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Abstract

Degraded DNA can be recovered from specimens that are preserved in museums and
the natural environment. Data generated from such DNA have provided valuable
evidence for the assessment of a suite of biologically important questions. However,
research of this nature is limited for invertebrate taxa, despite their diversity and
ecological necessity. Using DNA data from dry-stored museum and permafrost-
preserved ancient specimens, this thesis greatly extends the study of degraded DNA
from invertebrates. The thesis focuses on two arctic ground beetle species (Amara
alpina, Pterostichus brevicornis), which are abundant in museum collections and

permafrost deposits.

A lack of data that characterises the preservation and potential of degraded beetle
DNA, and thereby assessment of future possibilities for this emerging field, provided
the impetus for the first three results chapters. Using two different sequencing
approaches, the preservation of DNA in museum and ancient specimens was
investigated. In addition, the taxonomic utility of DNA extracted from these
specimens was assessed. These chapters demonstrate that DNA could be routinely
recovered from museum specimens. DNA from ancient specimens could be recovered
from A. alpina but not P. brevicornis. In most cases therefore, degraded DNA from

these beetles could be used to address further questions.

The final two results chapters focus on the response of the two study species to a past
period of climatically driven change, using DNA data from museum and ancient
specimens. In these chapters, the mode of postglacial colonisation of Canada at the
end of the last ice age was investigated. It was found that existing models of this
process were broadly, but not wholly, correct. This may have implications for models

of how beetles will respond to future climatic change.

Although some challenges lie ahead, this thesis demonstrates the potential for
museum and ancient permafrost-preserved beetle specimens in future, DNA-based,

large-scale investigations.
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Chapter 1. Introduction

1.1. The Importance of Beetles

Insects are the most diverse class of organisms on Earth and are of importance
economically, scientifically, and epidemiologically, as well as being imperative to the
healthy functioning of terrestrial ecosystems (Gullan & Cranston 2010). The beetles
(Insecta: Coleoptera) are the most speciose insect order (40%; >350,000 species) and
are found in nearly all terrestrial ecosystems, fulfilling a great variety of niches
(Grove & Stork 2000; New 2007). Beetles are therefore the focus of countless studies
investigating a suite of biological questions, such as those related to evolution,
ecosystem function, and conservation. Many of these studies require a genetic
approach, as this is a proven way to robustly assess key indicators, such as
relatedness, population structure, and the interactions between and within species,
which are used to assess these questions. To conduct genetic studies, specimens need
to be collected. However, some regions, such as the arctic - an area that is particularly
vulnerable to predicted future climatic and associated ecosystem changes (Post et al.
2009), are difficult, dangerous, and expensive to sample due to their inhospitable

nature.

1.2. The Genetic Potential of Museum Collections

Fortunately, due to more than two centuries of collection effort, hundreds of millions
of insect specimens have been deposited in museum collections (Suarez & Tsutsui
2004), thereby removing the need to sample directly from difficult regions in many
cases (Schaefer et al. 2009). In addition to being an easily accessible source of beetle
specimens, museum collections can also add a temporal perspective, on a decadal to
centennial time scale (Rowe et al. 2011), to genetic studies. Museum specimen based
genetic studies of other insects have assessed issues such as the preadaptation to
recent pesticide-induced selection pressures (Hartley ez al. 2006) and extreme genetic
drift (Harper et al. 2006). Although some researchers have utilised DNA from dry-
stored museum specimens of beetles (Castalanelli ef al. 2010; Gibson et al. 2012;

Gilbert et al. 2007; Goldstein & Desalle 2003; Thomsen et al. 2009), these studies are

13



generally small in scale and/or limited in scope. DNA from museum specimens is
highly degraded (Wandeler et al. 2007), especially in old (>50yr) specimens, which
has no doubt hampered or dissuaded researchers from utilising them in other past
studies. Data are now becoming available that begin to characterise the DNA present
in old museum specimens of other insect orders (Andersen & Mills 2012; Strange et
al.2009; Tagliavia et al. 2011; Ugelvig et al. 2011; van Houdt et al. 2010; Watts et al.
2007). However, these studies vary in their quality and large-scale, standardised data
are usually limited. Furthermore, there are no standardised data that characterise the
DNA present in old museum beetle specimens. A large-scale study that robustly
assesses both the proportion and preservation of endogenous DNA in these remains is
therefore required. Data from such a study would provide either reassurance or a
warning to researchers keen to exploit these potentially vast untapped genetic
resources, as well as museum curators who may be hesitant about allowing their

specimens to being used for potentially destructive genetic analyses (Mandrioli 2008).

1.3. Insects and aDNA Research

In addition to museum specimens, ancient specimens - defined here as >100yr old
individuals that have been preserved in the natural environment and are therefore
likely to have degraded aDNA, are also potentially large untapped genetic resources
with the capacity to extend the temporal aspect of insect DNA studies to millennial
time scales. With this extended temporal range, it would be possible to investigate
novel questions related to historical events, such as evolutionary changes and the

response of species to past episodes of climatic and environmental change.

The first attempts to retrieve aDNA from insects were conducted on specimens
preserved in 25 to 135 million year old (Ma) ambers (Cano ef al. 1993; Desalle et al.
1992). However, these studies were met with intense scepticism, based on the stability
and degradation rate of post mortem DNA (Lindahl 1993). Studies that attempted to
replicate these findings either failed or identified the DNA source as a contaminant
(Austin et al. 1997a; Gutierrez & Marin 1998; Walden & Robertson 1997). These
amber-based studies have been dismissed as an example of the contamination and
reproducibility issues that are inherent to aDNA studies (Austin ef al. 1997b;

Hebsgaard et al. 2005). To combat these issues, handling and analysis protocols are
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now a component of the design of any significant aDNA study (Cooper & Poinar

2000; Gilbert et al. 2005; Hofreiter et al. 2001).

The maximum age of DNA-bearing fossil material has also been the subject of
significant discussion. However, there is some agreement that, under ideal conditions
(very cold and consequently dry - see below for examples), the theoretical age limit
for the recovery of aDNA is ~0.1 to 1Ma (Lindahl 1993; Poinar et al. 1996; Smith et
al. 2003; Willerslev & Cooper 2005).

The first insect aDNA study, using specimens of suitable age (<1Ma), was on
glacially-preserved (400yr) grasshoppers (Chapco & Litzenberger 2004). However,
the authors did not present contamination reduction protocols or other support for the
authenticity of the recovered DNA. The first researcher to recover insect aDNA of
suitable age, and follow strict aDNA protocols, was Reiss (2006) who explored the
retrieval of beetle aDNA from 20 thousand year old (ka) packrat middens; a deposit-
type characterised by exceptionally low moisture content. Willerslev and colleagues
(2007) then recovered the oldest accepted insect aDNA from the basal section of a
Greenland ice core, which dates to between 450 and 800ka. A further two studies,
based on the extraction of beetle aDNA from exoskeletal sclerites, were published in
2009. King and colleagues (2009) isolated weevil aDNA from Roman and Medieval
non-frozen sediments, whereas Thomsen and colleagues (2009) recovered aDNA
from 26 to 10ka permafrost deposits. In the latter study, insect aDNA was also
retrieved directly from non-frozen cave sediments that were between 1800 and

3280yrs old (Thomsen et al. 2009).

These proof of concept studies have demonstrated the presence of insect aDNA from a
variety of environments and ages, with permafrost-preserved specimens considered to
have great potential (Reiss 2006). Therefore, a next step in insect aDNA research is to
characterise the DNA present in permafrost-preserved remains. This includes an
assessment of DNA preservation and the taxonomic composition of the DNA
extracted from these remains. Together, these data would assess the potential of

permafrost-preserved insect remains as a genetic resource for future studies.

15



1.4. Recovering Museum and Ancient DNA

The repercussions from the aforementioned amber-based studies demonstrate that the
recovery of reliable DNA data from museum and ancient specimens is a non-trivial
endeavour. Endogenous aDNA (which originates from the organism) is degraded by
fragmentation, cross-linking, and other damage-inducing processes that are influenced
by environmental factors such as temperature, moisture, and exposure to ultraviolet
(UV) radiation and free oxygen (Lindahl 1993; Paabo et al. 2004). Increasing the level
of these environmental factors will degrade DNA, and can prevent aDNA from being
recoverable (Lindahl 1993; Paabo ef al. 2004). Hydrolytic reactions, which occur in
the presence of free water, can cause depurination (removal of purine bases). This can
increase the chance of DNA strand breaks (producing fragmentation). Additionally,
hydrolysis can cause miscoding lesions, whereby a base is chemically modified into
an analogue of a different base, which can introduce errors into any recovered aDNA
sequences. Oxidation can produce blocking lesions and UV radiation can cause intra-
and inter-strand crosslinks in DNA; both of these processes can prevent aDNA
amplification (Hofreiter et al. 2001; Lindahl 1993; Paabo et al. 2004; Willerslev &
Cooper 2005). Altogether, these processes severely reduce the concentration of
endogenous aDNA, which can lead to the erroneous recovery of exogenous, or
contaminated, sequences (Lindahl 1993; Paabo et al. 2004). Strict protocols require
that aDNA handling, including DNA extraction, be performed in sterile conditions,
physically isolated from potential contaminant sources. Additionally, any recovered
genetic data should be replicable, make phylogenetic sense, and display appropriate
biomolecular behaviour such as only recovering short DNA fragments (almost
invariably less than 1000bp, and generally less than 200bp), due to fragmentation
(Cooper & Poinar 2000; Gilbert et al. 2005; Hofreiter et al. 2001).

Post mortem damage will reduce the amount of DNA that can be recovered and
characterised from a sample. Animal cells have two types of DNA present:
mitochondrial (mt) and nuclear (nu) DNA. MtDNA, located within the mitochondria,
is maternally inherited with up to several thousand copies per cell (Moraes 2001).
NuDNA, found within the nucleus, is paternally and maternally inherited with two
copies per cell. However, some genes within the nuclear genome are multi-copy (e.g.

288, ITS1, 18S), thereby increasing their copy number per cell. The probability of
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preservation for any given DNA locus may increase with copy number (Hofreiter et
al. 2001). Therefore, mtDNA and multi-copy nuDNA would have a greater chance of

preservation than single-copy nuDNA.

At present, there are two major methodological approaches for the retrieval of aDNA
sequences from extracted DNA: Sanger sequencing, and next-generation sequencing.
The former involves the targeted amplification of short (<1000bp) DNA loci
(fragments) by PCR, followed by Sanger sequencing of the resultant PCR products to
obtain a consensus of the amplified DNA. Problems can arise if the amplified DNA
fragments are damaged or contaminated. However, multiple short overlapping
fragments can be combined to aid detection of these potential error sources, as well as
increasing the amount of usable genetic data (Krings ef al. 1997). Sanger sequencing
data are appropriate for detecting the presence of aDNA, as well as assessing the

preservation (such as maximum recoverable fragment length) of aDNA.

Next-generation sequencing (hereafter NGS) can be employed to sequence millions of
extracted DNA fragments in parallel (the shotgun approach), thereby massively
increasing the amount of DNA sequence data retrieved compared to Sanger
sequencing (Knapp & Hofreiter 2010). Although various NGS technologies are
available (Shokralla ef al. 2012), the Illumina sequencing-by-synthesis system has
been a popular method for many recent aDNA studies [e.g. Allentoft ez al. (2012),
Meyer et al. (2012), Rasmussen et al. (2011), Sawyer et al. (2012)], due in part to a
low error rate and superior throughput (Knapp & Hofreiter 2010; Shokralla ef al.
2012). The NGS procedure has three main steps: DNA library construction,
sequencing, and data analysis. Library construction prepares the DNA for sequencing
through the ligation of adapters. During this step, a barcode, in the form of a short
unique nucleotide sequence, can be incorporated into the adapter in order to identify
which specimen the DNA originated from (Meyer & Kircher 2010). This allows for
multiple specimens to be sequenced at the same time (multiplexing). Paired-end
sequencing, in which each DNA fragment is sequenced from both ends, can be used to
ensure higher quality data (Kircher et al. 2011). After sequencing, the data are quality
filtered; a process which includes the removal of adapter and poor quality sequence,

and the merging of the paired-end sequences (Kircher 2012), ahead of downstream
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analysis (see chapter two). NGS data derived from a shotgun-based approach are
suitable for characterising the preservation, such as average fragment length, of
aDNA, as well as assessing the taxonomic composition of the DNA present in

museum and ancient remains.

1.5. The Late Quaternary, Beringia, and Permafrost-Preserved Insects

The late Quaternary, which includes the Late Pleistocene stage (126 to 11.7ka) and
Holocene epoch (11.7ka to present), was a period of major climatic and environmental
change and encompassed the most recent full glacial cycle or ice age (fig. 1.1)
(Gradstein et al. 2012). During glaciations, sea levels were up to 130m lower than
they are today, exposing large areas of now inundated land (Hopkins 1973; Lambeck

et al.2002).

Marine Isotope Temperature
Age Chronostratigraphy Sea level Stage (MIS) (Marine Oxygen-18)
(ka) | Epoch/Stage Period High Low] Cold | Warm ] Cold Warm

I\___Holocene .
24—

50 late

Late Quaternary

Pleistocene

100

Figure 1.1 The late Quaternary subdivisions and climate proxies. A single glacial cycle has occurred

during this period (126 to Oka). Modified from Gradstein and colleagues (2012).

Beringia was a region that existed at these times and consisted of northeastern Siberia,
the now inundated Bering Land Bridge, lowland Alaska, and the unglaciated regions
of the Yukon (fig. 1.2) (Elias & Crocker 2008; Hultén 1937). It connected the
Palearctic (Europe and Asia) and Nearctic (North America) biogeographic realms,
which together constitute the Holarctic, and therefore provided a major terrestrial
migration route at times of low sea level (Sher 1999). In addition, and despite its
northerly latitude, lowland Beringia remained free from glaciers throughout the ice
ages and therefore provided the arctic fauna with a refuge during glaciations (Hultén
1937; Pielou 1991). Permafrost, which is excellent for both morphological and

molecular preservation, has persisted in Beringia since these glaciations and has
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resulted in an excellent palaeontological record of the Beringian flora and fauna

through multiple ice ages (Shapiro & Cooper 2003).

Figure 1.2 Map of Beringia, with the maximum extent of the Bering Land Bridge (lightest green)
during the last glaciation. Relief indicated by the shade of green (darker represents greater altitude). In
East Beringia (Alaska, Yukon), only the lowland areas were unglaciated. Modified from Elias and

Crocker (2008), after Hoffecker and Elias (2007).

The late Quaternary permafrost deposits of Beringia are a rich source of preserved
subfossil insect remains, of which beetles are the most commonly recovered (Elias
2010). This is due to their hard exoskeleton, which is usually recovered as isolated
sclerites, increasing their chance of preservation (Coope 2004). Nearly all elements of
the Quaternary permafrost-preserved beetle fauna are extant, with many species being
stenothermic (narrow temperature range tolerance) and adapted to specific habitats
(Elias 2010). As permafrost-preserved sclerites are often identifiable to the species
level using exoskeletal morphology (Coope 2004), these beetle remains can therefore
provide valuable evidence for palaecoclimatic and palacoenvironmental interpretations

of Beringia and how the climate and ecosystem changed through time (Elias 2010).

Despite their abundance and importance, the possibility of aDNA investigation using
permafrost-preserved beetles has only recently been demonstrated (Thomsen et al.
2009). The vast majority of previous Beringian aDNA studies have focused on the
large mammal (mega) fauna, and have assessed a broad suite of important questions

related to extinction, past population history, and the effect of past climatic changes
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on these events and processes (Barnes ef al. 2002; Barnes et al. 2007; Barnett et al.
2009; Campos et al. 2010; Lorenzen et al. 2011; Shapiro et al. 2004). Therefore, the
use of an aDNA approach for the assessment of biologically meaningful questions in
beetles is both timely and warranted. Considering their role in maintaining properly
functioning terrestrial ecosystems, one such suitable and pressing area for

investigation is the response of beetle species to past climatically driven change.

1.6. Beetle Responses to Climatically Driven Change

Based on scenarios of near-future climatic change, the present distributions of habitats
and ecosystems are likely to continue migrating toward the poles for at least the next
century (Bellard et al. 2012; Lawler et al. 2009; Parmesan 2006). In order to survive,
species with narrow climatic and/or ecological tolerances (stenotherms) will need to
respond by tracking these changing distributions. Understanding how species will
respond to these challenges is of major importance for conservation and to ensure the
health of future ecosystem function (Bellard et al. 2012; Botkin et al. 2007; Meyers &
Bull 2002). In order to assess how species will respond to climatic change in the
future, known responses from past episodes of climatic and environmental change can

be used to inform potential future responses.

Although studies can rudimentarily assess species responses based on present species
distributions, through phylogeographic or regional analyses, a rigorous study requires
genetic information not only from the present, but also from the past when these
climatic changes were actually occurring. This is because the modern record can be
misleading, due to past demographic processes such as population bottlenecks
(Willerslev & Cooper 2005). The only way to obtain genetic information from the
past is by using aDNA.

The last ice age provides an ideal time period for this type of investigation, as it was a
time of major climatic fluctuations in the geologically recent past and previous studies
have shown a general trend of major species level responses to these environmental
changes, based on both modern and past distributions (Brace et al. 2012; Dalén et al.
2007; Hewitt 1999; Stewart et al. 2009). North America provides an ideal geographic
setting because, during the height (26,500 to 19,000 cal. yrs BP; fig. 1.1) of the last
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ice age, the uninhabitable Laurentide and Cordilleran ice sheets covered Canada, with
the exception of the Beringian areas of the Yukon, and the ice margin extended south
to the northernmost areas of the lower 48 states of the USA (fig. 1.3) (Clark et al.
2009; Dyke 2004). At this time, the cold-adapted fauna persisted in refugia: Beringia
(western refugium; figs. 1.2, 1.3) and the lower 48 states of the USA (southern
refugium; fig. 1.3) (Hultén 1937; Pielou 1991). After deglaciation initiated, around
15,500 cal. yrs BP (Dyke 2004), the fauna colonised the newly exposed landmasses,
although the mode of colonisation differed between species (Anderson et al. 2006;
Aubry et al. 2009; Beatty & Provan 2010, 2011; Eidesen et al. 2007; Fedorov et al.
2003; Weckworth et al. 2010).

Based on a synthesis of modern and subfossil distributional evidence, the Schwert-
Ashworth (1988) model describes how the cold-adapted beetle fauna colonised

Canada during deglaciation (fig. 1.3).

Figure 1.3 The Schwert-Ashworth (1988) model of the postglacial colonisation mode of Canada by the
arctic beetle fauna, as exemplified by Amara alpina. Western refugium: Beringia, southern refugium:
lower 48 of the USA, dispersal barrier: Hudson Bay. White: extent of the Laurentide and Cordilleran
ice sheets at 18ka, just after maximal extent. Light grey: water bodies. Dark grey: exposed land. Map
modified from Dyke (2004). Colonisation routes are based on Ashworth (1996), Reiss et al. (1999), and
Schwert and Ashworth (1988).
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The model states that populations in the southern refugium (lower 48) survived
warming by colonising high altitude mountains (of the Rockies and Appalachians),
and that Canada was either primarily or exclusively colonised by eastward dispersal
from Beringia. A problem with this model, identified by Schwert and Ashworth
(1988), is Hudson Bay. This major physiographic barrier to eastward dispersal was the
last area of mainland North America to deglaciate, around 8,000 cal. yrs BP (Carlson
et al.2008). The only way for flightless ground beetles to cross this barrier would
have been via the regions south of Hudson Bay, which may have been problematic for
the cold-adapted beetle fauna. Distributional evidence of some ground beetle species
strongly suggests that Hudson Bay was a barrier to dispersal (Schwert & Ashworth
1988), although the model maintains that species now found east of Hudson Bay must
have crossed this barrier. An alternative scenario is that this region was colonised at
least partially from the southern refugium, which would suggest that Hudson Bay was
a stronger barrier to dispersal than is currently thought. Resolution of these scenarios
may be informative for future migration route models of the North American ground

beetle fauna in response to predicted climatic change.

1.7. Study Taxa

Two closely related ground beetle (Coleoptera: Carabidae) species were selected for
investigation in this thesis, Amara alpina and Pterostichus brevicornis. These species
are both well represented in museum collections and the permafrost deposits of
Beringia (Elias ef al. 2000). They have a north Holarctic, near-circumpolar
distribution and are also found on mountain peaks of the lower 48 states of the USA
(Ball 1966; Lindroth 1966, 1968). In addition, these species are flightless (Ashworth
et al. 1996; Lindroth 1968, 1969; Schwert & Ashworth 1988), important for
palaeoclimatic and palaeoenvironmental reconstruction due to their stenothermic
nature (Elias 2010), and are cold adapted, with 4. alpina being the most cold-adapted
ground beetle (Bennike ef al. 2000). The latter two points would indicate that both
species are especially likely to respond to even minor levels of future climatic change.
These species differ in their ecological requirements; A. alpina is found in both xeric
(dry) and mesic (moist) habitats, whereas P. brevicornis is adapted to mesic habitats

(Elias & Crocker 2008; Lindroth 1968). These two species could therefore be used to
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assess whether potential inferences were specific, or could be generalised across the

arctic ground beetle fauna.

1.8. Thesis Aims

There were two overarching aims to this thesis:

First was to assess the potential of DNA from recent (<50yr) and old (>50yr)
museum, as well as ancient permafrost-preserved, specimens of the Holarctic ground
beetles A. alpina and P. brevicornis. This included:

a. Investigating the proportion of specimens in which DNA is preserved using a
Sanger sequencing based approach (chapter three).

b. Characterising the state of DNA preservation in these remains, as inferred from
Sanger sequencing (chapter three) and NGS (chapter four).

c. Assessing the proportion of endogenous, and taxonomically characterising the
remaining, DNA that could be recovered from these remains using a shotgun-
based NGS approach (chapter five).

Second was to assess how Canada was colonised after the last glaciation by the
ground beetles, A. alpina (chapter six) and P. brevicornis (chapter seven), using a

combined museum and ancient DNA approach.

In addition, several chapter-specific questions were investigated. These are introduced
and discussed in their respective results chapters and included:

Assessing the misidentification rate for permafrost-preserved specimens (chapter
three).

Exploring some of the bioinformatic aspects for the analysis of shotgun-generated
NGS data from a taxon lacking a suitable reference genome (chapter five).

Examining whether there was population turnover in A. alpina during the ice age
(chapter six).

Investigating the taxonomy of modern P. brevicornis (chapter seven).

The overarching and specific aims were investigated in chapters three to seven, with

the overall findings outlined and discussed in chapter eight.
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Chapter 2. Materials and methods

This chapter describes the general procedures that were used for multiple chapters
(three to seven). Methods outlined in sections 2.1 to 2.3 were used for all results
chapters, those in section 2.4 (Sanger sequencing) were used for chapters three, six,
and seven, whereas those in section 2.5 (NGS) were employed for chapters four and

five.

2.1. Specimen Collection

Specimens fell into three age classes: modern (<10 years old), museum (from dry-
stored collections; >10 years old), and ancient (from permafrost deposits). All

specimens, including age and provenance, are listed in appendix 1.

