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Abstract 

The generation of a behaviorally relevant cue to the speed of objects around us is critical to 

our ability to navigate safely within our environment.  However, our perception of speed is 

often distorted by prevailing conditions. For instance, as luminance is reduced, our 

perception of the speed of fast moving patterns can be increased by as much as 30%.  In 

order to investigate how the cortical representation of speed may vary under such conditions 

we have measured the functional Magnetic Resonance Imaging Blood Oxygen Level 

Dependent (fMRI BOLD) response of visual cortex to drifting sine gratings at two very 

different luminances.  The average BOLD response in all areas was band-pass with respect 

to speed (or, equivalently, temporal frequency) and thus contained no unambiguous speed 

information.  However, a multivariate classifier was able to successfully predict grating speed 

in all cortical areas measured. Similarly, we find that a multivariate classifier can predict 

stimulus luminance. No differences in either the mean BOLD response or the multivariate 

classifier response with respect to speed were found as luminance changed.  However, 

examination of the spatial distribution of speed preferences in V1 revealed that peri-foveal 

locations preferred slower speeds than peripheral locations at low, but not high, luminance.  

We conclude that although an explicit representation of perceived speed has yet to be 

demonstrated in the human brain, multiple visual regions encode both the temporal 

structure of moving stimuli and luminance implicitly. 
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Introduction 

 

The question of how an object’s speed is encoded is critical to an understanding of how the 

visual system guides us in real-world situations. Whilst the cortical pathway responsible for 

motion processing is relatively well defined an understanding of the precise mechanisms 

involved in encoding the speed of a moving image has proven evasive.  The earliest (retinal 

and thalamic) stages of visual processing are mediated by neurones whose responses are 

spatio-temporally separable (e.g. Tolhurst & Movshon 1975; Foster et al 1985). Such 

neurones do not provide an unambiguous code for speed. Various models of how the 

spatio-temporally separable signals generated in the retina are transformed to provide an 

unambiguous speed code have been proposed (e.g. Smith & Edgar 1994; Priebe & Lisberger 

2004; Thompson et al, 2006; Stocker & Simoncelli 2006; Hammett et al 2007; Langley & 

Anderson 2007) but there is still no clear picture of exactly where in the pathway speed-

tuning arises, nor how it is achieved.  The speed tuning of many MT neurones (e.g. Perrone 

& Thiele 2001) and a direct link between their activity and speed perception (e.g. Rudolph & 

Pasternak 1999; Liu & Newsome 2005) raises the possibility that an explicit code for speed 

may be extracted from early spatially and temporally tuned responses in later cortical areas.  

However, other studies cast doubt upon a straightforward hierarchy of speed encoding 

across cortical areas and indicate that speed tuning in MT may, at least in part, be inherited 

from speed-tuned cells in V1 (Priebe et al 2003, 2006).  Priebe et al (2006) report that 

around 25% of V1 and MT neurones have complete spatio-temporal separability, whilst 

another 25% show clear speed tuning. Thus both spatio-temporally separable responses and 

speed-tuned responses may contribute to the neural representation of speed.  Indeed, 

Reisbeck and Gegenfurtner (1999) reported behavioral evidence consistent with such a 

scheme.  In summary, previous models of how the brain encodes speed have been 

predicated upon the assumption that an explicit neural speed code exists.  However, 
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electrophysiological evidence for such a code is mixed – some cells as early as V1 are speed 

tuned, but others are spatio-temporally separable.  The same variability is seen in higher 

cortical areas such as MT.  Thus, where such a code is generated is unclear.  Moreover, how 

such a code is generated is equally unknown and recent electrophysiological evidence 

(Krekelberg et al 2006) has failed to find support for any extant model of how speed 

encoding may be accomplished. 

 

The advent of fMRI has provided considerable clues as to how the visual system encodes 

object properties at the neural population level and a clear coupling of the BOLD response 

to fundamental image attributes such as contrast and motion coherence have been reported.  

For instance, Boynton et al (1999) have shown that the BOLD response increases 

monotonically as image contrast increases. Given the critical nature of encoding object 

speed, it is tempting to assume that its cortical representation would be similarly 

unambiguous.  However, the few previous attempts to characterize speed encoding using 

fMRI have not been entirely consistent and have failed to reveal a straightforward 

relationship between image speed and BOLD magnitude.  Two early studies (Chawla et al 

1998, 1999) used spatially broadband stimuli (moving dots). They found heterogeneity in the 

BOLD response such that whilst later areas (V3 and MT) showed a band-pass response as a 

function of speed, V1 produced a low-pass response. However, interpretation of their 

results at high speeds is complicated by the severe under-sampling of motion inherent in 

their stimuli (each dot moved up to 8 times its diameter on each frame update), which may 

explain the reduced response. A subsequent study that used narrowband stimuli and a more 

limited speed range (Singh et al 2000) reported band-pass speed tuning in all cortical areas 

from V1 to MT. The tuning was both quantitatively and qualitatively similar across the entire 

visual cortex. A later study of flicker sensitivity (Hagenbeek et al 2002) also found bandpass 

tuning in V1. More recently, Lingnau et al (2009) have reported fMRI adaptation data 
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suggesting that the BOLD response is more sensitive to speed than temporal frequency, at 

least in MT and at high contrast. However, their results also provided evidence for temporal 

tuning across all cortical areas at lower contrast.   

