
Consistency and Complexity Tradeoffs for Highly-Available
Multi-Cloud Store

Gregory Chockler
Royal Holloway, University of London
Gregory.Chockler@rhul.ac.uk

Dan Dobre
NEC Labs Europe

dan.dobre@neclab.eu

Alexander Shraer
Google, Inc.

shralex@google.com

Abstract

Cloud-based storage services have established themselves as a paradigm of choice for supporting
bulk storage needs of modern networked services and applications. Although individual storage service
providers can be trusted to do their best to reliably store the user data, exclusive reliance on any single
provider or storage service leaves the users inherently at risk of being locked out of their data due
to outages, connectivity problems, and unforeseen alterations of the service contracts. An emerging
multi-cloud storage paradigm addresses these concerns by replicating data across multiple cloud storage
services, potentially operated by distinct providers. In this paper, we study the impact of the storage
interfaces and consistency semantics exposed by individual clouds on the complexity of the reliable
multi-cloud storage implementation. Our results establish several inherent space and time tradeoffs
associated with emulating reliable objects over a collection of unreliable storage services with varied
interfaces and consistency guarantees.

1 Introduction

A rapidly growing number of Internet companies offer Storage-As-A-Service to their customers. These
include big corporations such as Amazon, Google, Microsoft, Apple, EMC, HP, IBM, AT&T, as well as
numerous smaller providers such as Dropbox, Box, Rackspace, Nirvanix and many others. The popular-
ity of cloud storage stems from its flexible deployment, convenient pay-per-use model, and little (if any)
administrative overhead. This is especially attractive for smaller businesses, who cannot afford the costs
of deploying and administering enterprise-scale storage infrastructure on their premises, and would rather
outsource this task to an external entity.

Although cloud storage providers make tremendous investments into ensuring reliability and security of
the service they offer, most of them have suffered from well-publicized outages where the integrity and/or
availability of data have been compromised for prolonged periods of time [36, 17, 31]. In addition, even
in the absence of outages, the customers can still lose access to their data due to connectivity problems,
or unexpected alterations in the service contract. In fact, the problem of data lock-in [8] in which the
customers become critically dependent on a specific cloud provider for all their data storage needs has long
been considered a major roadblock to a wider adoption of cloud storage for sensitive data such as banking,
medical, or critical infrastructure domains.

To address these concerns, multi-cloud storage systems whereupon the data is replicated across multiple
cloud storage services (potentially operated by distinct providers) have recently become a hot topic in the
systems community [37, 2, 46, 13, 12]. Note that since in this setup, the individual stores can be hosted by
different cloud providers, the service implementation becomes the sole responsibility of a user-side proxy
(such as a client library, or a middle tier) whose goal is to mediate between the users and the individual cloud
stores so as to ensure data availability in the face of asynchrony, concurrency, and failures of both individual
services and users.

Although a significant progress has so far been made in building practical multi-cloud storage sys-
tems [2, 13, 12], as of today, little is known about their fundamental capabilities and limitations. The pri-
mary challenge lies in a wide variety of the storage interfaces and consistency semantics offered by different
cloud providers to their external users. For example, whereas Amazon S3 [40] supports a simple read/write
interface, other storage services (such as, Amazon SimpleDB [42], Amazon DynamoDB [22], Microsoft
Azure Storage [43], Yahoo’s PNUTS [20], Apache ZooKeeper [29], Spinnaker [38], and Riak [39]) also
expose a selection of more advanced transactional primitives, such as conditional writes.

In this paper, we initiate a rigorous study aimed to shed light on complexity trade-offs involved in build-
ing reliable storage services in fault-prone multi-cloud environments. Our departure point is to model a
multi-cloud storage system as an asynchronous fault-prone shared memory system of Jayanti et al. [30] in
which individual storage services are abstracted as fault-prone shared base objects, cloud users as processes
accessing these objects, and a reliable multi-cloud storage service as a fault-tolerant object emulation con-
sisting of the process algorithms interacting with the base objects. We then explore the space and time
complexity associated with building such emulations as a function of the emulated object type, the number
of supported processes, and the safety properties offered by the individual base objects being used.

Our first result establishes a lower bound on the space required to emulate a reliable wait-free k-
writer/single-reader register supporting safe consistency [33, 32, 41], which is one of the most basic guaran-
tees one could expect from a storage service1. We assume underlying storage services supporting read/write

1It remains open whether a similar bound also applies to weaker forms of consistency, such as e.g., sequential [34] or time-
line [20] consistency.

1

and list primitives2, which we model model as multi-writer/multi-reader (MWMR) atomic snapshot ob-
jects [3, 6, 7]. We prove (see Section 4) that irrespective of the number of failures being tolerated by the
emulation, the maximum number of distinct processes (i.e., k) that could ever write the emulated register
(either concurrently or not) is bounded by a quantity, which is linear in the number of entries supported by
the underlying snapshot objects.

In other words, the space overhead associated with storing each individual data item (such as e.g.,
a single key/value) is proportional to the maximum number of clients that could ever update this item,
and in particular, cannot be optimized under the assumption of bounded maximum concurrency (i.e., point
contention [4, 10]). In practice, this means that architects of the multi-cloud storage services should avoid
using speculative techniques that stipulate bounded peak load (such as e.g., memory overcommit [45, 14,
28]), but rather focus on limiting the total number of writers (e.g., through deploying proxies, or access
control mechanisms) as the means of optimizing the space usage.

An important theoretical consequence of our lower bound is that it shows that shared memory algorithms
based on reliable multi-writer registers are subject to a linear (in the number of writers) space blow-up when
transformed to a fault-prone shared memory. This means that failures cause multi-writer registers to “lose”
their ability to support multiple writers using constant space, rendering them equivalent to single-writer
registers. Note that since our proof assumes base objects supporting multi-writer atomic snapshot, which
is in a sense, the strongest possible read/write memory abstraction, our result also carries over to other
multi-writer object emulations in this model, such as e.g., consensus, and multi-writer snapshots.

We next turn to emulating reliable registers over storage services supporting transactional update prim-
itives. First, it is well known that a constant number of read-modify-write objects is indeed sufficient to
reliably emulate a multi-writer atomic register [9, 26]. This implies that strengthening the underlying object
semantics is indeed essential to avoid linear dependency on the number of writers implied by our lower
bound. However, the read-modify-write objects employed by the existing implementations are too special-
ized to be exposed by the commodity storage interfaces. Instead, the primitives typically supported are
variants of conditional writes (see e.g., [42, 22, 43, 20, 29, 38, 39]), which are essentially equivalent to
compare-and-swap (CAS). We therefore, adopt a shared memory system with fault-prone CAS objects as
our model of cloud storage services supporting conditional writes, and study reliable object emulations in
this environment.

In Section 5, we present a constant space implementation of a multi-writer atomic register, which re-
quires the underlying clouds to only support a single CAS object per stored value, is adaptive to point
contention (i.e., the maximum number of clients executing concurrently with the operation), and tolerates
up to a minority of base object failures. In Section 6, we also show a constant space implementation of a
Ranked Register (RR) [19] using a single fault-prone CAS object. A collection of such Ranked Registers
can be used to construct a reliable Ranked Register, from which agreement is built [19]. Our construction
thus obtains a multi-cloud state machine replication service capable of supporting infinitely many clients
using constant space.

Finally, we believe that our work opens several interesting new directions for future research. To this
end, in Section 7, we enumerate several open questions naturally arising from, or extending the results
presented in this paper.

2The list primitive is supported by Amazon S3

2

2 Related Work

There are numerous algorithms emulating reliable shared memory objects using unreliable read-modify-
write objects [9, 23, 23, 26, 21, 25, 5]. The specific read-modify-write functionality being assumed often
depends on the implementation specifics, and therefore, incompatible with the existing cloud storage inter-
faces.

Notable exceptions are the SWMR regular register emulation by Gafni and Lamport [24], its Byzantine
variant by Abraham et al. [1] and the recent algorithms by Basescu et al. [12] and Ye et al. [46], which
use read/write registers. Standard techniques for transforming SWMR registers to support multiple writers
(e.g., [44, 11, 16]) are expensive as they incur space complexity linear in the number of writers.

Basescu et. al [12] and Ye et al. [46] present an implementation of a reliable multi-cloud data store sup-
porting multi-wrtiter atomic registers using storage primitives equivalent to atomic snapshot objects. Their
algorithms incur worst-case space complexity proportional to the number of writers (regardless of concur-
rency), which matches our lower bound. In addition, [12] never uses less than 2 registers per written value,
which is twice as much as required by our CAS-based algorithm. Other work in the systems community
considered implementing multi-cloud stores resilient to data corruption using approaches such as erasure
coding, and external coordination services [2, 13].