Modern specimens were collected from seven localities between 2002 and 2004 by S.
Kuzmina. Dry-stored museum specimens, that had either been pinned or glued to a
card mount, were gathered from the Canadian National Collection of Insects,
Arachnids, and Nematodes (CNC) in April 2010 (Amara alpina, Pterostichus
brevicornis) and the Swedish Museum of Natural History (NRM) in May 2011 (A.
alpina). These specimens ranged in age from 137 to 11yrs old (as of 2012), and
originated from 105 localities. These localities represent the entire modern distribution
of A. alpina, with the exception of an isolated Scottish population (Lindroth 1968;
Luff 2007), and the complete North American range of P. brevicornis (Ball & Currie
1997). Although complete dry-stored museum specimens can be used for DNA
extraction in a non-destructive manner (Castalanelli et al. 2010; Gilbert ef al. 2007b),
the long-term effects on the structural integrity of specimens, through weakening of
desiccated soft tissues connecting the sclerites, is not known (M.T.P. Gilbert, pers.
comm.). Therefore, in order to preserve specimens (Mandrioli 2008), a single non-
morphologically identifiable hind leg (including femur, tibia, tarsi; fig. 2.1a-c) was
removed for analysis using tweezers, which were cleaned after each collection with

bleach and water to minimise sample cross contamination.
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Figure 2.1 Museum and ancient specimens of A. alpina. All specimens have undergone DNA
extraction. a-c: museum hind leg specimens from the CNC (a: Quebec, b: NWT, c: Alaska), d-f: ancient
sclerite specimens (d: TR Pleistocene, e-f: TR Holocene). d-e: pronota, f: elytron. a-d yielded DNA.

Scale bar is 10mm.

Ancient specimens, consisting of individual complete or broken sclerites [pronota
(thoracic shields) or elytra (wing cases); fig. 2.1d-f], were collected from 30 Beringian
sites between 1983 and 2006 (table 2.1). All remains represent adults. Specimens
ranged in age from >560,000 to 5,800 cal. yrs BP, based on either exact radiocarbon
dating of associated plant remains, relative tephra dating of layers above or below
beetle-bearing sediments, or through rough stratigraphic correlation. Samples were
removed from the sediment by bucket sieving, using water and a 300pum screen. They
were subsequently dry picked and stored at room temperature (Elias 1994, 2010).
Kerosene, a potentially destructive agent to DNA (Reiss 2006), was not used to isolate
specimens. Prior to DNA extraction, ancient specimens were stored at -20°C to reduce

further degradation (Reiss 2000).

2.2. Contamination Reduction

DNA extraction and PCR reaction preparation of degraded samples (ancient and
museum) was performed in a dedicated aDNA laboratory which was physically
isolated from the laboratory in which PCR and subsequent downstream reactions were
conducted [following Cooper, Poinar (2000); Gilbert et al. (2005); Hofreiter et al.
(2001); Wandeler et al. (2007)]. To prevent contamination of degraded samples, all
non-biological materials, equipment, and surfaces were sterilised with bleach. The

laboratory atmosphere was sterilised with UV light and small equipment was
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Previous page: Table 2.1 Data on the ancient localities used in this thesis. A.a.: Amara alpina, P. b.:
Pterostichus brevicornis. N: number of samples from each locality (A. alpina/P. brevicornis). LP: Late
Pleistocene. 7Hol.: 7Holocene. RC: Radiocarbon years before present. Cal.: Calendar years before
present. RC ages are approximate and were calibrated using OxCal

(https://c14.arch.ox.ac.uk/oxcal/OxCal.html).

irradiated in a UV cross-linker for 20 minutes prior to work commencing.
Additionally, a full body suit, foot covers, gloves, and a facemask were worn at all

times in the aDNA laboratory.

2.3. DNA Extraction

DNA from degraded specimens was extracted using the QIAamp DNA Micro
extraction kit (Qiagen), with a modified version of the tissue extraction protocol. This
included using the optional carrier RNA to increase DNA yield and conducting the
final eluting step twice (SOuL each). The lysis step was conducted for between 16 and
20 hours. Tween-20 (final concentration of 0.05%) was added to the extract to ensure
long-term viability. Extraction controls were used in a ratio of one control to five
samples. Specimens were not disintegrated prior to extraction as initial investigation
indicated that this did not affect the likelihood of DNA recovery. Modern DNA was
extracted by Mack (2008) using the same method, with the exception that complete
specimens were digested instead of a single hind leg [following Gilbert et al.
(2007b)]. Two extracts of A. alpina (one modern, one ancient), received from P.F.

Thomsen, were extracted in a previously published study (Thomsen et al. 2009).

24. Sanger Sequencing and Quality Control

2.4.1. Genetic Markers Targeted and Primer Design

Four genetic markers were targeted: mitochondrial COI and COII, and multi-copy
nuclear 28S and ITS1. Details of the targeted regions, including length, are listed in
table 2.2. Novel species-specific primer sets were designed using Oligo (Rychlik &

Rychlik 2005). Templates for primer design were based on data from Mack (2008),
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Thomsen et al. (2009), Gilbert et al. (2007b) and Genbank. All primer sequences are

listed in appendix 2a.

Marker (bps)
Species COI COIl 28S (D3) ITS1
Amara alpina 759 N/A 183 210
Pterostichus brevicornis 336 317 164 (172) 210

Table 2.2 Details of the genetic markers employed in chapters three, five, and six of this thesis. Figure

in parentheses indicates several samples that had a longer D3 region of 28S rDNA.

2.4.2. PCR Amplification

Amplification of extracts was performed using a hot-start PCR procedure, with
reactions consisting of 1x PCR buffer, ImM of additional MgCl,, Img/mL BSA
[following (Rohland & Hofreiter 2007)], 200uM of each dANTP, 0.4uM of each primer
(forward and reverse), 1U HotStar Taq (Qiagen), 1uL. of DNA extract, and purified
water to give a final volume of 25ul. Reactions were performed in a Peltier Thermal
Cycler, using six sequential steps (step 1: 95°C for five minutes, step 2: 94°C for one
minute, step 3: variable annealing temperature for one minute, step 4: 72°C for one
minute, step 5: 72°C for ten minutes, step 6: 12°C for ten minutes), of which steps 2 to
4 were repeated a further 49 times. Primer sets and annealing temperatures are listed

in appendix 2b. The presence of amplicons in PCR products was determined using

electrophoresis of a 2% agarose, ethidium bromide stained gel.

2.4.3. DNA Sequencing

PCR products yielding amplicons were purified enzymatically using an Exonuclease I
and Shrimp Alkaline Phosphatase (Exo-SAP) procedure. Each reaction consisted of
8U Exo, 0.4U SAP (both Thermo Scientific), purified water, and 10uL. PCR product,
to give a final volume of 12uL. Reactions were performed in a Peltier Thermal
Cycler, using three sequential steps (step 1: 37°C for twenty minutes, step 2: 80°C for
twenty minutes, step 3: 4°C for six minutes). Purified PCR products were sequenced

in both directions using a high throughput ABi 3730x1 genetic analysis capillary

sequencer at Macrogen (Seoul, South Korea; Amsterdam, the Netherlands).
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2.44. Sequence Data Quality Control

Sequence data were quality-checked manually and concatenated in Sequencher v4.7
(Gene Codes). Individual and concatenated sequences were compared against the
Basic Local Alignment Search Tool (BLAST) database to ensure authenticity of
results and detect contamination. Repeated amplifications and the application of
multiple overlapping primer sets (appendix 2b) were used to infer sequence errors
caused by potential NUMTSs and miscoding lesions. If these were detected (in the
form of mismatches or indels between overlapping fragments), then a majority rule
approach was employed, with the base that occurred the most frequently being
chosen. Consideration was also given to frequency data on various damage types
(Gilbert et al. 2007a) and if the same base position was repeatedly problematic within
and between samples (indicative of potential NUMT contamination). If ambiguity as
to the correct base designation remained, bases were considered missing data. DNA
sequences of protein coding regions (COI, COII) were translated in Se-Al v2.0
(Rambaut 2002) to detect potential unexpected stop codons, which may have arisen

from miscoding lesions or NUMT contamination.

2.4.5. Independent Replication

To improve confidence in result authenticity, analysis of A. alpina ancient specimens
was performed at two institutions (RHUL, NRM). Due to the small size of specimens,
sub-sampling was not performed. Instead, different specimens from the same sample
batches were analysed separately at the different institutions (appendix 1). Protocols
used at RHUL were as described above. NRM protocols differed in the use of GelRed
(Biotium) as the gel electrophoresis stain and Fast Alkaline Phosphatase for PCR
product purification. Additionally, cleaned products were sequenced in-house at the
NRM, using BigDye Terminator chemistry (v1.1) and an ABi 3100 capillary genetic
analyser (Applied Biosystems). Results from both institutions were compatible, and in
most cases identical, indicating that sequences obtained from ancient specimens are
not the result of intra-laboratory contamination. Additionally, sequences were
identical to those obtained independently in previously published (Thomsen et al.

2009) and unpublished (Mack 2008) studies.
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2.5. Next-Generation Sequencing and Quality Control

2.5.1. Sample Selection

Six samples from the A. alpina dataset were used for NGS (table 2.3). DNA had been
recovered from all of these samples using Sanger sequencing, with maximum
amplification success (sensu chapter three). Samples were chosen to include the full
age range of specimens [two each of modern (Mo), museum (Mu), ancient (An)] and
at least one sample from each of the three mitochondrial haplogroups identified in
chapter six. P. brevicornis was not used for NGS, as DNA could not be recovered

from ancient specimens (chapter three).

2.5.2. llumina DNA Library Construction and Sequencing

Prior to library construction, the concentration of DNA was crudely assessed through
gel electrophoresis of 4uLL of each DNA extract. All extracts lacked a visible band,
demonstrating that DNA was of low concentration in all samples, and so all libraries
were constructed using the same protocol. 20uL. of DNA extract (14uL for Mo2, due

to exhaustion of extract) was used for library construction.

DNA libraries were constructed using a modified version of the Meyer and Kircher
(2010) protocol, without the initial DNA fragmentation step, and using MinElute PCR
purification columns (Qiagen) for all cleanup steps. Modifications to the blunt-end
repair step included not using Buffer Tango and ATP, but the addition of 0.1mg/mL
BSA and 1x T4 DNA Ligase buffer (New England Biolabs). An additional enzyme
inactivation step of 75C for ten minutes was used at the end of the blunt-end repair
reaction, instead of using purification columns. The adapter ligation step was modified
by the removal of T4 DNA Ligase buffer and the addition of 0.5mM ATP. The final
volume for this step was 100uL (including 70uL from the blunt-end repair step). The
adapter fill-in step was not modified, but the library was eluted in 30uLL of EB buffer

in the subsequent purification.
The index PCR, in which the barcodes are incorporated into the adapter, was

conducted using Pfu Turbo Cx enzyme (Agilent). Pfu Turbo Cx was chosen for its

ability to copy through uracils (for assessment of misincorporations), not bias against
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length (for assessment of fragment length), and not bias toward G-C rich sequences
(for taxonomic assessment) (Dabney & Meyer 2012). Each library was tagged with a
6bp barcode developed at RHUL, which were modified from those of Meyer and
Kircher (2010). The index PCR step was based on the Dabney and Meyer (2012)
protocol, with the addition of 0.4mg/mL BSA. Three index PCR reactions were
conducted per library, in order to reduce the number of PCR duplicates (Avila-Arcos
et al.2011). Each reaction used 10uL of library and had a final volume of 50uL.
Cycling conditions followed Dabney and Meyer (2012), for 20 cycles. The amplified
library was eluted in 60uL of EB buffer during the final purification step.

Amplified DNA libraries were quantified using a spectrophotometer and gel
electrophoresis. DNA quantity was determined by averaging four Nanodrop (ND-
1000) readings. Average sequence length and distribution was estimated using a 2%

agarose gel. DNA concentration (in nM) was calculated using the equation:

DNA quantity [ng/uL] * 10°

649 * Average sequence length [bps]

Amplified libraries were diluted with EB buffer to 10nM and pooled. Pooled libraries
were sequenced on the Illumina HiSeq-2000 platform at the Exeter Sequencing
Facility (University of Exeter, UK), using a single lane of 2 x 100 cycles on a paired-
end flow cell, following the manufacturer’s instructions. The paired-end sequencing
output consisted of two FASTQ files (reads one, two), which sequentially list the first
100bp of the 5’ (read one) and 3’ (read two) ends of each sequenced DNA fragment.

Quality scores were output in Illumina 1.5 format.

2.5.3. Quality Control and Preparation for Alignment

Prior to alignment and contig assembly, files underwent a series of quality control and
other preparatory procedures (fig. 2.2). The FASTQ files were combined and quality
filtered using the standard (Blankenberg ef al. 2010) and FASTX
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) toolkits (all v1.0.0 unless

otherwise stated), respectively, on the Galaxy server (Goecks et al. 2010). Quality
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scores were converted to Sanger using the FASTQ Groomer v1.0.4 tool. The files
were then concatenated using FASTQ Joiner. The concatenated file was quality
filtered using ‘filter by quality’ with reads consisting of >5% of bases with a quality
score of <15 being removed [following Kircher et al. (2011)]. The file was then
further filtered to remove sequencing artifacts, using the ‘remove sequencing artifacts’

tool.

Based on barcode, the filtered FASTQ file was split using a modified version of the
FASTX Barcode Splitter tool. This modification allows the tool to search for the
barcode at the end of the sequence/lane description, rather than at either the 5° or 3’
end of the sequence (J.A. Thomas, pers. comm.). Experimentation showed that
allowing a single mismatch when determining barcodes was optimal for this dataset
(see section 4.5.1), and so these datasets were used for further downstream analyses.
Datasets were split into read one and read two files using FASTQ Splitter. Reads from

both files were merged using ‘SeqPrep’ (https://github.com/jstjohn/SeqPrep), which

combined the two reads if overlap was detected, and was also used to remove adapter
sequence. Parameters in SeqPrep were set to 15 (quality score cut-off for
mismatches), 10 (minimum length of merged read), 10 (minimum overlap to merge
reads), AGATCGGAAGAGCACACGTC (read one adapter), and
AGATCGGAAGAGCGTCGTGT (read two adapter). SeqPrep output consisted of
three FASTQ files (merged reads, unmerged read one, unmerged read two) per

barcode dataset, with between 87.2 and 99.7% of filtered reads being merged.
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Chapter 3. An assessment of DNA preservation in museum
and ancient specimens of two ground beetles, Amara alpina

and Pterostichus brevicornis (Coleoptera: Carabidae)

3.1. Abstract

Studies have demonstrated that DNA is preserved in dry-stored museum and ancient
permafrost-preserved beetle specimens. Both of these sources represent potentially
large untapped genetic resources. An assessment of their potential utility, through
investigation into the preservation of DNA in these remains, would provide valuable
data for researchers who are keen to utilise these specimens. Here, using the ground
beetle species Amara alpina and Pterostichus brevicornis, a Sanger sequencing based
approach was employed to examine the preservation of mitochondrial and multi-copy
nuclear DNA in museum and ancient beetle specimens. In addition, this technique
allowed the rate of ancient beetle specimen misidentification to be assessed. It was
found that DNA could be recovered from >95% of museum specimens, with the age
of specimen affecting both the number of successful amplifications and maximum
mitochondrial fragment length retrieved. DNA was recovered from ~45% of ancient
A. alpina specimens, but could not be recovered from ancient P. brevicornis
specimens. The number of successful amplifications for ancient A. alpina specimens
was not affected by specimen age or locality. DNA misincorporation rates for both
museum and ancient specimens were comparable to previous studies, with nuclear
DNA exhibiting a greater misincorporation rate in ancient specimens. These results
suggest that there is great genetic potential in dry-stored museum specimens, but
ancient permafrost-preserved specimen potential may be more reliant on the species

under study. Encouragingly, ancient specimen misidentification was not detected.

3.2. Introduction

It has been shown that DNA is recoverable from degraded beetle remains, both from
old (>50yrs) dry-stored museum (Gilbert et al. 2007b; Goldstein & Desalle 2003;

Thomsen et al. 2009) and ancient permafrost-preserved specimens (Mack 2008;
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Thomsen et al. 2009). Both of these DNA sources represent potentially vast untapped
genetic resources that are not only easily accessible, but can also add a temporal
aspect to a suite of biological questions. However, the potential of these remains for
large-scale genetic analyses has yet to be assessed. In addition, ancient specimens are
usually recovered as isolated sclerites (fig. 2.1). Based on exoskeletal morphology, it
is often possible to identify these specimens to the species level (Coope 2004; Elias
2010). Genetic testing of these remains would provide an independent measure of
whether or how often specimens are misidentified. Such uncertainty could then
potentially be incorporated into palaeoclimatic analyses, such as the mutual climatic
range method, that rely on accurate species-level identification (Elias 2010). This
study provided an assessment of DNA preservation in museum and permafrost-
preserved specimens of two closely related beetle species, Amara alpina and
Pterostichus brevicornis, as well as assessment of the rate of ancient specimen

misidentification.

Hundreds of museum and ancient DNA studies have utilised simplex PCR methods,
whereby one primer set is used per reaction (hereafter referred to as PCR), which has
been the technique of choice for the amplification of degraded beetle DNA to a
concentration suitable for Sanger sequencing [e.g. Goldstein and Desalle (2003), King
et al. (2009), Reiss (2006), Thomsen et al. (2009)]. Although NGS technologies are
rapidly gaining ground, the Sanger sequencing approach is still widely used for
analyses, as well as being the method for screening specimens prior to NGS analysis,
to ensure correct specimen identification and the presence of endogenous aDNA
(Gilbert et al. 2008; Green et al. 2006). A Sanger sequencing based approach was
therefore highly suitable for this type of study.

The overarching aims of this study were to provide background data on mitochondrial
and nuclear DNA preservation in beetle remains from dry-stored museum and ancient
permafrost-preserved sources, and assessing the ancient specimen misidentification
rate, as inferred from Sanger sequencing. Specifically, this included assessing: 1) the
proportion of specimens from which DNA could be amplified, 2) the number of DNA
fragments that could be amplified (amplification success) and whether this was

influenced by specimen age, 3) how age affects the maximum amplifiable mtDNA
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fragment length from museum specimens, 4) if locality is related to DNA recovery in
ancient specimens, 5) the observed misincorporation rates in both types of remains,

and 6) the rate of ancient specimen misidentification.

3.3. Materials and Methods

3.3.1. Specimen and Sequence Data Selection

A total of 420 museum and ancient specimens from the two study species were used
in this study. These included a total of 9 modern, 213 museum, and 198 ancient
specimens, respectively. However, because of the small sample sizes of the modern
datasets (A. alpina: n=6, P. brevicornis: n=3), data from modern and museum
specimens were combined and are referred to as museum in the remainder of this
chapter. All collected Sanger sequence data that had passed the quality control of
section 2.4.4 were used (table 2.2), unless otherwise stated. All fragment lengths

stated include primer sequence.

3.3.2. Proportion of Specimens with Amplifiable DNA

Specimens were considered to yield mtDNA or nuDNA if one or more fragments had
been recovered for each data type. All specimens that failed to yield any DNA were
tested with a minimum of three or two primer sets for mtDNA and nuDNA,
respectively. These primer sets were also tested on specimens from taxa that are
congeneric (A. glacialis for A. alpina) or consubgeneric (P. ventricosus, P.
pinguedineus for P. brevicornis) to the study taxa, in order to reduce the likelihood of
any amplification failures being due to specimen misidentification. One ancient
specimen of A. alpina, which did yield mtDNA, was excluded, due to exhaustion of
the extract prior to testing for the presence of nuDNA. All mtDNA and 36.4% of
nuDNA PCR products were sequenced and verified as authentic. The non-sequenced
PCR products were amplified with primer sets that showed no evidence of
contaminant co-amplification, as indicated by data from PCR products that were

sequenced.
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3.3.3. Amplification Success of mtDNA

Amplification success was defined by the number of DNA fragments recovered for
each specimen from independent PCR reactions. For A. alpina, eight PCR primer sets
(COlI'sets 1,3,5,8,10, 12, 13, 15; appendix 2b) were employed, which had products
of between 124 and 196bps. For P. brevicornis, six PCR primer sets (COI sets 17, 20,
25; COII sets 27, 29, 32; appendix 2b) were used, which had products of between 152
and 176bps. For museum specimens, it was often possible to amplify longer fragments
based on different primer set combinations. Therefore, if a fragment were attained
from a combination that would have amplified four ‘fragments’, this would have been
treated as four fragments retrieved. For museum specimens, age was determined using
either direct collection date, or dates inferred from information on specimen labels
(appendix 1). Eight specimens could not be dated using these approaches, due to a
lack of inferable label data. Dated specimens were binned into 50yr intervals. For
ancient specimens, age was based on calibrated dates (table 2.1) and binned into 20ka
intervals. ‘LP’ specimens were classed as undated, and specimens classed as >60ka
ranged from >100 to >560ka. To assess if older specimens yielded fewer DNA
fragments, two-tailed Kruskal-Wallis tests were employed in SPSS v19.0.0.2.
Undated specimens were excluded from these tests, as were museum specimens that

did not yield mtDNA.

3.3.4. Maximum Fragment Length Recovered by Age

Museum specimens of A. alpina were initially tested with a primer set that amplified a
446bp fragment. Successfully amplified specimens were tested for longer fragments
and those that failed to amplify a product were tested for sequentially shorter
fragments. Specimens of P. brevicornis were initially tested with a primer set that
amplified a 302bp fragment and then tested following the aforementioned approach.
The three modern specimens of P. brevicornis were not included, as these were not
tested with the longer primer sets. In order to test for relationships, linear regressions
were performed in SPSS. Specimens for which a collection year could not be
determined (see section 3.3.3) were excluded from the analysis, as were those which

did not yield mtDNA.
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3.3.5. aDNA Recovery by Locality

A chi-square goodness-of-fit test was performed to test if specimen locality (listed in
table 2.1), and therefore local preservation conditions, markedly affected the aDNA
recovery rate in A. alpina. MtDNA and nuDNA recovery rates were calculated
separately. Localities 7 to 15 were excluded from the calculation, due to small sample
size (<10). Expected values were calculated by multiplying the total number of
specimens (table 2.1) by the average recovery rate across all six localities (0.419 for

mtDNA, 0.407 for nuDNA).

3.3.6. Calculation of Observed Misincorporation Rate

Nucleotide misincorporation rate was broadly investigated in museum and ancient
specimens from a subset of PCR product sequences (PPSs). PPSs were used if both
DNA strands had been successfully sequenced. Overall misincorporation rate was
calculated through the combination of two rates in each PPS. First, the rate of single
base ambiguities, which were defined as multiple peaks that prevented base
determination during visual inspection of chromatograms. Second, the rate of base
mismatches, which was determined from overlapping regions of PPSs from the same
individual. Misincorporation rates were calculated from 691 PCR products (table 3.2).
Datasets omitted from these calculations included both ITS1 and the P. brevicornis
COII datasets. These were excluded because of the presence of repeatedly problematic
base positions. In the multi-copy ITS1 dataset, this was interpreted as an artifact of
intragenomic heterogeneity, which has been observed in other insects (Fairley et al.
2005; Parkin & Butlin 2004; Sword et al. 2007; Vogler & Desalle 1994). This issue
was not detected in the multi-copy 28S dataset, which was included. The P.
brevicornis COII dataset concerns were attributed to potential mitochondrial
heterogeneity or NUMT contamination, and are discussed in more detail in section
7.5.3. Inclusion of these datasets would have overestimated, and therefore biased, the
observed misincorporation rate. Standard errors for misincorporation rates were
calculated through resampling the data (bootstrapping), using 100,000 permutations,

in Statistics 101 (http://www statistics101.net/). Significance testing between pairs of

misincorporation datasets was performed using two-tailed approximate permutation

tests (APTs), using 100,000 permutations. Each test was conducted five times and an
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average probability value recorded. Modified false discovery rate corrections
(Benjamini & Yekutieli 2001) were applied where appropriate. APTs were performed
using a custom built script in Statistics 101 (appendix 3). For each dataset, the
proportions of the six possible nucleotide substitution combinations (NSCs; C-T/T-C,
C-A/A-C, etc.) were calculated, through assessment of the two nucleotides that
occurred at each mismatch site or contributed to ambiguous chromatogram peaks. The
combination was classed as ambiguous if three or more peaks were observed. Due to
the nature of the dataset, it was not possible to assess which of the two bases
represented the misincorporation in each combination. Chi-square goodness-of-fit
tests were applied to test if some NSCs were more prevalent than others. Ambiguous
combinations were excluded, as was the museum P. brevicornis nuDNA dataset, due
to small sample size. Expected values were calculated by assuming equal proportions

of NSCs per dataset.