 

In summary, both electrophysiological and imaging studies have provided mixed evidence 

regarding the locus and nature of speed encoding.  There is strong electrophysiological 

evidence of a direct link between speed perception and activity in MT but there is also 

evidence of speed tuning in V1 and spatio-temporally separable responses in MT.  

Unfortunately, psychophysical studies do not provide any greater illumination given the 

evidence that the substrates of perceived speed are not unequivocally tuned for either speed 

or temporal frequency (Thompson et al 2006).  Computational approaches to speed 

encoding have proven equally unfruitful.  Krekelberg et al (2006) have shown that Bayesian, 

labeled lines and ratio models (e.g. Ascher & Grzywacz, 2000; Priebe & Lisberger, 2004; 

Hammett et al 2007) of speed encoding are all inconsistent with the response characteristics 

of speed-tuned MT cells.  Thus, to date, there is no clear account of the evolution of speed 

encoding, nor its locus within the visual pathways. 

 

The absence of a consensus as to how a speed code may be computed renders any 

parametric study of the BOLD response prone to difficulties of interpretation. One 

potential way forward is to measure the BOLD response under conditions that are known to 

directly affect perceived speed. If the BOLD response is coupled to perceived (rather than 

physical) stimulus speed (see Lingnau et al’s (2009) experiment 2 for some encouraging 

indirect evidence that this may be the case) then modulating perceived speed without 

changing physical speed should result in a concomitant modulation in BOLD response.  The 

expectation of such a coupling, at least in MT, seems reasonable in light of evidence (Liu & 

Newsome 2005) that individual neurons in MT play a direct role in speed perception.  Thus 
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examining the effect of a stimulus attribute that is known to affect perceived speed on 

BOLD responses may render a clearer picture of how and where cortical speed encoding 

occurs.  

 

Recently, Hammett et al (2007) have shown that perceived speed is modulated by mean 

luminance such that low luminance stimuli appear significantly faster at high speeds.  In any 

cortical region in which perceived speed is represented explicitly, the BOLD response 

measured under conditions in which both speed and luminance are varied should be affected 

by both variables such that it bears a consistent relation to perceived speed.  We have 

therefore measured the BOLD response of various visual cortical areas to drifting sinusoidal 

gratings at a range of speeds and at two very different luminance levels. In addition, we use 

multi-voxel pattern classification analysis (MVPA) to check separately for sensitivity to 

physical speed and to luminance in each area. 
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Experiment 1 

Methods 

Subjects 

All seven subjects were undergraduates or postgraduates at Royal Holloway. All had normal 

or corrected vision. The experiments were conducted in accordance with the Declaration of 

Helsinki, approved by a local ethics committee at Royal Holloway, University of London, 

and written informed consent was obtained. Standard MRI screening procedures were 

followed and volunteers were paid for their participation. Subjects were scanned on two 

occasions, usually separated by approximately a week. Additional scanning runs were also 

performed on other occasions to define regions of interest (ROIs; see below for details). 

Data Acquisition 

MRI images were acquired with a 3-Tesla Siemens Magnetom Trio scanner with an 8-

channel array head coil. Anatomical (T1-weighted) images were obtained at the start of each 

scanning session (MP-RAGE, 160 axial slices, in-plane resolution 256 x 256, 1 mm isotropic 

voxels, TR = 1830 ms, TE = 4.43 ms, flip angle = 11°, bandwidth = 130 Hz/pixel). This 

was followed by six scanning runs of functional data acquisition with a gradient echo, 

echoplanar sequence (TR = 2s, 28 contiguous axial slices, interleaved acquisition order, 3 

mm isotropic voxels, in-plane resolution of 64 x 64 voxels, flip angle = 90°, TE = 30 ms, 

bandwidth = 1396 Hz/pixel). Functional scanning runs consisted of 224 volumes and 

therefore lasted seven minutes 28 seconds. 

Stimuli 

All stimuli were back-projected onto a screen mounted in the rear of the scanner bore by a 

computer-controlled LCD projector (SANYO PLC XP40L) at resolution of 1024 x 768 

pixels and a refresh rate of 60 Hz. Participants viewed the stimuli at a distance of 65cm via a 
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mirror mounted on the head coil which provided a horizontal viewing angle of 

approximately 30 degrees of visual angle.  Stimuli were generated and delivered from Matlab 

(Mathworks, Natick, Massachusetts) using the MGL toolbox (www.justingardner.net; 

www.pc.rhul.ac.uk/staff/J.Larsson/dokuwiki/doku.php?id=software). 

