Invariants of finite groups and involutive division
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1 Introduction

The invariant ring of a finite matrix group is known to be well behaved for reflections groups and messy
in general. Involutive division is a newly discovered tool in commutative algebra and in this note it
is applied to the problem of finding a presentation of the ring of invariants of a finite matrix group.
The first author has implemented the JANET-algorithm in MAPLE following [GeB 98a] and [GeB 98b)].
The results of this are collected in two MAPLE-packages called INVOLUTIVE and JANET, the first
dealing with polynomials and the second with linear partial differential equations. Both of these packages
have a collection of other routines serving various purposes. There is also a loose connection with the
MAPLE-package JETS by Mohammed Barakat, which deals with symmetries of differential equations,
conservation laws etc.. Here we report on our experience with applying the package INVOLUTIVE to
questions of invariant theory of finite groups. We outline an algorithm constructing a presentation of the
ring of invariants of a finite complex matrix group and representing each invariant in a unique way as an
expression in the generators. We also report on the limits with the present MAPLE implementation. As
far as the invariant theory of finite groups proper is concerned, there are is a MAPLE-package available
to perform the tasks discussed here, cf. [Kem 98] or [Kem 99], based on GROEBNER basis techniques and
even a very effective implementation in MAGMA. The issue here is more to demonstrate the flexibility
of involutive division and the JANET algorithm to these aims. Here we also restrict the discussion to the
classical case of fields of characteristic zero, where MOLIEN’s series is available.

We wish to thank Vladimir Gerdt for many discussions and his guidance with the implementation, Daniel
Roberts for adding some functions to the system, and Mohammed Barakat for contributing some of the
functions of his MAPLE package JETS, which turned out to be rather useful and to J.-F. Pommaret,
whose book [Pom 94] got us interested in JANET’s algorithm.

2 Summary of the relevant theory

In this section let G < GL(n, C) be a finite matrix group. Identify the natural G-module C**! with the C-
vector space Clz1, ... ,2,]1 of homogeneous polynomials of degree 1 in the polynomial ring Clzy, ... ,z,].
In this way G acts on C[zy,...,z,] by algebra automorphisms. The subring C[z1,... ,z,]¢ of G-fixed
points it the object of our interest. The oldest result on this is MOLIEN’s formula for the dimensions of
the

Clzy,... ,:rn]lG =Clzy,...,z,]i NClxy,... ,xn]G

where Clz1, ... ,z,); is the C-vector space of homogeneous polynomials of degree i with ¢ € Z>o, This
formula is given by

ma(s) == Z det(I, — sg)~" = Z Dim(Clz,,... ,z,]%)s'.
geG =0

It left hand side, the MOLIEN series can easily be evaluated using characters, as provided for by GAP
Of course

Cz1,...,2,]° :@(C[a:l,... 2]
i=0



is a graded ring, and EMMY NOETHER has shown that is is generated by the invariants of degree < |G|,
cf. [Ben 93], where a relative version of this result is also proved: If U < G is a subgroup whose ring
of invariants is generated by invariants of degrees < b, then the ring of G-invariants is generated by
invariants of degrees < b|G : U|. This will turn out to be useful.

Individual invariants can be obtained constructively as images under the projection operator

m:Cley,...,x,] = Clzy, ... 2, e Zp g.
| |geG

Of course, if |G| gets bigger, one will split up this sum into in iterated sum over transversals in a subgroup
chain of G. Details can be found in [Sta 79], [Ben 93], [Stu 93].

3 Presentation for the ring of invariants

Keeping the notation of the last section, we now want to present an algorithm for finding a presentation of
Clz1, ... ,z,]¥. More precisely, we want to outline an algorithm to find generators and unique expressions
for each invariant in terms of these generators. Of course, we want to do with less generators than given
by NOETHER’s theoretical bound, possibly with the minimal number of generators possible, all generators
being assumed to be homogeneous.

Problem 1: Given homogeneous invariants iy,... ,i; € Clz1,...,2,]%. Find the generating function
for the

Dlm((C[’Ll yee - ,’L.k] N (C[.’L'l yee - ,CCn]Z)

The classical approach to this is as follows: Look at the polynomial ring C[I;, ... , I}] and its epimor-
phisms onto Cl[iy, ... ,ix] mapping the indeterminate I; to the invariant polynomial i;:

O'Z(C[Il,... ,Ik] —)(C[’Ll, ,’ik]:[l 0.