3.4. Results

3.4.1. Proportion of Specimens with Amplifiable DNA

In both species, >95% of museum specimens yielded both mtDNA and nuDNA (table
3.1). The four specimens that did not yield any DNA (A. alpina: n=3, P. brevicornis:
n=1) were all from the CNC and had been collected from the same locality, in the
same year, by the same collector, and represent all the tested specimens from this
locality. The four specimens that only yielded nuDNA (two from each species) were
from different localities and collected between 1875 and 1980. In ancient specimens
of A. alpina, 25 .9% yielded both mtDNA and nuDNA, whereas 54.4% yielded
neither. 10.9% yielded only mtDNA, with a similar proportion yielding only nuDNA
(8.8%). Misidentification was not detected in the ancient A. alpina specimens that
yielded beetle DNA (n=68; table 3.1). However, aDNA could not be yielded from
ancient specimens of P. brevicornis, even though the use of the same primer sets on

consubgeneric taxa resulted in successful amplification.
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3.4.2. Amplification Success of mtDNA

All fragments were successfully amplified from 80.6% and 88.0% of museum
specimens of A. alpina and P. brevicornis, respectively (figs. 3.1a, b). In A. alpina, the
remaining 15.8% of specimens that amplified only some fragments consisted almost
exclusively of 19" Century specimens. The relationship between specimen age and
amplification success is highly significant (Two-tailed Kruskal-Wallis test: %’=58.995,
d.f=2,n,=25,n,=31,n,=70, p<0.001). In P. brevicornis, the remaining 8.4% of
specimens amplified five of the six fragments. In this case, there was a non-significant
relationship between specimen age and amplification success (Two tailed Kruskal-
Wallis test: X2:1 094,d.f=1,n,=12, n,=68, p=0.296). In the 37.2% of ancient A.
alpina specimens that yielded mtDNA, a bimodal distribution was observed, whereby
the majority of specimens yielded either one to two fragments, or seven to eight (fig.
3.2). There was no significant relationship between specimen age and the number of
fragments that could be retrieved (Two-tailed Kruskal-Wallis test: ’=7.042, d.f.=3,
n,=5,n,=17,n,=89, n,=24, p=0.071).
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Figure 3.2 Amplification success for ancient permafrost-preserved A. alpina specimens, based on the
number of mtDNA fragments retrieved. Colours indicate specimen age; red: 1-20ka, orange: 21-40ka,
green: 41-60ka, blue: >61ka (includes specimens of >100ka and >560ka), grey: no date [includes LP

(Late Pleistocene) specimens, which could not be designated a time bin].
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3.4.3. Maximum Fragment Length Recovered by Age

In both species, age predicts a linear relationship with the maximum fragment length
that can be retrieved from museum specimens (fig. 3.3a,b). In A. alpina, a highly

significant relationship is observed (Linear regression: R>=0.441, F=98.612,
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Figure 3.3 Maximum mtDNA fragment length retrieved from museum specimens by age (collection
year). a: A. alpina (Linear regression: y = 1.946x — 3410.417; F = 98.612, d.f. =1,125, p<0.001; R* =
0.441), b: P. brevicornis (Linear regression: y = 0.72x — 1134.048; F = 5.155,d.f. = 1,75, p=0.026; R?=
0.064). Dotted lines are 95% confidence intervals. Specimens that failed to yield any DNA have been

omitted.
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d.f.=1,125, p<0.001), which predicts that shorter fragments (100bps) should still be
recoverable from specimens of earliest 19" Century (1804) age. In P. brevicornis, a
significant relationship is observed (Linear regression: R?*=0.064, F=5.155,d.f=1,75,
p=0.026) , which predicts that shorter fragments should still be recoverable from
specimens collected in the early 18" Century (1713).

3.4.4. aDNA Recovery by Locality

The aDNA recovery rate for mtDNA and nuDNA was not significantly affected by
local preservation conditions, as inferred from the six best-sampled localities (fig.

3.4a.b; table 2.1; Chi-square goodness-of-fit: mtDNA: %*=8.737, d.f.=5, p=0.1199,
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Previous page: Figure 3.4 Amplification success for ancient permafrost-preserved A. alpina specimens
by locality. Localities are arranged by number of specimens tested, in descending order. a: Success of

mtDNA recovery, b: Success of nuDNA recovery. Colours indicate the number of fragments retrieved
per specimen (a: 0-8, b: 0-4). Dotted lines indicate the overall failure-success rate (a: 63-37%, b: 65-

35%). a: n=148, b: n=147. Locality numbers correspond to table 2.1.

nuDNA: ¥*=6.042, d.f.=5, p=0.3022). Ancient mtDNA was recovered from localities
aged between 5,900 and 55,000 RC yrs BP, whereas nuDNA was retrieved from
localities of between 25,300 and 41,000 RC yrs BP.

3.4.5. Observed Misincorporation Rate

The observed mtDNA base misincorporation rate for museum A. alpina and P.
brevicornis and ancient A. alpina specimens was consistent at 0.258 to 0.285%
(£0.046 t0 0.058% s.e.m.; fig. 3.5; table 3.2), with all differences between the three
mtDNA misincorporation rates being non-significant (Approximate permutation tests:
p=0.741 to 0.873; table 3.3). However, the rate of nuDNA misincorporation was more
variable, with ancient A. alpina specimens exhibiting the greatest rate (0.670

+0.166%) and the lowest rate displayed by museum P. brevicornis (0.058 £0.057%),

Proportion of misincorporations (%)

A. alpina A. alpina P. brevicornis

Ancient Museum Museum

Figure 3.5 Percentage of misincorporated bases in A. alpina and P. brevicornis specimens of ancient
permafrost and dry-stored museum origin. Means are based on OR2 in table 3.2. Error bars represent

one standard error, calculated from 100,000 bootstrap replicates. Blue: mtDNA, green: nuDNA.
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the latter of which was significantly lower than the rate for museum and ancient A.
alpina (Approximate permutation tests: p=0.014, p=0.005, respectively). The nuDNA
misincorporation rate was greater than the mtDNA rate in museum and ancient A.
alpina, with the difference being significant in ancient specimens (Approximate
permutation tests; ancient: p=0.006, museum: p=0.121). However, the mtDNA
misincorporation rate was significantly greater than the nuDNA rate in museum P.
brevicornis (p=0.041). The prevalence of the different NSCs varied greatly between
datasets (table 3.4). The C-T/T-C and G-A/A-G NSCs were more prevalent in all A.
alpina datasets (Chi-square goodness-of-fit: p<0.001 to 0.015; table 3.4), except the
museum nuDNA dataset (p=0.306). However, the A-T/T-A NSC was the most

prevalent in the museum P. brevicornis mtDNA dataset (p<0.001).

3.5. Discussion

3.5.1. Proportion of Specimens with Amplifiable DNA

A very high proportion (96.4%) of museum A. alpina and P. brevicornis specimens
yielded both mtDNA and nuDNA, therefore demonstrating the effectiveness of the
methods employed in this study for retrieving museum DNA from dry-stored beetle
remains. Other published DNA yields from museum ground beetles are variable, but
appear to be related to PCR cycle number and length of target. For example, Goldstein
and Desalle (2003) targeted a small mtDNA fragment (73bps), but only used 28
cycles, resulting in 45.7% of specimens yielding DNA. However, Gilbert and
colleagues (2007b) targeted longer fragments (220 to 345bps) of both mtDNA and
nuDNA, using 40 cycles, of which 71.4 and 78.5% of specimens yielded DNA,
respectively. Lastly, Thomsen and colleagues (2009) targeted small to long mtDNA
fragments (73 to 204bps), but used 60 cycles, which resulted in all specimens yielding
DNA. A possible explanation for why four museum specimens did not yield any
DNA, and were from the same locality and collection trip, is that DNA-degrading
substances were used to kill these specimens (Dillon et al. 1996; Gilbert et al. 2007b;
Reiss et al. 1995).

This is the first reported recovery of nuDNA from a permafrost-preserved invertebrate

and the second report of mtDNA recovered from permafrost-preserved invertebrate

59



macrofossils, after Thomsen and colleagues (2009). In that study, 21.4% of specimens
yielded ancient mtDNA, compared to 36.8% in this study. A potential explanation for
this disparity is that species-specific primer sets were employed here. Both of these
aDNA recovery rates are fairly low in comparison to studies of permafrost-preserved
bone, which have rates of between 22.1 and 79.6% (Barnes et al. 2002; Barnes et al.
2007; Campos et al. 2010a; Campos et al. 2010b; Shapiro et al. 2004). This may be
due to the very small size of the material extracted here (<0.5mg), which is two to
three orders of magnitude smaller than the 10 to 1000mg of material used in bone-
based studies (Barnes et al. 2002; Barnes et al. 2007; Campos et al. 2010a; Campos et
al. 2010b; Shapiro et al. 2004). This would result in fewer template molecules being
available for amplification. Alternatively, thermal age analysis indicates that DNA
preservation may be an order of magnitude poorer in ancient beetle remains in
comparison to bone (King et al. 2009). This may be due to apatite, which is absent in

insect sclerites, reducing the fragmentation rate of DNA in bone (Lindahl 1993).

The discrepancy in the DNA recovery rate between ancient specimens of the study
species is speculated to have been due to differing ecological preferences. A. alpina is
found in xeric (dry) and mesic (moist) habitats, whereas P. brevicornis favours more
mesic conditions (Elias & Crocker 2008). Therefore, P. brevicornis would be more
exposed to a wetter environment, which would result in the rapid degradation of DNA
immediately post mortem (Hofreiter et al. 2001b; Lindahl 1993), before incorporation
into the permafrost. Alternatively, the recovery rate disparity may be due to specimen
storage prior to analysis. 44% of ancient P. brevicornis specimens were stored at room
temperature for 26 to 28yrs prior to DNA extraction, which may have contributed to
further degradation (Reiss 2006), whereas all A. alpina specimens were stored for

<10yrs (table 2.1).

It is intriguing that some museum and ancient specimens only yielded nuDNA. This is
unexpected under the assumption that mtDNA is preferentially amplified due to
greater copy number and therefore greater chance of preservation. However, there are
three potential explanations for this observation. First, the targeted nuDNA fragments
were shorter (111 to 127bps) than those of mtDNA, which may have been critical for

very degraded specimens. Second, there could potentially be very high copy numbers
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of the targeted multi-copy nuDNA markers. High copy numbers of these genes have
been reported from other insects [>2000 to 8000 per diploid genome (Kumar & Rai
1990; Oishi et al. 1985)]. This would also reduce the ratio of mtDNA to nuDNA.
Lastly, there may be a DNA preservation bias between mtDNA and nuDNA
(Andersen & Mills 2012). Gilbert and colleagues (2007b) also noted that only multi-
copy nuDNA amplification was possible in some ground beetle specimens (same
marker as this study). Given that these researchers targeted a much larger nuDNA
fragment (ranging from 250 to 345bps) compared to this study, it is unlikely that the
first explanation is adequate for addressing this issue. In addition, a study of parasitic
wasps (Hymenoptera), also targeting the same genetic marker (although a different
expansion segment of 28S), found greater amplification success when targeting multi-
copy nuDNA (Andersen & Mills 2012). This suggests that the observation of multi-
copy nuDNA being more easily amplifiable than mtDNA may not be ground beetle,

or even beetle, specific.

3.5.2. Amplification Success of mtDNA

In both A. alpina and P. brevicornis, the majority of museum specimens amplified all
fragments successfully. In A. alpina, specimen age was significantly correlated with
amplification success, with less successful specimens aged >100yrs old. This may
indicate that the concentration of amplifiable DNA decreases with age, which could
be due to the continuing occurrence of strand breaks or other forms of damage in these
remains (Lindahl 1993). Alternatively, the accumulation of inter-strand crosslinks
through time may have reduced amplification opportunity (Hansen et al. 2006).
Decreasing amplification success with specimen age has also been observed in a
number of other museum beetle DNA studies (Gibson et al. 2012; Gilbert et al.
2007b; Thomsen et al. 2009), as well as studies characterising the DNA in old
museum specimens of other insect orders (Andersen & Mills 2012; Strange et al.
2009; Ugelvig et al. 2011; van Houdt et al. 2010; Watts et al. 2007). The relationship
between amplification success and specimen age was not observed in P. brevicornis,

which is probably due to the lack of specimens aged >100yrs old in the dataset.

The bimodal distribution of ancient specimens that yielded either few or nearly all

mtDNA fragments indicates that targeting shorter fragments or increasing the number
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of PCR cycles may increase amplification success. Specimen age was not found to
affect the likelihood of successful amplification. This suggests that the amount of
amplifiable aDNA present in a specimen may not be correlated with age, which would
be consistent with the finding that the median DNA fragment length in ancient
specimens remains fairly constant regardless of age (Sawyer et al. 2012). Conversely,
this may also suggest that inter-strand crosslinks are not as prevalent in ancient beetle
specimens as other permafrost-preserved organisms (Hansen et al. 2006). However, it
should be noted that specimens of >60ka (>100 to >560ka) all failed to yield aDNA,
but sample size of these specimens was small (n=5). In addition, King and colleagues
(2009) noted reduced amplification success with increasing specimen age in non-

frozen sediment-preserved beetles.

3.5.3. Maximum Fragment Length Recovered by Age

The linear relationship between maximum fragment length and age in museum
specimens suggests that strand breaks are still occurring for decades after the
specimen has been desiccated and stored. This result is in agreement with the
amplification success of museum beetle DNA (section 3.5.2), and suggests that longer
fragments, which may occur at very low but still amplifiable concentrations, undergo
strand breakages, or perhaps become unamplifiable due to inter-strand crosslinks
(Hansen et al. 2006), for decades post mortem in museum specimens. The large
confidence interval bounds indicate that there is variation in template fragment length
between specimens, even though their storage conditions in collections are likely to
have been very similar. The disparity between specimens could be due to storage
condition prior to deposition in the collection (Gilbert et al. 2007b) or stochastic
between specimen variation, which has been observed in studies of ancient DNA
(Allentoft et al. 2012; Briggs et al. 2007; Gilbert et al. 2007¢c). A comparable linear
relationship between age and maximum retrievable fragment length has also been
shown in museum Lepidoptera (butterfly) specimens (Ugelvig et al. 2011).
Intriguingly, this study targeted nuclear microsatellites, suggesting that this
observation may be applicable to mtDNA and nuDNA, as well as different insect

orders.
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Both the A. alpina and P. brevicornis datasets predict that mtDNA, of length viable
for both PCR and NGS-based approaches (70bps), should be retrievable from museum
beetle specimens of late 18" Century age. This is earlier than the current record for the
oldest museum beetle DNA recovered [1820 (Thomsen et al. 2009)], and
encompasses the vast majority of beetle specimens housed in museum collections,
thereby demonstrating the great value and potential utility of these specimens as
suitable sources for genetic studies. It is suggested that the slope of the trend line
shown in the A. alpina dataset (fig. 3.3a) is the more realistic. This is because a
combination of not testing 19" Century P. brevicornis specimens and specimens with
long fragments (>350bps) may have biased the result of this dataset through reducing
the slope of the trend line (fig. 3.3b). The A. alpina dataset does not suffer from either
of these biases. A study of museum DNA from 50yr old Orthoptera (grasshopper)
specimens found that >800bp fragment could be amplified of both mtDNA and multi-
copy nuDNA (Tagliavia ef al. 2011). Although fragments of this length were not
tested here, the results of Tagliavia and colleagues (2011) should be interpreted with
caution, as they used universal insect primers and did not state whether the amplified
fragments made phylogenetic sense or belonged to the species under study (Cooper &

Poinar 2000).

3.5.4. aDNA Recovery by Locality

Local preservation conditions, as measured by locality, have been suggested as an
explanation for variation in aDNA preservation (Allentoft et al. 2012), especially if
factors such as permafrost incorporation time and the proportion of liquid water vary
between localities (Willerslev et al. 2004). However, a significant association between
local preservation conditions and aDNA recovery was not found here. It should be
noted that this result could be due to small sample size, as specimens from both
Titaluk River localities (two and six; table 2.1) exhibited above average aDNA
recovery indicating that this site may warrant further investigation. The recovery of
ancient mtDNA and nuDNA from localities 9 (Rock River: 55,000 RC yrs BP) and 5
(Old Crow, loc. 11: 41,000 RC yrs BP), respectively, represents the oldest ancient
invertebrate DNA ever recovered from macrofossils for both of these DNA types

(King et al. 2009; Thomsen et al. 2009).
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3.5.5. Observed Misincorporation Rate

Observed nucleotide misincorporations are likely to have arisen from three primary
sources: damaged bases caused by miscoding lesions (Gilbert et al. 2007a; Gilbert et
al.2003), polymerase error (Greenwood et al. 1999; Hansen et al. 2001), and
sequencing error. Given the nature of the datasets, it was not possible to determine the
relative contribution of each of these error sources and it is therefore recommended
that these results be interpreted as an overall misincorporation rate, which may be of
practical, but limited biological, use. Additionally, misincorporation rates may have
been underestimated, due to only 48.1% of the examined nucleotides being available

for mismatch detection (across all datasets, based on O/N in table 3.2).

The C-T/T-C and G-A/A-G NSCs include both type 1 and 2 transitions [sensu Hansen
et al. (2001)], which are the most prevalent types of misincorporation in aDNA
studies of vertebrate remains [e.g. (Binladen et al. 2006; Gilbert et al. 2007a; Gilbert
et al. 2003; Hofreiter et al. 2001a; Stiller ef al. 2006)] and plant museum DNA (Staats
et al.2011). These studies, on specimens from a range of taxonomic groups, ages, and
preservation environments, also report a very low incidence of transversions, which
includes A-T/T-A, resulting from miscoding lesions. Upon further investigation, the
majority of the museum P. brevicornis PPSs, which have a high A-T/T-A transversion
rate, were found to have been amplified at low annealing temperatures (<52C). As this
can reduce primer specificity, there is a strong possibility of non-target region co-
amplification. Given that other problems have arisen from P. brevicornis mtDNA (see
section 7.5.3), this particular dataset should be interpreted with caution. The small
sample size of P. brevicornis nuDNA may have confounded the result of a low

misincorporation rate in this dataset.

The general prevalence of C-T/T-C and G-A/A-G NSCs in A. alpina is indicative of
typical DNA misincorporations. The misincorporation rate in mtDNA is consistent
between museum and ancient specimens of A. alpina, which may indicate that
misincorporations are not accumulating through time, as suggested by Sawyer and
colleagues (2012). Gilbert and colleagues (2007a) found a misincorporation rate of
0.514% in permafrost-preserved mtDNA of mammoth. Although not directly

comparable, this misincorporation rate is similar to the rate found here for the ancient

64



A. alpina specimens. NuDNA exhibited a higher rate of misincorporation than
mtDNA in ancient A. alpina, which is in contrast to another study of permafrost-
preserved aDNA misincorporation rates that found no significant difference between

the rates of mtDNA and nuDNA misincorporation (Binladen et al. 2006).

3.5.6. Ancient Specimen Misidentification Rate

Given the large sample size of ancient A. alpina specimens that yielded DNA, the
complete lack of apparent misidentification is very encouraging. It is unlikely that
species-specific primer sets would have prevented any potentially misidentified
specimens from yielding DNA, as primer sets were also successfully tested on a
congeneric species (A. glacialis). Therefore, the assertion made by Quaternary
entomologists that even single broken sclerites can be reliably identified (Coope 2004;
Elias 2010) is supported by the data for A. alpina. Unfortunately, the potential
misidentification rate could not be tested in P. brevicornis due to all ancient
specimens failing to yield aDNA. The possibility that the misidentification of
specimens prevented species-specific primer sets from yielding DNA is considered
unlikely as these primer sets were also successfully tested on two consubgeneric

species.

3.6. Conclusions

This study provides background data related to the preservation of DNA from two
sources of degraded beetle remains, dry-stored museum and ancient permafrost, which
should be useful to any researchers who are considering utilising these large potential
genetic resources for biological investigation. The results indicate that DNA is well
preserved in museum specimens with nearly all specimens that were up to 137yrs old
yielding DNA. However, amplification success and the longest possible amplifiable
fragment both decreased with age. In ancient specimens of P. brevicornis, DNA could
not be recovered. Conversely, nearly half of ancient A. alpina specimens yielded
DNA, with amplification success not affected by age or local preservation conditions.
Both museum and ancient specimens exhibited DNA misincorporation rates similar to
previous studies, although nuclear DNA had a greater rate than mitochondrial DNA in

ancient specimens. Overall, these results suggest that there is great potential for
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utilising dry-stored museum specimens for genetic analysis, although the potential of
ancient permafrost-preserved specimens may be more dependent on the species under
study. Lastly, no evidence is found here to support ancient permafrost-preserved
specimen misidentification, which reinforces declarations by Quaternary

entomologists that broken sclerites can be identified accurately and precisely.
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Chapter 4. Bioinformatic considerations for using short,
multi-copy reference sequences in Next-Generation
Sequencing alignment, and an assessment of DNA
preservation in museum and ancient Amara alpina

(Coleoptera: Carabidae)

4.1. Abstract

Due to the immense quantity of data produced, NGS has revolutionised ancient DNA
research by allowing researchers to address previously unattainable biological
questions in unprecedented detail. Work has so far focused on plant, pathogen, and
vertebrate taxa, but has neglected the ecologically critical and far more speciose
invertebrate fauna. This is partly due to the lack of suitable reference genomes for
retrieving endogenous aDNA from many invertebrates, including beetles. Here, using
Illumina-generated sequences from dry-stored museum and permafrost-preserved
specimens of Amara alpina, reads were assigned to several short, multi-copy
reference sequences. Some bioinformatic considerations of such an approach were
explored, through the comparison of two popular aligners: BWA and Bowtie2.
Furthermore, the effect of this approach on the proportion of duplicates removed was
investigated. It is shown that Bowtie2 may be a better alternative to BWA for
assigning reads to short references and that standard duplicate removal procedures
may remove natural as well as artificial duplicates, due to what is termed here as
reference sequence saturation. In addition, the preservation of DNA in these samples
was investigated through an assessment of fragment length distributions and base
misincorporation profiles. It is shown that mtDNA tends to have a longer mean
fragment length than nuDNA. The proportion of base misincorporation correlates with
age, but contrary to other studies, misincorporations are spread throughout the read
and not concentrated at termini. This study further demonstrates the potential of DNA
from museum and permafrost-preserved specimens for more wide scale and in depth

investigation.
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4.2. Introduction

NGS has proven to be a powerful tool for the assessment of a suite of questions using
aDNA, due to the extensive breadth and depth of data produced, and has even allowed
the reconstruction of entire ancient nuclear genomes (Green et al. 2010; Miller et al.
2008; Rasmussen et al. 2011; Rasmussen et al. 2010). The shotgun approach (any
DNA present in a sample is sequenced) means that endogenous DNA from the
organism, as well as contaminant and other exogenous DNA sources, are sequenced.
An effective method for retrieving the endogenous DNA sequences is to keep reads
that successfully align to a reference genome. However, the suitability of a reference
genome is dependent on the evolutionary distance between the taxon under study and
the reference taxon. If the taxa are too divergent, then the reads of any particular locus
may not be correctly assigned to the reference. This limitation has meant that the vast
majority of museum and ancient DNA studies, that utilise NGS, have investigated
taxa for which an appropriate nuclear or mitochondrial reference genome is available,
such as elephant/mammoth (Gilbert et al. 2007; Miller et al. 2008; Poinar et al. 2006),
human (Gilbert et al. 2008; Rasmussen ef al. 2011; Rasmussen et al. 2010), horse
(Orlando et al. 2011; Schubert et al. 2012), rat (Rowe et al. 2011), and rhinoceros
(Willerslev et al. 2009). However, the taxonomic distribution of reference genomes is
skewed and there may not always be a suitable reference available. This is especially
true of beetles, for which there is only a single reference nuclear genome (as of
14/09/2012), even though beetles consist of >350,000 species (Gullan & Cranston
2010) and originated 285Ma (McKenna & Farrell 2009). The available reference
genome was for Tribolium castaneum (Richards et al. 2008). This is problematic for
the study taxon (Amara alpina), because T. castaneum and A. alpina belong to
different suborders (Polyphaga and Adephaga, respectively), which diverged around
266Ma (McKenna & Farrell 2009). This genome was therefore not deemed suitable as
a reference for A. alpina, so in order to identify endogenous beetle DNA, shorter
suitable reference sequences must be used. During the alignment of reads to reference
sequences, it is useful to remove PCR, or artificial, duplicates that were introduced
during the index PCR (section 2.5.2). This is because duplicate reads can potentially
bias downstream analyses by artificially over-representing a proportion of the reads.
The effect of utilising short multi-copy reference sequences on the removal of

duplicates was assessed.
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Some of the bioinformatic aspects of NGS data analysis of museum and ancient DNA
from a taxon without an appropriate reference nuclear genome were therefore
explored. This included a comparison of two widely used aligners [the Burrows
Wheeler Aligner (BWA) and Bowtie2], as well as exploring the effect of PCR
duplicate removal on the number of assigned reads. Suggestions are provided for

analysing taxa of this nature and for future areas of investigation.

