)$.

Case 2.
Suppose $B \nsubseteq M$. Obviously $M \subseteq B M \subseteq W_{1}$. Since M is a maximal subgroup of W_{1}, we have $M=B M$ or $B M=W_{1}$. However, $M=B M$ contradicts $B \nsubseteq M$. Therefore

$$
B M=W_{1} .
$$

Then $B \unlhd W_{1}$, by the 2 nd isomorphism theorem, gives

$$
M /(M \cap B) \cong B M / B=(B \rtimes T) / B \cong T
$$

So for all $t \in T$ there exists $b \in B$ such that bt $\in M$.
Let $i, j \in \Omega^{*}[1]$. We choose $t \in T$ such that $t i=j$, since T acts transitively on the set $\Omega^{*[1]}$. For this $t \in T$, we find $b \in B$ such that $t b \in M$. For $1 \leq i \leq m$, let π_{i} be the projection map from B onto the i th factor of B. Then $\pi_{j}\left((M \cap B)^{t b}\right)=$
$\pi_{i}(M \cap B)^{b_{j}}$, where $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$. Thus the projections of $M \cap B$ into the m factors of B are conjugate in A_{m}.

Define

$$
K_{i}:=\pi_{i}(M \cap B) \leq A_{m}, \text { for } 1 \leq i \leq m
$$

Therefore

$$
M \cap B \leq K_{1} \times K_{2} \times \ldots \times K_{m}
$$

Case 2 can be separated into three possibilities because the groups K_{i} are all conjugate subgroups of A_{m}.
(case 2a) Let the group $K_{1}=A_{m}$. Then $K_{j}=A_{m}^{b_{j}}=A_{m}$, for all $j \in \Omega^{*[1]}$.
(case 2b) Let the group $K_{1} \neq\{1\}$ and $K_{1} \neq A_{m}$. Then $K_{j}=K_{1}^{b_{j}} \neq$ $\{1\}$ and $K_{j}=K_{1}^{b_{j}} \neq A_{m}$, for all $j \in \Omega^{*[1]}$.
(case 2c) Let the group $K_{1}=\{1\}$. Then $K_{j}=\{1\}^{b_{j}}=\{1\}$, for all $j \in \Omega^{*[1]}$.

Case $2 a$.
Assume the groups $K_{i}=A_{m}$, for all $i \in \Omega^{*[1]}$. Then $M \cap B$ is a proper subdirect product in B. Setting $H=M$, Lemma 8.2 tells us that

$$
M \cap B=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}
$$

where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$.
We first consider a special case where $\varphi_{j}=\operatorname{id}_{A_{m}}$, for all $2 \leq j \leq m$. That is

$$
M \cap B=\left\{(x, x, \ldots, x): x \in A_{m}\right\}
$$

We prove that if M is a maximal subgroup such that $M \cap B=\{(x, x, \ldots, x)$: $\left.x \in A_{m}\right\}$ then T is contained in M.

Let $(x, x, \ldots, x) \in M \cap B$ and $b t \in M$, where $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ and $t \in T$. Then

$$
(x, x, \ldots, x)^{b t}=\left(x^{b_{1}}, x^{b_{2}}, \ldots, x^{b_{m}}\right)^{t} \in M \cap B
$$

Therefore $x^{b_{1}}=x^{b_{2}}=\ldots=x^{b_{m}}$. So $x^{b_{i} b_{j}^{-1}}=x$, for all $i, j \in \Omega^{*[1]}$. Since this holds for all $x \in A_{m}$, we have $b_{i} b_{j}^{-1} \in Z\left(A_{m}\right)=\{1\}$, for all $i, j \in \Omega^{*[1]}$.

Therefore $b_{i}=b_{j}$, for all $i, j \in \Omega^{*[1]}$. Now $b=\left(b_{1}, b_{1}, \ldots, b_{1}\right) \in M$ and so $t=b^{-1}(b t) \in M$. Since this holds for all $t \in T$, we have $T \subseteq M$.

Therefore $M=(M \cap B) T$. Now $B \unlhd W_{1}$ implies $M \cap B \unlhd M$, and $B \cap T=\{1\}$ implies $(M \cap B) \cap T=\{1\}$. In fact, $T \leq M$ gives this particular maximal subgroup as the semidirect product $M=(M \cap B) \rtimes T$.

Furthermore, $T \unlhd M$ because T acting by conjugation on the elements (x, x, \ldots, x) permutes the coordinates and, since the coordinates are all the same, permuting them leaves the elements (x, x, \ldots, x) unchanged. Therefore we actually have the direct product $M=(M \cap B) \times T$. Thus $M=M_{1}$, recalling that $M_{1}=\left\{(x, x, \ldots, x): x \in A_{m}\right\} \times T$.
We check that M_{1} is a maximal subgroup of W_{1}. Clearly M_{1} is a proper subgroup of W_{1} because it does not contain all the elements of the base group B.

We now show, for all $g \in W_{1} \backslash M_{1}$, that $\left\langle\{g\} \cup M_{1}\right\rangle=W_{1}$. Take $g=b t \in$ $W_{1} \backslash M_{1}$, where $b \in B$ and $t \in T$. Then

$$
\widetilde{g}=g t^{-1}=b \in B \backslash\left(B \cap M_{1}\right)
$$

as $t \in M_{1}$. Therefore $\widetilde{g}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ with $x_{j} \neq x_{1}$ for some $j \in \Omega^{*[1]}$. Since

$$
\left\langle\{g\} \cup M_{1}\right\rangle=\left\langle\{\widetilde{g}\} \cup M_{1}\right\rangle
$$

we will consider the group $\left\langle\{\widetilde{g}\} \cup M_{1}\right\rangle$. For a contradiction, suppose that $\left\langle\{\widetilde{g}\} \cup M_{1}\right\rangle \subsetneq W_{1}$. We can apply Lemma 8.2 to the group $\left\langle\{\widetilde{g}\} \cup M_{1}\right\rangle$, setting $H=\left\langle\{\widetilde{g}\} \cup M_{1}\right\rangle$. Condition (i) holds because $T \subseteq M_{1} \subseteq H$. Condition (ii) holds because if $H \cap B=B$ we would not have $H \subsetneq W_{1}$. Thus the first coordinate of an element of $H \cap B$ determines all the other coordinates of that element. This contradicts $\widetilde{g} \in H$ and $\left(x_{1}, x_{1}, \ldots, x_{1}\right) \in H$.

Now we look more generally at the maximal subgroups M such that

$$
M \cap B=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}
$$

where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$. For $m \geq 4$, with the exception of $m=6$, it is known that $\operatorname{Aut}\left(A_{m}\right) \cong S_{m}$, where S_{m} acts on A_{m} by conjugation. Therefore

$$
M \cap B=\left\{\left(x, x^{g_{2}}, x^{g_{3}}, \ldots, x^{g_{m}}\right): x \in A_{m}\right\}
$$

where $g_{j} \in S_{m}$, for $2 \leq j \leq m$.
For $t=(123) \in T$ we find $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ such that $t b \in M$. Also

$$
\left(x^{g_{m} b_{m} g_{m}^{-1}},\left(x^{g_{m} b_{m} g_{m}^{-1}}\right)^{g_{2}}, \ldots,\left(x^{g_{m} b_{m} g_{m}^{-1}}\right)^{g_{m-1}}, x^{g_{m} b_{m}}\right)
$$

is an element in $M \cap B$. Multiplying the inverse of this element by $\left(x, x^{g_{2}}, \ldots, x^{g_{m}}\right)^{t b}$ gives the element

$$
\begin{aligned}
& \left(x^{g_{m} b_{m} g_{m}^{-1}}, x^{g_{m} b_{m} g_{m}^{-1} g_{2}}, \ldots, x^{g_{m} b_{m} g_{m}^{-1} g_{m-1}}, x^{g_{m} b_{m}}\right)^{-1} \\
& \quad\left(x^{g_{3} b_{1}}, x^{b_{2}}, x^{g_{2} b_{3}}, x^{g_{4} b_{4}}, x^{g_{5} b_{5}}, \ldots, x^{g_{m} b_{m}}\right) \\
& =\left(\left(x^{g_{m} b_{m} g_{m}^{-1}}\right)^{-1} x^{g_{3} b_{1}},\left(x^{g_{m} b_{m} g_{m}^{-1} g_{2}}\right)^{-1} x^{b_{2}},\left(x^{g_{m} b_{m} g_{m}^{-1} g_{3}}\right)^{-1} x^{g_{2} b_{3}},\right. \\
& \left(x^{g_{m} b_{m} g_{m}^{-1} g_{4}}\right)^{-1} x^{g_{4} b_{4}},\left(x^{g_{m} b_{m} g_{m}^{-1} g_{5}}\right)^{-1} x^{g_{5} b_{5}}, \ldots \\
& \left.\quad\left(x^{g_{m} b_{m} g_{m}^{-1} g_{m-1}}\right)^{-1} x^{g_{m-1} b_{m-1}}, 1\right),
\end{aligned}
$$

which is in $M \cap B$, for all $x \in A_{m}$. Since the m th coordinate of this element is equal to 1 , all the coordinates of this element are equal to 1 . From the 1 st coordinate, we deduce that $x^{g_{m} b_{m} g_{m}^{-1}}=x^{g_{3} b_{1}}$, for all $x \in A_{m}$. Then $g_{m} b_{m} g_{m}^{-1}=g_{3} b_{1}$ because $C_{S_{m}}\left(A_{m}\right)=\{1\}$. Considering this equation modulo A_{m}, we obtain that $1 \equiv g_{3}\left(\bmod A_{m}\right)$, as $b_{1}, b_{m} \in A_{m}$. Working similarly, the 2 nd coordinate gives $g_{2} \equiv 1\left(\bmod A_{m}\right)$ and the 3 rd coordinate gives $g_{3} \equiv g_{2}\left(\bmod A_{m}\right)$. This argument can be applied repeatedly, taking in turn t as each of the 3 -cycles in A_{m}. Therefore it is deduced that

$$
1 \equiv g_{2} \equiv \ldots \equiv g_{m}\left(\bmod A_{m}\right)
$$

So $g_{2}, g_{3}, \ldots, g_{m} \in A_{m}$ because $1 \in A_{m}$.
Now

$$
M \cap B=\left\{(x, x, \ldots, x): x \in A_{m}\right\}^{g}
$$

where $g=\left(1, g_{2}, g_{3}, \ldots, g_{m}\right) \in B$. Then

$$
(M \cap B)^{g^{-1}}=M^{g^{-1}} \cap B^{g^{-1}}=M^{g^{-1}} \cap B=\left\{(x, x, \ldots, x): x \in A_{m}\right\}
$$

So $M^{g^{-1}}$ is a maximal subgroup of W_{1} such that $M^{g^{-1}} \cap B=\{(x, x, \ldots, x)$: $\left.x \in A_{m}\right\}$. Therefore $T \subseteq M^{g^{-1}}$ and $M^{g^{-1}}=M_{1}$. Hence $M=M_{1}^{g}$, where $g=\left(1, g_{2}, g_{3}, \ldots, g_{m}\right) \in B$.