3 System Model

We consider an asynchronous shared memory system consisting of a collection of processes interacting with
a finite collection of objects. Objects and processes are modeled as I/O automata [35]. An I/O automaton’s
state transitions are triggered by actions. Actions are classified as input, output, and internal. The automa-
ton’s interface is determined by its input and output actions, which are collectively called external actions.
An action π of an automatonA is said to be enabled in state s ifA has a state transition of the form (s, π, s′).
The transitions triggered by input actions are always enabled, whereas those triggered by output and internal
actions, (collectively called locally controlled actions), depend solely on the automaton’s current state.

Execution, traces, and properties Let A be an I/O automaton. An execution α of A is a (finite or
infinite) sequence of alternating states and actions s0, π1, s1, . . . , where s0 is A’s initial state, and each
triple (si−1, πi, si) is a state transition of A. The trace of an execution α of A is the subsequence of α
consisting of the external actions in α. An infinite execution α of A is fair if every locally controlled action
of A either occurs infinitely often in α or is disabled infinitely often in α. A finite execution α of A is fair if
no locally controlled action ofA is enabled at the end of α. A fair trace ofA is the trace of a fair execution of
A. An automaton’s external behavior is specified in terms of the properties of its traces. Liveness properties
are required to hold only in fair traces.

Object type An object automaton’s interface is determined by its type, which is a tuple consisting of
the following components: (1) a set V of values; (2) a set of invocations; (3) a set of responses; and (4) a
sequential specification, which is a function from invocations× V to responses× V , specifying the object’s
semantics in sequential executions.

Shared memory system An asynchronous shared memory system is a composition of a (possibly infinite)
collection of process automata P1, P2, . . . and a finite collection of object automata O1, O2, . . . On. Let Oj

be an object of type T , and a (b) be an invocation (resp. response) of T . Process Pi interacts with Oj using
actions of the form Oj .ai (resp. Oj .bi), where ai is an output of Pi and an input of Oj (resp. bi is an output

3

of Oj and an input of Pi). For an execution α (resp., trace τ) of a shared memory system A, we will write
α|i (resp., τ |i) to denote a subsequence of α (resp., τ) consisting of only the invocation and return events
occurring at Pi.

Well-formedness We say that the interaction between a process and an object is well-formed if it consists
of alternating invocations and responses, starting from an invocation. In this paper, we only consider sys-
tems in which the interaction between Pi and Oj is well-formed for all i and j. Well-formedness allows an
invocation occurring in an execution α to be paired with a unique response (when such exist). If an invoca-
tion has a response in α, the invocation is said to be complete; otherwise, it is incomplete. If two invocations
are incomplete after some prefix of α, then they are said to be overlapping in α. Note that well-formedness
does not rule out concurrent operation invocations on the same object by different processes. Nor does it
rule out parallel invocations by the same process on different objects, which can be performed in separate
threads of control.

Object failures Objects may suffer NR-Crash (non-responsive crash) failures [30]. An object experienc-
ing an NR-Crash failure behaves correctly until it fails, and, once it fails, it never responds to any invocation.
We consider t-tolerant implementations [30], which remain correct (in the sense that the emulated object
satisfies its specification) whenever at most t base objects suffer NR-Crash failures.

Process failures Any number of the processes may fail by stopping. The failure of a process Pi is modeled
using a special external event stopi. Once stopi occurs, all locally controlled actions of Pi become disabled
indefinitely. A process that does not fail in an execution is correct in that execution.

Atomicity and wait freedom We now define the Atomicity and Wait Freedom properties for an object of
arbitrary type T . Let σ be a well-formed sequence of T ’s invocations and responses.

Atomicity. Let σ′ be a sequence obtained from σ by (1) assigning responses to a subset Φ of the invocations
which are incomplete in σ, and (2) removing all incomplete invocations, which are not in Φ. σ is
atomic [27] if all matching invocation and response pairs in σ′ can be reordered so that the resulting
ordering both preserves the order of the non-overlapping invocations, and satisfies the sequential
specification of T . An object O of type T is atomic if each trace τ of O is atomic.

Wait Freedom. σ satisfies wait freedom if every invocation in σ is complete. An object O of type T is
wait-free if for each fair trace τ of O, if a process Pi is correct in τ , then τ |i satisfies wait freedom.

Below, we introduce several object types that will be used throughout the paper.

Registers The read/write register object type (or simply, a register) supports an arbitrary set of values V ,
and the initial value v0. Its invocations are read and write(v), v ∈ V . Its responses are v ∈ V and ack.
Its sequential specification, f , requires that every WRITE overwrites the object’s value with v and returns
ack (i.e., f(write(v), w) = (ack, v)), and every READ returns the current object’s value (i.e., f(read, v) =
(v, v)).

A register is k-writer (resp., k-reader) denoted kW (resp., kR) if it can be written (resp., read) by at most
k > 0 processes. We refer to a register as a single- or multi- writer (SW or MW) or reader (SR or MR) in
the special cases of when it can be accessed (either for writing or reading) by 1 or any number of processes
respectively.

4

Multi-writer safe register For our impossibility proofs, we will use a weak notion of multi-writer safe
consistency for registers adapted from the weakest multi-writer regular consistency condition defined in [41].
Specifically, a well-formed sequence σ of invocations and responses of reads and writes is safe if each read
invocation r that does not overlap any other write invocations returns the value of some writew that precedes
r in σ, as long as no other write falls completely between w and r; or the register’s initial value if no such w
exists. A MWMR register is called safe if it has only safe traces.

Snapshot Objects Given an arbitrary set of values V , and an integer m > 0, the Snapshot [3, 6, 7] object
type supports the set of values W , which are vectors of elements of V of length m > 0 with the initial value
w0, w0[i] = v0 for all 1 ≤ i ≤ m. Its invocations are write(i, v), v ∈ V , and list. Its responses are ack
and w ∈ W . Its sequential specification, f , requires that every write(i, ·) overwrites the value stored in the
object’s ith component with v, and returns ack (i.e., f(write(i, v), w) = (ack, w′) where w′[i] = v, and
w′[j] = w[j] for all j 6= i); and every list returns the current object’s value (i.e., f(list, w) = (w,w)).

A snapshot object is multi-writer (MW) if each individual component of its vector value can be written
by any number of processes. It is multi-reader (MR) if list can be invoked by any number of processes.

Compare-and-Swap Objects The compare-and-swap object type supports an arbitrary set of values V ,
and the initial value v0. Its invocations are CAS(u, v), u, v ∈ V , and read. Its responses are elements of V .
Its sequential specification, f , requires that every CAS overwrites the object’s value with v if it is equal to u,
and leaves it intact otherwise returning the original object value in either case (i.e., f(CAS(u, v), w) = (w, v)
if u = w; and (w,w), otherwise.); and every read returns the current object’s value (i.e., f(read, w) =
(w,w))3. All compare-and-swap objects considered in this paper can be updated and queried by any number
of processes.

4 Space Requirements for Implementing MWSR Register

In this section, we prove that any implementation of a multi-writer safe register out of a collection of crash-
prone atomic snapshot objects has space complexity linear in the maximum number of writers that could
ever write to the emulated register. Specifically, our Lemma 4.2 shows that the amount of space used by the
base objects may grow indefinitely even in executions where all writes are strictly serialized. This implies
that the maximum number of clients that can be supported is limited by the amount of the available storage
even in executions where only one of them can be simultaneously active at every given time. Thus, no
implementation can be adaptive to the number of concurrently active writers (or point contention) in terms
of its space consumption.

Let A be a t-tolerant implementation of a wait-free k-writer/1-reader safe register, supporting a set of
values V , |V | > k, with the initial value v0, using a collection of n > t base wait-free atomic MWMR
snapshot objects in the set O each of which can store vectors of length m > 0.

The following theorem asserts that the maximum number of k of clients that can be supported by A is
limited by the amount of the storage space m available at each base object.

Theorem 4.1 k ≤ b(nm− t− 1)/tc.

Given a snapshot object o, and an execution α ofA, we say that a pair (j, o) where 1 ≤ j ≤ m is covered
in α if o.write(j, v) is incomplete in α. We will write Covered(α) to denote the set of all integer/object pairs

3Note that read is simply a shortcut for CAS(v, v) for any v ∈ V . It is introduced here solely for presentation purposes.

5

which are covered in α. To distinguish the emulated register invocations from those of the underlying
registers, we will henceforth use WRITE and READ to refer the writes and reads of the emulated register
respectively.

Our proof strategy is based on the coverage argument of Burns and Lynch [15]. We first construct a
failure-free execution ζ (see Lemma 4.2) in which k − 1 writers take turns to write a unique value to the
emulated registers in a strictly serialized fashion (i.e., the next write is not invoked until the previous one
completes) so that at the end of each WRITE there exist at least t snapshot objects with 1 newly covered
entry. We then show (see Lemma 4.5) that at least 2t + 1 non-covered base objects must exists after any
failure-free finite execution with no incomplete WRITE invocations. We then show (see Theorem 4.1) that
after ζ the total number of non-covered entries is ≤ 2t thus obtaining a contradiction.
For the lack of space, we will only present the outline of the proof. The full details can be found in Section A
of the Appendix.