Additionally, the data from chapter three were built upon, through further examination
of the preservation of DNA in dry-stored museum and ancient permafrost-preserved
specimens. This enabled the potential of these DNA sources to be further assessed for
future study. Recent aDNA studies have shown differences in the level of DNA
preservation between mtDNA and nuDNA, with mtDNA exhibiting fewer strand
breaks, and therefore a longer mean fragment length, than nuDNA (Allentoft ef al.
2012; Schwarz et al. 2009) Additionally, recent studies have also observed that DNA
misincorporations are mainly clustered around read termini (Briggs et al. 2007;
Orlando et al. 2011). However, the conclusions of these studies are based exclusively
on vertebrate bone or keratin (hair, nail), and may or may not be applicable to insect
remains. The fragment length distributions of mtDNA and nuDNA, as well as the
prevalence of misincorporations, and their location within DNA fragments, were

assessed in museum and ancient beetle specimens of A. alpina.

Six samples of A. alpina were used in this study (table 2.3): two dry-stored museum
(Mu) and two ancient permafrost-preserved (An) samples, as well as two modern
(Mo; <10yrs) samples for comparison purposes. These samples were pooled and
shotgun-sequenced on the Illumina HiSeq-2000 platform (section 2.5.2). Sample-
specific reads were recovered based on the 6bp barcode sequence (section 2.5.3).
However, it is possible to take a less conservative approach and allow mismatches in
the barcode, which can recover more reads. The optimal number of barcode
mismatches (between zero and two) for the successful recovery of sample-specific

reads was assessed.

The aims of this study were therefore three-fold. First, was to explore the optimal

number of barcode mismatches to successfully recover sample-specific reads. Second,

73



was to investigate some of the bioinformatic aspects for the retrieval of endogenous
beetle DNA from museum and ancient samples (table 2.3), using several short, multi-
copy reference sequences (nuclear: 183 to 1,043bp, mitochondrial: 658 to 16,823bp).
This included a comparison of the BWA and Bowtie2 aligners and addressing issues
associated with duplicate removal. Third, the preservation of DNA was characterised
through comparison of the fragment length distributions of mtDNA and nuDNA. In
addition, the distribution of DNA base misincorporations throughout the DNA
fragments in these samples, and if a greater rate of misincorporation was observed in

older samples, were both assessed.

4.3. Materials and Methods

4.3.1. Comparison of Aligners

Two freely available read mapping aligners were compared for performance with the
study dataset: BWA v0.6.0 (Li & Durbin 2009) and Bowtie2 v2.0.0-beta7 (Langmead
& Salzberg 2012). Parameters for BWA were set to the recommendations of Schubert
and colleagues (2012), with those for Bowtie2 outlined in appendix 4, following
parameter optimisation. The two aligners were tested with the merged read datasets
only (from section 2.5.3), in both FASTQ and FASTA format. Reads were aligned to
15 reference sequences, which were downloaded from Genbank (table 4.1, fig. 2.2:
section encircled in green). At least one representative sequence was chosen for each
locus available for Amara, as well as the three available carabid mitogenomes (as of
14/09/2012). A 16S rDNA sequence for A. alpina was not used as a reference, due to
very short length [44bps (Thomsen ef al. 2009)]. The same reference sequences were
used for all six samples, with the exceptions of the two references originating from

this thesis. In these cases, sample specific sequences were used.

Resultant BAM files from both BWA and Bowtie2 were sorted and filtered to remove
PCR duplicate sequences, using ‘rmdup’ in the ‘SAMTools’ v0.1.18 suite (Li et al.
2009) and ‘MarkDuplicates’ in the ‘Picard’ v1.56 suite (http://picard.sourceforge.net).

The optimal combination of aligner and file format (Bowtie2/FASTQ) was determined
based on maximum number of assigned reads in the least amount of CPU time across

all samples. These datasets were used for all downstream analyses. To ensure the
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reasonable assignment of reads to reference sequences, BAM files were indexed and
visually inspected using ‘Tablet’ v1.12.09.03 (Milne et al. 2010). Due to bias with
regard to the proportion of mtDNA and nuDNA reads that were excluded during
duplicate removal, all subsequent analyses incorporated both the complete (‘all data’)
and duplicates removed (‘no duplicates’) datasets. This bias was determined through a
two-tailed chi-squared goodness of fit test, with expected values calculated by

assuming an equal likelihood of duplicate removal for mtDNA and nuDNA.

4.3.2. Fragment Length Distribution and DNA Damage Estimation

Fragment length information was extracted from aligned reads in the BAM files, both
before and after duplicate removal, and pooled into two categories for each sample
based on mtDNA or nuDNA. Distributions were plotted using a five-point centred
moving average in order to smooth the length distributions. Descriptive statistics were
calculated and comparisons of fragment length distributions between DNA categories
were performed using t-tests in SPSS. Appropriate T-statistics were selected using the

results of Levene’s test for equality of variances.

DNA damage, in the form of base misincorporations at the first (5’) and last (3”) 25
nucleotides of the aligned reads in the BAM files, was determined using ‘mapDamage’
v0.3.6 (Ginolhac et al. 2011). MapDamage assesses all reads in an alignment and
displays the rate of C=>T and G A mismatches and indels at each nucleotide
position, but cannot distinguish between damage-induced misincorporations and other
sources of mismatch, such as divergence from reference sequences and sequencing
errors (Briggs et al. 2007; Schubert et al. 2012), as well as SNPs, and heterogeneous

multi-copy sequences (A. Ginolhac, pers. comm.).

4.4. Results

4.4.1. Sequence Data

A total of 43.3 million paired-end reads were obtained, of which between 7.8 and 9.0
million [7.4 to 8.7 million after filtering (a.f.)] were assigned to each of the modern

(Mo) and museum (Mu) samples, based on the barcode incorporated into the adapter
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sequence (section 2.5.2). Additionally, 3.5 to 4.3 million (3.1 to 3.6 million a.f.) were
assigned to each of the ancient (An) samples (fig. 4.1). Across all six samples,
allowing one mismatch in the barcode increased the number of assigned reads by
1.48% [1.31% a.f.], whereas allowing two mismatches further increased the number
of assigned reads by 0.23% (0.16% a.f.). Based on allowing a single mismatch in the
barcode, 4.84% (4.48% a.f.) of reads were not assigned to a used barcode. Of these
reads, 16% [18% a.f.,or 0.77% (0.81% a.f.) of all reads] could be assigned to four
barcodes used at RHUL (BC2, 4, 9, 10), that were not used during DNA library
preparation, with 71% of these reads assigned to BC4 (fig. 4.1).

1.E7+ Raw Filtered
o o
W1 01
1 W2 02
8.E6
172}
<
®
D
& 6.E6T
S
(=]
S
D
2
E
Z. 4.E6 T
2.E6 1
0.E0 T T T — — L — T T T
BC1 BC2 BC3 BC4 BCS BC6 BC7 BC8 BC9 BC10 No
(Mo2) (Mol) (Mul) (Mu2) (An2) (Anl) Match
Barcode

Figure 4.1 Proportion of reads assigned to each barcode. Raw reads are unprocessed. Filtered reads
have undergone quality filtering and sequencing artefact removal. Colours indicate how many

mismatches were allowed in determining the barcode. Mo: modern, Mu: museum, An: ancient.

4.4.2. Comparison of Aligners and Duplicate Removal Bias

Both read mapping programs, BWA and Bowtie2, assigned comparable numbers of
reads to the reference sequences across all six samples (table 4.2). BWA assigned the
same number of reads regardless of whether the read file format was in FASTQ or

FASTA, although analyses of FASTA files used less CPU time. Bowtie2 assigned more
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reads when the read file format was in FASTQ, although these analyses used more
CPU time. Bowtie2 was found to assign more unique reads than BWA in all cases
except for Mol. However, Bowtie2 analyses took roughly four times as much CPU
time as BWA, and a slightly higher proportion of assigned reads were identified as

duplicates in Bowtie2 datasets (table 4.2).

The duplicate removal programs, rmdups and MarkDuplicates, each removed the
same number of duplicates across all datasets. The mtDNA and nuDNA datasets show
a general trend of a larger proportion of reads removed as duplicates in datasets with a
larger number of ‘all data’ reads. For the modern and museum samples, between 67.7
and 86.1% of reads were removed as putative duplicates. However, for the ancient
samples, only 20.3 to 27.0% of reads were removed (table 4.2). Further investigation
revealed that a significantly disproportionate number of reads removed from the
modern and museum samples were those assigned to multi-copy nuDNA reference
sequences (Chi-square goodness of fit tests: %’=518 to 1825, d.f.=1, all p<0.0001;
table 4.3). For the ancient samples, the proportions of mtDNA and nuDNA reads that
were removed as duplicates were similar and statistically non-significant (%°=0.04 to
0.33,d.f.=1, p=0.567 to 0.845). The number of reads assigned to each of the modern
and museum samples was around double the number assigned to each of the ancient
samples (fig. 4.1). However, the number of reads assigned to the references was an

order of magnitude lower in ancient samples, even after duplicate removal (table 4.2).

4.4.3. Fragment Length Distribution and DNA Damage

Fragment length distributions of mtDNA and nuDNA were plotted for each sample
before (all data) and after duplicate removal (duplicates removed; fig. 4.2). The
distributions broadly exhibit a normal or lognormal distribution, except for the Mo2
and An2 nuDNA distributions, which have low peaks and long trailing tails. The mean
fragment length of the ‘all data’ datasets range from 79 to 109 and 61 to 101
nucleotides for mtDNA and nuDNA, respectively (table 4.4). Prior to duplicate
removal, the nuDNA mean fragment length for all samples is significantly shorter
than mtDNA (t-tests: p<0.001). However, for the modern and museum samples, the
mean fragment length of the ‘duplicates removed’ datasets are not as differentiated,

ranging from 79 to 113 and 80 to 124 nucleotides for mtDNA and nuDNA
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respectively. In half of cases, mean fragment length for nuDNA was now longer than

mtDNA, significantly so in one case (Mo02).

Removing duplicates increased the mean

fragment length in all datasets, indicating that shorter reads had been preferentially

removed.

There is variation in DNA misincorporation

patterns between the samples, with the

modern and museum samples generally exhibiting a lower rate of misincorporation

(fig. 4.3). However, Mo1 exhibits higher rates of C=>T and G2 A misincorporation at

the 5’ and 3’ ends, respectively. Mu2 (137yrs) exhibits a higher rate of

misincorporation (~5%) than Mul (62yrs; ~2%). In the ancient samples and Mu2,

misincorporations are spread throughout the DNA fragment, at a rate of 5 to 10% in

ancient samples (fig. 4.3). Duplicate removal minimally impacted on the DNA
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misincorporation pattern, with the only notable change being a decrease in the rates of
misincorporation at the 5° end of Mol. Visual inspection of individual BAM files
showed that in the whole mitochondrion-aligned datasets there was large sequence
divergence between the reads and the reference, and that in the ITS1-aligned datasets
there was an excessive amount of single mismatches between reads and the reference

sequence.

4.5. Discussion

4.5.1. Sequence Data

43.3 million paired end reads were obtained, which is 21.7% of the maximum output
(200 million reads) of the Illumina HiSeq-2000 platform at Exeter. This low output is
likely due to concentration overestimation of the DNA libraries during quantification.
Spectrophotometers measure all nucleic acids, regardless of the presence of ligated
adapters, and are therefore prone to overestimating DNA concentration (Buehler ez al.
2010). Interestingly, all four modern and museum samples had similar numbers of
reads, indicating that quantification was consistently overestimated. Reducing the
calculated concentration by four-fold in samples of this type would have produced a
number of reads compatible with the maximum output of the HiSeq-2000.
Additionally, the ancient samples had a similar numbers of reads to each other, which
were roughly half those attained with the modern and museum samples. It is therefore
recommended that reducing the calculated concentration by eight-fold in ancient

insect samples would enable maximal output using the outlined method.

Allowing a single mismatch in the barcode increased the number of assigned reads by
1.48% [1.31% after filtering (a.f.)] compared to if only exact barcode matches were
considered, whereas allowing two mismatches only increased the number of assigned
reads by a further 0.23% (0.16% a.f.). Allowing for two mismatches during barcode
assignment considerably increased the proportion of additional reads which were
removed by quality filtering (11% for one mismatch, 30% for two mismatches). This,
together with the fact that allowing two mismatches increases the chance of a barcode
misidentification error, meant only barcodes that were either an exact match or had a

single mismatch were considered for further analysis.
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0.77% (0.81% a.f.) of reads were assigned to four RHUL barcodes that were not used
in the present study. Therefore, assuming that an average of 0.2% of the total reads
represent cross contamination per barcode in this experiment, it is possible that ~1.2%
of reads binned by barcode have been incorrectly assigned. This cross contamination
could have originated during oligonucleotide synthesis or handling in the laboratory
(Kircher et al. 2011; Kircher et al. 2012). A powerful method for reducing the
problems of barcode cross contamination is through double barcoding (a barcode at
each end of the DNA fragment) (Kircher ef al. 2012). It is recommended that this

method be implemented in similar future studies.

4.5.2. Aligner Comparison and Duplicate Removal Bias

In the majority of cases in this study, Bowtie2 outperformed BWA by assigning more
reads to the reference sequences, especially if the input file was in FASTQ format, but
required more CPU time. The assignment of more reads by Bowtie2 is in agreement
with the findings of Langmead and Salzberg (2012), although the finding here of
BWA requiring less CPU time differs from their result. Further work on a larger
variety of datasets would be needed to verify that these findings are not an artefact of
this dataset or the result of short genomic reference sequences. This may be especially
worthwhile for large whole nuclear genome wide alignments for which, in ancient and
museum DNA analyses, both BWA [e.g. Schubert ef al. (2012); Orlando et al. (2011);
Menzies et al. (2012); Allentoft ef al. (2012); Rasmussen et al. (2011)] and Bowtie

[e.g. Rowe et al. (2011)] have recently been used.

In published museum and ancient DNA NGS datasets, the proportion of reads
removed as duplicates can be high [63.8 and 37.9% respectively (Rasmussen ef al.
2011; Rasmussen et al. 2010)]. In this study however, duplicate removal was greater
than these previous studies, and was biased toward modern and museum nuDNA.
Furthermore, a higher proportion of reads were designated duplicates in datasets with
a greater number of assigned reads. It is therefore considered unlikely that the
duplicates removed in this study were purely the result of PCR amplification (artificial
duplicates); a proportion of the removed duplicates may have been natural duplicates
that originated from unique template molecules. It is hypothesised that the undesirable

removal of natural duplicates may have been due to reference sequence saturation. If
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there were a large enough number of unique template molecules that originated from a
multi-copy marker, then there would be an increased chance of these molecules
appearing as duplicates in an alignment that is only a single copy of the marker. This
would occur when reads are aligned to short reference sequences of multi-copy
markers (e.g. 183 to 1043bp for 28S,ITS1, 18S), and would also explain why a
greater proportion of reads were removed as duplicates in larger datasets. The bias
toward nuDNA read removal is not present in the ancient samples, where there are
fewer reads and therefore the reference sequence has not been saturated. The
likelihood of natural duplicates being removed in these cases is therefore very
unlikely (Kircher 2012), and so the 19.4 to 29.0% of reads removed for the ancient
samples are likely to represent artificial duplicates. The fact that multi-copy 28S,
ITS1, and 18S were preferentially removed compared to the multi-copy mtDNA may
suggest a very high copy number of ribosomal DNA in A. alpina. Other insects can
have thousands of copies per diploid genomes [>2000 to 8000 (Kumar & Rai 1990;
Oishi et al. 1985)]. Through the excessive removal of duplicates, reference sequence
saturation may therefore be a potential problem for the alignment of reads to multi-
copy sequences in the absence of an appropriate reference nuclear genome. Other
studies [e.g. Schubert et al. (2012)], which utilise a reference genome, avoid this by
discarding reads that align to multiple parts of the genome, but to do so here would
have rejected nearly all of the nuDNA data. A solution to this problem could be to
build a degenerate base region into the adapter molecule, in order to distinguish
between duplicates of natural and artificial origin (Casbon et al. 2011). Similar unique
molecular identifiers (UMIs) have been used to count absolute numbers of template
molecules (Kivioja et al. 2012) and for the detection of ultra-rare alleles (Schmitt et
al.2012), where distinguishing between natural and artificial duplicates is essential.
Given that the retention of as many non-artefact endogenous reads as possible is
highly important for NGS-based aDNA studies, especially in the absence of an
appropriate whole nuclear genome reference, investigatory studies using a UMI-based

approach are warranted.
The fact that a much lower proportion of reads were assigned to reference sequences

for the ancient samples, even with duplicate removal, is consistent with the general

observation that ancient specimens yield a far smaller amount of endogenous DNA
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compared to those of museum age (Sawyer et al. 2012). The possibility that these
reads were the result of barcode cross contamination is refuted as visual inspection of
sample-specific COI reference sequences matched the assigned reads and the number
of assigned reads for both ancient samples was greater than 1.2% of the number
assigned to the modern and museum samples. However, it is probable that some reads

were the result of barcode cross contamination.

4.5.3. Fragment Length Distribution and DNA Damage

Considering the large disparity in sample age, the fact that the mean fragment lengths
of the modern, museum, and ancient samples are similar (60.9 to 123.7 bps) and do
not display an obvious temporal signal is explained by the idea that strand breaks are
thought to occur rapidly post mortem (Sawyer et al. 2012) and there can be large
variation in fragment length between samples of similar ages (Briggs et al. 2007;
Gilbert et al. 2007). The fragment length distribution patterns are comparable to other
aDNA datasets (Kircher 2012), as are published mean fragment lengths from both
museum [69 to 87.5 bps (Miller et al. 2009; Rasmussen ef al. 2011)] and permafrost-
preserved [60.5 to 128.1 bps (Gilbert et al. 2008; Gilbert et al. 2007)] specimens. The
‘all data” mtDNA fragments are significantly longer than nuDNA. This is in
agreement with recent studies of vertebrates from permafrost and sediment deposits,
which suggest that nuDNA degrades at a faster rate than mtDNA (Allentoft et al.
2012; Schwarz et al. 2009). It has been speculated that this may be due to the circular
configuration of mtDNA, which makes it is less accessible to exonucleases (Allentoft
et al.2012), the double membrane of the mitochondrion offering additional protection
(Schwarz et al. 2009), or the interaction of nuDNA and histones facilitating strand
breaks (Binladen et al. 2006). Based on thermal age analysis however, a study of
insect DNA from Roman and medieval aged sediments suggested that nuDNA was
better preserved (King et al. 2009). The removal of ‘duplicates’ reduced this pattern in
the modern and museum datasets, with the pattern reversed in Mo2 and removed in
Mu2. This was due to shorter reads being preferentially removed, of which there were
more in the nuDNA datasets. This may be an artefact of the consensus or
representative sequence determination that occurs during duplicate removal (Kircher
2012). It is unlikely that nuDNA was preferentially amplified, and therefore has more

artificial duplicates, as the amplification enzyme (Pfu Turbo Cx) used during library
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preparation in this study does not have a strong preference for shorter sequences

(Dabney & Meyer 2012).

The very low C>T and G A misincorporation rates observed in Mo2 and Mul are
consistent with their young age (<100yrs) because, unlike strand breaks, these
misincorporation rates positively correlate with age (Sawyer et al. 2012). However,
the higher misincorporation rate exhibited by Mol demonstrated variation between
samples. It is not known why the removal of duplicates resulted in a reduced
misincorporation rate at the 5’ end in this sample only. The older (>100yrs) Mu2 had
a higher rate of base misincorporation than the other modern and museum samples, as
expected through age. This rate was higher than the 1% misincorporation rate found in
100yr old museum-stored human hair (Rasmussen ef al. 2011), even though DNA
degradation in hair is likely to have begun prior to the individual’s death, whilst
exposed to natural environmental conditions. Additionally, misincorporations are
located throughout the read length and are not clustered at termini, unlike the
misincorporation pattern seen in the human hair example (Rasmussen et al. 2011). In
the ancient samples, misincorporation rates at read termini were also far lower than
those predicted by age (28,100 and >11,700 cal. yrs BP). Base misincorporation rates
at DNA molecule termini from permafrost-preserved bone are typically around 20 to
30% [e.g. Briggs et al. (2007); Orlando et al. (2011)]. As with Mu2,
misincorporations, at a rate of 5 to 10%, were instead spread throughout the read. The
possibility that this was an artefact of small sample size was considered unlikely, as
both ancient samples had different sample sizes yet displayed very similar base
misincorporation profiles. Additionally, as all samples are conspecific, the rates of
mismatch from other sources (sequence error, divergence from reference sequences,
SNPs, heterogeneous multi-copy sequences) should be constant between samples
regardless of age. Further investigation into the mechanisms of DNA
misincorporations in older museum and permafrost-preserved insect specimens is
therefore merited. The large sequence divergence between the reads and the reference
in the whole mitochondrion-aligned datasets was likely due to evolutionary
divergence, as these reference sequences belong to taxa from different genera to A.
alpina. The excessive amounts of mismatch in the ITS1-aligned datasets could be due

to intragenomic heterogeneity or repetitive element variability within the multi-copy
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ITS1, two features that have been noted in other insects (Fairley et al. 2005; Parkin &
Butlin 2004; Schulenburg et al. 2001; Sword et al. 2007; Vogler & Desalle 1994).

However, further investigation would be needed to confirm this inference.

4.6. Conclusions

In this study, some bioinformatic approaches for analysing NGS data from the
degraded DNA of a taxon without an appropriate reference genome have been
examined. In addition, the state of DNA preservation in museum and ancient
specimens of A. alpina was explored through the assessment of fragment length
distributions and the prevalence of damage, in the form of base misincorporations.
Allowing a single mismatch in the barcode allowed for the optimal recovery of
sample-specific reads. The BWA and Bowtie2 aligners were compared, and it was
found that Bowtie2 aligns more reads. Using rmdup of the SAMtools suite, duplicate
removal resulted in a greater proportion of nuDNA reads, as well as reads from larger
datasets, being removed. This was explained by reference sequence saturation,
whereby short reference sequences of multi-copy markers become saturated with
reads, resulting in the removal of both artificial and natural duplicates. Investigation
into the use of UMISs to prevent this problem in future studies is recommended.
Fragment length distributions are comparable to previous aDNA studies, with nuDNA
exhibiting a shorter mean fragment length than mtDNA. Shorter fragments were more
likely to be removed as duplicates, which resulted in an increase in the mean fragment
length for all datasets after duplicate removal. A general trend of increased base
misincorporation with increasing sample age was observed. Unlike previous studies
however, misincorporations did not cluster at read termini, but were instead spread
throughout the read. These results further demonstrate the potential of DNA recovered

from both museum and permafrost-preserved beetle specimens.
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Chapter 5. Taxonomic characterisation of the museum and
ancient metagenomes in Amara alpina (Coleoptera:

Carabidae)

5.1. Abstract

The proportions of endogenous to contaminant DNA are not known for both dry-
stored museum and ancient permafrost-preserved insect remains. However, such data
would characterise the metagenome of these remains, and may also be of use for
future museomic or palaeogenomic study. Using a shotgun NGS-based approach, this
study attempted to taxonomically characterise the DNA present in museum and
ancient specimens of the beetle Amara alpina. The results demonstrate that museum
specimens have a metagenome consisting of at least 25 to 40% endogenous insect
DNA, as well as a proportion of bacterial parasite and commensal DNA. However, the
metagenome of ancient specimens contained only <0.5% endogenous insect DNA,
with the vast majority of DNA characteristic of bacteria from the preservational
environment. This study demonstrates the vast potential for museomic studies of dry-
stored museum specimens, but perhaps limited potential for shotgun-based

palacogenomic studies of ancient permafrost specimens.