 

The stimuli consisted of single, horizontal, sinusoidal gratings, presented in the centre of the 

screen, and approximately 20 degrees in diameter. Sine gratings were chosen over broadband 

stimuli for comparability with previous work (Hammett et al, 2007). The background and 

central one degree of the stimulus was set at mean luminance and contained a small black 

fixation cross which was present throughout the experiment. The spatial frequency of the 

grating was 1 cycle/degree, and the grating drifted upwards throughout each trial.  Four 

different speeds were used for the drifting grating, which defined the four conditions: 2, 4, 8 

and 13.3 degrees/second. Because the stimuli were sine gratings and spatial frequency was 

invariant, the gratings can equivalently be regarded as drifting at 1, 4, 8 and 13.3Hz. The 

luminance of the stimulus was controlled by two cross-polarising filters mounted between 

the projector and the back-projection screen. By rotating one filter with respect to the other 

a continuous modulation of the output of the projector could be achieved, which enabled 

very precise adjustment with no change in contrast or gamma. Average luminance levels 

across the stimulus area were measured using a photometer to set the levels used in the 

experimental sessions. The high luminance condition’s space-average luminance was 30 cd 

m-2, and the low luminance condition was set at 1.5 cd m-2, similar to the luminance levels 

found by Hammett et al (2007) to modulate perceived speed.  

Procedure 

The main experiment was a standard event-related design for fMRI. Each trial lasted 3 

seconds and consisted of a continuous presentation of the drifting grating. The duration of 

inter-trial intervals (ITI) were randomly drawn from a Poisson distribution (Hagberg et al 
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2001) with a range of 2-10 seconds and a mean of 5.5 seconds. There were ten trials of each 

speed condition (forty in total) in a single scanning run. Each scanning run also included a 

10 second buffer period at the beginning and end of the sequence. Each participant 

completed six scanning runs lasting approximately seven and a half minutes in each scanning 

session. The six sequences of trial orders and ITIs were the same for every participant, but 

each participant was exposed to them in a different random order. The scanning runs 

alternated between high and low luminance. For three of the participants the first scanning 

run was under high luminance conditions, for the remaining four the first scanning session 

was under low luminance conditions. A tightly-fitting black-out screen was placed over the 

window between the scanner room and the control room, and all other sources of light in 

the scanner room were either switched off or blocked in order that no stray light could 

influence the luminance levels used in the experiment. 

 

Retinotopic areas V1-V3, V3A/B, V7 and hV4 (Larsson & Heeger 2006) were identified by 

a standard retinotopic mapping procedure (Sereno et al 1995), using a counter-phasing 

checkerboard ‘wedge’ stimulus (a 24-deg sector) of radius 12 degrees. MT/MST (henceforth 

refrred to as MT+) were identified on cortical flatmaps as the set of voxels that showed a 

significant response to the moving grating stimuli (defined arbitrarily as having a coefficient 

of determination R2>0.25 in the event-related model fit described below) using retinotopic 

criteria (Huk et al 2002) to distinguish MT+ from nearby motion-responsive areas such as 

V1 and V3A. Contrast reversed at a rate of 8Hz. The wedge rotated clockwise at a rate of 64 

seconds/cycle, and eight cycles were presented. 

Data Analysis 

Data were analyzed using bespoke software implemented in Matlab (The MathWorks Inc., 

Natick, MA, USA, 2000) and C/C++. Functional data were pre-processed to correct for 

head-motion using the MCFLIRT tool in FSL (Jenkinson et al 2002), and filtered with a 
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temporal high-pass filter with a cutoff of 0.025Hz. No spatial smoothing was performed on 

the functional data. Functional images from both scanning sessions were co-registered to a 

high-quality anatomical image (MDEFT; Deichmann et al 2004) - hereafter referred to as the 

reference anatomy - of the same participant, acquired in a separate scanning session. The 

reference anatomy was also used to extract cortical surface representations using the public 

domain software SurfRelax (Larsson 2001).  

 

Retinotopic data were analyzed by fitting a sinusoid with a frequency corresponding to the 

period of the rotating wedge stimulus to the time course for each voxel (high-pass filtered 

with a cut-off of 0.025Hz and converted to percent signal change). For each voxel, this 

yielded a correlation (technically coherence), a phase and an amplitude. The phase of the 

fitted response corresponded to the visual field (polar angle) location of each voxel. The 

phases of voxels with a coherence >0.25 were visualized on computationally flattened 

cortical surfaces and boundaries between visual areas were identified as reversals of the 

direction of phase change across the cortical surface (Sereno et al 1995).  ROIs were drawn 

by eye based on these boundaries.  

 

Event-related analysis 

fMRI data were analyzed by fitting a model of the mean fMRI response to the speed stimuli 

in two steps. First, the trial-triggered average fMRI response to each speed within a session 

was estimated using deconvolution (linear regression) (Burock & Dale 2000), yielding an 

individual estimate of the hemodynamic response function (HRF) for each subject and 

speed Estimating the HRF for each subject in this way, rather than using a model of the 

HRF, allowed us to better capture the inter-subject variability in hemodynamic responses 

and obviated the need for making a priori assumptions about the specific shape of the 

response. Second, the average fMRI response (or HRF) was used to estimate the amplitude 
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of the responses evoked by each individual stimulus presentation, using a general linear 

model (GLM) analysis.  Although the shape and delay of the trial-triggered responses 

(HRFs) differed between subjects, it did not differ across speeds, ROIs, or luminance levels, 

and hence HRFs were averaged across speed, luminance, and ROIs and normalized to unit 

area individually for each subject. This analysis was carried out both for each voxel 

separately (in order to identify MT/MST as described above) and for each ROI (by first 

averaging the time-courses of all voxels within the ROI).  In the GLM analysis, each trial 

was modeled by a separate column in the design matrix, each column containing a copy of 

the trial-triggered average fMRI response averaged across speeds and ROIs, time-shifted to 

align it with the onset of the trial. The regression coefficients (obtained by standard multiple 

regression methods) then corresponded to the fMRI response amplitudes for each trial. The 

model was fitted separately to the fMRI time series (detrended by highpass filtering and 

normalized to zero mean and percent signal change) for each ROI. From these amplitudes 

we computed the mean responses (averaged across subjects and trials) for each speed and 

luminance condition. We chose to use this method to estimate average response amplitudes 

rather than using the peak amplitudes from the deconvolution analysis, as it allowed us to 

directly compare the results of the ROI-based analysis with those of the multivariate analysis 

described below. 