Let ζ0 = s0 where s0 is an initial state of A in which the initial value of the register is v0, and all
snapshot objects and processes are correct. We prove the following:

Lemma 4.2 For all 1 ≤ l ≤ k, there exists an execution ζl = ζl−1,WRITE(vl)l, γl, ackl such that

1. vl 6= vj for all 1 ≤ j < l,

2. ζl is failure-free,

3. γl does not include any WRITE or READ invocations,

4. |Covered(ζl)| ≥ lt.
The proof is by induction on 1 ≤ l ≤ k. We start by proving the base case. Since k ≥ 1 and |V | > k,

there exists an input action W1 = WRITE(v1)1 of the A’s interface such that v1 6= v0. Since all input actions
of A are always enabled, s0,W1 is an execution of A.

The following lemma shows that W1 can invoke write invocations on t distinct base objects without
waiting for the previously issued invocations to respond.

Lemma 4.3 Letα0 = β0 = s0,W1. Then, for all 1 ≤ i ≤ t, there exist two executionsαi = αi−1, γi, oi.write
and βi = βi−1, γi, oi.write,NR-crash(oi) such that

1. γi is failure-free,

2. γi does not include any oj .acki responses for all 1 ≤ j < i,

3. oi 6= oj for all 1 ≤ j < i.
We proceed by extending the execution βt constructed by Lemma 4.3 with an execution fragment γ′

obtained by running A from the state reached after βt, and until W1 returns. Note that since all base objects
o1, . . . , ot that were covered in βt have crashed, they remain covered at the end of γ′ as well. Thus, the
execution ζ1 = ζ0, αt, γ

′ obtained by grafting γ′ after αt satisfying the base case of Lemma 4.2. The full
proof appears in Section A.1 of the Appendix.

We now turn to proving the inductive step of Lemma 4.2. Assume that 1 ≤ l < k. By the inductive
hypothesis, there exists an execution ζl satisfying Lemma 4.2. We show how to construct ζl+1 from ζl.

Since k ≥ 1 and |V | > k, there exist vl+1 6= ... 6= v0 such that Wl+1 = WRITE(vl+1)l+1 is an input
action of A’s interface. Since all input actions of A are always enabled, ζl,Wl+1 is an execution of A.

The following lemma asserts that Wl+1 can cover t previously non-covered entries each of which re-
siding on a distinct snapshot object (see Lemma 4.4.2-4) without waiting for responses from any snapshot
objects covered in the course of the WRITE invocations preceding Wl+1 (see Lemma 4.4.5).

6

Lemma 4.4 Let α0 = ζl,Wl+1, and β0 = ζl, stop1, . . . , stopl,Wl+1. Then, for all 1 ≤ i ≤ t, there exist
three executions αi = αi−1, γi, oi.write(`i, ·)l+1; and βi = βi−1, γi, oi.write(`i, ·)l+1,NR-crash(oi) s.t.

1. γi is failure-free,

2. oi 6= oj for all 1 ≤ j < i,

3. (`i, oi) 6∈ Covered(ζl),

4. γi does not include any ackl+1 responses from objects oj , 1 ≤ j < i, and

5. γi does not include any o.ack responses from all objects o such that (·, o) ∈ Covered(ζl).

We proceed by extending the execution βt constructed by Lemma 4.4 with an execution fragment γ′ obtained
by running A from the state reached after βt until Wl+1 returns. Let ζl+1 = αt, γ

′, ackl+1. Note that the
first three claims of Lemma 4.2 are satisfied in ζl+1 by construction. Furthermore, by claims 3, 4, and
5 of Lemma 4.4, |Covered(αt)| = |Covered(ζl)| + t = (l + 1)t. Moreover, by construction, none of
the write invocations made on pairs (`, o) ∈ Covered(αt) returns in γ′. Therefore, |Covered(ζl+1)| =
|Covered(αt)| = (l + 1)t. Hence, claim 4 of Lemma 4.2 is also satisfied. This completes the proof of
Lemma 4.2 (full details can be found in Section A.4 of the Appendix).

We now show that after each finite execution α of A in which all WRITE invocations are complete, there
must be at least 2t+1 base objects each of which has at least one non-covered entry. Intuitively, these 2t+1
non-covered entries are needed in order to ensure that a WRITE invoked after α will be able to complete.
This intuition is formalized by the following

Lemma 4.5 Let α be a finite failure-free execution ofA in which all WRITE invocations are complete. Then,
|{o : (·, o) 6∈ Covered(α)}| > 2t.

We are now ready to prove Theorem 4.1.

Proof: [Proof of Theorem 4.1] Assume by contradiction that k = b(nm − t − 1)/tc + 1. By Lemma 4.2,
there exists an execution ζ of A in which k − 1 writes by k − 1 different processes are invoked such
that |Covered(α)| ≥ b(nm − t − 1)/tct ≥ nm − 2t. Hence, at the time the kth WRITE is invoked,
|{(`, o) 6∈ Covered(α)}| ≤ 2t. Therefore, |{o : (·, o) 6∈ Covered(α)}| ≤ 2t contradicting Lemma 4.5. �

5 Atomic Register Implementation
In this section we outline our wait-free implementation of a MWMR atomic register with space complex-
ity 1. Unlike previous approaches that feature constant space complexity, our algorithm does not require
support for any specific read-modify-write functionality besides CAS, i.e., conditional write, obviating the
need for server code. In contention-free executions, our algorithm attains optimal constant step-complexity.
Under contention, the step-complexity of an operation is bounded by O(C2), where C denotes the point
contention [4, 10], i.e., the maximum number of processes simultaneously concurrent with the operation.

Our implementation, shown in Algorithm 1, is a derivation of the multi-writer variation of the ABD
protocol [9] which we now briefly describe. In ABD, each object stores a timestamp-value pair (ts, v).
To write a value v, a process proceeds in two phases. In the first phase, the process queries the objects
for their stored timestamp-value pair, waits for a majority to respond, and chooses a unique timestamp ts
which is higher than any previous timestamp. In the second phase, the process updates the objects with
(ts, v). To read a value, a process proceeds in a similar way. In the first phase, it queries the objects

7

1: Definitions
2: TS: (N0 × {N0 ∪ ⊥}) with selectors num and pid // timestamps
3: TSVal: (TS× V) with selectors ts and val

4: Compare-And-Swap base objects
5: for 1 ≤ k ≤ n, xk ∈ TSVal is a Compare-And-Swap object, initially ((0,⊥), v0)
6: State
7: x[k]: TSVal, for 1 ≤ k ≤ n, initially ((0,⊥), v0)
8: new: TSVal ∪{⊥}, initially ⊥
9: R1, R2 : 2N0 , initially ∅

10: operation WRITE(v)
11: init()
12: xmax ← query()
13: new← ((xmax.ts.num + 1, i), v)
14: update(new, R1)
15: return OK

16: operation READ()
17: init()
18: new← query()
19: update(new, R1)
20: return new.val

21: procedure query()
22: in parallel for 1 ≤ k ≤ n do
23: invoke xk.read()
24: wait until |R1| ≥ d(n+ 1)/2e
25: k← ARGMAXk∈R1{x[k].ts}
26: return x[k]

27: upon completion of xk.read() returning v
28: x[k]← v
29: if new = ⊥ then
30: R1 ← R1 ∪ {k}
31: else invoke rmw(k, new)

32: procedure update(new, T)
33: in parallel for all k ∈ T do
34: invoke rmw(k, new)
35: wait until |R2| ≥ d(n+ 1)/2e

36: procedure rmw(k, new)
37: DONE← false
38: exp← x[k]
39: if new.ts > exp.ts then
40: repeat
41: old← xk.CAS(exp, new)
42: if old = exp ∨ old.ts > new.ts then
43: DONE← true
44: exp← old
45: until DONE

46: R2 ← R2 ∪ {k}

47: procedure init()
48: for 1 ≤ k ≤ n, x[k]← ((0,⊥), v0)
49: new← ⊥
50: R1, R2 ← ∅

Algorithm 1: Atomic register implementation. Code for process Pi.

for their timestamp-value pair, waits for a majority to respond and picks the pair (ts, v) with the highest
timestamp. In the second phase, the process writes-back (ts, v) to a majority of objects and returns v. An
essential requirement is that an object never changes state to a value with a lower timestamp. In ABD, the
object compares the new timestamp to the one currently stored, and updates the stored value if and only if
the new timestamp is higher (notice that in practice, a server implementing the object has to do timestamp
comparison, which requires server code).