5.2. Introduction

Previous attempts to characterise the DNA present in dry-stored museum specimens
of insects have often used the concentration of extracted DNA as a measure of DNA
preservation (Andersen & Mills 2012; Tagliavia et al. 2011; Watts et al. 2007;
Zimmermann et al. 2008). However, this assumes that all extracted DNA is
endogenous. Based on DNA from mammalian museum specimens, this assumption
may be problematic as contaminants are often present (Menzies et al. 2012;
Rasmussen et al. 2011; Rowe et al. 2011). A taxonomic assessment of the DNA
extracted from museum specimens would therefore allow for characterisation of the
museum metagenome [sensu Miller et al. (2009)] in these remains. In addition, the

proportion of endogenous DNA in ancient permafrost-preserved beetles is unknown.
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Shotgun sequencing, using NGS technologies, has proven to be a powerful tool for
retrieving large amounts of genetic data from degraded DNA in both museum [e.g.
Miller et al. (2009); Rowe et al. (2011); Miller et al. (2011); Rasmussen et al. (2011)]
and ancient permafrost-preserved [e.g. Gilbert et al. (2007); Rasmussen et al. (2010)]
specimens of a variety of non-insect organisms, and has allowed for highly accurate,
in-depth study and DNA characterisation of these specimens [see Paijmans et al.
(2012) for a review]. An NGS-based approach is therefore highly suited for taxonomic
characterisation of the DNA present in degraded insect remains. This approach would
assess the potential of museum and ancient specimens, through comparison of the
relative proportions of endogenous to exogenous DNA, for future museomic and
palacogenomic study, as well as characterising the museum and ancient metagenomes,

respectively.

The overarching aim of this study therefore was to taxonomically characterise the
genetic component of samples derived from two dry-stored museum (Mu) and two
permafrost-preserved ancient (An) specimens of Amara alpina. In order to provide a
comparison, two modern (Mo; <10yrs) specimens were also evaluated (table 2.3).
Specific aims included the assessment of the amount of endogenous insect DNA
sequences in museum and ancient samples, and whether the proportions are sufficient
for large-scale museomics and palacogenomics, respectively. Additionally, the
amount of exogenous DNA in the samples, the likely provenance of these sequences,
and their potential utility for museum and ancient insect metagenomics was

investigated.

5.3. Materials and Methods

Following from section 2.5.3, the three FASTQ files (merged reads, unmerged read
one, unmerged read two) were concatenated, and the ‘Collapse’ tool in Galaxy was
used to remove duplicates introduced during the index PCR (fig. 2.2: section encircled
in blue). Reads were assembled into contigs using de novo assembly in the CLC

assembly cell v4.0.6-beta (http://www clccell.com/), with the minimum contig length

set to 40 nucleotides. Contigs were produced in order to increase the likelihood of

robust taxonomic assignment (Prufer e al. 2010) and to further collapse PCR

95



duplicates. Contigs were compared to the nucleotide collection of the BLAST
database, using BLAST v2.2.25 (database downloaded on 23/08/2012). Output from
BLAST was analysed using the MEtaGenome ANalyzer (MEGAN) v4.70.4 tool
(Huson et al. 2011), with the gi_taxid_nucl.bin downloaded on 03/09/2012.
Taxonomic information for each of the samples was combined, normalised to 100,000
contigs, and collapsed to the rank of Class. The twelve most abundant classes across
all six samples were scrutinised further by assessing the major composite genera,

which each comprised >2% of the identifiable contigs across all samples.

5.4. Results

5.4.1. Modern and Museum Samples

Contigs from the modern (Mo) and museum (Mu) samples range in length from 40 to
between 5971 and 7935bps, with N50 values of between 125 and 184bps (table 5.1).
The taxonomic profiles (fig. 5.1) of these samples are very similar. The class with the
dominant number of contigs is the Insecta (24.4 to 39.2%), with the Mammalia having
the next greatest number of contigs (6.5 to 12.8%). Other abundant classes comprise
<4% of assigned contigs, with the exception of the Bacterial class Mollicutes, which
has 12.3% of contigs in Mo2. The major components of the Insecta contigs belong to
a wide variety of orders, including the Lepidoptera, Hymenoptera, Diptera,
Hemiptera, and Coleoptera (table 5.2). These components each occur in roughly equal
ratios across the four modern and museum samples. The major components of the
Mammalia contigs are Homo (1.3 to 4.7%) and Mus (1.4 to 1.6%), whereas
Spiroplasma makes up the majority of the Mollicutes contigs. Other major

components of the modern and museum samples included Danio (Actinopterygii) and

Contig Summary
Sample Number Longest (bps) N50 (bps)

Mol 810816 5971 150
Mo2 1089627 7935 184
Mul 768811 6541 153
Mu2 491595 6724 125
Anl 280185 11617 214
An2 285395 5897 174

Table 5.1 Details of the contigs used for taxonomic assessment. Contigs ranged in length from 40bps to

the maximums shown in the table. Mo: modern, Mu: museum, An: ancient.
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Wolbachia (Alphaproteobacteria). The Wolbachia contigs for Mol are assigned to the
wPip strain, whereas contigs for the other modern and museum samples are assigned

to the wRi strain.

5.4.2. Ancient Samples

The two ancient (An) samples comprise contigs that range in length from 40 to
between 5897 and 11617bps, with N50 values of between 174 and 214bps (table 5.1).
These samples have profoundly different taxonomic profiles to the modern and
museum samples, with the vast majority of contigs assigned to the Proteobacteria and
Actinobacteria (fig. 5.1). However, the ratios of the groups differ between the
samples, with the Alpha- and Betaproteobacteria (26.2 to 33.6% of contigs)
dominating in Anl and the Actinobacteria (34.7% of contigs) dominating in An2.
Gammaproteobacteria and Flavobacteriia make up the remaining abundant groups in
both samples with 6.7 to 10.1% and 1.5% of contigs, respectively. An2 additionally
has contigs assigned to Mammalia (2.1%), which are mainly composed of Homo. In
addition to the ratios of the bacterial groups differing, their components also differ,
with the Actinobacteria and Gammaproteobacteria in each sample being dominated by
different taxa. Additionally, there is a higher diversity of Betaproteobacteria in Anl
(table 5.2). 0.2 and 0.3% of contigs are assigned to the Insecta for Anl and An2,

respectively.

5.5. Discussion

5.5.1. DNA Extract Content

There is a large disparity between the taxonomic composition of the modern-museum
and ancient samples. Somewhat surprisingly, the compositions of the modern and
museum samples are very similar, even considering the large age range of these
samples (8 to 137yrs) and their independent storage histories in separate museums
(table 2.3). This suggests that the museum metagenome of historical dried insect
specimens may be fairly consistent, regardless of specimen age or storage collection.

The ancient samples differ more substantially from one another in taxonomic
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composition, but are each dominated by five bacterial groups, which can be attributed

to their preservational environment.

5.5.2. Insect DNA

In the modern and museum samples, the largest proportion of contigs is assigned to
the Insecta. The major component taxa of these contigs include a wide variety of pests
(Tribolium, Acyrthosiphon), disease vectors (Anopheles, Aedes), and insects of
economic and/or scientific importance (Bombyx, Apis, Drosophila). These insects
have available reference nuclear genomes and are therefore biased toward when
BLAST determines taxonomic assignments. The exception is Abax, which does not
have a reference genome, but is taxonomically close to A. alpina (both Carabidae:
Harpalinae). The number and variety of component taxa demonstrates that there is not
a single suitable reference nuclear genome available for A. alpina. The assignment of
24 .4 t0 39.2% of contigs is therefore very encouraging considering a substantial
number of A. alpina contigs may not have been assigned due to a lack of an
appropriate reference sequence (Prufer ef al. 2010). The museum samples, which were
extracted from single legs, contain similar proportions of insect DNA to the modern
samples, which were extracted from whole specimens. This suggests that a single leg
is sufficient for yielding insect DNA from museum remains. The proportion of
endogenous insect DNA in these samples is not as high as some other studies [>52.3
to 89.8% retrieved from 50 to 100yr old bone, hair, and pelt tissue (Menzies et al.
2012; Rasmussen et al. 2011; Rowe et al. 2011)], but is comparable to the 32.1%
recovered from 100yr old dried thylacine hair samples (Miller et al. 2009) and
therefore opens the potential for large-scale museome extraction from these dry-stored

insect specimens.

In the ancient samples, the number of contigs assigned to the Insecta is very low
(<0.5%), which is probably due to DNA preservation and small specimen size, as well
as the biases discussed above. The amount of endogenous insect DNA in these
chitinous remains is around two orders of magnitude lower than other permafrost or
cold-preserved tissues, such as bone and hair, which typically range from 40 to 90%

(Gilbert et al. 2008; Lindqvist et al. 2010; Miller et al. 2008; Poinar et al. 2006). This
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suggests a limited potential for shotgun-based palacogenomics from ancient insect

specimens.

5.5.3. Bacterial DNA: Parasites and Commensals

Parasites and commensals constitute most of the bacteria in the modern and museum
samples. The arthropod parasite Wolbachia, is present in all the modern and museum
samples, with two distinct strains identified. The wPip strain is found in Mol only,
whereas the wRi strain is exclusive to Mo2, Mul, and Mu?2. These strains belong to
different Wolbachia supergroups [wRi: A, wPip: B; (Klasson et al. 2009)], which
would therefore indicate two separate infection events. Spiroplasma are arthropod
commensals, which can be pathogenic (Regassa & Gasparich 2006). These mollicutes
are found in both modern samples and at very low proportions in the museum
samples. Spiroplasma are at greatest abundance (12.3% of contigs) in Mo2 indicating
a heavy load of these bacteria in this sample. As a commensal, Spiroplasma are found
in the arthropod gut and become pathogenic when they enter the haemolymph
(Regassa & Gasparich 2006). Given that the modern samples had far higher
proportions of Spiroplasma compared to the museum samples, and that DNA was
extracted from whole specimens rather than legs in the modern samples, it is inferred
that the Spiroplasma detected here were commensals. Another major reproductive
parasite identified in beetles, Rickettsia (Duron et al. 2008), was not detected in any of

the samples analysed.

5.5.4. Bacterial DNA: Preservational Environment

Although different, the bacterial compositions of the ancient samples are consistent
with the preservational environment (permafrost). The major component genera
indicate this environment to have been glacial or periglacial soils/sediments, near
aquatic sources. This was inferred from Polaromonas [found in glacial and periglacial
deposits (Darcy et al. 2011)], Caulobacter [found in aquatic or semi aquatic habitats
(Laub et al. 2007)], and the remaining genera being typical of soil/sediment
environments (Doughari et al. 2011; Janssen 2006; Philippot et al. 2007). This
complements the locality information for these samples (Goldbottom Creek and

Titaluk River localities, in permafrozen sediment), and opens up the possibility of
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identifying potentially unknown or dubious provenance information based on the
bacterial metagenome of ancient specimens. However, the diversity and ubiquity of
many environmental bacterial genera would only allow for general inferences on

sample provenance to be made.

5.5.5. Other DNA: Contaminants

Contamination of human origin was observed in all samples, although the proportion
was very small (<0.1%) in Anl. The proportions of human contamination are highest
in the modern and museum samples. These proportions are in the region of those
isolated from dry-stored hair and pelt tissue [1.7 to 8.9% (Menzies et al. 2012; Miller
et al.2009; Rasmussen et al. 2011)], but are far higher than the <0.15% reported from
bone (Rowe et al. 2011). Proportions of human contamination in the ancient samples
are comparable with other permafrost or cold-preserved taxa, which ranges from
negligible to 4.5% (Lindqvist et al. 2010; Miller et al. 2008; Poinar et al. 2006).
Samples from the three age classes had their DNA extracted, and libraries constructed,
in two separate, isolated laboratories (modern, museum-ancient). Together with
stochastic contaminants (Mus, Danio, Eudicotyledons, Saccharomycetes) occurring in
equal ratios across the modern and museum samples, this suggests that the
laboratories used were not the source of this contamination. As with the insect
taxonomic assignments, the stochastic contaminants are generally assigned to taxa for
which there is a reference nuclear genome. These assignments may have resulted from
the spurious designation of conserved DNA, contaminant or otherwise, and therefore

should be treated with caution.

5.6. Conclusions

In this study, a broad assessment of the DNA content of degraded insect specimens
derived from museum and ancient sources was undertaken, in order to assess their
taxonomic compositions and potential for future genomic and metagenomic studies.
Although only a single species was assessed in this study, a biological or technical
reason for A. alpina not to be typical of degraded insect remains is not foreseen.
Modern and museum samples of varying age and from separate institutions had very

similar taxonomic profiles, which were characterised by endogenous insect DNA,
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DNA from human sources, and DNA derived from known arthropod parasites. Other
bacterial groups, likely to have derived from the museum environment, occur only at
low levels. Dried insect museum samples are therefore of great potential for future
museomic and museum metagenomic studies. Ancient samples, derived from Late
Pleistocene permafrost deposits, had very low proportions of endogenous insect DNA,
with most DNA originating from bacteria of the permafrost environment. Therefore,
the potential for future palacogenomic studies on these remains may be limited, but
there is potential for metagenomic study, especially if the preservational setting of the

specimen is in question.
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Chapter 6. Global genetic structuring and the postglacial
history of North American Amara alpina (Coleoptera:

Carabidae), as inferred from museum and ancient DNA

6.1. Abstract

This work is the first to focus on the response of an invertebrate taxon to climatically
driven change using a combined museum and ancient DNA based approach. The
mechanism by which the arctic ground beetle Amara alpina colonised Canada at the
end of the last ice age was assessed, utilising information from both modern and
ancient representatives. Additionally, the possibility of major population turnover in
this species during the last ice age was investigated. It was found that colonising
individuals originated from both the western (Beringian) and southern (lower 48 states
of the USA) refugia, with the region west of Hudson Bay being colonised from
Beringia and the east of Hudson Bay region being colonised from the lower 48. A
distinctive group was identified in present day Canada, which is only found in regions
that were glaciated during the last ice age. No evidence for major population turnover
in ancient Beringian individuals was found, which is in contrast to the major turnover

events seen in the mammalian megafauna over this period.

6.2. Introduction

This work focuses on the response of an invertebrate to climatically driven change,
based on inferences from museum and ancient DNA. The postglacial colonisation
routes into Canada were investigated in the cold-adapted ground beetle Amara alpina
and compared to the Schwert-Ashworth (1988) model (fig. 1.3). A. alpina is ideal for
this type of study as it is currently distributed throughout Beringia, arctic Canada, and
on peaks in the Rocky and Appalachian mountains (Lindroth 1968). Additionally, it
was present in Beringia (Elias ez al. 2000) and the lower 48 states of the USA
(Schwert 1992) during the last ice age. A previous study has investigated the
colonisation of Canada at the end of the last ice age by 4. alpina (Reiss et al. 1999).

Reiss and colleagues concluded that Canada was mainly colonised from the Beringian
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refugium, and that individuals in the southern refugium became isolated on the high
mountains of the Rocky and Appalachian mountain ranges; conclusions that were in
line with the Schwert-Ashworth (1988) model. Furthermore, Hudson Bay was not
found to have been a barrier to eastward dispersal from Beringia. However, Reiss and
colleagues’ (1999) study utilised restriction fragment length polymorphism (RFLP)
analysis, and only employed modern individuals with limited sampling. This study
had the advantage of utilising more informative sequence data and individuals from

both the past and present to provide a more complete picture.

In addition to glaciation-induced displacement of species, the last ice age was also a
time of population turnover and extinction for much of the mammalian megafauna,
especially during times of climatic instability, such as Marine Isotope Stage (MIS) 3
(~60,000-28.,000 cal. yrs BP; fig. 1.1) (Barnes et al. 2002; Barnett et al. 2009; Shapiro
et al. 2004) and the Late Pleistocene to Earliest Holocene (13,900 to 11,700 cal. yrs
BP) (Faith & Surovell 2009; Koch & Barnosky 2006). Based on morphological
evidence from subfossils, arctic beetles have maintained morphological stasis, and do
not seem to have undergone extinction during the entire climatically-turbulent
Quaternary, with nearly all species surviving to the present day (Coope 2004; Elias
2010). However, morphological evidence is limited in its resolution for delimiting
populations. With the finer resolution offered by aDNA data, it is possible to assess
the extent to which A. alpina was affected, at the population level, by the
aforementioned periods of climatic instability. If extirpated diversity were found
within 4. alpina, then it would be useful to assess if this diversity loss was on a
regional or global scale through sampling of the entire modern distribution. This is
especially important for arctic beetles as they are thought to have migrated rapidly,

and over large distances, during the Quaternary (Coope 2004; Elias 2010).

The aims of this study were therefore threefold. First, genetic data from the entire
modern distribution of A. alpina were required to make meaningful comparisons with
data retrieved from ancient individuals. Second, was to assess the mode of Canadian
postglacial colonisation, using both modern (museum) and ancient DNA data. This
included assessing whether Hudson Bay acted as a barrier to dispersal, and from

which refugium, or refugia, the regions west and east of Hudson Bay were colonised
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after the last glaciation. Third was to assess genetic diversity through time, including
if there had been any extinction events at the population level, and crucially whether
major climatic events during MIS3 and the Late Pleistocene to Earliest Holocene
period affected A. alpina. Altogether, these aims allowed an assessment of the

responses of a key arctic taxon to past climatically driven changes in North America.

6.3. Materials and Methods

6.3.1. Marker and Sample Selection

Only the Sanger sequencing produced COI and 28S datasets were used in this study
(table 2.2), due to problems with ITS1 (see section 3.3.6). Phylogenetic and
population genetic analyses were conducted using the COI dataset. COI sequence data
from Mack (2008) and Thomsen and colleagues (2009) were incorporated into the
analysis. Data from Gibson and colleagues (2012) were not included, as their region
of COI did not overlap with the target region. Samples were considered if >70%
(=531/759) of bases had been determined. This was to minimise erroneous haplotype
designation that can result from missing data. Due to ancient samples being derived
from incomplete specimens (sclerites), the minimum number of individuals was
calculated for identical sequences from the same locality and age. This resulted in five
samples being excluded from further analysis. Altogether, 139 samples were used for

downstream analysis (appendix 1).

6.3.2. Phylogenetic Analysis

Sequence alignments were conducted manually in Se-Al v2.0 (Rambaut 2002).
Sequences were ordered from complete to least complete in Se-Al, and collapsed into
haplotypes using TCS v1.21 (Clement et al. 2000). Datasets were analysed for the
best substitution model and partition fit, which were selected using the Bayesian
Information Criterion, in jModeltest (Posada 2008) and PartitionFinder (Lanfear et al.
2012). Two partitions were selected (first-second and third codon positions), using the
HKY+G and GTR substitution models, respectively. Phylogenetic analyses were
conducted in MrBayes v3.2.1 (Ronquist et al. 2012) using two runs of four chains.

Analyses were run for 10,000,000 generations, with trees sampled every 1,000, and
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the first 25% discarded as burn-in. A. aulica (Genbank: AY551824) was initially used
to outgroup the phylogeny, but its large genetic distance from the ingroup prevented
effective phylogenetic resolution (fig. 6.1a). To rectify this, the outgroup was set as
Mt-Hg3, as this is the most divergent clade within A. alpina (figs. 6.1a, 6.2). Branch
supports were estimated using Bayesian posterior probability values from MrBayes,
and bootstrap support from RAXML v7.2.8 (Stamatakis 2006). 10,000 bootstrap

replicates were run under the selected partitions using the GTR+G substitution model.

6.3.3. Population Genetic Analysis

Population genetic analyses were conducted in Arlequin v3.5 (Excoffier & Lischer
2010). Eight modern populations were based on geographic region (fig. 6.3), and a
further six populations were based on ancient localities within West and East Beringia
(regions 3, 4). These six populations were selected to account for temporal
heterogeneity in the dataset (Depaulis et al. 2009). To visualise mitochondrial
haplotype diversity, a minimum spanning haplotype network (MSN) was calculated,
using 10,000 permutations and the Tamura-Nei (TrN) +G (a=4) substitution model.
The TrN+G model was the best-supported evolutionary model available in Arlequin.
The MSN was constructed using HapStar v0.5 (Teacher & Griffiths 2011). Molecular
diversity summary statistics, including haplotype and nucleotide diversity indices, and
inter-population sequence divergence estimates were calculated. Comparisons
between populations were conducted using the exact test of population differentiation
(Raymond & Rousset 1995), with the Markov Chain set to 1,000,000 iterations and

the number of dememorisation steps set to 100,000.

6.3.4. Comparison with nuDNA Data

The 28S dataset was supplemented with data from Genbank (appendix 5a), using all
available 28S sequences of Amara. Due to the low genetic variation in this dataset,

alignments were constructed in Se-Al to visualise nuclear haplotype diversity.
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6.4. Results

6.4.1. DNA Sequence Data

DNA was recovered in sufficient quantities to be included in the phylogenetic analysis
from 144 (50.2%) of the 287 specimens tested, although there was great variation in
success rate based on age class (modern/museum: 86.3%, ancient: 16.2%). A total of
53 mitochondrial and seven nuclear haplotypes were identified, with maximum

sequence divergence of 5.54% and 1.09% for mt. and nuDNA, respectively.

Based on phylogenetic and network-based analyses (figs. 6.1b, 6.2), A. alpina falls
into three mitochondrial haplogroups (Mt-Hgs1 to 3), which are defined as diverging
from one another by ten mutational steps or more. Mt-Hg1 consists of 46 haplotypes
(2 to 31, 38 to 53) and includes all ancient individuals, as well as containing
representatives from all study regions, except region 7 (“Hudson Bay”; fig. 6.3).