 

Multivariate pattern classification analysis (MVPA) 

In a complementary analysis, MVPA based on sparse regression techniques was applied to 

investigate whether the multivariate fMRI response across all voxels in each area could accurately 

predict the speed of the stimulus for individual trials. We used the LARS-LASSO algorithm for 

sparse regression (Efron et al 2002) to automatically select the voxels that contributed most to 

the decoding accuracy and overcome the problem of fitting a regression model with more 

covariates than observations. For every voxel within each ROI, we estimated the response 
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amplitudes for individual speed trials using the same regression model described above. This 

yielded an [m x n] matrix of fMRI response amplitudes for each ROI, where m (number of rows, 

240) is the number of trials (across all speeds) and n is the number of voxels in each ROI.  

For each ROI, and separately for each subject and luminance, the fMRI response amplitudes 

(normalized to unit magnitude within each ROI) were used as covariates to predict the speed on 

each trial within each session by least angle regression (LARS) with the LASSO algorithm. A 

leave-one out procedure was used to validate the regression as follows. Data from five out the six 

scans in each session were used to fit the regression model, using the voxel response amplitudes 

as covariates and the speed on each trial as the dependent variable. Because comparisons of 

classification performance across ROIs are complicated by differences in size (i.e., number of 

voxels), response strength, and intrinsic response properties of the ROIs, we tried several criteria 

for selecting voxels to ensure our results were not due to the particular selection procedure used. 

Although the LARS-LASSO algorithm automatically selects the most informative voxels for 

classification, the algorithm can be constrained to use fewer voxels than the maximum possible 

(which is given by the number of trials). We explored the effect of varying the number of voxels 

on classification performance, and observed no qualitative difference in the results. However, in 

all ROIs we found that classification accuracy peaked at relatively small numbers of voxels (25), 

suggesting that inclusion of additional voxels provided largely redundant information and thus 

resulted in over-fitting. In the following, we show the results obtained using 25 voxels within 

each ROI, but emphasize that the results would have been qualitatively similar with a different 

number of voxels for all ROIs. The estimated regression coefficients were then applied to the 

data from the remaining scan to generate predicted speeds for each trial in that scan. This 

procedure was repeated for each of the six scans. The predicted speeds for all trials in a session 

were concatenated and the Pearson correlation computed between predicted and actual speeds 

on each trial to assess performance of the classification procedure. For each actual speed, the 

predicted speed across all trials was averaged within each subject and luminance. The overall 
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accuracy of the classification was then assessed by plotting the mean predicted speed for each 

subject and luminance against the actual speed and by computing the Pearson correlation 

between actual and predicted speeds across subjects. For areas in which the multivariate fMRI 

response across voxels encodes information about speed, this analysis would predict a monotonic 

increase in predicted speed with actual speed.  

As a control, the MVPA analysis was also carried out on the same data but with the speed labels 

randomly permuted on the training set only to estimate chance level performance of the 

classification algorithm. The classification procedure described above was repeated 1000 times 

for each ROI. On each randomization iteration, the speed labels for all trials were randomly 

permuted and the classification analysis re-run. For each actual speed and luminance, the chance-

level predicted speed was computed as the average across randomization iterations. Assuming no 

bias in the randomization or the classification, this analysis would be expected to predict the 

same speed (equal to the average of presented speeds) for each actual speed presented. If the 

multivariate response across voxels in each area carried no systematic information about 

presented speed, the result of the original classification (using the correct speed labels) would 

have been expected to give the same result as the random classification, i.e. a flat speed 

prediction equal to the average of the speeds presented; conversely, a systematic deviation from a 

flat prediction would indicate that the multivariate response across voxels encoded information 

about presented speeds. 

In a second control analysis we directly tested whether MVPA provided more information about 

stimulus speed than the original univariate (ROI) analysis. For this analysis we collapsed the (non-

normalized) response amplitude data used for the MVPA analysis across all voxels within each 

ROI and then subjected the resulting univariate response to the same regression analysis used for 

the multivariate response. For univariate data, this reduces to a simple regression analysis with a 

single covariate, but the results had the same dimensions and format as the multivariate analysis, 

allowing a direct comparison to be made. 
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Results 

In all our results, we use the term “speed” to describe the stimuli. However, it should be borne in 

mind that, in terms of tuning of neural mechanisms, our stimuli do not differentiate speed from 

temporal frequency. Thus, our speed tuning functions can equivalently be regarded as temporal 

frequency tuning profiles and speed decoding can equivalently be regarded as temporal frequency 

decoding. Fig 1 plots the tuning of the BOLD response as a function of speed for all areas 

measured.  All areas show a clear band-pass tuning of the BOLD response at both low and high 

luminance. The functions in Fig 1 assume that subjects were able to maintain good fixation. It is 

possible that some degree of following eye movement may have occurred, despite the use of an 

unstimulated region immediately around the fixation spot. If so, this would tend to reduce retinal 

speed, which could distort the results. However, the results are both qualitatively and 

quantitatively consistent with those of Singh et al (2000).  Importantly we observed no evidence 

of a consistent difference in speed response between the high and low luminance conditions.  
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Low
High

Fig 1 BOLD response as a function of the drift speed of a 1 c/deg sine grating for low (closed 
symbols) and high (open symbols) luminance in Experiment 1.  Cortical area is indicated above each 
panel.  Error bars represent ±1 SEM. 