Construct a free resolution of C[I4, ..., I]-modules of the kernel ker o of this map. From general com-
mutative algebra, this resolution is bound to determinate after at most n steps. Assigning appropriate
degrees to the [; (namely deg(i;)) and to the generators of the free modules, one gets the desired generat-
ing function above as an alternating sum of products of certain geometric series multiplied by powers of
the variable s, for details see [Ben 93] . Technically this can be done by using JANET’s algorithm for linear
differential equations translated into polynomial equations by starting out with zy,... ,z,,[1, ..., I as
indeterminates, and I; —i1, ... , I — i as relations and to use pure lexicographic order to eliminate the z;.
In this way, one gets generators for the kernel and can proceed from there to construct the free resolution,
cf. We have an automatic function doing this. For instance the example 6.6 of G = (—I3) < GL(3,C) of
[Sta 79] runs completely automatically. There are two independent observations to make:

First the good news: with the JANET basis for kero it is no longer necessary to construct the free
resolution: the generating function can be read off from the JANET basis of kero.

And the bad news: There seem to be strict limits to this approach, the bottleneck being the performance
of the JANET algorithm on the rather big system above involving the z; and the I;.

The first point is clarified by the following proposition, demonstrating the nice and clear structure of the
JANET-approach.

Proposition 3.1 Let py,...,p, be a JANET basis of kero in the degree-lexicographical order and let
M (p1) be the subset of {I1,...,Iv} of multiplicative variables for p;. Assign the degree d; := deg(i;) to I;
and let D; be the resulting degree for the leading monomial of p;. Then the HILBERT series of Cliy, ... ,i]
s given by
n n 1
ZDim((C[il,... Vgl NCler, ... zp]i)s' = H l—sd ZSDl H 1%
P j=1 =1 I;eM(p:1)



Proof: The TAYLOR expansion at s = 0 of H?:l ﬁ is the generating function for the number of mono-

mial is C[I1, ... , I;] according to the degrees. s™ HZ eM(p) ﬁ counts the homogeneous generators of
ker o, which are multiples of p; by multiplicative variables. Each C-basis vector of ker ¢ has a unique rep-

resentation as a product of some p; by multiplicative variables. Hence the sum of the s™ H?je M(p) ﬁ

n 1

has to be subtracted from the complete J[;_; —;

to obtain the generating function for the monomials
which map onto a basis of C[iy, ... ,iz]. q. e. d.

Please note, the last result also indicates an alternative of computing the HILBERT series, which is
commonly used in the JANET approach, even if the the generators are not homogeneous: One simply
assign the degree 1 to each indeterminate I; and the same formula yields the answer. At the moment we
have not pursued the point further, how to read off a free resolution from the JANET data, cf.

Coming to the second point of slow performance for the elimination of the xz;. This we have overcome
by a simple use of linear algebra. Here is the algorithm to produce elements and finally generators of
the kernel. This algorithm has been implemented by D. Roberts in MAPLE as part of the package
INVOLUTIVE. Recall that we assigned degrees d; = deg(i;) to the generators I; of C[I,...,I;] thus
defining a new grading for the polynomial ring C[I1,...,I;]. Denote the homogeneous components of
degree i of C[I1,...,Ix] by C[I1,...,Ii];.

Algorithm 3.2 Input: Homogeneous polynomials iy, ... iy € Clzy,... ,2,] and a degree d € N.
Output: For each i,0 < i < d (linearly independent) elements bgi), ... ,bgi()i) e ClL,...,It]); such that

(), .. a(B5,)
is a C-basis for

U(C[Il,... ;Ik]i) :(C[il,... ;ik]i

and elements pgi), ... ,pgi(i) € ClL,...,It]); such that
(1) 1 ()
PL s Py Py
multiplied by the monomials of C[I1,... ,I] of appropriate degrees generate the kernel of o restricted to
ClI,...,It]); as a C-vector space.
Algorithm: Assume that the data for C[I1, ... ,I]; for j=1,...,i—1 are available already as sequences

b and pl9). Form the set
i

Ri = {L]dy =i} U (B D1 < j < 5,1 <7 <p(3), 1< s <pli =)} CCll, . L

Select b(i), b e R; mazximal with the property that (o AR v, 0(bW) is C-linearly independent
1 1

p(%)

in Cliy,...,igls, 0. e is a C-basis of Cliy,... ,ix];- Each of the remaining elements r of R; yields an

element of the form r — " as(r)bgi) € ker o with unique as(r) € C as an element of the sequence p'*).