Nucleotide diversity within Mt-Hg1 was 1.20% (table 6.1). Mt-Hg2 consists of six

Region Population Age Class  Data N H h 4

1 Scandinavia Modern All 26 9 76.00 (7.51) 0.81 (0.44)
2 North Russia Modern All 11 6 7273 (14.44) 0.94 (0.54)
3 West Beringia Modern All 8 4 82.14 (10.07) 1.88 (1.08)
4 East Beringia Modern All 19 11 9240 (3.75) 1.09 (0.59)
5 W Hudson Bay Modern All 21 10 87.14 (5.69) 1.92 (1.00)
6 E Hudson Bay Modern All 16 8 80.00 (9.16) 1.78 (0.95)
7 "Hudson Bay" Modern All 2 2 100.00 (50.00) 0.15 (0.20)
8 Lower 48 Modern All 17 11 9338 (3.93) 1.05 (0.57)
4 TR Pleistocene Ancient All 6 3 60.00 (21.52) 0.39 (0.27)
4 TR Holocene Ancient All 3 3 100.00 (27.22) 0.79 (0.64)
4 GB Creek Ancient All 5 1 0.00 (0.00) 0.00 (0.00)
4 Old Crow 11 Ancient All 1 1 100.00  (0.00) 0.00 (0.00)
4 0Old Crow 106 Ancient All 3 3 100.00 (27.22) 1.13 (0.90)
3 Ledovy Obryv Ancient All 1 1 100.00  (0.00) 0.00 (0.00)
3 West Beringia Modern Mt-Hgl 6 3 73.33 (15.52) 0.51 (0.34)
5 W Hudson Bay Modern Mt-Hgl 10 7 93.33  (6.20) 1.09 (0.62)
6 E Hudson Bay Modern Mt-Hgl 7 5 85.71 (13.71) 045 (0.30)
5 W Hudson Bay Modern Mt-Hg2 11 3 56.36 (13.40) 0.09 (0.08)
6 E Hudson Bay Modern Mt-Hg2 9 3 41.67 (19.07) 0.12 (0.11)
1-6,8 All Mt-Hg1 Both Mt-Hgl 115 46 95.67 (0.78) 1.20 (0.61)
5-7 All Mt-Hg2 Modern Mt-Hg2 22 6 76.19 (545) 0.22 (0.15)
3 All Mt-Hg3 Modern Mt-Hg3 2 1 0.00 (0.00) 0.00 (0.00)

Table 6.1 Molecular diversity summary statistics of A. alpina, based on 759bps of COI. Regions
correspond to fig. 6.3. Standard deviations are in parentheses. N: individuals, H: haplotypes, h:
haplotype diversity (%), m: nucleotide diversity/within population sequence divergence (%).W: west of,

E: east of, GB: Goldbottom.
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Figure 6.2 Mitochondrial haplotype network of 53 A. alpina haplotypes, constructed from 759bps of
COI. Colours correspond to fig. 6.3: within-circle to geographic locality and outside-circle indicates
haplogroup designation (Mt-Hg?2, 3 only). Mt-Hg1 consists of the remaining haplotypes. Coloured
circles indicate haplotypes, small black circles indicate missing haplotypes, and large black circles
indicate >10 missing haplotypes (exact number in italic next to circle). Numbers within circles indicate

individuals. Haplotype numbers are in bold-italic.

haplotypes (32 to 37), which are all found in the non-Beringian regions of Canada
(regions 5 to 7), and has 0.22% nucleotide diversity. Mt-Hg1 is paraphyletic with
respect to Mt-Hg2, with Mt-Hg2 grouping with haplotypes from the lower 48 (28 to
31; fig. 6.1). Mt-Hg3 consists of a single haplotype (1), represented by two
individuals, from Anadyr in West Beringia. Sequence divergence between the three

haplogroups ranged from 2.63 to 5.54% (table 6.3).
Excluding populations with a small sample size (<2), nucleotide diversity within
modern Mt-Hg1 populations ranged from 0.45 to 1.09% (table 6.1), with the highest

diversity in East Beringia and the west of Hudson Bay (regions 4, 5) and the lowest in
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the east of Hudson Bay (region 6). Sequence divergence between regions ranged from
0.00 to 1.33% (regions 5/8, 2/6, respectively; tables 6.2, 6.3). Geographically
disparate regions, such as Scandinavia, East Beringia, and the lower 48 (regions 1, 4,
8), each contain the bulk of modern genetic diversity found within Mt-Hg1 (figs. 6.1b,
6.2). Nucleotide diversity within ancient Mt-Hg1 populations ranged from 0.00 to
1.13% (Goldbottom Creek, Old Crow 106, respectively), with sequence divergence
between populations ranging from 0.12 to 1.80% (TR Pleistocene/Holocene, Old
Crow 11/Ledovy Obryv, respectively). In Mt-Hg?2, nucleotide diversity ranged from
0.09 to 0.12% (West/east of Hudson Bay), with a sequence divergence between the
two regions of 0.24%.

For the 28S dataset (fig. 6.4), 89% of tested samples (n=64) belonged to a single
nuclear haplotype (Nu-Ht1). Nu-Ht1 consists of the majority of Mt-Hg1 and all Mt-
Hg?2 individuals. The two individuals that constitute Mt-Hg3 also compose a distinct
nuclear haplotype (Nu-Ht2), which is two mutational steps away from Nu-Htl. These
mutational steps occur in a variable section of the 28S D3 region. Other nuclear
haplotypes (n=5) all consist of one sample and are one mutational step away from Nu-
Htl. These nuclear haplotypes are all represented by ancient samples, with the
exception of one museum sample (Nu-Ht4), and were all produced from a single PCR
reaction. With the exception of Nu-Ht4, these single mutational changes all represent
C->T and G> A changes. A further four nuclear ‘haplotypes’, all one mutational step
away from Nu-Htl and represented by ancient samples, were collapsed to Nu-Ht1
after further PCR reactions revealed that the single mutational step resulted from a

misincorporated base.

6.4.2. Regional Analysis of mtDNA Data

There is significant differentiation between most modern populations, based on the
whole dataset (table 6.2). However, “Hudson Bay” (region 7) is not significantly
differentiated from any other population, and West and East Beringia (regions 3, 4)
are not differentiated. These results persist if subsets of the data based on haplogroup
designation (table 6.3) are taken, with exceptions in Mt-Hg1 of East Beringia and west
of Hudson Bay (regions 4, 5), and east of Hudson Bay and the lower 48 (regions 6, 8),

becoming non-significantly differentiated.
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Previous page: Table 6.3 Exact test of population differentiation and sequence divergence results for
sequence data subsets based on haplogroup designation. Below diagonal: exact test p-values, with
standard deviations in parentheses. Significant results (p<0.05) are in bold. Above diagonal: percentage
sequence divergence between populations. Only sequence divergence results shown in the middle
section of the table. Gaps in the table for Mt-Hg1 are to avoid duplication of data presented in table 6.2.
Regions correspond to fig. 6.3. TR: Titaluk River, Hg.: Mitochondrial haplogroup (Mt-Hg). W: west of,
E: east of, GB: Goldbottom.

6.4.3. Ancient Individuals

The majority of ancient individuals (75%) either belong, or are very close (<2
mutational steps), to modern mitochondrial haplotypes (7, 16, 20, 21, 43). Two
haplotypes (10, 11) however, which are solely composed of ancient individuals from
the Titaluk River (TR Pleistocene/Holocene), are at least six mutational steps away
from the closest modern haplotype (16; fig. 6.2). These two haplotypes comprise
individuals of Late Pleistocene and ?Holocene age. All individuals from the
Goldbottom Creek population (28,100 cal. yrs BP) belong to the same haplotype (43),
which does not consist of individuals from any other ancient population. The TR
Pleistocene population is significantly differentiated from all modern populations,
except “Hudson Bay” (region 7), but is not differentiated from the ancient
populations, with the exception of the Goldbottom Creek population. The Goldbottom
Creek population is significantly differentiated from all populations, except those
from modern populations in East Beringia and west of Hudson Bay (regions 4, 5), and

ancient populations at Old Crow 11 and Ledovy Obryv (tables 6.2, 6.3).

6.5. Discussion

6.5.1. Genetic Diversity of Amara alpina

Compared to other intraspecific sequence divergence estimates of ground beetle COI,
which typically vary between 0 and 3.8% (Gibson et al. 2012; Raupach et al. 2010),
A. alpina is very genetically diverse, with 5.54% sequence divergence at this locus.
The high level of genetic diversity in this species is unsurprising, as A. alpina is also
very variable morphologically and, under older classifications, has been subdivided

into separate species or subspecies (Lindroth 1968). Analysis of the whole
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mitogenome, using RFLP analysis, revealed an intraspecific sequence divergence
estimate of 0.32% in A. alpina (Reiss et al. 1999); more than an order of magnitude
lower than the estimate of the present study. The disparity between these two
estimates could be due to the choice of restriction enzymes used by Reiss and
colleagues, or that COI evolves at a faster rate than the average entire mitogenome in
A. alpina. A recent study found that six individuals of A. alpina from two localities in
Colorado had a COI sequence divergence of 2.02% (Gibson et al. 2012). This is
comparable to the 1.05% COI divergence within the whole lower 48 found in this

study.

Within Mt-Hg1, the bulk of modern genetic diversity can be found either in
Scandinavia, East Beringia, or the lower 48 (regions 1, 4, 8). This is indicative of
significant migration between regions, a phenomenon suggested by the beetle
subfossil record (Elias 2010), and therefore a complex demographic history of this

species as a whole.

Seven 28S haplotypes were identified in A. alpina. Given that Nu-Ht2 and Mt-Hg3
consist of the same individuals, and differ from Nu-Ht1 in a variable region of the D3,
it is likely that Nu-Ht2 represents a valid haplotype. Nu-Hts3-7 however, are likely to
have resulted from miscoding lesion induced misincorporations. This is because Nu-
Hts3-7 are all represented by one individual, which are nearly all ancient, and differ
from the common reference (Nu-Htl) by single base changes that are characteristic of

miscoding lesions (Gilbert et al. 2007).

6.5.2. Postglacial Colonisation Mode of Canada

After deglaciation had initiated at the end of the last ice age, A. alpina colonised
Canada from both the East Beringian (region 4) and lower 48 (region 8) refugial areas,
based on Mt-Hg1. The west of Hudson Bay (region 5) was primarily colonised from
East Beringia, whereas the east of Hudson Bay (region 6) was colonised from the
lower 48. These inferences are based on the close association of haplotypes between
these region pairs, and the observation that the populations between these regions are
not significantly differentiated. Hudson Bay is interpreted as a postglacial longitudinal

barrier to dispersal. The areas adjacent to Hudson Bay have only been available for
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colonisation for the last 8,000 years (Carlson et al. 2008), but these populations (east
and west of Hudson Bay) are significantly differentiated, both within Mt-Hg1 and Mt-
Hg?2, therefore indicating a barrier to dispersal. However, “Hudson Bay” (region 7)
displays non-significant differentiation from other populations, which is likely due to
small sample size (n=2). Non-significant differentiation was also observed between
West and East Beringia (regions 3, 4); this is unsurprising given that these regions
were biogeographically connected until around 13,300 cal. yrs BP (England & Furze
2008).

The interpretations of this study are partly in line with the Schwert-Ashworth model
of postglacial colonisation of Canada (Schwert & Ashworth 1988), which was
expanded upon by Reiss and colleagues (1999) for A. alpina. This model states that
Beringia was the principal source of colonisers, with colonisation from the lower 48
confined to the northernmost Appalachian Mountains. Based on Mt-Hg1, the results
here support the notion that the west of Hudson Bay was colonised from Beringia,
which is consistent with the Schwert-Ashworth model. However, the east of Hudson
Bay, which included sites as far north as Baffin Island, was found to only have been
colonised from the lower 48, contrary to the model. Additionally, as previously
discussed and further contrary to the Schwert-Ashworth model, the evidence found
here supports the idea that Hudson Bay acted as a barrier to eastward dispersal from

Beringia for a species presently found both west and east of Hudson Bay.

6.5.3. Cryptic Diversity in Canada and West Beringia

The presence of Mt-Hg2 in only Canada is intriguing because, despite extensive
sampling, individuals from this haplogroup were not found in either of the two
classical refugial regions, both at present and, in the case of Beringia, in the past,
contrary to the assumption of Reiss and colleagues (1999). This raises the question as
to where this haplogroup took refuge during the last North American glaciation. A
possible postglacial colonisation event from Europe must be refuted, because all
sampled Palearctic individuals fall within Mt-Hg1. Furthermore, the possibility that
Mt-Hg?2 originated from introgression or hybridisation with a closely related species,
resulting in A. alpina morphologically, is unlikely as Mt-Hg?2 falls within Mt-Hg1 in
the mitochondrial phylogeny. Additionally, both haplogroups have identical nuDNA
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that lacks any apparent heterozygosity. The possibility that these specimens have been
misidentified is considered extremely unlikely, as Mt-Hg2 individuals were sampled
from two independent institutions (CNC, NRM), both well known for their taxonomic
expertise. Additionally, Reiss and colleagues (1999) found a divergent haplotype,
considered in that study to be a putative ancestor of North American A. alpina, which

has an identical distribution to Mt-Hg?2 in this study.

Given the available evidence, four potential scenarios are proposed for the spatial
distribution of Mt-Hg?2 during the last glaciation. First, is that Mt-Hg?2 survived in
small nunatak (mountain top) refugia, both near the Hudson Bay region and in the
mountains of British Columbia. Low nucleotide diversity in Mt-Hg2, which may
indicate a past population bottleneck induced by small refugia, would support this
scenario. Second, is that Mt-Hg?2 survived in a cryptic northern refugium [sensu
Stewart et al. (2009)] in the High Canadian Arctic. This refugium has been invoked to
explain phylogeographic results from studies of several small mammal species
(Fedorov & Stenseth 2002; Waltari & Cook 2005). Third, is a combination of the
aforementioned scenarios, whereby individuals from the Hudson Bay region survived
in the High Canadian Arctic refugium and individuals from the mountains of British
Columbia survived on nunataks. A similar combined scenario has been inferred to
explain the distribution of ground beetles in the European Alps (Lohse et al. 2011).
The ecological feasibility of these scenarios is demonstrated by the ability of A. alpina
to tolerate very cold temperatures (Bennike et al. 2000; Sgmme 1974), as well as
having a varied generalist diet (Braten et al. 2012; Chernov 1988; Ottesen 1996). The
final scenario is that Mt-Hg2 colonised Canada from the lower 48 refugium and
subsequently became extinct in this region. Although subfossil specimens of A. alpina
are known from lower 48 ice age lowland deposits (Schwert 1992), it is doubtful that
aDNA would be preserved due to the assumed high thermal age [sensu Smith et al.
(2003)] of these specimens. The phylogenetic analysis is suggestive of a potential
lower 48 origin for Mt-Hg2. However, further analysis of additional markers would be

needed to robustly assess this observation.

Two individuals from Anadyr in West Beringia represent Mt-Hg3. This haplogroup is
even more distinct than Mt-Hg2, differing substantially (3.35% divergence) from Mt-
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Hgl, and also differing in the short section of nuDNA analysed. Morphological
examination of these specimens by S.A. Elias revealed that they are not misidentified.
Given that Mt-Hg3 is very different from, but also co-occurs with, Mt-Hg1, it is
suggested that Mt-Hg3 may represent a cryptic species or subspecies of A. alpina.

Further work would be required to test this hypothesis robustly.

6.5.4. Genetic Diversity through Time

All ancient individuals of A. alpina in this study fall within the crown group. Thus,
since the Late Pleistocene in East Beringia there has not been a major genetic
diversity loss comparable to that observed in some Beringian megafaunal species,
such as bison (Bison bison) (Shapiro et al. 2004) and musk ox (Ovibos moschatus)
(Campos et al. 2010). The only evidence for diversity loss is two haplotypes
composed solely of ancient individuals from the Titaluk River. Assuming that this loss
is real, and not the result of non-sampling suitable modern individuals, the existence
of individuals of presumed Holocene age (<11,700 cal. yrs BP) in this haplogroup
would seem to indicate that this diversity loss was not the result of classical periods of
population and species level upheaval: MIS3 (Barnes et al. 2002; Barnett et al. 2009;
Brace et al. 2012; Shapiro et al. 2004) and the Late Pleistocene to Earliest Holocene
(Faith & Surovell 2009; Koch & Barnosky 2006). However, it should be noted that
the Titaluk River dates are not well constrained and this inference rests on the TR
Holocene assemblage being of Holocene age. Nevertheless, the lack of significant
diversity loss in A. alpina, would seem to suggest resilience in this species to climatic
drivers that devastated the megafauna during MIS3 and the Late Pleistocene to
Earliest Holocene. Sampling of other regions from which A. alpina subfossils of
suitable age and preservation are known, such as Greenland (Bocher 2012; Bocher et
al. 2012), would be needed to further confirm and extend these inferences, as would
more extensive sampling of localities in West Beringia (Kuzmina et al. 2011).
Investigation of Greenland specimens could be particularly fruitful as A. alpina is

absent from this region at present (Bocher 2012).
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6.6. Conclusions

This study has showcased the utility of a combined modern and ancient DNA
approach to assess questions related to the response of an invertebrate taxon to a
period of past climatic change. Through this approach, it was found that A. alpina is
very genetically diverse, with this diversity spread throughout its modern geographic
range. Two disparate haplogroups (Mt-Hg2, Mt-Hg3) suggest the possible existence
of cryptic clades within A. alpina that warrant further investigation. At the end of the
last ice age, Mt-Hg1 colonised Canada from both refugial regions (Beringia, lower
48). Individuals from Beringia colonised the region west of Hudson Bay, whereas
those from the lower 48 colonised the region east of Hudson Bay. Hudson Bay is
thought to have been a barrier to eastward dispersal for A. alpina, contrary to previous
hypotheses. Mt-Hg2 is hypothesised to have either survived on small nunatak refugia,
in a cryptic northern refugium, a combination of these two, or in the lower 48
refugium with subsequent extinction in this region. Without aDNA data, it would not
have been possible to determine the absence of Mt-Hg2 in Beringia during the last
glaciation. Lastly, the combined approach indicated that there has not been major
population turnover in A. alpina within Beringia during the past 50,000 years, which
is in line with palaeontological data from the beetle subfossil record, but in contrast to

the population histories of much of the mammalian megafauna during this time.
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Chapter 7. Postglacial colonisation of Canada by, and
taxonomic considerations on, the arctic ground beetle

Pterostichus brevicornis (Coleoptera: Carabidae)

7.1. Abstract

As a complement to the study in chapter six, the mechanism by which an arctic
ground beetle, Pterostichus brevicornis, colonised Canada at the end of the last ice
age was investigated, utilising genetic information from museum specimens. Over the
course of this study, sequence heterogeneity was detected in some individuals, which
was used to further examine colonisation patterns. Additionally, the dataset was used
to taxonomically assess the two subspecies of P. brevicornis: P. b. brevicornis and P.
b. delicatus. Based on mitochondrial DNA data, it is shown that colonising individuals
originated from both the western (Beringian) and southern (lower 48 states of the
USA) refugia, with the latter being the likely source of colonists for the region to the
east of Hudson Bay. However, the sequence heterogeneity data suggest that the true
story may be more complex and that further work is required. Mitochondrial DNA
evidence does not support the current subspecies designations, although a highly

divergent clade was identified in P. brevicornis.

7.2. Introduction

In order to examine if closely related beetle taxa have an individualistic or generalised
response to past climatic changes, the mode of postglacial colonisation of Canada was
investigated in a second ground beetle species. Using genetic evidence from museum
specimens, the postglacial colonisation routes of Canada were assessed in the cold-
adapted ground beetle Pterostichus brevicornis and compared to the Schwert-
Ashworth (1988) model (fig. 1.3). Genetic data from ancient individuals were not
used here due to the failure of aDNA retrieval from permafrost-preserved specimens
(chapter three). This species was suitable for comparable investigation as it is
taxonomically close to A. alpina (same subfamily: Harpalinae). Furthermore, P.

brevicornis is currently distributed throughout Beringia and northern Canada, and is
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found on mountaintops in the Appalachians (Ball & Currie 1997). During the last ice
age, it was present in both the western (Elias et al. 2000) and southern (Warner et al.
1988) refugia. Although A. alpina and P. brevicornis are both adapted to tundra

habitats, they differ in their ecological requirements (section 1.6).

In addition to assessing the postglacial colonisation of Canada, this study presented an
opportunity to assess the taxonomy of P. brevicornis. This species is divided into two
subspecies, P. b. brevicornis and P. b. delicatus, based on exoskeletal morphology
and modern range (Ball 1966). P. b. delicatus is confined to the Bering Islands,
whereas the polymorphic P. b. brevicornis is found throughout the remainder of the
species’ distribution [circumpolar from far west Russia to far east Canada (Ball 1966;
Ball & Currie 1997; Lindroth 1966)]. Considering that the Bering Islands have only
been isolated from mainland Asia and North America for around 13,300 cal. yrs BP
(England & Furze 2008), and that morphological ‘intergrades’ between the two
subspecies are known from Alaska (Ball 1966; Lindroth 1966), taxonomic
investigation was warranted. The genetic data produced by this study could therefore
be used to substantiate the concept of a Bering Island-confined P. b. delicatus.
Additionally, given the polymorphic nature of P. b. brevicornis, this study also

provided an opportunity to investigate the existence of cryptic clades in this species.

The primary aims of this study were therefore twofold. First was to use mitochondrial
DNA-based regional analysis to assess the postglacial colonisation mode of P.
brevicornis in Canada, through investigation of whether colonisation of the east of
Hudson Bay was primarily from the western (Beringia) or the southern (lower 48
states of the USA) refugia. This included investigating whether Hudson Bay was a
barrier to eastward dispersal from Beringia. Second was to assess whether there is
genetic support for Bering Island individuals of P. brevicornis to be considered a
distinct subspecies, and to investigate if there are cryptic clades within P. brevicornis.
During the course of this study, sequence heterogeneity was noted in part of the
mitochondrial dataset. An attempt was made to identify the source of this
heterogeneity and to use its presence or absence in samples to further the regional

analysis.
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7.3. Materials and Methods

7.3.1. Marker and Sample Selection

Only the Sanger sequencing generated COI, COII and 28S datasets were used in this
study (table 2.2), due to problems with ITS1 (see section 3.3.6). COI data from Mack
(2008) were also incorporated. Phylogenetic and population genetic analyses were
employed using the COI and concatenated COI-COII datasets. Samples were
considered if >70% (COI: 2235/336, COI-COII: 2457/653) of bases had been
determined. This was to minimise the chance of missing data resulting in erroneous
haplotype designation. Five repeatedly problematic base positions in the COII dataset
(see section 7.3.3) were designated missing data for all samples. Altogether, 80

samples were used for downstream analysis (appendix 1).

7.3.2. Phylogenetic and Population Genetic Analyses

Phylogenetic and population genetic analyses followed the methods outlined in
sections 6.3.2 and 6.3.3, respectively, with the following modifications. For
phylogenetic analysis of the COI dataset, two partitions were selected (first-second
and third codon positions) with the HKY substitution model used for both partitions.
For the COI-COII dataset, four partitions were selected (first-second and third codon
positions for each marker) with the HKY substitution model used the first, second,
and fourth partitions, and the F81 model used for the third partition. P. riparius
(Genbank: EU142584) was used to outgroup the phylogeny. In an attempt to improve
resolution, mitochondrial haplogroup (Mt-Hg) 2, the most divergent clade within P.
brevicornis (figs.7.1,7.2), was also utilised as outgroup. However, this did not affect

tree topology and was therefore not used.

For the regional analysis, six populations were selected based on five major
geographic regions and the Bering Islands (fig. 7.3). The best-supported evolutionary
model available in Arlequin was the TrN and TrN+G model for the COI and COI-
COII datasets, respectively. Minimum spanning haplotype networks were produced
for both datasets, but all subsequent analyses were conducted using the COI-COII
dataset only. Mt-Hg2 was excluded from regional analysis, due to its large divergence

from the remainder of the samples (Mt-Hg1). Summary statistics were produced, both
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within and between populations, and exact tests of population differentiation were

used to compare populations based on haplotype composition.

7.3.3. COII Sequence Heterogeneity Characterisation

In the COII dataset, five repeatedly problematic base positions, in the form of
sequence mismatches and chromatogram ambiguities, were identified causing COII
sequence heterogeneity (CSH). The presence of CSH was determined if one or more
of these base positions was found to be problematic for a sample. The occurrence of
CSH was characterised genetically and geographically, through comparison with the
COI-COII dataset and comparison to longitude, respectively. The COI-COII dataset
was split into two groups based on the presence or absence of CSH within samples.
An exact test of group differentiation was conducted in Arlequin, to assess if the
mitochondrial haplotype compositions differed between CSH and non-CSH groups.
Longitude was also scrutinised as a potential factor to explain the geographical
distributions of the two groups. A two-tailed Shapiro-Wilk test was used to assess if
the data were normally distributed, and significance testing between the populations
was conducted using a two-tailed Mann-Whitney U test. These statistical tests were

performed in SPSS.

7.3.4. Comparison with nuDNA Data

All available 28S sequences from this thesis for P. (Cryobius), including P.
brevicornis, were supplemented with data from Genbank (appendix 5b). In order to
visualise nuclear haplotype diversity, alignments were constructed in Se-Al, due to the

small number of haplotypes in this dataset.

