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Abstract: There are currently a few bioinformatics tools, such as dbEST, DDD and GEPIS to name a few, which have 

been widely used to retrieve and analyse EST expression data.  The Cancer Genome Anatomy Project offers 

cDNA xProfiler and cDNA DGED tools which can also be used to use EST counts for comparing gene 

expression levels between cancer and normal tissues. The outcome of any such comparison depends on EST 

libraries' annotations and assumes that the actual expression data (EST counts) are correct. Neither CGAP 

nor other similar tools provide a quality control method for the selection and evaluation of the original EST 

expression libraries. Here we report the selection and optimisation of a minimal gene expression data set 

and describe a few examples of its applications.  The described methods rely solely on the expression data 

itself and are independent on the libraries annotations. The reported approach allows tissue typing of 

expression libraries of different sizes containing between as little as 249 total EST counts and up to 13,929 

total EST counts (the highest tested). 

1 INTRODUCTION 

CGAP and other similar tools and databases such as dbEST, EST (Digital Differential Display) and GEPIS 

(Gene Expression Profiling In Silico) compare expression levels between EST libraries from normal and 

cancerous tissues.  However, they assume the reported EST counts to be correct without employing a quality 

control method for the underlying data which would enable the identity of each library to be verified 

independently of any external information.  A quality control method is required because the methods used to 

generate EST libraries may also introduce biases into EST data (Liu and Graber, 2004).  For example, during 

any one cycle of a PCR reaction one DNA molecule can be amplified more than once (Song, 2003).  This 

disproportionate amplification will lead to abnormally high expression levels of those sequences appearing in 

the final results (Ray et al, 2004)   Errors can also be introduced from the fact that multiple polyadenylate 

repeats are found in a significant percentage of mRNA species contain multiple polyadenylation sites, 

potentially leading to multiple ESTs being produced from one transcript (Beaudoing et al, 2000). 

Analysis of expression data for quality control purpose has been attempted previously (Huminiecki et al, 

2003). Three databases were compared – Gene Expression Atlas (oligonucleotide microarray data), SAGEmap 

(SAGE libraries) and TissueInfo (EST libraries). Because these databases use different formats for sample 

annotation and use different statistical methods for data analysis, a method called Preferential Expression 

Measure (PEM) was devised to score differential expression of genes in libraries grouped into six different 

tissue categories in three databases. Inter-database correlations were measured and were found to vary between 

tissues.  However, inter-library correlations have yet to be applied as a quality control method within one 

database (Huminiecki et al, 2003). 

In a more recent study, data for 8,570 genes across 46 human tissues from the Gene Expression Omnibus 

(an Affymetrix microarray data repository) were categorised according to tissue specificity and subcellular 

localisation of their protein product (Li et al, 2011). The analysis revealed that widely expressed genes have 

higher expression levels than genes which are expressed in one or a few tissues (Li et al, 2011). 

While many quality control methods were previously suggested, they only focussed on the whole genome 

(Liang et al, 2006)  or covered aspects of the data such as GC content (Arhondakis et al, 2006), with few 

investigations focusing on tissue-specificity (Russ and Futschik, 2010). A common shortcoming of previous 



 

reports is that tissue specificity of the genes was reported (Hu et al, 2000) (Krief et al, 1999) (Miner and 

Rajkovic, 2003) (Pao et al, 2006) (Vaes et al, 2002) but no attempts were made to use such data for quality 

control or evaluation.  Moreover, even unique "tissue specific genes" might be of little use if they are expressed 

at low levels and would therefore be absent in many smaller libraries. Furthermore, many existing tools and 

databases, including CGAP, are simply information retrieval tools, lacking methods for verification of the EST 

counts and sample origins. The EST counts are assumed to be correct and the libraries to be correctly annotated 

(Elfilali et al, 2006) (Strausberg et al, 2002) (Zhang et al, 2004).  The existing algorithms used to analyse 

expression data place the emphasis on identification of the degree of over/under-expression for tissue/disease-

specific genes by comparing EST counts between two library groups without evaluating the quality of the 

expression data or the origins of the experimental material used, these are simply assumed to be correct and no 

numerical methods for their verification are made available (Elfilali et al, 2006) (Strausberg et al, 2002) (Zhang 

et al, 2004). It is not surprising that many such tissue distribution resources are quickly superseded by more 

recent developments or are being taken off-line (Brown et al, 2004) (Kawamoto et al, 1996) (Okubo et al, 

1992) (Skrabanek and Campagne, 2001). 