This rather obvious algorithm serves two purposes: to compute the dimensions of the C[iy,... ,ix] and
to produce relations, which ultimately will generate ker 0. The delicate point of course is the choice of
the parameter d, which in general might have to be chosen rather big. It seems however that the case of
invariant rings is not so bad behaved. On the other hand, one can easily construct examples, outside the
range of invariant theory, where the JANET algorithm with lexicographic elimination order is faster than
the above algorithm. The slow performance of the later occurs usually if the invariants are complicated,
e. g. more than 2 variables and substantial degrees and many summands.



Summerizing we end up with a presentation which might not contain enough relators. Two situations
are possible: One has enough generators. This case is favourable and treated below. Or some generators
are missing. Even if the above algorithm does not go far enough to detect this, it is most unlikely that
the resulting HILBERT series is equal to the MOLIEN series, e. g. that the missing relators compensate
the missing generators.

NOETHER’s result that the invariants of degree < |G| has a relative version, cf. has a relative variant, as
follows: If U < @ is a subgroup whose ring of invariants is generated by invariants of degrees < b, then
the ring of G-invariants is generated by invariants of degrees < b|G : U|. With this result and the help of
the above algorithm one can often get a reasonable bound d in 3.2 until where one has to check. Hence
we are left with an easier problem.

Problem 2 : Given homogeneous invariants i1, ... ,i; generating Clz,...,7,]“. Find a presentation
for Clz1,...,7,]¢ in these generators.

Now the setup above can be used to construct relators, use the JANET’s algorithm for computing the
HILBERT series and thus obtain a proof that the presentation is complete, in case HILBERT and MOLIEN
series agree, and to rerun algorithm 3.2, in case there are coefficients in the HILBERT series which are
bigger than the corresponding coefficients in the MOLIEN series. Ultimately this procedure has to come
to an end. It can easily be arranged that one gets a minimal set of generators.

4 Examples

As a first example we reproduce a MAPLE-session using the package INVOLUTIVE to find a presen-
tation of the ring of invariants of the matrix group
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and it subgroup G of determinant 1 elements. Here is the MAPLE-session with complete details. The
commands are self explanatory in view of the last section.

First group: O:=(C-2 wr C2) wr C_2 of degree 4.

Problem: Find presentation for the ring I(O) of invariants of O.
Note the group O contains a reflection subgroup of index 2 the ring of invariants of which is generated
by x"2+y"2,2"2+u"2x "2*y"2,2"2*u"2. By the refinement of Noether’s Theorem the O-invariants up to
degree 8 generate the ring of O- invariants.

> restart;

> with(jets): with(Involutive):

GAP yields the following Molien series for O:

> m0D := (1+s876) / ((1-878)*(1-574)"2%(1-872));

1+ 58

mO = S A= R 1= %)

> taylor(m0, s=0, 20);

14+52 435" +45%+85%+105'04+165'2 + 205" + 2950 + 355'® + O(s20)
> wvar_erz := [[], [pl=x"2+y~2+z"2+u"2], [],
[p2=x"4+y~4+z"4+u"4, p3=x"2xy~2+z"2xu"2], [],
> [p4=x"6+y~6+z"6+u~6],[], [pb=x"8+y 8+z~8+u~8]];

\

var_erz == [[], [pl = 2> +y> + 22 + 2], ], [p2 = 2 + y* + 2* +u?, p3 = 2%y + 2247, [],
[p4 = 2% +9° + 20+, [], [p5 = 2% +y° + 2° +uf]]



> 1 := relations(var_erz, 12):
0;1;0;3;0;4;0;8;0;10;0; 16
These numbers are the dimensions of the spaces of invariants of degrees 1 to 12 which generated by
the products of the invariants p1, .. ,p5. Since these numbers agree with the coefficients in the expansion
of the Molien series, we have proved now that the ring of O-invariants is generated by p1, .. ,p5. Clearly
none of the generators can be omitted. We also obtain the following relations among the pi’s:
> 1[11;

3 1 1 1 2 1 1
[gp12p22+§p2p5——p1 p2pf +=p1?p3p2 + ~pl®pj — —p1*p2 — ~ p1?p3?

