
Abstract— There are currently a few bioinformatics tools, such 
as dbEST, DDD and GEPIS to name a few, which have been 
widely used to retrieve and analyse EST expression data.  
Knowledge of tissue-specific gene expression is required for the 
data provided using these algorithms to be of most use.  
Previously we reported an EST expression matrix to elucidate 
the tissue type of an uncharacterised library from its expression 
data. Here we report the selection and optimisation of a 
minimal gene expression data set and describe a few examples 
of its applications. The described methods rely solely on the 
expression data itself and are independent on the libraries 
annotations. The reported approach allows tissue typing of 
expression libraries of different sizes containing between as 
little as 1 total EST count and up to 461total EST counts (the 
highest tested). 
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I.  INTRODUCTION 
Tools such as CGAP, GEPIS and DDD may be used to 

compare expression levels between EST libraries from 
normal and cancerous tissues. However, these tools assume 
the reported EST counts to be correct without employing a 
quality control method for the underlying data which would 
enable the identity of each library to be verified 
independently of any external information. 

Gene expression is highly tissue-specific and the subset of 
genes expressed in each tissue determines the tissue function. 
Differential gene expression in cancer results in a primary 
tumour ceasing to resemble expression in the parent tissue; 
likewise normal tissue function is similarly distorted. 
Metastasis tumours result in even more complex patterns of 
gene expression. Furthermore, oncogenesis can occur 
differently in each tissue thus further complicating the 
interpretation if gene expression pattern. The knowledge of 
tissue specificity and the overall quality control of expression 
libraries generation and analysis are required because the 
methods used to generate EST libraries such as RT PCR and 
random selection of cDNAs for sequencing can introduce 
biases into EST data [1]. Disproportionate amplification 
during PCR [2] will lead to abnormally high expression levels 
of those sequences appearing in the final results [3]. Errors 

can also be introduced during reverse transcription because of 
the fact that multiple polyadenylate repeats are found in a 
significant percentage of mRNA species contain multiple 
polyadenylation sites, potentially leading to multiple ESTs 
being produced from one transcript [4]. Furthermore, the 
analysis algorithms themselves can contain errors [5] 

Inter-library correlations for tissue-specificity of 
expression have been attempted previously with SAGE data 
[6]. Three databases were compared – Gene Expression Atlas 
(oligonucleotide microarray data), SAGEmap (SAGE 
libraries) and TissueInfo (EST libraries). Because these 
databases use different formats for sample annotation and use 
different statistical methods for data analysis, a method called 
Preferential Expression Measure (PEM) was devised to score 
differential expression of genes in libraries grouped into six 
different tissue categories (brain, kidney, ovary, pancreas, 
prostate and vascular endothelium) in three databases. Inter-
database correlations were measured and were found to be 
high for brain, prostate and vascular endothelium, but not for 
kidney, ovary and pancreas [6]. 

In a more recent study, data for 8,570 genes across 46 
human tissues from the Gene Expression Omnibus (an 
Affymetrix microarray data repository) were categorised 
according to tissue specificity and subcellular localisation of 
their protein product [7]. The authors reported that widely 
expressed genes have higher expression levels than genes 
which are expressed in one or a few tissues [7]. 

Previous investigations only focussed on the whole 
genome [8] and covered aspects of the data such as GC 
content [9], with few investigations focusing on the tissue-
specificity issues [10]. A common shortcoming of many 
previous reports is that tissue specificity of the genes was 
reported [11 – 15] but no attempts were made to actually use 
such data for quality control or evaluation of the expression 
data. Moreover, even unique "tissue specific genes" might be 
of little use if they are expressed at low levels and would 
therefore be absent in many smaller libraries. Furthermore, 
many existing tools and secondary databases, including the 
CGAP, are simply sophisticated information retrieval tools, 
lacking numerical methods for verification of the EST counts 
and sample origins. Existing algorithms used to analyse EST 
expression data place the emphasis on identification of the 
degree of over/under-expression for tissue/disease-specific 
genes by comparing EST counts between two library pools 
without fully evaluating the quality of the expression data or 
the origins of the experimental material used, those are simply 
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assumed to be correct and no numerical methods for their 
verification are made available [16 – 18]. It is not surprising 
that many such tissue distribution resources are quickly 
superseded by more recent developments or are being taken 
offline [19 – 22]. 