Case $2 b$.
Assume the groups $K_{i} \neq\{1\}$ and $K_{i} \neq A_{m}$, for all $i \in \Omega^{*[1]}$. We choose $g=\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in B$ such that

$$
K_{1}^{g_{1}}=K_{2}^{g_{2}}=\ldots=K_{m}^{g_{m}}=L \neq A_{m},
$$

as the groups K_{i} are all conjugate subgroups in A_{m}. Then $\pi_{i}\left((M \cap B)^{g}\right)=$ $\pi_{i}\left(M^{g} \cap B\right)=L$, for $1 \leq i \leq m$, and so

$$
M^{g} \cap B \leq L^{(m)} .
$$

Instead, we now study the maximal subgroup M^{g} of W_{1}.
We claim that M^{g} is contained in the normaliser of $L^{(m)}$ in W_{1}. Let $\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in L^{(m)}$ and $b t \in M^{g}$, where $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ and $t \in T$. Then

$$
\left(l_{1}, l_{2}, \ldots, l_{m}\right)^{b t}=\left(l_{1}^{b_{1}}, l_{2}^{b_{2}}, \ldots, l_{m}^{b_{m}}\right)^{t} .
$$

We need to show that $l_{i}^{b_{i}} \in L$, for each $i \in \Omega^{*[1]}$. Since $M^{g} \cap B$ projects onto L in each coordinate, in $M^{g} \cap B$ there will be elements ($*, \ldots, *, l_{i}, *, \ldots, *$) where l_{i} is in the i th position, for each $i \in \Omega^{*[1]}$. Conjugating by the same element bt $\in M^{g}$ gives

$$
\left(*, \ldots, *, l_{i}, *, \ldots, *\right)^{b t}=\left(*, \ldots, *, l_{i}^{b_{i}}, *, \ldots, *\right)^{t} \in M^{g} \cap B .
$$

Again since $M^{g} \cap B$ projects onto L in each coordinate, we have proved that $l_{i}^{b_{i}} \in L$, for each $i \in \Omega^{*[1]}$.
Now

$$
M^{g} \leq N_{W_{1}}\left(L^{(m)}\right) \leq W_{1} .
$$

As M^{g} is a maximal subgroup of W_{1}, we have that $M^{g}=N_{W_{1}}\left(L^{(m)}\right)$ or $N_{W_{1}}\left(L^{(m)}\right)=W_{1}$. If $N_{W_{1}}\left(L^{(m)}\right)=W_{1}$ then $\left(N_{A_{m}}(L)\right)^{(m)} \rtimes T=A_{m}^{(m)} \rtimes T$, by Lemma 2.5. So $N_{A_{m}}(L)=A_{m}$ and $L \unlhd N_{A_{m}}(L)=A_{m}$. Since A_{m} is simple, this implies the contradiction that $L=\{1\}$ or $L=A_{m}$. Therefore

$$
M^{g}=N_{W_{1}}\left(L^{(m)}\right)=\left(N_{A_{m}}(L)\right)^{(m)} \rtimes T .
$$

Obviously $M^{g} \cap B=\left(N_{A_{m}}(L)\right)^{(m)}$. So $M^{g} \cap B \leq L^{(m)}$ gives $\left(N_{A_{m}}(L)\right)^{(m)} \leq$
$L^{(m)}$. As $L \leq N_{A_{m}}(L)$, we have

$$
\begin{equation*}
N_{A_{m}}(L)=L \tag{8.1}
\end{equation*}
$$

Therefore $M^{g}=L^{(m)} \rtimes T$.
Here L must be a maximal subgroup of A_{m} because if it was not then we can find a maximal subgroup L^{\prime} lying between L and A_{m}. Then $\left(L^{\prime}\right)^{(m)} \rtimes T$ is a group properly containing M^{g} but is not W_{1}, and contradicting that M^{g} is maximal in W_{1}. So $M^{g}=M_{2}(L)$, recalling that $M_{2}(L)=L^{(m)} \rtimes T$, where L is a maximal subgroup of A_{m}. Hence $M=M_{2}(L)^{g^{-1}}$, where $g \in B$. We check that any choice of maximal subgroup L of A_{m} leads to $M_{2}(L)$ being a maximal subgroup of W_{1}. Clearly $M_{2}(L)$ is a proper subgroup of W_{1}, since L is maximal in A_{m} we can find $x \in A_{m} \backslash L$ so that $(x, 1,1, \ldots, 1) \notin M_{2}(L)$. We now show, for all $g \in W_{1} \backslash M_{2}(L)$, that $\left\langle\{g\} \cup M_{2}(L)\right\rangle=W_{1}$. Take $g=b t \in W_{1} \backslash M_{2}(L)$, where $b \in B$ and $t \in T$. Then

$$
\widetilde{g}=g t^{-1}=b \in B \backslash\left(B \cap M_{2}(L)\right)
$$

as $t \in M_{2}(L)$. Therefore $\widetilde{g}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ where without loss of generality $y_{1} \notin L$. Since

$$
\left\langle\{g\} \cup M_{2}(L)\right\rangle=\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle
$$

we will consider the group $\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle$. We have $\left\langle y_{1}, L\right\rangle=A_{m}$ because L is maximal in A_{m}. Therefore $\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle$ contains elements $(h, *, \ldots, *)$ for any $h \in A_{m}$. Since $L \neq\{1\}$, there exists $(l, 1, \ldots, 1) \in L^{(m)} \subseteq\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle$ with $l \neq 1$. Then

$$
(l, 1, \ldots, 1)^{(h, *, \ldots, *)}=\left(l^{h}, 1, \ldots, 1\right) \in\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle
$$

for all $h \in A_{m}$. Therefore

$$
\langle l\rangle^{A_{m}} \times\{1\} \times \ldots \times\{1\}=A_{m} \times\{1\} \times \ldots \times\{1\} \subseteq\left\langle\{\tilde{g}\} \cup M_{2}(L)\right\rangle
$$

as $l \neq 1$ and A_{m} is simple. Applying the action of T implies that $B \subseteq$ $\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle$. So $\left\langle\{\widetilde{g}\} \cup M_{2}(L)\right\rangle=W_{1}$ and this confirms that $M_{2}(L)$ is a maximal subgroup of W_{1}.

Case 2c.
Assume the groups $K_{i}=\{1\}$, for all $i \in \Omega^{*[1]}$. Therefore $M \cap B=\{1\}$. Also
since $B M=W_{1}$, we have that in this case the maximal subgroup M is a complement for the base group B in W_{1}.

We show that condition (c) of Theorem 8.1 does not hold. In applying this theorem to our group W_{1}, we have that $X=A_{m}$ and $Y=A_{m}$. The stabiliser of any point $i \in \Omega^{*[1]}$ under the action of A_{m} is isomorphic to A_{m-1}. Thus there can be no surjective homomorphism from the stabiliser of a point $i \in \Omega^{*[1]}$ under the action of A_{m} to the group A_{m}. Hence W_{1} has no maximal subgroups which complement the base group and Case 2c does not occur.

Remark. Theorem 8.3 implies that there are three types of maximal subgroups of W_{1}.

- Maximal subgroups M of the form $M_{0}(L)$ have the property that $M \cap B$ is equal to B (Case 1).

Maximal subgroups M that are conjugates of:

- M_{1} have the property that $M \cap B$ is a proper subdirect product in B (Case 2 a);
- $M_{2}(L)$ have the property that $M \cap B$ projects onto a maximal subgroup of A_{m} in each coordinate (Case 2b).

Remark. The groups $M_{0}(L)$ are semidirect products of $M_{0}(L) \cap B=B$ by L. The groups M_{1}^{g}, where $g \in B$, are semidirect products of $M_{1}^{g} \cap B$ by T^{g}. The groups $M_{2}(L)^{g}$, where $g \in B$, are semidirect products of $M_{2}(L)^{g} \cap B$ by T^{g}.

Therefore all the maximal subgroups M of W_{1} are semidirect products of $M \cap B$ by a suitable non-trivial complement.

In [3], Bhattacharjee finds upper bounds for the number of conjugacy classes of maximal subgroups of the wreath products that she is considering. We are able to do a little more because our wreath products W_{1} are a very specific subclass of Bhattacharjee's wreath products. Since we have classified the maximal subgroups of W_{1} up to conjugation, we can count explicitly the number of them using the orbit-stabiliser theorem. These numbers are displayed below in Corollary 8.4.