In contrast, in our algorithm the comparison is not performed by the storage objects. It is performed
by the processes using the rmw procedure, which is called in the second phase of an operation, for every
object. For a timestamp-value pair (ts, v) and object x, rmw(x, (ts, v)) satisfies three properties: (P1) if
rmw returns then x.ts is at least ts, (P2) x is changed to (ts, v) only if ts is higher than x.ts and (P3) rmw
eventually returns. Intuitively, property P1 captures the ”if” part in the ABD requirement, and property P2
captures the ”only if” part. Finally, property P3 is needed for wait-freedom.

To perform rmw with timestamp-value pair (ts, v) on object x, the process enters a loop of CAS inter-
actions with x, from which it only exits after successfully updating x with (ts, v) or after finding a higher
timestamp in x.ts (satisfying P1). Notice that x is always changed using CAS. Furthermore, notice that ev-

8

ery invocation CAS(exp,new) satisfies exp < new. Since CAS changes x to new only if the current value of
x equals to exp, x.ts is strictly monotonically increasing (satisfying P2). Finally, since only operations with
timestamp lower than ts may obstruct the process on object x, the process does not execute the loop forever
(satisfying P3). In fact, we prove that the step complexity of each operation adapts to its point contention,
as we explain below.

Note that for the sake of readability Algorithm 1 does not include the (standard) implementation details
required to guarantee the following properties: (1) each process has at most one pending invocation on any
object (well-formedness); (2) after an operation o by process Pi completes, object responses received by Pi

for invocations made during o are ignored and do not change the state of Pi, and (3) at most one operation
may be invoked by Pi on any object after o completes.

Atomicity Proof Sketch The formal analysis of our algorithm is given in Appendix B. In the proof we
associate a timestamp with each operation. For a read (write) this is the timestamp of the returned (resp.,
written) value. Lemma B.2 proves property P2 (essentially, this property implies timeline consistency,
i.e., that the timestamp of every object cannot go back in time). Lemma B.3 shows that if an operation o
completes before another operation o′ is invoked, then the timestamp of o′ will be at least as high as that of
o, and if o′ is a write operation, it will be strictly higher. We then show that different write operations have
different timestamps (Lemma B.4) and that a read always returns a value written by some previously invoked
write with the same associated timestamp (Lemma B.5). Finally, Theorem B.6 proves that Algorithm 1
implements an atomic read/write register, by explicitly constructing the sequential permutation required by
the definition of atomicity. For a trace of the object σ produced by the algorithm, we construct σ′ from σ
by completing all WRITE operations of the form WRITE(v), where v has been returned by some complete
READ operation. We then construct a sequential permutation π by ordering all operations in σ′ according
to their associated timestamps and by placing all READ operations immediately after the WRITE operation
with the same timestamp or in the beginning of the execution if the timestamp of the read is (0,⊥). Reads
with the same timestamp are ordered according to their invocation order in σ. We show that π satisfies
the two properties required by the definition of atomicity, namely the operation precedence relation and the
sequential specification of a read/write register.

Step Complexity In the best case, our algorithm requires two operations per object, a read and CAS, and
therefore its step-complexity is 2. Since CAS requires the current value as an input, the process first invokes
a read on an object during the first round and only then a CAS on the same object during the second round.
It is possible, however, that an object responding to a read fails before responding to the CAS. We therefore
execute the first and the second round of an operation concurrently – even after a process receives a majority
of read responses and awaits to complete rmw on a majority of the objects, it will process the completion
of a read and invoke a rmw on that object (this ‘late’ rmw may be necessary to form a majority of rmw
completions). Notice that during an operation, rmw is called at most once for each object.

In the worst case, the step-complexity of an operation is bounded by O(C2), where C denotes the point
contention during the operation. To see why, suppose that o is an operation that invokes rmw on object x
at time t. There are three types of operations that can obstruct o on x: (Type 1) operations that complete
before time t, (Type 2) operations that start but do not complete before time t and (Type 3) operations that
start at time t or later. Any number of operations of Type 1 can obstruct o at most twice (by Lemma B.8 in
Appendix B). By definition of point contention, there are at most C operations of Type 2. Finally, there are
at most (C + 2)C operations of Type 3. To understand why, notice that the difference between the sequence
number in the timestamp of o and the the sequence number in the timestamp of an operation of Type 3 lies

9

between 0 and k + 1, where k is the number of Type 2 operations (by Lemma B.7 in Appendix B). Recall
that there are at most C operations of Type 2, and so k ≤ C. For each sequence number num in this range of
at most C + 2 sequence numbers, there are at most C operations whose timestamps share num (Lemma B.9
in Appendix B). Therefore, the number of Type 3 operation is at most (C + 2)C. Since each operation
obstructs o only once (per object), the number of CAS invocations during o is bounded by O(C2) (read is
invoked once for each object). The algorithm invokes operations on different objects in parallel, in separate
threads of control.

6 Ranked Register Implementation

In this section we outline our implementation of a single wait-free shared ranked register. As shown in [19],
the ranked register is a sufficient building block for Consensus. Our algorithm can be used as a substitute of
the single ranked register implementation in [19] to obtain a fault-tolerant implementation of any linearizable
object from a collection of fault-prone ranked registers. Unlike the implementation outlined in [19], which
requires objects with read-modify-write functionality specific to ranked registers, our implementation builds
on basic CAS objects.

6.1 Preliminaries

We start by giving a formal specification of a ranked register. Let Ranks be a totally ordered set of ranks
with an initial rank r0 such that for all r ∈ Ranks, r > r0. A ranked register is a MWMR shared object with
two operations: rr-read(r) with r ∈ Ranks, whose return value is (r, v) ∈ Ranks × V , and rr-write((r, v))
with (r, v) ∈ Ranks × V , whose return value is either commit or abort. We say that an rr-write operation
committs (rep. aborts) when its reply is commit (reps. abort). We assume that ranks used in rr-write
operations are unique. Typically, this is implemented by using unique process ids and a sequence number.
An implementation of ranked register has to satisfy the properties of Safety, Non-triviality and Liveness
(adopted from [19]).

Definition 6.1 (Safety) Every rr-read operation returns a value and rank that was written in some rr-write
invocation or (r0, v0). Additionally, let W = rr-write((r1, v1)) be a write operation that commits, and let
R = rr-read(r2), such that r2 > r1. Then R returns (r, v) where r ≥ r1.

Definition 6.2 (Non-Triviality) If a rr-write operation W invoked with rank r1 aborts, then there exists an
operation with rank r2 > r1 which returns before W is invoked, or is concurrent with W .

Definition 6.3 (Liveness) If an operation is invoked by a correct process, then eventually it returns.

We now proceed to describing the implementation given in Algorithm 2. The implementation makes
use of a single shared CAS object x ∈ X with three fields x.rR, x.wR and x.val. The field x.rR holds
the highest rank of any invoked operation, whereas x.wR holds the highest rank of any invoked rr-write
operation and x.val the corresponding value.

To rr-write a rank-value pair (r, v), the client enters a loop from which is only exits (a) after successfully
updating x with the triple (r,r,v), in which case the operation commits, or (b) after finding a higher rank
in x.rR, in which case the operation aborts. To rr-read with a rank r, the client enters a similar loop from
which it only exists (a) after successfully recording its rank in the x.rR field of the object or (b) after finding

10

a higher rank in x.rR. Finally, the operation returns the rank and value currently stored in the fields x.wR
and x.val.

We now briefly describe the intuition behind Algorithm 2 by informally arguing that it satisfies Safety,
Non-Triviality and Liveness. To see why Safety is satisfied, consider a write W = rr-write((r1, v1)) that
commits and a read R = rr-read(r2), such that r2 > r1. Since W commits, x changes state to (r1, r1, v1).
Notice that by the way the algorithm invokes x.CAS, x never changes its state to a lower rank. By Algo-
rithm 2, if R returns (r, v), then the value of x changed to (r′, r, v) such that r′ ≥ r2 > r1. Since W
commits, x transitions to (r′, r, v) only after it changed to (r1, r1, v1). Since ranks never go back in time, it
follows that r ≥ r1. Intuitively, Non-triviality is satisfied because if a write aborts, then x has been previ-
ously changed to a higher rank by some other operation. Finally, Liveness is satisfied because an operation
with rank r can be prevented from termination only by operations with lower ranks, and the number of such
operations is bounded by r.

1: Types
2: X: (Ranks× Ranks× V) ∪ {(r0, r0, v0)} with selectors rR and wR and val

3: Base-objects
4: x ∈ X shared, initially x = (r0, r0, v0)

5: operation rr-write((r, v))
6: DONE ← false
7: exp← (r0, r0, v0)
8: new← (r, r, v)
9: repeat

10: old← x.CAS(exp, new)
11: if old = exp ∨ old.rR > r then
12: DONE ← true
13: exp← old
14: until DONE

15: if old.rR > r then
16: return abort
17: else return commit

18: operation rr-read(r)
19: DONE ← false
20: exp← (r0, r0, v0)
21: new← (r, r0, v0)
22: repeat
23: old← x.CAS(exp, new)
24: if old = exp ∨ old.rR > r then
25: DONE ← true
26: exp← old
27: new← (r, old.wR, old.val)
28: until DONE

29: return (old.wR, old.val)

Algorithm 2: Implementation of a single ranked register. Code for process Pi.