3 2 9 6 2
—1p12p5—p1p3p4 —1p22p3+ip16+p33+p3p5—1p42—1p23
4 2 72 9 4
1
+§p2p32]

> J:=InvolutiveBasis(1[1], 1[2]1);

J:=[27p1? p2% + 36 p2p5 —24pl p2p4 +36p1°p3p2 + 16 p1° pj — 12p1* p2
—36p12p3% —18p1%p5 —72p1 p3p4 — 36 p22 p3 + p1® +72p33 + 72p3 p5
—8p4? —18p23 + 36 p2 p3?]

> h0 := PolHilbertSeriesNeu(1[3], s);

1 st?

A= (AP A=) A= (=)A= (1=s)(1=)
>  simplify(m0-h0);

hO =

0

Since the Hilbert series agrees with the Molien series and since we started out with generators, we
have proved that the relator above yields a presentation for the ring of invariants of O.

We now proceed to the subgroup G of O consisting of all matrices of determinant 1 in O.
Problem: Find a presentation for the ring I(G) of invariants of G.

GAP yield the following Molien series.
> mG := (1+s76+s"8+s"14) / ((1-5"8)*(1-s5"4)"2%x(1-5"2));
1+ % 4+ 5% 4 514

L P s )

> taylor(mG,s=0,28);

1+52+3s1+455+9s% 4+ 11519 +1952 + 24 51 + 37510 + 45518 + 63 20 + 76 572 + 101
52 + 11952 + O(s%®)
Since 14+s"6+s"8+s"14= (1+s76)(1+s"8) we expect that I(G) viewed as I(O)-module to be free with
basis
1 and some G-invariant of degree 8. To find a suitable invariant of degree 8 one factors the Jacobi
determinant of
pl,p2,p3, p5 to find the G-invariant p6.
> wvar_erz := [[], [pl=x"2+y~2+z"~2+u~2], [],

>  [p2=x"4+y~4+z"4+u”4, p3=x"2xy " 2+z"2*xu"2], [],

> [p4=x"6+y~6+z"6+u6], [], [pb=x"8+y~8+z~8+u"8,

>  pb=x*uxy*z* (u-z)* (ut+z) * (x-y) * (x+y) 1] ;
var_erz == [[], [pl = 2®> +y> + 2> + 2], ], [p2 = 2 + y* + 2 +u?, p3 = 2%y + 2247, [],
[p4 = 2% +y° + 28 + %, [,
[P5 =25 +15 + 25+, pb = wuyz(u—2) (u+2) (z — y) (= + )]

> 1 := relations(var_erz, 16):

0;1;0;3;0;4;0;9;0;11;0; 19; 0; 24; 0; 37;



Comparing these dimensions with the coefficients of the Molien series makes us suspect that pl to p6
generate I(G). However, this is no proof this time. We also have obtained a list of 21 relations, too long
to be reproduced here:

> mnops(1[1]);

21
> JG:=InvolutiveBasis(1[1],1[2]):
> nops(JG);

24

Whereas the coefficients in the original relations (contained in 1[1]) were rather small, quite a few
coefficients in the Janet basis get rather big (30 digits and more).

> hG := PolHilbertSeriesNeu(1[3], s);

"

"= —524>21<1 R 518— ) (1=

“a-oa _f:; =07~ = (BT -7

el —) =~ =™ P T

“a-aa f;:) TP~ = M- )

el s_:;) =2 -0 —) TP~ =) =P

BT (1596) T—? (- (1;656) =) )

B TRy Ell (S e Tl e TR T
== P (=2 (=) (1P

“a-aa zjﬁ’ T2 -7 —> =)

TS A=) (1= (s (1= %) (1= )2
>  simplify (mG-hG) ;

0
Hence we believe that we have a presentation for I(G). But the final proof now goes as follows:
Obviously I(O)1 +I(O)p6 is a free I(O)-module of rank 2 contained in I(G). We want to show equality.
But this follows from comparing the Molien series mG of I(G) with (14+s°8)mO, which turn out to be
equal. Note now we know that I(G) is generated by pl to p6 and hence we have a presentation for I(G).

The next (rather small) example is to demonstrate how much one can do, if one follows the obvious
approach outlined at the beginning of the last section, by getting a JANET basis or involutive basis, as
it is called in the polynomial case in the package for the generators z; and I; with relators I; — i; in the
notation of the alst section. The group chosen here is

e=(( % 5 )osm=(15) (% V)

Note, H is a reflection group, which keeps things easy. Here comes the MAPLE-session with comments:



> with(jets): with(Involutive):

The ring I(G) of invariants of G (isomorphic to C_4) is clearly generated by x"2+y"2, x"2*y"2,x"3*y-
vy 3*x.