 

2 A NEW APPROACH TO THE 

QUALITY CONTROL OF 

EXPRESSION DATA 

Tissue phenotype depends on the pattern of gene 
expression in the tissue as well as the influence of 
environmental factors. Therefore the pattern of gene 
expression in the identical tissues if probed under 
similar conditions is likely to be similar or nearly 
identical. Thus comparing global gene expression 
data in the form of EST expression levels between 
similarly prepared EST libraries from the identical 
tissues is close to "+1" (data not shown). 

We hypothesised that a smaller subset of genes 
can be generated and used for the same purpose of 
identifying or checking EST libraries prior to further 
analysis. The main challenge was therefore finding a 
small enough subset of genes sufficient for the task. 
One other major challenge was to ensure that even 
small EST expression libraries often having less than 
~ 1,000, or even less than ~ 100 EST counts are still 
identifiable. For these and other reasons we could 
not rely on the so called "tissue specific" markers, 
expression of which, whilst being specific in most 
cases, is often rather low, resulting in their absence 
from many medium size and smaller libraries. 

We have hypothesised that the identity of non-
normalised and non-subtracted expression libraries 
from normal non-cancerous (healthy) tissues may be 
inferred from a pattern of expression of such a 
subset of genes. Such an expression patterns is a 
more biologically relevant phenomenon rather than 
hypothetical "yes/no" pattern expected of the so 
called "tissue specific" genes. We have further 
hypothesised that removal of potentially 
differentially expressed genes and the ones which 
express constitutively should further improve the 
accuracy of tissue typing. To this end we have used 

a set of EST expression libraries available from 
CGAP database (cgap.nci.nih.gov/Info/CGAPDownload.) 
to find such a reduced and optimised expression 
dataset. 

 

2.1 Finding Tissue specific transcripts 
and generating EST expression matrices 

Initial lists of 2,295 tissue-specific transcripts and 

37,575 transcripts found in non-normalised non-

cancerous libraries from many tissues were obtained 

from the CGAP database.  We selected UniGene IDs 

which appeared to be the most abundant in their 

target tissues relative to all the other tissues and 

which were also abundant in absolute terms in the 

relevant target tissues. The high relative abundance 

(high odds ratio) defines the tissue specificity. The 

high absolute abundance (above 0.1%) was chosen 

to ensure that such transcripts would still be found 

even in smaller libraries with small number of total 

EST counts. Up to thirty individual transcripts were 

eventually selected using these criteria, from each of 

the individual tissue types. The analysis of 25 human 

tissues yielded just over 1,000 transcripts of which 

about half were expressed in more than one tissue 

type, making our approach different from the ones 

reliant onto the "tissue specific" genes which are not 

supposed to be expressed in more than one specific 

tissue.  We then attempted to optimise our selection. 

For the majority of the tissues, the original 

selection was made based on the very small number 

of libraries available in CGAP for those tissues 

(typically 2-4 libraries, with brain and placenta 

being exceptions where more than 10 libraries were 

available). Because of that and also because of the 

stringent selection requirements, it was reasonable to 

assume that some suitable transcripts could have 

been omitted because of the very limited choice of 

libraries available for the analysis and not because of 

them being unsuitable tissue markers.  Therefore, a 



 

search was undertaken for additional candidate 

transcripts by looking solely into individual EST 

counts across 155 non-normalised libraries from all 

non-cancerous tissue types. Genes having expression 

patterns similar to the original list of ~ 1,000 ESTs 

across all of the libraries were selected, which 

expanded the list of potential marker genes to 1,437 

transcripts. 

Because of the relaxed criteria used for selecting 

the potential tissue markers, and in order to find the 

best makers and also to reduce the list to a more 

manageable size we attempted to optimise the 

selection using new selection criteria independent of 

the ones used in the original rounds of selection. For 

this first round the EST counts for the 1,437 

transcripts were summed together from all the 

libraries in each tissue to make a super-library for 

that tissue.  All possible Pearson correlations were 

calculated between all of such super-libraries 

(equation 1). 