6.2 Correctness of Algorithm 2

Lemma 6.4 Algorithm 2 satisfies Safety.

Proof: Is is clear from the code that a rr-read operation can only return a rank-value pair that was used in
a rr-write operation or (r0, v0). Suppose that W = rr-write((r1, v1)) is a rr-write operation that commits.
Furthermore, suppose R = rr-read(r2) is a rr-read such that r2 > r1 and let (r, v) be the rank-value pair
returned by R. We need to show that (r, v) = (r1, v1) or r > r1. For the purpose of contradiction, suppose
that r < r1. Since W committed, the first part of the condition in line 11 is satisfied, and it follows that W
has set x to (r1, r1, v1) at time t1. Since R returns (r, v), by the condition in line 24, some operation has
changed x to (r′, r, v) where r′ ≥ r2 at time t2. Notice that the new value supplied to CAS in lines 10 and 23
has never a lower rank than the expected value. As such, the ranks of x never decrease. Since r′ ≥ r2 > r1,
it follows that t2 > t1. Furthermore, since x changes to (r′, r, v) only after it changed to (r1, r1, v1), and

11

ranks never decrease, it follows that r ≥ r1. As no two different values are written with the same rank, if
r = r1 then v = v1. �

Lemma 6.5 Algorithm 2 satisfies Non-Triviality.

Proof: IfW aborts, then according to the condition in line 15 some operation has previously changed x.rR
to a rank r2 > r1. This can happen only as a result of some previously returned or concurrent rr-read or
rr-write operation with rank r2 > r1, as required. �

Lemma 6.6 Algorithm 2 satisfies Liveness.

Proof: Let o be a rr-read (resp. rr-write) operation with rank r, and for the purpose of contradiction,
suppose that o never returns. Hence, o is stuck in an infinite loop, which means that the condition in line 24
(resp. 11) never holds. This implies that an infinite number of operations with rank lower than r prevent o
from updating x in line 23 (resp. 10). Notice however that by rank uniqueness, the number of operations o′

with rank r′ < r is upper bounded by r, a contradiction. �

7 Open Questions
This work raises numerous open questions for future research:

• The step complexity of Algorithm 1 is quadratic in point contention. Is this optimal for emulating
atomic registers? Is this optimal for weaker shared object types?

• Our lower bound in Section 4 is shown for safe registers which, despite being weaker than atomic
and regular registers, still require that a read returns the value of a most recently completed write (if
it does not overlap the write). It would be interesting to show a similar lower bound for consistency
conditions that allow returning stale values, such as sequential, timeline, or causal consistency, etc.

• Our space bound proof in Section 4 critically depends on a capability to terminate each WRITE without
waiting for the responses from the objects covered by the prior WRITE invocations. Note that this
capability is no longer available if each WRITE is guaranteed to terminate, or in other words, all
writers are correct. Since the writer reliability can be enforced in many practical settings, it will be
interesting to see whether a constant memory algorithm can be constructed under the assumption of
reliable writers, or the space bound can be further strengthened to also apply in this case.

• We conjecture that there is a simple algorithm implementing a k ∗m-writer/multi-reader atomic regis-
ter out of n > (k+ 1)t atomic snapshot objects of length m. This algorithm will use each “row” of n
snapshot slots to support k writers using an algorithm similar to ABD. Thus, the number of supported
writers can be bounded from below by (d(n− 2t)/te)m.

• We further conjecture that the above bound is tight since it is possible to choose (d(n−2t)/te) subsets
Si out of n > t snapshot objects each of which consisting of t objects so that any implementation will
have a run where each WRITE invocation terminates while leaving write invocations pending on all
objects in one of the sets Si.

12

Conclusions
In this paper, we initiated a rigorous study aimed to shed light on the consistency and complexity trade-offs
involved in building reliable storage services in fault-prone multi-cloud environments. We proved that when
the interfaces of constituent cloud services are limited to read/write primitives, every multi-cloud replication
solution must use space proportional to the maximum number of writers to reliably emulate multi-writer
safe register (or a stronger shared storage primitive). This matches the complexity of existing algorithms
and shows that their worst-case space complexity is optimal. We then show that by leveraging conditional
writes (modeled as compare-and-swap), readily available with most existing cloud storage interfaces, one
can implement a reliable atomic register using a single replicated object per emulated data item. The step
complexity of our algorithm adapts to point contention. Finally, our work opens a number of interesting new
directions for future research which we list in Section 7.

13

References

[1] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk Paxos: Optimal
resilience with Byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

[2] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. RACS: a case for cloud storage
diversity. In Symposium on Cloud Computing (SoCC), pages 229–240, 2010.

[3] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, 1993.

[4] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming made
adaptive. In Proceedings of the eighteenth annual ACM symposium on Principles of distributed com-
puting, PODC ’99, pages 91–103, New York, NY, USA, 1999. ACM.

[5] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander Shraer. Recon-
figuring replicated atomic storage: A tutorial. Bulletin of the EATCS, 102:84–108, 2010.

[6] James H. Anderson. Composite registers. Distributed Computing, 6(3):141–154, 1993.

[7] James H. Anderson. Multi-writer composite registers. Distributed Computing, 7(4):175–195, 1994.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

[9] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing sys-
tems. J. ACM, 42(1):124–142, January 1995.

[10] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. J. ACM, 50(4):444–468, July
2003.

[11] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. John Wiley & Sons, 2004.

[12] Cristina Basescu, Christian Cachin, Ittay Eyal, Robert Haas, Alessandro Sorniotti, Marko Vukolic, and
Ido Zachevsky. Robust data sharing with key-value stores. In DSN, pages 1–12, 2012.

[13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. Depsky:
Dependable and secure storage in a cloud-of-clouds. In European Conference on Computer Systems
(EuroSys), 2011.

[14] David Breitgand and Amir Epstein. Improving consolidation of virtual machines with risk-aware
bandwidth oversubscription in compute clouds. In INFOCOM, pages 2861–2865, 2012.

[15] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Inf. Comput.,
107(2):171–184, 1993.

[16] Christian Cachin, Rachid Guerraoui, and Luı́s Rodrigues. Introduction to Reliable and Secure Dis-
tributed Programming (Second Edition). Springer, 2011.

14

[17] Rory Cellan-Jones. The Sidekick Cloud Disaster. http://www.bbc.co.uk/blogs/
technology/2009/10/the_sidekick_cloud_disaster.html, 2009.

[18] Gregory Chockler, Dan Dobre, and Alex Shraer. Consistency and complexity tradeoffs for highly-
available multi-cloud store. https://pure.rhul.ac.uk/admin/files/16996922/
main.pdf, 2013.

[19] Gregory Chockler and Dahlia Malkhi. Active disk paxos with infinitely many processes. Distrib.
Comput., 18(1):73–84, July 2005.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-
Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

[21] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko Vukolic. Fast access to distributed atomic
memory. SIAM Journal on Computing, 39(8):3752–3783, 2010.

[22] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

[23] Burkhard Englert and Alexander A. Shvartsman. Graceful quorum reconfiguration in a robust emu-
lation of shared memory. In International Conference on Distributed Computing Systems (ICDCS),
pages 454–463, 2000.

[24] Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Computing, 16(1):1–20, 2003.

[25] Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant semifast im-
plementations of atomic read/write registers. Journal of Parallel Distributed Computing, 69(1):62–79,
2009.

[26] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. Rambo: a robust, reconfigurable atomic
memory service for dynamic networks. Distributed Computing, 23(4):225–272, 2010.

[27] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[28] Michael R. Hines, Abel Gordon, Márcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-
Yehuda. Applications know best: Performance-driven memory overcommit with ginkgo. In Cloud-
Com, pages 130–137, 2011.

[29] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper: wait-free coor-
dination for internet-scale systems. In Proceedings of the 2010 USENIX annual technical conference
(ATC), Berkeley, CA, USA, 2010.

[30] P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the ACM,
45(3):451–500, 1998.

[31] Michael Krigsman. MediaMax / The Linkup: When the cloud fails. http://blogs.zdnet.com/
projectfailures/?p=999, 2008.

[32] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing,
1(2):77–85, 1986.

15

[33] Leslie Lamport. On interprocess communication. part ii: Algorithms. Distributed Computing, 1(2):86–
101, 1986.

[34] Leslie Lamport. How to make a correct multiprocess program execute correctly on a multiprocessor.
IEEE Trans. Computers, 46(7):779–782, 1997.

[35] N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI Quarterly, 2(3):219–
246, 1989.

[36] Richard MacManus. More Amazon S3 Downtime: How Much is Too Much? http://
readwrite.com/2008/07/20/more_amazon_s3_downtime, 2008.

[37] TClouds Project. Privacy and resilience for Internet-scale critical infrastructures. http://www.
tclouds-project.eu.