Corollary 8.4. Let W_{1} be the group as defined in Theorem 8.3. Then the number of maximal subgroups M of W_{1} with the property that $M \cap B$:

- is equal to B is precisely the number of maximal subgroups of A_{m} (Case 1);
- is a proper subdirect product in B is precisely $\left|A_{m}\right|^{m-1}$ (Case 2a);
- projects onto a maximal subgroup of A_{m} in each coordinate is precisely

$$
\sum_{L \leq \max A_{m}}\left|A_{m}: L\right|^{m-1}
$$

where the summation runs over all maximal subgroups of A_{m} (Case 2b).
Proof.
Case $2 a$.
Maximal subgroups of W_{1} of the type in Case 2a are all of the form M_{1}^{g}, where $g \in B$. We calculate the number of distinct maximal subgroups of this type. The group B in W_{1} acts on the orbit $\left\{M_{1}^{g}: g \in B\right\}$ by conjugation. The orbitstabiliser theorem says that the length of this orbit is $\left|B: N_{B}\left(M_{1}\right)\right|$. Therefore we compute the normaliser of M_{1} in B.

To simplify workings we notice that a conjugate of an element of M_{1} is in B if and only if the element of M_{1} is in B. We need to find elements $\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in$ B where for all $x \in A_{m}$ there exists $y \in A_{m}$ such that $\left(x^{g_{1}}, x^{g_{2}}, \ldots, x^{g_{m}}\right)=$ (y, y, \ldots, y). That is $x^{g_{i}}=x^{g_{j}}$, for all $x \in A_{m}$ and for all $i, j \in \Omega^{*[1]}$. So $x^{g_{i} g_{j}^{-1}}=x$, for all $x \in A_{m}$, and $g_{i} g_{j}^{-1} \in Z\left(A_{m}\right)=\{1\}$, for all $i, j \in \Omega^{*[1]}$. Then $g_{i}=g_{j}$, for all $i, j \in \Omega^{*[1]}$.

We check that $T^{\left(g_{1}, g_{1}, \ldots, g_{1}\right)} \subseteq M_{1}$. In fact $T^{\left(g_{1}, g_{1}, \ldots, g_{1}\right)}=T$. Therefore

$$
N_{B}\left(M_{1}\right)=\left\{\left(g_{1}, g_{1}, \ldots, g_{1}\right): g_{1} \in A_{m}\right\} \cong A_{m} .
$$

The number of distinct conjugates M_{1}^{g}, where $g \in B$, is $\left|A_{m}\right|^{m} /\left|A_{m}\right|=\left|A_{m}\right|^{m-1}$.
Case $2 b$.
Maximal subgroups of W_{1} of the type in Case 2 b are all of the form $M_{2}(L)^{g}$, where L is a maximal subgroup of A_{m} and $g \in B$. We calculate the number of distinct maximal subgroups of this type. For fixed L, the group B in W_{1} acts on the orbit $\left\{M_{2}(L)^{g}: g \in B\right\}$ by conjugation. The orbit-stabiliser theorem says that the length of this orbit is $\left|B: N_{B}\left(M_{2}(L)\right)\right|$. Therefore we compute the normaliser of $M_{2}(L)$ in B.

Again, to simplify workings we use the fact that a conjugate of an element of $M_{2}(L)$ is in B if and only if the element of $M_{2}(L)$ is in B. We need to find elements $\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in B$ where for all $\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in L^{(m)}$ we have

$$
\left(l_{1}, l_{2}, \ldots, l_{m}\right)^{\left(g_{1}, g_{2}, \ldots, g_{m}\right)}=\left(l_{1}^{g_{1}}, l_{2}^{g_{2}}, \ldots, l_{m}^{g_{m}}\right) \in L^{(m)} .
$$

That is $l_{i}^{g_{i}} \in L$, for all $l_{i} \in L$ and for all $i \in \Omega^{*[1]}$. So $g_{i} \in N_{A_{m}}(L)$, for all $i \in \Omega^{*[1]}$.

From result (8.1), we know that $N_{A_{m}}(L)=L$. Then $\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in L^{(m)}$ gives $T^{\left(g_{1}, g_{2}, \ldots, g_{m}\right)} \subseteq M_{2}(L)$. Therefore $N_{B}\left(M_{2}(L)\right) \subseteq\left(N_{A_{m}}(L)\right)^{(m)}=L^{(m)}$.

Now $M_{2}(L) \subseteq N_{W_{1}}\left(M_{2}(L)\right)$ implies

$$
L^{(m)}=M_{2}(L) \cap B \subseteq N_{W_{1}}\left(M_{2}(L)\right) \cap B=N_{B}\left(M_{2}(L)\right) .
$$

Thus $N_{B}\left(M_{2}(L)\right)=L^{(m)}$. The number of distinct conjugates $M_{2}(L)^{g}$, where $g \in B$, is $\left|A_{m}: L\right|^{m}$.
The conjugacy class of $M_{2}(\widetilde{L})$ in B, for another maximal subgroup \widetilde{L} of A_{m}, may be the same as the conjugacy class of $M_{2}(L)$ in B. This will occur when \widetilde{L} is a conjugate of L in A_{m}. The number of conjugates of L in A_{m} is $\left|A_{m}: L\right|$, by result (8.1). Hence the total number of distinct maximal subgroups of W_{1} of the type given in Case 2 b is $\sum_{L \leq_{\max } A_{m}}\left|A_{m}: L\right|^{m-1}$.

Remark. As was seen in Case 2a, the maximal subgroups M_{1}^{g} are parametrised by the cosets $\left\{(x, x, \ldots, x): x \in A_{m}\right\} g$, where $g \in B$. Therefore we can describe them using the coset representatives $g_{i} \in B$, for $1 \leq i \leq\left|A_{m}\right|^{m-1}$.

Similarly, as was seen in Case 2b, the maximal subgroups $M_{2}(L)^{g}$ can be described using the coset representatives $g_{i} \in B$, for $1 \leq i \leq\left|A_{m}: L\right|^{m}$.

Remark. It would be interesting to know which of the three types of maximal subgroups of W_{1} is the largest class.

The number

$$
\sum_{L \leq \max A_{m}}\left|A_{m}: L\right|^{m-1}
$$

of maximal subgroups of type Case 2 b is calculated by summing numbers that are at least 1 as we run through all the maximal subgroups of A_{m}. Therefore the number of maximal subgroups of type Case 2 b is larger than the number of maximal subgroups of type Case 1.

It is left open as to whether the number $\left|A_{m}\right|^{m-1}$ of maximal subgroups of type Case 2a is larger than the number of maximal subgroups of type Case 2b.

Remark 8.5. We analyse Bhattacharjee's paper [3] with respect to counting the number of maximal subgroups M of W_{1} with the property that $M \cap B$ is a proper subdirect product in B (Case 2a).

Since the only non-trivial T-congruence ${ }^{1}$ on $\Omega^{*[1]}$ is $\Omega^{*[1]}$, Bhattacharjee describes these maximal subgroups as $N_{W_{1}}\left(D_{1}\right)$, where

$$
D_{1}=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}
$$

for some $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$. She estimates the number of conjugacy classes of these maximal subgroups by calculating the number of conjugacy classes of the groups D_{1}. Instead, we use Bhattacharjee's best description of $N_{W_{1}}\left(D_{1}\right)$ to count the number of possible maximal subgroups of this type.

The groups D_{1} are uniquely determined by the maps $\varphi_{2}, \varphi_{3}, \ldots$ and φ_{m}. However, not all choices of $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$ may lead to $N_{W_{1}}\left(D_{1}\right)$ being maximal. Therefore Bhattacharjee's work only goes so far as to produce the overestimate of $\left|S_{m}\right|^{m-1}$, for $m \neq 6$, maximal subgroups of this type. Corollary 8.4 counts the exact number of these maximal subgroups as $\left|A_{m}\right|^{m-1}$. The difference of values occurs because Theorem 8.3 checks that the maximal subgroups are actually maximal and Bhattacharjee's work does not require such checking.

We comment further that subgroups of Bhattacharjee's description $N_{W_{1}}\left(D_{1}\right)$ which are not maximal must therefore be contained in maximal subgroups of the form $M_{0}(L)=$ $B \rtimes L$. So $N_{W_{1}}\left(D_{1}\right)$ is maximal if $B N_{W_{1}}\left(D_{1}\right)=W_{1}$. The subgroups $N_{W_{1}}\left(D_{1}\right)$ that are not maximal are those which $D_{1}=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}$ for some $1 \neq \varphi_{j} \in \operatorname{Aut}\left(A_{m}\right) / \operatorname{Inn}\left(A_{m}\right)=\operatorname{Out}\left(A_{m}\right)$.

Remark 8.6. We analyse Bhattacharjee's paper [3] with respect to counting the number of maximal subgroups M of W_{1} with the property that $M \cap B$ projects onto a maximal subgroup of A_{m} in each coordinate (Case 2b).

Bhattacharjee's method and therefore best description of these types of subgroups is the same as that of Theorem 8.3. She then estimates the number of conjugacy classes of these maximal subgroups. Bhattacharjee's usage does not necessitate her to conclude that she has enough information to proceed in the counting of these types of groups.