 

Given the absence of any reliable change in the BOLD response as a function of luminance, we 

wondered whether an explicit code for speed (or temporal frequency) might be found in a sub-

population response.  In order to investigate this we conducted an MVPA classification. Fig 2 plots the 

results of the MVPA analysis across all areas and at both luminance levels.  The MVPA classifier could 

not distinguish the two slowest speeds measured but was able to distinguish them from higher speeds.  

All higher speeds (> 4 deg/sec) were unambiguously predicted in all cortical areas and at both 

luminance levels.  At 2 deg/sec the classifier was unable to discriminate speed and the predicted speed 
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approached the value of the mean speed of those presented.  Excluding the slowest speed, in all areas 

the classifier’s predicted speed rose  monotonically with stimulus speed.  In a control condition we also 

trained the MVPA classifier with random assignment of stimulus speeds. As expected, under these 

conditions, the classifier was unable to predict any speed with all stimulus speeds classified around the 

mean of the four stimulus speeds, (shown by the broken line in Fig 2). Furthermore, to confirm that 

the performance of the classifier relied on information contained only in the multivariate response, we 

ran the classification analysis on the (non-normalized) multivariate data collapsed across voxels, 

reducing the analysis to a simple regression of speed against the average response across voxels. As 

expected, given the inherent ambiguity in the bandpass univariate response profile (Fig 1), the classifier 

failed to distinguish the different speeds from the average response (Fig 3). This result demonstrates 

that even though the univariate response does not unambiguously encode speed, information about 

stimulus speed above 2 deg s-1 is reliably encoded in the multivariate response.
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Fig 2 Predicted speed of the classifier as a function of stimulus speed is plotted for high (open 
symbols) and low  (closed symbols) luminance in Experiment 1.  Broken lines represent classifier 
performance for random assignment of speeds.  Cortical area is indicated above each panel.  
Error bars represent ± 1 SEM. 
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Fig 3. Results of univariate classification analysis. In each area, collapsing data across voxels 
reduces classifier performance to chance levels.  Cortical area is indicated above each panel.  
Error bars represent ± 1 SEM. 
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Experiment 2 

Whilst the classifier could discriminate most speeds, its predictions did not differ between low 

and high luminance. We reasoned that any shift in the speed code with luminance should be 

revealed by training the classifier with low luminance and subsequently predicting the speed of 

the high luminance responses (or vice versa). If the classifier-predicted speed corresponded to 

perceived speed, we might expect a classifier trained at high luminance and tested on high 

luminance to show systematic deviations in predicted speed at low luminance that matched 

those observed perceptually. However, it was not tenable to examine the effect of such cross-

classification since each luminance condition was measured in separate scans, thus any 

differences in performance between within- and across-luminance classification could be 

explained by differences in the exact voxel positions between scanning sessions. In order to 

investigate whether the speed code would reveal luminance dependency under cross-

classification we repeated our measurement for both luminances within the same scanning 

session, reducing the number of speeds to three in order to retain an acceptable total scan 

time.  

 

Methods 

Subjects 

Six subjects (age range 19-49, two males) took part in Experiment 2, one of whom had also 

been a subject in Experiment 1.  

Stimuli and procedure 

Motion stimuli were identical to those used in Experiment 1, except that only three speeds 

were used (3, 6 and 10 deg/second). The range of speeds was chosen to be within the range of 

speeds in Experiment 1.  For some of the participants, slightly different procedures and 

stimuli were used to identify retinotopic visual areas (Larsson & Heeger 2006). For these 
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participants, stimuli consisted of radially moving checkerboards presented within a wedge 22.5 

deg wide and extending from the centre of gaze to 13 degrees eccentricity, rotating clockwise 

or counter-clockwise stepwise by one wedge width every 1.5 seconds (synchronized with the 

scanner TR). Each stimulus cycle lasted 24 seconds and six cycles were presented. Data for 

clockwise and counter-clockwise runs were averaged as described previously (Larsson & 

Heeger 2006). For each participant, the experiment was divided into two back-to-back blocks, 

one for all the low-luminance conditions and the other for the high-luminance conditions. The 

order of the low and high luminance blocks was counterbalanced across participants. Hence, 

for three subjects the high luminance conditions were run first followed by the low luminance 

conditions, and for the remaining four subjects blocks were run in the reverse order. Each 

block was preceded by a short period of adaptation to the appropriate luminance level. 