[38] Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using paxos to build a scalable, consistent, and highly
available datastore. PVLDB, 4(4):243–254, 2011.

[39] Riak. http://basho.com/riak.

[40] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/.

[41] C. Shao, E. Pierce, and J. L. Welch. Multi-writer consistency conditions for shared memory objects.
In DISC 2003, pages 106–120, 2003.

[42] Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[43] Microsoft Azure Storage. http://www.windowsazure.com/en-us/manage/services/
storage.

[44] Paul M. B. Vitányi and Baruch Awerbuch. Atomic shared register access by asynchronous hardware
(detailed abstract). In FOCS, pages 233–243, 1986.

[45] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weatherspoon. Overdriver: handling mem-
ory overload in an oversubscribed cloud. In Proceedings of the 7th ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, VEE ’11, pages 205–216, New York, NY, USA,
2011. ACM.

[46] Yunqi Ye, Liangliang Xiao, I-Ling Yen, and Farokh Bastani. Secure, dependable, and high perfor-
mance cloud storage. In Proceedings of the 29th Symposium on Reliable Distributed Systems (SRDS),
pages 194–203, 2010.

16

A Proof of Theorem 4.1

In this section, we will present full formal proofs of the claims in Section 4.

A.1 Proof of Lemma 4.3

Lemma A.1 Letα0 = β0 = s0,W1. Then, for all 1 ≤ i ≤ t, there exist two executionsαi = αi−1, γi, oi.write
and βi = βi−1, γi, oi.write,NR-crash(oi) such that

1. γi is failure-free,

2. γi does not include any oj .acki responses for all 1 ≤ j < i,

3. oi 6= oj for all 1 ≤ j < i.

Proof: The proof is by induction on 1 ≤ i ≤ t.
Base Case: Since, A is wait-free, there exists an execution fragment γ such that α = s0,W1, γ, ack1 is

an execution of A. Note that at least one write must be invoked on some snapshot object in γ for otherwise,
α will be indistinguishable from s0 to a process invoking a read operation R after α causing R to return
v0 6= v1 violating safety. Let w1 = o1.writep be the first such write in γ, and γ1, w1 be the prefix of γ
ending with w1. Since no snapshot objects are crashed in α0, and γ1 is failure-free, α1 = α0, γ1, and
β1 = β0, γ1,NR-crash(o1)) satisfy the lemma’s requirements.

Inductive Step: Assume that 1 ≤ i < t. We use our inductive hypothesis for αi and βi, and show how
to construct αi+1 and βi+1 required by the lemma.

By wait freedom, there exists a failure-free execution fragment γ such that β = βi, γ, ack1 is an exe-
cution of A. Note that γ must include write invoked on a snapshot object, which is not in {oj : j ≤ i}.
Indeed, since all snapshot objects, which have been written in the course of βi, have crashed, not writing to
any not previously written object will result in β and s0 being indistinguishable to a process invoking a read
operation R after β causing R to return v0 6= v1 violating safety.

Let wi+1 = oi+1.writep be the first write invoked in γ on an object oi+1 6∈ {oj : j ≤ i}, and γi+1, wi+1

be the prefix of γ ending with wi+1. Since αi and βi are indistinguishable to process 1, and the response of
wi+1 can be arbitrarily delayed, γi+1, wi+1 is also a valid continuation of αi. Furthermore, since the number
of snapshot objects that have crashed in βi is < t, γi+1, wi+1,NR-crash(oi+1) is a valid continuation of βi.

Hence, αi+1 = αi, γi+1, wi+1, and βi+1 = βi, γi+1, wi+1,NR-crash(oi+1) satisfy the lemma’s require-
ments. �

A.2 Proof of the Base Case of Lemma 4.2

The following lemma asserts that the base case of Lemma 4.2 is true:

Lemma A.2 (Base Case of Lemma 4.2) There exists an execution ζ1 satisfying Lemma 4.2 for l = 1.

Proof: Let αt and βt be the two executions of A whose existence is asserted by Lemma 4.3. Note that by
Lemma 4.3, |Covered(αt)| = |Covered(βt)| = t.

Since A is wait-free, and process 1 is correct in βt, there exists a failure-free execution fragment
γ′ such that β = βt, γ

′, ack1 is an execution of A. Since αt and βt are indistinguishable to process

17

1, and the responses of all outstanding write invocations in αt can be arbitrarily delayed, γ′ is also a
valid continuation of αt. Moreover, since all snapshot objects on which a write operation has been in-
voked in both αt and βt have crashed in βt, none of the write invocations in αt return in γ′. Therefore,
|Covered(αt, γ

′, ackp)| ≥ |Covered(αt)| so that |Covered(αt, γ
′, ackp)| ≥ t. Hence, ζ1 = αt, γ

′, ackp
satisfy the lemma’s requirements. �

A.3 Proof of Lemma 4.4

In this section we present details of the proof of the inductive step of Lemma 4.2.
The proof is by induction on 1 ≤ i ≤ t. We start by proving the base case:

Proof: [Base Case of Lemma 4.4]
By wait freedom, there exists an execution fragment γ such that β = β0, γ, ackl+1 is an execution of A.

Since β0 and α0 are indistinguishable to process l+ 1, and incomplete operations are allowed to take effect
arbitrarily in the future, α = α0, γ, ackl+1 is also an execution of A.

Note that at least 1 write must be invoked in γ as otherwise, α0 and α will be indistinguishable to a
process invoking a READ operation R after α causing R to return vl 6= vl+1 violating safety. Moreover, at
least one of the write’s in γ must be invoked on a pair (`, o) 6∈ Covered(ζl) as otherwise, the extensions α′

and α′0 obtained from α and α0 by completing all write operations invoked on pairs in Covered(ζl) will be
indistinguishable to a subsequent reader causing it to return vl 6= vl+1 violating safety.

Let w1 = o1.write(`1, ·) be the first write invocation in γ such that (`1, o1) 6∈ Covered(ζl), and γ1, w1

be the prefix of γ ending with w1. In addition, by construction, γ1 does not include responses for all write
invocations made in ζl. Therefore, α1 = α0, γ1, w1; and β1 = β0, w1,NR-crash(o1) satisfy the base case of
Lemma 4.4. �

We now prove the inductive step of Lemma 4.4. Assume that 1 ≤ i < t. We use our inductive hypothesis
for αi, and βi and show how to construct αi+1, and βi+1 required by the lemma.

By wait freedom, there exists an execution fragment γ such that β = βi, γ, ackl+1 is an execution of A.
Since βi and αi are indistinguishable to process l + 1 (and both the effects of incomplete invocations and
object responses can be indefinitely postponed), α = αi, γ, ackl+1 is also an execution of A. We prove the
following

Lemma A.3 At least 1 write invoked in γ must be on a pair (`, o) such that o 6∈ {oj : 1 ≤ j ≤ i} and
(`, o) 6∈ Covered(ζl).

Proof: Assume by contradiction that for each (`, o) written in γ either o ∈ {oj : 1 ≤ j ≤ i} or (`, o) ∈
Covered(ζl). Let α′ be an extension of α where all write invocations on the pairs (`′, o′) ∈ Covered(ζl),
such that o′ is correct in γi, complete. Note that after α′, each base object o on which write was invoked in
the course of Wl+1 either has the written value overwritten by a write invoked before Wl+1 started or has an
incomplete write invocation.

Let ζ ′l be an extension of ζl obtained by completing all write invocations on the pairs (`′, o′) ∈ Covered(ζl),
and crashing all objects in {oj : 1 ≤ j ≤ i} (this is possible since ζl is failure-free, and |{oj : 1 ≤ j ≤
i}| = i < t). We extend ζ ′l with an execution fragment ρ consisting of a complete READ invocation R. By
safety the R’s response must be vl.

Next, we extend α′ with ρ. By atomicity, all the base object invocations issued in the course of R are
allowed to be serialized before all the incomplete write invocations occurring in the course of Wl+1. Given

18

this serialization, the state perceived byR will be identical to that perceived byR after ζ ′l causing it to return
vl. However, by safety, R’s return value in α′ must be vl+1 6= vl. A contradiction. �

The proof is by induction on 1 ≤ i ≤ t. We start by proving the base case:

Proof: [Base Case of Lemma 4.4]
By wait freedom, there exists an execution fragment γ such that β = β0, γ, ackl+1 is an execution of A.

Since β0 and α0 are indistinguishable to process l+ 1, and incomplete operations are allowed to take effect
arbitrarily in the future, α = α0, γ, ackl+1 is also an execution of A.

Note that at least 1 write must be invoked in γ as otherwise, α0 and α will be indistinguishable to a
process invoking a READ operation R after α causing R to return vl 6= vl+1 violating safety. Moreover, at
least one of the write’s in γ must be invoked on a pair (`, o) 6∈ Covered(ζl) as otherwise, the extensions α′

and α′0 obtained from α and α0 by completing all write operations invoked on pairs in Covered(ζl) will be
indistinguishable to a subsequent reader causing it to return vl 6= vl+1 violating safety.