 

 

(1) 

 

Where x and y are the EST count for the 

transcript concerned in super-libraries X and Y 

respectively, where m and n are the mean EST 

counts across all 1,437 transcripts in super-libraries 

X and Y, respectively, and where Correl(X,Y) is the 

calculated Pearson Correlation Coefficient between 

the two super-libraries. 

Higher correlation value here means higher 

inter-tissue correlation and is undesirable; ideally all 

such inter-tissue correlations should be equal to "0". 

Hence we calculated sum of squares of deviations of 

the calculated correlation value from "1" (equation 

2). 

 

(2) 

 

Where Correl is the calculated Pearson 

Correlation coefficient between two super-libraries 

and where S is the calculated sum of squares value 

for the correlations between all possible pairs of 

super-libraries. 

Individual genes were then removed and the 

correlation values and the equation (2) total were 

recalculated. Gene, removal of which resulted in the 

lowest overall inter-tissue correlations' (as calculated 

per equation (2)) was permanently removed and the 

iteration steps were repeated again. The decrease in 

inter-tissue correlations slowed shortly before the 

1,000th gene was removed (Figure 1). The 

remaining ~ 500 genes included the set of high-

quality tissue-specific markers and these were 

retained. A similar optimisation was then repeated 

for the remaining ~ 500 genes but this time we 

aimed to improve intra-tissue correlations between 

the individual libraries from within the same tissues 

and hence used the original individual EST libraries, 

rather than the super libraries (data not 

shown).Transcripts were removed one by one and 

the correlations recalculated. The transcript whose 

removal resulted in the improvement of intra-tissue 

correlation was permanently removed.  The finally 

optimised set of tissue-specific markers contained 

244 transcripts for which EST expression matrix 

(244 transcripts x 26 tissues) was created. 

 

 
Figure 1: Inter-tissue correlation during optimization 
of marker list for genes with improved tissue 
specificity.  The increase in the sum of squares value 
(which corresponds to a decrease in the inter-tissue 
correlation) (y-axis) is plotted against the gene 
removal iteration (x-axis), after each of which the 
gene was permanently removed whose temporary 
removal had produced the greatest improvement in 
the tissue-specificity of the gene list. 
 
2.2 Confirming identity of known 
libraries of varying sizes using inter-
tissue correlations using EST expression 
matrix 

Correlation values between tissue expression 

profiles of the 244 transcripts from the EST 

expression matrix and the relevant EST counts from 

113 largest libraries representing 26 main human 

tissues were calculated. The correlation data for a 

group of tissues which contained libraries for which 

virtually no inter-tissue correlation was found, and 

where all the libraries shown good positive 

correlation (values ranging approximately within 

+0.2 to +1) with the relevant source tissues but not 

with any of the other tissues. Figure 2 summarises 

the results for five such representative tissues where 



 

correlation levels clearly confirm the identity of each 

of the individual EST libraries. 

Further, in order to systematically investigate the 

robustness of this approach, we used modelled EST 

data to simulate small EST expression datasets. 

These were generated from the reported EST 

expression data taken from CGAP database, by 

proportionally reducing the reported EST counts and 

rounding any fractional values to the nearest whole 

EST count each time until each library ceased to 

present any ESTs mapping onto the 244 marker 

transcripts or ceased to be identified as a positive 

tissue match for the tissue from which it was created 

in the first place. Using this approach we gradually 

scaled down the real EST expression data and 

compared all of the generated model libraries with 

the original libraries including from all the other 

tissues by calculating the correlation values for the 

244 UniGene IDs from our optimised matrix set 

(Figure 3 – Figure 7). Virtually every library 

continues to correlate well with the tissue of origin 

until the very last UniGene ID and the last EST 

mapping onto one of the transcripts in the matrix is 

removed.  Furthermore, we realised that the majority 

of the scaled down libraries remain identifiable until 

the total library EST counts falls below the range of 

10 to 50 which is equal to some of the 

 

smallest libraries currently in the CGAP database. 