Below we finde an involutive basis for the three relations given in L in the lexicographic ordering.
Note that q4 comes earlier in this orderring than p2 and p4, corresponding to the H-invariants x"2+y"2,

2%y 2.
> L:=[p2-(x"2+y~2),p4-x"2%y"2, q4-(x"3*y-y 3*x)];
L:=[p2—a? -y pj — 2y, ¢f —2°y +y° 1]
> Lvars:=[x,y,q4,p2,p4];

Lvars := [z, y, ¢4, p2, p4]
> B:=InvolutiveBasis(L,Lvars,1);

Bi=[g4> = p2°pd +4p4° vy ¢4® —ypd p2° +4yps®, v2 447 — p2° p4 yP +4p47 7,
v 4® —p2° p4 yP +4p47 v, ph — vt p2 +

—p2y° ¢4 +yp2®qf —p2Pxpl +4xps® —2p4yad, v ad +yPp2 —yp2* + 2y p4,
dyrpd -2y g4 +p2 ¢4 —yap2®, —xyqb —2y° pj +p2 4,

—2y%xpd +y> d —yp2 44 +p2apd, 2xps —xy*p2 —yg¢f,

—xy? ¢ —2y°p4 +ypdp2, ¢4 +2y°x —yxp2, p2 —2° —y’]

There are three possibilities for the normal form of a polynomial p in x and y with respect to the
involutive basis B: Either the normal form only involves p2 and p4, which is tantamount to p being an
H-invariant, or it also involves g4, saying that p is G-invariant but not H-invariant, or it involves some x
or y, in which case it is not H-invariant.

> PolInvReduce ((x"2+(x"2-y"2)"3)"2+(y~2+(x"2-y~2)~3)"2,B,Lvars) ;

2p2° —4y2p23 —24p2tp) +2p2* + 16> p2 p4 +96p22 p4? —8p2% pf — 128 p4® + p2?
—2p4
> PolInvReduce((x-y)~3,B,Lvars);
292z + 2y +xp2 —3yp2
> PolInvReduce(x"7*y~3-x"3%y~7,B,Lvars);
P2 a4 p4
That the Hilbert series with the degrees given as below takes the simple form 1/(1-s)"2 corresponds
to the fact that the ring for which B is an involutive basis is isomorphic to the polynomial ring in x and
y.
> h:=PolHilbertSeriesNeu([x=1,y=1,q4=4,p2=2,p4=4], s);

1 88 89 810
he= T—s2(1-sH2(1-52) (I-s)2(1-s2) (1-s)2(1-52) (1-s4201-2)
811 84 89
TSP A-s) -9 (-sP(-%) (I-sH1-#)
85 86 86 87
(-2 (1-s2) (1-s)(1-s%) (1-s2)(1—s4)2 1-s
5 7 2

(I-s(1-52) (1-s2(1-s) (1-5°(1-5s")2(1-5)
> simplify(h);

S S
2

1
(—145)2
Finally the commad NotHas extracts from B all relations not involving x or y, thus yielding a presen-
tation for I(G) on the generators p2,p4,q4.

> R:=NotHas(B, [x,y]);



R:=[q4? — p2° p4 +4p4”]

5 Some refined techniques

One problem that was not solved satisfactorily in Section 3 was how to prove that one had generators
for the ring of invariants in order to conclude from the equality of the HILBERT series and the MOLIEN
series that one had a presentation of the ring of invariants. We give some hints in this section, how to use
the JANET algorithm directly on the invariants towards this aim. At the same time, this technique can
used to obtain a standard expression of any given invariant in terms of the generators. The theoretical
concept used in this section is the fact that the ring I(G) of invariants of a finite complex matrix group
G < GL(n,C) is COHEN-MACAULY, cf. [Ben 93] pg. 50. This implies that there exist n homogeneous in-

variants, f1,..., fn € I(G), which form a system of parameters, i. e., which are algebraically independent
and have the property that I(G) is a free C[f1,... , fn]-module of finite rank.

Proposition 5.1 Let fi,..., f. € I(G) be homogeneous. The following three statements are equivalent.
1) f1,..., fn form a set of parameters for I(G).