Let w1 = o1.write(`1, ·) be the first write invocation in γ such that (`1, o1) 6∈ Covered(ζl), and γ1, w1

be the prefix of γ ending with w1. In addition, by construction, γ1 does not include responses for all write
invocations made in ζl. Therefore, α1 = α0, γ1, w1; and β1 = β0, w1,NR-crash(o1) satisfy the base case of
Lemma 4.4. �

We now prove the inductive step of Lemma 4.4. Assume that 1 ≤ i < t. We use our inductive hypothesis
for αi, and βi and show how to construct αi+1, and βi+1 required by the lemma.

By wait freedom, there exists an execution fragment γ such that β = βi, γ, ackl+1 is an execution of A.
Since βi and αi are indistinguishable to process l + 1 (and both the effects of incomplete invocations and
object responses can be indefinitely postponed), α = αi, γ, ackl+1 is also an execution of A. We prove the
following

Lemma A.4 At least 1 write invoked in γ must be on a pair (`, o) such that o 6∈ {oj : 1 ≤ j ≤ i} and
(`, o) 6∈ Covered(ζl).

Proof: Assume by contradiction that for each (`, o) written in γ either o ∈ {oj : 1 ≤ j ≤ i} or (`, o) ∈
Covered(ζl). Let α′ be an extension of α where all write invocations on the pairs (`′, o′) ∈ Covered(ζl),
such that o′ is correct in γi, complete. Note that after α′, each base object o on which write was invoked in
the course of Wl+1 either has the written value overwritten by a write invoked before Wl+1 started or has an
incomplete write invocation.

Let ζ ′l be an extension of ζl obtained by completing all write invocations on the pairs (`′, o′) ∈ Covered(ζl),
and crashing all objects in {oj : 1 ≤ j ≤ i} (this is possible since ζl is failure-free, and |{oj : 1 ≤ j ≤
i}| = i < t). We extend ζ ′l with an execution fragment ρ consisting of a complete READ invocation R. By
safety the R’s response must be vl.

Next, we extend α′ with ρ. By atomicity, all the base object invocations issued in the course of R are
allowed to be serialized before all the incomplete write invocations occurring in the course of Wl+1. Given
this serialization, the state perceived byR will be identical to that perceived byR after ζ ′l causing it to return
vl. However, by safety, R’s return value in α′ must be vl+1 6= vl. A contradiction. �

We are now ready to complete the proof of Lemma 4.4.

Proof: [Lemma 4.4] Let wi+1 = oi+1.write(`i+1, ·)l+1 be the first write whose existence is asserted by
Lemma A.4. Let γi+1, wi+1 be the prefix of γ ending with wi+1. By construction, γi+1, wi+1 is a valid

19

continuation of βi. In addition, since αi and βi are indistinguishable to process i + 1 (and the responses of
all write invocations in αi can be arbitrarily postponed) γi+1, wi+1 is also a valid continuation of αi. We
conclude that αi+1 = αi, γi+1, wi+1; and βi+1 = βi, γi+1, wi+1,NR-crash(oi+1) are executions of A.

By construction, both executions satisfy the claims 1 and 2 of the lemma. We now show that the claims
3, 4, and 5 also hold. Indeed, By Lemma A.4, oi+1 6∈ {oj : 1 ≤ j ≤ i} and (`i+1, oi+1) 6∈ Covered(ζl).
Therefore, claims 3 and 4 are both satisfied for αi+1, and βi+1. Finally, since γi+1 is derived from an
execution fragment that follows the stop events for all processes in {1, . . . , l}, γi+1 does not include ack
responses for any prior invocations of write. Hence, the lemma’s claim 6 is also satisfied for both αi and βi.
This concludes the proof of the induction step of Lemma 4.4. �

A.4 Proof of the Inductive Step of Lemma 4.2

We now complete the proof of the inductive step of Lemma 4.2.

Proof: Inductive step of Lemma 4.2 Let αt, and βt be the two executions of A whose existence is asserted
by Lemma 4.4.

By wait freedom, there exists an execution fragment γ′ such that β = βt, γ
′, ackl+1 is an execution of

A. Since βt and αt are indistinguishable to process l+1 (and all incomplete writes are allowed to take effect
arbitrarily far in the future as well as the responses to previously invoked writes can be arbitrarily postponed)
γ′, ackl+1 is also a valid continuation of αt. Hence, αt, γ

′, ackl+1 = ζl+1 for γ = γ1, w1, . . . , γt, wt, γ
′ is an

execution of A. It remains to show that ζl+1 constructed in this fashion satisfies the lemma’s requirements.
Indeed, the first three claims of Lemma 4.2 are satisfied by construction. Furthermore, by claims 3,

4, and 5 of Lemma 4.4, |Covered(αt)| = |Covered(ζl)| + t = (l + 1)t. Moreover, by construction, none
of the write invocations made on pairs (`, o) ∈ Covered(αt) returns in γ′. Therefore, |Covered(ζl+1)| =
|Covered(αt)| = (l + 1)t. Hence, claim 4 of Lemma 4.2 is also satisfied. �

A.5 Proof of Lemma 4.5

Lemma A.5 Let α be a finite failure-free execution of A in which all WRITE invocations are complete.
Then, |{o : (·, o) 6∈ Covered(α)}| > 2t.

Proof: Assume by contradiction that |{(`, o) 6∈ Covered(α)}| ≤ 2t. We proceed by constructing an
extension of α violating safety thus obtaining a contradiction.

Let v be the value written by the last complete WRITE invocation in α if exists, or v0, otherwise. We first
extend α with a WRITE invocation W = WRITE(v1)1 by process 1 such that v1 6= v. This is possible since
all WRITE invocations in α are complete, k ≥ 1, and α is failure-free.

Next, we continue by extending α,W with an execution fragment γ obtained by repeating the following
2 steps in a loop for each 1 ≤ i ≤ t until either i reaches t, or W returns: (1) run A until the first occurrence
of write invocation wi = oi.write(`i, ·)i such that (`i, oi) 6∈ Covered(α); and (2) append NR-crash(o1) to
the resulting execution. If by the end of this procedure W is still in progress, continue executing A until W
returns with ack. This is guaranteed to eventually happen since A is wait-free. Let S1 = {oi}.

Let S be the set of all snapshot objects o′ ∈ {o : (·, o) 6∈ Covered(α)} such that o′.write is an event in
α′. Note that S1 ⊆ S. Let S2 = S \ S1. Let β be the subsequence of γ, which includes all events in γ
omitting the crashes of all the objects in S1. Since γ and β are indistinguishable to process 1, and object
responses can be arbitrarily postponed, α,W, β, ack1 is an execution of A. By assumption, |S| ≤ 2t.

20

Let α2 be an execution obtained by extending α with the following event sequence: (1) NR-crash(o) for
all o ∈ S2, and (2) completions of the write invocations on all (`, o) ∈ Covered(α). We extend α2 with
an execution segment γ consisting of READ invocation R by a correct process. Since |S2| ≤ t, by wait
freedom, R must eventually return. By safety, the return value of R must be v.

Finally, we obtain an execution α1 by extending α,W, β, ack1 with ack responses of the write invoca-
tions on all (`, o) ∈ Covered(α). Note that by the end of α1, all values written in the course of W in α1

(i.e., in β) are either overwritten by prior writes, written by incomplete writes to the objects in S1, or written
to the objects in S2. Since all incomplete writes are allowed to take effect indefinitely far in the future, the
execution α′1, which is identical to α1 except for all write invocations on objects in S1 being removed, is a
valid execution of A. Since all list operations invoked on objects in S2 are allowed to return arbitrarily far in
the future, γ is a valid continuation of α′1. However, the return value of the read R in γ is v 6= v1 violating
safety. A contradiction. �

21

B Correctness of Algorithm 1

Definition B.1 (Timestamp of an operation) Let o be a READ or WRITE operation. We define ts(o), the
timestamp of o, as follows: if o is a READ operation (resp. a WRITE operation), then ts(o) is new.ts when
its assignment completes in line 18 (resp. in line 13).

Lemma B.2 (Timeline consistency) Consider an object x and let ts and ts′ be the value of x.ts at time t
and t′ respectively. If t′ > t then ts′ ≥ ts.

Proof: Assume by contradiction that that ts′ < ts. This implies that some CAS operation has set object
x to a value with lower timestamp. Notice that an object can only be changed by invoking CAS in line 41.
For its first invocation, the condition in line 39 must hold. Then, CAS may be invoked again, but only if the
condition in line 42 evaluates to false. In both cases, when x.CAS(exp, new) is invoked, exp.ts < new.ts.
Contradiction follows from the fact that CAS changes x to new and does so only if the current value of x
equals to exp. �

Lemma B.3 (Partial Order) If o and o′ are two READ or WRITE operations with associated timestamps
ts(o) and ts(o′), respectively, such that o completes before o′ is invoked, then ts(o) ≤ ts(o′). If o′ is a
WRITE operation then ts(o) < ts(o′).

Proof: Since o completes and o′ has an associated timestamp, procedure update returns during o and
procedure query returns during o′. This implies that both o and o′ receive responses from a majority of
objects. Suppose that object xk belongs to the intersection of the majority accessed by rmw during o and
the majority accessed by read during o′. By the termination condition of the loop in rmw in line 42, some
operation changed xk to a value with timestamp at least ts(o) before o completes. Since o′ is invoked after
o completes, and since by Lemma B.2 the timestap of xk never decreases, the read that accesses xk during
o′ returns a value with timestamp at least ts(o) and assigns it to x[k] in line 28. Hence, after query returns
during o′, x[k] ≥ ts(o).

There are two cases to consider. If o′ is a READ operation, then by Definition B.1, ts(o′) = new.ts when
the assignment in line 18 completes. Since new is set in line 18 to the value with the highest timestamp in
x, which is at least ts(o), it follows that ts(o′) ≥ ts(o).

If o′ is a WRITE operation, by Definition B.1, ts(o′) = new.ts after the assignment in line 13, where
process i sets new.ts to (xmax.ts.num + 1, i). Notice that xmax.ts has been previously selected as the
highest timestamp in x, which is at least ts(o). Therefore, it follows that ts(o′) = (xmax.ts.num + 1, i) >
xmax.ts ≥ ts(o), which completes the proof. �

Lemma B.4 Let o and o′ are two WRITE operations with timestamps ts(o) and ts(o′), respectively. Then
ts(o) 6= ts(o′).

Proof: If o and o′ are executed by different processes, then the pid parts of their timestamps are different.
If o and o′ are executed by the same process, then they are executed sequentially and the proof follows from
Lemma B.3. �

22

Lemma B.5 Let r be a READ operation with timestamp ts(r) returning value v. If v 6= v0 then there exists
a single WRITE operation w writing the value v s.t. ts(r) = ts(w). Moreover, w does not follow r in the
execution.

Proof: Since r returns v and has an associated timestamp ts(r), the query() method during r reads
(ts(r), v) from one of the objects. Since objects are changed only through CAS in line 41, we conclude
that for some operation w, new in line 41 is equal to (ts(r), v). Since new is only set once during the execu-
tion of a WRITE and that happens in line 13, we have that ts(w) = ts(r). Moreover, by Lemma B.4 no other
write has the same timestamp. Since w invokes CAS before r reads the same object, r does not complete
before w is invoked, in other words, w does not follow r in the execution. �

Theorem B.6 (Atomicity) Algorithm 1 implements an atomic RW register.

Proof: Let σ be a trace produced by the algorithm. Note that the timestamp of a READ operation either
has been written by some WRITE operation or is (0,⊥), in which case the READ returns v0 (Lemma B.5).
We first construct σ′ from σ by completing all WRITE operations of the form WRITE(v), where v has been
returned by some complete READ operation. Then we construct a sequential permutation π by ordering all
operations in σ′ according to their timestamps and by placing all READ operations immediately after the
WRITE operation with the same timestamp or in the beginning of the execution if the timestamp of the read
is (0,⊥). Note that concurrent READ operations with the same timestamp may appear in any order, whereas
all other READ operations appear in the same order as in σ′.

To prove that π preserves the sequential specification of a MWMR register we must show that a READ

always returns the value written by the closest write which appears before it in π, or the initial value of the
register v0 if there is no preceding write in π. Let r be a READ operation returning a value v. If v = v0,
then since the value and timestamp are always assigned atomically together in lines 13 and 18, we have that
ts(r) = (0,⊥), in which case or is ordered before any WRITE in π. Otherwise, v 6= v0 and by Lemma B.5
there exists a write(v) operation, which has the same associated timestamp, ts(r). In this case, this write is
placed in π before r, by construction. By Lemma B.4, other write operations in π have a different associated
timestamp and thus appear in π either before write(v) or after r.

It remains to show that π preserves real-time order. Consider two complete operations o and o′ in σ′ s.t.
o precedes o′. By Lemma B.3, ts(o′) ≥ ts(o). If ts(o′) > ts(o) then o′ appears after o in π by construction.
Otherwise ts(o′) = ts(o) and by Lemma B.3 it follows that o′ is a READ operation. If o is a write operation,
then o′ appears after o since we placed each read after the WRITE with the same timestamp. Otherwise, if o
is a READ, then it appears before o′ as in σ′. �

Lemma B.7 Let o be an operation that invokes rmw at time t and let o′ be another operation that starts at
time t′ ≥ t. If k operations are invoked but do not complete before time t then ts(o′).num ≥ ts(o).num−
k − 1

Proof: Let o′′ be the operation with the highest timestamp that commits before time t. By Lemma B.3
ts(o′) ≥ ts(o′′). Therefore it is sufficient to prove that ts(o′′).num ≥ ts(o).num− k− 1. Suppose, for the
purpose of contradiction, that ts(o′′).num = ts(o).num − k − 2. Since every operation increments num
by at most one and the timestamp of o is ts(o), at least k + 1 operations must be invoked before time t with
timestamps strictly greater than ts(o).num − k − 2. At least one of these operations commits before time

23

t by the statement of our Lemma. This is a contradiction since o′′ was chosen to be the operation with the
highest timestamp that commits before t. �

Lemma B.8 Let o be an operation that invokes rmw at time t and o′ be another operation that obstructs o
on some object x but is not one of the first two operations to obstruct o on x. Then o′ does not complete by
time t.

Proof: Since o is obstructed at least three times, the following sequence of invocations on x must occur
(we denote an invocation of op on register r during an operation o by o.r.op): o.x.read() . . . o.x.CAS
. . . o.x.CAS . . . o.x.CAS. Since all three invocations of o.x.CAS fail (the third one due to o′), we know
that there are at least three invocations of x.CAS by other operations that succeed: o.x.read() . . . o′′′.x.CAS
. . . o.x.CAS . . . o′′.x.CAS . . . o.x.CAS . . . o′.x.CAS . . . o.x.CAS.

Since o′.x.CAS succeeds, o′ reads x (or invokes a failed CAS on x) after it was changed by o′′.x.CAS,
and hence after the first invocation of o.x.CAS, which in turn must occur after rmw is invoked during o,
i.e., after time t. Hence, o′ does not complete by time t. �

Lemma B.9 Let C be the point contention of an operation o. For any constant n the number of operations
o′ that are concurrent with o and s.t. ts(o′).num = n is at most C.

Proof: Suppose for the purpose of contradiction that there exists a constant n such that there are C + 1
operations concurrent with o with the first component of their timestamp equal to n. Since there are C + 1
operations and at most C processes executing operations concurrently with o at any single point in time
(by definition of point contention), there is a process that executes two operations, both of which have the
same first component of the timestamp. Since each process executes operations sequentially, this contradicts
Lemma B.3. �

Theorem B.10 (Step Complexity) The step complexity of an operation o invoked by a correct process is
O(C2), where C is the point contention of o.

Proof: Procedure query invokes read on every object and returns once it receives replies from a majority of
objects. Since at most a minority of objects may fail, it follows that query returns. Let t be the time when o
invokes rmw. There are three types of operations that can obstruct o: (1) an operation that completes before
time t (2) an operation that starts but does not complete before time t; and (3) an operation invoked at time
t or later. We next quantify the number of operations of each type that can obstruct o.

By Lemma B.8 at most two operation completing before time t can obstruct o on a given register. Thus,
at most two operations fall into the first category. By definition of C, the number of operations of the second
type is at most C. By Lemma B.7, this also implies that any operation o′ of the third type, that is, starting at
time t or later, satisfies ts(o).num − ts(o′).num ≤ C + 1. Since operations with timestamps higher than
ts(o) cannot obstruct o (see line 42), we only care about the case 0 ≤ ts(o).num − ts(o′).num. There
are at most C + 2 numbers in this range. Since all operations that start at time t or later and obstruct o are
concurrent with o, by Lemma B.9 there are at most C such operations whose first timestamp component is
each of the numbers in the range described above. Overall, there are at most (C + 2) ∗ C operations with
timestamps in this range, and in total there are C2 + 3C + 2 operations that may obstruct o.

24

Notice that an operation o′ can obstruct o on an object r only by changing the value of r using CAS
on line 41. By the specification of CAS, the old value of r was the expected value passed to CAS in this
invocation during o′. By the conditions on lines 42 and 45, once this CAS returns, rmw completes. This
means that o′ can obstruct o at most once. Since each operation can obstruct o at most once, C2 + 3C + 2 is
an upper bound on the number of times a CAS invocation during o can fail (for each object). The interaction
with different objects during o is done using different instances of rmw executed concurrently. �

25