Since Theorem 8.3 has shown that any maximal subgroup L of A_{m} leads to these groups being maximal, Corollary 8.4 has counted the exact number of these types of maximal subgroups as $\sum_{L \leq_{\max } A_{m}}\left|A_{m}: L\right|^{m-1}$.
Remark 8.7. We use Theorem 8.3 to count the exact number of conjugacy classes of maximal subgroups M of W_{1} with the property that $M \cap B$ is a proper subdirect product in B (Case 2 a).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group

[^2]and not just the base group, in order to compare with Bhattacharjee we conjugate by elements of the whole group W_{1}. We show that the maximal subgroups M_{1}^{g}, where $g \in B$, as described in Theorem 8.3, form exactly one conjugacy class in W_{1}. For $b t \in W_{1}$, where $b \in B$ and $t \in T$, we have $\left(M_{1}^{g}\right)^{b t}=M_{1}^{t\left(t^{-1} g b t\right)}=M_{1}^{(g b)^{t}}$ and $(g b)^{t} \in B$.

For W_{1}, Bhattacharjee's work leads to the maximal subgroups of the type in Case 2a being $N_{W_{1}}\left(D_{1}\right)$, where

$$
D_{1}=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\},
$$

for some $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$. The inner automorphisms of A_{m} give rise to a single conjugacy class of groups D_{1} in B. Any $1 \neq \varphi_{j} \in \operatorname{Out}\left(A_{m}\right)$ leads to a single distinct conjugacy class. Therefore the number of conjugacy classses of subgroups of the form D_{1} in B is $\left|\operatorname{Out}\left(A_{m}\right)\right|^{m-1}$. Since $\left|\operatorname{Out}\left(A_{m}\right)\right|=2$, for $m \neq 6$, an upper bound for the number of distinct conjugacy classes of maximal subgroups of type Case 2 a is 2^{m-1}. Therefore Bhattacharjee's work only goes so far as to produce this overestimate, whereas, our work calculates precisely one conjugacy class.

Remark 8.8. We use Theorem 8.3 to count the exact number of conjugacy classes of maximal subgroups M of W_{1} with the property that $M \cap B$ projects onto a maximal subgroup of A_{m} in each coordinate (Case 2 b).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group and not just the base group, in order to compare with Bhattacharjee we conjugate by elements of the whole group W_{1}. We claim that $M_{2}\left(L_{1}\right)$ is conjugate to $M_{2}\left(L_{2}\right)$ in W_{1} if and only if the maximal subgroups L_{1} and L_{2} of A_{m} are conjugate in A_{m}.

Suppose $M_{2}\left(L_{1}\right)$ and $M_{2}\left(L_{2}\right)$ are conjugate in W_{1}. Then $M_{2}\left(L_{1}\right)^{b t}=M_{2}\left(L_{2}\right)$ for some $b t \in W_{1}$, where $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in B$ and $t \in T$. So

$$
\left(L_{1}^{(m)} \rtimes T\right)^{b t}=\left(L_{1}^{(m)}\right)^{b t} \rtimes T^{b t}=L_{2}^{(m)} \rtimes T .
$$

Intersecting with B gives $\left(L_{1}^{(m)}\right)^{b t}=L_{2}^{(m)}$. Therefore there exists some $b_{i} \in A_{m}$ such that $L_{1}^{b_{i}}=L_{2}$.

Suppose L_{1} and L_{2} are conjugate in A_{m}. Then $L_{1}^{g}=L_{2}$ for some $g \in A_{m}$. Therefore

$$
\begin{aligned}
M_{2}\left(L_{1}\right)^{(g, g, \ldots, g)} & =\left(L_{1}^{(m)}\right)^{(g, g, \ldots, g)} \rtimes T^{(g, g, \ldots, g)} \\
=\left(L_{1}^{g}\right)^{(m)} \rtimes T & =\left(L_{2}\right)^{(m)} \rtimes T=M_{2}\left(L_{2}\right),
\end{aligned}
$$

where $(g, g, \ldots, g) \in B$.
Thus the number of conjugacy classes in W_{1} of maximal subgroups of the form $M_{2}(L)^{g}$, where $g \in B$, is the same as the number of conjugacy classes in A_{m} of maximal
subgroups L of A_{m}. The number of conjugacy classes of maximal subgroups of A_{m} can be worked out from the classification of maximal subgroups of A_{m} as set out in Section 2.3.

Bhattacharjee states that finding an upper bound for the number of distinct conjugacy classes in W_{1} of these types of maximal subgroups reduces to finding an upper bound for the number of distinct conjugacy classes in A_{m} of maximal subgroups of A_{m}. She overestimates the number of conjugacy classes because she is not required to prove that her statement is necessary and sufficient, which we have done above.

8.3 Finite wreath products $A_{m} \backslash A_{m} \backslash A_{m}$, where $m \geq 5$

We continue the work of determining the maximal subgroups of the finite groups W_{n}, with a view to applying these techniques to the groups G_{n} of Wilson's construction. The next natural step is to look at the second wreath product

$$
W_{2}=A_{m} \imath_{\Omega^{*[2]}}\left(A_{m} \imath_{\Omega^{*[1]}} A_{m}\right),
$$

where

$$
\Omega^{*[1]}=\{1,2, \ldots, m\} \text { and } \Omega^{*[2]}=\left\{i_{1} i_{2}: i_{1}, i_{2} \in\{1,2, \ldots, m\}\right\},
$$

and $m \geq 5$. The top group $A_{m} \sum_{\Omega^{*[1]}} A_{m}$ of this iterated wreath product is the group W_{1}. Therefore we can write

$$
W_{2}=A_{m} \tau_{\Omega^{*}[2]} W_{1} .
$$

Theorem 8.10 describes the maximal subgroups of W_{2}. They are described by using the work of Bhattacharjee [3], and Parker and Quick [23], and our analysis for proving Theorem 8.3. Similarly, the proof of Theorem 8.10 separates the possibilities for the maximal subgroups of W_{2} into types, referred to as Case 1, Case 2a, Case 2b and Case 2c. The proof concerning the maximal subgroups of type Case 2a is taken from Bhattacharjee's work in [3]. To obtain a self-contained analogue for Case 2a, as in W_{1} of the previous section, was found to be too complicated and seemed unnecessary considering we have the work of Bhattacharjee. Therefore since we do not use the fact that $\operatorname{Aut}\left(A_{m}\right) \cong S_{m}$, for $m \geq 4$ and $m \neq 6$, Theorem 8.10 holds for $m \geq 5$.

In the previous section, for W_{1} the maximal subgroups M of type Case 2a had $M \cap B$ equal to a single diagonal subgroup ${ }^{2}$. From paper [3, pg. 316], we see that this is because A_{m} acts primitively on $\Omega^{*[1]}=\{1,2, \ldots, m\}$ and so $\Omega^{*[1]}$ is the only

[^3]non-trivial A_{m}-congruence ${ }^{3}$ on $\Omega^{*[1]}$. However, for W_{2} the subgroup $A_{m}^{(m)} \rtimes A_{m}$ acts imprimitively on the set $\Omega^{*[2]}=\left\{i_{1} i_{2}: i_{1}, i_{2} \in\{1,2, \ldots, m\}\right\}$; see Lemma 8.9 below. Therefore the maximal subgroups M, of W_{2}, of type Case 2 a can have $M \cap B$ equal to a direct product of more than one diagonal subgroup.

Lemma 8.9. Let $A_{m}^{(m)} \rtimes A_{m}$ act naturally on $\Omega^{*[2]}=\left\{i_{1} i_{2}: i_{1}, i_{2} \in\{1,2, \ldots, m\}\right\}$, for $m \geq 3$. Then

$$
\left\{1 i_{2}: i_{2} \in\{1,2, \ldots, m\}\right\},\left\{2 i_{2}: i_{2} \in\{1,2, \ldots, m\}\right\}, \ldots,\left\{m i_{2}: i_{2} \in\{1,2, \ldots, m\}\right\}
$$

is the only non-trivial system of blocks.
Proof. Fix $11 \in \Omega^{*[2]}$. Recall $W_{1}=A_{m}^{(m)} \rtimes A_{m}$. Since the group W_{1} acts transitively on $\Omega^{*[2]}$, there is a one-to-one correspondence between the non-trivial systems of blocks and the subgroups H such that $\mathrm{St}_{W_{1}}(11) \subsetneq H \subsetneq W_{1}$, where $\mathrm{St}_{W_{1}}(11)$ is the stabiliser of 11 in W_{1}. Now

$$
\begin{equation*}
\mathrm{St}_{W_{1}}(11)=A_{m-1} \times\left(A_{m}^{(m-1)} \rtimes A_{m-1}\right) . \tag{8.2}
\end{equation*}
$$

We claim $H=A_{m}^{(m)} \rtimes A_{m-1}$ is the only subgroup such that $\mathrm{St}_{W_{1}}(11) \subsetneq H \subsetneq W_{1}$. We write $B=A_{m}^{(m)}$ for the base group of W_{1}.

If $A_{m-1} \cong B \operatorname{St}_{W_{1}}(11) / B \subsetneq B H / B$ then $B H / B \cong A_{m}$, as A_{m-1} is a maximal subgroup of A_{m}, for $m \geq 3$. A short calculation, similar to that used in the proof of Lemma 8.2, shows that $B \subseteq H$. So we have the contradiction $H=W_{1}$.

Therefore $B \mathrm{St}_{W_{1}}(11) / B=B H / B$. Then $\mathrm{St}_{W_{1}}(11) \subsetneq H$ implies $A_{m-1} \times A_{m}^{(m-1)}=$ St $_{W_{1}}(11) \cap B \subsetneq H \cap B$. We have $B \subseteq H$, since $A_{m-1} \times A_{m}^{(m-1)}$ is a maximal subgroup of B, for $m \geq 3$. Hence the claim is proved.

The proof of the maximal subgroups of type Case 2 b in Theorem 8.10 is contained in Bhattacharjee's work. Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.10 is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.10. Let $W_{2}=A_{m} \imath_{\Omega^{*[2]}}\left(A_{m} \imath_{\Omega^{*[1]}} A_{m}\right)$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$ and $\Omega^{*[2]}=\left\{i_{1} i_{2}: i_{1}, i_{2} \in\{1,2, \ldots, m\}\right\}$, for some $m \geq 5$. Denote the base group $A_{m}^{\left(m^{2}\right)}=$: B and the permuting top group $W_{1}=: T$. Therefore $W_{2}=B \rtimes T$.

Define

$$
M_{0}(K)=B \rtimes K \text {, where } K \text { is a maximal subgroup of } W_{1} .
$$

[^4]Consider the normaliser

$$
N_{W_{2}}\left(D_{1}\right),
$$

where

$$
D_{1}=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m^{2}}(x)\right): x \in A_{m}\right\}
$$

and

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for } 2 \leq j \leq m^{2} .
$$

Consider the normaliser

$$
N_{W_{2}}\left(D_{1} \times D_{2} \times \ldots \times D_{m}\right),
$$

where

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) m+2}\left(x_{i}\right), \varphi_{(i-1) m+3}\left(x_{i}\right), \ldots, \varphi_{i m}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\}, \text { for } 1 \leq i \leq m,
$$

and

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for }(i-1) m+2 \leq j \leq i m
$$

Define

$$
M_{2}(L)=L^{(m)} \rtimes T \text {, where } L \text { is a maximal subgroup of } A_{m} .
$$

Then the groups $M_{0}(K)$ and $M_{2}(L)^{g}$, where $g \in B$, are maximal subgroups of W_{2} and every maximal subgroup of W_{2} is one of the groups $M_{0}(K), N_{W_{2}}\left(D_{1}\right), N_{W_{2}}\left(D_{1} \times\right.$ $D_{2} \times \ldots \times D_{m}$) or $M_{2}(L)^{g}$, where $g \in B$.

Proof. Let M be a maximal subgroup of W_{2}. Then there are two possibilities:

$$
B \subseteq M \text { (case } 1 \text {), and } B \nsubseteq M \text { (case } 2 \text {). }
$$

Case 1.
Suppose $B \subseteq M$. Using the same reasoning as Case 1 of the proof for Theorem 8.10 gives $M=B \rtimes K$, where K is a maximal subgroup of W_{1}. The maximal subgroups of W_{1} have been classified in Theorem 8.3.

Case 2.
Suppose $B \nsubseteq M$. Since M is maximal, we have

$$
B M=W_{2} .
$$

Again using the facts $M /(M \cap B) \cong T$ and T acts transitively on the set $\Omega^{*[2]}$, we see that the projections of $M \cap B$ into the m^{2} factors of B must be conjugate in A_{m}.

Denote K_{i} as the projection of $M \cap B$ into the i th factor of B, for $1 \leq i \leq m^{2}$. Case 2 can be separated into three possibilities because the groups K_{i} are all conjugate subgroups of A_{m}.
(case 2a) The groups $K_{i}=A_{m}$, for all $i \in \Omega^{*[2]}$.
(case 2b) The groups $K_{i} \neq\{1\}$ and $K_{i} \neq A_{m}$, for all $i \in \Omega^{*[2]}$.
(case 2c) The groups $K_{i}=\{1\}$, for all $i \in \Omega^{*[2]}$.
Case $2 a$.
We follow Bhattacharjee's work [3, pg. 316-317] to characterise the maximal subgroups M such that $M \cap B$ is a proper subdirect product in B.

Since $M \cap B$ is a subdirect product of a collection of non-abelian simple groups it can be written as

$$
M \cap B=D_{1} \times D_{2} \times \ldots \times D_{s},
$$

where

$$
\Omega^{*[2]}=\Omega_{1} \cup \Omega_{2} \cup \ldots \cup \Omega_{s}
$$

is a partition of $\Omega^{*[2]}$ and each $D_{i}\left(\cong A_{m}\right)$ is a diagonal subgroup of the direct product $A_{m}^{\Omega_{i}}$ (see [2, Lem. 2.3] or the Appendix of our thesis). The partition of $\Omega^{*[2]}$ gives rise to a T-congruence on $\Omega^{*[2]}$.

Using Lemma 8.9, there are three possibilities for $s: s=1, s=m$ or $s=m^{2}$. The possibility of $s=m^{2}$ is excluded because we would have the contradiction $M \cap B=B$. Therefore $s=1$ or $s=m$.
If $s=1$ then

$$
M \cap B=D_{1}=\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m^{2}}(x)\right): x \in A_{m}\right\}
$$

where

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right) \text {, for } 2 \leq j \leq m^{2}
$$

If $s=m$ then each diagonal subgroup D_{i} is of the form

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) m+2}\left(x_{i}\right), \varphi_{(i-1) m+3}\left(x_{i}\right), \ldots, \varphi_{i m}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\},
$$

where

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right) \text {, for }(i-1) m+2 \leq j \leq i m .
$$

So

$$
\begin{aligned}
& M \cap B=\left\{\left(x_{1}, \varphi_{2}\left(x_{1}\right), \ldots, \varphi_{m}\left(x_{1}\right)\right.\right. \\
& x_{2}, \varphi_{m+2}\left(x_{2}\right), \ldots, \varphi_{2 m}\left(x_{2}\right) \\
& \ldots
\end{aligned}
$$

where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$.
Now $M \cap B \unlhd M$ implies that M is contained in the normaliser of $M \cap B$ in W_{2}. As M is a maximal subgroup of W_{2}, we have $M=N_{W_{2}}(M \cap B)$ or $N_{W_{2}}(M \cap B)=W_{2}$. If the normaliser equals W_{2} then

$$
M \cap B \unlhd N_{W_{2}}(M \cap B)=W_{2}
$$

Since T acts transitively on m^{2} elements, there is only one T-orbit and Lemma 2.3 gives $M \cap B=B$. This contradicts $B \nsubseteq M$.

Thus if there is a maximal subgroup M such that $M \cap B=D_{1}$, we must have

$$
M=N_{W_{2}}\left(D_{1}\right)
$$

and if there is a maximal subgroup M such that $M \cap B=D_{1} \times D_{2} \times \ldots \times D_{m}$, we must have

$$
M=N_{W_{2}}\left(D_{1} \times D_{2} \times \ldots \times D_{m}\right)
$$

Case $2 b$.
Analogous methods of Bhattacharjee and of Case 2 b of the proof for Theorem 8.3 can be used to describe the maximal subgroups M such that $K_{i} \neq\{1\}$ and $K_{i} \neq A_{m}$, for all $i \in \Omega^{*[2]}$.
For $B:=A_{m}^{\left(m^{2}\right)}$ and $T:=W_{1}$, the same methods of Theorem 8.3 give

$$
M=N_{W_{2}}\left(L^{\left(m^{2}\right)}\right)^{g^{-1}}=\left(\left(N_{A_{m}}(L)\right)^{\left(m^{2}\right)} \rtimes T\right)^{g^{-1}}=\left(L^{\left(m^{2}\right)} \rtimes T\right)^{g^{-1}}
$$

where L is a maximal subgroup of A_{m} and $g \in B$. Bhattacharjee's analysis [3, pg. 318] gives

$$
M=N_{W_{2}}\left(K_{1} \times K_{2} \times \ldots \times K_{m^{2}}\right)
$$

Choosing $g=\left(g_{1}, g_{2}, \ldots, g_{m^{2}}\right) \in B$ such that $K_{1}^{g_{1}}=K_{2}^{g_{2}}=\ldots=K_{m^{2}}^{g_{m}^{2}}=L$,
we have

$$
\begin{aligned}
M & =N_{W_{2}}\left(K_{1} \times K_{2} \times \ldots \times K_{m^{2}}\right) \\
& =N_{W_{2}}\left(L^{g_{1}^{-1}} \times L^{g_{2}^{-1}} \times \ldots \times L^{g_{m}^{-1}}\right) \\
& =N_{W_{2}}\left(L^{\left(m^{2}\right)}\right)^{g^{-1}} \\
& =\left(L^{\left(m^{2}\right)} \rtimes T\right)^{g^{-1}} \\
& =\left(L^{\left(m^{2}\right)}\right)^{g^{-1}} \rtimes T^{g^{-1}} \\
& =\left(K_{1} \times K_{2} \times \ldots \times K_{m^{2}}\right) \rtimes T^{g^{-1}} .
\end{aligned}
$$

The same methods of Theorem 8.3 check that these groups are maximal. Case 2c.

Assume the groups $K_{i}=\{1\}$, for all $i \in \Omega^{*[2]}$. Since $M \cap B=\{1\}$, the maximal subgroup M is a complement for the base group B in W_{2}. We show that condition (c) of Theorem 8.1 does not hold. In applying this theorem to our group W_{2}, we have that $X=A_{m}$ and $Y=W_{1}$.
The stabilisers of any two points in $\Omega^{*[2]}$ under the action of W_{1} are conjugate, since the action is transitive. The stabiliser of any point $i \in \Omega^{*[2]}$ under the action of W_{1} is conjugate to

$$
A_{m-1} \times\left(A_{m}^{(m-1)} \rtimes A_{m-1}\right)=A_{m-1} \times\left(A_{m} \backslash A_{m-1}\right) ;
$$

refer to (8.2).
We look at a potential surjective homomorphism ϕ from $A_{m-1} \times\left(A_{m} 乙 A_{m-1}\right)$ onto A_{m}. Now $A_{m-1} \times\{1\} \cong A_{m-1}$ is a normal subgroup of $A_{m-1} \times\left(A_{m}\right.$ 久 $\left.A_{m-1}\right)$. Since ϕ is surjective, the normal subgroup A_{m-1} must be mapped to a normal subgroup of A_{m}. The simple group A_{m} only has two normal subgroups and A_{m-1} cannot be mapped to A_{m} because it is too small. Therefore A_{m-1} maps to $\{1\}$ and it is in the kernel of ϕ.
It is now satisfactory to study the surjective homomorphism $A_{m} \backslash A_{m-1} \longrightarrow$ A_{m}. From the 1st isomorphism theorem, due to size, we see that this surjective homomorphism has to have a non-trivial kernel. From Lemma 2.3, since the natural action of A_{m-1} is transitive there is only one orbit, the unique minimal normal subgroup of $A_{m} \swarrow A_{m-1}$ is the direct product $A_{m}^{(m-1)}$. The kernel of this homomorphism, being a normal subgroup, must contain $A_{m}^{(m-1)}$. Therefore a subgroup of A_{m-1} would have to map onto A_{m} which is impossible.

Thus there can be no surjective homomorphism from the stabiliser of a point $i \in \Omega^{*[2]}$ under the action of W_{1} to the group A_{m}. Hence W_{2} has no maximal subgroups which complement the base group and Case 2c does not occur.

8.4 Particular first Wilson quotients G_{1}

Let G_{n} be the Wilson quotients as defined in Section 4.1. Recall that X_{0} and X_{1} are finite non-abelian simple groups. Also $G_{0}=X_{0}$ has a faithful transitive action on the set $\Omega_{d_{1}}=\left\{1,2, \ldots, d_{1}\right\}$ and $L_{1}=X_{1}^{\left(d_{1}\right)}$. We would like to describe the maximal subgroups of the first Wilson quotients

$$
G_{1}=X_{1} \imath_{L_{1}}\left(X_{1} \imath_{\Omega_{d_{1}}} G_{0}\right)
$$

where the top group $X_{1} \imath_{\Omega_{d_{1}}} G_{0}=L_{1} G_{0}$ acts on the set L_{1} according to the transitive action defined in (4.1), found in Section 4.1.

In order to apply the same techniques that are used to determine maximal subgroups of the groups W_{1} and W_{2}, we take $X_{0}=X_{1}=A_{m}$, where $m \geq 5$. We also take the faithful transitive action of the group $G_{0}=A_{m}$ to be the natural action. Therefore we now study the first Wilson quotients

$$
G_{1}=A_{m} \imath_{m}^{(m)}\left(A_{m} \imath_{\Omega^{*[1]}} A_{m}\right)
$$

where the top group $A_{m}{ }_{\Omega^{*}[1]} A_{m}=A_{m}^{(m)} A_{m}$ acts on the set $A_{m}^{(m)}$ according to the transitive action (4.1). These groups are more specific than the groups of Section 6.2 because, in their construction, the groups X_{0} and X_{1} have been specified. Notice that the top groups of the Wilson quotients G_{1} are the groups W_{1} and therefore

$$
G_{1}=A_{m} \imath_{A_{m}^{(m)}} W_{1}
$$

Theorem 8.11 describes the maximal subgroups of these particular first Wilson quotients G_{1}. They are described by using the work of Bhattacharjee [3], and Parker and Quick [23], and our analysis for proving Theorem 8.3. Similarly, the proof of Theorem 8.11 separates the possibilities for the maximal subgroups of G_{1} into types, referred to as Case 1, Case 2a, Case 2b and Case 2c. The proof concerning the maximal subgroups of type Case 2a is taken from Bhattacharjee's work in [3]. The proof of the maximal subgroups of type Case 2b in Theorem 8.11 is contained in Bhattacharjee's
work. Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.11 is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.11. Let $\left.\left.G_{1}=A_{m}\right\}_{A_{m}^{(m)}}\left(A_{m}\right\}_{\Omega^{*[1]}} A_{m}\right)$, where $\Omega^{*[1]}=\{1,2, \ldots, m\}$, for some $m \geq 5$. Denote the base group $A_{m}^{\left(\left|A_{m}\right|^{m}\right)}=: B$ and the permuting top group $W_{1}=: T$. The group T acts on the set $A_{m}^{(m)}$ according to the action defined in (4.1). Therefore $G_{1}=B \rtimes T$.

Define

$$
M_{0}(K)=B \rtimes K \text {, where } K \text { is a maximal subgroup of } W_{1} \text {. }
$$

Consider the normaliser

$$
N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right),
$$

with the equivalence classes Ω_{i}, for $1 \leq i \leq s$ and $s \neq\left|A_{m}\right|^{m}$, of a T-congruence on $A_{m}^{(m)}$ having $\left|\Omega_{i}\right|=l$, and where

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) l+2}\left(x_{i}\right), \varphi_{(i-1) l+3}\left(x_{i}\right), \ldots, \varphi_{i l}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\}, \text { for } 1 \leq i \leq s
$$

and

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for }(i-1) l+2 \leq j \leq i l .
$$

Define

$$
M_{2}(L)=L^{\left(\left|A_{m}\right|^{m}\right)} \rtimes T \text {, where } L \text { is a maximal subgroup of } A_{m} .
$$

Then the groups $M_{0}(K)$ and $M_{2}(L)^{g}$, where $g \in B$, are maximal subgroups of G_{1} and every maximal subgroup of G_{1} is one of the groups $M_{0}(K), N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right)$ or $M_{2}(L)^{g}$, where $g \in B$.

Proof. Let M be a maximal subgroup of G_{1}. Then there are two possibilities:

$$
B \subseteq M \text { (case } 1 \text {), and } B \nsubseteq M \text { (case } 2 \text {). }
$$

Case 1.
Suppose $B \subseteq M$. Using the same reasoning as Case 1 of the proof for Theorem 8.3 gives $M=B \rtimes K$, where K is a maximal subgroup of W_{1}. The maximal subgroups of W_{1} have been classified in Theorem 8.3.

Case 2.
Suppose $B \nsubseteq M$. Since M is maximal, we have

$$
B M=G_{1} .
$$

Again using the facts $M /(M \cap B) \cong T$ and T acts transitively on the set $A_{m}^{(m)}$, we see that the projections of $M \cap B$ into the $\left|A_{m}\right|^{m}$ factors of B must be conjugate in A_{m}.

Denote K_{i} as the projection of $M \cap B$ into the i th factor of B, for $1 \leq i \leq\left|A_{m}\right|^{m}$. Case 2 can be separated into three possibilities because the groups K_{i} are all conjugate subgroups of A_{m}.
(case 2a) The groups $K_{i}=A_{m}$, for all $i \in A_{m}^{(m)}$.
(case 2b) The groups $K_{i} \neq\{1\}$ and $K_{i} \neq A_{m}$, for all $i \in A_{m}^{(m)}$.
(case 2c) The groups $K_{i}=\{1\}$, for all $i \in A_{m}^{(m)}$.
Case 2a.
We follow Bhattacharjee's work [3, pg. 316-317] to characterise the maximal subgroups M such that $M \cap B$ is a proper subdirect product in B.
Since $M \cap B$ is a subdirect product of a collection of non-abelian simple groups it can be written as

$$
M \cap B=D_{1} \times D_{2} \times \ldots \times D_{s}
$$

where the partition of

$$
A_{m}^{(m)}=\Omega_{1} \cup \Omega_{2} \cup \ldots \cup \Omega_{s}
$$

is a T-congruence on $A_{m}^{(m)}$ and each $D_{i}\left(\cong A_{m}\right)$ is a diagonal subgroup of the direct product $A_{m}^{\Omega_{i}}$. We have $s \neq\left|A_{m}\right|^{m}$ because $B \nsubseteq M$. Let $\left|\Omega_{i}\right|=l$, say, for all $1 \leq i \leq s$. Then

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) l+2}\left(x_{i}\right), \varphi_{(i-1) l+3}\left(x_{i}\right), \ldots, \varphi_{i l}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\},
$$

where

$$
\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right), \text { for }(i-1) l+2 \leq j \leq i l
$$

Therefore

$$
\begin{aligned}
& M \cap B=\left\{\left(x_{1}, \varphi_{2}\left(x_{1}\right), \ldots, \varphi_{l}\left(x_{1}\right),\right.\right. \\
& x_{2}, \varphi_{l+2}\left(x_{2}\right), \ldots, \varphi_{2 l}\left(x_{2}\right), \ldots, \\
& \left.\left.x_{s}, \varphi_{(s-1) l+2}\left(x_{s}\right), \ldots, \varphi_{s l}\left(x_{s}\right)\right): x_{1}, x_{2}, \ldots, x_{s} \in A_{m}\right\},
\end{aligned}
$$

where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$.
Following the same argument in the proof for Case 2 a of Theorem 8.10, if there is a maximal subgroup M such that $M \cap B=D_{1} \times D_{2} \times \ldots \times D_{s}$ then it is equal to the normaliser of $D_{1} \times D_{2} \times \ldots \times D_{s}$ in G_{1}. That is

$$
M=N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right)
$$

Case $2 b$.

Analogous methods of Bhattacharjee and of Case 2b of the proof for Theorem 8.3 can be used to describe the maximal subgroups M such that $K_{i} \neq\{1\}$ and $K_{i} \neq A_{m}$, for all $i \in A_{m}^{(m)}$.
For $B:=A_{m}^{\left(\left|A_{m}\right|^{m}\right)}$ and $T:=W_{1}$, the same methods of Theorem 8.3 give

$$
M=N_{G_{1}}\left(L^{\left(\left|A_{m}\right|^{m}\right)}\right)^{g^{-1}}=\left(\left(N_{A_{m}}(L)\right)^{\left(\left|A_{m}\right|^{m}\right)} \rtimes T\right)^{g^{-1}}=\left(L^{\left(\left|A_{m}\right|^{m}\right)} \rtimes T\right)^{g^{-1}}
$$

where L is a maximal subgroup of A_{m} and $g \in B$. Bhattacharjee's analysis [3, pg. 318] gives

$$
M=N_{G_{1}}\left(K_{1} \times K_{2} \times \ldots \times K_{\left|A_{m}\right|^{m}}\right)
$$

The same methods of Theorem 8.3 check that these groups are maximal.
Case 2 c.
Assume the groups $K_{i}=\{1\}$, for all $i \in A_{m}^{(m)}$. Since $M \cap B=\{1\}$, the maximal subgroup M is a complement for the base group B in G_{1}. In this instance, we show that condition (c) of Theorem 8.1 does hold but condition (d) of Theorem 8.1 does not hold. Applying the theorem to the group G_{1} gives $X=A_{m}, Y=W_{1}$ and $\Omega=A_{m}^{(m)}$.
The stabilisers of any two points in $A_{m}^{(m)}$ under the action of W_{1} are conjugate, since the action is transitive. The stabiliser of the point $(1, \ldots, 1) \in$ $A_{m}^{(m)}$ under the action of W_{1} is the group of elements $\left(g_{1}, g_{2}, \ldots, g_{m}\right) t \in W_{1}$, where $\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in A_{m}^{(m)}$ and $t \in A_{m}$, such that

$$
(1,1, \ldots, 1)\left(g_{1}, g_{2}, \ldots, g_{m}\right) t=(1,1, \ldots, 1)
$$

That is $\left(g_{1}, g_{2}, \ldots, g_{m}\right)^{t}=(1,1, \ldots, 1)$ and so the stabiliser is the top group A_{m} of W_{1}. Therefore the stabiliser of any point of $A_{m}^{(m)}$ in W_{1} is a conjugate of A_{m}. Thus there are surjective homomorphisms ϕ from these stabilisers to A_{m} and condition (c) holds.

However we now show that condition (d) of Theorem 8.1 does not hold. The stabiliser A_{m}^{y}, for some $y \in W_{1}$, satisfies $W_{1}=A_{m}^{(m)} \rtimes\left(A_{m}^{y}\right)$. Any surjective homomorphism $\phi: A_{m}^{y} \longrightarrow A_{m}$ can be formed as the restriction of a homomorphism $A_{m}^{(m)} \rtimes A_{m}^{y} \longrightarrow A_{m}$, where the base group $A_{m}^{(m)}$ lies in the kernel. Hence condition d) is not satisfied and G_{1} has no maximal subgroups which complement the base group. Therefore Case 2c does not occur.

For further research concerning the maximal subgroups of these first Wilson quotients, refer to Chapter 10, Question 4.

Chapter 9

Finite generation and PMSG

In［3］，M．Bhattacharjee has produced a result regarding finite generation of an inverse limit of iterated wreath products of finite alternating groups of degree at least 5 formed using the natural action．That is，the profinite groups $\underset{\leftarrow}{\lim }\left(A_{m_{k}} \prec \ldots \prec A_{m_{2}} \prec A_{m_{1}}\right)$ ，where $m_{i} \geq 5$ ，are generated by two random elements with positive probability and the probability approaches 1 as the size of m_{1} tends to infinity．Therefore the profinite groups W ，constructed from iterated wreath products of the same alternating group， in Section 3.2 are positively finitely generated by two elements．

M．Quick［24］extends Bhattacharjee＇s work by first replacing the alternating groups in the wreath products with arbitrary finite non－abelian simple groups G_{i} ，for $i \geq 0$ ． The standard action is used when forming each iterated wreath product，that is the top group of the wreath product acting on itself by right multiplication．Quick concludes that the profinite groups，which are the inverse limits $\lim \left(G_{k}\right.$ 乙 \ldots 乙 G_{1} 乙 $\left.G_{0}\right)$ of these iterated wreath products，are positively finitely generated．The probability of gener－ ating these profinite groups with two random elements is positive and approaches 1 as the order of G_{0} tends to infinity．

In the paper［25］，Quick generalises further to iterated wreath products of finite non－abelian simple groups G_{i} ，for $i \geq 0$ ，each constructed from any faithful transitive actions．Similarly，the profinite groups $\underset{\leftarrow}{\lim }\left(G_{k} \swarrow \ldots \swarrow G_{1} \swarrow G_{0}\right)$ constructed from these iterated wreath products are positively finitely generated by two random elements provided $\left|G_{0}\right|>35$ ！．Again this probability approaches 1 as the order of G_{0} tends to infinity．

Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4．1．The iterated wreath products $G_{n}=X_{n} \imath_{L_{n}}\left(L_{n} G_{n-1}\right)$ are formed from the transitive actions（4．1），found in Section 4．1，of the groups $L_{n} G_{n-1}$ on L_{n} ，for $n \geq 1$ ．Non－trivial elements of the group $L_{n} G_{n-1}$ acting by（4．1）on the set L_{n} can
have fixed points however these elements do move at least one other point. Therefore the action (4.1) is faithful. Thus all the wreath products G_{n} are constructed with faithful transitive actions.

Hence Quick's result, in [25], can be applied to the Wilson groups. That is, the Wilson groups $\lim _{\longleftarrow}\left(G_{n}\right)_{n \geq 0}$ such that $\left|G_{0}\right|>35$! are positively finitely generated by two elements.

Consequently, these particular Wilson groups are finitely generated because there must be at least one collection of two elements that generate them. For future research concerning finite generation of Wilson groups, refer to Question 1 and Question 5, Chapter 10.

Recall, from Section 2.6, that $m_{n}(G)$ denotes the number of closed maximal subgroups of a profinite group G with index n. A profinite group G has polynomial maximal subgroup growth (PMSG) if there exists a constant c such that

$$
m_{n}(G) \leq n^{c} \text { for all } n .
$$

A result by A. Mann and A. Shalev [19] implies that the Wilson groups such that $\left|G_{0}\right|>$ 35!, since they are positively finitely generated, have polynomial maximal subgroup growth. Question 6 of Chapter 10 gives an idea of further work on polynomial maximal subgroup growth of Wilson groups.

Chapter 10

Open problems

1) We know that the Wilson groups $\lim \left(G_{n}\right)_{n \geq 0}$, as defined in Section 4.1, are finitely generated provided $\left|G_{0}\right|>35$!; refer to Chapter 9 . Is any arbitrary Wilson group finitely generated?
2) Remark 5.4, in Section 5.1, compares the Nottingham group to the Wilson groups with regard to chains of normal subgroups. There are many interesting questions that have been resolved for the Nottingham group and these could be investigated for the Wilson groups. We outline a few below.
Let G be a Wilson group arising as an inverse limit of finite groups G_{n} as defined in Section 4.1.

- The lower central series is an important filtration for the Nottingham group that gives a graded Lie ring, see [5]. Is there a similar chain of characteristic subgroups for G and a substitute for an associated Lie ring for G ?
- The Nottingham group is finitely presented; refer to M. V. Ershov [7]. Is there a finite or countably recursive presentation for G ?
- The automorphism group of the Nottingham group has been determined; refer to B. Klopsch [13]. What are the automorphisms of G ?

3) Recall the just infinite profinite groups $W=\underset{\leftarrow}{\lim }\left(W_{n}\right)_{n \geq 0}$, where

$$
W_{n}=A_{m} \imath_{\Omega^{*[n]}} \cdots v_{\Omega^{*}[2]} A_{m} z_{\Omega^{*[1]}} A_{m},
$$

for $n \geq 1$, and where

$$
\Omega^{*[j]}=\left\{i_{1} i_{2} \ldots i_{j}: i_{1}, i_{2}, \ldots, i_{j} \in\{1,2, \ldots, m\}\right\}
$$

for each $j=1,2, \ldots$, and $W_{0}=A_{m}$, as defined in Section 3.2.
In Section 7.2 , it was found that the number of non-trivial subnormal subgroups of W with index at most $\left|A_{m}\right|^{n}$, for some n, is equal to the sum

$$
\sum_{k=1}^{n} \frac{1}{(m-1) k+1}\binom{m k}{k}
$$

What can be deduced about the subnormal subgroup growth of these groups?
4) In Section 8.4, we considered the first Wilson quotients

$$
G_{1}=A_{m} \imath_{A_{m}^{(m)}}\left(A_{m} \imath_{\Omega^{*[1]}} A_{m}\right)=A_{m} \imath_{A_{m}^{(m)}} W_{1}
$$

The top group $A_{m}{ }_{\Omega^{*[1]}} A_{m}=A_{m}^{(m)} A_{m}$ of G_{1} acts on the set $A_{m}^{(m)}$ according to the transitive action (4.1).

The maximal subgroups of these Wilson quotients have been described in Theorem 8.11. There are maximal subgroups of the form

$$
N_{G_{1}}\left(D_{1} \times D_{2} \times \ldots \times D_{s}\right)
$$

with the equivalence classes Ω_{i}, for $1 \leq i \leq s$ and $s \neq\left|A_{m}\right|^{m}$, of a $\left(A_{m}^{(m)} A_{m}\right)$ congruence on $A_{m}^{(m)}$ having $\left|\Omega_{i}\right|=l$, and where

$$
D_{i}=\left\{\left(x_{i}, \varphi_{(i-1) l+2}\left(x_{i}\right), \varphi_{(i-1) l+3}\left(x_{i}\right), \ldots, \varphi_{i l}\left(x_{i}\right)\right): x_{i} \in A_{m}\right\}
$$

for $1 \leq i \leq s$, and $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $(i-1) l+2 \leq j \leq i l$.
Can we further describe these maximal subgroups by finding the $\left(A_{m}^{(m)} A_{m}\right)$ congruence on $A_{m}^{(m)}$?
5) The Wilson groups $\lim _{\longleftarrow}\left(G_{n}\right)_{n \geq 0}$, as defined in Section 4.1, are positively finitely generated by two random elements provided $\left|G_{0}\right|>35!$; refer to Chapter 9 . Allowing for a larger number of generators, is a general Wilson group positively finitely generated?
6) Recall, from Section 2.6, that $m_{n}(G)$ denotes the number of closed maximal subgroups of a profinite group G with index n, and G has polynomial maximal subgroup growth if there exists a constant c such that

$$
m_{n}(G) \leq n^{c} \text { for all } n
$$

In Chapter 9, it was stated that the Wilson groups $\lim \left(G_{n}\right)_{n \geq 0}$, as defined in Section 4.1, such that $\left|G_{0}\right|>35$!, have polynomial maximal subgroup growth. What is the degree c of the polynomial maximal subgroup growth of these Wilson groups?

Bibliography

[1] J.-C. Aval. Multivariate Fuss-Catalan numbers. Discrete Math., 308(20):46604669, 2008. 94
[2] M. Bhattacharjee. Amalgamated free products and inverse limits of wreath products of groups. D. Phil. Thesis, Oxford, 1992. 96, 114, 130
[3] M. Bhattacharjee. The probability of generating certain profinite groups by two elements. Israel J. Math., 86(1-3):311-329, 1994. 14, 29, 95, 96, 106, 108, 109, 111, 114, 115, 117, 119, 120, 122
[4] R. Camina. Subgroups of the Nottingham group. J. Algebra, 196(1):101-113, 1997. 8, 48
[5] R. Camina. The Nottingham group. In New Horizons in Pro-p Groups, volume 184 of Progr. Math., pages 205-221. Birkhäuser Boston, Boston, MA, 2000. 43, 124
[6] P. de la Harpe. Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, 2000. 7, 65, 66, 92
[7] M. V. Ershov. The Nottingham group is finitely presented. J. London Math. Soc. (2), 71(2):362-378, 2005. 124
[8] M. D. Fried and M. Jarden. Field Arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, third edition, 2008. 27
[9] R. I. Grigorchuk. On Burnside's problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53-54, 1980. 7
[10] N. Gupta and S. Sidki. On the Burnside problem for periodic groups. Math. Z., 182(3):385-388, 1983. 7
[11] S. A. Jennings. Substitution groups of formal power series. Canadian J. Math., 6:325-340, 1954. 8
[12] D. L. Johnson. The group of formal power series under substitution. J. Austral. Math. Soc. Ser. A, 45(3):296-302, 1988. 8
[13] B. Klopsch. Automorphisms of the Nottingham group. J. Algebra, 223(1):37-56, 2000. 124
[14] B. Klopsch. Normal subgroups in substitution groups of formal power series. J. Algebra, 228(1):91-106, 2000. 43
[15] B. Klopsch, N. Nikolov, and C. Voll. Lectures on Profinite Topics in Group Theory, volume 77 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2011. 24
[16] M. W. Liebeck, C. E. Praeger, and J. Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111(2):365-383, 1987. 23
[17] A. Lubotzky and D. Segal. Subgroup Growth, volume 212 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2003. 28
[18] A. Mann. Positively finitely generated groups. Forum Math., 8(4):429-459, 1996. 28
[19] A. Mann and A. Shalev. Simple groups, maximal subgroups, and probabilistic aspects of profinite groups. Israel J. Math., 96(part B):449-468, 1996. 123
[20] J. L. Mennicke. Finite factor groups of the unimodular group. Ann. of Math. (2), 81:31-37, 1965. 7
[21] N. Nikolov and D. Segal. On finitely generated profinite groups. I. Strong completeness and uniform bounds. Ann. of Math. (2), 165(1):171-238, 2007. 66
[22] N. Nikolov and D. Segal. Generators and commutators in finite groups; abstract quotients of compact groups. Invent. Math., 190(3):513-602, 2012. 32, 39, 47, 57, 66
[23] C. Parker and M. Quick. Maximal complements in wreath products. J. Algebra, $266(1): 320-337,2003.15,97,111,117$
[24] M. Quick. Probabilistic generation of wreath products of non-abelian finite simple groups. Comm. Algebra, 32(12):4753-4768, 2004. 14, 122
[25] M. Quick. Probabilistic generation of wreath products of non-abelian finite simple groups. II. Internat. J. Algebra Comput., 16(3):493-503, 2006. 14, 16, 122, 123
[26] L. Ribes and P. Zalesskii. Profinite Groups, volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000. 7, 65
[27] D. J. S. Robinson. A Course in the Theory of Groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. 48
[28] L. L. Scott. Representations in characteristic p. In The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure Math., pages 319-331. Amer. Math. Soc., Providence, R.I., 1980. 23
[29] J. S. Wilson. Groups with every proper quotient finite. Proc. Cambridge Philos. Soc., 69:373-391, 1971. 7
[30] J. S. Wilson. Profinite Groups, volume 19 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 1998. 7, 8, 26, 38, 48, 57, 65, 66
[31] J. S. Wilson. On just infinite abstract and profinite groups. In New Horizons in Pro-p Groups, volume 184 of Progr. Math., pages 181-203. Birkhäuser Boston, Boston, MA, 2000. 7
[32] J. S. Wilson. Large hereditarily just infinite groups. J. Algebra, 324(2):248-255, 2010. 7, 8, 16, 20, 32, 34, 35, 37, 38, 39, 84
[33] R. A. Wilson. The Finite Simple Groups, volume 251 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London, 2009. 23
[34] I. O. York. The exponent of certain finite p-groups. Proc. Edinburgh Math. Soc. (2), 33(3):483-490, 1990. 8

Appendix A

Bhattacharjee's Lemma

For the reader's understanding we include the Lemma 2.3 from Bhattacharjee's D. Phil. Thesis [2].

Lemma A. 1 (Bhattacharjee [2]). Let $I:=\{1,2, \ldots, m\}$ and for every $i \in I$ let G_{i} be a simple group. If $H \leq G_{1} \times G_{2} \times \ldots \times G_{m}$ is a subdirect product then

$$
H \cong D_{1} \times D_{2} \times \ldots \times D_{k},
$$

with $k \leq m$ and where there exist distinct $i_{1}, i_{2}, \ldots, i_{k} \in I$ such that $D_{i} \cong G_{i_{j}}$ for each $i=1,2, \ldots, k$.

Furthermore, if the groups G_{i} are all non-abelian simple then there is a partition

$$
I=\bigcup_{j=1}^{k} I_{j}
$$

of I such that all G_{i} for $i \in I_{j}$ are isomorphic and such that D_{j} is the diagonal subgroup of $\prod_{i \in I_{j}} G_{i}$.

Proof. Let us proceed by induction on m. It is trivially true for $m=1$. Let us assume that the lemma is true for a family of less than m simple groups.

If $G_{m} \leq H$ then

$$
H=\left(H \cap\left(G_{1} \times G_{2} \times \ldots \times G_{m-1}\right)\right) \times G_{m} .
$$

But the first term in this expression is itself a subdirect product involving $m-1$ simple groups and hence is a direct product by induction. (This is because $\prod_{i}\left(H \cap\left(G_{1} \times G_{2} \times\right.\right.$ $\left.\left.\ldots \times G_{m-1}\right)\right)=\prod_{i} H \cap G_{i}=G_{i}$, for $1 \leq i \leq m-1$.) So in this case the lemma holds.

Otherwise, $G_{m} \not \leq H$ so that $G_{m} \cap H=\{1\}$ as G_{m} is simple and $G_{m} \cap H \unlhd G_{m}$.

Therefore, the projection

$$
G_{1} \times G_{2} \times \ldots \times G_{m} \longrightarrow G_{1} \times G_{2} \times \ldots \times G_{m-1}
$$

maps H injectively into a subdirect product with fewer factors, which, by inductive hypothesis, is a direct product. Hence the first part of the lemma is proved.

To prove the rest of the lemma, define

$$
I_{j}=\left\{i \in I: D_{j} \text { projects non-trivially onto } G_{i}\right\}
$$

We need to show that this defines a partition on I. Clearly, $I=\bigcup_{j=1}^{k} I_{j}$ as H is a subdirect product. If possible, let $i \in I_{j_{1}} \cap I_{j_{2}}$ for distinct $j_{1}, j_{2} \in\{1,2, \ldots, k\}$. Then the groups $D_{j_{1}}$ and $D_{j_{2}}$ both project non-trivially onto G_{i}. Let $y_{1} \in D_{j_{1}}$ and $y_{2} \in D_{j_{2}}$ be such that their projection x_{1} and x_{2} respectively in G_{i} do not commute. Such elements exist since G_{i} is non-abelian and simple. But y_{1} and y_{2} commute as they belong to distinct factors in a direct product. This contradiction proves the lemma.

[^0]: ${ }^{1} \mathrm{An}$ abstract group is a group without a topology.

[^1]: ${ }^{2} \mathrm{~A}$ finitely generated profinite group means it is topologically finitely generated, see Section 2.5.

[^2]: ${ }^{1} \mathrm{~A} T$-congruence on Ω is a T-invariant equivalence relation. That is, for $t \in T$ and Ω_{i}, there exists Ω_{j} such that $t \Omega_{i}=\Omega_{j}$; where Ω_{i} are the equivalence classes.

[^3]: ${ }^{2}$ The group $\left\{\left(x, \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{m}(x)\right): x \in A_{m}\right\}$, where $\varphi_{j} \in \operatorname{Aut}\left(A_{m}\right)$, for $2 \leq j \leq m$, is referred to as a diagonal subgroup of the direct product $\prod_{i=1}^{m} A_{m}^{(i)}$ of alternating groups.

[^4]: ${ }^{3} \mathrm{~A} T$-congruence on Ω is a T-invariant equivalence relation. That is, for $t \in T$ and Ω_{i}, there exists Ω_{j} such that $t \Omega_{i}=\Omega_{j}$; where Ω_{i} are the equivalence classes.

