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Abstract

The paper applies the method of defensive forecasting, based on the use of game-
theoretic supermartingales, to prediction with expert advice. In the traditional
setting of a countable number of experts and a finite number of outcomes, the
Defensive Forecasting Algorithm is very close to the well-known Aggregating
Algorithm. Not only the performance guarantees but also the predictions are
the same for these two methods of fundamentally different nature. The paper
discusses also a new setting where the experts can give advice conditional on the
learner’s future decision. Both the algorithms can be adapted to the new setting
and give the same performance guarantees as in the traditional setting. Finally,
an application of defensive forecasting to a setting with several loss functions is
outlined.

1. Introduction

The framework of prediction with expert advice was introduced in the late
1980s. In contrast to statistical learning theory, the methods of prediction with
expert advice do not require statistical assumptions about the source of data.
The role of the assumptions is played by a “pool of experts”: the forecaster,
called Learner, bases his predictions upon the predictions and performance of
the experts. For details and references, see the monograph [6].

Many methods for prediction with expert advice are known. This paper deals
with two of them: the Aggregating Algorithm [24] and defensive forecasting [26].
The Aggregating Algorithm (the AA for short) is a member of the family of
exponential-weights algorithms and implements a Bayesian-type aggregation;
various optimality properties of the AA have been established [25]. Defensive
forecasting is a recently developed technique that combines the ideas of game-
theoretic probability [21] with Levin and Gács’s ideas of neutral measure [10, 16]
and Foster and Vohra’s ideas of universal calibration [8].

The idea of defensive forecasting comes from an interpretation of probability
with the help of perfect information games. The Learner develops his strategy
modeling a game where a probability forecaster plays on the actual data against
an imaginary opponent, Sceptic, that represents a law of probability. The cap-
ital of Sceptic tends to infinity (or becomes large) if the players’ moves lead to
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violation of this law. The capital of a strategy for Sceptic as a function of other
players’ moves is called a (game-theoretic) supermartingale. It is known (see
Lemma 4 in this paper) that for any supermartingale there is a forecasting strat-
egy that prevents this supermartingale from growing (“defending” against this
strategy of Sceptic), thereby forcing the corresponding law of probability. The
older versions of defensive forecasting (see, e.g., [26]) minimize Learner’s actual
loss with the help of the following trick: a forecasting strategy is constructed so
that the actual losses (Learner’s and experts’) are close to the (one-step-ahead
conditional) expected losses; at each step Learner minimizes the expected loss
(that is, the law of probability used in this case is the conjunction of several laws
of large numbers). This paper gives a self-contained description of a different
version of the defensive forecasting method. We use certain supermartingales
and do not need to talk about the underlying laws of probability.

Defensive forecasting, as well as the AA, can be used for competitive online
prediction against “pools of experts” consisting of all functions from a large
function class (see [27, 28]). However, the loss bounds proved so far are gen-
erally incomparable: for large classes (such as many Sobolev spaces), defensive
forecasting is better, whereas for smaller classes (such as classes of analytical
functions), the AA works better. Note that the optimality results for the AA
are obtained for experts that are free agents, not functions from a given class;
thus we need to evaluate the algorithms anew. This general task requires a
deeper understanding of the properties of defensive forecasting.

In this paper, the AA and defensive forecasting are discussed in the simple
case of a finite number of outcomes. Learner competes with a countable pool
of Experts Θ. Experts and Learner give predictions and suffer some loss at
each step. A game is a specification what predictions are admissible and what
losses a prediction incur for each outcome. For every game, we are interested in
performance guarantees of the form

∀θ ∈ Θ ∀N LN ≤ cLθ
N + aθ ,

where LN is the cumulative loss of Learner and Lθ
N is the cumulative loss of

Expert θ over the first N steps, c is some constant and aθ depends on θ only.
Section 2 recalls the AA and its loss bound (Theorem 1) and introduces notation
used in the paper.

Section 3 presents the main results of the paper. Subsection 3.1 describes
the Defensive Forecasting Algorithm (DFA), which is based on the use of game-
theoretic supermartingales, and its loss bound (Theorem 5). It turns out that
if the AA and the DFA are both applicable to a game, they guarantee the same
loss bound. Subsections 3.3–3.6 discuss when the DFA and the AA are applica-
ble. Loosely speaking, if the DFA is applicable then the AA is applicable as well
(Theorem 9); and for games satisfying some additional assumptions, if the AA
is applicable then the DFA is applicable (Theorems 13 and Theorem 20). Sub-
section 3.7 gives a criterion of the AA realizability in terms of supermartingales
(Theorem 22) using a rather awkward variant of the DFA. The construction of
the supermartingales used in this paper involves a parameterization of the game
with the help of a proper loss function. Proper loss functions play an impor-
tant role in Bayesian statistics, and their meaning in our context is discussed in
Subsections 3.4 and 3.6.

The rest of the paper is devoted to modifications of the standard setting.
Subsection 3.8 applies the DFA in an extended setting where the outcomes form
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a finite-dimensional simplex. Section 4 introduces a new setting for predic-
tion with expert advice, where the experts are allowed to “second-guess”, that
is, to give “conditional” predictions that are functions of the future Learner’s
decision (cf. the notion of internal regret [9]). If the dependence is regular
enough (namely, continuous), the DFA works in the new setting virtually with-
out changes (Theorem 26). The AA with some modification based on the fixed
point theorem can be applied in the new setting too (Theorem 29). Section 5
briefly outlines one more application of the DFA: a setting with several loss
functions.

Some results of the paper appeared in [29] and in ALT’08 proceedings [4].

2. Games of Prediction and the Aggregating Algorithm

We begin with formulating the setting of prediction with expert advice.
A game of prediction consists of three components: a non-empty set Ω of
possible outcomes, a non-empty set Γ of possible decisions, and a function
λ : Γ× Ω → [0,∞] called the loss function. In this paper we assume that the
set Ω is finite.

The set Λ = { g ∈ [0,∞]Ω | ∃γ ∈ Γ∀ω ∈ Ω g(ω) = λ(γ, ω) } is called the
set of predictions of the game. In this paper, we will identify each decision
γ ∈ Γ with the function ω 7→ λ(γ, ω) (and also with a point in a |Ω|-dimensional
Euclidean space with pointwise operations). A loss function can be considered
as a parameterization of Λ by elements of Γ. To study the properties of a game,
we do not need to know the decision set Γ and the loss function; we can forget
about them and consider the prediction set Λ only. From now on, a game will
by specified by a pair (Ω,Λ), where Λ ⊆ [0,∞]Ω. We will use the letter γ (as
well as g) with indices to denote elements of [0,∞]Ω (rather than decisions).

However, loss functions remain a convenient method to specify a game, and
we will use them in examples. Also an important technical tool will be a kind
of canonical parameterization of Λ given by the so called proper loss functions.
Also loss functions are unavoidable in Section 5, where we consider games with
several simultaneous losses.

The game of prediction with expert advice is played by Learner, Experts,
and Reality; the set (“pool”) of Experts is denoted by Θ. We will assume that Θ
is (finite or) countable. There is no loss of generality in assuming that Reality
and all Experts are cooperative, since we are only interested in what can be
achieved by Learner alone; therefore, we essentially consider a two-player game.
The game is played according to Protocol 1.

Protocol 1 Prediction with Expert Advice
L0 := 0.
Lθ

0 := 0, for all θ ∈ Θ.
for n = 1, 2, . . . do

All Experts θ ∈ Θ announce γθ
n ∈ Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + γθ

n(ωn), for all θ ∈ Θ.
end for
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The goal of Learner is to keep Ln smaller or at least not much greater than
Lθ

n, at each step n and for all θ ∈ Θ.
To analyze the game, we need some additional notation. A point g ∈ [0,∞]Ω

is called a superprediction in the game (Ω,Λ) if there is γ ∈ Λ such that
γ(ω) ≤ g(ω) for all ω ∈ Ω. It is convenient to write the last condition as γ ≤ g.
In the sequel, we will use pointwise relations and operations for the elements of
[0,∞]Ω without special mentioning.

For a game (Ω,Λ), denote by ΣΛ the set of all superpredictions. Using
operations on sets, this definition can be written as ΣΛ = Λ + [0,∞]Ω =
{γ + g | γ ∈ Λ, g ∈ [0,∞]Ω}.

The Aggregating Algorithm is a strategy for Learner. It has four parameters:
reals c ≥ 1 and η > 0, a distribution P0 on Θ (that is, P0(θ) ∈ [0, 1] for every
θ ∈ Θ and

∑
θ∈Θ P0(θ) = 1), and a substitution function σ : ΣΛ → Λ such that

σ(g) ≤ g for any g ∈ ΣΛ.
At step N , the AA computes gN ∈ [0,∞]Ω by the formula

gN (ω) = − c

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (ω))

)
,

where

PN−1(θ) = P0(θ)
N−1∏
n=1

exp(−ηγθ
n(ωn))

is the (posterior) distribution on Θ. Then, γN = σ(gN ) is announced as
Learner’s prediction.

The step N of the AA can be performed if and only if gN is a superprediction
(gN ∈ ΣΛ), that is, if

∃γN ∈ Λ ∀ω γN (ω) ≤ − c

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ′∈Θ PN−1(θ′)

exp(−ηγθ
N (ω))

)
. (1)

We say that the AA is (c, η)-realizable (for the game (Ω,Λ)) if condition (1)
is true regardless of Θ, N , γθ

N ∈ Λ and PN−1 (that is, regardless of P0, the
history of the previous moves, and the opponents’ moves at the last step). This
requirement can be restated in several equivalent forms: for any finite set G ⊆ Λ
and for any distribution ρ on G, it holds that

∃γ ∈ Λ γ ≤ − c

η
ln

∑
g∈G

ρ(g) exp(−ηg)

 ; (2)

or equivalently, for any finite G ⊆ ΣΛ and any distribution ρ on G, it holds that

∃γ ∈ ΣΛ γ ≤ − c

η
ln

∑
g∈G

ρ(g) exp(−ηg)

 ; (3)

equivalently, in the last formula ≤ can be replaced by =. Indeed, the condi-
tion (1) implies (2) since γθ

N and P0 are arbitrary; G ⊆ Λ can be replaced by
G ⊆ ΣΛ since the right-hand side of (2) increases when elements of G increase;
by definition, (2) means that its right-hand side belongs to ΣΛ, and we get (3)
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with = instead of ≤. Clearly, (1) follows from (3), if we allow countably infinite
G as well (then we can take {γθ

N | θ ∈ Θ} for G), which is possible due to the
following property of convex sets.

For a given η, the exp-convex hull of ΣΛ is the set Ση
Λ ⊇ ΣΛ that consists of

all points in [0,∞]Ω of the form

log(e−η)

∑
g∈G

ρ(g)
(
e−η
)g = −1

η
ln

∑
g∈G

ρ(g) exp(−ηg)

 , (4)

where G is a finite subset of ΣΛ and ρ is a distribution on G. Actually,
exp(−ηΣη

Λ) is the convex hull of exp(−ηΣΛ). As known from convex analysis,
we get the same definition if we allow infinite G (see e. g. [2, Theorem 2.4.1]).
With this notation, the condition (3) says that ΣΛ ⊇ cΣη

Λ.
Let us state some properties of the set Ση

Λ. First, Ση
Λ = Ση

Λ + [0,∞]Ω, that
is, if Ση

Λ is a prediction set then its superprediction set is Ση
Λ itself. (Indeed,

if a point g0 of the form (4) belongs to Ση
Λ as a combination of gi ∈ G ⊆ ΣΛ

then, for any g ∈ [0,∞]Ω, the point g0 + g belongs to Ση
Λ as the combination

of gi + g.) The set exp(−ηΣη
Λ) is convex (clearly, the points of the form (4)

belong to Ση
Λ also if we allow G ⊆ Ση

Λ). The convexity of exponent implies
that the set Ση

Λ is convex as well (if g1, g2 ∈ Ση
Λ then αg1 + (1 − α)g2 ≥

− 1
η ln
(
α exp(−ηg1) + (1− α) exp(−ηg2)

)
and hence αg1 + (1− α)g2 ∈ Ση

Λ too).
The game (Ω,Λ) is called η-mixable if the AA is (1, η)-realizable, that is, if

ΣΛ = Ση
Λ. The game is mixable if it is η-mixable for some η > 0. The mixable

games are of special interest. In a sense, the AA works with mixable games
only, and to any non-mixable game (Ω,Λ) the AA assigns the η-mixable game
(Ω,Ση

Λ) and then simply transfers the loss bound (at the price of a constant
factor). Standard examples of mixable games are the square loss game [25,
Example 4], which is η-mixable for η ∈ (0, 2], and the logarithmic loss game [25,
Example 5], which is η-mixable for η ∈ (0, 1]; see Subsection 3.2. A standard
example of a non-mixable game is the absolute loss game [25, Example 3] with
the loss function λ(p, ω) = |p − ω|, p ∈ [0, 1], ω ∈ {0, 1} (its prediction set Λ
is {(x, y) ∈ [0, 1]2 | x + y = 1}); for the absolute loss game, the AA is (c, η)-
realizable for η > 0 and c ≥ η/(2 ln(2/(1 + e−η))).