Data analysis 

Data were analyzed using the same procedures as in Experiment 1. For the MVPA analysis, 

the LARS-LASSO classification algorithm was trained on data from high or low luminance 

runs separately and then tested on data from high or low luminance runs, resulting in four 

estimates of classification performance for each speed (train high, test high; train high, test 

low; train low, test low; train low, test high). In addition, we trained the algorithm on data 

from high and low luminance runs combined and tested on data for each luminance 

separately, yielding two additional estimates of classification performance (train all, test high or 

low). 

In a complementary analysis we used the same multivariate analysis techniques to test 

whether stimulus luminance, rather than speed, could be decoded from the multivariate 

response. The analysis was identical to that for speed, except that the decoder was trained 

to distinguish luminance levels (coded as dummy variables with 0 indicating low 

luminance and 1 indicating high luminance), ignoring speed.  
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Estimating the spatial distribution of tuning for speed and luminance 

To test whether responses to speed and/or luminance varied as a function of eccentricity 

in early visual areas we mapped the distribution of voxel-wise fMRI speed preferences at 

high and low luminance across the cortical surface in areas V1, V2, and V3 as follows. 

First, using the voxel-wise response amplitudes used in the MVPA analysis we computed 

a t-statistic for each speed and luminance for each voxel within these areas. Separately for 

each luminance, we then assigned each voxel a label corresponding to the speed that 

yielded the maximal t-statistic (i.e. the most significant response). For each area we 

subdivided the region corresponding to the visual stimulus (identified by voxels showing 

a significant increased response to the speed stimuli, defined as the voxels with an 

R2>0.25) into ten bins along the cortical surface in the eccentricity dimension extending 

from the representation of the inner (peri-foveal) boundary of the stimulus to the outer 

(peripheral) boundary of the stimulus. The bins had equal width in terms of cortical 

distance. Data for the two most peripheral bins were excluded as only a small proportion 

(<10%) of voxels in these bins met the criteria for inclusion (R2>0.25 and positive 

stimulus-evoked BOLD responses). Speed preferences were averaged across voxels 

within each bin and then averaged across subjects to yield a plot of average speed 

preference as a function of cortical distance from fovea to periphery for each luminance 

level. A resampling test was used to assess whether the difference in slopes between high 

and low luminance conditions was significant. For this test, a regression line was fit to the 

binwise difference between high and low luminance condition data to yield a regression 

coefficient b and a correlation coefficient r. Speed preference data for each subject, 

hemisphere, and luminance condition were then assigned randomly to one of two equal-

sized sets. A regression line was then fit to the binwise difference between the two sets in 

the same way as for the real data. This procedure was repeated 10,000 times to provide 
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an estimate of the probability of obtaining a difference in slopes between the two sets by 

chance. The significance of the actual difference in slopes was estimated by computing 

the proportion of resampling iterations where the difference in slopes b and the 

regression coefficient r was greater than or equal to the observed ones.  

 

Results 

The speed tuning functions of the BOLD response were very similar to and consistent with 

those obtained in Experiment 1 (Fig 4). With the exception of V3A and V7, all areas showed 

band-pass tuning for speed. Since the maximum speed in Experiment 2 (10 deg/second) was 

lower than that in Experiment 1 (13.3 deg/second), the monotonic increase in BOLD 

response with speed in V3A and V7 is consistent with band-pass tuning with a peak response 

at or beyond 10 deg/seconds, as suggested by the results of Experiment 1 (Fig 1).  
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Fig 4 Mean BOLD response as a function of speed for low (closed symbols) and high (open 
symbols) luminance in Experiment 2.  The areas are indicated above each panel.  Error bars 
represent ± 1 SEM. 

 

The results of the MVPA analysis for Experiment 2 are plotted in Fig 5.   As in Experiment 1, 

in all areas the classifiers’ predicted speeds rose monotonically with physical speed.  However, 

contrary to our hypothesis, there was no discernible difference in the predicted speeds 

between the within- and across-luminance classification conditions. 
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Fig 5 Predicted speed of the classifier as a function of stimulus speed is plotted for high (open 
symbols) and low (closed symbols) luminance and for low-high and high-low training regimes 
in Experiment 2. Cortical area is indicated above each panel.  Error bars represent ± 1 SEM. 
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The lack of a consistent effect of luminance on response amplitude or decoding performance 

could indicate that luminance has little effect on visually evoked cortical responses, as 

suggested by results showing little or no modulation of fMRI BOLD response in V1 over a 

wide range of luminance levels (Hadjikhani and Tootell 2000). Alternatively, these results 

could indicate that luminance is encoded in cortical BOLD response but in a manner that 

does not systematically influence response magnitudes. To distinguish between these 

hypotheses we used the MVPA analysis to decode luminance instead of speed, training the 

classifier on data across low and high luminance runs and ignoring speed. The results of this 

analysis are plotted in Fig 6. With the possible exception of V7, the classifier successfully 

decoded stimulus luminance in every visual area examined, with early visual areas (V1-V3) 

showing most accurate decoding performance. These results show that luminance is indeed 

encoded in the multivariate BOLD response, although these effects appear not to bias speed 

responses or speed decoding. 

Low High
0

1

0.5

V1

Luminance

P
re

di
ct

ed
 L

um
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
V2

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
V3

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
hV4

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
V3A

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
V7

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

Low High
0

0.2

0.4

0.6

0.8

1
MT+

Luminance

P
re

di
ct

ed
 lu

m
in

an
ce

 
 

Fig 6 Predicted luminance as a function of actual luminance.  Cortical area is indicated above 
each panel.  Error bars represent ± 1 SEM. 