Our results are summarised in Tables 1-5, which 

report tissue matching results for each of the original 

EST libraries used and the relevant scaled down 

model data sets. The initial and the final (reduced) 

number of total ESTs are shown and the relevant 

correlation values are indicated for each pair. 

Remarkably, the final mapped EST counts across all 

transcripts in each library which still yield positive 

intra-tissue correlation for the transcripts in the 

matrix are below 100 ESTs for all but 3 libraries 

tested and are below 10 total ESTs for 15 out of 33 

libraries tested. The quality of tissue typing does not 

change dramatically and for lung the correlations it 

actually improved as the total EST counts were 

reduced.  These findings show that the matrix can be 

used to confirm the tissue identity of very small 

libraries, making it a very robust method for the 

quality control of expression libraries and tissue 

typing. 

 
Figure 2: Correlation of the EST matrix with individual libraries from matching tissues showing no inter-tissue 

correlation. Pearson product-moment correlation coefficients (vertical axes) calculated for each of the individual EST 

libraries and the EST expression matrix. A:  Placental libraries. B: Lung libraries. C: Pancreatic libraries. D: Retinal 

libraries. E: Testis libraries.  Used with permission (Milnthorpe and Soloviev, 2012). 
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Figure 3: Correlation of the EST matrix with individual libraries of reduced size from lung tissue.  Pearson product-

moment coefficients (vertical axes) calculated for each individual EST library and the EST expression matrix.  A: 

original libraries.  B: Reduced to 50% of original size.  C: 20% of original size.  D: reduced to 10% of original counts.  

E: lowered to 5% of original size. F: lowered to 2% of original size. G: reduced to 1% of original size.  H: lowered to 

0.5% of original size. The original sizes for each of the libraries used are listed in Table 1. 
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Figure 4: Correlation of the EST matrix with individual libraries of gradually reduced size from pancreas.  Pearson 

product-moment coefficients (vertical axes) calculated for each individual EST library and the EST expression matrix.  

A: original libraries.  B: Reduced to 50% of original size.  C: 20% of original size.  D: reduced to 10% of original 

counts.  E: lowered to 5% of original size. F: lowered to 2% of original size. G: reduced to 1% of original size. H: 

reduced to 0.5% of original size.  The original sizes for each of the libraries used are listed in Table 2. 
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Figure 5: Correlation of the EST matrix with individual libraries of gradually reduced size from placenta.  Pearson 

product-moment coefficients (vertical axes) calculated for each individual EST library and the EST expression matrix.  

A: original libraries.  B: Reduced to 50% of original size.  C: 20% of original size.  D: reduced to 10% of original 

counts.  E: lowered to 5% of original size. F: lowered to 2% of original size. G: reduced to 1% of original size.  H: 

lowered to 0.5% of original size.  The original sizes for each of the libraries used are listed in Table 4. 
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Figure 6: Correlation of the EST matrix with individual libraries of gradually reduced size from retina.  Pearson 

product-moment coefficients (vertical axes) calculated for each individual EST library and the EST expression matrix.  

A: original libraries.  B: Reduced to 50% of original size.  C: 20% of original size.  D: reduced to 10% of original 

counts.  E: lowered to 5% of original size. F: lowered to 2% of original size. G: reduced to 1% of original size.  The 

original sizes for each of the libraries used are listed in Table 3. 



A 

 
B 

 
C 

 
D 

 
E 

 
F 

 
G 

 
H 

 
Figure 7: Correlation of the EST matrix with individual libraries of gradually reduced size from testis.  Pearson 

product-moment coefficients (vertical axes) calculated for each individual EST library and the EST expression matrix.  

A: original libraries.  B: Reduced to 50% of original size.  C: 20% of original size.  D: reduced to 10% of original 

counts.  E: lowered to 5% of original size. F: lowered to 2% of original size. G: reduced to 1% of original size.  H: 

lowered to 0.5% of original size.  The original sizes for each of the libraries used are listed in Table 5. 



Table 1:Library sizes and correlations for EST libraries from lung. 