We have earlier calculated correlation values between 
tissue expression profiles of the 244 transcripts from the EST 
expression matrix and the relevant EST counts from 113 
largest libraries representing 26 main human tissues were 
calculated [23]. The correlation data for a group of tissues 
which contained libraries for which virtually no inter-tissue 
correlation was found, and where all the libraries shown 
good positive correlation (values ranging approximately 
within +0.2 to +1) with the relevant source tissues but not 
with any of the other tissues, is summarized in Figure 1. 
Correlation levels clearly confirm the identity of each of the 
individual EST libraries. 

This approach to the tissue-specificity problem is different 
from the previously reported attempts in that the origins of the 
expression data were looked into and the tissue specificity of 
the original preparations and the data quality were both 
assessed. It was possible to generate a small optimised subset 
of 244 different transcripts which showed high levels of intra-

tissue correlation between different EST libraries while 
presenting low levels of inter-tissue correlation, suggesting 
high tissue specificity. The reported EST expression matrix 
can be used to confirm tissue identities of EST expression 
datasets for all main human tissue types, to provide insight 
into the origin of uncharacterised libraries, to identify 
normalised or subtracted libraries or various other 
experimental artefacts. In a few cases it was possible to 
identify the location of the tumour from which a cancer 
sample was taken, an extension not previously considered and 
not previously reported [23]. For the EST expression matrix 
see http://dx.doi.org/10.1371/journal.pone.0032966. 

 

II. RESULTS 
We recently showed that tissue specificity can be used for 
the purposes of expression data quality control using small 
EST expression matrices [23]. Because Pearson correlation 
coefficients used in our previous analysis allow any linear 
transformation of the data, our approach should in principle 
work for any EST library size, however large or small. 
However, the number of tissue specific transcripts would 
gradually decrease and eventually none of the 244 genes 

 
 

Figure 1.   Correlation of the EST matrix with individual libraries from matching tissues showing no inter-tissue correlation. Pearson product-moment 
correlation coefficients (vertical axes) calculated for each of the individual EST libraries and the EST expression matrix: (a) placental libraries. (b) lung 
libraries. (c) pancreatic libraries. (d) retinal libraries. (e) testis libraries. Reproduced with permission from [23]. 



 
Figure 4.  Pearson correlation values of original and scaled down libraries 
(y-axis vs. EST count (x-axis): (blue) dta points corresponding to the  
original libraries, as shown in Figure 3. (pink) data points representing the 
modelled scaled down libraries, although the modelling involved non-linear 
transformation of the data, the graph shows similar degree of positive 
correlation between 0.15 and 0.88. 
 

included in the matrix could match a small EST library. We 
have therefore attempted to find the minimum library size for 
which this approach would still work. In our previous studies 
the expression matrix was used to confirm the tissue identity 
of uncharacterised libraries, for cancer staging and to 

indicate the degree of normalisation of a normalised library 
[23]. Here in order to systematically investigate the 
robustness of this approach, we used modelled EST data to 
simulate small EST expression datasets. These were 
generated from the reported EST expression data taken from 

 
Figure 3.  Pearson correlation values of original EST libraries (y-axis) vs. 
EST count (x-axis). The black trendline is fitted to all of the data points 
shown (all tissues), while the other trendlines are fitted to the individual 
tissues: (dark blue) lung. (pink) pancreas. (light blue) placenta. (yellow) 
retina. (brown) testis.  
 