A detailed survey of the AA, its properties, attainable bounds and realizabil-
ity conditions for a number of games can be found in [25]. Here we reproduce
the proof of the main loss bound in the form that motivates our further study.

Theorem 1 ([24]). If the AA is (c, η)-realizable then the AA with parameters
c, η, P0, and σ guarantees that, at each step N and for all experts θ, it holds

LN ≤ cLθ
N +

c

η
ln

1
P0(θ)

.

Proof. We need to deduce the performance bound from the condition (1). To
this end, we will rewrite (1) and get a semi-invariant of the AA—a value that
does not grow. Indeed, the inequality (1) is equivalent to∑

θ∈Θ

PN−1(θ) ≥
∑
θ∈Θ

PN−1(θ) exp(−ηγθ
N (ω)) exp

(η

c
γN (ω)

)
.
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Multiplying both sides by
∏N−1

n=1 exp
(

η
c γn(ωn)

)
(which is independent of θ and

hence can be placed under the sum), and expanding PN−1, we get

∑
θ∈Θ

P0(θ)
N−1∏
n=1

exp(−ηγθ
n(ωn))

N−1∏
n=1

exp
(η

c
γn(ωn)

)

≥
∑
θ∈Θ

P0(θ)
N−1∏
n=1

exp(−ηγθ
n(ωn))

N−1∏
n=1

exp
(η

c
γn(ωn)

)
× exp(−ηγθ

N (ω)) exp
(η

c
γN (ω)

)
,

that is,∑
θ∈Θ

P0(θ)QN−1(θ) ≥
∑
θ∈Θ

P0(θ)QN−1(θ) exp
(

η

(
γN (ω)

c
− γθ

N (ω)
))

where QN−1 is defined by the formula:

QN−1(θ) = exp

(
η

N−1∑
n=1

(
γn(ωn)

c
− γθ

n(ωn)
))

.

That is, the condition (1) is equivalent to

∃γN ∈ Λ ∀ω
∑
θ∈Θ

P0(θ)Q̃N (θ) ≤
∑
θ∈Θ

P0(θ)QN−1(θ) , (5)

where Q̃N is the result of substituting ω for ωN in QN .
In other words, the AA (when it is (c, η)-realizable) guarantees that af-

ter each step n the value
∑

θ∈Θ P0(θ)Qn(θ) does not increase whatever ωn

is chosen by Reality. Since
∑

θ∈Θ P0(θ)Q0(θ) =
∑

θ∈Θ P0(θ) = 1, we get∑
θ∈Θ P0(θ)QN (θ) ≤ 1 and QN (θ) ≤ 1/P0(θ) for each step N . To complete

the proof it remains to note that

QN (θ) = exp
(

η

(
LN

c
− Lθ

N

))
. �

For c = 1, the value 1
η ln (

∑
θ P0(θ)QN (θ)) is known as the exponential

potential (see [6, Sections 3.3, 3.5]) and plays an important role in the analysis
of weighted average algorithms. In the next section we show that the reason why
condition (5) can be satisfied is essentially that the function

∑
θ P0(θ)QN (θ) is

a supermartingale.

3. Supermartingales and the AA

Let P(Ω) be the set of all distributions on Ω. Note that since Ω is finite
we can identify P(Ω) with a (|Ω| − 1)-dimensional simplex in Euclidean space
R|Ω| equipped with the standard distance and topology. Let E be any non-
empty set. A real-valued function S defined on (E × P(Ω) × Ω)∗ is called a
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(game-theoretic) supermartingale if for any N , for any e1, . . . , eN ∈ E, for any
π1, . . . , πN ∈ P(Ω), for any ω1, . . . , ωN−1 ∈ Ω, it holds that∑

ω∈Ω

πN (ω)S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1, eN , πN , ω)

≤ S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) . (6)

For N = 1, the argument of S in the right-hand side is the empty sequence,
and we treat S() as a real constant. The intuition behind the definition is the
following: there is a sequence of events ωn, each event is generated according
its own distribution πn selected (or revealed) at each step anew; when the event
happens we compute the next value of S depending on the outcomes of the
previous events, the previous distributions and some side information en; the
supermartingale property of S means that the expectation of the next value
(when the distribution πn has been selected but the outcome is not known yet)
never exceeds the previous value of S.

Remark 2. The notion of a supermartingale is well-known in the probability
theory. Let X1, X2, . . . be a sequence of random elements with values in Ω.
Denote by xn some realization of Xn, n = 1, 2, . . ., and let πn be a conditional
distribution of Xn given X1 = x1, . . . , Xn−1 = xn−1. If we fix some values for
en and substitute Xn for ωn in S, we can rewrite condition (6) as

ES(x1, . . . , xN−1, XN ) ≤ S(x1, . . . , xN−1)

(the parameters en and πn in S are omitted). We get the usual definition
of a (probabilistic) supermartingale SN = S(X1, . . . , XN ), N = 1, 2, . . ., with
respect to the sequence X1, X2, . . .:

E[SN | X1, . . . , XN−1] ≤ SN−1 .

In a sense, a game-theoretic supermartingale is a family of probabilistic super-
martingales parameterized by some en and also by probabilistic distributions πn,
where the latter serve as conditional probabilities of the underlying random
process.

Remark 3. A reader familiar with the supermartingales in algorithmic proba-
bility theory may also find helpful the following connection. Let µ : Ω∗ → [0, 1]
be a measure on Ω∞ (where Ω∗ and Ω∞ are the sets of finite and infinite
sequences of elements from Ω). As defined in e. g. [17, p. 296], a function
s : Ω∗ → R+ is called a supermartingale with respect to µ if for any N and
any ω1, . . . , ωN−1 ∈ Ω it holds that∑

ω∈Ω

µ( ω | ω1, . . . , ωN−1)s(ω1, . . . , ωN−1, ω) ≤ s(ω1, . . . , ωN−1) ,

where µ( ω | ω1, . . . , ωN−1) = µ(ω1,...,ωN−1,ω)
µ(ω1,...,ωN−1)

(and µ(ω1, . . . , ωn) means the mea-
sure of the set of all infinite sequences with the prefix ω1 . . . ωn). Let en be any
functions of ω1, . . . , ωn−1. Let πn(ω) be µ( ω | ω1, . . . , ωn−1). Having substi-
tuted these functions in any game-theoretic supermartingale S, we get a super-
martingale with respect to µ in the algorithmic sense.
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A supermartingale S is called forecast-continuous if for any N , for any
e1, . . . , eN ∈ E, for any π1, . . . , πN−1 ∈ P(Ω), for any ω1, . . . , ωN−1, ωN ∈ Ω, the
function S(e1, π1, ω1, . . . , eN , π, ωN ) is continuous as the function of π ∈ P(Ω).

The main use of forecast-continuous supermartingales in this paper is ex-
plained by the following lemma.

Lemma 4. Suppose that S is a forecast-continuous supermartingale. Then
for any N , for any e1, . . . , eN ∈ E, for any π1, . . . , πN−1 ∈ P(Ω), for any
ω1, . . . , ωN−1 ∈ Ω, it holds that

∃π ∈ P(Ω)∀ω ∈ Ω S(e1, π1, ω1, . . . , eN , π, ω) ≤
S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) .

Note that the property provided by this lemma is similar to the condition (5),
where the role of S with the first N − 1 triples of the arguments is played by∑

θ∈Θ P0(θ)QN−1(θ), the role of S(. . . , eN , π, ω) (the left-hand side) is played by∑
θ∈Θ P0(θ)Q̃N (θ), the variable π corresponds to γN , and for n = 1, . . . , N − 1,

the parameters πn and en are represented by γn and the vector of γθ
n, θ ∈ Θ,

respectively.
A variant of this lemma was originally proved by Levin [16] in the con-

text of algorithmic theory of randomness. We will prove this lemma later (see
Lemma 8), and in the next subsection we consider the Defensive Forecasting
Algorithm, the main application of this lemma in our paper.

3.1. Defensive Forecasting
The Defensive Forecasting Algorithm (DFA) is another strategy for Learner

in the game of prediction with expert advice. Let (Ω,Λ) be a game. The DFA
has five parameters: reals c ≥ 1, η > 0, a (canonic) loss function λ : P(Ω) → ΣΛ,
a distribution P0 on Θ, and a substitution function σ : ΣΛ → Λ such that
σ(γ) ≤ γ for all γ ∈ ΣΛ.

Given λ, c and η, let us define the following function on (ΣΛ ×P(Ω)×Ω)∗:

Q(g1, π1, ω1, . . . , gN , πN , ωN ) = exp

(
η

N∑
n=1

(
λ(πn, ωn)

c
− gn(ωn)

))
. (7)

To simplify notation, here and in the sequel we consider λ as a function from
P(Ω) × Ω to [0,∞], that is, we write λ(π, ω) instead of

(
λ(π)

)
(ω) and λ(π, ·)

instead of λ(π). For N = 0, we let Q() = 1 in accordance with the usual
agreement that the sum of zero number of terms equals 0. Note that Q is
similar to QN (θ) from the proof of Theorem 1, with gn standing for γθ

n and
λ(πn, ·) standing for γn.

Given also P0, let us define the function QP0 on ((ΣΛ)Θ×P(Ω)×Ω)∗ as the
following weighted sum of Q:

QP0({γθ
1}θ∈Θ, π1, ω1, . . . , {γθ

N}θ∈Θ, πN , ωN ) =∑
θ∈Θ

P0(θ)Q(γθ
1 , π1, ω1, . . . , γ

θ
N , πN , ωN ) . (8)
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At step N , the DFA chooses any πN ∈ P(Ω) such that

∀ω ∈ Ω QP0({γθ
1}θ∈Θ, π1, ω1, . . . , {γθ

N}θ∈Θ, πN , ω) ≤
QP0({γθ

1}θ∈Θ, π1, ω1, . . . , {γθ
N−1}θ∈Θ, πN−1, ωN−1) , (9)

stores this πN for use at later steps, and announces γN = σ(λ(πN , ·)) as
Learner’s prediction.

Assume that the function Q defined by (7) is a forecast-continuous super-
martingale. Clearly, this implies that QP0 defined by (8) is also a forecast-
continuous supermartingale for any P0. Then Lemma 4 guarantees that the
DFA can choose πN with the required property.

Theorem 5. If Q defined by (7) is a forecast-continuous supermartingale for
certain c, η, and λ then the DFA with parameters c, η, λ, P0, and σ guarantees
that, at each step N and for all experts θ, it holds

LN ≤ cLθ
N +

c

η
ln

1
P0(θ)

.

Proof. The step of the DFA guarantees that at each step N the value of QP0

does not increase independent of the outcome ωN . Thus, the value of QP0 at
each step N is not greater than its initial value, 1. Since Q is always non-nega-
tive and QP0 as the sum of non-negative values can be bounded from below by
any of its terms, we get

P0(θ) exp

(
η

N∑
n=1

(
λ(πn, ωn)

c
− γθ

n(ωn)
))

≤ 1 ,

and therefore
N∑

n=1

λ(πn, ωn) ≤ cLθ
N +

c

η
ln

1
P0(θ)

.

It remains to recall that γn = σ(λ(πn, ·)) ≤ λ(πn, ·), thus summing up we get
LN ≤

∑N
n=1 λ(πn, ωn). �

In Subsections 3.3–3.6 we discuss general conditions when Q defined by (7)
is a supermartingale. In the next subsection we begin with examples for two
widely used games of prediction.

3.2. Two Examples of Supermartingales
The logarithmic loss game is defined by the loss function

λlog(p, ω) :=

{
− ln p if ω = 1,

− ln(1− p) if ω = 0,

where ω ∈ {0, 1} is the outcome and p ∈ [0, 1] is the decision (notice that
the loss function is allowed to take value ∞). It is known [25, Example 5]
that this game is η-mixable for η ∈ (0, 1]. The corresponding prediction set
is Λlog = {(x, y) ∈ R2 | e−x + e−y = 1}. The losses in the game are LN :=

9



∑N
n=1 λlog(pn, ωn) for Learner who predicts pn and Lθ

N :=
∑N

n=1 λlog(pθ
n, ωn)

for Expert θ who predicts pθ
n. Consider the following function:

exp

(
η

N∑
n=1

(
λlog(pn, ωn)− λlog(pθ

n, ωn)
))

. (10)

This function is actually Q defined by (7), where c = 1 and λlog(pθ
n, ·) stands for

gn. The only difference is that pn is not an element of P(Ω). To fix this, let us
assign Learner’s decision p ∈ [0, 1] (and thereby prediction (− ln(1− p),− ln p) ∈
Λlog) to each distribution π = (1−p, p) on {0, 1}. With this identification π 7→ p,
the expression (10) specifies a function on ([0, 1]× P({0, 1})× {0, 1})∗ with the
arguments pθ

n, πn (represented by pn = πn(1)) and ωn.