7.4. Results

7.4.1. DNA Sequence Data

Based on the COI dataset, a total of 10 mitochondrial haplotypes were identified (figs.
7.1a,7.2a), with a maximum sequence divergence of 4.11%. The COI-COII dataset
yielded 18 haplotypes (figs. 7.1b, 7.2b), with 3.61% maximum divergence. Two
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nuclear haplotypes were identified in the 28S dataset (figs. 7.4), which diverge by
7.51%.

Based on phylogenetic and network-based analyses of the COI-COII dataset (figs.
7.1b,7.2b), P. brevicornis falls into two mitochondrial haplogroups (Mt-Hgs1, 2;
defined by criteria in section 6.4.1). Mt-Hg1 consists of 17 haplotypes (2 to 18) from
all study regions. Nucleotide diversity within Mt-Hg1 was 0.48% (table 7.1; 0.50%
based on the COI dataset). Mt-Hg2 consists of a single haplotype (1), which is found
in East Beringia (region 3) only. Nucleotide diversity within Mt-Hg1 populations
ranged from 0.00 to 0.64% (table 7.1), with the highest diversity in East Beringia and
the lowest in the Bering Islands, east of Hudson Bay, and the Appalachian Mountains
(regions 2, 5, 6, respectively). Sequence divergence between regions ranged from 0.00
to 0.94% (regions 5/6, 1/2, respectively; table 7.2). East Beringia and west of Hudson
Bay (regions 3, 4) contain nearly all mitochondrial genetic diversity found within P.
brevicornis (figs. 7.1, 7.2). Haplotypes from the most widely separated populations
(West Beringia, Appalachian Mountains) have 0.15% sequence divergence. The
Bering Island individuals all belong to the same haplotype (9), which also consists of

individuals from East Beringia and the Northwest Territories (NWT).

Region Population Data N H h n

1 West Beringia Mt-Hgl 2 2 100.00 (50.00) 0.15 (0.22)
2 Bering Islands Mt-Hgl 3 1 0.00 (0.00) 0.00 (0.00)
3 East Beringia Mt-Hgl 29 11 86.70  (3.58) 0.64 (0.36)
4 W Hudson Bay  Mt-Hgl 29 9 7438 (7.57) 034 (0.22)
5 E Hudson Bay Mt-Hgl 8 1 0.00 (0.00) 0.00 (0.00)
6 Appalachians ~ Mt-Hgl 1 000 (0.00) 0.0 (0.00)
3 All Mt-Hg2 Mt-Hg2 2 1 0.00 (0.00) 0.00 (0.00)
1-6 All Mt-Hgl Mt-Hgl 78 17 8551 (1.92) 048 (0.28)
1,3-4,6 CSH Mt-Hgl 38 13 8492 (3.55) 043 (0.26)
2-6 No CSH Mt-Hgl 40 9 7628 (4.46) 045 (0.27)

Table 7.1 Molecular diversity summary statistics of P. brevicornis, based on 336 and 317bps of COI
and COII, respectively. Regions correspond to fig. 7.3. Standard deviations are in parentheses. N:
individuals, H: haplotypes, h: haplotype diversity (%), m: nucleotide diversity/within population

sequence divergence (%), W: west of, E: east of, CSH: COII sequence heterogeneity.
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In the 28S dataset (fig. 7.4), 21 of the tested P. brevicornis samples (n=22) belonged
to a single nuclear haplotype (Nu-Htl). This haplotype consists of individuals
belonging to Mt-Hg1 and includes the three individuals from the Bering Islands. The
Mt-Hg?2 individual analysed for 28S composes another distinct haplotype (Nu-Ht2),
which differs by eight inserted and five substituted nucleotides. The majority (84.6%)
of these differences occur within a variable section of the 28S D3 region. The
insertions found within Nu-Ht2 are also found in P. (Cryobius) nemoralis, whereas
the four other assessed species of P. (Cryobius) lack these insertions and therefore

have a fragment length identical to Nu-Htl.

7.4.2. Regional Analysis of mtDNA Data

The Beringian regions (1 to 3), which include the Bering Islands, are not significantly
differentiated from each other (table 7.2). The west of Hudson Bay region (4) is
significantly differentiated from all other regions, except West Beringia (region 1).
The east of Hudson Bay and Appalachian Mountain regions (5, 6) are not
differentiated, but both of these regions differ significantly from the remaining

populations in their haplotype compositions.

7.4.3. Characterisation of COII Sequence Heterogeneity

CSH was detected in 48.7% of Mt-Hg1 individuals, but was absent from both
individuals of Mt-Hg2 (fig. 7.2c). A total of 70 nucleotides, out of a total of 400, were
found to be problematic across the five base positions (table 7.3). These five base
positions spanned a 139bp region of COII. Four of the five problematic sites were
third codon positions, which remained synonymous regardless of base variant.
Genetic characterisation of CSH revealed that the CSH and non-CSH groups have a
significantly different composition of mitochondrial haplotypes (table 7.2), although
clusters of haplotypes with CSH occur throughout the haplotype network (fig. 7.2¢),
resulting in low sequence divergence between the two groups (0.07%). Longitude-
based geographical characterisation of CSH revealed a significant difference in the
distribution of CSH and non-CSH individuals (Two-tailed Mann-Whitney: U=359,
n,=40, n,=38, p<0.001). CSH individuals tend to be found in the western regions

(Beringia), whereas those without CSH are usually found in eastern regions (Canada
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and the Appalachian Mountains). The two groups were not normally distributed,
based on longitude (Two-tailed Shapiro-Wilk: CSH: W=0.857, d.f.=38, p<0.001; non-
CSH: W=0.915, d.f =40, p=0.005).

Problematic Position

Mt-Ht N 3460 3500 3529 3592 3598 CSH Proportion
1 2 0 0 0 0 0 0 0.00
2 1 0 0 1 1 0 1 1.00
3 19 1 7 11 6 2 11 0.58
4 1 0 0 1 1 0 1 1.00
5 17 0 1 1 0 0 1 0.06
6 9 1 0 8 4 4 8 0.89
7 9 0 0 7 1 2 7 0.78
8 1 0 0 1 0 0 1 1.00
9 11 2 0 0 0 0 2 0.18

10 1 1 0 0 0 0 1 1.00
11 1 0 0 0 0 0 0 0.00
12 1 1 0 0 0 0 1 1.00
13 2 2 0 0 0 0 2 1.00
14 1 0 1 1 0 0 1 1.00
15 1 0 0 0 0 0 0 0.00
16 1 1 0 0 0 0 1 1.00
17 1 0 0 0 0 0 0 0.00
18 1 0 0 0 0 0 0 0.00
Total 80 9 9 31 13 8 38 048
Codon position 3 1 3 3 3
Nucleotides C-T C-T C-T A-T C-T

Amino acids Tyr-Tyr Pro-Ser Phe-Phe Val-Val Ala-Ala

Table 7.3 Problematic base positions resulting in sequence heterogeneity in the COII dataset (CSH).
Base position was established from the Calosoma sp. mitogenome (Genbank: NC018339).
Mitochondrial haplotypes (Mt-Hts) correspond to figs. 7.1b, 7.2b, c. N: Number of individuals per
haplotype. CSH: Number of individuals with COII sequence heterogeneity.

7.5. Discussion

7.5.1. Genetic Diversity of P. brevicornis

Given the entire COI dataset, the genetic diversity of P. brevicornis (4.11%) is greater
than typical intraspecific sequence divergence estimates of ground beetle COI [0 to
3.8% (Gibson et al. 2012; Raupach et al. 2010)]. However, when excluding the
divergent Mt-Hg?2, this figure is reduced eightfold (0.50%). Sequence divergence
estimates were similar in the COI and COI-COII datasets, which would suggest a

comparable mutation rate between these two markers in this species.
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The vast majority of P. brevicornis mitochondrial genetic diversity is found in the
west of Hudson Bay and East Beringian regions. With the exception of the Bering
Island population, all haplotypes from the remaining populations differed by only two
substitutions, although the West Beringian population was poorly sampled (n=2). As
with A. alpina (section 5.5.1), this would indicate that significant migration between
regions has occurred, as suggested by the beetle fossil record (Elias 2010). The two
divergent nuclear haplotypes identified in P. brevicornis are consistent with the
mtDNA data, with the two nuDNA haplotypes represented by individuals from Mt-
Hgs1 and 2, respectively.

7.5.2. Regional Analysis of P. brevicornis

The mtDNA data suggest that the region east of Hudson Bay was colonised from the
lower 48 states of the USA after deglaciation initiated. This inference derives from the
observation that only a single haplotype is shared between the east of Hudson Bay and
Appalachian Mountain populations, the latter of which was likely derived from
individuals south of the Laurentide ice sheet (Schwert & Ashworth 1988). If
colonisation of the east of Hudson Bay was by populations originating from East
Beringia, as suggested by the Schwert-Ashworth (1988) model, it would be expected
that the haplotype composition of the east of Hudson Bay population would be closer
to the East Beringian and west of Hudson Bay populations rather than the
Appalachian Mountains population. However, the east of Hudson Bay population is
significantly differentiated from both of these western populations, which would also

suggest that Hudson Bay was a longitudinal barrier to eastward dispersal.

The west of Hudson Bay population was probably colonised from both the lower 48
states of the USA and East Beringia, therefore resulting in significant differentiation
from either of these refugial regions. Additional evidence for this interpretation is that
individuals from the west of Hudson Bay population belong to haplotypes found in
East Beringia and the Appalachian Mountains. Non-significant differentiation
between the west of Hudson Bay and West Beringian populations is probably an
artifact of the small sample size of the latter (n=2). Even though both the West
Beringian and the Bering Island populations had a small sample size, all three

Beringian regions were found to be non-significantly differentiated. This is likely due
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to these regions being biogeographically connected until around 13,300 cal. yrs BP

(England & Furze 2008).

7.5.3. Characterisation of COII Sequence Heterogeneity

Based on the sequence data, the source of CSH was tentatively inferred as either
mitochondrial heteroplasmy or NUMT contamination, through the elimination of
other potential sources. Misincorporations due to miscoding lesions or other sources
of error (enzymatic, sequencing) as the sole cause of CSH was considered unlikely.
This is because only five base positions were repeatedly problematic and, although
misincorporation ‘hotspots’ are known to occur (Gilbert et al. 2005; Gilbert et al.
2003), it would be suspicious for these to occur within a 139bp sequence and yet be
absent from the remaining dataset. The possibility of sample cross-contamination
being the source of CSH is considered unlikely because, in addition to rigorous
enforcement of negative controls and contamination reduction measures, it would be
expected for the COI and the remainder of the COII datasets to also display sequence
heterogeneity. Given these considerations, a NUMT would be the most parsimonious
explanation for the source of CSH. However, strong support for NUMT
contamination, such as the presence of stop codons or frameshifting indels (Bensasson
et al. 2001), were not detected. In addition, four of the five problematic bases were
synonymous third codon substitutions, which would be more indicative of function-
retaining heteroplasmy. This has been inferred to explain similar results in other
recent insect mtDNA studies (Frey & Frey 2004; Magnacca & Brown 2010; Sword et
al.2007). However, a problem with this inference is that the problematic bases only
occurred in a small section of the COI-COII dataset, whereas it may be expected that
similar apparent problems would arise in other dataset regions (although see section
3.5.5). Alternatively, a NUMT may have arisen relatively recently and, assuming a
higher mutation rate in the mtDNA, the observed differences are due to subsequent
substitutions in the mtDNA (Sunnucks & Hales 1996). Based on the sequence data
alone therefore, neither mitochondrial heteroplasmy nor NUMT contamination could

be confidently identified as the CSH source.

Despite the conservative approach of assigning CSH status to individuals if only a

single base was found to be problematic, CSH was only detected in around half of
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individuals. It is possible that, due to differential DNA preservation or the stochastic
nature of the PCR, CSH was present in some individuals but was not detected.
Comparison of the mtDNA haplotype composition between the CSH and non-CSH
groups revealed that the composition of these groups was significantly different, with
apparent clustering of the groups within the haplotype network. If heteroplasmic
mitochondria were the CSH source, and were transmitted maternally, then it would be
expected that the CSH and mtDNA data would be congruent. This could therefore be
used to argue for a NUMT being the CSH source. Interestingly, there is a
geographical pattern in the distribution of the CSH and non-CSH groups, with the
latter being more common in the regions both west and east of Hudson Bay, as well as
in the Appalachian Mountains. These distributions contrast to the regional analysis
based on mtDNA, and hint that the population history of P. brevicornis may be more
complex than suggested by the mtDNA sequence data alone. Therefore, further work
employing nuclear DNA markers would be required to assess any regional analysis

comprehensively, and may also resolve the source of the CSH.

7.5.4. Taxonomic Considerations

The nuDNA fragment was too conserved to scrutinise the subspecific status of the
Bering Islands individuals. However, based on mtDNA evidence, the fact that all three
individuals from the Bering Islands compose a haplotype that also occurs in East
Beringia and the NWT fails to support Ball’s (1966) concept of P. b. delicatus as a
distinct subspecies confined to the Bering Islands. Interestingly, this haplotype (9),
along with two others (10, 11), form a well-supported clade that diverges near the
base of P. brevicornis (excluding Mt-Hg2). Whether this clade of three haplotypes
represents a distinct operational taxonomic unit is only hinted at within the present
study and would require further investigation of both mitochondrial and nuclear DNA

markers.

Two individuals from East Beringia (Mt-Hg2/Nu-Ht2; Pb2) were found to be highly
divergent from the remaining individuals of P. brevicornis (Mt-Hg1/Nu-Htl; Pb1).
The mtDNA sequence divergence between these two groups is beyond the
intraspecific range reported from ground beetle COI. Together with the high
divergence at the nuclear 28S locus, it is doubtful that Pb2 should be considered P.
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brevicornis. The two individuals that compose Pb2 were collected by different
taxonomists on different collection trips, identified by expert taxonomists upon entry
into the CNC collection, and further identified by S.A. Elias during specimen
sampling. The possibility that Pb2 are an artifact of specimen misidentification is
therefore considered highly unlikely. Although introgressive hybridisation events are
known in carabid beetles (Sasakawa & Kubota 2005; Sota & Vogler 2001; Streiff et
al.2005; Zhang et al. 2005), the fact that Pb1 and Pb2 are very divergent at both
mitochondrial and nuclear loci does not support this. This also suggests that the Pb2
mtDNA sequence is not an artifact of NUMT contamination. Furthermore, if Pb2
were the result of a very recent hybridisation event between P. brevicornis and
another species, potential heterozygote hybrids may be expected to have a poor to
unreadable 28S alignment, due to the sequence length difference between Pb1 and
Pb2. However, this was not observed in the chromatograms. It is therefore suggested
that Pb2 may represent a cryptic clade, a phenomenon that has previously been
identified in Pterostichus (Sasakawa & Kubota 2005). Assuming that the insertions in
the 28S sequences are homologous, this may indicate a closer phylogenetic
relationship of Pb2 to P. (Cryobius) nemoralis, a species that has also been assigned
to the subgenus Argutor in some literature (Bousquet 2003), than to the other four
species of P. (Cryobius) under study. The mitochondrial and especially nuclear DNA
data presented here suggest that P. (Cryobius) and allied subgenera would benefit
from a comprehensive assessment of phylogeny and the prevalence of potential

cryptic clades.

7.6. Conclusions

This study has assessed key questions related to the North American population
history and taxonomy of the arctic ground beetle P. brevicornis, as inferred from a
museum DNA based approach. P. brevicornis is genetically diverse, with the majority
of this diversity found in East Beringia and the west of Hudson Bay. P. brevicornis
consists of two distinct clades, differing at mitochondrial and nuclear DNA markers.
Pb1 is found throughout the entire range of P. brevicornis and the geographic
distribution of its mtDNA haplotypes suggest that postglacial colonisation was from
both the Beringian and southern refugia with Hudson Bay acting as a barrier to

eastward dispersal from Beringia. Mitochondrial COII sequences displayed
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heterogeneity in around half of the individuals sampled, which probably resulted from
either mitochondrial heteroplasmy or NUMT contamination. Two groups, based on
the presence or absence of sequence heterogeneity, had differing compositions of
mitochondrial haplotypes and were geographically distinct, with samples displaying
heterogeneity being more common in Beringia and northwestern Canada. Based on
mtDNA evidence, the concept of a Bering Island-confined subspecies P. b. delicatus
was not supported, due to this haplotype being found in East Beringia and the
Northwest Territories. The divergent Pb2 potentially does not belong to P.
brevicornis, and may have closer affinities to other species of P. (Cryobius), which
justifies a comprehensive phylogenetic assessment or this and closely related

subspecies.
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Chapter 8. Discussion and Conclusions

8.1. General Discussion

8.1.1. Potential of DNA from Dry-stored Museum Beetles

The largest and most comprehensive study of the potential of DNA from dry-stored
insect specimens, and the first related to beetles, was conducted. Endogenous DNA
was recovered from nearly all specimens of both study species (Amara alpina,
Pterostichus brevicornis), including from >100yr specimens (table 3.1). A Sanger
sequencing based approach demonstrated that the maximum amplifiable fragment
length of mitochondrial (mt) DNA decreases with age (fig. 3.3), and that fragments of
length useful for next-generation sequencing (NGS) should be retrievable from
>200yr specimens. PCR amplification success was lower in >100yr specimens (fig.
3.1), which may be due to a lower endogenous DNA concentration in these
specimens. However, using a shotgun NGS-based approach, it was shown that a
>100yr specimen can preserve an amount of endogenous DNA comparable to <10yr
specimens (tables 2.3,4.2; fig. 5.1). This is suggestive of large between-specimen
variability. Fragment length distributions broadly revealed that nuclear (nu) DNA had
a shorter mean fragment length than mtDNA, indicating that mtDNA may be
preferentially preserved. The rate of base misincorporation was greater (~5%), but still
relatively low, in a >100yr specimen when compared to <100yr specimens (~2%)
although, contrary to other degraded DNA studies [e.g. Briggs et al. (2007); Orlando
et al. (2011); Rasmussen et al. (2011)], misincorporations did not accumulate at read
termini (fig. 4.3). The proportion of DNA preserved in dry-stored museum beetle
specimens that was considered endogenous (~25 to 40%; fig. 5.1), did not seem to be
related to specimen age or collection of origin, indicating that the proportion of
contaminants does not increase with age. Interestingly, it was also possible to recover
sequences of arthropod parasites and commensals (fig. 5.1; table 5.2), which could
potentially be used to examine these associations through time and space using

museum DNA (Tsangarasa & Greenwood 2012).
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Altogether, these data are congruent with other small-scale studies of the preservation
of museum insect DNA (Andersen & Mills 2012; Strange et al. 2009; Ugelvig et al.
2011; van Houdt ef al. 2010; Watts et al. 2007) and demonstrate the immense
potential for museum beetle specimens in future genetic investigation. However,
studies that require a NGS-based approach would benefit from having a suitable
reference genome, as this would increase the breadth of identifiable sequences in these
large datasets. International initiatives, such as the 5,000 insect genomes project (i5k;

http://www.arthropodgenomes.org/wiki/i5SK), are anticipated to provide such

reference genomes over the next five years.

8.1.2. Potential of DNA from Ancient Permafrost-preserved Beetles

The first assessment of the potential of ancient (a) DNA from permafrost-preserved
beetles was performed on two study species: A. alpina and P. brevicornis. Using a
Sanger sequencing based approach, aDNA could be recovered from ~45% of A.
alpina specimens, but could not be recovered from any specimens of P. brevicornis
(table 3.1). This suggests that the successful recovery of aDNA may be dependent on
the species under study. However, additional species would need to be investigated
for verification of this inference. Around half of the A. alpina specimens that yielded
aDNA had a high amplification success, whereby the majority of targeted fragments
could be retrieved (fig. 3.2). This success was not related to specimen age or local
preservation conditions, as measured by locality (figs. 3.2, 3.4). Using a NGS-based
approach, two ancient A. alpina specimens were shown to have up to an order of
magnitude less endogenous DNA than two museum specimens (table 4.2). NuDNA
had a shorter mean fragment length than mtDNA, based on fragment length
distributions (fig. 4.2), which was consistent with data from museum specimens.
These data suggest that the preferential preservation of mtDNA may be a more
general feature of degraded DNA (Allentoft ef al. 2012; Schwarz et al. 2009). The
base misincorporation rate was greater in ancient specimen DNA (~5 to 10%; fig. 4.3)
than in DNA from museum specimens, although misincorporations were spread
throughout the read length, in agreement with the museum DNA data, but contrary to
previous studies of degraded DNA [e.g. Briggs et al. (2007); Orlando et al. (2011);
Rasmussen et al. (2011)]. Less than 0.5% of DNA in ancient permafrost-preserved

specimens was considered to be endogenous (fig. 5.1). Instead, nearly all of the DNA
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present in these specimens was likely to have derived from bacteria of the
preservational environment. This suggests that surface contamination may be a
significant source of DNA extracted from these remains and that a shotgun-based
approach may not be the optimal method for retrieving endogenous aDNA from these

remains.

There are two methods that could be considered as ways to increase the amount of
endogenous DNA in future NGS-based investigations of ancient beetles: specimen
decontamination and endogenous DNA enrichment. The surface of specimens could
be decontaminated, through sterilisation with bleach, prior to DNA extraction
(Campos & Gilbert 2012). This approach would only be useful if the main source of
aDNA were within the sclerite, with the aDNA therefore being protected by the
chitinous cuticle. However, this situation is considered unlikely because the insect
cuticle is acellular, being formed by secretions from epidermal cells (Gullan &
Cranston 2010; Moussian 2010; Vincent & Wegst 2004). It is plausible that small
amounts of cellular material, including DNA, may become incorporated during cuticle
formation, but whether this would preserve enough DNA to be detectable in ancient
remains seems doubtful. A more likely source of the aDNA may be the underside of
the sclerite, to which desiccated epidermal cells or haemolymph may be attached. If
the external surface is the source of aDNA, then sterilising the specimen with bleach
would be likely to remove both endogenous and contaminant DNA. Investigation into
the source of endogenous DNA in ancient permafrost-preserved specimens would

therefore be required for the optimisation of DNA extraction procedures.

Alternatively, it may be possible to enrich the DNA extract for endogenous DNA
prior to NGS. Such an approach, using target-capture based or other enrichment
methods, has been applied to DNA extracted from ancient mammals and plants that
had a small proportion of endogenous aDNA (Avila-Arcos et al. 2011; Briggs et al.
2009; Burbano et al. 2010; Stiller et al. 2009). Capture-based methods have varied in
their success, with some enriching aDNA by four to five orders of magnitude (Briggs
et al.2009; Burbano et al. 2010) and others enriching by only 4 to 29-fold (Avila-
Arcos et al. 2011). The discrepancy between these studies may be due to experimental

differences in the number of capture and PCR reactions performed (Avila-Arcos et al.
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2011). A caveat to this technique is that baseline knowledge of the genetic regions to
be enriched may be required for either the target species or a closely related taxon.
However, new systems have recently been developed that reduce this limitation by
allowing ‘cross-species’ capture and enrichment (Mason ef al. 2011). Therefore, there

may be promise in applying such an approach to beetle aDNA.

Ancient DNA could only be recovered routinely from a minority of specimens using
Sanger sequencing, suggesting that DNA preservation was poor in most specimens.
NGS revealed that ancient specimens have a much lower amount of endogenous DNA
compared to museum specimens. This result may be due to an overwhelming amount
of bacterial DNA outcompeting endogenous DNA, and could be a consequence of the
shotgun-based approach used in this study. However, if capture-based enrichment
methods can be successfully applied to endogenous aDNA from ancient beetle

specimens, then beetle aDNA may become viable for large-scale investigation.