 
 

Figure 2.   Correlation of the EST matrix with individual modelled (small) libraries from matching tissues showing no inter-tissue correlation. Pearson 
product-moment correlation coefficients (vertical axes) calculated for each of the individual scaled down libraries and the EST expression matrix: (a) 
placenta, total number of EST counts in the libraries were 7, 31, 34, 7, 13, 24, 2, 11, 10, 2, 21 and 69 (left to right). (b) lung, total number of EST counts 
in the libraries were 461, 10, 255, 6, 83 and 11 respectively. (c) pancreas, total number of EST counts in the libraries were 231, 4, 4, 2 and 4. (d) retina, 
total number of EST counts in the libraries were 13, 7, 4, 18 and 18. (e) testis libraries, total number of EST counts in the libraries were 7, 4, 1, 4 and 17. 



CGAP database, by proportionally reducing the reported 
EST counts and rounding any fractional values to the nearest 
whole EST count each time until each library ceased to 
present any ESTs mapping onto the 244 marker transcripts or 
ceased to be identified as a positive tissue match for the 
tissue from which it was created in the first place. Using this 
approach we modelled real EST expression data by scaling 
down the reported EST counts and rounding any fractional 
values to the nearest whole EST count each time. We 
continued this until each library ceased to present any ESTs 
mapping onto the 244 transcripts or ceased to be identified as 
a positive tissue match for the tissue from which it was 
created in the first place. We compared all of the generated 
model libraries with the original libraries including from all 
the other tissues by calculating the correlation values for the 
244 UniGene IDs from our optimised matrix set. Most of the 
libraries tested continue to correlate well with the tissue of 
origin until the very last UniGene ID and the last EST 
mapping onto one of the transcripts in the matrix is removed. 
Our results indicate that the majority of the scaled down 
libraries remain identifiable until the total library EST counts 
falls below the range of 10 to 50 total EST counts, which 
corresponds to some of the smallest libraries currently in the 
CGAP database, Figure 2. 

We have further investigated whether the quality of tissue 
matching (the positive correlations calculated) depends on 
the library size or not. We carried such analysis for the same 
five tissues as reported in Figure 1; each tissue was analysed 

separately. The results presented here show a clear positive 
correlation between the size of the library and the quality of 
tissue matches (positive correlation and matching of the 
correct tissue, with values of between 0.22 and 0.96), see 
Figure 3. Smaller libraries tested were also identifiable, 
albeit with smaller correlation values of between 0.15 and 
0.88, see Figure 4. We have earlier reported inter-tissue 
correlation coefficients for 26 individual tissues for which 
EST expression data were available from CGAP, see Figure 
5. These indicate that the EST expression matrix is capable 
of correctly identifying all the non-matching tissues (median 
correlation values of ~ –0.02 yet some individual expression 
libraries may yield relatively high false positive correlation 
values (median ~ 0.21).  Taking into account the trend data 
shown in Figure 3, which indicate that on average a library 
as small as one EST count is likely to yield correct positive 
correlation of ~ 0.3, our expression matrices should in 
principle be suitable for EST libraries containing just a few 
EST counts. 

 

III. CONCLUSIONS 
An EST expression matrix has been optimised and tested 

here on EST libraries of a range of sizes. We showed that the 
approach is correct and robust, applicable to EST libraries of 
different sizes. The matrix can be also be used to identify the 
disease state of a tissue and identify normalized or otherwise 
modified expression libraries [23]. The reported data indicate 

 
 

Figure 5.  Intra-tissue and inter-tissue correlations. Correlation coefficients calculated for all of the 113 EST libraries against the EST expression matrix:  
(a) positive correlations between all expected matching libraries, e.g. all individual "Adipose" libraries vs. the "Adipose" expression matrix etc. Correlation 
value of "1" is for tissues where only one EST library was available. (b) Correlations for all expected non-matching libraries, e.g. all "Adipose" libraries 
available vs. all but the "Adipose" expression arrays from our EST matrix etc. The presumed mixed tissue brain library "NIH_MGC_181" was excluded 
from calculations. Reproduced with permission from [23]. 
 



that even a small subset of EST expression data sets 
containing 10 – 50 ESTs can still contain sufficient 
information to determine the tissue specificity and be of use 
for quality control. Although originally developed to test 
EST expression libraries, testing our approach with SAGE or 
siRNA expression data and other transcriptomics analyses 
such as microarray data is now justified. 
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