Lemma 6. For η ∈ (0, 1], the function (10) is a forecast-continuous super-
martingale.

Proof. The continuity is obvious. For the supermartingale property, it suffices
to check that

pneη(− ln pn+ln pθ
n) + (1− pn)eη(− ln(1−pn)+ln(1−pθ

n)) ≤ 1 (11)

i.e., that p1−η
n

(
pθ

n

)η +(1−pn)1−η
(
1− pθ

n

)η ≤ 1 for all pn, pθ
n, η ∈ [0, 1]. The last

inequality immediately follows from the generalized inequality between arith-
metic and geometric means: uαv1−α ≤ αu + (1 − α)v for any u, v ≥ 0 and
α ∈ [0, 1], which after taking the logarithm just expresses that logarithm is con-
cave. (Remark: The left-hand side of (11) is a special case of what is known as
the Hellinger integral in probability theory.) �

In the square loss game, the outcomes are ω ∈ {0, 1} and the decisions are
p ∈ [0, 1] as before, and the loss function is λsq(p, ω) = (p−ω)2. It is known [25,
Example 4] that this game is η-mixable for η ∈ (0, 2]. The corresponding pre-
diction set is Λsq = {(x, y) ∈ [0, 1]2 |

√
x +

√
y = 1}. The losses of Learner and

Expert θ are LN :=
∑N

n=1(pn − ωn)2 and Lθ
N :=

∑N
n=1(p

θ
n − ωn)2, respectively.

With the same identification π 7→ p, the following expression specifies a function
on ([0, 1]× P({0, 1})× {0, 1})∗:

exp

(
η

N∑
n=1

(
(pn − ωn)2 − (pθ

n − ωn)2
))

(12)

(again, note that it is a special case of Q defined by (7)).

Lemma 7. For η ∈ (0, 2], the function (12) is a forecast-continuous super-
martingale.

Proof. It is sufficient to check that

pneη((pn−1)2−(pθ
n−1)2) + (1− pn)eη((pn−0)2−(pθ

n−0)2) ≤ 1

for all pn, pθ
n ∈ [0, 1] and η ∈ [0, 2]. To simplify notation, let us substitute p for

pn and p + x for pθ
n. Then after trivial transformations we get:

pe2η(1−p)x + (1− p)e−2ηpx ≤ eηx2
, ∀x ∈ [−p, 1− p].

10



The last inequality is a simple corollary of the following well-known variant of
Hoeffding’s inequality [15, 4.16]:

lnEesX ≤ sEX +
s2(b− a)2

8
,

which is true for any random variable X taking values in [a, b] and for any
s ∈ R; see [6, Lemma A.1] for a proof. Indeed, applying the inequality to the
random variable X that is equal to 1 with probability p and to 0 with probability
(1−p), we obtain p exp(s(1− p)) + (1− p) exp(−sp) ≤ exp(s2/8). Substituting
s := 2ηx, we have p exp(2η(1 − p)x) + (1 − p) exp(−2ηpx) ≤ exp(η2x2/2) ≤
exp(ηx2), the last inequality assuming η ≤ 2. �

3.3. Supermartingales and the Realizability of the AA
Our next goal is to find when Q defined by (7) is a supermartingale, de-

pending on the parameters c, η and λ. Loosely speaking, we will show that the
AA is (c, η)-realizable if and only if there exists λ such that Q is a supermartin-
gale. More precisely, the “only if” part holds for some class of games only. For
arbitrary games, the equivalence holds if we relax slightly the supermartingale
definition (see Theorem 22).

Let us begin with some notation. For any functions f : Ω → R and π : Ω → R
denote

Eπf :=
∑
ω∈Ω

π(ω)f(ω) .

Actually, this is the scalar product of f and π in RΩ. We will mostly use this
for π ∈ P(Ω); in this case Eπf can be interpreted as the expectation of f over
distribution π. For functions g ∈ [0,∞]Ω and π ∈ P(Ω), let

Eπg :=
∑

ω∈Ω, π(ω) 6=0

π(ω)g(ω) .

Recall that the function Q defined by (7) is a supermartingale if

Eπ

(
Q(g1, π1, ω1, . . . , gN , π, ·)−Q(g1, π1, ω1, . . . , gN−1, πN−1, ωN−1)

)
≤ 0

for any g1, π1, ω1, . . . , gN−1, πN−1, ωN−1, gN and π. The formula (7) can be
rewritten as Q =

∏N
n=1 qgn

(πn, ωn), where the functions qg : P(Ω)×Ω → [0,∞]
are defined by the formula

qg(π, ω) = exp
(

η

(
λ(π, ω)

c
− g(ω)

))
(13)

for any g ∈ ΣΛ. Clearly, Q is a supermartingale if and only if Eπqg(π, ·) ≤ 1 for
all π ∈ P(Ω) and for all g ∈ ΣΛ.

Let us say that a function q : P(Ω)×Ω → R has the supermartingale property
if for any π ∈ P(Ω)

Eπq(π, ·) ≤ 1 .

The function q is forecast-continuous if for every ω ∈ Ω it is continuous as the
function of π.

So, Q defined by (7) is a forecast-continuous supermartingale if and only
if the functions qg defined by (13) are forecast-continuous and have the super-
martingale property for all g ∈ ΣΛ. In the sequel, we will discuss the properties
of qg instead of Q. Let us begin with a variant of Lemma 4.
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Lemma 8. Let a function q : P(Ω) × Ω → R be forecast-continuous. If for all
π ∈ P(Ω) it holds that

Eπq(π, ·) ≤ C ,

where C ∈ R is some constant, then

∃π ∈ P(Ω)∀ω ∈ Ω q(π, ω) ≤ C .

The proof of the lemma is given in Appendix. Here let us illustrate the idea
behind the proof. Consider the function φ(π′, π) = Eπ′q(π, ·) and assume that it
has the minimax property: minπ maxπ′ φ(π′, π) = maxπ′ minπ φ(π′, π). Looking
at the right-hand side, note that minπ φ(π′, π) ≤ φ(π′, π′) ≤ C. Let π minimize
the left-hand side, then we get maxπ′ Eπ′q(π, ·) ≤ C, that is, Eπ′q(π, ·) ≤ C for
any π′, which implies the statement of the lemma if we consider distributions
π′ concentrated at each ω.

Note that Lemma 4 is a simple corollary of Lemma 8 applied to C = 0 and

q(π, ω) = S(e1, π1, ω1, . . . , eN , π, ω)− S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) .

Now let us prove that if qg defined by (13) have the supermartingale property
for all g ∈ ΣΛ (in other words, Q is a supermartingale) then the AA is realizable.

Theorem 9. Let λ map P(Ω) to ΣΛ, and let c ≥ 1 and η > 0 be reals such that

qg(π, ω) := exp
(

η

(
λ(π, ω)

c
− g(ω)

))
are forecast-continuous and have the supermartingale property for all g ∈ ΣΛ.
Then the AA is (c, η)-realizable.

Proof. Recall that the (c, η)-realizability is equivalent to the inequality (3) for
any finite G ⊆ ΣΛ and for any distribution ρ on G. Let us consider the following
function:

q(π, ω) =
∑
g∈G

ρ(g)qg(π, ω) .

The function q is forecast-continuous and has the supermartingale property as
a non-negative weighted sum of forecast-continuous functions with the super-
martingale property. By Lemma 8 applied to this q and C = 1, there exists
π ∈ P(Ω) such that q(π, ω) ≤ 1 for all ω, that is,∑

g∈G

ρ(g) exp
(

η

(
λ(π, ω)

c
− g(ω)

))
≤ 1 .

After trivial transformations, we get the inequality (3) with γ(ω) replaced by
λ(π, ω). It remains to note that λ(π, ·) ∈ ΣΛ. �

3.4. Proper Loss Functions
The functions qg defined by (13) have a loss function λ as a parameter. In

this subsection, we consider an important property of this loss function.
A function λ : P(Ω) × Ω → [0,∞] is called a proper loss function if for all

π, π′ ∈ P(Ω)
Eπλ(π, ·) ≤ Eπλ(π′, ·) ,

12



and λ is strictly proper if for all π 6= π′ the inequality is strict.
The intuition behind this definition is the following. Assume that the out-

come ω is generated according to some distribution π. Then the expected loss
Eπλ(π′, ·) is minimal, if the prediction π′ equals the true distribution. Infor-
mally speaking, proper loss functions encourage a forecaster to announce the
true subjective probabilities. In a sense, if the loss function is proper then the
predictions have a real, not just notational, probabilistic meaning. The proper
loss functions are well-known in the Bayesian context; see [7] and [12] (note that
these authors consider gains, or scores, instead of losses, so their notation differs
from ours by the sign).

We say that λ is proper with respect to a set X ⊆ [0,∞]Ω if for all π ∈ P(Ω),
it holds that λ(π, ·) ∈ X and for all g ∈ X it holds that

Eπλ(π, ·) ≤ Eπg

(in other words, λ(π, ·) ∈ arg ming∈X Eπg). If the inequality holds for a fixed π
and all g ∈ X, we will say that λ is proper at π. Clearly, if λ is proper with
respect to X then λ is proper in the usual sense. The definition has a simple
geometrical interpretation. The inequality means that the set X lies on one
side of the hyperplane {x ∈ RΩ |

∑
ω∈Ω π(ω)x(ω) = Eπλ(π, ·)}, and X touches

the hyperplane at λ(π, ·) ∈ X. That is, λ(π, ·) is a point where X touches the
supporting hyperplane with normal π.

Lemma 10. Let λ map P(Ω) to ΣΛ and η > 0 be such that the functions

qg(π, ω) := eη(λ(π,ω)−g(ω))

are forecast-continuous and have the supermartingale property for all g ∈ ΣΛ

(the functions qg are just (13) with c = 1). Then λ is a continuous proper loss
function with respect to ΣΛ.

Proof. The continuity is obvious. Since ex ≥ 1 + x for all x ∈ R, we get

Eπeη(λ(π,·)−g) ≥ Eπ

(
1 + η(λ(π, ·)− g)

)
= 1 + η (Eπλ(π, ·)− Eπg) ,

and from the supermartingale property we have Eπλ(π, ·) ≤ Eπg for all g ∈ ΣΛ

and all π ∈ P(Ω), since η > 0. (Remark: we get the strict inequality Eπλ(π, ·) <
Eπg, if λ(π, ω0) 6= g(ω0) and π(ω0) 6= 0 for some ω0 ∈ Ω.) �

From Theorem 9 we know that the conditions of the last lemma imply also
that the game (Ω,Λ) is η-mixable. Let us show that the converse statement
holds, i. e. the properness of λ and mixability are sufficient for the supermartin-
gale property.

Lemma 11. Suppose that the game (Ω,Λ) is η-mixable and λ : P(Ω) → ΣΛ is
a proper loss function with respect to ΣΛ. Then the functions

qg(π, ω) = eη(λ(π,ω)−g(ω))

have the supermartingale property for every g ∈ ΣΛ. If λ is continuous then qg

are forecast-continuous.
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Proof. The forecast-continuity is obvious. Assume that the supermartingale
property does not hold, in other words, that Eπeη(λ(π,·)−g) = 1 + δ for some
π ∈ P(Ω), g ∈ ΣΛ and δ > 0. For any ε > 0 consider the point

gε = −1
η

ln
(
(1− ε)e−ηλ(π,·) + εe−ηg

)
.

The point gε belongs to Ση
Λ by the definition of Ση

Λ, and Ση
Λ = ΣΛ since the

game is η-mixable, that is, gε ∈ ΣΛ for any ε > 0. When ε → 0, we have

gε = λ(π, ·)− 1
η

ln
(
1 + ε

(
eη(λ(π,·)−g) − 1

))
= λ(π, ·)− ε

η

(
eη(λ(π,·)−g) − 1

)
+ O(ε2).

