
Theory and Implementation of
Coercive Subtyping

Tao Xue

Department of Computer Science
Royal Holloway, University of London

A Thesis Presented for the Degree of
Doctor of Philosophy

January 2013

DECLARATION OF AUTHORSHIP

I , Tao Xue, hereby declare that this thesis and the work presented in it is

entirely my own. Where I have consulted the work of others, this is always

clearly stated.

Signed:

Date:

ABSTRACT

Coercive subtyping is a useful and powerful framework of subtyping for type

theories. In this thesis, we point out the problem in the old formulation of

coercive subtyping in [Luo99], give a new and adequate formulation T [C],
the system that extends a type theory T with coercive subtyping based on a

set C of basic subtyping judgements, and show that coercive subtyping is a

conservative extension and, in a more general sense, a definitional extension.

We introduce an intermediate system, the star-calculus T [C]∗, in which

the positions that require coercion insertions are marked, and show that

T [C]∗ is a conservative extension of T and that T [C]∗ is equivalent to T [C].
Further more, in order to capture all the properties of the coercive subtyping

framework, we introduce another intermediate system T [C]0K which does

not contain the coercion application rules. We show that T [C]∗ is actually

a definitional extension of T [C]0K , which is a conservative extension of T .

This makes clear what we mean by coercive subtyping being a conservative

extension and amends a technical problem that has led to a gap in the earlier

conservativity proof.

Another part of the work in this thesis concerns the implementation of

coercive subtyping in the proof assistant Plastic. Coercive subtyping was

implemented in Plastic by Paul Callaghan [CL01]. We have done some im-

provement based on that work, fixed some problems of Plastic, and imple-

mented a new kind of data type called dot-types, which are special data types

useful in formal semantics to describe interesting linguistic phenomena such

as copredication, in Plastic.

ACKNOWLEDGEMENTS

First of all, I must thank my supervisor Professor Zhaohui Luo. He helped

me to put my hands on the type theory and spent a lot of time on guiding

me. He brought me a lot of ideas, taught me how to start my research and

made me love this subject. He also gave me a lot of support for my British

days.

Also, I would like to thank Dr. Robin Adams who always kindly offered

helps on my study and gave me lots of advices. And thanks to Professor

Sergei Soloviev in University of Toulouse, through his paper with Zhaohui

and also our discussion, I’ve got the idea for the main work of this thesis.

Thanks Herman Geuvers and David Aspinall for the useful discussion we

had.

Thanks to all the members of type theory group at Royal Holloway. They

helped me to make progress on my research. Thanks to all the staffs and

research students in Department of Computer Science of Royal Holloway.

They gave me a nice environment for my research.

I was financially supported by the Reid Scholarship of Royal Holloway,

University of London.

Finally, I want to appreciate my parents for their support all these years

and thank all my friends for their help through the days. All of you have

shown me how wonderful the life is.

COPYRIGHT

The copyright in text of this thesis rests with the author. Any copy of this

work, either fully or partly, should not be published without the permission

of the author.

CONTENTS

Declaration . 2

Abstract . 3

Acknowledgements . 4

Copyright . 5

1. Introduction . 10

1.1 Basic Concepts of Type Theory 10

1.2 Objects and Types . 11

1.3 Inductive Data Types . 12

1.4 Different Views of Type Theory 15

1.5 Logical Framework and UTT 15

1.6 Subtyping . 17

1.6.1 How to Introduce Subtypes 17

1.6.2 How to Use Subtypes 20

1.7 Type Theory and Linguistic Semantics 22

1.8 Implementation: Proof Assistants 23

1.9 Motivation and Contributions 24

Contents 7

1.10 Overview of the Thesis . 25

2. Logical Framework and UTT . 27

2.1 Logical Framework . 27

2.1.1 The Logical Framework 28

2.1.2 Specifying Type Theory in LF 30

2.2 The Formulation of UTT . 32

2.2.1 The Internal Logical Mechanism 32

2.2.2 Inductive Types . 34

2.2.3 Predicative Universes 36

3. Coercive Subtyping – the idea, original description and problems . . 38

3.1 The Idea of Coercive Subtyping 38

3.2 T [R] – the original description of coercive subtyping 39

3.3 Judgements . 42

3.3.1 Presupposed Judgements 42

3.3.2 Equality between Judgements 43

3.4 Conservative Extension . 45

3.4.1 Coherence . 46

3.4.2 A Problem of Original Formulation 47

3.4.3 An Intermediate System with ‘∗’ 50

3.5 Definitional Extension . 51

3.6 Coercive Subtyping and Subsumptive Subtyping 53

4. Coercive Subtyping and Proof . 57

Contents 8

4.1 Description of the Systems . 58

4.1.1 System T [C]0 . 58

4.1.2 System T [C]0K . 63

4.1.3 The Systems T [C] and T [C]∗ 63

4.2 Relationship between the Systems 65

4.3 Coercion Insertion Algorithms 68

4.3.1 Basic Ideas of the Coercion Insertion Algorithms 68

4.3.2 Transformations of Derivations: Exact Formulation . . 73

4.4 The Proof of The Theorems 76

4.4.1 Totality of The Transformations 76

4.4.2 Other Theorems . 93

5. Coercive Subtyping in Plastic . 96

5.1 Coercions in a Logical Framework 96

5.1.1 Argument Coercions 97

5.1.2 Type Coercions . 97

5.1.3 Function Coercions . 98

5.2 Proof Assistant Plastic . 99

5.2.1 Declaration and Definition 100

5.2.2 Product of Kinds . 100

5.2.3 Inductive Types . 101

5.3 Implementation of Coercions in Plastic 104

5.3.1 Different Ways of Using Coercive Subtyping in Plastic 104

5.3.2 Declaring Coercions . 107

Contents 9

5.3.3 Transitivity and Coherence 111

5.3.4 Problems and Improvement 112

6. Dot-types with Coercive Subtyping 117

6.1 Dot-types in Formal Semantics 118

6.2 Dot-types in Modern Type Theories 120

6.2.1 Dot-types and Coercive Subtyping 120

6.2.2 Dot-types in Type Theory: a Formal Formulation . . . 123

6.3 Implementation . 127

6.3.1 Dot-types in Plastic . 128

6.3.2 Examples of Dot-types in Plastic 132

7. Conclusion and Future Work . 138

7.1 Summary . 138

7.2 Discussion and Future Work 139

Bibliography . 142

Appendix 150

A. Algorithms . 151

1. INTRODUCTION

This chapter will introduce the background of type theory and the area of my

interest. It will explain the significance of the work and major contributions

as well. It also includes the structure of the thesis at the end of the chapter.

1.1 Basic Concepts of Type Theory

Type theory was originally introduced by logicians as a logical language for

researching on the foundation of mathematics. Since the development of

computer science, it has also become a powerful computational and logical

language which could help us understand and design computer languages.

Compared with elements and sets in set theory, the basic concepts of

type theory are objects and types. Informally, a type could be considered

as a collection of data, and an object is a piece of data that belongs to the

type. For example, the natural numbers constitute a type Nat, and 0 is an

object of the type Nat. Take another example, we could consider Human as

a type, and each person is just an object of the type. Generally, presenting a

relationship that object m is of type M , we write an assertion as following:

m : M

Mathematicians, logicians and computer scientists have introduce various

kinds of type theories, such as the Simply Typed λ-Calculus (λ→) [Chu40],

the Polymorphic λ-calculus F and the High-order Polymorphic λ-calculus

Fω [Gir72, Rey74] , the Calculus of Constructions (λC) [CH88], the Calcu-

1. Introduction 11

lus of Inductive Constructions(CIC) [PM93], the Martin-Löf’s Intuitionistic

Type Theory [ML75, ML84], the Extended Calculus of Constructions(ECC)

[Luo90] and the Unify Theory for Dependent Types(UTT) [Luo94].

Unlike other logical or mathematical languages, type theory is a language

where computation is taken as the basic notion. A type-theoretic language

with a rich type structure can provide nice abstraction mechanisms for mod-

ular development of programs, specifications and proofs. Also, type theory

has a simple operational semantics, it is a more manageable language since

its good proof-theoretic properties like decidability provide a good basis for

the computer implementation. It could offer us certain helps in simplicity

of computer languages as well. There are some other interesting use of type

theory as well, for example, as will be shown in this thesis, we are also trying

to use type theory for linguistic semantics.

1.2 Objects and Types

In type theory, the relationship between objects and types is a very interesting

issue. There were many studies on this ([Sco70, ML75, ML84, dB80]) and

showed some fantastic results which connected type theory with mathematics

or computer programming, such as: types could be considered as problems,

while objects as solutions; partial specification of a program could be thought

as a type, and an implementation as an object of the type. As described by

Martin-Löf in [ML84], some relations could be captured in figure 1.1:

A type a: A
A is a type a is an element of the type A

A is a proposition a is a proof (construction) of the proposition A
A is an intention a is a method of fulfilling the intention A

A is an expectation a is a method of realizing the expectation A
A is a problem a is a method of solving the problem A

A is a task a is a method of doing the task A

Fig. 1.1: object and type

The most important result among these, is a principle called propositions-

1. Introduction 12

as-types, also known as Curry-Howard correspondence (or isomorphism). It

is a brilliant idea which connects type theory with logical systems. Basically,

it says that a type could be considered as a logic proposition and an object

of this type could be considered as a proof of the proposition. This idea was

discovered by Curry[CF58] and Howard [How80].

Based on this principle, many type systems are connected with logical

systems. For example:

• Simply Typed λ-calculus corresponds to the intuitionistic propositional

logic.

• Girard’s system F corresponds to the second order propositional logic,

and system Fω corresponds to the higher-order propositional logic.

• Calculus of Constructions, λC corresponds to the higher-order predi-

cate logic.

• Unifying Theory of Dependent Types (UTT) contains an internal logic

SOL which is a second order logic. It becomes higher-order logic, if we

introduce Π-types.

For objects and types we can have several different studies on them.

Given an object m, and type M : we can check whether m is of type M

(type checking, e.g. [Car88]); we can find out the type of m; we can try to

find out if M is well typed and give an object of M (decidability). Typing

checking helps us in program verification and the problem of decidability in

type theory could help us in program designing and in logic reasoning.

1.3 Inductive Data Types

We can define types inductively with certain rules, these types are called in-

ductive data types . Inductive data types have been studied by Gentzen

[Gen35] and Prawitz [Pra73, Pra74] for traditional logical systems, later

1. Introduction 13

by Martin-Löf [ML84], Backhouse [Bac88], Dybjer [Dyb91], Coquand and

Mohring [CPM90], Luo [Luo94] in type theory.

For example, we can define a type Week as follows. It is a trivial inductive

data type consisting of finite many objects.

Week = Monday | Tuesday | Wednesday | Thursday

| Friday | Saturday | Sunday

Taking another example, we can define Nat to be a data type for all the

numbers inductively in the following way,

Nat = 0|succ(Nat)

Intuitively, 0 is an object of Nat, and if n is an object of Nat, then

succ(n) is an object of Nat. More precisely, the inference rules should be

Nat : Type

0 : Nat

n : Nat

succ(n) : Nat

We can define various of data types inductively in the similar way, like,

Σ-type, Π-Type, types Bool, List, V ector etc.

All these inductive data types consist of constructors. Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday and Sunday are called construc-

tors of Week. 0 : Nat and succ : Nat → Nat are called constructors of

Nat.

With the inductive data types, we have a special kind of objects, called

canonical objects. Informally, as the relation we describe in Figure 1.2, the

objects could be calculated into values with some reduction rules, like β-

reduction, and the canonical objects are the values of objects of the type

under computation. For example, for the type Week, Monday to Sunday

1. Introduction 14

a

objects

A

types

V

values

a : A

a B A v : A

Fig. 1.2: type, object and value

are all its canonical objects; for the type Nat, a canonical natural number is

either 0 or successor of a canonical natural number. Consider a more intuitive

example: if we define an operation of addition ‘+’ on natural number, using

notation 1 ≡ succ(0) and 2 ≡ succ(succ(0)), the natural number 1+1 is not

canonical, it could compute to 2 as its value, which is a canonical object. In

other words, a canonical object is an object that cannot be further computed

and has itself as value.

This view of canonical objects is the basis to consider inductive data types

in dependent type theories, each of which is equipped with some induction

principles. In order to prove a property for all objects of the inductive type,

one only has to prove it for all of its canonical objects. For example, in

order to prove a property for all objects of type Week, we only have to prove

it from Monday to Sunday; if we prove a property of 0 and all canonical

natural numbers inductively (if it holds for a canonical natural number m,

then it holds for succ(m)), we can prove that it holds all natural numbers

of type Nat.

Such type theories with canonical objects have the following property

called canonicity [AMS07]:

• Canonicity: Any closed object of an inductive type is definitionally

1. Introduction 15

equal to a canonical object of that type.

Although Curry-Howard’s isomorphism powerfully shows that proposi-

tions could be viewed as types, there’s a feeling that it is not natural to view

all the types to be propositions. For some of the types, e.g. Nat, though one

could say it to be just true or a provable proposition, this seems too brute

force and not reasonable enough. It would be more sensible to think data

types such as the type of natural numbers are not logical propositions.

1.4 Different Views of Type Theory

In the literature, there are two different views of type theory: type theory

with type assignment and type theory with canonical objects.

In the type theories with type assignment [Mil78], types are assigned to

already defined terms. The types are polymorphic, informally saying, objects

and types are not dependent on each other. Types could be used to assign

to various objects and it is possible for an object to take different types. For

example, λx.x : A→ A would hold for any type A.

In the type theories with canonical objects, types are considered consisting

of its all canonical objects. Like in Martin-Löf’s type theory or UTT, objects

and their types depend on each other and cannot be thought of to exist

independently. Like the type of natural number Nat, it consists of canonical

objects 0 and succ(n); numbers and Nat depend on each other, the numbers

exist only because they are objects of Nat.

1.5 Logical Framework and UTT

As described above, there are different kinds of type theory. So a question

comes: is there anyway that we can use a single meta-level framework to

represent all these different types theories? The answer is yes, and one solu-

tion is called logical framework. There’re several different versions of logical

1. Introduction 16

framework. The Edinburgh Logical Framework [HHP87] has been studied for

formalization of logical systems based on the judgement-as-types principle.

Martin-Löf’s logical framework [NPS90] has been proposed for Martin-Löf’s

intensional type theory. The logical framework introduced by Zhaohui Luo

in [Luo94] is a typed version of Martin-Löf’s logical framework.

One should notice that a logical framework is a meta-language used to

represent different type theories according to the users’ requirements. A user

needs to specify the type theory he needs in the form of the logical framework,

in order to represent his type theory.

The Unified Theory of Types (UTT) [Luo94] is one of the type theories

we represent in logical framework. UTT is an extension of Luo’s extended

calculus of constructions (ECC). It could be considered as a higher-order

λ-calculus extended with inductive definition and rewriting, and with a hi-

erarchy of type universes.

One advantage for us to use a meta-language to present the type theory,

rather than presenting it directly, is that it allows us to give a clearer distinc-

tion between the language of the type theory and the meta-level mechanisms

that are used to define the type theory, with the understanding that the

former is the language that is to be used and the latter is a language that

provides schematical mechanisms for language designers to specify languages

and meta-level definitional mechanisms.

In particular, this presentation allows one to understand the structure of

the conceptual universe of types in our type theory more clearly, and enables

us to elaborate our views on some of the related technical and philosophical

issues such as the notion of pure logical truth, hierarchical understanding

of the language of type theory, intensionality of computational equality, and

relationship between the logical universe and predicative universe.

1. Introduction 17

1.6 Subtyping

Comparing type theory with set theory which has the notion subset, we

would like to consider subtypes in type theory as well. Usually, we use 6

or < for the subtyping relation. We write A 6 B (or A < B) for type A

being a subtype of type B. There’re a lot of works on subtyping in different

ways based on different systems. For example, the system F6 [CG92], the

system λP6 [AC01], coercive subtyping [Luo97] ect. When we consider the

subtyping problem, we are facing two questions:

1. How to introduce a subtyping relation between supertypes and sub-

types?

2. How to use the subtyping relation?

1.6.1 How to Introduce Subtypes

To introduce subtype relations, one usually starts with an initial set of ax-

ioms of subtyping and considers general rules for subtyping and the type

constructors. The subtyping relation is usually reflexive and transitive

A : Type

A 6 A

A 6 B B 6 C

A 6 C

For the function types, subtyping is contravariant:

A1 6 A2 B2 6 B1

A2 → B2 6 A1 → B1

Besides initial axioms, there are other different ways of getting subtype

relation, some of which are discussed below.

1. Introduction 18

Subset Types

One attempt [NPS90] is to generate subtype like what we do for subset in set

theory: if A is a type, B(x) is a type under the assumption that x : A, then

{x : A|B(x)} will also be a type and it’s a subtype of type A. The formation

and introduction rules are:

(S1)
A : Type

[x : A]
B(x) : Type

{x : A|B(x)} : Type

(S2)
a : A b : B(a)

a : {x : A|B(x)}

This seems to be an natural idea and would be perfect if it works. But it is

unfortunately problematic. In the introduction rule (S2), we have b : B(a) in

the premises, but in the conclusion a : {x : A|B(x)}, we lose the information

of b. If we want to use this rule for constructive reasoning which goes from

bottom to up, we cannot decide what the b is from only a : {x : A|B(x)}.

Constructor Subtyping

Another way to introduce subtyping is called constructor subtyping for induc-

tive types[BF99, BvR00]. It specifies a subtype by declaring its constructor

to be a subset of the constructors of an existing supertype. More precisely,

the idea is that an inductive type A is viewed as a subtype of another type

B if B has more constructors than A. Let’s take a simple example with

the type Week. We could define another data type Weekend, with only

Saturday and Sunday:

Weekend = Saturday | Sunday

The type Week has constructors Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, and Sunday, and the type Weekend has constructors Satur-

1. Introduction 19

day and Sunday. It’s very clear by the definition that Weekend is a subtype

of Week.

We could consider another example with the type Nat. Based on the

definition of Nat, we could define another data type NonZero:

NonZero = succ(Nat)

Since Nat has constructors 0 and succ(Nat), and NonZero has only

constructor succ(Nat), NonZero is a subtype of Nat, which is also a very

reasonable relation.

Constructor subtyping could describe the subtypes relations in some data

types. But this would exclude some interesting applications of subtyping.

One might want to think of the type Even which is trivially known as a

subtype of Nat. We can hardly use the subset of the constructors of Nat

above to represent the type Even.

Projective Subtyping

Projective subtyping is based on ‘projections’, from a type of pairs (or a

record type) to a component type. For a product type A× B, we can think

of subtyping relation:

A×B 6 A or A×B 6 B.

For a Σ-type Σ(A,B), we can think of subtyping relation [LL05]:

Σ(A,B) 6 A

For a record type < R, l : A >, we can think of subtyping relation [BT98,

Luo09a]:

< R, l : A >6 R and < R, l : A >6< l : A > .

1. Introduction 20

We can consider a more concrete example, let P : (Nat)Prop be a predicate

over Nat. The Σ-type, Σ(Nat, P) is sometimes used to represent the subtype

of Nat of those natural numbers n such that P (n) holds. Now, it would be

natural to consider the following subtyping relation:

Σ(Nat, P) 6 Nat

Structural Subtyping for Inductive Types

Structural subtyping is a natural subtyping relation for an inductive type and

has been studied for arbitrary inductive types in [LL05, LA08]. The basic

idea is that the subtype relation should pass through some data structures.

Consider the example of lists. The structural subtyping relationship for lists

is that, if A is a subtype of B, then List(A) is a subtype of List(B). This

would be expressed by means of the following rule:

A 6 B

List(A) 6 List(B)

1.6.2 How to Use Subtypes

Subtyping with Subsumption Rule

One traditional and basic mechanism for subtyping in type theories is sub-

sumption. Intuitively, the basic idea of this mechanism says that, a type A

is the subtype of type B if all the objects of A are also objects of B. More

precisely, if A is subtype of B, and an object a is of type A, then a is of

type B as well. Formally, it should be written as the following rule, which is

called subsumption rule:
a : A A 6 B

a : B

It is a quite natural rule in type theories with type assignment. It is fairly

sensible for an object of the subtype to inherit the type of the supertype.

However, this rule would be problematic when we consider the type theories

1. Introduction 21

with canonic objects: it would destroy the canonicity of property, as we will

discuss in detail in chapter 3.

Coercive Subtyping

Coercive subtyping [Luo97, Luo99] is an adequate approach to introduce sub-

typing into the type theories with canonical objects such as Martin-löf’s type

theory [ML84, NPS90] and UTT [Luo94]. The basic idea is that subtyping

is an abbreviation mechanism: given two different types A and B, we can

make A into a subtype of B by declaring a function c from A to B to be a

coercion, meaning that any object a of type A is identified with the object

c(a) of type B in any context that requires an object of type B. We use

A <c B to notate that there’s a coercion c from A to B. We can also think it

in this way: when we want to apply a function to an object, if we find there’s

a gap between them, then, we use the coercion to fill the gap to complete

the application. Writing it as a rule, we should have:

f : B → C a : A A <c B

f(a) = f(c(a)) : C

Unlike subsumption subtyping, in coercive subtyping, object a does not

obtain any more types. Although f(a) is of type C, a itself is not of type

B: it is only used as an object of type B when the context is required. And

f(a) is just an abbreviation of and definitionally equal to f(c(a)) which is

already of type C.

Coercive subtyping is a quite powerful mechanism in the study of type

theory. Whether the type system extended with coercive subtyping is con-

sistent and conservative is an interesting question. Since we think coercive

subtyping is just an abbreviation mechanism, we believe it should not bring

any extra power to the original type system. We will investigate this problem

in this thesis.

1. Introduction 22

1.7 Type Theory and Linguistic Semantics

Type theory is not only useful in mathematics and computer language study,

it is also used in natural language study for linguistic semantics.

Montague grammar [Mon74] is an approach to natural language semantics

by Richard Montague. It is based on Church’s simple type theory [Chu40].

In Montague grammar, there is a universal type e of entities: a common

noun or a verb is interpreted as a function of type e→ t and an adjective as

a function of type (e→ t)→ (e→ t), where t is the type of truth values.

Type-theoretical semantics was studied by Ranta [Ran94] for developing

formal semantics based on Martin-Löf’s type theory. In type-theoretical

semantics, one of the most basic differences with Montague grammar is that,

common nouns are interpreted as types. For example, the interpretations of

man, human and book are types:

[[human]], [[book]] : Type

In a type-theoretical semantics, we use a modern type theory, which is

many-sorted in the sense that there are many types like [[human]] and [[book]]

consisting of objects standing for different sorts of entities, while in Montague

grammar, the simple type theory may be thought of as single sorted in the

sense that there is the type e of all entities.

Verbs and adjectives are interpreted as predicates in a type-theoretical

semantics. For example, we have:

[[heavy]] : [[book]]→ Prop

[[read]] : [[human]]→ [[book]]→ Prop

However, type-theoretical semantics brings a limitation of expressive power

as well. Compared with Montague grammar on functional subsets, the opera-

tions on types are fewer. Type theoretical semantics with coercive subtyping

[Luo10] provides a powerful way to extend type theories with more expressive

1. Introduction 23

powers for formal semantics.

1.8 Implementation: Proof Assistants

A proof assistant [Geu09] is a software to assist with the formal proofs in

a man-machine interactive way. One can define mathematical problems in

the provided formal language, choose the right strategy or algorithms in the

library to achieve the proof. Although it is not fully automatic, a proof

assistant can save a lot of job, and more importantly, it checks every small

detail of the proof hence guarantees that the proof is correct.

input // human guide

proof assistant
// result

There are various implementations of proof assistants, like Lego [LP92],

Coq [Coq10], Agda [Agd08], Matita [Mat08], Plastic [CL01]. They are based

on different type systems, Coq and Matita are based on the Calculus of

(Co)Inductive Constructions [PM93], Agda is on Martin-Löf’s intuitionistic

type theory [ML84]. Lego and Plastic are on Luo’s UTT [Luo94]. Plastic,

like many of the proof assistants, uses the Proof General [Pro12] which is a

general front-end for proof assistants based on the customizable text editor

Emacs.

Coercive subtyping has been implemented in some of the proof assistants.

Säıbi has introduced this into Coq [Säı97], Bailey has done this for Lego

[Bai99], Callaghan has implemented it in Plastic [CL01] , and Matita [Mat08]

has also implemented implicit coercions.

Säıbi introduced an inheritance mechanism and implemented coercions

in Coq. In his mechanism, he has the standard coercive subtyping: allow

to apply f : forall x : A,B to a′ : A′ when A′ is a subtype of A, written

as f(a). He also introduced two abstract classes: Funclass and Sortclass.

Funclass is a class of functions, whose objects are all terms with a function

type; it allows us to write f(x) when f is not a function but can be seen in a

1. Introduction 24

certain sense as a function such as bijection, functor, any structure morphism

etc. Sortclass is the class of sorts, whose objects are the terms whose type

is a sort(Prop,Set,Type), which allows to write x : A where A is not a type,

but can be seen in a certain sense as a type such as set, group, category

etc. There’re also special cases of coercions call Identity Coercion which are

used to go around the uniform inheritance condition. Coercions in Coq are

represented by a coercion graph with coercion path, which could guarantee

the satisfaction of transitivity and coherence.

Bailey has introduced coercions into Lego system. He has three different

kinds of coercion. Apart from the standard coercions, he introduced kind

coercion and Π-coercions. Kind coercion el coerces a non-type object into

a type; Π-coercions use coercion c to coerce an object a of type A into a

function c(a).

In Callaghan’s Plastic, the three different kinds of coercions above are

implemented, furthermore, it could support parameterized coercions, depen-

dent coercions and coercions rules, like

A <c B

List(A) <c List(B)

The implementation work in this thesis will be based on the proof assistant

Plastic.

1.9 Motivation and Contributions

The main work and contributions of the thesis are:

• We study an adequate formulation of coercive subtyping. In particu-

lar, we give a counter-example to show that the earlier formulation, in

which basic coercions may be generated by arbitrary basic subtyping

rules [Luo99], is inadequate in that there are ‘bad rules that can violate

the conservativity property and may even lead to logical inconsistency

of the extension. The new formulation solves the problem. It only con-

1. Introduction 25

siders basic coercions by means of sets of coercion judgements, which

not only can be shown to be a conservative extension but captures the

general formulation by means of coercion rules as well.

• As we said, coercive subtyping would naturally be considered a con-

servative extension. However, because of the special syntax in coercive

subtyping, to describe the notion of conservativity is not straightfor-

ward and, because of this, it has not been made clear in [SL02] and, in

fact, there was a gap of the conservativity proof presented in [SL02]. In

order to describe clearly the relationship between original type system

and its extension by coercive subtyping, we introduce an intermedi-

ate system called star-calculus, which marks the positions that require

coercion insertions with the ∗-symbol. After introducing these new sys-

tems, we find that the method in [SL02] could go through with some

modification. We inherit the main proof idea in [SL02], prove that

the star-calculus is equivalent to the coercive subtyping extension and

conservative over the original type system, and furthermore, it is a

definitional extension in a certain sense.

• We have conducted implementation work that improve the coercive

subtyping in proof assistant Plastic, modify the implementation code

and fix bugs in transitivity and coherence checking. Based on the im-

plementation of coercive subtyping, we have also implemented the dot-

types in Plastic, as studied in formal semantics of natural languages

that are used to describe interesting linguistic phenomena such as co-

predication.

Part of the work as summarized above has been described in the papers

[LSX13] and [XL12].

1.10 Overview of the Thesis

Chapter 2 presents the formal details of Luo’s UTT specified by a typed

version of Martin-Löf’s logical framework. UTT includes an internal logic,

1. Introduction 26

a collection of inductive data types generated by inductive schemata, and

an infinite number of predicative universes. We also show some data types

specified in LF which will be used in the rest of the thesis.

In Chapter 3, we discuss the basic idea of coercive subtyping and compare

it with another basic subtyping mechanism – subtyping with subsumption

rule. We give the original formulation of coercive subtyping introduced by

Luo in [Luo99], study the importance of coherence and conservativity, and

give a counter example to show the original formulation is problematic. We

analyze the reason for the problem and propose the solutions to solve the

problems.

We give a new formulation of coercive subtyping in Chapter 4, and intro-

duce the intermediate system with star-calculus. We prove the intermediate

system is equivalent to the coercive subtyping extension and conservative

over the original type theory. We also prove some other meta-properties.

In Chapter 5, we explain the implementation of coercive subtyping in

proof assistant Plastic with some examples, the existing problems and the

improvements we have done for coercions in Plastic.

Chapter 6 studies a special kind of types called dot-types, gives their

type-theoretical definition with inference rules and explain their uses in lin-

guistic semantics. We also show their implementation in Plastic together

with examples.

Finally, conclusions and future work are discussed in Chapter 7.

2. LOGICAL FRAMEWORK AND UTT

In this chapter, as a background of our main work, we give a formal de-

scription of Zhaohui Luo’s Logical Framework – LF, and Unifying Theory of

Types – UTT [Luo94]. UTT is an intensional type theory specified by LF,

a typed version of Martin-Löf’s logical framework. It includes an internal

logic, a class of inductive data types generated by inductive schemata, and

an infinite number of predicative universes. We will also show how to specify

some often used inductive data types in examples.

2.1 Logical Framework

Logical frameworks are introduced because we want a single framework as

meta-language to represent variant kinds of type theory. There’re several

different versions of logical framework. The Edinburgh Logical Framework

[HHP87] is based on the judgement-as-types principle and comprises a formal

system for a formal presentation of logical systems. Martin-Löf’s logical

framework [NPS90] was introduced for Martin-Löf’s intensional type theory.

The logical framework we use in this thesis, is a typed version of Martin-

Löf’s logical framework, which was introduced by Luo in [Luo94], in which

the functional abstractions of the form (x)k are replaced by typed [x : K]k .

We will simply call it LF in the rest of this thesis.

2. Logical Framework and UTT 28

2.1.1 The Logical Framework

LF is a type system with terms of the following forms:

Type, El(A), (x : K)K ′, [x : K]k′, f(k)

The kind Type denotes the conceptual universe of types; El(A) denotes the

kind of objects of type A; (x : K)K ′ denotes a dependent product; [x : K]k′

denotes an abstraction; and f(k) denotes an application. The free occur-

rences of the variable x in K ′ and k′ are bound by the binding operators

(x : K) and [x : K].

Since LF is used as a meta-language to specify type theories, the types in

LF are called kinds, and Type is a special kind in LF, in order to distinguish

them from the types in the specified type theories. There are five forms of

judgements in LF:

• Γ ` valid, which asserts that Γ is a valid context.

• Γ ` K kind, which asserts that K is a valid kind.

• Γ ` k : K, which asserts that k is an object of kind K.

• Γ ` k = k′ : K, which asserts that k and k′ are equal objects of kind

K.

• Γ ` K = K ′, which asserts that K and K ′ are two equal kinds.

Figure 2.1 shows the rules in LF, which contains the rules for context va-

lidity and assumptions, the general equalities rules, the type equalities rules,

the substitution rules, the rules for kind Type and the rules for dependent

product kinds.

Definition 2.1. (types, kinds, and small kinds) A is called a Γ-type if Γ `
A : Type and K is called a Γ-kind if Γ ` K kind. A Γ-kind is called small

if it is either of the form El(A) or of the form (x : K1)K2 for some small

Γ-kind K1 and small (Γ, x : K1)-kind K2

2. Logical Framework and UTT 29

Contexts and assumptions

(1.1)
<>` valid

(1.2)
Γ ` K kind x 6∈ FV (Γ)

Γ, x : K ` valid
(1.3)

Γ, x : K,Γ′ ` valid

Γ, x : K,Γ′ ` x : K

General equality rules

(2.1)
Γ ` K kind

Γ ` K = K
(2.2)

Γ ` K = K′

Γ ` K′ = K
(2.3)

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

(2.4)
Γ ` k : K

Γ ` k = k : K
(2.5)

Γ ` k = k′ : K

Γ ` k′ = k : K
(2.6)

Γ ` k = k′ : K Γ ` k′ = k′′ : K

Γ ` k = k′′ : K

Equality typing rules

(3.1)
Γ ` k : K Γ ` K = K′

Γ ` k : K′
(3.2)

Γ ` k = k′ : K Γ ` K = K′

Γ ` k = k′ : K′

Substitution rules

(4.1)
Γ, x : K,Γ′ ` valid Γ ` k : K

Γ, [k/x]Γ′ ` valid

(4.2)
Γ, x : K,Γ′ ` K′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ kind
(4.3)

Γ, x : K,Γ′ ` k′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K′

(4.4)
Γ, x : K,Γ′ ` K′ = K′′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k/x]K′′
(4.5)

Γ, x : K,Γ′ ` k′ = k′′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K′

(4.6)
Γ, x : K,Γ′ ` K′ kind Γ ` k = k′ : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k′/x]K′
(4.7)

Γ, x : K,Γ′ ` k′ : K′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K′

The kind Type

(5.1)
Γ ` valid

Γ ` Type kind
(5.2)

Γ ` A : Type

Γ ` El(A) kind
(5.3)

Γ ` A = B : Type

Γ ` El(A) = El(B)

Dependent product kinds

(6.1)
Γ ` K kind Γ, x : K ` K′ kind

Γ ` (x : K)K′ kind
(6.2)

Γ ` K1 = K2 Γ, x : K1 ` K′1 = K′2
Γ ` (x : K1)K′1 = (x : K2)K′2

(6.3)
Γ, x : K ` k : K′

Γ ` [x : K]k : (x : K)K′
(6.4)(ξ)

Γ ` K1 = K2 Γ, x : K1 ` k1 = k2 : K

Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

(6.5)
Γ ` f : (x : K)K′ Γ ` k : K

Γ ` f(k) : [k/x]K′
(6.6)

Γ ` f = f ′ : (x : K)K′ Γ ` k1 = k2 : K

Γ ` f(k1) = f ′(k2) : [k1/x]K′

(6.7)(β)
Γ, x : K ` k′ : K′ Γ ` k : K

Γ ` ([x : K]k′)(k) = [k/x]k′ : [k/x]K′
(6.8)(η)

Γ ` f : (x : K)K′ x 6∈ FV (f)

Γ ` [x : K]f(x) = f : (x : K)K′

Fig. 2.1: The inference rules of LF

2. Logical Framework and UTT 30

Notation 2.2. We shall use the following notations:

• We often write (K)K ′ instead of (x : K)K ′ if x does not occur free in

K.

• We write A for El(A) and (A)B for (El(A))El(B) when no confusion

may occur.

• Substitution

We write [N/x]M for the expression obtained from M by substituting N

for the free occurrences of variable x in M , defined as usual with possible

changes of bound variables to avoid variable capture. Informally, we

sometimes use M [x] to denote an expression M in which the variable x

may occur free in M and subsequently write M [N] for [N/x]M , when

no confusion may occur.

• Function composition

If F : (x : K1)K2 and G : (y : K2)K3, we define

G ◦ F ≡df [x : K1]G(F (x)) : (x : K1)[F (x)/y]K3

• We write Γ
d

`J , to denote that d is a derivation with final judgement

Γ ` J .

2.1.2 Specifying Type Theory in LF

LF can be used to specify type theories, such as Martin-Löf’s type theory

[NPS90] and UTT [Luo94]. In general, a specification of a type theory in

LF consists of a collection of new constants and new computation rules.

Formally, we declare a new constant k of kind K by writing

k : K

2. Logical Framework and UTT 31

This has the effect of introducing the following inference rule:

Γ ` valid

Γ ` k : K

We declare a new computation rule by writing

k = k′ : K where ki : Ki (i = 1, . . . , n)

This has the effect of introducing the following inference rule:

Γ ` ki : Ki (i = 1, . . . , n) Γ ` k : K Γ ` k′ : K
Γ ` k = k′ : K

Example 2.3. To introduce the type N of natural numbers, we declare the

following constants:

N : Type

0 : N

succ : (N)N

RecN : (C : (N)Type)(c : C(0))(f : (x : N)(C(x))C(succ(x)))(n : N)C(n)

and the computation rules:

RecN(C, c, f, 0) = c : C(0)

RecN(C, c, f, succ(n)) = f(n,RecN(C, c, f, n)) : C(succ(n))

where C : (N)Type, c : C(0), f : (x : N)(C(x))C(succ(x)), n : N .

So, the corresponding inference rules are:

(N1)
Γ ` valid

Γ ` N : Type

(N2)
Γ ` valid

Γ ` 0 : N

2. Logical Framework and UTT 32

(N3)
Γ ` valid

Γ ` succ : (N)N

(N4)
Γ ` valid

Γ ` RecN : (C : (N)Type)(c : C(0))(f : (x : N)(C(x))C(succ(x)))(n : N)C(n)

(N5)

Γ ` C : (N)Type Γ ` f : (x : N)(C(x))C(succ(x))
Γ ` c : C(0) Γ ` RecN(C, c, f, 0) : C(0)

Γ ` RecN(C, c, f, 0) = c : C(0)

(N6)

Γ ` C : (N)Type Γ ` c : C(0) Γ ` f : (x : N)(C(x))C(succ(x))
Γ ` n : N Γ ` succ : (N)N

Γ ` RecN(C, c, f, succ(n)) : C(succ(n)) Γ ` f(n,RecN(C, c, f, n)) : C(succ(n))

Γ ` RecN(C, c, f, succ(n)) = f(n,RecN(C, c, f, n)) : C(succ(n))

2.2 The Formulation of UTT

UTT is a type theory consisting of an impredicative universe of logical propo-

sitions, a large class of inductive data types, and an infinite number of pred-

icative universes.

2.2.1 The Internal Logical Mechanism

The internal logic of UTT contains a universe Prop of logical propositions and

their proof types. They are introduced by declaring the following constants.

Prop : Type

Prf : (Prop)Type

∀ : (A : Type)((A)Prop)Prop

Λ : (A : Type)(P : (A)Prop)((x : A)Prf(P (x)))Prf(∀(A,P))

E∀ : (A : Type)(P : (A)Prop)(R : (Prf(∀(A,P)))Prop)

((g : (x : A)Prf(P (x)))Prf(R(Λ(A,P, g))))

(z : Prf(∀(A,P)))Prf(R(z))

2. Logical Framework and UTT 33

and the computation rule:

E∀(A,P,R, f,Λ(A,P, g)) = f(g) : Prf(R(Λ(A,P, g)))

The logical universe Prop is impredicative since universal quantification

∀(A,P) can be formed for any type A and (meta-level) predicate P over A. In

particular, A can be Prop itself or more complex. It is worth remarking that

one cannot use ∀ to quantify over meta-level kinds such as Type, (A)Type,

or (A)Prop.

Notation 2.4. We will notate ∀(A,P) with ∀x : A.P (x) and Λ(A,P, f) with

Λx : A.f(x) when no confusion may occur.

A usual elimination (application) operator App of kind (A : Type)(P :

(A)Prop)(Prf(∀(A,P)))(a : A)Prf(P (a)) can be defined as:

App(A,P, F, a) =df E∀(A,P, [G : Prf(∀(A,P))]P (a), [g : (x : A)Prf(P (x))]g(a), F)

which satisfies the equality (β-rule for Λ and App)

App(A,P,Λ(A,P, g), a) = g(a) : Prf(P (a))

The usual logical operators could be defined as follows, where P1 and P2

are propositions, A is a type, P : (A)Prop.

P1 ⊃ P2 =df ∀x : P1.P2

true =df ∀X : Prop.(X ⊃ X)

false =df ∀X : Prop.X

P1 ∧ P2 =df ∀X : Prop.(P1 ⊃ P2 ⊃ X) ⊃ X

P1 ∨ P2 =df ∀X : Prop.(P1 ⊃ X) ⊃ (P2 ⊃ X) ⊃ X

¬P1 =df P1 ⊃ false

∃x : A.P (x) =df ∀X : Prop.(∀x : A.(P (x) ⊃ X) ⊃ X

2. Logical Framework and UTT 34

2.2.2 Inductive Types

Definition 2.5. (inductive schemata) Let Γ be a valid context and X be a

variable such that X 6∈ FV (Γ)

• Φ is a strictly positive operator in Γ w.r.t. X, notation PosΓ;X(Φ), if

Φ is of the form (x1 : K1)...(xn : Kn)X, where n > 0 and Ki is a small

(Γ, x1 : K1, ...xi−1 : Ki−1)-kind for i = 1,...,n

• Θ is an inductive schema in Γ w.r.t. X, if it is of one of the following

forms

1. Θ ≡ X,

2. Θ ≡ (x : K)Θ0, where K is a small Γ-kind and Θ0 is an inductive

schema in Γ, x : K w.r.t. X,

3. Θ ≡ (Φ)Θ0 where PosΓ;X(Φ) and Θ0 is an inductive schema in Γ

w.r.t. X.

An inductive schema w.r.t. X is of the form (x1 : M1)...(xm : Mm)X

where Mi is either a small kind such that X 6∈ FV (Mi) or a strictly positive

operator w.r.t. X. A strictly positive operator is an inductive schema where

M ′
is are all small kinds such that X 6∈ FV (Mi). Using inductive schemata

to introduce types into type theory, the smallness condition of the kinds

occurring in inductive schemata is important. For example, neither (Type)X

nor ((A)Type)X is an inductive schema since Type is not a small kind.

Notation 2.6. We shall write Φ[A] and Θ[A] for [A/X]Φ and [A/X]Θ, and

Θ̄ for a sequence of inductive schemata Θ1, ...Θn (n > 0).

Definition 2.7.

• Let Θ ≡ (x1 : M1)...(xm : Mm)X be an inductive schema and 〈Φi1 , ...,Φik〉
the subsequence of 〈M1,Mm〉, which consists of the strictly positive

2. Logical Framework and UTT 35

operators. Then for A : Type, C : (A)Type and z : Θ(A), we could

define kind Θ◦[A,C, z] as follows:

Θ◦[A,C, z] =df (x1 : M1[A])...(xm : Mm[A])

(Φ◦i1 [A,C, xi1])...(Φ◦ik [A,C, xik])C(z(x1, ..., xm))

In the special case when Θ is a strictly positive operator Φ (i.e.X 6∈
FV (M1, ...,Mm)), Θ◦[A,C, z] ≡ (x1 : M1)...(xm : Mm)C(z(x1, ..., xm)).

• Let Φ ≡ (x1 : M1)...(xm : Mm)X be a strictly positive operator wi.r.t.

X. Define Φ\[A,C, f, z] of kind Φ◦[A,C, z] for A : Type, C : (A)Type,

f : (x : A)C(x) and z : Φ[A], as follows:

Φ\[A,C, f, z] =df [x1 : K1]...[xm][Km]f(z(x1, ..., xm))

. When m = 0, we simply have Φ\[A,C, f, z] ≡ f(z).

With the above notations, we can now introduce the inductive data types

in UTT as follows. Let Γ be a valid context, and Θ̄ = 〈Θ1, ...,Θn〉 (n ∈ ω)

a sequence of inductive schemata in Γ. Then, Θ̄ generates a Γ-type which is

introduced by declaring the following constant expressions w.r.t. Θ̄:

M[Θ̄] : Type

ι[Θ̄] : Θi[M[Θ̄]]

E[Θ̄] : (C : (M[Θ̄])Type)

f1 : Θ◦1[M[Θ̄], C, ι1[Θ̄]])...(fn : Θ◦n[M[Θ̄], C, ιn[Θ̄]])

(z :M[Θ̄])C(z)

and asserting the following n computation rules for i = 1, ..., n:

E[Θ̄](C, f̄ , ι[Θ̄](x̄))

= fi(x̄,Φ
\
i1

[M[Θ̄], C,E[Θ̄](C, f̄), xi1], ...,Φ\
ik

[M[Θ̄], C,E[Θ̄](C, f̄), xik])

: C(ιi[Θ̄](x̄)

2. Logical Framework and UTT 36

where it is assumed that Φi be of form (x1 : M1)...(xmi
: Mmi

)X, 〈Φi1 , ...,Φik〉
be the subsequence of 〈M1, ...,Mmi

〉 that consists of the strictly positive op-

erators, and f̄ stand for f1, ..., fn and x̄ for x1, ..., xmi

Example 2.8. Inductive types can also be introduced directly in LF and this

could be equivalent as introduced by schemata as the following examples:

1. We can define natural numbers:

N =df M[X, (X)X]

The direct declarations of constants in LF can be formed in Example

2.3.

2. We can define the types of lists

List =df [A : Type]M[X, (A)(X)X]

and specify it in LF as:

List : (Type)Type

nil : (A : Type)List(A)

cons : (A : Type)(a : A)(l : List(A))List(A)

EList : (A : Type)(C : (List(A))Type)(c : C(nil(A)))

(f : (a : A)(l : List(A))(C(l))C(cons(A, a, l)))

(z : List(A))C(z)

EList(A,C, c, f, nil(A)) = c : C(nil(A))

EList(A,C, c, f, cons(A, a, l)) = f(a, l,EList(A,C, c, f, l)) : C(cons(A, a, l))

2.2.3 Predicative Universes

In UTT, besides the impredicative universe Prop, we also introduce the

predicative universes Typei (i ∈ ω). For any object a in Typei, Ti(a) is the

2. Logical Framework and UTT 37

type named by a:

Typei : Type, Ti : (Typei)Type

Each predicative universe Typei has a name typesi in Typei+1:

typei : Typei+1, Ti+1(typei) = Typei : Type

The impredicative universe of propositions has a name prop in Type0:

prop : Type0, T0(prop) = Prop : Type

Every type with a name Typei has a name in Typei+1:

ti+1 : (Typei)Typei+1, Ti+1(ti+1(a)) = Ti(a) : Type

The proof type of any proposition in Prop has a name in Type0:

t0 : (Prop)Type0, T0(t0(P)) = Prf(P) : Type

Finally, the inductive types generated by the inductive schemata have names

in the appropriate predicative universes, whose introduction conforms with

the predicativity of Typesi(see §9.2.3 of [Luo94] for formal details).

Remark 2.9. Martin-Löf ’s type theory [NPS90] is formally a subsystem of

UTT: the former can be obtained by removing the impredicative universe

Prop from UTT. So, although in this thesis we prove conservativity of coer-

cive subtyping for UTT, it also holds for Martin-Löf ’s type theory.

3. COERCIVE SUBTYPING – THE IDEA, ORIGINAL

DESCRIPTION AND PROBLEMS

Subtyping is an interesting issue when we consider type theory. There are

different ways of introducing subtypes into type theory. Coercive subtyp-

ing, which considers subtyping as an abbreviation mechanism, is a simple

but powerful approach. In this chapter, we will first talk about its basic

idea, then give a formal description of coercive subtyping and discuss two

important properties of the system with coercive subtyping: coherence and

conservativity. Further more, we will present a counter example to show that

the original formulation of coercive subtyping is problematic and propose the

solution for the problem. The detail of the solution will be given in the next

chapter.

3.1 The Idea of Coercive Subtyping

Coercive subtyping [Luo97, Luo99] is an approach to introducing subtyping

into type theory and it considers subtyping by means of abbreviations.

The basic idea is that, when we consider A as a subtype of B, we choose

a unique function c from A to B, and declare c to be a coercion, written

as A <c B. Intuitively, the idea means that, anywhere we need to write an

object of type B, we can write an object a of type A instead, and in this

context, the object a is to be seen as an abbreviation for the object c(a) : B.

More precisely, if f is a function from B to C, then f can be applied to

any object a of type A to form f(a) of type C, which is definitionally equal

to f(c(a)). We can consider f(a) to be an abbreviation for f(c(a)), with

3. Coercive Subtyping – the idea, original description and problems 39

coercion c being inserted to fill the gap between f and a. The idea above

could be captured by means of the following formal rules:

f : (x : B)C a : A A <c B

f(a) : [c(a)/x]C

f : (x : B)C a : A A <c B

f(a) = f(c(a)) : [c(a)/x]C

It is a simple but really powerful mechanism with many uses. One of the

interesting uses is in type-theoretical semantics in linguistic interpretation

[Luo10]. We use the following example to show how it works here.

Example 3.1. Suppose we want to interpret ‘John runs’, and we have in-

terpretations of both ‘John’ and ‘run’:

[[run]] : Human→ Prop

[[John]] : Man

We cannot apply [[run]] to [[John]] yet. If we define a coercion c from Man

to Human,

Man <c Human

which means Man is a subtype of Human, we could naturally consider

[[John]] as an object of Human via c, hence ‘John runs’ could be inter-

preted as:

[[runs]]([[John]]) = [[runs]](c([[John]])) : Prop

3.2 T [R] – the original description of coercive subtyping

In this section, we will give a formal definition of coercive subtyping intro-

duced in [Luo99].

Consider a type theory T (UTT or Martin-löf’s type theory) which is a

3. Coercive Subtyping – the idea, original description and problems 40

type theory specified in LF. Let R to be a set of basic subtyping rules, the

extension of T with coercive subtyping is defined by the following steps.

System T [R]0 T [R]0 is an extension of T with the subtyping judgement of

form Γ ` A <c B : Type by using a set R of basic subtyping rules whose

conclusions are subtyping judgements and the following rules in Figure 3.1:

Congruence

Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B

Γ ` A′ <c′ B′ : Type

Transitivity

Γ ` A <c B : Type Γ ` B <c′ C : Type

Γ ` A <c′◦c C : Type

Substitution

Γ, x : K,Γ′ ` A <c B : Type Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]A <[k/x]c [k/x]B : Type

Fig. 3.1: The general subtyping rules

Definition 3.2. (coherence condition)We say that the basic subtyping rules

are coherent if T[R]0 has the following coherence properties:

1. If Γ ` A <c B : Type, then Γ ` A : Type, Γ ` B : Type, and

Γ ` c : (A)B.

2. Γ 6` A <c A : Type for any Γ, A and c.

3. If Γ ` A <c B : Type and Γ ` A <c′ B : Type, then Γ ` c = c′ :

(A)B.

System T [R] Let R be a set of basic subtyping rules. System T[R] is the

system obtained from T[R]0 by adding the new subkinding judgement form

Γ ` K <c K
′ and the rules in Figure 3.2.

3. Coercive Subtyping – the idea, original description and problems 41

New rules for application

(CA1)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [c(k0)/x]K ′

(CA2)
Γ ` f = f ′ : (x : K)K ′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′

Coercive definition rule

(CD)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′

Basic subkinding rule
Γ ` A <c B : Type

Γ ` El(A) <c El(B)

Subkinding for dependent product kinds

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 = K ′2 Γ, x : K1 ` K2 : kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]f(c1(x′))

Γ ` K1 = K1 Γ, x′ : K ′1 ` K2 <c2 K
′
2 Γ, x : K1 ` K2 : kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(x′)

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 <c2 K
′
2 Γ, x : K1 ` K2 : kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(c1(x′))
Congruence for subkinding

Γ ` K1 <c K2 Γ ` K1 = K ′1 Γ ` K2 = K ′2 Γ ` c = c′ : (K1)K2

Γ ` K ′1 <c K ′2

Transitivity for subkinding

Γ ` K <c K
′ Γ ` K ′ <′c K ′

Γ ` K <c′◦c K ′′

Substitution for subkinding

Γ, x : K,Γ′ ` K1 <c K2 Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K1 <[k/x]c [k/x]K2

Fig. 3.2: The subkinding rules of T [R].

3. Coercive Subtyping – the idea, original description and problems 42

Remark 3.3. There’re several other early versions of coercive subtyping.

The formulation in [Luo97] used a set of pairs of types for the basic coercions.

In [LL05], a set of coercion judgement called WDC (well-defined coercion,

satisfies congruence, transitivity, substitution and coherence) is used as the

basic coercion set. These two versions are not bothered by the problem we

will show in the subsection 3.4.2, because they are not based on the open set

of coercion rules. However the formulation in [Luo97] is a very early version

not formulated well enough, and the conditions of WDC in [LL05] were too

strict, apart from coherence, it also requires to be a closure of congruence,

transitivity and substitution.

3.3 Judgements

As we have introduced in chapter 2, a type theory specified in LF has five

forms of judgement.

Γ ` valid Γ ` K kind Γ ` k : K Γ ` K1 = K2 Γ ` k1 = k2 : K

In the type theory extended with coercive subtyping, we have two more

forms of judgement for subtyping and subkinding.

Γ ` A <c B : Type Γ ` K1 <c K2

3.3.1 Presupposed Judgements

In a type system, the well-formedness of a judgement is not given syntacti-

cally but governed by judgemental derivability. We can write a judgement

which is syntactically fine but not well-formed, hence not derivable in the

given type system.

When we say Γ ≡ x1 : K1, ..., xn : Kn is a valid context, it actually requires

that K1, . . . Kn are meaningful kind. When we talk about a judgement,

like Γ ` k : K, we should assume that Γ is a valid context, and K is a

3. Coercive Subtyping – the idea, original description and problems 43

kind. These pre-assumptions, we call them presuppositions. Informally, in

LF, every judgement has several presuppositions, which we call presupposed

judgements . For example, if we have Γ ` K1 = K2, we should have that Γ is

a valid context and K1, K2 are both kinds. If we say Γ ` K1 <c K2, we should

have that K1, K2 are kinds, c is of type (K1)K2 and so on. Formally, since a

judgement has different forms, we have different presuppositions accordingly.

Definition 3.4. The notion of presupposed judgements is inductively defined

as follows:

1. Γ1 ` valid is presupposed judgement of Γ1,Γ2 ` J .

2. Γ1 ` K kind is presupposed judgement of Γ1, x : K,Γ2 ` J .

3. Γ, x : K1 ` K2 kind is presupposed judgement of Γ ` (x : K1)K2 kind.

4. Γ ` K1 kind and Γ ` K2 kind are presupposed judgements of Γ `
K1 = K2.

5. Γ ` K kind is presupposed judgement of Γ ` E : K (E denotes a term

or term equality here).

6. Γ ` k1 : K and Γ ` k2 : K are presupposed judgements of Γ ` k1 =

k2 : K.

7. Γ ` A : Type, Γ ` B : Type and Γ ` c : (El(A))El(B) are presupposed

judgements of Γ ` A <c B.

8. Γ ` K kind, Γ ` K ′ kind and Γ ` c : (K)K ′ are presupposed judge-

ments of Γ ` K <c K
′.

3.3.2 Equality between Judgements

Now we will introduce some definitions and notations for the equivalence of

the contexts and judgements.

3. Coercive Subtyping – the idea, original description and problems 44

Notation 3.5. In a type system S, let Γ1 and Γ2 be

Γ1 ≡ x1 : K1, x2 : K2, · · · , xn : Kn

Γ2 ≡ x1 : M1, x2 : M2, · · · , xn : Mn

The equality Γ ` Γ1 = Γ2 is an abbreviation for the following list of n judge-

ments:

Γ ` K1 = M1;

Γ, x1 : K1 ` K2 = M2;

· · ·

Γ, x1 : K1, · · · , xn−1 : Kn−1 ` Kn = Mn.

Definition 3.6. (equality between judgements). Let S be a type theory. The

notion of equality between judgements of the same form in S, notation J1 = J2

(with S omitted), is inductively defined as follows:

1. (Γ1 ` valid) = (Γ2 ` valid) iff ` Γ1 = Γ2 is derivable in S.

2. (Γ1 ` K1 kind) = (Γ2 ` K2 kind) iff ` Γ1 = Γ2 and Γ1 ` K1 = K2

are derivable in S.

3. (Γ1 ` k1 : K1) = (Γ2 ` k2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and

Γ1 ` k1 = k2 : K1 are derivable in S.

4. (Γ1 ` K1 = K ′1) = (Γ2 ` K2 = K ′2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and

Γ1 ` K ′1 = K ′2 are derivable in S.

5. (Γ1 ` k1 = k′1 : K1) = (Γ2 ` k2 = k′2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2,

Γ1 ` k1 = k2 : K1 and Γ1 ` k′1 = k′2 : K1 are derivable in S.

6. (Γ1 ` A1 <c1 B1 : Type) = (Γ2 ` A2 <c2 B2 : Type) iff ` Γ1 = Γ2,

Γ1 ` A1 = A2 : Type, Γ1 ` B1 = B2 : Type, Γ1 ` c1 = c2 : (A1)B1 are

derivable in S.

3. Coercive Subtyping – the idea, original description and problems 45

7. (Γ1 ` K1 <c1 K
′
1) = (Γ2 ` K2 <c2 K

′
2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2,

Γ1 ` K ′1 = K ′2 and Γ1 ` c1 = c2 : (K1)K ′1 are derivable in S.

Definition 3.7. Suppose d is a derivation in type system S, let conc(d)

denote the conclusion of derivation d. Given two derivations d1 and d2, we

write d1 ∼ d2 iff conc(d1) = conc(d2) in S.

Proposition 3.8. Relation ∼ is an equivalence relation.

Proof. Proved trivially by the definition.

Notation 3.9. Sometimes, we will notion =S and ∼S, for the relation =

and ∼ in type system S to avoid confusion.

3.4 Conservative Extension

When we extend a system into a new one, the relations between the two

systems interest us. As an extension of a type theory, coercive subtyping is

based on the idea that subtyping is abbreviation. On one hand, it should

not increase any expressive power of the original system. On the other hand,

coercions should always be correctly inserted to obtain the abbreviated ex-

pressions as long as the basic coercions are coherent.

Generally, when we say system T2 is an extension of system T1, it means

that for any sequent t of system T1, if t is derivable in T1, then t is derivable

in T2. When we say T2 is a conservative extension of system T1 , we need

further require that, for any sequent t of the system T1, if t is not derivable

in T1 then t is not derivable in its extension T2. Put in another way, if t is

derivable in T2, t is derivable in T1 as well. If a sequent does not belong to

T1 (belongs only to T2), its derivability does not matter.

More precisely, if we use `T for the judgement derivable in system T , for

any judgement Γ ` J in T1(it may not be derivable), T2 is an extension of T1

requires that:

Γ `T1 J ⇒ Γ `T2 J

3. Coercive Subtyping – the idea, original description and problems 46

For such an extension to be conservative, we require:

Γ `T2 J ⇒ Γ `T1 J

We give the following formal definition of conservative extension.

Definition 3.10. (conservative extension)We call system T2 a conser-

vative extension of T1, if for any judgement J in T1, there’s a derivation of

J in T1 iff there’s a derivation of J in T2.

In the previous treatments of coercive subtyping, the notion of conserva-

tive extension as considered in [SL02] was not explicitly linked to that in the

traditional definition and, as a consequence, it was not as well understood as

it should have been (see subsection 3.4.2 for details). In this section we will

give some discussion and propose some adjustment of the system, to show in

what sense coercive subtyping is a conservative extension.

3.4.1 Coherence

When we consider the conservativity in coercive subtyping, coherence is an

important property that is required (recall the definition 3.2, for the co-

herence condition in T [R]0). We should point out that this uniqueness is

necessary.

Actually, in system T [R] we can prove that any two different coercions

between the same two kinds are equal. More precisely, given Γ ` K <c K
′

and Γ ` K <c′ K
′, we can use the coercive definition rule and βηξ rules (in

Figure 2.1) to derive Γ ` c = c′ : (K)K ′

Proposition 3.11. If Γ ` K <c K
′ and Γ ` K <c′ K

′ are derivable judg-

ments in T [R], we have Γ ` c = c′ : (K)K ′

3. Coercive Subtyping – the idea, original description and problems 47

Proof.

Γ ` c = [x : K](c(x)) (η rule)

= [x : K]([y : K ′]y)c(x) (β rule)

= [x : K]([y : K ′]y)(x) (ξ and coercive definition)

= [x : K]([y : K ′]y)(c′(x)) (ξ and coercive definition)

= [x : K](c′(x)) (β rule)

= c′ : (K)K ′ (η rule)

Suppose the coherence is not held in T [R], we have two different coercions

c1 and c2 from type A to type B,

Γ ` A <c1 B : Type, Γ ` A <c2 B : Type

where Γ 6` c1 = c2 : (El(A))El(B) in T .

So we have two coercions between kind El(A) and El(B)

Γ ` El(A) <c1 El(B), Γ ` El(A) <c2 El(B)

Using the conclusion of the proof above, we can get Γ ` c1 = c2 :

(El(A))El(B) in T [R], but this is not derivable in T . This means that

without the coherence condition, T [R] is not a conservative extension of T .

So it gives us the answer that coherence is necessary for conservativity. And

this coherence condition should be given in system T [R]0 before we introduce

the coercive application rules.

3.4.2 A Problem of Original Formulation

We wish T [R] to be a conservative extension over T . Unfortunately, this

formulation of coercive subtyping is too general for the result to hold, the

conservativity cannot be satisfied.

3. Coercive Subtyping – the idea, original description and problems 48

We can think of the problem intuitively like this 1: there might be some

bad rules in R, they will never be used in T [R]0 but can be applied in T [R].

Such kind of naughty rules will bring us troubles.

More precisely, the key point of the problem is that we can use the judge-

ments generated by coercive application as premises of the rules in R. Some

rules may have premises which contain ‘gaps’ and are not well-typed in T .

These rules cannot be applied in T [R]0, since there’s no coercive application

rule in T [R]0. But in T [R] the coercive application helps them to insert the

‘gaps’, making it possible for them to be applied in T [R]. These rules might

generate some new coercive subtyping judgements which violate conservativ-

ity.

For instance, we can consider the following example.

Example 3.12. Suppose Nat : Type, Bool : Type, c1 : (Nat)Bool, c2 :

(Nat)Bool, and Γ 6` c1 = c2 : (Nat)Bool in T . Let the set R consist of the

following two rules:

Γ ` valid

Γ ` Nat <c1 Bool : Type
(∗)

Γ ` n : Nat Γ ` g : (Bool)Bool Γ ` g(n) : Bool

Γ ` Nat <c2 Bool : Type
(∗∗)

Then, R is coherent. The reason is that, since we have no coercive ap-

plication in T [R]0, if g : (Bool)Bool and n : Nat, then g(n) will not be

well-typed. Thus, it is impossible to use any instance of (**) in T [R]0, so c1

is the only coercion from Nat to Bool in T [R].

But in system T [R], after introducing the coercive application rule, we

have:

Γ ` g : (Bool)Bool Γ ` n : Nat
Γ ` Nat <c1 Bool : Type

Γ ` Nat <c1 Bool

Γ ` g(n) : Bool

1 The problem was realized by Zhaohui Luo and Sergei Solviev when discussing a ques-
tion raised by Robin Adams in 2007.

3. Coercive Subtyping – the idea, original description and problems 49

Now, rule (**) can be applied (with g ≡ idb and n ≡ zero), and we get

two coercions from Nat to Bool:

Γ ` Nat <c1 Bool : Type, Γ ` Nat <c2 Bool : Type .

By the argument in the previous section , we have Γ ` c1 = c2 : (Nat)Bool

in T [R]. It means that this system T [R] with a coherence set of rules R is

not a conservative extension.

More seriously, if we take c1 ≡ [x : Nat]true and c2 ≡ [x : Nat]false

as the coercion functions, then we can see that it is even possible that for a

consistent T and a coherent R, T [R] is inconsistent, since in T [R] we could

have:

true = c1(zero) = c2(zero) = false.

This example shows that the formulation of coercive subtyping in [Luo99]

is not correct, and also tells us the importance of considering conservativity:

non-conservativity might lead to inconsistency in some cases.

To solve the problem, it suffices to realize that, if we consider only sub-

typing judgements, rather than rules, the problem as demonstrated in Ex-

ample 3.12 does not occur anymore. In other words, we still follow the

formulation above to extend the coercive subtyping, however, instead of us-

ing a set of rules R, we use a set C of subtyping judgements to form the

coercive subtyping extension T [C]. In such a formulation, the above problem

does not occur. The formal description will be given in the next chapter.

Theoretically, this is a very general formulation. In fact, we can recast the

formulation T [R] by means of a set R of basic subtyping rules as the system

T [CR], where CR is the set of subtyping judgements generated by the R-rules

without the coercive application/definition rules (CA1), (CA2) and (CD).

In this way, we can also encompass the generality and flexibility offered by

subtyping rules.

3. Coercive Subtyping – the idea, original description and problems 50

3.4.3 An Intermediate System with ‘∗’

When we move into system T [C], we still find some difficulties. As we men-

tioned above, in type theories, the validity or well-formedness of expressions

is not given syntactically, but governed by judgemental derivability. So, if we

consider a type theory T and its extension T ′, we can possibly have an ex-

pression of T that is not well-typed in T but is well-typed in T ′. In this case,

we cannot say T ′ is a conservative extension of T , at least in the traditional

sense. Unluckily, when we consider the extension with coercive subtyping,

this problem exists.

As we have claimed, coercive subtyping is an abbreviation mechanism, the

judgements in a system with coercive subtyping in general contain “gaps”

where coercions may be inserted. These “gaps” are not marked in the syntax.

There could be a judgement not well-formed in the original system but well-

formed in the extended system with coercive subtyping, not derivable in the

original system but derivable in the extended system, and, the judgement is

still a sequent of the original system. More precisely, for instance, in T [C],
consider the coercive application:

Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K <c K0

Γ ` f(k0) : [c(k0)/x]K ′

As a sequent of T , Γ ` f(k0) : [c(k0)/x]K ′ is not derivable in T , but is

derivable in T [C]. This does not satisfy the traditional notion of conservative

extension.

To solve this problem, we propose a simple idea: introducing a special

symbol ‘∗’ for coercive application, where ‘∗’ is used to mark the place of

coercion insertion. We call it star-calculus.

Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K <c K0

Γ ` f ∗ k0 : [c(k0)/x]K ′

We notate the new system T [C]∗. Now, Γ ` f ∗ k0 : [c(k0)/x]K ′ is not a

3. Coercive Subtyping – the idea, original description and problems 51

sequent of T any more. So although it is not derivable in T but derivable in

T [C]∗, it does not violate the requirement for the conservative extension.

However, this does not mean that we need to abandon the coercive sub-

typing system T [C] and change into the new one T [C]∗. Although the notation

‘∗’ makes the star-calculus a more natural conservative extension, there are

serious reasons to keep the old description without ∗ in favor of this ap-

proach. T [C] itself is directly connected to important themes in the study of

subtyping:

• Implicit coercions;

• Subtyping as abbreviation.

These two are related and supported by the possible “omission” of coercions

in T [C]: when A <c B, a : A can be used as an object of type B. So, the

same term f(a) becomes well-typed although it is not well-typed before.

In the next Chapter, we will give a formal definition of the system T [C]∗ ,

prove that T [C]∗ is a conservative extension of T in the traditional sense, and

show that T [C]∗ is equivalent to T [C]. Hence T [C] is a conservative extension

of T in a certain sense.

3.5 Definitional Extension

Conservativity is not enough to capture the relation between a type theory

and its coercive subtyping extension. For our extension with coercive subtyp-

ing, apart from the conservative property, we also want to show that every

derivation in the system with coercive subtyping corresponds to a derivation

in the type system without coercion where all the “gaps” caused by the co-

ercions are inserted. We find that this property is very similar to that of

definitional extension.

Traditionally, the notion of definitional extension was formulated for first-

order logical theories: a first-order theory is a definitional extension of an-

3. Coercive Subtyping – the idea, original description and problems 52

other if the former is a conservative extension of the latter and any formula

in the former is logically equivalent to its translation in the latter (see, for

example [Kle52]). More precisely, a definitional extension S ′ of a first-order

theory S is obtained by successive introductions of relation symbols (or func-

tion symbols) in such a way that, for example, for an n-ary relation symbol

R, the following defining axiom of R is added:

∀x1...∀xn. R(x1, ..., xn) ⇐⇒ φ(x1, ..., xn),

where φ(x1, ..., xn) is a formula in S. For such a definitional extension S ′, we

have

1. For any formula ψ in S ′, ψ ⇐⇒ ψ∗ is provable in S ′, where ψ∗ is the

formula in S obtained from ψ by replacing any occurrence ofR(t1, ..., tn)

by φ(t1, ..., tn) (with necessary changes of bound variables).

2. S ′ is a conservative extension of S.

In particular, the defining axiom of R cannot be used to prove new theorems

expressible without R.

In our type theory extended with coercive subtyping, as we mentioned

above, the validity and well-formedness of a formula (or judgement) is linked

to its derivation. So in order to show the definitional extension property in

a more general sense, we will transform derivations in T [C] or T [C]∗ with co-

ercions into derivations in T without coercions, and show that the derivation

and its transformation are “equivalent”.

But there’s still difficulty in the notion. If we want T [C]∗ to be a def-

initional extension of T , we should consider the derivation of judgement

Γ ` K <c K
′ in T [C]∗ and find an equivalent derivation for it in T . How-

ever we can hardly do this. To solve this problem, we introduce another

intermediate system T [C]0K . T [C]0K is a system obtained by extending T

with judgements of subtyping and subkinding form and the inference rules

for subtyping and subkinding except the coercive application and definition

rules.

3. Coercive Subtyping – the idea, original description and problems 53

It is obvious that T [C]0K is a conservative extension of T , since the

subkinding judgements do not contribute to the derivation of a judgement of

any other form.

In next chapter, we will give a formal proof to show that if C is a coherent

set of judgements, T [C]∗ is actually a definitional extension of T [C]0K in the

following sense.

• T [C]∗ is a conservative extension over T [C]0K ;

• every T [C]∗-derivation can be transformed into an “equivalent” T [C]0K-

derivation

3.6 Coercive Subtyping and Subsumptive Subtyping

Before going to the next chapter for a formulation of coercive subtyping and

the proof of its adequacy, we would like to discuss something more about

coercive subtyping, to show that this mechanism is useful, powerful and

worth studying.

There are several possible ways of introducing a notion of subtyping into

a type theory. The traditional approaches use a rule called subsumption:

when a type A is a subtype of type B, the objects of A could be considered

as objects of B as well. Such a subtyping mechanism is called subsumptive

subtyping. Formally, the subsumption rule is:

a : A A < B

a : B

Traditionally, there are two different views of type theory. One is type

assignment, which is often found in the study of programming languages

[Mil78], when types are assigned to already defined terms. Another is the

view that takes so-called canonical objects seriously, like in Martin-Löf’s type

theory or UTT. Under this view, types are considered consisting of its all

canonical objects and, furthermore, objects and their types depend on each

3. Coercive Subtyping – the idea, original description and problems 54

other and cannot be thought of to exist independently. For example, the

type Nat for natural numbers could be defined as Nat = 0|succ(Nat), Nat
consists of canonical objects 0 and succ(n), and numbers exist only because

they are objects of Nat.

Corresponding to these two different views of types, we have two related

but different ways of considering subtyping. For a type assignment system,

subsumption is a natural rule to consider for subtyping. However, in type

theories with canonical objects, coercive subtyping is a better choice.

Comparing subsumptive subtyping and coercive subtyping, we will find

that, in subsumptive subtyping, an object can have more than one type

through the subsumption rule; this is natural with the type assignment way

of thinking. But in coercive subtyping, objects do not obtain more types

(unlike subtyping with subsumption). If a is an object of type A and A <c B,

then a is not an object of type B. The coercion will be applied only when

a function f : (B)C is applied to a, as the example below explains. This

is more natural for type theories with canonical objects, since objects and

types depend on each other.

If we introduce the subsumption rule into type theories with canonical

objects, it causes problems. We often wish to consider a type A to be subtype

of a type B(or simply thinking type A to be the type B) , even it is not true

that every canonical object of type A is (or reduces to) a canonical object of

type B. In this situation, we might have questions: suppose a is a canonical

object of A, it should be an object of B by the subsumption rule, but is a

a canonical object of B or can it be reduced to a canonical object of B as

well? Type theory with canonical objects are based on the induction rules,

how would induction principles be formulated to take care of the objects

introduced by subtyping?

Such considerations lead to difficulties: subsumptive subtyping is incom-

patible with the idea of canonical object in the sense that it cannot be em-

ployed for a type theory with canonical objects without destroying canonicity.

Since coercive subtyping is just an abbreviation mechanism, it avoids

3. Coercive Subtyping – the idea, original description and problems 55

such problems. Here, we consider an example of subtyping to explain the

above point that coercive subtyping is more adequate for type theories with

canonical objects.

Example 3.13. Consider List(M), the type of lists of objects of type M ,

which has constructors nil(M) and consM . The following is a natural rule

for subtyping:

A < B

List(A) < List(B)

Now List(A) consists of canonical objects nil(A) and consA(a, l) and List(B)

consists of canonical objects nil(B) and consB(b, l). If we introduce subsump-

tion rule, since nil(A) : List(A), we should have

nil(A) : List(A) List(A) < List(B)

nil(A) : List(B)

But nil(A) is not equal to any canonical object of List(B), nil(B) or consA(a, l).

With coercive subtyping, we could instead introduce the following rule

A <c B

List(A) <map(A,B,c) List(B)

where map(A,B, c) is the function from List(A) to List(B) such that

map(A,B, c)(nil(A)) = nil(B)

map(A,B, c)(consA(a, l)) = consB(c(a),map(A,B, c)(l))

Now, if f requires an argument of type List(B), we can write f(nil(A)) as

an abbreviation for f(map(A,B, c)(nil(A))), which reduces to f(nil(B)).

Remark 3.14. We should mention another approach to subtyping with sub-

sumption rule: the so-called “constructor subtyping” [BF99, BvR00], which

introduces subsumption to a type theory with canonical objects. The idea

is that an inductive type A is a subtype of another inductive type B, if B

has more constructors than A. This requires overloading objects for different

3. Coercive Subtyping – the idea, original description and problems 56

types and it is unclear how this would reconcile with the induction principles

(or elimination rules) of inductive types. Constructive subtyping only works

for some limited cases of inductive types and seems difficult to be generalized

or applied to other cases.

4. COERCIVE SUBTYPING AND PROOF

As we’ve explained above, there are two problems with the previous treat-

ments of coercive subtyping. One is that the notion of ‘basic subtyping rule’

is too liberal that has failed to exclude the problematic rules and the other

is that the notion of conservativity is not linked to the traditional notion

of conservative extension. These problems lead to an incomplete proof and

inaccurate description of ‘conservativity’ in [SL02] (recall the discussion in

subsection 3.4.2).

To solve the first problem, we consider only subtyping judgements, rather

than rules. In other words, we extend the original type theory with a set C
of subtyping judgements to form the coercive subtyping extension T [C]. To

deal with the second problem, we shall introduce below, besides the coercive

subtyping calculus T [C], the star-calculus T [C]∗ that will help to make the

notion of conservativity clear.

In such a formulation, the problems, as illustrated in Example 3.12 will

not occur and the proof method of [SL02] can be used to prove that, based

on a coherent set of coercion judgements, the coercive subtyping extension is

indeed a conservative extension. Moreover, we will introduce an intermediate

system T [C]0K without coercive application and definition rules, and show

that T [C]∗ is actually a definitional extension of T [C]0K .

In this chapter, we will first present the formal formulation of the systems

T [C], T [C]∗, and the intermediate systems T [C]0 and T [C]0K . Then we will

prove that:

• T [C]∗ is a conservative extension of T .

4. Coercive Subtyping and Proof 58

• T [C]∗ is equivalent to T [C].

• T [C]∗ is a definitional extension of T [C]0K which is a conservative ex-

tension over T .

4.1 Description of the Systems

In order to make our property proved, we will first make some changes to

the logical framework LF. We add the weakening rule (1.4) and the context

retyping rule (3.3) where J is of form Γ ` valid, Γ ` K kind, Γ ` K1 =

K2, Γ ` k : K or Γ ` k1 = k2 : K. However, these rules will be proved

admissible later (see Lemma 4.12 and Lemma 4.19), which means the new

LF is equivalent to the original one in Figure 2.1, so we will still call this

extensional one LF. We will also introduce an intermediate system T [C]0K
which takes all the subkinding rules but without coercion application and

definition rules.

The new inference rules for LF are followed in Figure 4.1.

Remark 4.1. We note that the following inference rule is derivable

Γ,Γ1 ` J Γ ` Γ1 = Γ2

Γ,Γ2 ` J

Actually, it is by means of (call for Notation 3.5)

Γ, x1 : K1, x2 : K2, · · · , xn : Kn ` J Γ ` K1 = M1
Γ, x1 : M1, x2 : K2, · · · , xn : Kn ` J· · · · · · · · ·

Γ, x1 : M1, · · · , xn−1 : Mn−1, xn : Kn ` J Γ, x1 : M1, · · · , xn−1 : Mn−1 ` Kn = Mn

Γ, x1 : M1, x2 : M2, · · · , xn : Mn ` J

4.1.1 System T [C]0

The system T [C]0 is the extension of system T with the new judgement form

Γ ` A <c B : Type and the rules in Figure 4.2.

4. Coercive Subtyping and Proof 59

Contexts and assumptions

(1.1)
<>` valid

(1.2)
Γ ` K kind x 6∈ FV (Γ)

Γ, x : K ` valid
(1.3)

Γ, x : K,Γ′ ` valid

Γ, x : K,Γ′ ` x : K

(1.4)
Γ,Γ′ ` J Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)

Γ, x : K,Γ′ ` J

General equality rules

(2.1)
Γ ` K kind

Γ ` K = K
(2.2)

Γ ` K = K′

Γ ` K′ = K
(2.3)

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

(2.4)
Γ ` k : K

Γ ` k = k : K
(2.5)

Γ ` k = k′ : K

Γ ` k′ = k : K
(2.6)

Γ ` k = k′ : K Γ ` k′ = k′′ : K

Γ ` k = k′′ : K

Equality typing rules

(3.1)
Γ ` k : K Γ ` K = K′

Γ ` k : K′
(3.2)

Γ ` k = k′ : K Γ ` K = K′

Γ ` k = k′ : K′

(3.3)
Γ, x : K,Γ′ ` J Γ ` K = K′

Γ, x : K′,Γ′ ` J

Substitution rules

(4.1)
Γ, x : K,Γ′ ` valid Γ ` k : K

Γ, [k/x]Γ′ ` valid

(4.2)
Γ, x : K,Γ′ ` K′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ kind
(4.3)

Γ, x : K,Γ′ ` k′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K′

(4.4)
Γ, x : K,Γ′ ` K′ = K′′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k/x]K′′
(4.5)

Γ, x : K,Γ′ ` k′ = k′′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K′

(4.6)
Γ, x : K,Γ′ ` K′ kind Γ ` k = k′ : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k′/x]K′
(4.7)

Γ, x : K,Γ′ ` k′ : K′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K′

The kind Type

(5.1)
Γ ` valid

Γ ` Type kind
(5.2)

Γ ` A : Type

Γ ` El(A) kind
(5.3)

Γ ` A = B : Type

Γ ` El(A) = El(B)

Dependent product kinds

(6.1)
Γ ` K kind Γ, x : K ` K′ kind

Γ ` (x : K)K′ kind
(6.2)

Γ ` K1 = K2 Γ, x : K1 ` K′1 = K′2
Γ ` (x : K1)K′1 = (x : K2)K′2

(6.3)
Γ, x : K ` k : K′

Γ ` [x : K]k : (x : K)K′
(6.4)

Γ ` K1 = K2 Γ, x : K1 ` k1 = k2 : K

Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

(6.5)
Γ ` f : (x : K)K′ Γ ` k : K

Γ ` f(k) : [k/x]K′
(6.6)

Γ ` f = f ′ : (x : K)K′ Γ ` k1 = k2 : K

Γ ` f(k1) = f ′(k2) : [k1/x]K′

(6.7)
Γ, x : K ` k′ : K′ Γ ` k : K

Γ ` ([x : K]k′)(k) = [k/x]k′ : [k/x]K′
(6.8)

Γ ` f : (x : K)K′ x 6∈ FV (f)

Γ ` [x : K]f(x) = f : (x : K)K′

Fig. 4.1: The new inference rules of LF

4. Coercive Subtyping and Proof 60

Base Coercion

(ST1)
Γ ` A <c B : Type ∈ C

Γ ` A <c B : Type

Congruence and Transitivity

(ST2)
Γ ` A <c B : Type Γ ` c = c′ : (A)B

Γ ` A <c′ B : Type

(ST3)
Γ ` A <c B : Type Γ ` A = A′ : Type

Γ ` A′ <c B : Type

(ST4)
Γ ` A <c B : Type Γ ` B = B′ : Type

Γ ` A <c B′ : Type

(ST5)
Γ ` A <c1 B : Type Γ ` B <c2 C : Type

Γ ` A <c2◦c1 C : Type

Substitution

(ST6)
Γ, x : K,Γ′ ` A <c B : Type Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]A <[k/x]c [k/x]B : Type

Weakening

(ST7)
Γ,Γ′ ` A <c B : Type Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)

Γ, x : K,Γ′ ` A <c B : Type

Context Retyping

(ST8)
Γ, x : K,Γ′ ` A <c B : Type Γ ` K = K ′

Γ, x : K ′,Γ′ ` A <c B : Type

Fig. 4.2: The structural subtyping rules of T [C]0.

4. Coercive Subtyping and Proof 61

Definition 4.2. (coherence) C is called a coherent set of coercive subtyping

judgements, if in T [C]0 we have:

1. Γ ` A <c B : Type implies Γ ` A : Type, Γ ` B : Type, Γ ` c : (A)B

are derivable in T .

2. We cannot derive Γ ` A <c A : Type, for any Γ, A, c.

3. Γ ` A <c1 B : Type and Γ ` A <c2 B : Type imply that Γ ` c1 = c2 :

(A)B is derivable in T .

In rest part of this thesis, we will only consider the systems with

a coherent set C.

There are several differences with the formulation in [Luo99](or the rules

in Figure 3.1) :

1. C is a set of judgements rather than rules.

2. two more inference rules are introduced: weakening (ST7) and context-

retyping (ST8).

3. congruence rule in Figure 3.1 is split into three rules (ST2) (ST3) (ST4)

Actually, congruence rule in Figure 3.1

(Cong)
Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B

Γ ` A′ <c′ B′ : Type

has the same power with the three rules (ST2) (ST3) (ST4). This can be

simply derived as follows.

On one hand, we can use (ST2), (ST3) and (ST4) to derive the (Cong),
in the following way:

Γ ` A <c B : Type Γ ` c = c′ : (A)B
Γ ` A <c′ B : Type Γ ` A = A′ : Type

Γ ` A′ <c′ B : Type Γ ` B = B′ : Type

Γ ` A′ <c′ B
′ : Type

4. Coercive Subtyping and Proof 62

On the other hand, we can restrict the premises of (Cong) to derive (ST2)
(ST3) and (ST4).

Γ ` A <c B : Type Γ ` A = A : Type Γ ` B = B : Type Γ ` c = c′ : (A)B

Γ ` A <c′ B : Type

Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B : Type Γ ` c = c : (A)B

Γ ` A′ <c B : Type

Γ ` A <c B : Type Γ ` A = A : Type Γ ` B = B′ : Type Γ ` c = c : (A)B

Γ ` A <c B′ : Type

Lemma 4.3. (Conservativity of T [C]0 over T) T [C]0 is a conservative

extension of T ; that is, if J is not of form A <c B : Type, then Γ ` J is

derivable in T if and only if Γ ` J is derivable in T [C]0.

Proof. Straightforward because, in T [C]0, a subtyping judgement cannot oc-

cur in the derivation of a judgement of any other form.

Remark 4.4. It seems that T [C] has less power than the original formulation

T [R] does, because we don’t include coercion rules. But as we said in section

3.4, we can use rules set R with the general subtyping rule (figure 3.1) to get

a set of coercive judgements. For example, if we have rules:

` A <c B

` List(A) <map(A,B,c) List(B) ` Nat <c Bool

we can get following judgements as basic coercion set

` Nat <c Bool,

` List(Nat) <map(Nat,Bool,c) List(Bool),

` List(List(Nat)) <map(List(Nat),List(Bool),map(Nat,Bool,c)) List(List(Bool)),

. . .

We should point out that this basic coercion judgement set might be infi-

nite.

4. Coercive Subtyping and Proof 63

4.1.2 System T [C]0K

The system T [C]0K is an intermediate system which extends T [C]0 with sub-

kinding but no coercion application and definition rules. It is obtained from

T [C]0 by adding the new subkinding judgement form Γ ` K <c K
′ and the

following subkinding inference rules in Figure 4.3.

There are two differences with the formulation in [Luo99] (or the rules in

Figure 3.2) :

1. Two more inference rules are introduced: weakening (SK10) and context-

retyping (SK11).

2. The congruence rule in Figure 3.2 is split into three rules (SK5) (SK6)

and (SK7)

Like (ST2) (ST3) (ST4) in T [C]0, the three rules (SK5) (SK6) and (SK7)

have the same power with the congruence rule in Figure 3.2.

Lemma 4.5. (Conservativity of T [C]0K over T [C]0) T [C]0K is a conser-

vative extension of T [C]0; that is, if J is not of form K <c K
′, then Γ ` J is

derivable in T [C]0 if and only if Γ ` J is derivable in T [C]0K.

Proof. Straightforward because, in T [C]0K , a subkinding judgement cannot

occur in the derivation of a judgement of any other form.

With Lemma 4.3 and 4.5, we have:

Colloary 4.6. (Conservativity of T [C]0K over T) T [C]0K is a conserva-

tive extension of T ; that is, if J is not of form A <c B : Type or K <c K
′,

then Γ ` J is derivable in T if and only if Γ ` J is derivable in T [C]0K.

4.1.3 The Systems T [C] and T [C]∗

T [C] is the system obtained from T [C]0K by adding the coercive application

and coercive definition rules in Figure 4.4.

4. Coercive Subtyping and Proof 64

Basic subkinding rule

(SK1)
Γ ` A <c B : Type

Γ ` El(A) <c El(B)

Subkinding for dependent product kinds

(SK2)
Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 = K ′2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]f(c1(x′));

(SK3)
Γ ` K ′1 = K1 Γ, x′ : K ′1 ` K2 <c2 K

′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(x′);

(SK4)
Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 <c2 K

′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2(f(c1(x′))).
Congruence and Transitivity for subkinding

(SK5)
Γ ` K1 <c K2 Γ ` c = c′ : (K1)K2

Γ ` K1 <c′ K2

(SK6)
Γ ` K1 <c K2 Γ ` K1 = K ′1

Γ ` K ′1 <c K2

(SK7)
Γ ` K1 <c K2 Γ ` K2 = K ′2

Γ ` K1 <c K ′2

(SK8)
Γ ` K1 <c1 K2 Γ ` K2 <c2 K3

Γ ` K1 <c2◦c1 K3

Substitution for subkinding

(SK9)
Γ, x : K,Γ′ ` K1 <c K2 Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K1 <[k/x]c [k/x]K2

Weakening for subkinding

(SK10)
Γ,Γ′ ` K1 <c K2 Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)

Γ, x : K,Γ′ ` K1 <c K2

Context Retyping for subkinding

(SK11)
Γ, x : K,Γ′ ` K1 <c K2 Γ ` K = K ′

Γ, x : K ′,Γ′ ` K1 <c K2

Fig. 4.3: The subkinding rules of T [C]0K .

4. Coercive Subtyping and Proof 65

Coercive application rule

(CA1)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [c(k0)/x]K ′

(CA2)
Γ ` f = f ′ : (x : K)K ′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′

Coercive definition rule

(CD)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′

Fig. 4.4: The coercive application and definition rules of T [C].

T [C]∗ is the system obtained from T [C]0K by adding the coercive applica-

tion and coercive definition rules in Figure 4.5.

Coercive application rule

(CA∗1)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 : [c(k0)/x]K ′

(CA∗2)
Γ ` f = f ′ : (x : K)K ′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f ′ ∗ k′0 : [c(k0)/x]K ′

Coercive definition rule

(CD∗)
Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f(c(k0)) : [c(k0)/x]K ′

Fig. 4.5: The coercive application and definition rules of T [C]∗.

4.2 Relationship between the Systems

In this section we give an outline how our present proofs of conservative

extension and definitional extension are structured, present the relations be-

tween the systems T , T [C] and T [C]∗ for a coherent set C and provide the

necessary precisions and improvements with respect to the earlier proof of

“conservativity” in [SL02].

We have introduced the intermediate systems T [C]0 and T [C]0K in our

4. Coercive Subtyping and Proof 66

formulation. Obviously T , T [C]0, T [C]0K are subsystems of T [C] and T [C]∗,
so any judgement derivable in one of these systems is derivable in T [C] and

T [C]∗. Since we have proved that T [C]0K is a conservative extension of T , we

will only show the relations between T [C]0K , T [C] and T [C]∗ in the following

parts.

From T [C] to T [C]0K we will construct a coercion insertion algorithm to

insert the coercions into the gaps. Similarly, from T [C]∗ to T [C]0K , we will

construct a coercion insertion algorithm to insert the coercions into the places

marked by ‘∗’. Consider the relation between T [C] and T [C]∗. Obviously, ev-

ery derivation in T [C]∗ may be transformed into a derivation in T [C]. One

only needs to “erase” all ∗. But in the direction from T [C] to T [C]∗, the inser-

tion of ∗ meets the following difficulty: nothing in the syntax of T [C] permits

us to distinguish directly coercive and ordinary applications and to guarantee

that in different premises of every inference inside a T [C]-derivation the ∗ will

be inserted at the same places (and hence the premises will be matching after

insertion). We need to construct the algorithm that transforms derivations in

T [C] into derivations in T [C]∗ carefully. These coercion insertion algorithms

are our main “tools”. Notice that we cannot be sure in advance that they

are defined for all derivations.

Insertion Algorithms. For two type theories T1 and T2, we write

f : T1 → T2

if f is a function from the T1-derivations to T2-derivations.

We describe four algorithms, to be defined in the next section, which are

such functions:

Θ : T [C]→ T [C]0K
Θ∗ : T [C]∗ → T [C]0K
θ1 : T [C]∗ → T [C]

θ2 : T [C]→ T [C]∗

4. Coercive Subtyping and Proof 67

• The algorithm Θ replaces the derivations of Γ ` K1 <c K2 in the

premises of coercive rules (CA1)(CA2)(CD) by derivations of Γ ` c :

(K1)K2 and replaces the coercive applications by several ordinary ap-

plications.

• The algorithm Θ∗ replaces the derivations of Γ ` K1 <c K2 in the

premises of coercive rules (CA∗1)(CA∗2)(CD∗) by derivations of Γ `
c : (K1)K2 and replaces the coercive applications by several ordinary

applications.

• The algorithm θ1 replaces coercive applications of the form f ∗ a in

T [C]∗ by coercive applications f(a) in T [C].

• The algorithm θ2 replaces coercive applications in T [C] derivations by

coercive applications in T [C]∗, by inserting ∗ into appropriate places.

One would expect Θ to be composition of θ2 and Θ∗ but to assure this

both θ2 and Θ∗ have to be defined. The relations are as that shown in Fig.4.6.

T [C]
θ2

��

Θ

$$IIIIIIIII

T [C]∗ Θ∗ //

θ1

OO

T [C]0Kconservative // T

Fig. 4.6: Relations between T [C], T [C]∗, T [C]0K and T

Among the four transformations, the definition of θ1 is the most easy one.

It can be defined in the following way, and trivially be proved total:

θ1 is a transformation that takes a derivation d in T [C]∗, and returns a

derivation θ1(d) in T [C]. It is defined by removing all the star-calculus ‘*’ in

d.

The definitions of Θ, θ2 and Θ∗ are much more difficult, after giving the

definitions, we need to proof that Θ and Θ∗ are total first , with inductive

proof. Then we show that with some results of Θ and Θ∗, θ2 is total as well.

We will show the definitions of them in the next section.

4. Coercive Subtyping and Proof 68

Remark 4.7. We need point out that the symbols for the algorithms in this

thesis are slightly different with those we have in [LSX13]. θ1 is θ in [LSX13]

and θ2 is θ∗ in [LSX13].

4.3 Coercion Insertion Algorithms

In this section, we will present the algorithms for Θ, Θ∗ and θ2. Since they

are very similar and related, we will mainly present the transformation Θ,

and show the differences in Θ∗ and θ2. Also, we will show some main results

of these transformations.

4.3.1 Basic Ideas of the Coercion Insertion Algorithms

In this subsection we shall first consider the problems arising with the defi-

nition of Θ and then explain the differences in the cases of Θ∗ and θ2.

The leading idea is to define a transformation Θ which transforms every

derivation in T [C] into a derivation in T [C]0K , according to the description

above.

Θ has to transform every application of a coercive application or definition

rule into a certain inference (using ordinary non-coercive application) where

the derivation of the subkinding judgement in the premise is replaced by the

derivation of corresponding coercion and in the conclusion the coercion is

inserted between the function and its argument. Otherwise we just keep the

basic form of the rule. More precisely, for example, consider a derivation in

T [C] that ends with a coercive application rule:

Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [c(k0)/x]K ′

We assume that there are derivations in T which can derive judgements

Γ ` f : (x : K)K ′, Γ ` k : K0, Γ ` c : (K0)K. Then we could obtain a

derivation in T as follows:

4. Coercive Subtyping and Proof 69

Γ ` f : (x : K)K ′
Γ ` k : K0 Γ ` c : (K0)K

Γ ` c(k0) : K0

Γ ` f(c(k0)) : [c(k0)/x]K ′

The coercive equality application rule (CA2) and coercive definition rule

(CD) can be dealt with in the same way.

Now the question is how to extend the transformation to the whole deriva-

tion. It is natural to start from the leaves of the derivation tree, and move

to the root (conclusion). When a coercive application or definition rule is

met, the subkinding judgements are to be replaced by the derivation of the

coercion terms and the rules modified as described in the previous paragraph.

To make this plan work, some difficulties must be solved.

The “conceptual core” of all difficulties is that the inserted coercions de-

pend on the derivation. If an expression appears in two places in a derivation

in T [C], the above process might map it to two expressions of T that are not

identical. For example, a derivation that ends with e.g. the rule

Γ
d1

`K = K ′ Γ
d2

`K ′ = K ′′

Γ ` K = K ′′

Under the transformation Θ, d1 and d2 become derivations Θ(d1) and Θ(d2)

of, say, Γ1

Θ(d1)

` K1 = K ′1 and Γ2

Θ(d2)

` K ′2 = K ′′2 . We need to show that the

corresponding kinds of contexts Γ1, Γ2 are equal in T (see Definition 3.5),

and K ′1, K ′2 are equal in context Γ1. If they are equal in T , we can complete

the derivation in T 1:

Γ1

Θ(d1)

` K1 = K ′1

Γ2

Θ(d2)

` K ′2 = K ′′2 ` Γ2 = Γ1

Γ1 ` K ′2 = K ′′2 Γ1 ` K ′2 = K ′1
Γ1 ` K ′1 = K ′′2

Γ1 ` K1 = K ′′2

1 A part of this derivation uses the inference rule showed in Remark 4.1

4. Coercive Subtyping and Proof 70

Let’s think of the following example for a more explicit description:

Example 4.8. Consider vector type V ec : (Type)(Nat)Type, then V ec(Nat, n)

is a vector type of Nat with length n : Nat. Suppose we have coercion

Even <c Nat and c′ = c : (Even)Nat, we can derive Even <c′ Nat by the

congruence rule. If we have e : Even, then consider the derivation:

Γ, x : V ec(Nat, e),Γ′
d1

`K = K ′ Γ, x : V ec(Nat, e),Γ′
d2

`K ′ = K ′′

Γ, x : V ec(Nat, e),Γ′ ` K = K ′′

When we apply Θ on d1 and d2, we need to insert the gaps in the deriva-

tions, for example in x : V ec(Nat, e). We might face the case that we insert

c in Θ(d1), but c′ in Θ(d2). Also we might have other different insertions in

other places. Hence we can get

conc(Θ(d1)) ≡ Γ1, x : V ec(Nat, c(e)),Γ′1 ` K1 = K ′1

conc(Θ(d2)) ≡ Γ2, x : V ec(Nat, c′(e)),Γ′2 ` K ′2 = K ′′2

If we consider θ2 and Θ∗ instead of Θ the difficulties will go partly to the

verification of correctness of the definition of Θ∗ and partly to such verifica-

tion for θ2. Indeed, to proceed with θ2 we need to verify that ∗-symbols are

inserted in the same places of Γ and K ′ in the left premise and in Γ and K ′

of the right premise. In case of Θ∗ we need not bother about places where

∗ is inserted, but we need to verify that coercion terms that are inserted in

left and right premises are equal.

Coherence, as defined in Definition 4.2, is the key to solving all these

problems. Suppose a gap in the same expression is filled with a coercion c1

at one point in a derivation, and a coercion c2 at another point. Then c1

and c2 may not be identical, but coherence is used to ensure that they will

be judgementally equal in T and that after filling the gaps the expressions

are equal in T . Of course, to implement this, a carefully planned induction

is needed.

4. Coercive Subtyping and Proof 71

In fact, another element of coherence, the condition that there is no co-

ercions of the form Q <c Q, plays its role here as well. This is one of the

main reasons why the part of the proof concerning the properties of θ2 cannot

be separated from the rest. Before we may show that θ2 (insertion of ∗) is

inverse to θ1 we need to prove that it is defined for all derivations. This in its

turn requires the proof that ∗ is inserted in the same places in the matching

parts of different premises. Thus we need to show that there is no coercions

Q <c Q in T [C], for otherwise it would be possible that an application f(a) is

considered as coercive in one place and as non-coercive in another. (In that

case, θ2 could insert ∗ in one branch, but not in the other.) This proof uses

the fact that Θ is defined for all derivations.

Several less conceptual (more technical) challenges concern the organiza-

tion of the inductive proof itself.

An important part of the inductive proof includes the lemmas about pre-

supposed judgements. The reason is that the “common part” of the premise

of a rule is a presupposed judgement of both. We prove that if Θ is defined

for certain derivation d of Γ ` J then it is defined for the derivations of

presupposed judgements of Γ ` J . (The same for Θ∗, θ2.) Another group

of algorithms and lemmas takes care of the rules like substitution, weaken-

ing and contextual retyping which make direct inductive proof difficult. We

define a canonical form of derivations, in which these rules only occur after

an introduction of a subtyping judgement (from Γ ` A <c B ∈ C), and an

algorithm E that moves these rules up to the “permitted” position. Then

we show that if Θ is defined for d, it is also defined for the derivation E(d)

in canonical form (similarly for Θ∗ and θ2.).The proofs use induction on the

number of elimination steps.

In this thesis, when proving the properties of the coercive subtyping ex-

tension T [C], we have restricted T to be the known type theories such as

UTT and Martin-Löf’s type theory. The reason for this is to guarantee that

the rule forms are preserved by coercion insertions, an aspect that was not

sufficiently investigated in [SL02]. For example, let the derivation d in T [C]

4. Coercive Subtyping and Proof 72

end by some rule r of T (r is not one of coercive rules), d ≡
d1
J1

...
dn
Jn

r(J1, ..., Jn)
,

and Θ(d1),... Θ(dn) be defined. If Θ(d) is defined, it is supposed to end with

an application of the same rule r. This assumes that, if Ji is a premise of

an instance of r, then the conclusion of Θ(di) may be used as a premise

of an instance of r. More precisely, some “adjustment” using the provable

equalities of T may be permitted before r is applied, as we have seen in the

previous part, but it has to be proved (by analysis of r) that the form of the

conclusion of Θ(di) is appropriate2.

Example 4.9. Consider, for example, the elimination operator for an in-

ductive type in UTT . Let it be, for simplicity, just the elimination operator

E[Nat] for the type of natural numbers Nat. Its kind is (omitting obvious

occurrences of El):

(C : (Nat)Type)(a : C(0))(f : (x : Nat)(y : C(x))C(succ(x)))(z : Nat)C(z)

The elimination operators are used in corresponding computation rules. In

particular, there are two computation rules for E[Nat],

(((E[Nat]C)a)f)0 = a : C(0),

(((E[Nat]C)a)f)(succ(n)) = (f(n))((((E[Nat]C)a)f)n),

corresponding to the standard computation steps of recursion. To be able to

apply the same rules after coercion insertion the structure has to be preserved,

in particular, no coercions are inserted between C and z, between succ and

x, etc. Notice that in case of θ2, when only ∗ are inserted, the verification

that no ∗ is inserted between C and z is still necessary.

To take care of this and similar cases, the coherence at the kind level

(i.e., non-derivability of the statements of the form Γ ` K <c K) is used.

The lemma with appropriate clause (Lemma 4.27) is used in the proof of

2 Similar adjustment is necessary in case of Θ∗. In case of θ2 only verification of match-
ing.

4. Coercive Subtyping and Proof 73

the main theorem3. This is an illustration of the fact that the proofs are

interconnected because this lemma uses the assumption that Θ is defined (to

prove the absence of the judgements Γ ` K <c K in subderivations.)

In case of known type theories all rules can be inspected (as we did for

UTT and Martin-Löf’s type theory). For arbitrary T , a general condition on

rule forms has to be elaborated, but we have not yet accomplished this task.

4.3.2 Transformations of Derivations: Exact Formulation

In this subsection, we will give the exact formulation of the transformations,

and list the main results about them. Once again, we’ll mainly focus on the

definition of Θ, and show the difference for Θ∗ and θ2.

Formal Definitions of Transformations of Derivations

Definitions of Θ: T [C] → T [C]0K and Θ∗ : T [C]∗ → T [C]0K . Θ and Θ∗ are

defined by induction on derivations d in T [C] and T [C]∗, respectively. In the

following, we consider the cases in Θ’s definition; for Θ∗, it is similar.

1. If d is already a derivation in T [C]0K , then Θ(d) ≡ (d).

2. If d ends with an instance of introduction of basic coercion in C, then

Θ(d) ≡ (d).

3. If d ends in an instance of a rule R with only one premise, say d ≡
d1
J

R(J)
where J ≡ conc(d1), then

Θ(d1)
(conc(Θ(d1)))

R(conc(Θ(d1)))
.

3 This clause was first explicitly formulated by Marie-Magdeleine [MM09] and we are
not going to focus on this part of proof in this thesis.

4. Coercive Subtyping and Proof 74

4. Suppose d ends by rule R with more than one premise, but not the

coercion application or definition rules. Let d ≡
d1
J1

. . . dk
Jk

R(Jk)
(Ji ≡

conc(di), i = 1, ..., k),

Θ(d) ≡

Θ(d1)
conc(Θ(d1))

. . . Θdk
conc(Θ(dk))

?T[C]0K − derivations
Equalities

=-transitivity and context replacement
J ′1 · · · · · · J ′k

R(J ′1 · · · · · · J ′k)

Θ(d) is defined only if the ?T [C]0k− derivations for required equalities

exist.

5. Suppose d ≡ Γ
d1

`f : (x : M)N Γ
d2

`k : K Γ
d3

`K <c M
Γ ` f(k) : [c(k)/x]N

.

Applying Θ to the derivations d1, d2, d3, we get derivations

∆1

Θ(d1)

` f1 : (x : M1)N1, ∆2

Θ(d2)

` k2 : K2 and ∆3

Θ(d3)

` K3 <c3 M3.

Then Θ(d) is the derivation

Θ(d) ≡
Θ(d1)

∆1`f1:(x:M1)N1

co(Θ(d3))

∆3`c3:(K3)M3

?1
`∆1=∆3

∆1`c3:(K3)M3

Θ(d2)

∆2`k2:K2

?2
`∆2=∆1

∆1`k2:K2

?3
∆1`K2=K3

∆1`k2:K3

∆1`c3(k2):M3

?4
∆1`M1=M3

∆1`c3(k2):M1

∆1`f1(c3(k2)):[c3(k2)/x]N1

Here Θ(d) is defined only if derivations ?1, ?2, ?3 and ?4 of the required

equalities exist.

6. The cases where d ends in an instance of coercive application rule for

equality (CA2) and coercive definition rule (CD) are handled similarly.

It can be useful to do the “adjustment” of the premises using equalities

in a deterministic way, for example, to make the expressions that occur in

the premises more to the right equal to the leftmost occurrence (like Γ2 and

Γ3 were made equal to Γ1 above). We shall assume, for certainty, that this

convention is applied to both Θ and Θ∗ in the same way.

4. Coercive Subtyping and Proof 75

Definitions of θ1 : T [C]∗ → T [C] and θ2 : T [C] → T [C]∗. The transformation

θ1 replaces coercive applications in T [C]∗ by coercive applications in T [C] by

erasing ∗. Its well-definedness and hence totality can be trivially verified.

The transformation θ2 (insertion of ∗ into derivations in T [C]) has the

same cases as Θ and Θ∗. There are the following differences in treatment of

these cases:

• Coercion application rules in T [C] are not replaced by ordinary appli-

cations but by coercive applications in T [C]∗.

• No context retyping rules, =-transitivity etc. are inserted.

Main Results

We summarize the main result about the algorithms as follows, showing the

relationship between systems T [C], T [C]∗, T [C]0K and T . Their proofs are

given in the next section.

1. (totality of Θ and Θ∗)

(a) Theorem 4.28: Θ is a well-defined total function.

(b) Theorem 4.30: Θ∗ is a well-defined total function.

2. (conservativity)

(a) Theorem 4.33: T [C]∗ is a conservative extension of T [C]0K .

(b) Corollary 4.34: T [C]∗ is a conservative extension of T .

3. (definitional equivalence)

(a) Theorem 4.29: for any T [C]-derivation d, Θ(d) ∼T [C] d.

(b) Theorem 4.31: for any T [C]∗-derivation d, Θ∗(d) ∼T [C]∗ d.

4. (equivalence between T [C] and T [C]∗)

4. Coercive Subtyping and Proof 76

(a) Theorem 4.36: θ2 is a well-defined total function.

(b) Theorem 4.37: θ1 is the inverse of θ2 (with respect to the identity

derivations).

(c) Corollary 4.38: the type theories T [C] and T [C]∗ are equivalent.

(d) Corollary 4.39: the composition Θ∗ ◦ θ2 is defined and equal to Θ.

Remark 4.10. Among the points above, point 2 (conservativity) and 3 (def-

initional equivalence) are the real main properties we want to show. 2(b) and

3(b) form what was called ”definitional extension” in Chapter 3 (Section 3.5)

4.4 The Proof of The Theorems

The key point and most difficulty part of the theorems proof is that Θ, Θ∗

and θ2 are well defined total functions. Since the totality proof of Θ∗ and

θ2 are very similar with that of Θ, in subsection 4.4.1, we will only focus

on showing the totality of Θ. In subsection 4.4.2, we will present the other

theorems for our result.

4.4.1 Totality of The Transformations

Basic Idea

The basic idea of the totality proof is that transformations, somehow, “go

through” the presuppositions. More precisely, consider rule (2.2), for exam-

ple:

Γ
d1

`K = K ′ Γ
d2

`K ′ = K ′′

Γ ` K = K ′′

Under the transformation Θ, d1 and d2 become derivations Θ(d1) and

Θ(d2) of, say, Γ1

Θ(d1)

` K1 = K ′1 and Γ2

Θ(d2)

` K ′2 = K ′′2 . We need to show that

4. Coercive Subtyping and Proof 77

the corresponding kinds of contexts Γ1, Γ2 are equal in T [C]0K , and K ′1, K ′2

are equal in context Γ1, so that we can make the following derivation:

Γ1

Θ(d1)

` K1 = K ′1

Γ2

Θ(d2)

` K ′2 = K ′′2 ` Γ2 = Γ1

Γ1 ` K ′2 = K ′′2 Γ1 ` K ′2 = K ′1
Γ1 ` K ′1 = K ′′2

Γ1 ` K1 = K ′′2

On one hand Γ1

Θ(d1)

` K1 = K ′1 has presupposed judgement Γ1 ` K ′1 kind,

Γ2

Θ(d2)

` K ′2 = K ′′2 has presupposed judgement Γ2 ` K ′2 kind. On the other

hand, Γ
d1

` K = K ′ has presupposed judgement Γ
d′1
` K ′ kind, Γ

d2

` K ′ = K ′′

has presupposed judgement Γ
d′2
` K ′ kind, and Θ(d′1) and Θ(d′2) would be

defined, say ∆1

Θ(d′1)

` M ′
1 kind and ∆2

Θ(d′2)

` M ′
2 kind.

With lemma 4.26, we can show the following equality of judgements:

(Γ1 ` K ′1 kind) = (∆1 `M ′
1 kind)

(Γ2 ` K ′2 kind) = (∆2 `M ′
2 kind)

Meanwhile, with lemma 4.27, we can show,

(∆1 `M ′
1 kind) = (∆2 `M ′

2 kind)

Hence, we have,

(Γ1 ` K ′1 kind) = (Γ2 ` K ′2 kind)

By the definition of the equality of judgements, we can get the corresponding

equalities we need.

4. Coercive Subtyping and Proof 78

The Systems T−, T [C]−0 , T [C]−0K , T [C]− and T [C]∗−

As we have mentioned above, in order to make our theorems proofs go

through, we need to eliminate the weakening, substitution, context retyp-

ing rules. Hence, we introduce the following intermediate systems without

these rules.

Definition 4.11. We give the definition for systems T−, T [C]−0 , T [C]−0K,

T [C]− and T [C]∗− .

1. The systems T− and T [C]−0 are obtained from system T and T [C]0 re-

spectively, by removing the rules (1.4), (3.3), and (4.1)-(4.7).

2. The systems T [C]−0K, T [C]− and T [C]∗− are obtained from T [C]0K, T [C]
and T [C]∗, respectively, by removing rules (1.4), (3.3), (4.1)-(4.7),

(SK9), (SK10) and (SK11).

We need to point out that in T [C]−0 , T [C]−0K , T [C]− and T [C]∗− we still

have the weakening context-retyping and substitution rules for subtyping

(ST6, ST7 and ST8) These are different with the definitions T [C]−0 , T [C]−0K
and T [C]− are different with the definitions in [SL02]. (ST6) (ST7) and (ST8)

are not included in the definitions of these systems in [SL02]. Elimination of

these three rules was problematic in [SL02] and we find that keeping them

doesn’t affect our proof.

Now, we will give algorithms for weakening, substitution and context

retyping in T [C]−0K , T [C]− and T [C]∗−. At the same time, we will propose

presupposition algorithms in these systems for the presupposed judgements.

All the algorithms are constructed inductively on the derivations. The order

of these algorithms is not that straightforward, we find that algorithms for

some rules depend on some others, and some have to be given simultaneously.

Hence we have to deal them carefully in a right order.

First of all, the algorithm for the weakening rules ((1.4) and (SK10))

could be proposed. We can also give the algorithms for statement 1-3 of

presuppositions in Definition 3.4. Next, the algorithms for the substitution

4. Coercive Subtyping and Proof 79

rules (4.1) - (4.5) and (SK7) could be proposed together. However, the rest

algorithms for substitution (4.6) (4.7)(let’s call them equality substitution

rules), context retyping (3.3) (SK11) and statement 4-8 of presuppositions

in Definition 3.4 depend on each other. Figure 4.7 shows the relation order

of the algorithms.

weakening(1.4)(SK10)

presupposition 1-3

substitution (4.1 - 4.5)(SK7)

presupposition 4-8

substitution(4.6)(4.7) context retyping(3.3)(SK11)

Fig. 4.7: The algorithms 1

To show the difficulties more precisely, we can consider the following cases

in details.

1. To give the algorithm for presupposed judgement statement 4 of Def-

inition 3.4, which says that Γ ` K1 = K2 has presuppositions Γ `
K1 kind and Γ ` K2 kind, we need to consider the case of rule (6.2):

Γ, x : K1

d1

`K2 = K ′2 Γ
d2

`K1 = K ′1
Γ ` (x : K1)K2 = (x : K ′1)K ′2

.

By induction we obtain the derivations of Γ, x : K1 ` K2 kind and

Γ, x : K1 ` K ′2 kind. We immediately derive the presupposed judge-

4. Coercive Subtyping and Proof 80

ment Γ ` (x : K1)K2 kind

Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 kind
,

but to derive another presupposed judgement Γ ` (x : K ′1)K ′2 kind we

need to apply context-retyping first

Γ, x : K1 ` K ′2 kind Γ ` K1 = K ′1
Γ, x : K ′1 ` K ′2 kind

Γ ` (x : K ′1)K ′2 kind

2. To give the algorithm for context retyping rule

Γ, x : K,Γ′
d

` J Γ
d′

` K = K ′

Γ, x : K ′,Γ′ ` J

where J is of form: valid, K0 kind, k0 : K0, K1 = K2, k1 = k2 :

K0, or K1 <c K2 (this rule combines (3.3) and (SK11)).

We need to consider the following case of rule (1.2) for derivation d:

Γ1

d1

` K1 kind

Γ1, y : K1 ` valid
(y 6∈ FV (Γ))

In this case, it implies that Γ, x : K,Γ′ ` J is syntactically equal

to Γ1, y : K1 ` valid. When Γ′ is not an empty context, we could

get the derivation for Γ, x : K ′,Γ′ ` J by induction. But if Γ′ is an

empty context, we need to show that there’s derivation for Γ, x : K ′ `
valid. To generate this, we need to use the presupposed judgement

Γ ` K ′ kind of Γ ` K = K ′ in order to apply rule (1.2).

Γ ` K ′ kind

Γ, x : K ′ ` valid

The above shows that the algorithms for context retyping and presuppo-

sition statement 4-8 of Definition 3.4 depend on each other. Similarly, when

4. Coercive Subtyping and Proof 81

we consider the equality substitution rules:

Γ, x : K,Γ′ ` K ′ kind Γ ` k = k′ : K

Γ, [k/x]Γ′ ` [k/x]K ′ = [k′/x]K ′

Γ, x : K,Γ′ ` k′ : K ′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K ′

The algorithm for them and the presupposition statement 4-8 of Definition

3.4 depend on each other as well.

To solve this problem, instead of giving all these algorithms together,

we will consider the following tricky way which makes the order of all the

algorithms clearer.

Rather than giving the algorithms of equality substitution rules and con-

text retyping rule directly, we introduce some weaker rules for them, called

weak equality substitution rules and weak context retyping rule.

Γ, x : K,Γ′ ` K ′ kind Γ ` k1 = k2 : K Γ ` k1 : K Γ ` k2 : K

Γ, [k1/x]Γ′ ` [k1/x]K ′ = [k2/x]K ′
(weak-sub1)

Γ, x : K,Γ′ ` k′ : K ′ Γ ` k1 = k2 : K Γ ` k1 : K Γ ` k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K ′
(weak-sub2)

Γ, x : K,Γ′ ` J Γ ` K = K ′ Γ ` K kind Γ ` K ′ kind

Γ, x : K ′,Γ′ ` J
(weak-ctx)

(J is of form: valid, K0 kind, k0 : K0, K1 = K2, k1 = k2 : K0, or K1 <c K2).

The differences between these weaker rules and original rules (4.6), (4.7),

(3.3) and (SK11) are putting some presupposed judgements of the premises

as the new rules’ premises.

Now, the algorithms for these rules don’t require the presupposition al-

gorithms for statement 4-8 of Definition 3.4. We can give algorithm for these

three weaker rules first, and then the algorithms for statement 4-8 of Def-

inition 3.4. Finally, with the presupposition algorithm and the algorithms

4. Coercive Subtyping and Proof 82

for these weak rules together, we can present the algorithms for rules (4.6),

(4.7), (3.3) and (SK11). Figure 4.8 shows the order of the algorithms which

are given in the Appendix A.

weakening(1.4)(SK10)

presupposition 1-3

substitution (4.1 - 4.5)(SK7)

(weak-sub1)(weak-sub2)(weak-ctx)

presupposition 4-8

substitution(4.6)(4.7)

context retyping(3.3)(SK11)

Fig. 4.8: The algorithms 2

We have the following lemmas for T [C], and we can give similar lemmas

for systems T [C]∗ and T [C]0K . And in these different systems, we will still

use the same name for the corresponding algorithms with different domains.

Lemma 4.12. (Algorithms for weakening) In T [C]−, there is an algo-

rithm to derive the rules (1.4) and (SK10).

Proof. By the algorithm A.2 in Appendix.

The following presupposition algorithms take a derivation of a judgement

J and return derivations of the presuppositions of J .

4. Coercive Subtyping and Proof 83

Lemma 4.13. (Presupposition algorithms 1)There exist algorithms pre1,

pre2, pre3 from derivations of T [C]− to derivations of T [C]− that satisfy the

following properties.

1. If d is a derivation of Γ1,Γ2 ` J , then pre1(d,Γ1) is a derivation of

Γ1 ` valid;

2. d is a derivation of Γ1, x : K0,Γ2 ` J , then pre2(d,Γ1) is a derivation

of Γ1 ` K0 kind;

3. If d is a derivation of Γ ` (x : K1)K2 kind, then pre3(d) is a derivation

of Γ, x : K1 ` K2 kind;

Proof. By the algorithm A.3 in Appendix.

Lemma 4.14. (Algorithms for substitution rules) In T [C]−, there are

algorithms to eliminate the substitution rules (4.1-4.5, SK7).

Proof. By the algorithm A.4 in Appendix.

Lemma 4.15. In T [C]−, there are algorithms for rules (weak-sub1) and

(weak-sub2)

Proof. By the algorithm A.5 in Appendix.

Lemma 4.16. In T [C]−, there is algorithm for the rule (weak-ctx).

Proof. By the algorithm A.6 in Appendix.

Lemma 4.17. (presupposition algorithms 2) There exist algorithms

pre1
4, pre

2
4, . . . , co from derivations of T [C]− to derivations of T [C]− that sat-

isfy the following properties.

1. If d is a derivation of Γ ` K1 = K2, then pre1
4(d) is a derivation of

Γ ` K1 kind and pre2
4(d) is a derivation of Γ ` K2 kind;

2. If d is a derivation of Γ ` k1 = k2 : K, then pre1
5(d) is a derivation of

Γ ` k1 : K and pre2
5(d) is a derivation of Γ ` k2 : K;

4. Coercive Subtyping and Proof 84

3. If d is a derivation of Γ ` Σ : K, then pre6(d) is a derivation of

Γ ` K kind (Σ denotes term or term equality here);

4. If d is a derivation of Γ ` A <c B : Type, then pre1
7(d) is a derivation

of Γ ` A : Type, pre2
7(d) is a derivation of Γ ` B : Type and cot(d)

is a derivation of Γ ` c : (A)B;

5. If d is a derivation of Γ ` K1 <c K2, then pre1
8(d) is a derivation of

Γ ` K1 kind, pre2
8(d) is a derivation of Γ ` K2 kind and co(d) is a

derivation of Γ ` c : (K1)K2.

Proof. By the algorithm A.7 in Appendix.

Now, applying pre1
4, pre2

4, pre1
5 and pre2

5 on lemma 4.15 and 4.16, we can

give algorithms for rules (4.6), (4.7) , (3.3) and (SK11).

Lemma 4.18. (Algorithm for equality substitution rules) In T [C]−,

there are algorithms for the equality substitution rules (4.6) and (4.7).

Proof. By the algorithm A.8 in Appendix.

Lemma 4.19. (Algorithm for context retyping rules) In T [C]−, there

are algorithms for the rule of context replacement (3.3) and (SK11).

Proof. By the algorithm A.9 in Appendix.

Theorem 4.20. There is an algorithm E that transforms every derivation d

in T [C] into a derivation of the same judgement in T [C]−. Further, if d is a

derivation in T [C]0K, then E(d) is a derivation in T [C]−0K.

Proof. Proved by lemmas 4.12, 4.14, 4.18 and 4.19.

Colloary 4.21. For any derivation d in T [C](or T [C]0K), conc(E(d)) ≡ d.

4. Coercive Subtyping and Proof 85

Transitivity Elimination

Theorem 4.22. (Elimination of transitivity of subkinding in T [C]0K .) There

is an algorithm, transforming every derivation of the judgement Γ ` K <c K
′

in T [C]0K into a derivation of the judgement Γ ` K <c′ K
′ in the same

calculus not containing rules SK6, SK7, SK8.

Proof. By algorithms A.14, A.15 and A.16.

Colloary 4.23. In T [C]0K, coherence holds in the following sense:

1. if Γ ` K = K ′ in T [C]0K, then Γ ` K <c K
′ is not derivable in T [C]0K;

2. if Γ ` K <c K
′ and Γ ` K <c′ K

′ in T [C]0K, then Γ ` c = c′ : (K)K ′

Presupposition Lemmas of Derivations

Lemma 4.24. Let d be a derivation, and suppose Θ(d) is defined. Then:

1. conc(Θ(d)) and conc(d) are judgements of the same form.

2. If d0 is a sub-derivation of d, then Θ(d0) is defined.

3. If d0 is a sub-derivation of d, d′0 is another derivation of conc(d0),

Θ(d0) ∼ Θ(d′0), and d′ is obtained from d by replacing d0 with d′0, then

Θ(d′) is defined and Θ(d) ∼ Θ(d′).

Proof. Induction on d and use the definition of Θ.

Lemma 4.25. Let d be a derivation in T [C] and E be the algorithm from

lemma 4.20. If Θ(d) is defined, then Θ(E(d)) is, and Θ(E(d)) ∼ Θ(d).

Proof. Structural induction on the derivation of d. If d doesn’t end by weak-

ening, context-retyping or substitution rules, simply apply induction hypoth-

esis of the premises. Otherwise, assume d has the form d1...dk
J r, where

4. Coercive Subtyping and Proof 86

d1,...,dk are the derivations of the premises. In standard cases the deriva-

tion d1 may be written as

D1
J1

...
Dm
Jm

J ′
R. r is the rule to be eliminated and R

is the last rule of d1. Then

E(d) ≡ E(

D1...Dm

J ′
R d2 ... dk

J
r) ≡

E(
D1d2...dk

J1

r) ... E(
Dmd2...dk

Jm
r)

J
R

Since Θ(d) is defined, by lemma 4.24, we have that Θ(d1), ...Θ(dk),Θ(D1), ...Θ(Dm)

are defined and get equalities of the corresponding kinds and contexts in these

derivations. With these equalities, we could show that Θ(E(d)) is defined.

Then by I.H., Θ(E(d)) ∼ Θ(d).

There are some special cases where the end of d has a different struc-

ture, and we can deal them with the equalities generated from the inductive

hypothesis and the definition of Θ. Take weakening as an example, other

cases are similar. If d ≡ Γ,Γ′
d1

`J Γ,Γ′′
d2

`valid
Γ,Γ′′,Γ′ ` J . The only exceptional case is

d1 ≡ Γ0

d0

`K0 kind
Γ0, x : K0 ` valid

, Γ ≡ Γ0, x : K and Γ′ ≡<>. In this case, E(d) ≡ d2.

Since Θ(d) is defined, for the subderivation d1 and d2, Θ(d1) and Θ(d2) are

defined. By the definition of Θ(d), we have ∆1

Θ(d1)

` valid, ∆2,∆
′′
2

Θ(d2)

` valid

, ` ∆1 = ∆2 conc(Θ(d)) ≡ (∆1,∆
′′
2 ` valid) = (∆2,∆

′′
2 ` valid). Also we

have Θ(E(d)) ≡ Θ(d2). So conc(E(Θ(d))) ≡ (∆2,∆
′′
2 ` valid) = conc(Θ(d))

Hence we can get Θ(E(d)) ∼ Θ(d).

The following lemma shows that, if we wish to apply a presupposition

algorithm and Θ to a given derivation, then the order in which we apply the

two is not important.

Lemma 4.26. (presupposition lemma)Let d be a derivation in T [C]−, and

suppose Θ(d) is defined.

1. If d is a derivation of Γ1,Γ2 ` J , then Θ(pre1(d,Γ1)) is defined and

Θ(pre1(d,Γ1)) ∼ pre1(E(Θ(d)),Θd(Γ1))

4. Coercive Subtyping and Proof 87

where, if Γ1 has length n, then Θd(Γ1) consists of the first n entries in

the context of conc(Θ(d)).

2. If d is a derivation of Γ1, x : K,Γ2 ` J , then Θ(pre2(d,Γ1)) is defined

and

Θ(pre2(d,Γ1)) ∼ pre2(E(Θ(d)),Θd(Γ1))

where Θd(Γ1) is as above.

3. If d is a derivation of Γ ` (x : K1)K2 kind, then Θ(pre3(d)) is defined

and

Θ(pre3(d)) ∼ pre3(E(Θ(d)));

4. If d is a derivation of Γ ` K1 = K2, then Θ(pre1
4(d)) and Θ(pre2

4(d))

are defined and

Θ(pre1
4(d)) ∼ pre1

4(E(Θ(d))),

Θ(pre2
4(d)) ∼ pre2

4(E(Θ(d)));

5. If d is a derivation of Γ ` k1 = k2 : K, then Θ(pre1
5(d)) and Θ(pre2

5(d))

are defined and

Θ(pre1
5(d)) ∼ pre1

5(E(Θ(d))),

Θ(pre2
5(d)) ∼ pre2

5(E(Θ(d)));

6. If d is a derivation of Γ ` Σ : K, then Θ(pre6(d)) is defined and

Θ(pre6(d)) ∼ pre6(E(Θ(d)));

7. If d is a derivation of Γ ` A <c B : Type, then Θ(pre1
7(d)), Θ(pre2

7(d))

and Θ(cot(d)) are defined and

Θ(pre1
7(d)) ∼ pre1

7(E(Θ(d))),

Θ(pre2
7(d)) ∼ pre2

7(E(Θ(d))),

Θ(cot(d)) ∼ cot(E(Θ(d)));

4. Coercive Subtyping and Proof 88

8. If d is a derivation of Γ ` K1 <c K2, then Θ(pre1
8(d)), Θ(pre2

8(d)) and

Θ(co(d)) are defined and

Θ(pre1
8(d)) ∼ pre1

8(E(Θ(d))),

Θ(pre2
8(d)) ∼ pre2

8(E(Θ(d))),

Θ(co(d)) ∼ co(E(Θ(d))).

Proof. Structural induction on derivation d, following the cases in the algo-

rithm A.3 and A.7. In some cases, we need to use equalities generated from

the induction hypothesis and the definition of Θ. Without losing generality,

we show the proof of two typical cases in proving pre6 and the other cases

are similar.

1. Rule(3.4), d ≡ Γ
d1

`k : K
Γ ` k = k : K

. By definition pre6(d) ≡ pre6(d1).

Since Θ(d) is defined, for the subderivation d1, Θ(d1) is defined, and by

the definition, Θ(d) ≡ ∆
Θ(d1)

` m : M
∆ ` m = m : M

. By I.H. Θ(pre6(d1)) is defined,

hence Θ(pre6(d)) is defined, and Θ(pre6(d1)) ∼ pre6(E(Θ(d1))). With

Lemma 4.25, we have:

conc(Θ(pre6(d)) ≡ conc(Θ(pre6(d1)))

= conc(pre6(E(Θ(d1))))

≡ (∆ `M kind)

≡ conc(pre6(E(Θ(d))))

So we have Θ(pre6(d)) ∼ pre6(E(Θ(d))).

2. Rule(6.7), d ≡ Γ, x : K
d1

`k′ : K ′ Γ
d2

`k : K
Γ ` ([x : K]k′)(k) = [k/x]k′ : [k/x]K ′

.

By definition pre6(d) ≡ sub2(pre6(d1)), d2), put in another way, we can

consider pre6(d) as pre6(d) ≡ E(d′),where d′ ≡
pre6(d1)

Γ, x : K ` K ′ kind Γ
d2

`k : K
Γ ` [k/x]K ′ kind

Since Θ(d) is defined, Θ(d1) and Θ(d2) are defined. We have ∆1, x :

M1

Θ(d1)

` m′ : M ′
1, ∆2

Θ(d2)

` m : M2, ` ∆1 = ∆2, ∆1 `M1 = M2

4. Coercive Subtyping and Proof 89

conc(Θ(d)) ≡ (∆1 ` [x : M1]m′(m) = [m/x]m′ : [m/x]M ′
1)

By I.H. Θ(pre6(d1)) is defined and Θ(pre6(d1)) ∼ pre6(E(Θ(d1))).

Let Θ(pre6(d1)) be the derivation
Θ(pre6(d1))

Π, x : N ` N ′ kind, we have

(∆1, x : M1 `M ′
1 kind) = (Π, x : N ` N ′ kind)

which means

` ∆1 = Π, ∆1 `M1 = M , ∆1, x : M1 `M ′
1 = N ′

So we can derive ` Π = ∆2 and Π ` N = M2, hence Θ(d′) is defined,

conc(Θ(d′)) ≡ Π ` [m/x]N ′, Θ(d′) ∼ pre6(E(Θ(d))).

By lemma 4.25, Θ(E(d′)) is defined and Θ(E(d′)) ∼ Θ(d′) ∼ pre6(E(Θ(d))).

It means that Θ(pre6(d)) is defined and Θ(pre6(d)) ∼ pre6(E(Θ(d))).

Lemma 4.27. Suppose d1 and d2 are two derivations in T [C]−, and Θ(d1)

and Θ(d2) are defined.

1. If d1 and d2 are both derivations of Γ ` valid, then

Θ(d1) ∼ Θ(d2)

2. If d1 and d2 are both derivations of Γ ` K kind, then

Θ(d1) ∼ Θ(d2)

3. If d1 is a derivation of Γ ` k : K1, d2 is a derivation of Γ ` k : K2,

then

Θ(d1) ∼ Θ(d2)

4. If d is a derivation of Γ ` K1 <c K2 and Θ(d) is defined, then the

judgement Θd(Γ) ` Θd(K1) = Θd(K2) is not derivable in T , where

Θd(Γ), Θd(K1), Θd(K2) denote the corresponding part of the judgement

conc(Θ(d)).

4. Coercive Subtyping and Proof 90

5. If d1 is a derivation of Γ ` K1 <c K2 and d2 is a derivation of

Γ ` K1 <c′ K2 in T [C] and Θ(d1), Θ(d2) are defined then the equality

Θdi(Γ) ` Θd1(c) = Θd2(c′) : (Θdi(K1))Θdi(K2) is derivable in T . Here

Θdi (i = 1, 2) are defined as Θd above.

Proof. For 1-3, induction on the sum of the sizes of the two derivations. It is

trivial when d1 and d2 are derivations in T−. If d1 and d2 end with the same

rule, and this rule is not (CA1), then the proof presents no difficulty.

If they both end with (CA1) with different coercions inserted in the third

premise, we can show that the transformation of the two coercions are equal

by coherence (Corollary 4.23).

The only difficult case that remains is that one derivation ends with the

application rule (6.5), while the other ends with the coercive application rule

(CA1). We shall prove that this case is impossible.

Suppose

d1 ≡
Γ
d′1
`f : (x : K1)K ′1 Γ

d′′1
`k : K1

Γ ` f(k) : [k/x]K ′1

d2 ≡
Γ
d′2
`f : (x : K2)K ′2 Γ

d′′2
`k : K0 Γ

d′′′2
`K0 <c K2

Γ ` f(k) : [c(k)/x]K ′2

By definition of Θ, for Θ(d1), there are derivations

∆1

Θ(d′1)

` f1 : (x : M1)M ′
1, ∆2

Θ(d′′1)

` m : M2

and equalities

` ∆1 = ∆2, ∆1 `M1 = M2;

for Θ(d2), there are derivations

Σ1

Θ(d′2)

` f2 : (x : N1)N ′1, Σ2

Θ(d′′2)

` n : N0, Σ3

Θ(d′′′2)

` N ′0 <c′ N3,

and equalities

` Σ1 = Σ2, ` Σ2 = Σ3 , Σ1 ` N1 = N3, Σ2 ` N0 = N ′0.

4. Coercive Subtyping and Proof 91

On the other hand, by the inductive hypothesis, we have Θ(d′1) ∼ Θ(d′2)

and Θ(d′′1) ∼ Θ(d′′2).

Hence

(∆1 ` f1 : (x : M1)M ′
1) = (Σ1 ` f2 : (x : N1)N ′1)

(∆2 ` m : M2) = (Σ2 ` n : N0).

With all the equalities we can get both ∆1 ` M1 = N0 and ∆1 ` N0 <c′

M1, which contradicts coherence (Corollary 4.23).

For 4 and 5, we can easy prove them with the fact that T [C]0K is coherent

(corollary 4.23) and conservative over T (corollary 4.6).

Theorem 4.28. (Totality of Θ) For every derivation d in system T [C], Θ(d)

is defined.

Proof. We only need to check those cases which need derivation equali-

ties (the cases 4-6 in the definition of Θ). Using the presupposition lem-

mas(lemma 4.26) and lemma 4.27, we can show the equalities we need. Take

rule (2.3) and (CA1) as example cases and the other cases are similar.

• Rule(2.3), d ≡ Γ
d1

`K = K ′ Γ
d2

`K ′ = K ′′

Γ ` K = K ′′
, with Θ(d1) and Θ(d2) are

defined. Assume ∆1

Θ(d1)

` K1 = K ′1 and ∆2

Θ(d2)

` K ′2 = K ′′2 . With presup-

position algorithms, we have derivations

pre24(d1)

Γ ` K ′ kind,
pre14(d2)

Γ ` K ′ kind,
pre24(Θ(d1))

∆1 ` K ′1 kind and
pre14(Θ(d2))

∆2 ` K ′2 kind.

By lemma 4.26 we have

pre2
4(Θ(d1)) ∼ Θ(E(pre2

4(d1))), pre1
4(Θ(d2)) ∼ Θ(E(pre1

4(d2))),

and by lemma 4.27 we have

Θ(pre2
4(d1)) ∼ Θ(pre1

4(d2)),

hence we have

4. Coercive Subtyping and Proof 92

pre2
4(E(Θ(d1))) ∼ pre1

4(E(Θ(d2))),

which means

(∆1 ` K ′1 kind) = (∆2 ` K ′2 kind).

By definition we have

` ∆1 = ∆2 and ∆1 ` K ′1 = K ′2.

Now we could show that Θ(d) is well-defined in the following way,

Θ(d) ≡

Θ(d1)

∆1 ` K1 = K ′1

∆1 ` K ′1 = K ′2

Θ(d2)

∆2 ` K ′2 = K ′′2 ` ∆2 = ∆1

∆1 ` K ′2 = K ′′2
∆1 ` K ′1 = K ′′2

∆1 ` K1 = K ′2

• Rule(CA1) d ≡ Γ
d1

`f : (x : M)N Γ
d2

`k : K Γ
d3

`K <c M
Γ ` f(k) : [c(k)/x]N

, with Θ(d1),

Θ(d2) and Θ(d3) defined. Assume that

Θ(d1)

∆1 ` f1 : (x : M1)N1,
Θ(d2)

∆2 ` k2 : K2 and
Θ(d3)

∆3 ` K3 <c3 M3.

With presupposition algorithms, we have derivations

pre2(pre3(pre6(d1)),Γ)

Γ `M kind ,
pre28(d3)

Γ `M kind,
pre6(d2)

Γ ` K kind,
pre18(d3)

Γ ` K kind,

pre2(pre3(pre6(E(Θ(d1)))),∆1)

∆1 `M1 kind ,
pre28(E(Θ(d3)))

∆3 `M3 kind,
pre6(E(Θ(d2)))

∆2 ` K2 kind and
pre18(E(Θ(d3)))

∆3 ` K3 kind

By lemma 4.26, we have

Θ(pre2(pre3(pre6(d1)),Γ)) ∼ pre2(pre3(pre6(E(Θ(d1)))),∆1),

Θ(pre2
8(d3)) ∼ pre2

8(E(Θ(d3))),

Θ(pre6(d2)) ∼ pre6(E(Θ(d2)))

Θ(pre1
8(d3) ∼ pre1

8(E(Θ(d3))).

Other other hand, by lemma 4.27, we have

Θ(pre2(pre3(pre6(d1)),Γ)) ∼ Θ(pre2
8(d3)) and Θ(pre6(d2)) ∼ Θ(pre1

8(d3)).

Hence the followings hold

pre2(pre3(pre6(Θ(d1))),∆1) ∼ pre2
8(E(Θ(d3)))

4. Coercive Subtyping and Proof 93

Θ(pre6(d2)) ∼ Θ(E(pre1
8(d3)))

which means

(∆1 `M1 kind) = (∆3 `M3 kind)

(∆2 ` K2 kind) = (∆3 ` K3 kind).

By definition, we have

` ∆1 = ∆3, ∆1 `M1 = M3, ` ∆2 = ∆3 and ∆2 ` K2 = K3,

then we can get

` ∆2 = ∆1 and ∆1 ` K2 = K3.

Recall the case(5) in the definition of Θ in subsection 4.3.2, all the re-

quired equalities marked with ?1−?4 are proved, so Θ(d) is well-defined

in this case.

4.4.2 Other Theorems

With the totality of Θ, we have the following theorem:

Theorem 4.29. If d is a derivation in T [C], then d ∼ Θ(d) in T [C].

Proof. Induction on the derivation of d, with the totality of Θ (theorem 4.28)

and using the equalities in the definition of Θ(d).

With the same technique in proving the totality of Θ, we can prove the

following two theorems.

Theorem 4.30. For every derivation d in system T [C]∗, Θ∗(d) is defined.

Theorem 4.31. If d is a derivation in T [C]∗, then d ∼ Θ∗(d) in T [C]∗.

Lemma 4.32. If J is a judgement in T [C]0K, which has a derivation d in

T [C]∗. Then conc(Θ∗(d)) ≡ J .

4. Coercive Subtyping and Proof 94

Proof. Induction on the derivation d. Since J is a judgement in T [C]0K ,

the last rule of d can not be coercive application or definition rules ((CA1∗)

(CA2∗) or (CD∗)). For all the cases, we can simply make induction on the

hypothesis.

Theorem 4.33. T [C]∗ is a conservative extension of T [C]0K, in the sense

that for every judgement J in T [C]0K, it is derivable in T [C]0K if and only if

it is derivable in T [C]∗.

Proof.

• (if) Suppose J has a derivation d in T [C]∗. By lemma 4.32, conc(Θ∗(d)) ≡
J , which means that Θ∗(d) is a derivation of J in T [C]0K .

• (only if) It can be trivially proved since T [C]0K is a sub-system of T [C]∗

With theorem 4.33 and corollary 4.6, we can get:

Colloary 4.34. T [C]∗ is a conservative extension of T .

Colloary 4.35. In T [C] (T [C]∗) the derivability of Γ ` K <c1 K
′ and Γ `

K <c2 K
′ implies Γ ` c1 = c2 : (K)K ′. The judgements of the form Γ `

K <c K cannot be derived in T [C] (T [C]∗).

Proof. The first part could be proved the same as proposition 3.11.

For the second part, if Γ ` K <c K could be derivable in T [C] (T [C]∗),
suppose the derivation is d. Then Θ(d) (Θ∗(d)) is a derivation in T [C]0K for

a subkinding judgement of two equal kinds, this contradicts 4.23.

Next, we will prove the totality of θ2, the main procedure is almost the

same as Θ. One difference we should point out is that since the range of θ2

is T [C]∗ not T [C]0K , when we prove the lemma for θ2 which corresponds to

lemma 4.27 for Θ, we need to use corollary 4.35 for contradiction.

4. Coercive Subtyping and Proof 95

Theorem 4.36. For every derivation d in system T [C]∗, θ2(d) is defined.

Theorem 4.37. θ2 is the inverse of θ1 (with respect to the identity transfor-

mation on derivations).

Proof. Induction on the derivations, no case presents any difficulty.

Colloary 4.38. The type theories T [C] and T [C]∗ are equivalent.

Proof. Induction on the derivations, no case presents any difficulty.

Colloary 4.39. The composition Θ∗◦θ2 is defined and equal to Θ(with respect

to the identity of derivations).

Proof. Induction on the derivations, by the definition of Θ, Θ∗ and θ2 no

case presents any difficulty.

5. COERCIVE SUBTYPING IN PLASTIC

Plastic [CL01] by Paul Callaghan, is a proof assistant which implements

logical framework LF and UTT, coercion has been implemented in Plastic

as well.

In this chapter, we will first discuss some useful coercion forms in LF,

some of which cannot be trivially done in those type theories in direct syntax

form. Then we give an introduction to Plastic with examples showing how

inductive types could be defined in Plastic. Finally we will show how coercive

subtyping is implemented in Plastic, the existing problems of Callaghan’s

version and the improvement we have done.

5.1 Coercions in a Logical Framework

In previous chapters, we have studied coercive subtyping in the logical frame-

work LF. Although some proof assistants such as Plastic implements logical

frameworks, most of the proof assistants implement type theories directly

without implementing a logical framework. For example, in Coq, the Π-

types are implemented directly : a Π-type (x:A)B in Coq corresponds to

Π(A, [x : A]B) in LF. Because of this difference, the coercion mechanism we

have studied provides a more general tool than those based on a direct syn-

tax. In particular, several forms of coercions are very useful in practice, as

studied by Bailey in his PhD thesis [Bai99], can be captured by our coercion

mechanism in LF.

5. Coercive Subtyping in Plastic 97

5.1.1 Argument Coercions

This is the usual form of coercions and it is supported by all of the proof

assistants that support coercion mechanisms. In a direct syntax, where Π-

types are of the form Πx : A.B, argument coercions are given by the following

rules:
f : Πx : A.B a : A0 A0 <c A : Type

f(a) : [c(a)/x]B

and furthermore, f(a) = f (c(a)). When Π is specified in LF, the application

operator is defined by means of the elimination operator:

app(A, [x : A]B, f, a) = EΠ(A, [x : A]B, [G : Π(A, [x : A]B)]B[a], [g : (x : A)B]g(a), f)

In our system of coercive subtyping, the following is a derivable rule:

f : (A, [x : A]B) a : A0 A0 <c A : Type

app(A, [x : A]B, f, a) : [c(a)/x]B

and we have app(A, [x : A]B, f, a) = app(A, [x : A]B, f, c(a)).

5.1.2 Type Coercions

The so-called type coercions (or ‘kind coercions’) are those converting non-

types into types. For instance, suppose Group is the type of (representations

of) groups and G : Group. One often says:

for all groups G and for all elements of G,

Formally, this is represented as

ΠG : Group.Πx : G.......

But this is not well-typed: G is not a type! For such applications, Bailey

[Bai99] has considered the so-called type coercions that convert non-types

to types. Eg., we convert the term G into G’s carrier type El(G). In a

5. Coercive Subtyping in Plastic 98

direct syntax, this has to be introduced separately from the argument coer-

cion mechanism. However, when we consider coercions based on the logical

framework, the above term is the following in LF:

Π(Group, [G : Group]Π(G, ...)),

which is equal to (by coercive subtyping)

Π(Group, [G : Group]Π(El(G), ...)),

where Group <El U with U being a type universe.

Therefore, the type coercions are just special cases of argument coercions

in the logical framework.

5.1.3 Function Coercions

Sometimes, when we apply a mismatching function onto an object, we cannot

coerce the object to be a matching type but we have coercions for the function

which can make the application well-typed. Hence, there is another kind

of coercions we would like to consider, converting from functions with a

mismatching type into a matching type or even from non functions into

functions. This cannot be done in the direct syntax, unless introducing a

separate mechanism for function coercion.

For example, if the application f a is not well-typed and there is no

argument coercion that can be inserted to get it well-typed, we may coerce

f into a function whose domain is the type of a with a coercion c, to get the

well-typed term (c(f))a.

In an LF-based syntax, this is to coerce

app(A,B, f, a)

5. Coercive Subtyping in Plastic 99

into

app(A,B, c(f), a)

Such function coercions are special cases of argument coercions in the

LF-based coercion mechanism.

Compared with the direct syntax, the coercive subtyping in a logical

framework provides us a wider range of coercion mechanisms, some of which

have been discussed above. In a proof assistant that implements coercions

based on a logical framework (like Plastic) these different forms of coercions

are supported. In most systems that implement coercions based on a direct

syntax (eg Matita), only argument coercions are supported, not type coer-

cions, function coercions or other cases. However, even for latter systems, the

above discussions give one a disciplined approach to indicating how further

forms of coercions may be implemented.

Remark 5.1. In Coq [Coq10], it introduces Funclass to help with function

coercions. Funclass is a class of functions, whose objects are all terms with

a function type; it allows us to write f(x) when f is not a function but

can be seen in a certain sense as a function such as bijection, functor, any

structure morphism etc. Coq also introduces another abstract Sortclass which

is the class of sorts. Objects of Sortclass are the terms whose type is a

sort(Prop,Set,Type). It allows to write x : A where A is not a type, but can

be seen in a certain sense as a type such as set, group, category etc.

5.2 Proof Assistant Plastic

Plastic is an implementation of LF and the type theory UTT presented in

chapter 9 of [Luo94], with extension of coercive subtyping. It is originally

implemented by Paul Callaghan [CL01]. In this section, we will present

the basic syntax of Plastic, and give some examples to show how different

inductive types could be defined in Plastic.

5. Coercive Subtyping in Plastic 100

5.2.1 Declaration and Definition

In Plastic, we can declare terms to be of a given kind in the following way:

> [<name>,...,<name> : <kind>];

Or define a term in the following way:

> [<name> = <term>];

Example 5.2. Here are some simple examples of declarations and defini-

tions.

> [A:Type];

> [a:A];

> [B=A];

> [b=a];

where Type is a kind as in LF, and all the terms on the right of a declaration

should be a kind. One may notice that we write a : A where A is a type, this

is a short notation in Plastic, we will coerce A to El(A) with kind coercion.

It is actually the same as writing:

> [a:El A];

5.2.2 Product of Kinds

In LF, if we have two kinds K and K ′, we could have dependent product

kind (x : K)K ′(x). In Plastic, we could define them in the following way,

(x:<term>) <term>

where 〈term〉 is a kind or an object of Type which would be coerced to be

an object of kind. If it is non-dependent we could simply write

(_:<term>) <term>

5. Coercive Subtyping in Plastic 101

or

<term> -> <term>

In LF, if k(x) : K ′(x), we can also define a term [x : K]k(x) to be of kind

(x : K)K ′(x). In Plastic, the notation of this is:

[x:<term>] <term>

〈term〉 has the same requirement as the ones in the product kind.

If we want to apply a term f of kind (x : K)K ′(x) to a term a : K in

Plastic, we simply write f a or f(a)

Example 5.3. We could define some product kinds and terms of product

kinds:

> [A:Type];

> [B:A->Type]

> [pAB : (x: A) (B x)];

> [id = [x:A]x];

The same as above, A and B x will be coerced to El(A) and El(B(x)). And

id will be of kind (x : El(A))El(A(x)).

5.2.3 Inductive Types

The syntax for defining inductive types in Plastic is like this:

> Inductive

> <paramerters>

> [<name> : <kind>]

> Constructors

> [<name> : <kind>]

>

5. Coercive Subtyping in Plastic 102

Once an inductive type 〈name〉 is defined, the elimination operator E 〈name〉
will be generated automatically by Luo’s algorithm in chapter 9 of [Luo94].

Example 5.4. We could define the Nat and List in Plastic as follows:

1. Nat is defined as:

> Inductive

> [Nat:Type]

> Constructors

> [zero:Nat]

> [succ:(n:Nat)Nat];

Nat will be a type with two constructors:

zero : Nat

succ : (n:Nat)Nat

The elimination operator for E Nat is generated as well:

E_Nat : (C_Nat:El Nat->Type)

El(C_Nat zero)

->((n:El Nat)El(C_Nat n)->El(C_Nat(succ n))

->(z:El Nat)El(C_Nat z)

2. List of any type A is defined as:

> Inductive

> [A:Type]

> [List:Type]

> Constructors

> [nil:List]

> [cons: (a:El A)(l:List)List];

We will get two constructors for List

5. Coercive Subtyping in Plastic 103

nil : List

cons : (a:El A)(l:List)List

The elimination rule of List E List is generated as well:

E_List : (A:Type)

(C_List:El(List A)->Type)

El (C_List (nil A))

->

((a:El A)(l:El (List A))El(C_List l)->El(C_List(cons A a l)))

-> (z:El(List A))El(C_List z)

Example 5.5. With the terms for elimination rules, we can define other

rules for the inductive types:

1. For Π-types, we have the application rule

(app)
Γ `M : Π(x : A).B Γ ` N : A

Γ `MN : [N/x]B

With E Pi, we could define application operator of Π-type in Plastic

> [ap = [A:Type][B:(_:A)Type][f:Pi A B][x:A] E_Pi A B

([G:El (Pi A B)]B x)([g:(x1:A)(B x1)]g x)f];

2. For function space type, we have almost the same application rule as Π

type. With E Pi , we could define application rule of Pi type

> [ap_ = [A:Type][B:Type][pi:Pi_ A B][x:A]E_Pi_ A B

([G:El (Pi_ A B)]B)([f:El A-> El B]f x) pi];

3. For Σ-types, we have two projection π1 and π2

(π1)
Γ `M : Σ(x : A).B

Γ ` π1(M) : A

5. Coercive Subtyping in Plastic 104

(π2)
Γ `M : Σx : A.B

Γ ` π2(M) : [π1(M)/x]B

With E Sigma, we could define π1 and π2 as well:

> [pi1 = [A:Type][B:(_:A)Type]

E_Sigma A B([_:Sigma A B]A)([x:A][y:B x]x)];

> [pi2 = [A:Type][B:(_:A)Type][s:Sigma A B]

E_Sigma A B([s1:Sigma A B]B(pi1 A B s1))([x:A][y:(B x)]y)s];

We predefine many other inductive types in the library. To use them, one

only simply need to import with the command:

> import <libname>

5.3 Implementation of Coercions in Plastic

In this section, we will describe how coercive subtyping is implemented in

Plastic, show how to use it in various forms of coercion with some examples,

then talk about the defects and bugs in Callaghan’s implementation and

present our improvement.

5.3.1 Different Ways of Using Coercive Subtyping in Plastic

Plastic implements not only the coercions between the simple terms, but

also dependent coercions, parameterized coercions and coercion rules. Users

could define coercions to handle any combination of the following cases of

coercion:

• Plain coercions, of kind (A)B.

• Dependent coercions, of kind (x : A)B(x);

5. Coercive Subtyping in Plastic 105

• Parameterized coercions, for example, of kind (l : (n : Nat)(V ec n))List

or as we described before π1 : (A : Type)(B : (A)Type)(Σ(A,B))A,

which are families of coercions.

• Coercion ”rules”, for example, if we have coercion from A to B, it is

able to coerce List(A) to List(B).

For the coercion rules, we call the coercions in the premises to be pre-

requisites of the coercions in the conclusion. For example, in the following

rule:
K1 <c K2

K ′1 <c′ K ′2

c is a prerequisite of c′.

More precisely, when we apply a term f of kind (x : K1)K2 on a term a,

the coercion insertion goes with the following steps:

1. check the kind of a, let the type be K ′1,

• ifK ′1 is convertible toK1, then f(a) is well typed and no is coercion

needed.

• otherwise, we need to go to next step to search for applicable

coercions.

2. if there is a coercion c from K ′1 to K1 in the context, then f(a) is

typable and equals to f(c(a)) of kind [c(a)/x]K2.

3. if there’s a parameterized coercion c0(p1, p2...) matches the form from

K ′1 to K1 (see Example 5.7), we will go to check whether there’re some

parameters m1,m2, ... makes c0(m1,m2, ...) from K ′1 to K1 . If so, f(a)

is of kind [c(a)/x]K2 equals to f(c(a)) , where c ≡ c0(m1,m2...).

4. if there’s a coercion rule cr matches the form from K ′1 to K1 (see Ex-

ample 5.8), we will go to check whether the parameters and the pre-

requisites satisfied . If so, f(a) is of kind [c(a)/x]K2 equals to f(c(a)),

where c is cr applied with parameters and prerequisite coercions.

5. Coercive Subtyping in Plastic 106

5. otherwise, f(a) is alerted to be not well-typed.

Remark 5.6. In Plastic, when we consider using coercive subtyping, we

not only try to find the coercion for the required source and range kind, but

also try to find coercion whose source and range kind are convertible to the

requirement. What we say there’s a coercion from K ′1 to K1 actually means

that there’s a coercion from K ′0 to K0, where K0 is convertible to K1 and K ′0

is convertible to K ′1,

We will use two examples to illustrate how we apply parameterized coer-

cions and coercion rules in more detail.

Example 5.7. Consider coercion Σ(A,B) <π1 A for any A,B, where π1 :

(v1 : Type)(v2 : (v1)Type)(Σ(v1, v2))v1. Suppose we have terms M : Type,

N : (M)Type, a : Σ(M,N), f : (M)M . When we apply f to a, we require a

term of type M , but we only have term of type Σ(M,N). So we need to insert

this gap, put in another word, we need to get a coercion from Σ(M,N) to M .

In Plastic we record Σ(M,N) as “src” (source) and M as “tgt” (target):

src− Σ(M,N) tgt− M

Checking the coercions, we have π1 with variables, domain (“dom”) and range

(“rng”) of this coercion are:

dom− Σ(v1, v2) rng − v1

Comparing M with v1, we try to match v1 with M first. Then we compare

Σ(M,N) with Σ(M, v2), and match v2 with N . Finally, we get a coercion

π1(M,N) : Σ(M,N)M

which satisfies our coercion requirement, and make f(a) to be well-typed, and

equal to f(π1(M,N)(a)) : [π1(M,N)(a)/x]M .

5. Coercive Subtyping in Plastic 107

Example 5.8. Consider coercion rule, for any A, B

A <c B

List(A) <map(A,B,c) List(B)

where map is defined as in chapter 3:

map : (v1 : Type)(v2 : Type)(c0 : (v1)v2)(List(v1))List(v2)

Suppose we have terms M,N : Type, a coercion M <c N , and we want to

apply f : (List(N))List(N) to term a : List(M). We need a coercion from

List(M) to List(N):

src− List(M) tgt− List(N)

Checking the coercions, we have map with variables, the coercion domain and

range are:

dom− List(v1) rng − List(v2)

Comparing List(N) with List(v2), we try to match v2 with N . Then we

compare List(M) with List(v1), match v1 with M . Now we need a term

c0 : (v1)v2, and c : (M)N is what we need. Finally we get a coercion

map(M,N, c) : (List(M))List(N)

which satisfies our coercion requirement, and make

f(a) = f(map(M,N, c)(a)) : [map(M,N, c)(a)/x]List(N)

5.3.2 Declaring Coercions

The syntax of declaring coercion in Plastic is followed:

5. Coercive Subtyping in Plastic 108

> Coercion

> Parameters <decls>

> Prerequisites <names>

> =<term>:<type>

In this syntax, term is for the coercion term, type is the type of the term

and is optional. Parameters and Prerequisites are also optional according

to different coercions users want to define and we could use them to define

parameterized coercion and coercion rules. Prerequisites requires some co-

ercions as prerequisites. Once a user defines a coercion, the system will give

a meta-variable name with ”cx” as prefix to the coercion. The names will be

cx1, cx2, cx3, ...

Example 5.9. Here are examples of different ways to declare coercions where

Nat and Bool are types (we omit Plastic code for some inductive data types).

1. Plain coercions. If we want to define a plain coercion c from Bool to

Nat, we could simply write:

> [c : Bool -> Nat];

> Coercion = c : Bool -> Nat;

or simply

> [c: Bool -> Nat];

> Coercion = c;

We also could define a concrete term to be a coercion. Suppose c1 is of

kind (Bool)Nat and takes false to zero, and true to one (succ(zero)):

> [c1 = E_Bool ([x:Bool] Nat) (succ(zero)) zero];

> Coercion = c1;

2. Dependent coercions. We could define a function lv from List(Nat) to

Vec(Nat,n) (n is the size of the list),

lv(nil(Nat)) = vnil(Nat)

5. Coercive Subtyping in Plastic 109

lv(cons(Nat, x, l)) = vcons(Nat, len(l), x, lv(l))

where len:(l:(List(Nat)))Nat gives the length of a List(Nat):

len(nil(Nat)) = zero

len(cons(Nat, x, l)) = succ(len(l))

now we could define lv as a coercion

> Coercion = lv;

3. Parameterized coercions. We could define a function vl from Vec(Nat,n)

to List(Nat):

vl(vnil(Nat)) = nil(Nat)

vl(vconst(Nat, n, x, v)) = cons(Nat, x, vl(v))

so we could define vl as a parameterized coercion, with parameter n:Nat.

> Coercion

> Parameters [n:Nat]

> = vl n;

4. Coercion rules. We could define a rule, if there is a coercion from A

to B, then we can have a coercion from List A to List B.

> Coercion

> Parameters [A,B:Type][f:A->B]

> Prerequisites f

> = map A B f : List A -> List B;

where map is a function maps every element from List(A) to List(B)

with function f:(x:A)B defined as in Chapter 3.

5. Coercive Subtyping in Plastic 110

Example 5.10. We could combine the examples above, the following program

will work which shows how these coercions work.

> [c : Bool -> Nat];

> Coercion = c ;

> [a : Bool];

> [sa = succ(a)];

> Coercion

> Parameters [A,B:Type][f:A->B]

> Prerequisites f

> = map A B f : List A -> List B;

> [g: (List Nat) -> Nat];

> [b: List Bool];

> [gb = g(b)];

Coercion c would be given a meta-variable name cx1 in the program, and the

coercion rule is cx2. cx2 takes Bool, Nat and cx1 as parameters, and cx1

is also the coercion as prerequisite we mentioned above. g(b) would be well

typed through the coercion rule, and

succ(a) = succ(cx1 a) : El(Nat)

g(b) = g(cx2(Bool,Nat, cx1(b))) : El(Nat)

Example 5.11. The Plastic code for Example 3.1 is as follows:

> [Man,Human,Prop:Type];

> [c:Man->Human];

> Coercion = c;

> [run: Human->Prop];

> [John:Man];

5. Coercive Subtyping in Plastic 111

> [John_run: run John];

Coercion c : (Man)Human is given a meta-variable name cx1 in the pro-

gram, and

run John = run(cx1(John)) : El(Human)

5.3.3 Transitivity and Coherence

In Plastic, transitivity is implemented for basic coercions, those which do

not have premises coercion. For example, if we have coercions Even <c Nat,

and Nat <c′ Bool, then we will generate a new coercion [x : Even]c′(c(x))

from Even to Bool.

Coherence will be checked when a new coercion c from A to B is in-

troduced, where c could be newly defined or generated by transitivity. To

achieve this, Plastic checks to see if there is already a coercion from A to B.

If no such coercion exists, we accept the new coercion. If there exists such a

coercion c′, check whether the two coercion terms c and c′ are convertible; if

they are convertible, we will do nothing with it; if they are not convertible,

reject the coercion.

When parameterized coercions are specified or when coercion rules are

used to introduce coercions, coherence checking is undecidable in general.

Therefore, we need to show that, for example, certain coercion rules are

coherent and hence can be used in practice. Here are some examples, which

demonstrate that those parameterized coercions or coercion rules can be used

to specify coercions in the considered applications.

• For Σ-types, the first projections π1 as a parameterized coercion, as

specified by the rule (Σπ1) in Example 5.5 , are coherent. This has

been used effectively by many people (eg, [Bai99]) for notational ab-

breviations in proof development.

5. Coercive Subtyping in Plastic 112

• The structural subtyping rules for all of the inductive types that are

introduced by the schemata (eg, the rule for the type of lists in Example

3.13) are proved to be coherent ([LL05, LA08]). Such coercions specify

natural subtyping relations for inductive types and can be used in many

applications.

• There are many other coercion rules useful in various applications, ex-

amples of which include

– the (ξ) rule together with the subtyping propagation rules are

coherent and used in providing Intensional Manifest Fields for

record types or Σ-types ([Luo09b]).

– for the dot-types to be discussed below, the associated projection

operators, together with the subtyping propagation operators for

the dot-types, are coherent ([Luo10]). See the next chapter for

dot-types and their implementation.

5.3.4 Problems and Improvement

However, there are some defects of Callaghan’s implementation.

1. One can add a new coercion which is convertible to an existing one.

For example, if we have defined A <c B, when we have c′ = c or

c′′ = [x : A](c(x)), we can still declare c′ or c′′ to be a coercion. A

special case is that one can declare a term c : (A)B to be a coercion

as many times as he wants. Since they are convertible to c, coherence

still holds. But when we use coercions in Plastic, we will only use the

first coercion among these convertible coercions. So the convertible

coercions are actually redundant.

2. When we generate a new coercion with the transitivity rule, while

there’s an existing coercion of the same type, only the coercion gener-

ated by transitivity will be rejected, the coercions forming the compo-

sition will still be accepted. For instance, if we have coercion A <c1 B,

5. Coercive Subtyping in Plastic 113

A <c2 C, and we want to introduce a new coercion B <c3 C, by tran-

sitivity [x : A](c3(c1(x))) should be a coercion from A to C, since c2

is already a coercion of such type, [x : A](c3(c1(x))) will not be added

into context. But c3 will still be added into the context in the old

implementation. It is not reasonable, the newly introduced coercion c3

violates the coherence with transitivity rule, it should not be accepted

as a coercion.

3. There are some problems when the transitivity rule takes more than 3

coercions. For example. If we have A <c1 B, and C <c2 D, when we

introduce another coercion B <c3 C, the system will generate coercion

[x : A](c3(c1(x))) from A to C and coercion [x : B](c2(c3(x))) from B

to D. But it will never get the coercion from A to D which should be

generated as well.

To amend these problems, we have improved coercive subtyping in Plastic

according to each problem above as follows:

1. When adding a new coercion, check whether the term has been de-

clared as coercion. If so, just ignore the declaration. If not, and if the

coercion is of the same type as an existing coercion, check whether it

is convertible to the existing one. If yes, ignore this declaration; if not,

deny this declaration. Accept the other cases.

2. When we add a new coercion, we check the coherence of the term and all

possible transitivity coercions. If the newly introduced coercion which

is generated by transitivity rule is rejected, we will reject the term

causing this transitivity as well. For example, if we have A <c1 C,

A <c2 B and we want to introduce C <c3 B. By transitivity, we could

generate a new coercion [x : A]c3(c1(x)) from A to B, but c2 is already

a coercion from A to B and they are not convertible. We will not

only reject [x : A]c3(c1(x)), but also reject coercion c3. To achieve

this, whenever we find a term that violates coherence, i.e. it’s of the

same type with but not convertible to an existing coercion, algorithm

5. Coercive Subtyping in Plastic 114

will fail. The context will be the same with the one before we enter

the algorithm. So any coercion which might violate coherence itself

or generate some coercion with rules to violate coherence will not be

added.

3. The last problem was simply caused by a programming bug. Dealing

with the coercion composition recursively as showed in algorithm 5.12

below will solve the problem.

The algorithm for adding a new plain coercion into context and check the

transitivity and coherence is giving below:

Algorithm 5.12. Declare c to be a plain coercion

1. Check whether c is of a product type. If c is not a product type, send a

warning and stop, otherwise go to the next step.

2. Check whether c is already defined as a coercion. If c is already defined

as a coercion, send a warning and stop, otherwise go to the next step.

3. Get c’s type (A)B from the context, check whether there’s already a

coercion from A to B, if so interrupt and end the algorithm, otherwise

go to the next step.

4. Get all the existing coercions cX from type X to A and all the coercions

cY from type B to type Y . Consider the coercions generated by transi-

tivity from X to B and from A to Y (see Figure 5.1). For the existing

X and Y , take < c cX >= [x : X](c(cX(x))) as coercion from X to B

and < cY c >= [x : A](cY (c(x))) as coercion from A to Y , go to step 3

to check the coherence for all these coercion recursively. If there’s no

such coercions, simply go to the next step.

5. Add the coercion c into the context.

One may find that we add the coercion to the context in the last step.

This makes sure that we will add this coercion to the context only when

5. Coercive Subtyping in Plastic 115

A

X

B

Y

cX

? < c cX >

? c

? < cY c >

cY

Fig. 5.1: Transitivity

all the coherent checking have been done. When we interrupt and end our

algorithm, we do not record any change in the algorithm, and the state of the

context will be the same state before starting the algorithm. This guarantees

that, if the coercion we try to introduce is problematic (like not coherent),

no action will be taken according to this coercion.

Example 5.13. We will use some examples to show the improvement we

have made for coercive subtyping in Plastic.

1. > [A, B : Type];

> [c1 : A -> B];

> [c2 = c1];

> Coercion = c1;

> Coercion = c2;

In the previous version, both c1 and c2 will be defined as coercions.

Now, the system will only add c1 as coercion and tell the user there’s

an convertible term to c2 which is already a coercion.

2. > [A, B, C : Type];

> [c1 : A ->B];

> [c2 : A ->C];

> [c3 : B ->C];

> Coercion = c1;

> Coercion = c2;

> Coercion = c3;

In the previous implementation, when we introduce the last line, the

system will tell the user there’s already a coercion from A to C which is

5. Coercive Subtyping in Plastic 116

not convertible to [x:A]cx3(cx1(x)) (cx1, cx2 and cx3 are meta-variables

in Plastic for c1, c2 and c3). However, c3 is still kept as a coercion.

Now, we will not keep c3 as coercion in the context for this case.

3. > [A, B, C, D : Type];

> [c1 : A ->B];

> [c2 : C ->D];

> [c3 : B ->C];

> Coercion = c1;

> Coercion = c2;

> Coercion = c3;

In the previous implementation, we will use transitivity to add coercions

from A to C and from B to D, but the system cannot add coercion from

A to D. After amending the program, the coercion from A to D will

also be added.

6. DOT-TYPES WITH COERCIVE SUBTYPING

Dot-types, or sometimes called dot objects or complex types, are special data

types. They were introduced by Pustejovsky in the Generative Lexicon The-

ory [Pus95] and studied by many others, including [Ash11]. Intuitively, a

dot-type is formed from two constituent types that present distinct aspects

of those objects in the dot-type. For example, a book may be considered

to have two aspects: one informational (eg, when it is read) and the other

physical (eg, when it is picked up). One may therefore consider a dot-type

Phy• Info whose objects, including books, have both physical and informa-

tional aspects. In particular, such objects can be involved in the linguistic

phenomenon of copredication and dot-types play a promising role in its anal-

ysis and formalization.

Although the meaning of dot-types is intuitively clear, its proper formal

account seems surprisingly difficult and tricky (see [Ash08] for a discussion).

Researchers have made several proposals to model dot-types formally includ-

ing, for example, [Ash11, AP05] and [Coo11, Coo07]. Besides discussions

on whether the proposed solutions do capture and therefore give successful

formal accounts of dot-types, most of these proposals are considered in the

Montagovian setting which is based on Church’s simply type theory [Chu40].

Compared to simply type theory, modern type theories(MTTs) may be clas-

sified into the predicative type theories such as Martin-Löf’s type theory

[NPS90, ML84] and the impredicative type theories such as the Calculus of

Constructions (CC) [CH88] and the Unifying Theory of dependent Types

(UTT) [Luo94]. In [Luo10], a formal treatment of dot-types in modern type

theories has been proposed with the help of coercive subtyping and it is ar-

gued that, because in the formal semantics based on MTTs, common nouns

6. Dot-types with Coercive Subtyping 118

(CNs) are interpreted as types (rather than predicates as in the Montague

semantics), the linguistic phenomena such as copredication can be given sat-

isfactory treatments by means of dot-types.

In this chapter, we present an implementation of dot-types in the proof

assistant Plastic [CL01], based on the formalization of dot-types in MTTs.

As far as we know, this is the first attempt to implement the dot-types.1 It

allows us to use dot-types in the development of formal semantics in proof

assistants and, at the same time, gives us a better understanding of dot-types

and their relationship with other data types in type theory.

Dot-types are not ordinary inductive types, as found in the MTT-based

proof assistants such as Agda, Coq and Plastic. In particular, for A•B to be

a dot-type, the constituent types A and B should not share components (see

the main text for the formal definition). In an implementation of dot-types,

this special condition of type formation must be checked and adhered to. In

order to make sure of this, we have to implement the dot-types as special

data types, different from ordinary inductive types. We shall show how this

is done in our implementation in Plastic.

6.1 Dot-types in Formal Semantics

In the Generative Lexicon Theory [Pus95], Pustejovsky has introduced the

idea of employing dot-types to model various linguistic data that involve

objects that have distinct aspects. Typical examples are concerned about

copredication, where different aspects of a word are selected when predication

comes into force. For example, in the following sentences [Ash11], the words

‘lunch’ and ‘book’ both have two distinct aspects to be selected: in (6.1) a

‘lunch’ was delicious as food and took forever as an event, and in (6.2) a

‘book’ was picked up as a physical object and mastered as an informational

1 In [Luo11] some examples have been presented in Coq [Coq10] and, since Coq does
not support dot-types, Σ-types were used to mimic dot-types, although the author was
fully aware of the fact that this is in general impossible and leads to incoherence, since
there is no guarantee that the constituent types of a dot-type do not share components.

6. Dot-types with Coercive Subtyping 119

object.

(6.1) The lunch yesterday was delicious but took forever.

(6.2) John picked up and mastered the mathematical book.

There have been studies of dot-types in various formal systems or semi-

formal systems including, for example, [Pus95, AP05, Ash11, Pus11]. Most

of these proposals are given in the Montagovian setting where, in particular,

common nouns are interpreted as predicates. It has been argued that the way

that CNs are interpreted in the Montagovian setting is incompatible with the

subtyping postulates that the type of entities has subtypes Event (of events),

Phy (of physical objects), Info (of informational objects), etc. This leads to

unnecessary difficulties and formal complications when formalizing dot-types.

On the other hand, if we interpret CNs as types, as in the formal semantics

based on MTTs, the treatment becomes straightforward and satisfactory

[Luo10]. (See section 6.2.1 for further details.)

Usually the two aspects involved in a dot-type are incompatible: in the

above examples, Food and Event are incompatible and so are the physical

and informational objects. This incompatibility of the two aspects that form

a dot-type was expressed by Pustejovsky as follows:

Dot objects have a property that I will refer to as inherent polysemy.

This is the ability to appear in selectional contexts that are contradictory

in type specification. [Pus05]

In other words, an important feature is that, to form a dot-type A • B, its

constituent types A and B should not share common parts. For instance,

• Phy •Phy should not be a dot-type because its constituent types are

the same type Phy.

• Phy • (Phy • Info) should not be a dot-type because its constituent

types Phy and Phy • Info share the component Phy.

6. Dot-types with Coercive Subtyping 120

Put in another way, a dot-type A •B can only be formed if the types A and

B do not share any components: it is a dot-type only when the constituent

types A and B present different and incompatible aspects of the objects.

This incompatibility is one of the two key features based on which dot-

types are introduced in MTTs: it is stipulated that the constituent types of a

dot-type do not share components. The other feature is that the relationships

between the dot-type and its constituent types are captured by means of co-

ercive subtyping so that the dot-type is the subtype of both of its constituent

types. We now turn to the type-theoretic formulation of dot-types.

6.2 Dot-types in Modern Type Theories

In this section, we show how dot-types can be introduced in modern type

theories with the help of coercive subtyping [Luo10]. We will first explain

informally, in the formal semantics based on MTTs, called type-theoretical

semantics, henceforth, how to use dot-types to interpret copredication in

natural language. Then we will lay down the formal rules of the dot-types

in modern type theories.

6.2.1 Dot-types and Coercive Subtyping

Type-Theoretical Semantics

In [Ran94], Ranta has studied various semantic issues of natural languages

in Martin-Löf’s type theory, introducing the basic ideas of type-theoretical

semantics based on MTTs. Unlike Montague grammar in which common

nouns like Man and Human are interpreted as functional subsets (or pred-

icates) of entities, in the type-theoretical semantics based on modern type

theories, common nouns are interpreted as types. For instance, in Montague

grammar, Man and Human are interpreted as objects of type e→ t, where

e is the type of entities and t the type of propositions. In type-theoretical

6. Dot-types with Coercive Subtyping 121

semantics, the interpretations of Man, Human and Book are types:

[[man]], [[human]], [[book]] : Type

This is natural in a modern type theory, which is many-sorted in the sense

that there are many types like [[man]] and [[book]] consisting of objects stand-

ing for different sorts of entities, while the simple type theory may be thought

of as single sorted in the sense that there is the type e of all entities. In a

type-theoretical semantics, verbs and adjectives are interpreted as predicates.

For example, we can have

[[nice]] : [[book]]→ Prop

[[read]] : [[human]]→ [[book]]→ Prop

where Prop is the type of propositions. Modified common noun phrases

could be interpreted by means of Σ-types of dependent pairs: for instance,

[[nice book]] = Σ([[book]], [[nice]])

Dot-type and Coercive Subtyping

Intuitively, a type of two aspects should be a subtype of a single aspect of

those two, so a dot-type should be a subtype of its constituent types. For

instance, it is natural to think that the type consisting of the objects with

both aspects of food and event be a subtype of Food as well as a subtype

of Event. Similarly, the type consisting of objects with both physical and

informational aspects should be a subtype of the type Phy of physical objects

and a subtype of the type of informational aspect:

Phy • Info <c1 Phy

Phy • Info <c2 Info

Consider sentence (6.2) again. In a type-theoretical semantics, we may

6. Dot-types with Coercive Subtyping 122

assume that

[[book]] < Phy • Info

[[pick up]] : [[human]]→ Phy→ Prop

[[master]] : [[human]]→ Info→ Prop

Because of the above subtyping relationship (and contravariance of subtyping

for the function types), we have

[[pick up]] : [[human]]→ Phy→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

[[master]] : [[human]]→ Info→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

Therefore, [[pick up]] and [[master]] can both be used in a context where

terms of type [[human]]→ [[book]]→ Prop are required and the interpreta-

tion of the sentence (6.2) can proceed as intended.

However, as we mentioned above, there are some difficulties if we do the

same thing in Montagovian settings. Take the example of “heavy book”. In

Montague semantics, we should have

[[heavy]] : (Phy→ t)→ (Phy→ t)

[[book]] : Phy • Info→ t

In order to interpret “heavy book” as [[heavy]]([[book]]), we need

Phy • Info→ t < Phy→ t

6. Dot-types with Coercive Subtyping 123

By contravariance, we need

Phy < Phy • Info

But this is not the case, the subtype relation is actually in another way

around.

6.2.2 Dot-types in Type Theory: a Formal Formulation

In the following, we present a type-theoretic treatment of dot-types with

the help of coercive subtyping. There are two important ingredients in this

type-theoretic definition:

1. The constituent types of a dot-type should not share common compo-

nents.

2. A dot-type, if well-formed, should be a subtype of both of its con-

stituent types.

Because of (1), the first and the most important thing is to define the notion

of component and, when doing this, because of (2), the set of components of

a type should contain its constituents and their super-types. This is formally

given by means of the following definition.

Definition 6.1 (component). Let T : Type be a type in the empty context.

Then, C (T), the set of components of T, is defined as:

C (T) =def

 SUP (T) if the normal form of T is not of the form X • Y

C (T1) ∪ C (T2) if the normal form of T is T1 • T2

where SUP (T) = {T ′|T 6 T ′}.

Now, we give the formal rules for the dot-types in Figure 6.1. Note that,

in the formation rule, we require that the constituent types do not share

6. Dot-types with Coercive Subtyping 124

Formation Rule
Γ ` valid 〈〉 ` A : Type 〈〉 ` B : Type C (A) ∩ C (B) = ∅

Γ ` A •B : Type

Introduction Rule
Γ ` a : A Γ ` b : B Γ ` A •B : Type

Γ ` 〈a, b〉 : A •B

Elimination Rules
Γ ` c : A •B
Γ ` p1(c) : A

Γ ` c : A •B
Γ ` p2(c) : B

Computation Rules

Γ ` a : A Γ ` b : B Γ ` A •B : Type

Γ ` p1(〈a, b〉) = a : A

Γ ` a : A Γ ` b : B Γ ` A •B : Type

Γ ` p2(〈a, b〉) = b : B

Projections as Coercions

Γ ` A •B : Type

Γ ` A •B <p1 A : Type

Γ ` A •B : Type

Γ ` A •B <p2 B : Type

Coercion Propagation

Γ ` A •B : Type Γ ` A′ •B′ : Type Γ ` A <c1 A
′ : Type Γ ` B = B′ : Type

Γ ` A •B <d1[c1] A
′ •B′ : Type

where d1[c1] ≡ [x : A ∗B]〈c1(p1(x)), p2(x)〉

Γ ` A •B : Type Γ ` A′ •B′ : Type Γ ` A = A′ : Type Γ ` B <c2 B
′ : Type

Γ ` A •B <d2[c2] A
′ •B′ : Type

where d2[c2] ≡ [x : A ∗B]〈p1(x), c2(p2(x))〉

Γ ` A •B : Type Γ ` A′ •B′ : Type Γ ` A <c1 A
′ : Type Γ ` B <c2 B

′ : Type

Γ ` A •B <d[c1,c2] A
′ •B′ : Type

where d[c1, c2] ≡ [x : A ∗B]〈c1(p1(x)), c2(p2(x))〉

Fig. 6.1: The rules of Dot-type

6. Dot-types with Coercive Subtyping 125

common components:

C (A) ∩ C (B) = ∅

According to the rules in Figure 6.1, A•B is a subtype of A and a subtype

of B. In other words, an object of the dot-type A • B can be regarded as

an object of type A, in a context requiring an object of A, and can also be

regarded as an object of type B in a context requiring an object of B.

Finally, the subtyping relations are propagated through the dot-types, by

means of the coercions d1, d2 and d as specified in the last three rules in

Figure 6.1.

Propagations

To explain the propagation rules, we first illustrate the coercion relations

below:

A
6 // A′

A •B

<

<<xxxxxxxxx

<
""FF

FF
FF

FF
F

< // A′ •B′

<
;;vvvvvvvvv

< ##HHHHHHHHH

B 6
// B′

Let’s take a more concrete example: we can think of interpreting the

phrase

pick up and read the book

Instead of simply considering book having physical and informational aspect,

we might think that a book contains readable information, compared to radio

program which does not have a readable informational aspect. So we could

6. Dot-types with Coercive Subtyping 126

interpret

[[readable]] : Info→ Prop

[[readable info]] = Σ(Info, [[readable]])

[[book]] < Phy • [[readable info]]

With the coercion relation we have for Σ-types in [LL05],

Σ(Info, [[readable]]) < Info

we have [[readable info]] < Info and trivially we have Phy = Phy. So we

could get the following by propagation rule

[[book]] < Phy • [[readable info]] < Phy • Info

It conforms with the example we’ve explained above.

Since the constituent types of a well-formed dot-type do not share com-

ponents, it is straightforward to prove the following coherence property.

Proposition 6.2. (coherence) The coercions p1, p2, d1, d2 and d are coherent

together.

Note that coherence is important as it guarantees the correctness of em-

ploying the projections p1 and p2 and the propagation operator d as coercions,

and hence the subtyping relationships A •B <p1 A and A •B <p2 B.

If the constituent types of a dot-type shared a common component, co-

herence would fail, like in product type. For instance, A and A •B share the

component A. If A • (A •B) were a dot-type, with the transitivity rule there

would be the following two coercions p1 and p2 ◦ p1:

A • (A •B) <p1 A

A • (A •B) <p2◦p1 A

6. Dot-types with Coercive Subtyping 127

which are between the same types but not equal, coherence would then fail.

One may find that, when a dot-type A • B is well-formed, its behavior

is similar to that of a product type A × B: intuitively, its objects are pairs

and the projections p1 and p2 correspond to the projection operations π1

and π2 in the product type, respectively. However, there are two important

differences between dot-types and product types:

1. The constituent types of a dot-type do not share components, while

in a product type the constituent parts can possibly share component.

For instance, A× A is a well-formed product type, but A • A is not a

well-formed dot-type.

2. It is fine for both of the projections p1 and p2 for dot-types to be

coercions (Proposition 6.2), but for product types, only one of them

can be coercions for, otherwise, coherence would fail [Luo04].

6.3 Implementation

We have shown how to formalize the dot-types in type theory in the previous

section. As we have proof assistants which have implemented various data

types, we would also like to put dot-types into proof assistant. However

unlike inductive types such as the product types or Σ-types which could be

defined with inductive schemata, dot-type cannot simply be defined in such

a way. The main reason is that we need to check whether the constituents of

the dot-type share components. Especially in our definition of component,

we need to check all the coercion relations of the term and its constituents in

the context. This is not covered by existing approaches to define inductive

types in the libraries of proof assistants. So we have to proceed in a hard

code way: defining dot-types directly in a proof assistant.

In this section, we present how we implement dot-types in the proof

assistant Plastic, and show how to use it.

6. Dot-types with Coercive Subtyping 128

6.3.1 Dot-types in Plastic

As explained above, the dot-types have to be directly implemented in Plastic

and, at the same time, the associated subtyping relations have to be specified.

First of all, we should point out that, different with the idea in the theory,

dot-types do not exist until they are used in our implementation. More pre-

cisely, in the theory, for any types A and B, if they do not share components,

A • B is a valid dot-type. But in our implementation, it’s a valid dot-type

only when we have used it and put it into the context. The reason is that we

need to check whether the dot-type is valid and add corresponding coercions,

but we do not want to check this for every pairs of data type which involves

too much unnecessary work. We call a dot-type is considered (or existing) if

we have used it and put it into the context. There are several more things

we need to point out here:

• In the syntax of Plastic, we use A∗B to present the dot-type A•B and

dot < a, b > to present dot term < a, b >. However, in the parts that

do not concern with code in this thesis, we still use A •B and < a, b >

for description.

• When we declare a new dot-type A • B, or a dot term < a, b > where

a : A and b : B, we will first check whether it is a proper dot-type. If

C(A) ∩ C(B) = ∅, A • B will be a legal dot-type or < a, b > will be a

legal dot term; otherwise, they will be rejected and an error message

‘dot-type should not share component ’ will be shown

• Once a dot-type A • B or dot term < a, b > is considered to be well-

formed (legal), we will consider the coercions generated from the dot-

type A•B. We will add [x : A•B]p1(x) and [x : A•B]p2(x) as coercions

from A •B to A and B 2.

• We do not offer a special place for the dot-types in the context, we use

the information of the coercions. When we want to find out whether a
2 The system will automatically assign newly metavariable names cx1, cx2, ... to the

new introduced coercions by the dot-type rules

6. Dot-types with Coercive Subtyping 129

dot-type A • B is considered, we go to the check the coercions in the

context to see if A •B is domain of some coercions.

• Furthermore, we will check the existing coercions of other dot-types to

see whether there are cases for coercion propagation and if so, Plastic

will add the new coercions generated by the coercion propagation into

context.

In the implementation, we define some reductions for the computation

rules for the projections p1 and p2, and the propagation operators d, d1, and

d2. Assume A,B,C,D : Type, a : A, b : B, A <c1 C, B <c2 D, we have:

p1(< a, b >) B a

p2(< a, b >) B b

d[c1, c2](< a, b >) B < c1(a), c2(b) >

d1[c1](< a, b >) B < c1(a), b >

d2[c2](< a, b >) B < a, c2(b) >

In the following, we present four main algorithms in our implementation.

First we need to give an algorithm to calculate the components of a type.

Algorithm 6.3. (checking components) Given a type A, we will calculate

the component of A, C (A), in the following way.

1. Check the form of A to see whether it is a dot-type or not.

2. If A is not a dot-type, check all the coercion relations in the context

to find out every type T which satisfies A <c T with some coercion c.

C (A) is the set of all these super types T .

3. If A is a dot-type of the form T1 • T2, C (A) = C (T1) ∪ C (T2). (The

algorithm is called recursively.)

The second algorithm deals with the introduction of dot-types.

6. Dot-types with Coercive Subtyping 130

Algorithm 6.4. When defining a type to be a dot-type A •B:

1. Check the context to see whether A and B are already defined types. If

so, go to the next step; otherwise alert that the type is not defined and

end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two

is empty. If so go to the next step; if not, alert that the constituent

types share component and end the algorithm.

3. Check the existing coercions, to see whether A • B has already been

considered. If so, simply finish the algorithm; otherwise go to the next

step.

4. Add coercion from A • B to A and from A • B to B into the context

and add the coercions generated by transitivity as well.

5. Check the existing coercions of dot-types in the context to add coercions

introduced by propagation rules. For every existing dot-type C •D:

• if there’s a coercion c1 from A to C, and a coercion c2 from B to

D, add a new coercion [x : A •B]d[c1, c2](x) from A •B to C •D.

• if there’s a coercion c1 from A to C, and B is convertible to D,

add a new coercion [x : A •B]d1[c1](x) from A •B to C •D.

• if there’s a coercion c2 from B to D, and A is convertible to C,

add a new coercion [x : A •B]d2[c2](x)

• otherwise, do nothing.

6. Check the transitivity possibilities of the newly generated coercion.

The third algorithm deals with the introduction of dot-terms (similar to

that for dot-type introduction).

Algorithm 6.5. When defining a term to be a dot term < a, b >:

6. Dot-types with Coercive Subtyping 131

1. Check the context to see whether a and b are defined terms. If so take

the types of a and b, let say A and B, and go to the next step; otherwise

alert the term is not defined and end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two

is empty. If so go to the next step; if not, alert that the constituent

types share component and end the algorithm.

3. Check the existing coercions, to see whether A • B has already been

considered. If so, simply finish the algorithm; otherwise go to the next

step.

4. Add coercion from A • B to A and from A • B to B into the context,

add the coercions generated by transitivity as well.

5. Check the existing coercions of dot-types in the context. For every ex-

isting dot-type C •D:

• if there’s a coercion c1 from A to C, and a coercion c2 from B to

D, add a new coercion [x : A •B]d[c1, c2](x) from A •B to C •D.

• if there’s a coercion c1 from A to C, and B is convertible to D,

add a new coercion [x : A •B]d1[c1](x) from A •B to C •D.

• if there’s a coercion c2 from B to D, and A is convertible to C,

add a new coercion [x : A •B]d2[c2](x)

• otherwise, do nothing.

6. Check the transitivity possibilities of the newly generated coercion.

Another part we should take care of is that, since we need to consider the

propagation rules of dot-types, when we introduce a new coercion, it links

two existing dot-types and generates a new coercion through the propagation

rules. So when we introduce a new coercion, we should also check all the dot-

types in the context to see whether there’re types that satisfy the conditions

of propagation rule. If so, we need to add a new coercion for the propagation

rule as well.

6. Dot-types with Coercive Subtyping 132

Algorithm 6.6. If A1 <c A2 is a newly declared coercion or a newly gener-

ated coercion by transitivity rule:

1. look up the context, find all type pairs (A1,B1) and (A2, B2), such that

A1 •B1 and A2 •B2 are existing dot-types:

• if B1 is convertible to B2, add coercion d1[c] from A1•B1 to A2•B2

• if B1 is coercible to B2 and c1 is the coercion from B1 to B2, add

the coercion d[c, c1] from A1 •B1 to A2 •B2.

2. look up the context, find all type pairs (C1, A1) and (C2, A2), such that

C1 • A1 and C2 • A2 are existing dot-types:

• if C1 is convertible to C2, add coercion d2[c] from C1•A1 to C2•A2

• if C1 is coercible to C2 and c2 is the coercion from C1 to C2, add

the coercion d[c2, c] from C1 • A1 to C2 • A2.

3. Check the transitivity possibilities of the new generated coercion.

6.3.2 Examples of Dot-types in Plastic

In this subsection, we will first give some abstract examples to show how

to declare a dot-type in Plastic, what we will get from the declaration, and

some examples of illegal declaration of dot-types. Then we will give a concrete

example to interpret sentences in natural language in Plastic.

Example 6.7. We can define a dot-type or a dot-term simply in the following

way:

1. If we have two types A, B which do not share components, we could

simply define a type M of type A ∗B like this:

> [M = A*B];

The system will generate two coercions cx1 from A ∗ B to A and cx2

from A ∗B to B.

6. Dot-types with Coercive Subtyping 133

2. We can also define a dot term . If we have two terms a, b, a : A and

b : B, we can define a dot term m =< a, b > like this:

> [m = dot<a,b>];

Now m is defined to be a dot term dot < a, b > and it is of type A ∗B.

The system will generate two coercions cx1 from A ∗ B to A and cx2

from A ∗B to B.

Example 6.8. In the following examples, the types share components in

different ways, none of them could be defined as a dot-type or dot term, alert

will be shown in all the following cases.

1. The two parts are the same

> [M = A*A];

2. A ∗ C and A ∗B have the same component A

> [M = (A*C)*(A*B)];

3. A is a subtype of B, as definition of component A ∈ C (A) ∩ C (B)

> [c:A->B];

> Coercion = c;

> [M = A*B];

4. a and b are both of type A, but A ∗ A is not a legal dot-type, so dot <

a, b > is not a legal dot term.

> [a,b:A];

> [ab = dot<a,b>];

6. Dot-types with Coercive Subtyping 134

5. a is of type A and b is of type B, while A is a subtype of B. As shown

above, A ∗ B is not a legal dot-type, hence dot < a, b > is not a legal

dot term.

> [a:A];

> [b:B];

> [c:A->B];

> Coercion = c;

> [ab = dot<a,b>];

Example 6.9. When we have dot-type A ∗ B, A <c1 C and B <c2 D, if we

claim C ∗D to be another dot-type, coercions from the propagation rule will

also be added.

> [c1:A->C];

> [c2:B->D];

> Coercion = c1;

> Coercion = c2;

> [M1 = A*B];

> [M2 = C*D];

In this example several coercions will be added according to the dot-type

rule and transitivity. cx1 from A∗B to A, cx2 from A∗B to B, < c1, cx1 >=

[x : (A ∗ B)]cx3(cx1(x)) by transitivity from A ∗ B to C, < c2, cx1 >= [x :

(A ∗ B)]cx4(cx1(x)) by transitivity from A ∗ B to D, cx3 from C ∗ D to C

and cx4 from C ∗ D to D. However, we will get one more coercion from

the propagation rule, there will be a coercion cx5 from A ∗ B to C ∗ D and

cx5 = [x : A ∗B]d[c1, c2](x), where for any dot term dot < a, b > of dot-type

A ∗B, d[c1, c2]dot < a, b >= dot < c1(a), c2(b) >.

Now, let’s use a concrete example to show how we could interpret natural

language in Plastic:

Example 6.10. Let’s consider the sentence

John picked up and mastered a book

6. Dot-types with Coercive Subtyping 135

We should contain the following data:

> [PhyInfo = Phy*Info];

> [cb : Book -> PhyInfo];

> Coercion = cb;

> [John:Human];

> [b:Book];

Note that ‘b’ is an arbitrary object of type Book. The verbs ‘pick up’ and

‘master’ are of the following types, where “==>” is Plastic notation for

function type :

> [pickup : Human ==> (Phy ==> Prop)];

> [master : Human ==> (Info ==> Prop)];

With the above, we could interpret the sentences “John picked up a book”

and “John mastered a book” separately and then use the predefined connective

and : Prop → Prop → Prop to connect them. However, this would not

satisfy the original sentence since the book picked up and that mastered must

be the same book.

We want ‘and’ to connect ‘picked up’ with ‘mastered’, so we consider

‘and’ as a generic semantic kind: for any type A, [[AND]](A) is of kind

A→ A→ A. For A being Human ==> (Book ==> Prop) 3,

And = [[AND]](Human ==> (Book ==> Prop)).

In particular, the term “And pickup master” is well-typed, thanks to the

coercive subtyping relations and the contravariance in subtyping function

types as explained in section 6.1. Now, interpreting the indefinite arti-

cle by means of the existential quantifier, the above sentence is interpreted as

3 An alternative possibility is letting A be Human ==> (PhyInfo ==> Prop)

6. Dot-types with Coercive Subtyping 136

(in a readable notation)

∃b : Book. And(pickup,master) John b.

The full code is followed:

> import Sol_All;

> import FnCoercion;

> import SigmaCoercion;

> [Human, Phy, Info, Book :Type];

> [PhyInfo = Phy*Info];

> [cb:Book -> PhyInfo];

> Coercion = cb;

> [pickup:Human ==> (Phy ==> Prop)];

> [master:Human ==> (Info ==> Prop)];

> [John:Human];

> [b:Book];

("John picked up b and John mastered b")

> [pickup_b = ap_ Book Prop (ap_ Human (Book==>Prop) pickup John) b];

> [master_b = ap_ Book Prop (ap_ Human (Book==>Prop) master John) b];

> [sentence1 = and pickup_b master_b];

("John picked up and mastered b")

> [AND: (A:Type) (A->A->A)]

> [And = AND (Human ==> (Book ==> Prop))];

> [sentence2 = ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b];

("John picked up and mastered a book")

6. Dot-types with Coercive Subtyping 137

> [sentence3 = Ex Book [b:Book](ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b)];

7. CONCLUSION AND FUTURE WORK

7.1 Summary

In this thesis, we have discussed an interesting issue of type theory – sub-

typing. We have mainly focused on coercive subtyping which is a simple but

powerful abbreviation mechanism for subtype relation. We have pointed out

the defect of a previous formulation and study of this issue in [Luo99, SL02]

and given a better description and understanding of it.

First, we have given the original description of coercive subtyping by

Luo in [Luo99]. Using a counter example, we have shown that it was not a

conservative extension and the extended system might even be inconsistent

in some special cases. Then we have proposed an adequate formulation T [C]
together with an equivalent middle system T [C]∗ with “star-calculus”. We

have given algorithms for the implicit coercion insertions and proved that for

a Martin-Löf’s type system T the system T [C]∗ is a conservative extension.

Next, we’ve shown the implementation of coercive subtyping in proof

assistant Plastic, and our improvement of it. At last, we’ve presented a

special kind of data type call “dot-types”, which contains two distinguish

aspect. We’ve shown the formalization of this type in type theory with

coercive subtyping, and the implementation of it in Plastic. Different with

normal data types, dot-types cannot be simply defined in library of a proof

assistant, we embed it directly inside the hard code of Plastic.

7. Conclusion and Future Work 139

7.2 Discussion and Future Work

We still have some interesting problems that we should discuss and work on

with in the future:

1. One may find that the proof of the totality of the transformations is

very tedious. The main reason is that when we transform a derivation,

different branches might be inserted with equal but not syntactically

equal coercions. We have to use our presupposition lemmas to prove

they are judgementally equal to built a transformation. Like in

Γ
d1

`K = K ′ Γ
d2

`K ′ = K ′′

Γ ` K = K ′′

Under the transformation Θ, d1 and d2 become derivations Θ(d1) and

Θ(d2) of, say, Γ1

Θ(d1)

` K1 = K ′1 and Γ2

Θ(d2)

` K ′2 = K ′′2 . We need to show

that the corresponding kinds of contexts Γ1, Γ2 are equal in T .

But, if we add one more condition on the system and make some change

on the formulation, the things might become easier. Suppose T is sys-

tem with normalization property, and we change the coercion applica-

tion rule (CA1) to be:

Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [nf(c)(k0)/x]K ′

where nf(c) means the normal form of coercion c ((CA2) and (CD)

could be modified accordingly).

Under this formulation, the gaps of the same type should be inserted

with the syntactically same coercion. For the rule above, Γ1 and Γ2

should be syntactically equal, K ′1 and K ′2 should be syntactically equal

as well. The whole definition of Θ will be much simpler.

Actually, this is like what we have done in the implementation. Al-

though we allow equal coercions, we only use the first one in the context

7. Conclusion and Future Work 140

when we need to insert them. It does not have to be the normal form,

but still guarantees the insertion to be syntactically unique. And, as

the improvement we’ve presented in 5.3.4, we consider the rest convert-

ible coercions to be redundant and will not add them into the context

any more.

However, we have shown that without the normalization condition,

we can still prove the theorems. When we consider to add this new

restriction, what side effect will it bring us? It’s not clear yet.

2. As we have discussed in 3.4.2 and 4.3.1, the reason that the original

formulation for type system with coercive subtype T [R] is problematic,

is that, a set of coercive rules R is too general. Since we want R to

be widely open, some unfriendly rule might get involved. The same

problem comes out if we say T is any type theory specified in LF. Hence,

we restrict our formulation to use C – a set of coercive judgements –

instead of a set of rules R, and we’ve only proved the theorems for

Martin-löf’s type theory and UTT. However, we are wondering whether

the restriction is too tight. We still hope we can use a set of rules R for

the basement of coercions. We have mentioned that we can use R to

generate a coherent set of judgements CR, this is one possible solution.

However we would like to see whether we can use R as a base directly

and find out what kind of such set could make us a proper extension.

3. Since we have extended system T with coercive subtyping into system

T [C], we would also like to think about the meta-theoretical properties.

To which extent the meta-theoretical properties are extended to the

new system? Whether normalization and confluence are still hold?

How can the method we’ve used (like the transformation Θ, Θ∗) help us

in studying such properties? All these questions are yet to be studied.

4. We’ve considered the coercions globally, but, sometimes, we just want

the coercions be taken place only in a certain environment. Hence,

we would like to consider the following so called Contextual Coercive

Subtyping [Luo10, Luo11].

7. Conclusion and Future Work 141

Γ ` A : Type Γ ` B : Type Γ ` c : (A)B

Γ, A <c B ` valid

Γ, A <c B,Γ
′ valid

Γ, A <c B,Γ′ ` A <c B : Type

Further more, we could consider to put the coercions inside the terms

in the following way:

Γ, A <c B ` J
Γ ` coercion A <c B in J

J could be any judgement, if J ≡ t : T , coercion should distribute

through J , coercion A <c B in (t : T) = (coercion A <c B in t) :

(coercion A <c B in T).

Γ, A <c B ` J
Γ ` (coercion A <c B in t) : (coercion A <c B in T)

The use of these subtyping framework and the meta-properties of them

will be interesting.

5. We have discussed difference between type system of type assignment

and type system with canonical object. We’ve also discussed subsump-

tive subtyping and coercive subtyping. It is clear that subsumptive

subtyping is not suitable for type system with canonical object, but we

are still wondering whether or to what extent we can deploy coercive

subtyping for type systems of type assignment. We believe the study

of this will also show us the relationship between these two different

views of type theory.

6. Although we have amended the implementation of coercive subtyping,

it is still based on the original formulation T [R]. We are aiming to

improve the implementation to be based on the adequate system T [C]
using a set of rules R to get a coherent set of judgements C, but there

are some difficulties. One of them is that the C generated fromR might

7. Conclusion and Future Work 142

be an infinite set even if R is finite (recall the remark 4.4). How to

deal with such problems still need to be studied.

BIBLIOGRAPHY

[AC01] D. Aspinall and A. Compagnoni. Subtyping dependent types.

Theor. Comput. Sci., 266(1-2):273–309, 2001.

[Agd08] The agda proof assistant (version 2).

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php, 2008.

[AMS07] T. Altenkirch, C. McBride, and W. Swierstra. Observational equal-

ity, now! PLPV07, 2007.

[AP05] N. Asher and J. Pustejovsky. Word meaning and commonsense

metaphysics, 2005.

[Ash08] N. Asher. A type driven theory of predication with complex types.

Fundamenta Infor., 84(2), 2008.

[Ash11] N. Asher. Lexical Meaning in Context: A Web of Words. Cam-

bridge University Press, 2011.

[Bac88] R. Backhouse. On the meaning and construction of the rules in

Martin-Löf’s theory of types. In A. Avron et al, editor, Workshop

on General Logic. LFCS Report Series, ECS-LFCS-85-52. Dept. of

ComputerScience, University of Edinburgh, 1988.

[Bai99] A. Bailey. The Machine-checked Literate Formalisation of Algebra

in Type Theory. PhD thesis, University of Manchester, 1999.

[Bar91] H. Barendregt. Introduction to generalized type systems. Journal

of Functional Programming, 1(2):125–154, 1991.

Bibliography 144

[Bar92] H. Barendregt. Lambda calculi with types. Handbook of Logic in

Computer Science, 1992.

[BF99] G. Barthe and M. J. Frade. Constructor subtyping. In S. Doaitse

Swierstra, editor, Proceedings of Programming Languages and Sys-

tems, 8 conf. (ESOP’99), volume 1576 of Lecture Notes in Com-

puter Science, pages 109–127. Springer, 1999.

[BT98] G. Betarte and A. Tasistro. Extension of Martin-Löf’s type theory

with record types and subtyping. In G. Sambin and G. Smith,

editors, Twenty-five Years of Constructive Type Theory. Oxford

University Press, 1998.

[BvR00] G. Barthe and F. van Raamsdonk. Constructor subtyping in

the calculus of inductive constructions. In Jerzy Tiuryn, editor,

Proceedings of Foundations of Software Science and Computation

Structures, 3rd International Conference (FOSSACS 00), volume

1784 of Lecture Notes in Computer Science, pages 17–34. Springer,

2000.

[Car88] L. Cardelli. Type-checking dependent types and subtypes. Lecture

Notes in Computer Science, 306:45–57, 1988.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North

Holland Publishing Company, 1958.

[CG92] P. Curien and G. Ghelli. Coherence of subsumption, minimum typ-

ing and type-checking in F6. Mathematical Structures in Computer

Science, 2:55–91, 1992.

[CH88] Th. Coquand and G. P. Huet. The calculus of constructions. In-

formation and Computation, 76(2/3):95–120, 1988.

[Chu40] A. Church. A formulation of the simple theory of types. Journal

of Symbolic Logic, 5(2):56–68, 1940.

Bibliography 145

[CL01] P. Callaghan and Z. Luo. An implementation of lf with coer-

cive subtyping and universes. Journal of Automated Reasoning,

27(1):3–27, 2001.

[Coo07] R. Cooper. Copredication, dynamic generalized quantification and

lexical innovation by coercion. Proceedings of GL2007, the Fourth

International Workshop on Generative Approaches to the Lexicon,

2007.

[Coo11] R. Cooper. Copredication, quantification and frames. Logical

Aspects of Computational Linguistics (LACL’2011). LNAI 6736,

2011.

[Coq10] The Coq Development Team. The Coq Proof Assistant Reference

Manual (Version 8.3), INRIA, 2010.

[CPM90] Th. Coquand and Ch. Paulin-Mohring. Inductively defined types.

Lecture Notes in Computer Science, 417, 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstrac-

tion, and polymorphism. ACM Computing Surveys, 17(4):471–522,

1985.

[dB80] N. G. de Bruijn. A survey of project AUTOMATH. In J. P.

Seldin and J. R. HindIey, editors, To H. B. Curry: Essays on

Combinatory Logic, Lambda-Calculus, and Formalism, pages 141–

161. Academic Press, NY, 1980.

[Dyb91] P. Dybjer. Inductive sets and families in Martin-Löf’s type the-

ory and their set-theoretic semantics. In G. Huet and G. Plotkin,

editors, Logical Frameworks. Cambridge University Press, 1991.

[Gen35] G. Gentzen. Untersuchugen über das logishe schliessen. Mathema-

tische Zeitschrift, 39, 1935.

[Geu09] H. Geuvers. Proof assistants: history, ideas and future. In Sad-

hana Journal, Academy Proceedings in Engineering Sciences, Spe-

Bibliography 146

cial Issue on Interactive Theorem Proving and Proof Checking, vol-

ume 34, Februray 2009.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des

coupures de l’arithmétique d’ordre supérieur. PhD thesis, Univer-

sité Paris VII, 1972.

[HHP87] R. Harper, F. Honsell, and G. D. Plotkin. A framework for defining

logics. In Proceedings of Symposium on Logic in Computer Science

1987, pages 194–204. IEEE Computer Society, 1987.

[How80] W. Howard. The formulae-as-types notion of construction. In

J. P. Seldin and J. R. HindIey, editors, To H. B. Curry: Essays

on Combinatory Logic, Lambda-Calculus, and Formalism, pages

479–490. Academic Press, NY, 1980.

[JLS96] A. P. Jones, Z. Luo, and S. Soloviev. Some algorithmic and proof-

theoretical aspects of coercive subtyping. In Eduardo Gimnez and

Christine Paulin-Mohring, editors, Proceedings of Types for Proofs

and Programs, International Workshop TYPES 96, volume 1512

of Lecture Notes in Computer Science, pages 173–195. Springer,

1996.

[Kle52] S. Kleene. Introduction to Metamathematics. North Holland, 1952.

[LA08] Z. Luo and R. Adams. Structural subtyping for inductive types

with functorial equality rules. Mathematical Structures in Com-

puter Science, 18(5):931–972, 2008.

[LL05] Z. Luo and Y. Luo. Transitivity in coercive subtyping. Information

and Computation., 197(1-2):122–144, 2005.

[LP92] Z. Luo and R. Pollack. Lego proof development system: User

manual, 1992.

[LS99] Z. Luo and S. Soloviev. Dependent coercions. The 8th Inter. Conf.

on Category Theory and Computer Science (CTCS’99), Edinburgh,

Bibliography 147

Scotland. Electronic Notes in Theoretical Computer Science, 29,

1999.

[LSX13] Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: Theory

and implementation. Information and Computation, 223:18–42,

February 2013.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, Uni-

versity of Edinburgh, 1990.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer

Science. Oxford University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. In Dirk van Dalen

and Marc Bezem, editors, Proceedings of the 1996 Annual Con-

ference of the European Association for Computer Science Logic,

Utrecht (CSL’96), volume 1258 of Lecture Notes in Computer Sci-

ence, pages 276–296. Springer, 1997.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Computation,

9(1):105–130, 1999.

[Luo04] Y. Luo. Cohernce and transitivity in coercive subtyping. PhD

thesis, University of Durham, 2004.

[Luo09a] Z. Luo. Dependent record types revisited. In Proc. of the 1st

Inter. Workshop on Modules and Libraries for Proof Assistants

(MLPA’09), Montreal. ACM Inter. Conf. Proceeding Series; Vol.

429., 2009.

[Luo09b] Z. Luo. Manifest fields and module mechanisms in intensional type

theory. In Types for Proofs and Programs, TYPES’08. LNCS 5497,

2009.

[Luo10] Z. Luo. Type-theoretical semantics with coercive subtyping. Se-

mantics and Linguistic Theory 20 (SALT20), Vancouver, 2010.

Bibliography 148

[Luo11] Z. Luo. Contextual analysis of word meanings in type-

theoretical semantics. Logical Aspects of Computational Linguistics

(LACL’2011). LNAI 6736, 2011.

[Mat08] The Matita proof assistant. http://matita.cs.unibo.it/, 2008.

[Mil78] R. Milner. A theory of type polymorphism in programming. