The Maple Package “Janet”:
[. Polynomial Systems

Yuri A. Blinkow!, Carlos F. Cid?, Vladimir P. Gerdt?,
Wilhelm Plesken?, Daniel Robertz?

I Department of Mathematics and Mechanics,
Saratov University, 410071 Saratov, Russia
2 Lehrstuhl B fiir Mathematik, RWTH Aachen,
Templergraben 64, D-52062 Aachen, Germany
3 Laboratory of Information Technologies, Joint Institute for Nuclear Research,
141980 Dubna, Russia

Abstract

The MAPLE package “Janet” comes in two parts, the first dealing with poly-
nomials and commutative algebra, the second with linear pdes. Here the first part
is described. Amongst others it contains a MAPLE and a C++ implementation of
the involutive algorithm for polynomial modules as an alternative for conventional
Grobner basis techniques.

1 Introduction

This is the first of two papers introducing the Maple package “Janet”. The package con-
tains the first Maple implementation of the Involutive algorithm [GeB 98al, [GeB 98b)]
in the form presented in [Ge 02]. More precisely, our implementation fixes JANET sepa-
ration of variables into multiplicative and non-multiplicative ones [Jan 29] as the input
involutive division [GeB 98a] for the algorithm that produces a polynomial Janet basis
in the output. By means of this technique the canonical involutive normal forms for
systems of linear partial differential equations can be produced. In this first paper we
shall only describe a version of implementation of the algorithm for polynomial systems
and various related algorithms dealing with commutative algebra. Theoretically speaking,
the polynomial version is obtained from more general differential version [Ge 99] if one
restricts to linear systems of pdes with constant coefficients, cf. [Ple 02] for more details.
From the point of view of implementation, however, quite some effort has been taken to
optimise the polynomial version, so that it competes with implementations of the tradi-
tional GROBNER basis implementations, cf. [BGe 01] for time comparisons. To make the
package usable for bigger systems, C++ routines for the most important functions have
been built in. Without the C++ code the package has about 4500 line of Maple code.

Below is a list of the commands available in the polynomial part of “Janet”: With the
commands in the first group one can create a JANET basis, produce normal forms of
elements of the residue class module, print out the JANET basis with some relevant ex-
tra information and get quantitative information about the module as well as an explicit
basis, even in the infinite dimensional case. The usage with definitions and some typical
examples and comments on the algorithms will be given in section 2, more details on
steering the main function is given in the subsequent section 3. The section 4 comments
on relations between generators (corresponding to compatibility conditions in the pde
case). Again we proceed in the scheme definitions, algorithms, examples. Finally the last
section 5 comments on various elimination techniques by giving examples, i. e. computing
intersections of modules, finding annihilators, finding ring relations. We have taken big
effort to produce detailed online documentation in the form of help pages with examples,
so that we can be brief in this account.

Basic commands:

InvolutiveBasis PollnvReduce

PolTabVar PolHilbertSeries
FactorModuleBasis

Commands for special applications:

PolMinPoly Syzygies

PolResolution PolRepres

Relations PolWeightedHilbertSeries
NotHas/Has

Commands for various invariants
derivable from PolHilbertSeries:

PollndexRegularity PolDimension
PolHilbertPolynomial PolHilbertFunction
PolHP PolHF
PolCartanCharacter
Auxiliary Commands:
LeadingMonomial Stats
AddRhs

2 Basics

Let R := K[x1,...,x,] be the polynomial ring over the field K in the indeterminates
Z1,...,%,. In general K can be any field, in which one has a normal form for elements and
where addition, subtraction, multiplication, and division can constructively be carried out.
For our MAPLE implementation it means K = Q or a finitely generated field extension
of Q. Given ¢-tuples Aq,..., A, € R? two problems are treated:

1. Find a K-basis for the R-module M := RY/S, where S is the submodule of RY
generated by Aq,..., A,.

2. Given t € M, express t in terms of this basis.

Note the special case ¢ = 1, where S becomes an ideal and M a residue class ring of R.
This is also the case most relevant to polynomial equations. However, the general case is
also often relevant in physical situations, e. g. for linear systems of pdes with constant
coefficients, where the x; become partial derivatives or if one use LAPLACE transform stay
variables.

The above task is dealt with by the involutive algorithmic technique, which is first applied
to create a JANET basis J for M that allows to read off a K-basis for M, and then apply
the involutive reduction with respect to the JANET basis to have an algorithm for task 2.
The JANET basis B is a finite subset of S which is more than a GROBNER basis: it does not
only have the property that one can constructively represent any element of S as a linear
combination of the elements of B, but the concept of multiplicative variables restricts
the coefficients of the linear combinations in such a way that not only the coefficients
become unique but also the algorithmic procedure to obtain them leaves no space for a
long way round but forces every move by strict rules. Like in the ordinary GROBNER
basis case the result depends to some extend on an ordering of the monomial K-basis
of R?. Various possibilities are realized, the degree reverse lexicographic option with the
additional option of favouring the component with the highest degree is usually chosen.
Here is a rough description of in- and output:

Input: Ay, ..., A, € R generating the submodule S of R? (and a list of indeterminants,
€. g T1y...,Tp.)

Output: The JANET basis By, ..., By of S by the call InvolutiveBasis.

The subsequent call PolTabVar reproduces each B;, the leading term of B; and the subset
M; C{x,...,x,} of multiplicative variables of B; with respect to B, i. e. each element
s of S has a unique representation as

d

=1

The further subsequent call FactorModuleBasis produces a subset of all monomial K-basis
vectors (0,...,0,z7" - 28, 0,...,0) (with degree aj + --- + a;,) of R? whose residue
classes modulo S form a K-basis of M = R7/S.

The command PolHilbertSeries gives the generating function for the numbers of these basis
vectors according to their degrees.

Finally, with further input v € R? the command PollnvReduce produces the normalized
representative of the coset v+ S € M i. e. the unique K-linear combination ¥ of the basis

vectors above with 74+ S =v 4+ S.

Example 2.1 ¢ = 1, infinite dimensional residue class ring:
Specification of variables:

> war:=[z,y,z];

var := [z, vy, 2]
Ideal generators:
> L:=[z"2+y"2-1,z"2+z°2-2];

L:=[*4+y*—1, 2%+ 2* — 2]
Computation of Janet basis:
> J:=InvolutiveBasis(L,var);
Ji=[-22+1+y% a?+ 22 -2, =22z + o +y° 1]
Janet basis with multiplicative variables and leading terms:
> PolTabVar();
=22+ 1+ 92 [*, 2, 3], v¥]
(22 + 22 -2, [1, 2, 3], 27]
=22z +x+y?x, [, 2, 3], v’ 7]
The expansion via the geometric series of the following yields the sum of the monomials
forming a K-basis for the vector space complement of the ideal in the polynomial ring:

> F:=FactorModuleBasis (var);
T YT 1 Y
F = + + +
l1-2 1—-2 1—-2 1-2z2
The count for the basis vectors according to degree: (Note, since (1-t) ist the highest
power of (1-t) occurring in the denominators, the (mazximal) dimension of the variety is

1.)

> PolHilbertSeries(t);

3
1+3t+4t2+4

1—t
Computing the normalized representative of the coset of x”3:

> PolInvReduce(z"3,J,var);

—22r+2x

Example 2.2 ¢ = 2, finite dimensional residue class module:
> war:=[z,y];
var = [z, y]
L:=[[z,~y], [y,z], [y"3,0]];
L= [z, =yl [y, =], [y*, 0]]
> J:=InvolutiveBasis(L,var);
J =y, 2], [z, =y}, [0, 2* +y?], [0, y*2], [0, y]]

Y

> PolTabVar();
[y, «], [+, 2], [y, 1]]
[z, =y, [1, 2], [z, 1]]
[[0, =* + ¢, [1, 2], [2?, 2]
[0, y], [*, 2], [y* =, 2]]
[0, y*], [+, 2], [y, 2]]
> FactorModuleBasis (var);

[[0, 1], [0,], [0, 2], [0, 9], [0, y], [0, y*], [1, O]]

> PolHilbertSeries(t);
2+2t+28+ ¢
> PolInvReduce([z 2,y 2],J,var);
[0, yz + y]

3 Modifications and Extensions

There are quite a few possibilities to modify the above computations: In InvolutiveBasis
various orderings for the monomial basis can be chosen. The standard choice is the
degree reverse lexicographical ordering for the monomials itself. A second possibility
is the pure lexicographic ordering, which might be slow for big examples, but is often
used for elimination purposes. In both cases the ordering of the variables is implicitly
declared by the declaration of the variables. In the proper module case, i. e. ¢ > 1, one
can in addition choose the ordering of the tuples. The default strategy is “ term over
position” , i. e. the leading term of a tuple is the highest among the leading terms of
the components. In case it is not unique the first one is chosen. The strategy “position
over term”, where the leading term is the leading term of the first non zero component,
is also possible. In any case one can modify the natural succession of the components by
a permutation. The default strategy “term over position” is usually much more effective,
but the other strategy is sometimes useful, when one computes resolutions. Note, all of
these modifications might lead to different JANET bases. If one has not used the defaults,
one should also repeat the specification with every call of PollnvReduce, to be sure that
it terminates. Other changes implied are the multiplicative variables and the grading of
the residue class module. This latter point shows up in the commands FactorModuleBasis
and PolHilbertSeries.

Example 3.1 (Influence of the orderings):

First we work with the degree reverse lexicographical ordering (note r>y):
> war:=[z,y];

var := [z, y]

> L:=[z-y~3];
L =[x — ¥
> J:=InvolutiveBasis(L,var);
J =[x+ ¢°]
> FactorModuleBasis (var);
Ll v v

> PolHilbertSeries(t);
3

1—t
Now we work with the pure lexicographical ordering (note still x>y):

14+2t+3t2+3

> Jl:=InvolutiveBasis(L,var,1);

J1 := [z — 3]
> FactorModuleBasis (var);
1
-y
> PolHilbertSeries(t);
i
1+ 1-¢

The grading is determined by the filtering according to the degrees of the monomials
in the basis computed by FactorModuleBasis, which again results from the information
contained in PolTabVar. There is yet another possibility to modify this grading, i. e.
the choice of the leading terms. One can assign a natural number d; as degree to the
variable z; and in the proper module case ¢ > 1 a non negative integer ¢; to the i-th
standard R-basis vector e; := (0,...,0,1,0,...,0). The degree of the term x{" ---x%"e;
is then ¢; +) «;d; instead of) «; in the old regime. When choosing the leading term,
this degree is taken into account first, and, in case there are two terms of the same new
degree, the old regime is applied for the final decision. If in doubt, one can use the function
LeadingMonomial. Note a subtle point at this stage: The functions FactorModuleBasis and
PolHilbertSeries start from the information contained in PolTabVar which does no longer
know anything about these modified degrees. If one wants the true Hilbert series of the
graded ring with the grading according to the new degrees, one has to use the function
PolWeightedHilbertSeries, which takes the degrees as part of its input.

The final point in this section concerns speed. For some, but not all of the commands

above, there are C++-versions available, which of course can be called from within
MAPLE.

Command: Fast Version:
InvolutiveBasis | InvolutiveBasisFast
PollnvReduce PollnvReduceFast

For these commands up to now only the defaults work. Moreover, the C++-versions
assume that the field of constants is the field of rational numbers, wheras the MAPLE-
version can deal with extensions of the rationals, e. g. with purely transcendental ex-
tensions, which is often useful, cf. example 5.3. For big examples, the C+-+-versions
are faster by a factor 1000. If one wants to see the HILBERT series or continue to work
with some other of the MAPLE programs, the command AssertlnvBasis produces the data
contained in PolTabVar, and one can proceed.

4 Syzygies

Having discussed the cokernel M := R7/S of an R-module homomorphism R* — R? in
the last two sections, the main issue will be the kernel of such a map here, i. e. the

relations between the generators of S. The idea for their computation is to introduce
right hand sides. We redo Example 2.2 with right hand sides.

Example 4.1 (Syzygies in Example 2.2)
> war:=[z,y];
var := [z, y]
Introduce names for the generators of the module and take them as right hand sides:
> L:=[[z,-y]=a, [y,z]=b, [y~3,0]=c];

L= Hl‘, _y] =a, [ya x] = b7 [?JS, 0] = C]

Now the Janet basis also has a right hand side, expressing the basis vectors as a
combination of the original generators:

> J:=InvolutiveBasis(L,var);
=y, 2] = b, [x, —y] = a, [0, 22 +y?] = bz —ay, [0, y*z] = —c+ by% [0, y'] = cz — ay?]

Now also a coset representative can be given a name and the standard representative
will also be given together with its expression in terms of the original representative and
the original generators of the submodule:

> PolInvReduce([z 2,y 2]=u,J,var);
0, yr+y?| = —ax+u
Finally the relations between the original generators can be computed:
> Syzygies(L,var);
[cx? —ay®*x +cy? — by’

If one iterates the computation of the syzygies, i. e. computes the second, third, and
higher syzygies, one gets a free resolution. This can be done in one go by the command
PolResolution, as the next example shows. However the resolution starts with the JANET
basis and not with the original relations.

Example 4.2 (Resolution in Example 2.2)

> war:=[z,y]:

Enter generators without right hand side and compute the Janet basis:

> L:=[[z,-y], [y,z], [y~3,0]]:

> J:=InvolutiveBasis(L,var);

J = Hya 1‘], [1‘7 _y]v [Ov z? +y2]7 [07 y2 1‘], [07 y4”

The following command computes a free resolution of the residue class module M
(even without invoking the last command first), where, however, one does not work with
the original generators of S but with the Janet basis, cf. columns of the first matriz.
The columns of the second matrixz give the relations between the columns of the first
matriz. In general the procedure stops after k steps, where k is the mazximum number of
nonmultiplicative variables.

> PolResolution(L,var);

0 0 T

y 0 0 0 00—y
T —y x2+y2 yzx y4) 0 -y -1
—y2 oz 0

T 1 0

5 Further Examples

In this section some examples demonstrating the use of the JANET algorithm will be
presented. The first example concerns the intersection of submodules of R?. We employ
the well known technique by ZASSENHAUS: If Sy, Sy < R?, then S; NSy is the kernel of
the projection

R — R%: (a,b) — a

restricted to ((s1, 1), (s2,0)|s1 € Si,s2 € Sa). The default ordering in the module case
provides the JANET basis for the intersection automatically as the subsequent example
demonstrates in the case ¢ = 1.

Example 5.1 The intersection of the ideals generated by L1 and L2 is computed as fol-
lows:

> war:=[z,y]:
> L1:=[z"6-y~6]:
> L2:=[z"9-y~9]:
> 112:=map (a->[a,a],L1):
> 121:=map (a->[a,0],L2):
> L:=[op(112),0p(121)];
L= [[2% —y°, 2% —y°], [27 — ¢, 0]]

> J:=InvolutiveBasis(L,var);

Ji=[[2% =9, 2% =%, [=9° +9°2%, =2 +4°2%], [y 2 +y0at, —a? 0],
(222 + 825, —a'l + 827, [0, 22 — y'2 + 2% 1 — y° 27|
N:=map (a->if a[1]=0 then al[2] fi,J);
N = ['2 — 2 + 29 % — 1 2]
N is already a Janet basis for the intersection. Here a check:

>

> JN:=InvolutiveBasis(N,var);
IN = [212 — "2 4+ 29 4 — 2 %]
Up to this point everything works also for nonprincipal ideals. Since in the present

case the two ideals to be intersected were principal, JN[1] is the least common multiple of
L1[1] and L2[1]. Here is the greatest common divisor:

> simplify(L1[1]*L2[1]/JN[1]);
23 —
The next example concerns the computation of the annihilator of the module M = R?/S,

i. e. the ideal of all @ € R with aM = 0. Obviously this is the intersection of the ¢ ideals
I, < R such that

{0} -o{0}ja{0}e --&{0}<S

Vv TV
i—1 q—1

with i = 1,...,q. Note, the default version (position over term) of the command In-
volutiveBasis yields a JANET basis for I, immediately. Since the procedure for taking
intersections of ideals was already demonstrated above, the following example is for a
module invariant under the cyclic permutation of the positions so that InvolutiveBasis
yields the JANET basis for the intersection in one go.

Example 5.2 Computation of the annihilator of R"3/S where S is generated by L below.
> war:=[z,y,2]:
> L:=[[z"2,y,2],[y,z,2°2], [2,2°2,y], [z+y,z+y,z+y]]:
> J:=InvolutiveBasis(L,var);

J = HZ, x27 y]7 [ya 2,y xQ]a [JT, JT—Fy—Z, Jf—l-y—ZUQ],
0, —vz+zy+y®—zy, —2® +ay+y® -2y
0, 22 —y*+zy—vy, —z+2°> —y> + 2%y, [0, =23 + 2%y — 2y + 2%,
gt P 4207 — et 2Py — P+ a2y — 22+ 2y,
[0,zy — 23—y 4+ 22—yt i+ 22y —aty — 2?22 — P+ 2%y — P + 2%y,
0, 2 — 23, —x'y +22y? — 2?27,
[0, O,x —zyr+22r—2r+aty— 292+ 22y —zya? —Bdy+yie+y — 22y, |
0,02y — P24+ 229> +at 2 —2zya? — 22y — 2?2y’ 2+ P — 2y oyt + 2 — 2?2
) Y y y Yy y y Y Yy Y
+aty?]]

> N:=map (a—>tf (al[1]=0 and a[2]=0) then a[3] fi,J);

N:=[°—zyr+220—-2z2+a2ty— 29>+ 22y —zya®? =By +y?e+y°— 22y 2ty — 32
+ 222+ a2t s —2zya? — 2?2y — 22yt — 2%y oyt + 23— 2?2 4ty
Since I and hence also S is closed under cyclic permutation of the three composnents,
N is a Janet basis for the annihilator of S. (The first and second components give the same
ideal as the third, which was picked here.) Here is a confirmation for the first component:

> map (n->PolInvReduce([n,0,0],J,var),N);
[0, 0, 0], [0, 0, 0]]

The next example demonstrates an unexpected use of the JANET algorithm, which is
designed as an algorithm for modules. By a trick it is also able to produce ring relations.

Example 5.3 Obuviously the three polynomials x"2+y"2, 2%y 2, " 3%*y-y"3*x are alge-
braically dependent. To find a relation between them three new variables a,b,c are intro-
duced and the following computation is carried out over the field of rational functions in
a,b,c over rationals:

> war:=[z,y];
var := [z, y]
> L:=[z"2+y 2-a,z 2%y 2-b,z 3*y-y 3*z-c];
L:=[z"+y’—a, 2%y’ —b, 2>y —y3x — (|
> J:=InvolutiveBasis(L,var);
J:=[-ac*+ba*c—4bac]

This result means, that L generates all of R. It can also be interpreted as a relation

between the three original polynomials.

The conventional way to proceed in the last example would have been to have a, b, c as
additional variables and to work with 5 variables over the rationals using the elimination
order to get rid of # and y. This is more time consuming, but in principle working always.
Whereas the above trick only gives a first relation.

Example 5.4 Conventional method to redo the previous example:
> war:=[z,y,a,b,c];
var := [z, y, a, b, c|
> L:=[x"2+y 2-a,z 2%y 2-b,z "3*y-y 3*z-c]:
> J:=InvolutiveBasis(L,var,1);

Ji=[-c®+ba®>— 40, -4y —y+a’by, y>a’b— A y® — 49> 1,
vra?b— 2y —4y3 0, b+ yt —ay? cx+2by +ayd —a’y,
acr+yda® —ady+2bay, a’cr+ydad —aty + 80y +2c2y,
yvica—a’cy+albr —4b2x+2cyb, cyxr+2by® —ab,
acry+2bay®—4b? — 2 a’yx —4byr+2cy®* —ac, cxy’? +2by> —bay,
2by*r —y*c—abr+acy, —2bx+ay’r+cy, 2y3r+c—ayz, v2 +y* — d

> NotHas(J,var, [z,y]);

[—c? +ba® — 417
Note, this result differs by a factor a*c from the result obtained in the previous example.

Further examples of the package JANET may be found in [CPI 01].

6 Acknowledgements

The contribution of two authors (Yu.A.B. and V.P.G.) was partially supported by the
grants 00-15-96691 and 01-01-00708 from the Russian Foundation for Basis Research.

10

References

[AGW 03] S. Abenda, G. Gaeta, S. Walcher (eds.), Symmetry and Pertubation Theory
SPT2002. to appear World Scientific 2003.

[Ape 98] J. Apel, The Theory of Involutive Divisions and Applications to Hilbert Function
Computations. J. Symbolic Computation (1998) 25, 683-704.

[BGe 01] Y. A. Blinkov, V. P. Gerdt, D. A. Yanovich, Construction of Janet bases II.
Polynomial Bases. 249-263 in [GMV 01].

[CP1 01] C. F. Cid, W. Plesken, Invariants of finite groups and involutive division. 122-135
in [GMV 01].

[GMV 01] V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (eds.) Computer Algebra in Sci-
entific Computing CASC 2001. Springer Berlin etc. 2001.

[GeB 98a] V. P. Gerdt, Y. A. Blinkov, Involutive bases of polynomial ideals. Mathem. and
Computers in Simulation 45 (1998), 519-541.

[GeB 98b] V. P. Gerdt, Y. A. Blinkov, Minimal involutive bases. Mathem. and Computers
in Simulation 45 (1998), 543-560.

(Ge 99] V. P. Gerdt, Completion of Linear Differential Systems to Involution, In: Com-
puter Algebra in Scientific Computing / CASC’99, V.G.Ganzha, E.W.Mayr,
E.V.Vorozhtsov (eds.), Springer-Verlag, Berlin (1999) 115-137.

[Ge 02] V. P. Gerdt, Involutive Division Technique: Some Generalizations and Optimizations.
Journal of Mathematical Sciences 108(6), 2002, 1034-1051.

[Jan 29] M. Janet, Lecons sur les systemes des équationes aux dérivées partielles. Cahiers
Scientifique IV, Gauthiers-Villars, Paris 1929.

[Ple 02] W. Plesken, JANETs Algorithm. to appear in [AGW 03].

[Pom 94] J.- F. Pommaret, Partial Differential Equations and Group Theory. Kluver Aca-
demic Publishers 1994.

11