8.1.3. Postglacial Colonisation Mode of Canada

Regional analyses, based on mtDNA haplotype differentiation between geographically
and temporally defined populations, were employed to test the Schwert-Ashworth
(1988) model (fig. 1.3) of the postglacial colonisation mode of Canada by A. alpina
(chapter six) and P. brevicornis (chapter seven). The model proposed that Canada,
both west and east of Hudson Bay, was primarily colonised from the Beringian
refugium. Based on the evidence found here (summarised in fig. 8.1), the region west
of Hudson Bay seems to have been colonised from both Beringia (primarily, in the
case of A. alpina) and the lower 48 states of the USA, which is broadly in line with
the Schwert-Ashworth (1988) model, but suggests that northward colonisation was
more important than the model implied. However, the evidence suggests that Hudson
Bay was a barrier to eastward dispersal from Beringia in both of the study species,
with individuals found east of Hudson Bay colonising from the lower 48. This
suggests that Hudson Bay was a stronger barrier to dispersal than suggested by the
Schwert-Ashworth (1988) model, and may have implications for future migration
patterns of the North American beetle fauna in response to predicted future
climatically driven changes. A. alpina and P. brevicornis differ in their ecologies - as

A. alpina is adapted to drier environments than P. brevicornis (Elias & Crocker 2008;
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Lindroth 1968) - but exhibit a broadly similar mode of Canadian postglacial
colonisation (fig. 8.1). This may imply that the response of these two species was

broadly representative of the arctic ground beetle fauna.

Figure 8.1 The modified Schwert-Ashworth (1988) model of the postglacial colonisation mode of
Canada by the arctic beetle fauna, as exemplified by Amara alpina and Pterostichus brevicornis.
Western refugium: Beringia, southern refugium: lower 48 of the USA, dispersal barrier: Hudson Bay.
White: extent of the Laurentide and Cordilleran ice sheets at 18ka, just after maximal extent. Light
grey: water bodies. Dark grey: exposed land. Map modified from Dyke (2004). Colonisation routes are

based on data from this thesis (chapters six, seven).

8.1.4. Potential for Demographic Inference from Beetle mtDNA

Sophisticated coalescence-based phylogeographic and demographic analyses [e.g.
(Anderson et al. 2005; Drummond & Rambaut 2007; Lemey et al. 2010)] have been
used to infer the effects of past processes (such as climatically driven change) on
components of the ice age fauna, using both modern and ancient mtDNA (Campos et
al.2010a; Campos et al. 2010b; Marske et al. 2011; Shapiro et al. 2004).
Furthermore, these analyses have been used to estimate divergence dates between

clades (Barnes et al. 2007). However, these analyses were not performed here. The
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molecular clock of both species could not be calibrated, as no suitable comparable rate
estimate could be identified. Additionally, the ages of ancient A. alpina individuals
were not well constrained and so direct internal calibration of the molecular clock,

using ancient sequences (Drummond et al. 2003), could not be performed.

The beetles have additional potential complicating factors for mtDNA-based
phylogeographic and demographic analyses, some of which were encountered in this
thesis. Mitochondrial heteroplasmy has been identified in a variety of insect taxa (Frey
& Frey 2004; Magnacca & Brown 2010; Sword et al. 2007) and may violate the
assumption of mtDNA sequence being of clonal, maternal descent, especially if the
source is repeated paternal leakage (Galtier et al. 2009). Moreover, maternally
inherited reproductive endosymbionts, such as Wolbachia, can cause problems for
reconstructing demography, due to linkage disequilibrium with mtDNA (Hurst &
Jiggins 2005). Wolbachia infections can induce selective sweeps, which indirectly
select for mtDNA that hitchhikes with the endosymbiont (Hurst & Jiggins 2005). If a
selective sweep occurred, the assumption of mtDNA being evolutionary neutral would
be violated (Galtier et al. 2009), and the sweep could potentially be misinterpreted as
another demographic process, such as a population bottleneck (Hurst & Jiggins 2005).
For future studies wanting to employ phylogeographic and demographic analyses
from modern and ancient beetles, these issues would need to be addressed through the

examination of markers from mtDNA, nuDNA, and any endosymbionts present.

8.1.5. Status of Morphologically Cryptic Groups

Both study species (A. alpina, P. brevicornis) exhibited at least one additional
morphologically cryptic group, based primarily on mtDNA (table 8.1). As discussed
in chapters six and seven, it is considered unlikely that these groups are an artefact of
specimen misidentification or introgression. Aal and Pb1 constitute the majority of
specimens from across the geographic range examined, as well as the majority of
mitochondrial haplotypes. Aal and Pb1 are therefore considered to be archetypal of

their respective species.
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Cryptic MtDNA NuDNA Wolbachia  Chapter

Species group haplogroup  haplotype strain reference
A. alpina Aal 1 1 wRi (A) 5,6
A. alpina Aa2 2 1 wRi (A) 5,6
A. alpina Aa3 3 2 wPip (B) 5,6
P. brevicornis Pbl 1 1 N/A 7
P. brevicornis Pb2 2 2 N/A 7

Table 8.1 Morphologically cryptic groups of Amara alpina and Pterostichus brevicornis, based on
mitochondrial DNA haplogroup designations in this thesis. Supergroup designations of Wolbachia
strains are indicated in parentheses and follow Klasson and colleagues (2009). Data are from chapters

five, six, and seven.

Compared to Aal, Aa2 constitutes a divergent mtDNA haplogroup, but has a similar,
if not identical, strain of Wolbachia infection. Additionally, Aal and Aa2 did not
differ in the short fragment of nuDNA analysed (183bp; table 8.1). Aa2 may have
arisen through a recent population bottleneck or Wolbachia-induced selective sweep
(Hurst & Jiggins 2005), which could have removed mtDNA haplotypes that were
intermediate between Aal and Aa2. Detailed characterisation of the Wolbachia strain
in multiple individuals of both Aal and Aa2, as well as further analysis of nuDNA

markers, would be required to tease apart these hypotheses.

Aa3 constitutes a divergent mtDNA haplogroup from the remainder of A. alpina (Aal,
Aa?) and differs in the short fragment of nuDNA analysed (table 8.1). In addition, Aa3
is infected with a Wolbachia strain (wPip) that belongs to a different Wolbachia
supergroup than the strain (wRi) infecting individuals of Aal and Aa2. A similar
situation, in which two Wolbachia supergroups were found to infect different mtDNA
clades, has been found in the fire ant Solenopsis invicta (Shoemaker et al. 2003).
These researchers suggested that the divergent mtDNA clades might represent cryptic
species, due to assumed incompatibility preventing gene flow between individuals
infected with different Wolbachia supergroups (Shoemaker et al. 2003).
Crossbreeding experiments between individuals of Aa3 and those of Aal and Aa2, as
well as further analysis of nuDNA markers, would be required to confirm the

reproductive isolation, and therefore cryptic species status, of Aa3.
As discussed in chapter seven, Pb2 differed substantially from Pb1 at mtDNA and

nuDNA markers. Based on the nuDNA data, Pb2 may be a cryptic species that is
morphologically indistinguishable from Pb1, but phylogenetically closer to other
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species of P. (Cryobius). Additional nuDNA data, as well as assessment of other P.

(Cryobius) species would be required to confirm these inferences.

If the prevalence of morphologically cryptic groups in the arctic beetle fauna were as
common as suggested by the two taxa examined in this thesis, then large-scale

phylogenetic and taxonomic investigation may be required.

8.1.6. Suggestions for Future Study

Assessment of the source of aDNA in permafrost-preserved beetle specimens.
Exploration of the potential of using a capture-based enrichment approach to increase
the yield of endogenous aDNA from beetle specimens.

Examination of ancient beetle specimen DNA from other species and regions would
provide further insight into the findings of this study.

Investigation into the origins of the morphologically cryptic groups within A. alpina
and P. brevicornis, through further analysis of mtDNA, nuDNA, Wolbachia markers,

and closely related taxa.

8.2. Conclusions

This thesis has provided the most comprehensive characterisation of DNA extracted
from dry-stored museum and ancient permafrost-preserved beetle specimens.
Previously, research on DNA from permafrost-preserved beetles had been limited to
proof-of-concept. It was shown that museum specimens have massive potential for
future genetic research, although further methodological development may be
required before the full potential of DNA from ancient specimens can be realised.
The DNA data from museum and ancient specimens were used to assess
biogeographic and extinction hypotheses. Biogeographic inferences were broadly in
line with existing hypotheses, and the data suggested that there had not been major
extinction of populations during the last ice age. However, consideration of
endosymbionts, and other insect-related concerns, would be required before further

detailed analyses are conducted. This thesis demonstrates the great potential for
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museum and ancient DNA from beetle specimens, although, in the words of Reiss

(2006), ‘proceed with caution’.
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Appendices

Appendix 1. Specimen Data

Data on all of the Amara and Pterostichus (Cryobius) specimens used in this thesis. CNC: Canadian
National Collection of Insects, Arachnids, and Nematodes. NRM: Swedish Museum of Natural History.
RHUL: Royal Holloway University of London. NRM museum references numbers are preceded by an
asterisk, which is an abbreviation of ‘NHRS-JLKB000020’. Mt-Ht: mitochondrial DNA haplotype
(from chapters six, seven). Specimens that yielded mtDNA, but in insufficient quantities as to be used
in chapters six and seven, are indicated by an asterisk. Nu-Ht: nuclear DNA haplotype (from chapters
six, seven). Specimens of A. alpina and P. brevicornis that yielded nuDNA, but were not sequenced,
are indicated by an asterisk. X: Extract exhausted prior to testing. LM specimens (n=42) were extracted
by Mack (2008). CFx specimens (n=2) were extracted by Thomsen et al. (2009). E: East, W: West. Lat:
latitude, Long: longitude. Lab: Laboratory in which specimens were analysed. Next Generation
Sequencing (NGS) specimens were used in chapters four and five. Ancient localities are the sediment

identifiers from table 2.1.
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Appendix 2. List of Primers and Primer Sets

2a. Primers

Primers used in this thesis. All primers are novel, except that highlighted in bold, which was from

Gilbert et al. (2007).

Primer Sequence (5’ to 3°) Marker  Species

A_COI_0_F CCTGAAGTTTATATTTTAATTTTA COI A. alpina

A_COI_0_R CATCTATACCTACAGTAAATATATGA COI A. alpina

A_COI_1_F GCCATTGGATTATTAGGATTTG COI A. alpina

A_COI_1_R TTTTAATTCCTGTAGGGACAGC COI A. alpina

A_COI_3_F CGAGCTTATTTTACTTCAGC COI A. alpina

A_COI_3b_R CCTGTTAATCCTCCRACT COI A. alpina

A_COI_4_F CTGTCCCTACAGGAATTAAAAT COI A. alpina

A_COI_4b_F TGCTGTACCTACAGGAATTAA COI A. alpina

A_COI_4b_R AATATCAAGGGATGAATTAGC COI A. alpina

A_COI_5b_F TTCATTACTTTGAGCTTTAGG COI A. alpina

A_COI_5_R AATCATTGAATAAATCCTGC COI A. alpina

A_COI_6_F TATGTTGTTGCTCATTTTCATTATG COI A. alpina

A_COI_6_R GGGAAAAAAGTTAAATTTACTCCAA COI A. alpina

A_COI_7_F GCAGGATTTATTCAATGATT COI A. alpina

A_COI_7_R ATCTGAATATCGTCGAGGTA COI A. alpina

A_COI_8_F TTGGAGTAAATTTAACTTTTTTCC COI A. alpina

A_COI_8_R AAAATTACTAGACGTTGAGAAATAAA COI A. alpina

A_COI_9b_F GTTCAACTATTTCTTTTATTGG COI A. alpina

A_COI_9b_F GGTAATTCAGAGTATCTATGTTC COI A. alpina

P_COI_1_F ATAATTTATGCTATATTAGCTATTG COI P.(Cryobius) sp.
P_COI_1_R CATGAAAAAATTTTAATTCC COI P.(Cryobius) sp.
P_COI_2_F TCATATATTTACAGTTGGAATAGA COI P.(Cryobius) sp.
P_COI_2_R TAAATAAAAAAACAAATCCTAAAG COI P.(Cryobius) sp.
P_COI_3_F GAATTAAAATTTTTTCATGATTA COI P.(Cryobius) sp.
P_COI_3b_R ACATAATAAGTATCATGAAGAATAAT COI P.(Cryobius) sp.
P_COI_3c_F TTAGCAACTCTTCATGGTG COI P.(Cryobius) sp.
P_COI_3c_R ATACATAATGAAAATGAGCAAC COI P.(Cryobius) sp.
P_COI_4_F TACAGTAGGAGGATTAACTGGAGTA COI P.(Cryobius) sp.

P_COI_4 R TGAATAAAGGAAATCATTGAATAAA COI P.(Cryobius) sp.
P_COII_0_F TCGATATTTATTAGAAGGTCAAA Coll P.(Cryobius) sp.
P_COII_0_R TCATAACTTCAATATCATTGATG Coll P.(Cryobius) sp.
P_COII_1_F GTAAGAAATCCTTCAGTTACTTTAA Coll P.(Cryobius) sp.
P_COII_1_R AAGGTAATACAATTCGATTATCTAC Coll P.(Cryobius) sp.
P_COII_2_F TGATTCATATATAATTCCAACAAATG Coll P.(Cryobius) sp.
P_COII_2_R ATTTTTACACCTAAGGCAGGA Coll P.(Cryobius) sp.
P_COII_3_F TTACCTTTCAATACACAAATTCG Coll P.(Cryobius) sp.
P_COII_3_R AACATTGTCCATAAAATAATCCA Coll P.(Cryobius) sp.

28S_1d_F GACCAAGGAGTCTAGCAT 28S A. alpina / P. (Cryobius) sp.
D3R GCATAGTTCACCATCTTTC 28S A. alpina | P. (Cryobius) sp.
A_28S_1_F GCAAGTCATTGGGACTATT 28S A. alpina

A_28S_1_R ATGCGAGCCAACATAAA 28S A. alpina

A_28S_2 F GTAAATGTTTGTTGAATTTTCGT 28S A. alpina

A_28S_2 R GCGTGTACGCTCTTGGT 28S A. alpina

P_28S_1_F AGTCATTGGGACTCTGTTAAAAC 28S P.(Cryobius) sp.
P_28S_1_R ATGCGGGGTGACATAAAT 28S P.(Cryobius) sp.

P_28S_2 F TAACCGGATCACATTGAAT 28S P.(Cryobius) sp.

P_28S_2 R CGTGTACGCTCTTGGTG 28S P.(Cryobius) sp.

ITS1_2_F TACTAGTTCAACGGTTGGAAAT ITS1 A. alpina / P. (Cryobius) sp.
ITS1_2_R CACATTATCTGGAGTTTCAGAATAC ITS1 A. alpina / P. (Cryobius) sp.
ITS1_3_F CAAAAAGCAAACGAAAGTCTACAAG ITS1 A. alpina / P. (Cryobius) sp.
ITS1_3_R TACTCGGACGAGCCAGAATC ITS1 A. alpina /| P. (Cryobius) sp.
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Primer Sequence (5’ to 3°) Marker  Species

A_ITS1_1_F GCATCTGCAGCAGGTATAT ITS1 A. alpina
A_ITS1_1 R GTTTCAGAATACGCGAGG ITS1 A. alpina
A_ITS1 2 F AGTCTACAAGAATTTGAAGCTG ITS1 A. alpina
A_ITS1 2 R GTTTCTTTATCTCGGAGGC ITS1 A. alpina
P_ITS1_1 F TTATGGACACGCACATCT ITS1 P.(Cryobius) sp.
P_ITS1 1 R GAATATGCTAGGCGAACTAAA ITS1 P.(Cryobius) sp.
P_ITS1 2 F CTGAAAGTCTGCAAGAATTTG ITS1 P.(Cryobius) sp.
P_ITS1 2 R TTTATCTCGGAGACCATCAA ITS1 P.(Cryobius) sp.
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2b. Primer Sets

Primer sets used in this thesis. Forward and reverse primers are listed in appendix 2a. T,: Annealing

temperature. Product size does not include primer sequence length.

Set T, Product

Ne Forward Reverse ©) size (bps) Species

1 A_COI_0_F A_COI_0_R 55 125 A. alpina

2 A_COI_0_F A_COI_3b_R 52 302 A. alpina

3 A_COI_1_F A_COI_1_R 54 80 A. alpina

4 A_COI_1_F A_COI_6_R 55 399 A. alpina

5 A_COI_3_F A_COI_3b_R 58 123 A. alpina

6 A_COI_3_F A_COI_5_R 54 247 A. alpina

7 A_COI_3_F A_COI_7_R 50 383 A. alpina

8 A_COI_4b_F A_COI_4b_R 54 118 A. alpina

9 A_COI_4_F A_COI_8_R 55 466 A. alpina
10 A_COI_5b_F A_COI_5_R 55 142 A. alpina
11 A_COI_5b_F A_COI_7_R 50 278 A. alpina
12 A_COI_6_F A_COI_6_R 55 117 A. alpina
13 A_COI_7_F A_COI_7_R 54 116 A. alpina
14 A_COI_7_F A_COI_9b_R 56 313 A. alpina
15 A_COI_8_F A_COI_8_R 51 146 A. alpina
16 A_COI_9b_F A_COI_9% _R 56 112 A. alpina
17 P_COI_1_F P COL_1_R 54 107 P.(Cryobius) sp.
18 P_COI_1_F P _COIL_3_R 48 251 P.(Cryobius) sp.
19 P_COI_1_F P_COI_3b_R 49 251 P.(Cryobius) sp.
20 P_COI_2_F P_COI_2_R 55 128 P.(Cryobius) sp.
21 P_COI_2_F P _COL_3_R 49 199 P.(Cryobius) sp.
22 P_COI_2_F P_COI_3b_R 54 199 P.(Cryobius) sp.
23 P_COI_3_F P _COIL_3_R 48 120 P.(Cryobius) sp.
24 P_COI_3_F P_COI_3b_R 52 120 P.(Cryobius) sp.
25 P_COI_3c_F P_COI_3¢c_R 58 131 P.(Cryobius) sp.
26 P_COI_4 F P COIL 4 R 55 108 P.(Cryobius) sp.
27 P_COII_O_F P_COII_0_R 58 125 P.(Cryobius) sp.
28 P_COII_O_F P_COII_1_R 58 233 P.(Cryobius) sp.
29 P_COII_1_F P COIL_1_R 58 119 P.(Cryobius) sp.
30 P_COII_1_F P_COII_2_R 56 202 P.(Cryobius) sp.
31 P_COII_1_F P_COII_3_R 56 274 P.(Cryobius) sp.
32 P_COII_2_F P_COII_2_R 52 115 P. (Cryobius) sp.
33 P_COII_2_F P_COII_3_R 48 187 P.(Cryobius) sp.
34 P_COII_3_F P_COII_3_R 55 114 P.(Cryobius) sp.
35 28S_1d_F D3R 60 183 A. alpina
36 28S_1d_F D3R 60 189 P.(Cryobius) sp.
37 A_28S_1_F A_28S_1_R 60 81 A. alpina
38 A_28S_2 F A_28S_2 R 60 87 A. alpina
39 P_28S_1_F P_28S_1_R 60 79 P.(Cryobius) sp.
40 P_28S_2_F P_28S_2 R 60 75 P.(Cryobius) sp.
41 P_28S_1_F P_28S_2 R 60 133 P.(Cryobius) sp.
42 ITS1_2_F ITS1_2_ R 60 120 A. alpina
43 ITS1_2_F ITS1_2_ R 48 120 P.(Cryobius) sp.
44 ITS1_3_F ITS1_3_R 60 127 A. alpina
45 ITS1_3_F ITS1_3_R 49 127 P.(Cryobius) sp.
46 A_ITS1_1_F A_ITSI_1_R 60 80 A. alpina
47 A_ITS1_2_F A_ITS1_2_R 55 84 A. alpina
48 A_ITS1_1_F A_ITS1_2_R 55 145 A. alpina
49 P_ITS1_1_F P_ITSI_1_R 59 84 P.(Cryobius) sp.
50 P_ITS1_2_F P_ITS1_2 R 60 84 P. (Cryobius) sp.
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Appendix 3. Approximate Permutation Test Script

Example of the java script used to calculate the probabilities of the differences observed between
misincorporation rates in chapter three. The script was implemented in Statistics101

(http://www .statistics 101 .net/).

DATA (012 345 6) combineddata
REPEAT 100000
SHUFFLE combineddata combineddatashuffled
TAKE combineddatashuffled 1,3 samplel
MEAN samplel samplel mean
TAKE combineddatashuffled 4,7 sample2
MEAN sample2 sample2mean
SUBTRACT sample2mean samplemean meandifference
ABS meandifference absmeandiff
SCORE absmeandiff meandifferences
END
COUNT meandifferences >= 4 greaterdifferences
LET probability = greaterdifferences / 100000
PRINT probability

Appendix 4. Parameter Optimisation for Bowtie2

Optimisation of Bowtie2 parameters for alignment of reads to the short, multi-copy reference sequences
of chapter four. Optimal parameters were those that mapped the maximum number of reads in the
minimum amount of CPU time, and are shown in bold. Parameters were tested against the youngest and
oldest samples in the dataset [Modern (Mo) 1, Ancient (An) 2]. Optimal parameters were: -D 20 -R 3
-N'1-L 20-i8S,1,0.50.

Bowtie Mol An2

Parameters Mapped reads CPU Time Mapped reads CPU Time
-N1-L 10 16455 7236.79 311 2215.89
-N1-L 15 16506 1470.77 325 488.83
-N1-L20 16506 388.39 325 145.46
-N1-L 25 16493 357.71 325 137.48
-NO-L5 14713 6931.13 289 2271.03
-NO-L 10 16506 1505.7 325 36343
-NO-L 15 16478 249.65 325 99.11
-N0-L 20 16338 234.22 321 98.8
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Appendix 5. NuDNA Accession Numbers

Sa. Accession numbers for Amara nuDNA Alignment

Genbank accession numbers for the non-alpina Amara specimens that were used in the nuDNA
alignment of chapter six. Bold indicates representative sequence used in the alignment. Specimens are

listed in the same order as they appear in the alignment.

Species Genbank Reference

Amara (Curtonotus) sp. AF398694 Ober (2002)

Amara (Curtonotus) aulica  GU347386 Raupach et al. (2010)
Amara (Curtonotus) aulica GU347387 Raupach et al. (2010)
Amara chalcites AB243496 Sasakawa & Kubota (2007)
Amara aenea FJ173093 Ruiz et al. (2009)
Amara erratica GU347389 Raupach et al. (2010)
Amara erratica GU347388 Raupach et al. (2010)
Amara erratica GU347390 Raupach et al. (2010)
Amara erratica GU347391 Raupach et al. (2010)
Amara erratica GU347392 Raupach et al. (2010)
Amara anthobia GU347385 Raupach et al. (2010)
Amara anthobia GU347384 Raupach et al. (2010)
Amara similata GU347398 Raupach et al. (2010)
Amara similata GU347399 Raupach et al. (2010)
Amara similata GU347400 Raupach et al. (2010)
Amara glacialis N/A This thesis (LM15)
Amara quenseli GU347394 Raupach et al. (2010)
Amara quenseli GU347393 Raupach et al. (2010)
Amara quenseli GU347395 Raupach et al. (2010)
Amara quenseli GU347396 Raupach et al. (2010)
Amara quenseli GU347397 Raupach et al. (2010)

5b. Accession numbers for Pterostichus (Cryobius) nuDNA Alignment

Genbank accession numbers for the non-brevicornis Pterostichus (Cryobius) specimens that were used
in the nuDNA alignment of chapter seven. Bold indicates representative sequence used in the

alignment. Specimens are listed in the same order as they appear in the alignment.

Species Genbank Reference

P. riparius EU142444 Will & Gill (2008)

P. riparius EU142445 Will & Gill (2008)

P. pinguedineus Novel This thesis (LM13)

P. pinguedineus Novel This thesis (LM80)

P. kurosawai AB243485 Sasakawa & Kubota (2007)
P. ventricosus Novel This thesis (LM14)

P. nemoralis FJ173089 Ruiz et al. (2009)
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