 



 

 
 

25 

Spatial distribution of speed and luminance tuning 

The observation that both speed and luminance could be accurately decoded from the 

multivariate BOLD response but not in the overall response averaged across all voxels 

indicated that voxels differed in their motion and luminance preferences. We wondered 

whether such differences would show a large-scale spatial distribution, specifically with regards 

to eccentricity. Magnocellular and parvocellular neurones differ in temporal frequency tuning, 

luminance and contrast response (Kaplan, Lee & Shapley, 1990; Purpura, Kaplan & Shapley, 

1988) and are heterogeneously distributed across visual eccentricity (Dacey, 1994), thus the 

differences in speed/frequency and/or luminance preference could reflect such differences. 

To investigate this possibility we plotted speed preference across the cortical surface along the 

eccentricity dimension in V1 for high and low luminance conditions, averaged across subjects 

(Fig 7). For the low-luminance condition, a clear pattern was observed in that peri-foveal 

locations preferred slower speeds than peripheral locations. The high-luminance condition 

also shows an effect of eccentricity but the slope of the function is reduced, such that the two 

functions are well separated in the parafovea but converge in the periphery. Although we 

found no overall effect of luminance at any speed in Experiment 1 (Fig 1), the finding that the 

preferred speed of parafoveal voxels varies with luminance suggests that localized effects of 

luminance may exist (but see Discussion for consideration of the possible effects of 

measurement method). 

The difference in slope between high and low luminance was statistically significant 

(resampling test, P<0.05). A similar but weaker and non-significant pattern was observed in 

V2 and V3 (data not shown). Hence, at least for V1, there appears to be large-scale variation 

in speed preference with eccentricity that differs between high and low luminance, suggesting 

that selectivity for speed and luminance interact in a systematic manner in this area.  
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Fig 7 Preferred speed as a function of cortical distance from inner (foveal) stimulus boundary 
for high (open symbols) and low (closed symbols) luminance.  Cortical distance corresponds 
broadly (but non-linearly) to eccentricity, which increases left-to-right. Error bars represent ± 
1 SEM. 

 

Discussion 

Our results demonstrate that, at least for narrowband stimuli, the BOLD response to speed is 

band-pass, peaking between 4 and 10 deg/sec, in all cortical areas measured and at both 

luminances measured. Comparison of our results with those obtained for high luminance by 

Singh et al (2000) indicates good quantitative agreement over the speed range tested, in all 

areas. Thus the global population response does not render an unambiguous speed signal.  

This is perhaps unsurprising given the large body of electrophysiological evidence that both 

speed and spatio-temporally separable responses are found in the visual cortex.  The BOLD 

response to a drifting grating in a given cortical region must be assumed to reflect the sum of 

activities of all mechanisms that exist in that region. Thus the band-pass tuning of the average 
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BOLD response reflects the composite activity of speed and temporal frequency tuned 

neurones.  There is considerable psychophysical evidence for the existence of two (or possibly 

three) non-directional temporally tuned mechanisms (e.g. Kulikowski & Tolhurst 1973; 

Hammett & Smith 1992; Hess & Snowden 1992) whose overall response envelope is band-

pass, peaking around 6-8Hz.  Whilst the precise relation of these mechanisms to underlying 

neural physiology is far from clear, they do share temporal tuning characteristics that are 

broadly similar to the temporal tuning of Magno- and Parvo-cellular cells, the outputs of 

which presumably form the substrate for speed-tuned neurones (see e.g. DeValois et al 2000).  

Regardless of its precise neural substrate, our results are consistent with previous studies (e.g. 

Singh et al, 2000) that indicate that the average BOLD signal contains no unambiguous 

information regarding speed.  It should again be noted that because we, like previous studies, 

have used only one spatial frequency we cannot disambiguate speed and temporal frequency 

and thus our result may reflect coding of flicker rather than speed per se. 

 

However, the results of the MVPA classification indicate that although speed information is 

not unambiguously encoded in the global response, the multivariate response across voxels 

within each visual area does contain information about speed.  Whilst the MVPA classifier 

could not distinguish the two slowest speeds measured in Experiment 1, it could distinguish 

them from higher speeds each of which was also unambiguously predicted. Thus, whilst the 

average BOLD response conveys no unambiguous speed information, the multivariate 

response in all cortical areas measured yields clear information about the speed of the stimulus 

over most of the range tested.  However, we found no difference in either the mean BOLD 

response or the multivariate response across luminance and no difference in the classifier 

predicted speed applied within or across luminance conditions. This is surprising given the 

known variation in perceived speed with luminance (Hammett et al 2007; Vaziri-Pashkam and 

Cavanagh 2008) and the known changes in response of retinal ganglion cells with luminance 
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(Purpura et al 1988). We know of few studies that have directly measured the fMRI BOLD 

response as a function of luminance and it may be that early (retinal) luminance gain control 

effectively renders the BOLD response relatively immune to luminance modulation.  Indeed, 

Hadjikhani and Tootell (2000) have shown that a million-fold reduction in luminance yielded 

little change in activity in areas from V1 to V4.  Moreover, Cornelissen et al (2006) report that 

neither luminance nor perceived luminance modulations are accompanied by commensurate 

changes in the BOLD signal in V1 and V2 and Leonards et al (2003) report a cortical region 

tuned for luminosity perception that does not increase its activity with increasing luminance.  