Taking the expectation Eπ, we get

Eπgε = Eπλ(π, ·)− ε

η
Eπ

(
eη(λ(π,·)−g) − 1

)
+ O(ε2) = Eπλ(π, ·)− εδ

η
+ O(ε2) ,

where δ > 0 by our assumption. If ε is sufficiently small then (δ/η)ε > O(ε2)
and Eπgε < Eπλ(π, ·), which is impossible since λ(π, ·) is proper with respect
to ΣΛ. �

An alternative, more geometrical proof of the last lemma for binary games the
reader can find in [5, Lemma 3].

3.5. The Realizability of the AA and Supermartingales
Theorem 9 shows that if the functions qg defined by (13) are forecast-continu-

ous and have the supermartingale property then the AA is realizable. We want
to show the converse, that if the AA is realizable then one can find λ such that
the functions qg are forecast-continuous and have the supermartingale property.
For mixable games, we know already that a proper loss function works (though
we do not know yet whether a proper loss function exists). In this subsection we
show that we can obtain λ in any game if we can construct continuous proper
loss functions for mixable games. How to do the latter and when it is possible
is discussed in the next subsection.

To state and prove the main result of this subsection, we need two standard
assumptions (see [25]) about the game (Ω,Λ) and some additional notation.

Assumption 1. Λ is a compact subset of [0,∞]Ω (in the extended topology).

Assumption 2. There exists gfin ∈ Λ such that gfin(ω) < ∞ for all ω ∈ Ω.

Note that if Λ is compact then ΣΛ is also compact, as well as Ση
Λ. A nice fea-

ture of compact prediction sets is that the properties of the game are determined
by the boundary of the prediction set.

For any set X ⊆ [0,∞]Ω, by MX denote the set of minimal elements of X:
g0 ∈ MX if and only if for any g ∈ X the inequality g0 ≥ g implies g0 = g.
For a compact set X, for every g ∈ X there is an element g0 ∈ MX such that
g0 ≤ g; that is, X ⊆ (MX + [0,∞]Ω). Notice that MX is contained in the
boundary ∂X of X.
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Since ΣΛ = ΣΛ + [0,∞]Ω = Λ + [0,∞]Ω, we have MΣΛ = MΛ ⊆ Λ. For
compact Λ, we have ΣΛ = MΣΛ + [0,∞]Ω = ΣMΛ = MΛ + [0,∞]Ω. Note also
that a game is η-mixable if and only if MΣη

Λ ⊆ Λ, since this is equivalent to
Ση

Λ = ΣΛ. A loss function is proper with respect to Ση
Λ if and only if it is proper

with respect to MΣη
Λ.

Lemma 12. Suppose that the game (Ω,Λ) satisfies Assumptions 1 and 2 and
the AA is (c, η)-realizable for this game. Then there is a continuous mapping
V : Ση

Λ → ∂ΣΛ such that V (g) ≤ cg for all g ∈ Ση
Λ.

The proof is given in Appendix. The mapping V is actually the central pro-
jection from Ση

Λ into the superprediction set ΣΛ (which contains cΣη
Λ when the

AA is (c, η)-realizable).

Theorem 13. Let the game (Ω,Λ) satisfy Assumptions 1 and 2, the AA be
(c, η)-realizable for this game, and λη : P(Ω) → Ση

Λ be a continuous proper loss
function with respect to Ση

Λ. Then for any continuous λ : P(Ω) → ∂ΣΛ such that
λ(π, ·) ≤ cλη(π, ·) for all π ∈ P(Ω), the functions qg defined by (13) are fore-
cast-continuous and have the supermartingale property for every g ∈ ΣΛ; and
there exists a continuous λ : P(Ω) → ∂ΣΛ such that λ(π, ·) ≤ cλη(π, ·) for all
π ∈ P(Ω).

Proof. The forecast-continuity is obvious. Let us check the supermartingale
property, i. e., that

Eπeη(λ(π,·)
c −g) ≤ 1

for all π ∈ P(Ω) and all g ∈ ΣΛ. Since λ(π, ·) ≤ cλη(π, ·), it suffices that

Eπeη(λη(π,·)−g) ≤ 1 ,

which follows from Lemma 11 applied to the η-mixable game (Ω,Ση
Λ) and the

proper function λη (note that ΣΛ ⊆ Ση
Λ, hence the lemma works for all g ∈ ΣΛ).

It remains to observe that λ(π, ·) = V (λη(π, ·)), where V is defined in
Lemma 12, has the properties we need. �

3.6. Construction of a Continuous Proper Loss Function
In this subsection, we fix a game (Ω,Λ), fix η > 0, and consider proper

loss functions with respect to Ση
Λ. They can be interpreted also as proper loss

functions for the η-mixable game (Ω,Ση
Λ).

Lemma 14. Let λ1 and λ2 be functions from P(Ω) to Ση
Λ. Suppose that they

are proper with respect to Ση
Λ at some point π ∈ P(Ω), that is, Eπλi(π, ·) ≤ Eπg,

i = 1, 2, for all g ∈ Ση
Λ. Then for all ω ∈ Ω we have

π(ω) 6= 0 ⇒ λ1(π, ω) = λ2(π, ω) .

The proof of the lemma is given in Appendix.
Let P◦(Ω) be the set of all non-degenerate distributions, i. e.

P◦(Ω) = {π ∈ P(Ω) | ∀ω ∈ Ω π(ω) > 0} .

Lemma 14 implies that a proper loss function is uniquely defined on P◦(Ω). The
following lemma gives a more explicit specification of the values of a proper loss
function on P◦(Ω).

15



Lemma 15. Let the game (Ω,Λ) satisfy Assumptions 1 and 2. Let us define
function H : RΩ → [−∞,∞) by the formula

H(π) = min
g∈Ση

Λ

Eπg . (14)

Let H be the domain where H is differentiable. Then H ⊇ P◦(Ω), and the com-
ponents of the gradient of H at π ∈ H ∩ P(Ω) constitute a continuous function
λ : H ∩ P(Ω) → Ση

Λ such that Eπλ(π, ·) = H(π). Moreover, if π ∈ P◦(Ω) then
λ(π, ·) is the unique point where the minimum in (14) is attained.

Remark 16. The function H(π) for π ∈ P(Ω) is known as the generalized
entropy of the game (Ω,Λ); see [13]. For the logarithmic loss game, H(π)
becomes the Shannon entropy of π (cf. (16)). It is worth mentioning that one
can reconstruct the superprediction set ΣΛ from the generalized entropy of the
game, and also from the predictive complexity of the game (see [18] for the
definitions and proofs in the case of binary games).

The proof of the lemma is given in Appendix. The proof is based on the fact that
the function −H(π) is convex. Note that λ(π, ·) ∈MΣη

Λ for any π ∈ P◦(Ω). In-
deed, if for some π ∈ P◦(Ω) we have λ(π, ·) /∈MΣη

Λ then there exists g ≤ λ(π, ·),
g ∈ MΣη

Λ and g(ω) < λ(π, ·) for at least one ω. Since π(ω) > 0, we get
Eπg < Eπλ(π, ·) = H(π), which contradicts the definition of H.

Recall that if a loss function λ is proper with respect to Ση
Λ then Eπλ(π, ·) =

H(π). Lemma 15 shows that on P◦(Ω) a proper loss function λ exists and it is
unique and continuous. Our next task is to extend λ continuously from P◦(Ω)
to P(Ω). Unfortunately, this is sometimes impossible. Consider an example.

Let Ω = {1, 2, 3}, and let the prediction set be

Λ = {(− ln p,− ln(1− p), 1) | p ∈ [0, 1]} .

Actually, this is the binary logarithmic loss game with an additional dummy
outcome. This game is 1-mixable and Σ1

Λ = ΣΛ. It is easy to check that
the proper loss function with respect to ΣΛ is given on P◦(Ω) by the formulas
λ(π, i) = − ln π(i)

π(1)+π(2) , i = 1, 2, and λ(π, 3) = 1. This function can be extended
continuously to all π such that π(1) + π(2) 6= 0, so we have λ(π, ·) = (∞, 0, 1)
if π(1) = 0 and λ(π, ·) = (0,∞, 1) if π(2) = 0. However, these continuations
are inconsistent at the point π = (0, 0, 1). Therefore, there is no continuous
function on P(Ω) which is proper with respect to ΣΛ for this game.

Now let us consider three examples of games where a continuous proper (and
even strictly proper) loss function exists.

The first example is the Brier game (see [31]), which is a generalization of
the square loss game:

λB(π, ω) =
∑
o∈Ω

(δω(o)− π(o))2

where δω(o) = 1 if o = ω and δω(o) = 0 if o 6= ω. For the binary game
Ω = {0, 1}, distribution π ∈ P(Ω) is pair (1 − p, p) where p ∈ [0, 1], and hence
λB(π, ω) = 2(p− ω)2, which is twice the loss λsq(p, ω) = (p− ω)2 in the binary
square loss game as defined in Subsection 3.2.
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The Brier game is 1-mixable, that is, Ση
ΛB = ΣΛB for η ≤ 1. Let us calculate

H(π) defined by (14) for π ∈ P(Ω):

HB(π) = min
g∈Ση

ΛB

Eπg = min
g∈ΛB

Eπg = min
π′∈P(Ω)

EπλB(π′, ·)

= min
π′∈P(Ω)

∑
ω∈Ω

π(ω)
∑
o∈Ω

(δω(o)− π′(o))2

= 1−
∑
ω∈Ω

π2(ω) + min
π′∈P(Ω)

∑
ω∈Ω

(π′(ω)− π(ω))2 = 1−
∑
ω∈Ω

π2(ω) .

Clearly, HB(π) is differentiable on P(Ω), hence a continuous proper loss function
for the Brier game can be computed as the gradient of HB by Lemma 15.
However, it is easier to note that the minimum of EπλB(π′, ·) is attained at
π′ = π only, and thus the standard form of the loss function λB is proper.

Remark 17. Note that in the example above we computed the value of H(π)
assuming that π ∈ P(Ω). If we want to compute λ(π, ω) as the partial derivatives
of H(π) with respect to π(ω), we must consider H(π) as a function on RΩ (as
stated in Lemma 15). To this end, just note that H is homogeneous:

H(π) = H

(
π∑

ω∈Ω π(ω)

)∑
ω∈Ω

π(ω) (15)

for π ∈ RΩ. In the Brier game example we have

HB(π) =

(
1−

∑
ω∈Ω π2(ω)(∑
ω∈Ω π(ω)

)2
)∑

ω∈Ω

π(ω) ,

and the partial derivatives are

1− 2π(ω) +
∑
o∈Ω

π2(o) = λB(π, ω)

for any π ∈ P(Ω). In general, if we have a function φ : RΩ → R such that φ(π) =
H(π) for all π ∈ P(Ω), taking the derivatives of (15) we get that the proper loss
function λ can be computed by the following formula for any π ∈ P(Ω):

λ(π, ω) = φ(π)−
∑
o∈Ω

π(o)φ′o(π) + φ′ω(π) ,

where φ′ω is the partial derivative of φ with respect to π(ω). This formula is
known from the Savage theorem [20] (see also [12, Theorem 3.2]; recall that they
consider scores, or gains, −λ instead of losses λ).

The second example is the Hellinger game:

λH(π, ω) =
1
2

∑
o∈Ω

(√
δω(o)−

√
π(o)

)2

.

Similarly to the Brier game, we can find that

HH(π) = min
π′∈P(Ω)

∑
ω∈Ω

π(ω)
(
1−

√
π′(ω)

)
=
∑
ω∈Ω

π(ω)−
√∑

ω∈Ω

π2(ω) .
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Here the minimum is not attained at π′ = π and λH is not proper. Taking the
derivatives, we find a proper loss function for the Hellinger game:

λ(π, ω) = 1− π(ω)√∑
ω∈Ω π2(ω)

.

This loss function is known as the spherical loss.
The spherical loss and the Hellinger loss specify the same game but under

different parameterization. For binary games, this kind of “reparameterization”
was considered in [14, Section 3.1], where a proper function λ(π, ·) was called
a Bayes-optimal prediction for bias π. More precisely, the paper [14] discusses
binary games specified by a loss function λ(γ, ω), where ω is 0 or 1 and γ ∈ [0, 1].
Their Lemma 3.5 states conditions (on derivatives of λ as a function of γ) when
there exists a unique γp that minimizes (1−p)λ(γ, 0)+pλ(γ, 1) for each p ∈ [0, 1].
This γp can be obtained from Equation (3.8) in [14]:

(1− p)
d

dγ
λ(γ, 0)

∣∣∣∣
γ=γp

+ p
d

dγ
λ(γ, 1)

∣∣∣∣
γ=γp

= 0 .

Our Lemma 15 can be regarded as a generalization of this approach.
Our third example is the general logarithmic loss game defined by

λlog(π, ω) = − lnπ(ω) .

Similarly to the Brier loss function, the logarithmic loss function is strictly
proper. Indeed, let us calculate the entropy H log for π ∈ P(Ω):

H log(π) = min
π′∈P(Ω)

∑
ω∈Ω

π(ω)
(
− lnπ′(ω)

)
= −

∑
ω∈Ω

π(ω) ln π(ω)− max
π′∈P(Ω)

∑
ω∈Ω

π(ω) ln
π′(ω)
π(ω)

= −
∑
ω∈Ω

π(ω) lnπ(ω) . (16)

Here the partial derivatives are infinite at the bound of P(Ω). Nevertheless, it is
easy to check that the minimum in the definition of H log(π) is always attained
at one point π′ = π only. The last equality in (16) holds since logarithm is
concave

∑
ω∈Ω π(ω) ln π′(ω)

π(ω) ≤ ln
(∑

ω∈Ω π(ω)π′(ω)
π(ω)

)
= 0 and the inequality is

strict unless π′(ω)
π(ω) are equal for all ω ∈ Ω or π(ω0) = 1 for some ω0. In the former

case, π = π′, since π, π′ ∈ P(Ω). In the latter case, we get maxπ′∈P(Ω) lnπ′(ω0),
which is attained if π′(ω0) = 1, and hence π = π′ too.

Now we consider a general way to construct proper loss functions, even in
the case when H is not differentiable on all P(Ω). Note that the only way to
extend λ continuously is to define it at P(Ω) \ P◦(Ω) as a limit from P◦(Ω),
where λ(π, ·) is defined as a point of minimum. The following lemma proved in
Appendix states that a limit of such points is again a point of minimum.

Lemma 18. Let πi ∈ P(Ω) and γi ∈MΣη
Λ be such that Eπi

γi = ming∈Ση
Λ

Eπi
g,

i = 1, 2, . . .. Assume that πi → π and γi → γ as i → ∞. Then γ ∈ MΣη
Λ and

Eπγ = ming∈Ση
Λ

Eπg.

In particular, the lemma implies that a continuous proper loss function exists
in games where each minimum is attained in a unique point. Let us formulate
this assumption explicitly and prove the existence theorem.
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Assumption 3. For every π ∈ P(Ω) such that π(ω1) = 0 and π(ω2) = 0 for
some ω1, ω2 ∈ Ω, ω1 6= ω2, there exists only one point where the minimum of
Eπg over all g ∈MΣη

Λ is attained.

Remark 19. Assumption 3 holds automatically for all binary games. The
games with differentiable H, such as the general square loss game, satisfy As-
sumption 3 as well.

Theorem 20. Suppose that the game (Ω,Λ) satisfies Assumptions 1 and 2, and
Assumption 3 for certain η > 0. Then there exists a continuous loss function
λ : P(Ω) →MΣη

Λ that is proper, and even strictly proper, with respect to Ση
Λ.

Proof. Let us show first that the minimum of Eπg over all g ∈MΣη
Λ is attained

at one point only for all π ∈ P(Ω). For π ∈ P◦(Ω), it follows from Lemma 14.
Let π ∈ P(Ω) be such that π(ω0) = 0 for some ω0 ∈ Ω and π(ω) 6= 0 for
ω 6= ω0. Let g1, g2 ∈MΣη

Λ be any two points of minimum. Again by Lemma 14,
g1(ω) = g2(ω) for all ω 6= ω0. Therefore g1 ≤ g2 or g1 ≥ g2 (since g1(ω0) and
g2(ω0) are comparable, being two reals), and the greater of them cannot belong
to MΣη

Λ. Thus, g1 = g2. Assumption 3 works for all other π ∈ P(Ω).
Let us take λ(π, ·) = arg ming∈MΣη

Λ
Eπg for all π ∈ P(Ω). Clearly, λ is proper

with respect to Ση
Λ (recall that every point in Ση

Λ is minorized by some point
in MΣη

Λ). Let us prove continuity. Take any converging sequence πi ∈ P(Ω), let
π be its limit, and consider the corresponding λ(πi, ·). Lemma 18 implies that
all accumulation points of the set {λ(πi, ·)} are points where ming∈MΣη

Λ
Eπg is

attained, therefore λ(π, ·) is the only accumulation point and λ(πi, ·) converges
to λ(π, ·). �

3.7. Defensive Forecasting Revisited
Let us review the results we obtained so far. Theorems 1 and 5 gives us

the same loss bound for a game (Ω,Λ), if the AA is realizable and if Q defined
by (7) is a forecast-continuous supermartingale, respectively.

The algorithms are very close in their internal structure. We can say even
more: with the same parameters and inputs, they give the same predictions, in
some sense. More precisely, two sets coincide: the set of γN ∈ Λ satisfying (1)
and the set of γN ∈ Λ such that γN minorizes λ(πN , ·) for πN satisfying (9).

Both algorithms are applicable under almost the same conditions: Theorem 9
says that if Q is a forecast-continuous supermartingale then the AA is realizable;
Theorems 13 and 20 show the converse for games satisfying Assumptions 1–3.

Whereas Assumptions 1 and 2 are standard and natural, and the AA is usu-
ally considered only for the games satisfying these assumptions, Assumption 3 is
new and quite cumbersome. However, it turns out that with the help of a more
complicated version of the DFA we can get rid of Assumption 3 and get a per-
fect equivalence between the realizability of the AA and some supermartingale
condition (under the standard Assumptions 1 and 2 only).

To begin with, let us slightly relax the definitions concerning supermartin-
gales. We say that a function q : P◦(Ω) × Ω → R has the supermartingale
property on P◦(Ω) if for any π ∈ P◦(Ω)

Eπq(π, ·) ≤ 1 .

The function q is forecast-continuous on P◦(Ω) if for every ω ∈ Ω it is continuous
as the function of π for all π ∈ P◦(Ω).
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Lemma 21. Let a function q : P◦(Ω) × Ω → R be non-negative and forecast-
continuous on P◦(Ω). Suppose that for all π ∈ P◦(Ω) it holds that

Eπq(π, ·) ≤ C ,

where C ∈ [0,∞) is some constant. Then there exists a sequence {π(i)}i∈N such
that π(i) ∈ P◦(Ω), the sequence π(i) converges in P(Ω), the sequences q(π(i), ω)
converge for every ω ∈ Ω, and

∀ω ∈ Ω lim
i→∞

q(π(i), ω) ≤ C .

The proof of the lemma is given in Appendix after the proof of Lemma 8.

Theorem 22. Let the game (Ω,Λ) satisfy Assumptions 1 and 2. The AA is
(c, η)-realizable for this game if and only if there exists λ such that the functions
qg defined by (13) are forecast-continuous on P◦(Ω) and have the supermartin-
gale property on P◦(Ω) for all g ∈ ΣΛ.

Proof. The “only if” part easily follows from Lemma 15 combined with (the
proof of) Theorem 13.

The “if” part is analogous to Theorem 9. We need to prove inequality (3)
for any finite G ⊆ ΣΛ and for any distribution ρ on G. Let us consider the
function

q(π, ω) =
∑
g∈G

ρ(g)qg(π, ω) ,

which is non-negative, forecast-continuous on P◦(Ω), and has the supermartin-
gale property on P◦(Ω). By Lemma 21 applied to this q and C = 1, there exist
π(i) ∈ P◦(Ω) such that

∀ω ∈ Ω lim
i→∞

∑
g∈G

ρ(g) exp
(

η

(
λ(π(i), ω)

c
− g(ω)

))
≤ 1 .

Let γ(i) = λ(π(i), ·) ∈ ΣΛ. Since ΣΛ is compact (by Assumption 1), the se-
quence γ(i) contains a convergent subsequence; let γ ∈ ΣΛ be its limit. Then∑

g∈G ρ(g) exp
(
η
(
γ/c− g

))
is a limit of the corresponding convergent subse-

quence of the sequence
∑

g∈G ρ(g) exp
(
η
(
γ(i)/c− g

))
, and for every ω ∈ Ω we

get inequality (3): ∑
g∈G

ρ(g) exp
(

η

(
γ(ω)

c
− g(ω)

))
≤ 1 . �

Let us state also the algorithm DFA∗, a variant of the DFA suitable for
supermartingales on P◦(Ω). At step N , the DFA∗ defines the function

q(π, ω) =
∑
θ∈Θ

P0(θ) exp

(
η

N−1∑
n=1

(
γn(ωn)

c
− γθ

n(ωn)
))

× exp
(

η

(
λ(π, ω)

c
− γθ

N (ω)
))
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and chooses any sequence of π(i) ∈ P◦(Ω) such that

∀ω ∈ Ω lim
i→∞

q(π(i), ω) ≤ 1 .

Then the algorithm chooses as γ the limit of any convergent subsequence of the
sequence λ(π(i), ·), and announces γN = σ(γ) as Learner’s prediction. It is clear
that the DFA∗ guarantees the same loss bound as Theorem 5.

It is important for applications that the AA is rather efficient computation-
ally (though it is more complicated than some other algorithms). The DFA∗ is
designed to obtain a nice theory, and it makes little sense to discuss its efficiency.
The DFA is much more practical then the DFA∗. Unfortunately, the DFA seems
to be less practical than the AA. Its main step hidden in the proof of Lemma 8
requires finding a fixed point (or a minimax), which is generally a hard task
(PPAD-complete). For binary games, however, the fixed points can be found
by bisection method, which gives us a not so inefficient implementation of the
DFA. Some tricks can also help for games with three outcomes.

Remark 23. After this paper had been accepted for publication, the authors
have discovered another way to deal with games that do not satisfy Assump-
tion 3. The idea is to consider a multivalued loss function: to every π it assigns
all points where the minimum of Eπg is attained. The definition of supermartin-
gale should be modified accordingly, and a variant of Lemma 4 can be proved
for such multivalued supermartingales. The details will be published elsewhere.

3.8. On Continuous Outcomes
We assumed so far that the space of outcomes, Ω, is finite. However, it is

often natural to consider a continuous space of outcomes. For example, for the
square loss function λsq(p, ω) = (p − ω)2, one can take ω ∈ [0, 1] instead of
ω ∈ {0, 1}.

In this subsection we consider one important case of continuous outcome
spaces: a finite-dimensional simplex. We will consider a simplex as the space
P(Ω) of distributions on some finite Ω. A game of prediction is a pair (P(Ω),Λ),
where Λ ⊆ [0,∞]P(Ω); predictions are functions γ : P(Ω) → [0,∞]; the protocol
is the same. Each game of prediction with the outcomes from a simplex P(Ω) can
be restricted to a game on Ω: we identify each ω ∈ Ω with the distribution δω

concentrated on this ω. Thus we may assume P(Ω) ⊃ Ω. Denote by ΛΩ ⊆
[0,∞]Ω the set of functions from Λ restricted to Ω.

We will show how the supermartingale technique works for games having
some regularity property. (A similar extension for the AA is discussed in [14,
Section 4.1].)

To motivate this kind of property, let us start from the other side and assume
that we have a prediction (recall that our prediction is a vector of our losses for
every possible outcome) γ defined on Ω and want to extend it to P(Ω). The most
natural way to do this is to say that an element of P(Ω) is just a probability
distribution on the outcomes, and consider the expected loss with respect to this
distribution, that is, γ(p) := Epγ for every p ∈ P(Ω). It is also natural to expect
that having this property one should be able to transfer a regret bound from the
game on Ω to the respective game on P(Ω). However, the equality γ(p) = Epγ
is too restrictive. For example, it does not hold for the square loss. At the same
time, what does hold for the square loss (and will be checked later) is an equality
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concerning the difference of two predictions: γ1(p)−γ2(p) = Ep(γ1−γ2). This is
quite natural in our context, since the difference is a regret, loosely speaking, and
a regret is the value we are optimizing. This leads to the following requirement
(formally weaker than the condition for the square loss).

We say that Λ ⊆ [0,∞]P(Ω) has the relative exp-convexity property for certain
c and η if for all γ1, γ2 ∈ Λ and for all p ∈ P(Ω) it holds that

exp
(

η

(
γ1(p)

c
− γ2(p)

))
≤
∑
ω∈Ω

p(ω) exp
(

η

(
γ1(ω)

c
− γ2(ω)

))
.

Remark 24. The relative exp-convexity property for any c > 0 and η follows
from

∀ γ ∈ Λ ∀ p ∈ P(Ω) γ(p) =
∑
ω∈Ω

p(ω)γ(ω)

due to convexity of the exponent function. For c = 1 and any η, it follows also
from

∀ γ1, γ2 ∈ Λ ∀ p ∈ P(Ω) γ1(p)− γ2(p) =
∑
ω∈Ω

p(ω)
(
γ1(ω)− γ2(ω)

)
.

Let σΩ : ΛΩ → Λ be any mapping inverse to the restriction from Λ to ΛΩ,
that is, for any γ ∈ ΛΩ, the function σΩ(γ) ∈ Λ restricted to Ω is γ. Such a
mapping exists since every element of ΛΩ is a restriction of some element of Λ.

Theorem 25. For a game (P(Ω),Λ), suppose that Λ has the relative exp-con-
vexity property for some c ≥ 1 and η > 0. For the restricted game (Ω,ΛΩ),
suppose that for some λ : P(Ω) → ΣΛΩ , the functions qg defined by (13) are
forecast-continuous and have the supermartingale property for all g ∈ ΣΛΩ . Let
σ : ΣΛΩ → ΛΩ be a substitution function (that is, σ(g) ≤ g for all g ∈ ΣΛΩ).
Then for the game (P(Ω),Λ) there is Learner’s strategy (in fact, a variant of
the DFA) with parameters c, η, λ, P0, σ, and σΩ guaranteeing that, at each step
N and for all experts θ, it holds

LN ≤ cLθ
N +

c

η
ln

1
P0(θ)

.

Proof. Assume that we are at step N and need to announce the next predic-
tion. Let γθ

n ∈ Λ, n = 1, . . . , N be the experts’ prediction up to step N , γn,
n = 1, . . . , N−1 be the Learner’s previous predictions, and pn, n = 1, . . . , N−1
be the previous outcomes. Define the function QN−1 from Θ to R

QN−1(θ) =
N−1∏
n=1

exp
(

η

(
γn(pn)

c
− γθ

n(pn)
))

and consider the following function on P(Ω)× Ω:

qN (π, ω) =
∑
θ∈Θ

P0(θ)QN−1(θ)× exp
(

η

(
λ(π, ω)

c
− γθ

N (ω)
))

.

Due to the assumptions about the last multiplier, qN is forecast-continuous and
EπqN (π, ·) ≤

∑
θ∈Θ P0(θ)QN−1(θ). By Lemma 8, we can find πN ∈ P(Ω) such

that for all ω ∈ Ω
qN (πN , ω) ≤

∑
θ∈Θ

P0(θ)QN−1(θ) .
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The prediction of the strategy is γN = σΩ(σ(λ(πN , ·))) ∈ Λ.
Let pN ∈ P(Ω) be the outcome at step N . The relative exp-convexity

property implies that

exp
(

η

(
γN (pN )

c
− γθ

N (pN )
))

≤
∑
ω∈Ω

pN (ω) exp
(

η

(
γN (ω)

c
− γθ

N (ω)
))

.

We have γN (ω) = σ(λ(πN , ·))(ω) by the definition of σΩ, hence we have γN (ω) ≤
λ(πN , ω) by definition of σ. Thus,

∑
θ∈Θ

P0(θ)QN (θ) =
∑
θ∈Θ

P0(θ)QN−1(θ)× exp
(

η

(
γN (pN )

c
− γθ

N (pN )
))

≤
∑
θ∈Θ

P0(θ)QN−1(θ)×
∑
ω∈Ω

pN (ω) exp
(

η

(
λ(πN , ω)

c
− γθ

N (ω)
))

=
∑
ω∈Ω

pN (ω)qN (πN , ω) ≤
∑
θ∈Θ

P0(θ)QN−1(θ) ,

and the loss bound follows as usual. �

As an example, let us again consider the Brier game (the general square
loss function), now with distributions as outcomes: Ω is a finite non-empty set,
outcomes p are from P(Ω), and the loss of decision π ∈ P(Ω) for outcome p is

λB(π, p) =
∑
ω∈Ω

(p(ω)− π(ω))2 .

It is easy to check that this game has the relative exp-convexity property for
c = 1 and any η due to Remark 24:∑

ω∈Ω

p(ω)
(
λB(π1, ω)− λB(π2, ω)

)
=
∑
ω∈Ω

(π2
1(ω)− π2

2(ω)) + 2
∑
ω∈Ω

p(ω)(π2(ω)− π1(ω))

= λB(π1, p)− λB(π2, p) .

Another important example is the Kullback-Leibler game (its restricted ver-
sion is the logarithmic loss game):

λKL(π, p) =
∑
ω∈Ω

p(ω) ln
p(ω)
π(ω)

.

This game also has the relative exp-convexity property for c = 1 and any η:
λKL(π1, p)− λKL(π2, p) =

∑
ω∈Ω p(ω)

(
λKL(π1, ω)− λKL(π2, ω)

)
.

4. Second-Guessing Experts

In this section, we apply the supermartingale technique and the DFA to
a new variant of the prediction with expert advice setting. Protocol 2 is an

23



Protocol 2 Prediction with Second-Guessing Expert Advice
L0 := 0.
Lθ

0 := 0, for all θ ∈ Θ.
for n = 1, 2, . . . do

All Experts θ ∈ Θ announce Γθ
n : Λ → Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + Γθ

n(γn, ωn), for all θ ∈ Θ.
end for

extension of Protocol 1, where the game is specified by the same elements (Ω,Λ)
as before, but the Experts have a new power.

The new protocol contains only one substantial change. Every Expert θ
announces a function Γθ from Λ to Λ instead of an element of Λ (to simplify
notation, we consider Γ also as a function from Λ×Ω to [0,∞], as we did with
the proper loss functions λ). Informally speaking, now an expert’s opinion is
not a prediction, but a conditional statement that specifies the actual prediction
depending on Learner’s next step. Therefore, the loss of each expert is deter-
mined by the Learner’s prediction as well as by the outcome chosen by Reality.
We will call the experts in Protocol 2 second-guessing experts. Second-guessing
experts are a generalization of experts in the standard Protocol 1: a standard
expert can be interpreted in Protocol 2 as a constant function.

The phenomenon of “second-guessing experts” occurs, for example, in real-
world finance. In particular, commercial banks serve as “second-guessing ex-
perts” for the central bank when they use variable interest rates (that is, the
interest rate for the next period is announced not as a fixed value but as an
explicit function of the central bank base rate).

In game theory, the notion of internal regret [9, 3, 22, 23] is somewhat
related to the idea of second-guessing experts. The internal regret appears in the
framework where for each prediction, which is called action in that context, there
is an expert that consistently recommends this action, and Learner follows one
of the experts at each step. The internal regret for a pair of experts (i, j) shows
by how much Learner could have decreased his loss if he had followed expert j
each time he followed expert i. This can be modeled by a second-guessing expert
that “adjusts” Learner’s predictions: agrees with Learner if Learner does not
follow i, and recommends following j when the Learner follows i.

The internal regret is usually studied in randomized prediction protocols.
In the case of deterministic Learner’s predictions, one cannot hope to get any
interesting loss bound without additional assumptions. Indeed, Experts can
always suggest exactly the “opposite” to the Learner’s prediction (for example,
in the log loss game, they predict 1 if Learner predicts pn (“the probability of
1”) less than 0.5 and they predict 0 otherwise), and Reality can “agree” with
them (choosing the outcome equal to Experts’ prediction); then the Experts’
losses remain zero, but the Learner’s loss grows linearly in the number of steps.
A non-trivial bound is possible if Learner is allowed to give predictions in the
form of a distribution on Experts. This can be formalized as the Freund-Schapire
game [25, Example 7]. Then the second-guessing expert modeling an internal
regret is a continuous transformation of the distribution given by Learner. The
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results of [3] and others are bounds of the form LN ≤ Lθ
N + O(

√
N) for the

Freund-Schapire game, which is non-mixable. A discussion of bounds of this
form achievable by the defensive forecasting method will be published elsewhere:
in this paper we consider another kind of bounds. However, here we will also
make the assumption that second-guessing experts modify the prediction of
Learner continuously.

4.1. The DFA for Second-Guessing Experts
First consider the case when Γθ

n are continuous mappings from Λ to Λ. The
DFA requires virtually no modifications for this task and gives the same loss
bounds as in Theorem 5.

Theorem 26. Suppose that for some c, η, and some continuous λ : P(Ω) → Λ
the functions qg defined by (13) are forecast-continuous and have the super-
martingale property for all g ∈ Λ. Then for the game following the protocol of
prediction with second-guessing expert advice where all experts θ at all steps n
announce continuous functions Γθ

n : Λ → Λ, there is Learner’s strategy (in fact,
the DFA applied to QP0 defined by (17)) with parameters c, η, λ, P0, (where P0

is a distribution on Θ) guaranteeing that, at each step N and for all experts θ,
it holds

LN ≤ cLθ
N +

c

η
ln

1
P0(θ)

.

Proof. For any continuous Γ: Λ → Λ consider the function

q̃Γ(π, ω) = exp
(

η

(
λ(π, ω)

c
− Γ(λ(π, ·), ω)

))
.

It is forecast-continuous as a composition of continuous functions, and has the
supermartingale property since for any π ∈ P(Ω), taking g = Γ(λ(π, ·)) we have
Eπ q̃Γ = Eπqg ≤ 1. Similarly to (8), define QP0 on ((C(Λ → Λ))Θ × P(Ω)× Ω)∗,
where C(Λ → Λ) is the set of continuous functions on Λ, by the formula

QP0({Γθ
1}θ∈Θ, π1, ω1, . . . , {Γθ

N}θ∈Θ, πN , ωN ) =∑
θ∈Θ

P0(θ)
N∏

n=1

exp
(

η

(
λ(πn, ωn)

c
− Γθ

n(λ(πn, ·), ωn)
))

. (17)

As in Theorem 5, QP0 is a forecast-continuous supermartingale.
At step N , the strategy chooses any πN satisfying (9) and announces γN =

λ(πN , ·) as Learner’s prediction (we do not need a substitution function here
since the range of λ is in Λ by the theorem assumption). The loss bound
follows, since

exp

(
η

N∑
n=1

(
λ(πn, ωn)

c
− Γθ

n(γn, ωn)
))

=

exp

(
η

N∑
n=1

(
λ(πn, ωn)

c
− Γθ

n(λ(πn, ·), ωn)
))

≤ 1
P0(θ)

.

�
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Recall that Theorem 20 provides us (under Assumptions 1–3) with a con-
tinuous proper loss function λ : P(Ω) →MΣη

Λ. For any η-mixable game, we
have MΣη

Λ ⊆ Λ, and due to Theorem 13 we can take this λ and get forecast-
continuous qg with the supermartingale property.

For non-mixable games there is no guarantee that such λ exists. Theorem 13
gives a function λ ranging over ∂ΣΛ (the boundary of the superpredictions
set ΣΛ), which is not necessarily contained in Λ. Moreover, it may happen that
even for continuous experts Γθ

n : Λ → Λ it is impossible to get any interesting
loss bound, for any strategy. Indeed, consider a game where Λ is not connected
(e. g., the simple prediction game [25, Example 1] with Λ = {(0, 1), (1, 0)}).
Then the example with “opposite” predictions works: the experts just need to
map Learner’s predictions into another connected component.

By this reason, let us consider a modification of Protocol 2 that changes
the sets of predictions allowed for Learner and for Experts. Namely, for the
game (Ω,Λ), Experts θ ∈ Θ announce Γθ

n : ∂ΣΛ → ΣΛ, and Learner announces
γn ∈ ∂ΣΛ (the rest of Protocol 2 does not change). We will assume that the
game satisfies Assumptions 1 and 2 (for non-compact Λ the boundary ∂ΣΛ may
be empty). Then the modified protocol usually gives more freedom to Learner:
since MΛ ⊆ ∂ΣΛ, the predictions in Λ \ ∂ΣΛ are minorized by some better
predictions in MΛ. The Experts are allowed to give predictions (which are
Γθ

n(γn)) in a larger set ΣΛ, however, they need to cope with Learner predictions
from a larger set too.

For the modified protocol, Theorem 26 holds with minimal changes: λ is
allowed to range over ΣΛ instead of Λ, the functions qg have the supermartingale
property for all g ∈ ΣΛ (instead of g ∈ Λ only), Γθ

n are continuous functions
from ∂ΣΛ to ΣΛ; the proof does not change. Theorem 13 provides us with λ
such that qg have the required properties.

4.2. The AA for Second-Guessing Experts
In contrast to the DFA, the AA cannot be applied to the second-guessing

protocol in a straightforward way. However, the AA can be modified for this
case. Recall that the AA is based on the inequality (1), which is already solved
for γN . In the second-guessing protocol, both sides of this inequality will con-
tain γN :

γN (ωN ) ≤ − c

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηΓθ
N (γN , ωN ))

)
.

The DFA implicitly solves this inequality in (the proof of) Lemma 4, using a
kind of fixed point theorem. We will present a modification of the AA which
uses a fixed point theorem explicitly.

A topological space X has the fixed point property if every continuous func-
tion f : X → X has a fixed point, that is, ∃x ∈ X f(x) = x.

Let us show that if the game (Λ,Ω) satisfies Assumptions 1 and 2 then the
set MΣη

Λ (the set of minimal points of Ση
Λ) has the fixed point property for any

η > 0. First consider the homeomorphism from [0,∞]Ω to [0, 1]Ω that maps
g 7→ exp(−ηg). As mentioned in Section 2, the set exp(−ηΣη

Λ) is convex. It
is non-empty due to Assumption 2 and compact due to Assumption 1. Thus,
exp(−ηΣη

Λ) has the fixed point property by [1, Theorem 4.10], and Ση
Λ has
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the property as its homeomorphic image [1, Theorem 4.1]. Now we need the
following technical lemma proved in Appendix.

Lemma 27. There is a continuous mapping F : Ση
Λ →MΣη

Λ such that F (g) ≤
g for any g ∈ Ση

Λ.

Remark 28. Essentially, the main contents of Lemma 27 is a construction
of a continuous substitution function. In many natural games, the standard
substitution functions are continuous without additional efforts.

The definition of MΣη
Λ implies that if F (g) ≤ g then F (g) = g for any

g ∈ MΣη
Λ, and hence F defined in the lemma is a retraction (by definition, a

continuous mapping from a topological space into its subset that does not move
elements of the subset). Due to [1, Theorem 4.2], since Ση

Λ has the fixed point
property, its retract MΣη

Λ has the fixed point property too.

Theorem 29. Suppose that the game (Ω,Λ) satisfies Assumptions 1 and 2 and
is η-mixable. Then for the prediction with second-guessing expert advice protocol,
there exists Learner’s strategy (a modification of the AA) with parameters η and
P0 guaranteeing that, at each step N and for all experts θ, it holds

LN ≤ Lθ
N +

1
η

ln
1

P0(θ)
.

Proof. At step N , the modified AA announces as Learner’s prediction γN any
solution of the following equation with respect to γ ∈MΣη

Λ:

γ = F

(
−1

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηΓθ
N (γ))

))
, (18)

where Γθ
N are announced by the experts, the weights PN−1 are defined in the

usual way with the help of the previous losses:

PN−1(θ) = P0(θ)
N−1∏
n=1

exp(−ηΓθ
n(γn, ωn)) ,

and F is the continuous mapping from Lemma 27.
Since for an η-mixable game we have Ση

Λ = ΣΛ, and since MΣΛ ⊆ Λ, the
functions Γθ

N are defined on γ. By the definition of Ση
Λ, the argument of F

in equation (18) belongs to Ση
Λ, and F maps it to MΣη

Λ. The mapping is
continuous as the composition of continuous mappings. Therefore, since MΣη

Λ

has the fixed point property, equation (18) has a solution.
The property F (g) ≤ g implies that

γN ≤ −1
η

ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηΓθ
N (γN ))

)
,

and the usual analysis of the AA gives us the bound. �

Let us outline briefly how the construction of Theorem 29 can be applied to
non-mixable games under the modified second-guessing protocol (where experts

27



are defined on ∂ΣΛ). Let the AA be (c, η)-realizable. Now we are looking for
γ ∈ ∂ΣΛ satisfying the following equation:

γ = V

(
F

(
−1

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηΓθ
N (γ))

)))
, (19)

where after F we apply V , the mapping defined in the proof of Lemma 12.
Since V is continuous and maps Ση

Λ to ∂ΣΛ, we get a continuous mapping
of V (Ση

Λ) ⊆ ∂ΣΛ into itself. It remains to show that V (Ση
Λ) has the fixed

point property. Similarly to the proof of Lemma 12, consider the set Z =
{g ∈ Ση

Λ | ∀r ∈ [0, 1) rg /∈ Ση
Λ}. For any g ∈ Ση

Λ, there exists a unique r such
that rg ∈ Z, and the continuity of this mapping g → rg follows in the same way
as in the proof of Lemma 12; thus Z is a retract of Ση

Λ and has the fixed point
property. Since V (g) = V (rg) for any non-negative real r such that g and rg
belong to Ση

Λ, we have V (Ση
Λ) = V (Z). The definition of Z implies that V is

bijective on Z, and again as in the proof of Lemma 12 one can show that the
inverse mapping V −1 : V (Z) → Z is continuous. Therefore V (Z) has the fixed
point property as the homeomorphic image of Z.

Let γN ∈ V (Ση
Λ) be any solution of the equation (19). By the properties of

F and V , we have

γN ≤ − c

η
ln

(∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηΓθ
N (γN ))

)
,

and the usual AA bound follows.

5. Predictions with Respect to Several Loss Functions

In this section, we illustrate the use of the supermartingale technique for
another extension of Protocol 1: a game with several loss functions (for a more
detailed discussion of this setting see [5]). In contrast to the case of second-
guessing experts, it is not clear yet whether the AA can help in this case.

Up to now a game was (Ω,Λ) where Λ was the set of admissible predictions,
common for Learner and Experts. Here we return to the game specification by
a loss function on the decision space P(Ω). However, now each Expert θ has its
own loss function λθ. So, the game is specified by (Ω,P(Ω), {λθ}θ∈Θ), where
λθ : P(Ω) × Ω → [0,∞] are proper loss functions. The sets of predictions Λ(θ)
and superpredictions ΣΛ(θ) may be different for different experts θ. The game
follows Protocol 3.

There are two changes in Protocol 3 compared to Protocol 1. The accumu-
lated loss Lθ of each Expert θ is calculated according to his own loss function λθ.
Learner does not have one accumulated loss anymore, but the losses L(θ) of
Learner are calculated separately for comparisons with each Expert θ and ac-
cording to the loss function of this Expert.

Now it does not make much sense to speak about the best expert: their
performance is evaluated by different loss functions and thus the losses may
have different scale. What remains meaningful are bounds for every expert θ of
the form

L
(θ)
N ≤ cθLθ

N + aθ ,
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Protocol 3 Prediction with Expert Evaluators’ Advice

L
(θ)
0 := 0, for all θ ∈ Θ.

Lθ
0 := 0, for all θ ∈ Θ.

for n = 1, 2, . . . do
All Experts θ ∈ Θ announce πθ

n ∈ P(Ω).
Learner announces πn ∈ P(Ω).
Reality announces ωn ∈ Ω.
L

(θ)
n := L

(θ)
n−1 + λθ(πn, ωn), for all θ ∈ Θ.

Lθ
n := Lθ

n−1 + λθ(πθ
n, ωn), for all θ ∈ Θ.

end for

where cθ and aθ may be different for different experts θ ∈ Θ.
Informally speaking, Protocol 3 describes the following situation. We have

some practical task and a number of prediction algorithms (they will be our
Experts). Each of them minimizes some loss, maybe different for different al-
gorithms. We do not know which algorithms fits our task best. As usual in
practice, we do not have a loss that measures the quality of predictions for our
task; we only know that predictions must be close to the real outcomes. A safe
option in this case would be to predict in such a way that our prediction are
not bad compared to predictions of any of the algorithms even if the quality is
evaluated by the loss function ascribed to this algorithm.

The DFA can be adapted to Protocol 3 straightforwardly.

Theorem 30. Suppose that for each θ ∈ Θ, there exist reals cθ ≥ 1 and ηθ > 0
such that the functions

exp
(

ηθ

(
λθ(π, ω)

cθ
− g(ω)

))
(they are direct analogs of qg defined by (13)) are forecast-continuous and have
the supermartingale property for all g ∈ ΣΛθ . Then for any initial distribution
P0 ∈ P(Θ) there is Learner’s strategy (in fact, the DFA applied to QP0 defined
by (20)) guaranteeing that, at each step N and for all experts θ, it holds

L
(θ)
N ≤ cθLθ

N +
cθ

ηθ
ln

1
P0(θ)

.

Proof. Similarly to the proofs of Theorems 5 and 26, we can construct the
supermartingale QP0 :

QP0({πθ
1}θ∈Θ, π1, ω1, . . . , {πθ

N}θ∈Θ, πN , ωN ) =∑
θ∈Θ

P0(θ)
N∏

n=1

exp
(

ηθ

(
λθ(πn, ωn)

cθ
− λθ(πθ

n, ωn)
))

(20)

and choose πN satisfying (9) with the help of Lemma 4. The loss bound follows
in the same way as in Theorem 5. �

Protocol 3 can handle also the following task. We have several experts and
several candidates for the loss function, and a priori some experts may perform
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well for two or more of the loss functions. In this case, it is natural to require
that Learner’s loss is small with respect to every expert and with respect to every
loss function. A simple trick reduces the task to Protocol 3: for each original
expert (supplying us with a prediction), we consider several new experts who
announce the same prediction but use different loss functions. If our predictions
are good in the game with these new experts then our predictions are good in
the original game with respect to any of the loss functions.

For example, assume that we want to compete with K experts according
to the logarithmic loss function and square loss function in the game with out-
comes {0, 1}. Lemmas 6 and 7 imply that the following function is a forecast-
continuous supermartingale:

1
2K

K∑
k=1

exp

(
N∑

n=1

(
− lnπn(ωn) + lnπk

n(ωn)
))

+
1

2K

K∑
k=1

exp

(
2

N∑
n=1

(
(ωn − πn(1))2 − (ωn − πk

n(1))2
))

,

where πk
n is the prediction of Expert k and πn is the prediction of Learner.

Choosing πn according to Lemma 4, we can achieve that the regret term with
respect to the logarithmic loss function is bounded by ln(2K) < lnK +0.7, and
the regret with respect to the square loss function is bounded by 0.5 ln(2K) <
0.5 ln K + 0.4 — practically the same as the regrets against K experts that are
achievable when we compete with respect to only one of the loss functions.
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Appendix

Proof of Lemma 8. Given the function q, let us define the following function
φ on P(Ω)× P(Ω):

φ(π′, π) = Eπ′q(π, ·) .

For each fixed π′, the function φ(π′, ·) is continuous, since q is continuous.
For each fixed π, the function φ(·, π) is linear, and thus concave. Note also that
P(Ω) is a convex compact set. Therefore, φ satisfies the conditions of Ky Fan’s
minimax theorem (see e. g. [1, Theorem 11.4]), and thus there exists π̃ ∈ P(Ω)
such that for any π′ ∈ P(Ω) it holds that

Eπ′q(π̃, ·) = φ(π′, π̃) ≤ sup
π∈P(Ω)

φ(π, π) = sup
π∈P(Ω)

Eπq(π, ·) ≤ C . (21)

It is easy to see that π̃ has the property that the lemma must guarantee:
q(π̃, ω) ≤ C for all ω ∈ Ω. Indeed, if we substitute the distribution δω (which is
concentrated on ω) for π′ in (21), the left-hand side will be just q(π̃, ω). �
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Lemma 8 is a very important statement in our supermartingale framework,
so let us outline an alternative proof for it (for details see [10, Theorem 6], [11,
Theorem 16.1] or [30, Theorem 1]). Consider the sets Fω = {π | q(π, ω) ≤ C}.
These sets are closed and for any Ω0 ⊆ Ω the union ∪ω∈Ω0Fω contains all the
measures concentrated on Ω0. Then all Fω has a non-empty intersection by
Sperner’s lemma.

Lemma 31. Let a function q : P◦(Ω) × Ω → R be non-negative and forecast-
continuous on P◦(Ω). Suppose that for any π ∈ P◦(Ω) it holds that

Eπq(π, ·) ≤ C ,

where C ∈ [0,∞) is some constant. Then it holds that

∃π ∈ P◦(Ω)∀ω ∈ Ω q(π, ω) ≤ (1 + ε)C .

Proof. Let δ ∈ (0, 1) be a constant to be chosen later.
Let Pδ(Ω) = {π ∈ P(Ω) | ∀ω ∈ Ω π(ω) ≥ δ}. This set is a non-empty con-

vex compact subset of P◦(Ω). Repeating the construction from the proof of
Lemma 8 and applying Ky Fan’s theorem for the function on Pδ(Ω), we get that
there exists π̃ ∈ Pδ(Ω) such that for any π′ ∈ Pδ(Ω) it holds that Eπ′q(π̃, ·) ≤ C.

For each ω0, consider the distribution πδ,ω0 such that πδ,ω0(ω) = δ for ω 6= ω0

and πδ,ω0(ω0) = 1− δ(|Ω| − 1). Substituting πδ,ω0 for π′, we get

(1− δ(|Ω| − 1))q(π̃, ω0) + δ
∑

ω 6=ω0

q(π̃, ω) ≤ C .

Since q(π̃, ω) ≥ 0 (the supermartingale S is non-negative), the last inequality
implies that (1− δ(|Ω| − 1))q(π̃, ω0) ≤ C. It remains to note that we can choose
δ so small that 1/(1− δ(|Ω| − 1)) ≤ 1 + ε. �

Proof of Lemma 21. According to Lemma 31, we can find πk ∈ P◦(Ω) such
that

∀ω ∈ Ω q(πk, ω) ≤
(

1 +
1
k

)
C .

Since P(Ω) is compact, there exists a strictly increasing index sequence k(j),
j ∈ N, such that the sequence πk(j) converges to some π ∈ P(Ω).

The points gj = q(πk(j), ·) belong to a compact set [0, 2C]Ω. Hence there
exists a strictly increasing index sequence j(i), i ∈ N, such that the sequence
gj(i) converges to some g0. For every ω ∈ Ω, we have gj(ω) = q(πk(j), ω) ≤
(1 + 1/k(j))C, therefore

g0(ω) = lim
i

gj(i)(ω) ≤ lim
i

(
1 +

1
k(j(i))

)
C = C .

It remains to set π(i) = πk(j(i)) and note that q(π(i), ω) = gj(i). �

Proof of Lemma 12. Let 0 : Ω → [0,∞] be the constant zero function (that
is, 0(ω) = 0 for all ω ∈ Ω). If 0 ∈ ΣΛ then 0 ∈ ∂ΣΛ and we can let V (g) = 0
for any g.

Assume that 0 /∈ ΣΛ. Let V (g) = R(g)g, where R : Ση
Λ → (0, c] is defined by

the following rule: R(g) = min{r ∈ (0, c] | rg ∈ ΣΛ} for any g ∈ Ση
Λ.
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Since the AA is (c, η)-realizable, it holds that cΣη
Λ ⊆ ΣΛ, that is, cg ∈ ΣΛ for

any g ∈ Ση
Λ. The minimum is attained since ΣΛ is compact (by Assumption 1).

Thus R(g) is well defined. It is obvious from the definition that V (g) = R(g)g
belongs to the boundary ∂ΣΛ of ΣΛ for all g ∈ Ση

Λ.
It remains to check that V (g) = R(g)g is continuous in g. We prove that R is

continuous, namely, we take any gi → g0 and for any infinite subsequence {gik
},

we show that if R(gik
) converges then limk R(gik

) = R(g0). If R(gik
) converges

then R(gik
)gik

converges, and limk R(gik
)gik

= (limk R(gik
))g0 ∈ ΣΛ since ΣΛ

is compact. Therefore R(g0) ≤ limk R(gik
). For the other inequality, consider

R(g′|g) = min{r ∈ (0,∞) | rg′ ≥ V (g)} for g, g′ ∈ Ση
Λ such that if g(ω) 6= 0 for

some ω ∈ Ω then g′(ω) 6= 0 too. Clearly, the function R(g′|g) is continuous in g′

for any fixed g (note that R(g′|g) = maxω : g(ω) 6=0 V (g)(ω)/g′(ω)) and R(g|g) =
R(g). Since rg′ ≥ V (g) ∈ ΣΛ implies rg′ ∈ ΣΛ, we have R(g′|g) ≥ R(g′).
In particular, R(gik

|g0) ≥ R(gik
) (assuming k large enough so that g(ω) 6= 0

implies gik
(ω) 6= 0) and R(g0) = limk R(gik

|g0) ≥ limk R(gik
). �

Proof of Lemma 14. Assume that λ1(π, ω0) 6= λ2(π, ω0) and π(ω0) > 0 for
some ω0 ∈ Ω.

Since λ1(π, ·) and λ2(π, ·) belong to Ση
Λ, the point

g = −1
η

ln
e−ηλ1(π,·) + e−ηλ2(π,·)

2

also belongs to Ση
Λ by the definition of Ση

Λ.
For any reals x, y, we have (ex + ey)/2 ≥ e(x+y)/2, and the inequality is

strict if x 6= y. Therefore, g(ω) ≤ (λ1(π, ω) + λ2(π, ω))/2 for all ω ∈ Ω and
g(ω0) < (λ1(π, ω0) + λ2(π, ω0))/2. Multiplying these inequalities by π(ω) and
summing over all ω ∈ Ω, we get

Eπg <
1
2
(
Eπλ1(π, ·) + Eπλ2(π, ·)

)
(recall that π(ω0) > 0). Since λ1 and λ2 are proper with respect to Ση

Λ, we
have Eπλ1(π, ·) ≤ Eπg and Eπλ2(π, ·) ≤ Eπg. Hence we get a contradiction
Eπg < Eπg. �

For a convex function U : RΩ → [−∞,∞], a subgradient at point x ∈ RΩ is
a point x∗ ∈ RΩ such that

∀z ∈ RΩ U(z) ≥ U(x) + 〈x∗, z − x〉 .

Lemma 32. Suppose that Y is a non-empty closed convex subset of [0,∞)Ω.
Let U : RΩ → (−∞,∞] be the function

U(x) = − inf
y∈Y

〈x, y〉 ,

where 〈x, y〉 =
∑

ω∈Ω x(ω)y(ω) is the scalar product in RΩ. Then U(x) is a
convex function, and for any π ∈ P(Ω), it holds that U(π) < ∞, and π∗ is a
subgradient of U at the point π if and only if −π∗ ∈ Y and 〈π,−π∗〉 = −U(π).

Proof. Since Y is not empty, the infimum is finite, and therefore U(x) > −∞
for all x.
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For any α ∈ [0, 1] and any x1, x2 ∈ RΩ, we have U(αx1 + (1 − α)x2) =
− infy∈Y (α〈x1, y〉+(1−α)〈x2, y〉) ≤ − infy∈Y α〈x1, y〉− infy∈Y (1−α)〈x2, y〉 =
αU(x1) + (1− α)U(x2), thus U is convex.

Let us fix some π ∈ P(Ω). Then 〈π, y〉 ≥ 0 for all y ∈ Y , and U(π) ≤ 0 < ∞.
Let −π∗ ∈ Y and 〈π,−π∗〉 = −U(π). Then U(π)+〈π∗, z−π〉 = −〈−π∗, z〉 ≤

− infy∈Y 〈z, y〉 = U(z) for any z, thus π∗ is a subgradient of U at π.
Let π∗ be any subgradient of U at π. Assume that −π∗ /∈ Y . Then −π∗ and

Y can be strongly separated by Corollary 11.4.2 in [19], and Theorem 11.1(c)
there implies that there exists z ∈ RΩ such that infy∈Y 〈y, z〉 > 〈−π∗, z〉. Let us
choose δ > 0 such that

inf
y∈Y

〈y, z〉 > δ + 〈−π∗, z〉 ,

and then choose y0 ∈ Y such that

〈π + z, y0〉 < inf
y∈Y

〈π + z, y〉+ δ .

From the definition of the subgradient, we get U(π + z) ≥ U(π) + 〈π∗, z〉, and
thus

〈π + z, y0〉 − δ < inf
y∈Y

〈π + z, y〉 ≤ inf
y∈Y

〈π, y〉+ 〈−π∗, z〉 ≤ 〈π, y0〉+ 〈−π∗, z〉 .

So, 〈z, y0〉 < δ + 〈−π∗, z〉, which contradicts the choice of δ. This means that
−π∗ ∈ Y .

It remains to note that the definition of the subgradient implies U(0) ≥
U(π)+〈π∗, 0−π〉, and since U(0) = 0, we get infy∈Y 〈y, π〉 = −U(π) ≥ 〈−π∗, π〉.

�

Proof of Lemma 15. By Assumption 2, there exists a finite point gfin in Ση
Λ∩

[0,∞)Ω, where Eπgfin is finite for any π. By Assumption 1, Ση
Λ is compact, and

therefore the minimum is attained for all π ∈ RΩ. Thus H is well defined. Note
also that H(π) ≥ 0 for π ∈ P(Ω) and H(π) = −∞ if π(ω) < 0 for some ω ∈ Ω.

Now let us show that

H(π) = inf
g∈Ση

Λ∩[0,∞)Ω
Eπg .

Again by Assumption 2, the infimum is taken over a non-empty set. If π(ω) < 0
for some ω ∈ Ω then H(π) = −∞ and the infimum is equal to −∞ as well.
Thus we need to consider only the case when π(ω) ≥ 0 for all ω ∈ Ω and the
minimum in the definition of H is attained at a point g such that g(ω) = ∞ for
some values of ω. Note that for these ω we have π(ω) = 0, since H(π) < ∞.
Choose a sequence gn ∈ Ση

Λ∩ [0,∞)Ω that converges to g (for example, consider
the segment between the points e−ηg and e−ηgfin , and take a sequence e−ηgn

along this segment). Since gn(ω) and g(ω) are finite for non-zero π(ω), we get
Eπgn → Eπg = H(π), and thus the infimum is not greater than H(π).

Now we can apply Lemma 32 with Y = Ση
Λ ∩ [0,∞)Ω and U(π) = −H(π).

It implies that for any π ∈ P(Ω), the set of subgradients of U at π is the
set of points where the infimum of Eπg over g ∈ Ση

Λ ∩ [0,∞)Ω is attained. If
π ∈ P◦(Ω), the infimum is attained indeed, and it is unique by Lemma 14.
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By Theorem 25.1 in [19], the function H is differentiable at π, and the point
λ(π, ·) = arg ming∈Ση

Λ
Eπg is the gradient of H. Thus H ⊇ P◦(Ω).

On the other hand, if H is differentiable, the set of subgradients consists of
one element only, the gradient. Theorem 25.5 in [19] implies that the gradient
mapping π 7→ λ(π, ·) is continuous on H. �

Proof of Lemma 18. Due to Assumption 1, MΣη
Λ is compact and therefore

contains all its limit points, that is, γ ∈MΣη
Λ.

Let E+
π′g be a shorthand for

∑
ω∈Ω, π(ω) 6=0 π′(ω)g(ω) for any g ∈ [0,∞]Ω and

π′ ∈ P(Ω). By definition, Eπγ = E+
π γ.

Note first that Eπi
g converges to Eπg for any finite g ∈ [0,∞)Ω.

Note also that E+
πi

γi converges to E+
π γ. Indeed, E+

πi
γi ≤ Eπi

γi ≤ Eπi
gfin ≤∑

ω∈Ω gfin(ω) < ∞, where gfin ∈ Ση
Λ ∩ [0,∞)Ω exists by Assumption 2. If

π(ω) 6= 0 then πi(ω) is separated from 0 for sufficiently large i, therefore γi(ω)
are bounded, and their limit γ(ω) is finite. And for finite limits γ and π, the
convergence is trivial.

Fix any g0 ∈ [0,∞)Ω and any ε > 0. For sufficiently large i, we have
E+

πi
γi ≥ E+

π γ− ε and Eπi
g0 ≤ Eπg0 + ε. Taking into account that E+

πi
γi ≤ Eπi

γi

and Eπiγi = ming∈Ση
Λ

Eπig ≤ Eπig0, we get Eπγ ≤ Eπg0 + 2ε. Since ε and g0

are arbitrary, we have
Eπγ ≤ inf

g∈Ση
Λ∩[0,∞)Ω

Eπg ,

and the last infimum can be replaced by ming∈Ση
Λ

as shown in the proof of
Lemma 15. �

Proof of Lemma 27. We construct a continuous mapping F : Ση
Λ →MΣη

Λ as
a composition of mappings Fω for all ω ∈ Ω. Each Fω when applied to g ∈ Ση

Λ

preserves the values of g(o) for o 6= ω and decreases as far as possible the value
g(ω) so that the result is still in Ση

Λ. Formally, Fω(g) = g′ such that g′(o) = g(o)
for o 6= ω and g′(ω) = min{ γ(ω) | γ ∈ Ση

Λ, ∀o 6= ω γ(o) = g(o) }.
Let us show that each Fω is continuous. It suffices to show that Fω(g)(ω)

depends continuously on g, since the other coordinates do not change. We will
show that Fω(g)(ω) is convex in g, continuity follows (see, e. g. [19]). Indeed,
take any t ∈ [0, 1], and g1, g2 ∈ Ση

Λ. Since Ση
Λ is convex, then tg1+(1−t)g2 ∈ Ση

Λ

and tFω(g1)+(1−t)Fω(g2) ∈ Ση
Λ. The latter point has all the coordinates o 6= ω

the same as the former. Thus, by definition of Fω, we get Fω(tg1+(1−t)g2)(ω) ≤
(tFω(g1) + (1− t)Fω(g2))(ω) = tFω(g1)(ω) + (1− t)Fω(g2)(ω), which was to be
shown.

All Fω do not increase the coordinates. Since the set Ση
Λ contains any point g

with all its majorants, Fω(g1) = g1 implies that Fω(g2) = g2 for any g2 obtained
from g1 by applying any Fω′ . Therefore, the image of a composition of Fω over
all ω ∈ Ω is included in MΣη

Λ. �
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