2) fi,..., fn form a set of parameters for Clzy,... ,z,)].

3) Clzy, ... ,xn)/(f1y--., fn) is a finite dimensional C algebra.

Moreover, if the cosets of by, ... by € Clzy,... ,xp] form a C-basis for Clz1, ..., x|/ (f1,.-., fn) , then

I(G) is generated by the f; and the w(b;) with © as defined at the end of Section 2.

Proof: Obviously all three conditions imply that fi,... , f, are algebraically independent so that we only
have to deal with the other issues. The implication o 2) implies 1) can be taken from the poof of Theorem
4.3.6 in [Ben 93] , where the COHEN-MACAULY property of the ring of invariants is proved. The reversed
implication follows form Theorem 4.3.5 in [Ben 93]. That 2) implies 3) is obvious. We shall see how the
JANET algorithm can be modified to obtain a constructive proof of the implication 3) to 2), which at

the same time yields an algorithm to construct a C[f1, ..., fn]-basis of C[z1, ..., z,] or with some more
effort of I(G) and how to express any given element of C[z1, ... ,x,] resp. I(G) in this basis. In fact, we
shall formulate this part of the proof as an algorithm, which is slightly more general than the situation
considered here. q. e. d.
Algorithm 5.2 Input: Algebraically independent elements fi,... , fn, € Clxy,... ,z,] such that

Clz1, .- yzn)/(f1y--- 5 fn)

is finite dimensional.

Output: A C[fy1,..., fu]-basis (by,...bs) of Clz1,... ,2z,] and a procedure to express any given element
of Clzy, ... ,x,] in this basis.

Algorithm: Perform the usual JANET-algorithm on f1,... , f, with the usual degree lexicographical order-
ing with the following variation: Instead of starting with fi,..., fn, introduce a symbol a; for each f;,

start out with the pairs (fi;a;), and perform all the operations in both components, e. g. multiplication
with zj, addition and subtraction. The operations are done according to the usual rules coming from the

first components, so that one ends up with (r;; " rja;), where ther; € Clay,... ,x,] form a JANET-basis
for the ideal generated by f1,..., fn and the rj; lie in Clzq, ..., x,)].

The C[f1,..., fu]-basis of Clzy,... ,z,] is given by all monomials in Clzy,... ,x,], which do not occur
as a leading monomial of some polynomial of (f1,...,fn), 1. e. which are not multiples of the leading
monomials of the rj in the JANET basis.

Procedure to express a given element h of Clxy,... ,xy] in the above basis: Perform involutive division
on h with the rj — > rj;a; (instead of the usual rj). In this process one builds up linear combinations of
monomials of the a;, the coefficients of which are polynomials in x1,... ,s,. These coefficients are pro-

cessed according to the JANET-rules, until the process terminates, i. e. only monomials of the constructed
basis occur. Now one rewrites the expression as a sum of the basis elements with polynomials in the a;
as coefficients.



Proof: That the algorithm terminates is clear from JANET’s algorithm. That the procedure terminates
is also clear for the same reason. The procedure shows that the momomials representing a C-basis of
Clz1, ... ,2zn)/(f1,..., fn) form a generating set for Clz1,...,z,] as C[f1,..., fn]-module. Tensoring
with the C[f1,..., fn]-module C, where all f; act on C as multiplication by 0, shows that the rank of
Clz1,... ,z,] as C[f1,..., fn]-module is equal to the number of these monomials. It follows they even
form a set of free generators, since the matrices over C[fi,..., f,] expressing one by the others are
quadratic and therefore inverse to each other. q. e. d.

It is clear that the modified JANET algorithm 5.2 does everything one can hope for from the side of
commutative algebra: It decides whether given homogeneous invariants fi,... , f, form parameters for
the invariant ring, by checking the finite dimensionality of Clz1, ... ,2,]/(f1,-.., fn). Once this is estab-
lished, it expresses each new invariant in the normal form by the procedure of the algorithm and thereby
enables one to quickly find the free generators b; of I(G) as Clzy,... ,zy]-module. So one has

I(G) = @(C[fl,... , flbi.

And finally once the b; are given in the normalform, it can also by a slight extension of involutive division
express each given invariant as a linear combination of the b; with coefficients in C[f1, ..., f,]. Finally,
it therefore is also able to quickly derive a presentation of I(G), simply by expressing the products b;b;
in this normal form.
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