 

Whilst we found no systematic change in overall BOLD response with luminance, consistent 

with previous studies, MVPA analysis could successfully decode luminance in almost every 

visual area, indicating that, just like for speed, information about stimulus luminance is 

encoded in the multivariate response across voxels. The lack of effect of luminance on speed 

decoding would thus suggest that speed and luminance are encoded independently in visual 

cortex. Such a conclusion is however at odds with the effect of luminance on variations in 

speed preference as a function of eccentricity that we observed in V1, which indicated an 

interaction between speed and luminance. How can these two seemingly contradictory 

observations be reconciled? It is likely that the difference in results is at least in part due to 

differences in analysis methods. The variation in speed preference with eccentricity was 

computed by assigning to each voxel the speed label corresponding to the speed that evoked 

the most significant (rather than strongest) response. This is essentially a “winner-takes-all” 

algorithm, which being inherently non-linear can potentially exaggerate differences in 

responses to different speeds, even if the underlying response differences are small. Moreover, 

the computation of speed preferences was performed only on voxels showing a positive 

BOLD response (increase) to the speed stimuli, whereas the classification analysis was 

performed on all voxels showing a significant stimulus-evoked response, whether positive 
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(increase) or negative (decrease). Indeed, the observation that speed classification was equally 

or more accurate in V2 and V3 than in V1, even though there was much less evidence of a 

systematic eccentricity effect on speed preference in these areas than in V1, suggests that the 

classifier was not primarily driven by eccentricity-specific variations in speed preference. 

Similarly, for the high luminance condition speed preference did not vary with eccentricity in 

V1, yet speed classification performance was no worse for the high luminance than the low 

luminance conditions. Together this suggests that the effect of eccentricity on speed 

preference did not bias classifier performance, even if the classifier may in part have relied on 

information contained in these large scale biases. Although there is controversy about the 

spatial scale of BOLD responses underlying MVPA (Freeman et al. 2011, Kamitani & Sawahat 

2010), it is likely that information in the BOLD response may be found at several spatial 

scales, all of which may drive classification performance (Chaimow et al., 2011). The fact that 

the speed classification analysis did not show a sensitivity to luminance could thus reflect the 

existence of smaller scale speed biases in the multivariate response which might have been 

invariant to luminance differences. While the classification results indicate that information 

about speed and luminance are encoded independently at the coarse scale of the multivariate 

BOLD response, these results do not rule out that the two stimulus features interact at the 

single neuron level, which could potentially account for the effect of luminance on perceived 

speed.  

 

In summary, our results are broadly consistent with a scheme whereby the average BOLD 

response reflects the envelope of neural responses, many of which may not be speed tuned, 

but whose multivariate response contains unambiguous speed (or temporal frequency) 

information in all visual areas measured. We propose that the most parsimonious account of 

our results is that speed encoding is only implicitly represented in visual cortex and is 

estimated from the multivariate population response.  How could such an implicit code for 
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speed be realized? One possibility is that, rather than a speed code being extracted upon the 

basis of the tuning of speed sensitive cells, either the responses of discrete neural sub-

populations or the multivariate response of entire regions is used to render a speed-related 

signal.   Our results do not speak directly to any specific model of speed perception but they 

do indicate that speed or temporal frequency tuning may occur as early as V1 and that any 

model must reflect either the response properties of sub-populations of neurons within 

motion-sensitive areas or the multivariate population response of those areas. 
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Figure Legends 

Fig 1 BOLD response as a function of speed for low (closed symbols) and high (open 
symbols) luminance in Experiment 1.  Cortical area is indicated above each panel.  Error bars 
represent ±1 SEM. 

Fig 2 Predicted speed of the classifier as a function of stimulus speed is plotted for high (open 
symbols) and low  (closed symbols) luminance in Experiment 1.  Broken lines represent 
classifier performance for random assignment of speeds.  Cortical area is indicated above each 
panel.  Error bars represent ± 1 SEM. 

 

Fig 3 Results of univariate classification analysis. In each area, collapsing data across voxels 
reduces classifier performance to chance levels.  Cortical area is indicated above each panel.  
Error bars represent ± 1 SEM. 

 

Fig 4 Mean BOLD response as a function of speed for low (closed symbols) and high (open 
symbols) luminance in Experiment 2.  The areas are indicated above each panel.  Error bars 
represent ± 1 SEM. 

 

Fig 5 Predicted speed of the classifier as a function of stimulus speed is plotted for high (open 
symbols) and low  (closed symbols) luminance and for low-high and high-low training regimes 
in Experiment 2. Cortical area is indicated above each panel.  Error bars represent ± 1 SEM. 

 

Fig 6 Predicted luminance as a function of actual luminance.  Cortical area is indicated above 
each panel.  Error bars represent ± 1 SEM. 

 

Fig 7 Preferred speed as a function of cortical distance from stimulus boundary for high 
(open symbols) and low (closed symbols) luminance.  Error bars represent ± 1 SEM. 

 