Library Name Original library, 

the number of 

mapped1 ESTs 

Positive correlation 

with the tissue of 

origin using EST 

expression matrices2 

Modelled scaled 

down library, the 

number of 

remaining ESTs3 

Positive correlation with the 

tissue of origin for the 

modelled scaled down library 

using the same matrices4 

Human Lung 536 0.40 461 0.48 

Stratagene lung 

(#937210) 

8,511 0.89 10 0.78 

Human adult lung 3' 

directed MboICdna 

257 0.80 255 0.62 

Lung 401 0.85 6 0.76 

Fetal lung II 1,289 0.48 83 0.55 

NIH_MGC_77 12,494 0.95 11 0.88 

Table 2:Library sizes and correlations for EST libraries from pancreas. 

Library Name Original library, 

the number of 

mapped1 ESTs 

Positive correlation 

with the tissue of 

origin using EST 

expression matrices2 

Modelled scaled 

down library, the 

number of 

remaining ESTs3 

Positive correlation with the 

tissue of origin for the 

modelled scaled down library 

using the same matrices4 

Human Pancreas 249 0.67 231 0.67 

Barstead pancreas 

HPLRB1 

709 0.81 4 0.39 

NCI_CGAP_Pan3 356 0.86 4 0.60 

NIH_MGC_78 557 0.82 2 0.46 

Pancreatic Islet 1,789 0.83 4 0.50 

Table 3: Library sizes and correlations for EST libraries from retina. 

Library Name Original library, 

the number of 

mapped1 ESTs 

Positive correlation 

with the tissue of 

origin using EST 

expression matrices2 

Modelled scaled 

down library, the 

number of 

remaining ESTs3 

Positive correlation with the 

tissue of origin for the 

modelled scaled down library 

using the same matrices4 

Soares retina N2b4HR 9,160 0.91 13 0.54 

Soares retina N2b5HR 1,722 0.62 7 0.24 

Human retina 

cDNATsp509I-

cleavedsublibrary 

706 0.64 4 0.49 

Human retina cDNA 

randomly primed 

sublibrary 

2,169 0.64 18 0.53 

Retina II 1,171 0.56 18 0.37 
 

1 Mapped ESTs are the ESTs in each library which map onto transcripts. 
2 Using the matrices and as described in “Confirming identity of known libraries of varying sizes using inter-tissue 

correlations using EST expression matrix” 
3 Each individual library was scaled down to model a smaller EST library and any fractional EST counts were rounded to 

the nearest whole number. The reduced modelled EST counts below "0.5" were rounded down to "0".  
4 Gradual disappearance of low abundant ESTs resulted in the progressive change lowering in of the positive correlation 

with the tissue of origin and in many cases the eventual loss of that correlation. Each library was scaled down until such 

positive correlation was lost. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Library sizes and correlations for EST libraries from placenta. 

Library Name Original library, 

the number of 

mapped1 ESTs 

Positive correlation 

with the tissue of 

origin using EST 

expression matrices2 

Modelled scaled 

down library, the 

number of 

remaining ESTs3 

Positive correlation with the 

tissue of origin for the 

modelled scaled down library 

using the same matrices4 

Human Placenta 276 0.60 7 0.35 

Stratagene placenta 

(#937225) 

2,784 0.79 31 0.69 

Clontech human 

placenta polyA+ 

mRNA (#6518) 

705 0.45 34 0.35 

Soares_placenta_8to9

weeks_2NbHP8to9W 

13,929 0.70 7 0.58 

Human placenta 

polyA+ (TFujiwara) 

405 0.53 13 0.42 

Human placenta cDNA 

(TFujiwara) 

1,367 0.66 24 0.35 

Placenta II 662 0.26 2 0.26 

Placenta I 1,168 0.33 11 0.15 

NIH_MGC_79 9,271 0.67 10 0.42 

NCI_CGAP_Pl1 1,856 0.74 2 0.50 

NCI_CGAP_Pl4 1,261 0.74 21 0.46 

Homo sapiens 

PLACENTA 

11,864 0.50 69 0.33 

Table 5:Library sizes and correlations for EST libraries from testis. 

Library Name Original library, 

the number of 

mapped1 ESTs 

Positive correlation 

with the tissue of 

origin using EST 

expression matrices2 

Modelled scaled 

down library, the 

number of 

remaining ESTs3 

Positive correlation with the 

tissue of origin for the 

modelled scaled down library 

using the same matrices4 

TEST1, Human adult 

Testis tissue 

326 0.22 7 0.22 

Human Testis 293 0.48 4 0.22 

Testis I 1,525 0.56 1 0.47 

NIH_MGC_82 7,602 0.96 4 0.55 

NIH_MGC_180 4,984 0.44 17 0.22 
 

1 Mapped ESTs are the ESTs in each library which map onto transcripts. 
2 Using the matrices and as described in “Confirming identity of known libraries of varying sizes using inter-tissue 

correlations using EST expression matrix” 
3 Each individual library was scaled down to model a smaller EST library. and any fractional EST counts were rounded to 

the nearest whole number. The reduced modelled EST counts below "0.5" were rounded down to "0".  
4 Gradual disappearance of low abundant ESTs resulted in the progressive change lowering in of the positive correlation 

with the tissue of origin and in many cases the eventual loss of that correlation. Each library was scaled down until such 

positive correlation was lost. 

 



3 DISCUSSION 

In our quest to create a quality control method 

based purely on the expression data itself, we 

initially selected 1,437 transcripts, and then 

performed two rounds of optimisation to reduce 

inter-tissue correlations and improve intra-tissue 

correlations to produce a final list of transcripts.  As 

a result, the 244 chosen transcripts are highly 

abundant in the tissue of interest when compared to 

all other tissues (high odds ratio), but are not 

necessarily the "tissue specific" markers in the 

traditional understanding of this term, as many are 

expressed in more than one distinct tissue. 

An EST expression matrix of these markers in 26 

tissues was created and used as the control against 

which other libraries were compared. The findings 

presented in Figure 3 – Figure 7 and Table 1 – Table 

5 show that the EST expression matrix is capable 

identifying the tissue of origin for expression 

libraries of different sizes containing between as 

little as ~ 1 EST counts (modelled scaled down 

library Testis I) and up to 13,929 EST counts 

(Soares_placenta_8to9weeks_2NbHP8to9W).These 

findings show that tissue-specific gene expression 

can be used as a quality control method.  

Earlier investigations focussed on the whole 

genome (Liang et al, 2006), or studied aspects such 

as GC content (Arhondakis et al, 2006) or did not 

use tissue-specific gene expression data for quality 

control or evaluation purposes (Hu et al, 2000) 

(Krief et al, 1999) (Miner and Rajkovic, 2003) (Pao 

et al, 2006) (Vaes et al, 2002), (Russ and Futschik, 

2010). Furthermore, tissue-specific genes have been 

identified in this investigation which are also highly 

expressed in their target tissues, unlike the tissue-

specific genes reported previously in (Li et al, 2011). 

This study is also an improvement on many existing 

search tools and secondary databases, including 

those hosted by CGAP, which are merely 

information repositories and retrieval algorithms 

with few numerical procedures for verifying the 

reported EST counts and the origins of the samples 

studied, both of which are assumed to be accurately 

reported (Elfilali et al, 2006) (Strausberg et al, 2002) 

(Zhang et al, 2004). 

The reported EST expression matrix can be used 

to confirm tissue identities of EST expression 

datasets for all main human tissue types, to provide 

insight into the origin of uncharacterised libraries 

and to identify various experimental artefacts. The 

next step is to further improve this method by 

incorporating other gene expression data, such as 

SAGE data (Leyritz et al, 2008), DNA microarray 

data (Baron et al, 2011) and northern blots (Schlamp 

et al, 2008). It is envisaged that with the increasing 

amounts of expression data, the optimised 

expression data set could be generated and the tissue 

range might be further expanded. It is also envisaged 

that increasing amounts of available data may allow 

accurate analysis and tissue typing of the related and 

dependent tissues. 

4 CONCLUSION 

An EST expression matrix has been optimised 

and tested here on EST libraries of a range of sizes.  

We showed that the tissue type annotations of EST 

libraries could be verified by using a small 

expression matrix. Furthermore, the robustness of 

the new quality control method was confirmed by 

using it to correctly identity libraries which contain 

only a handful of ESTs. 
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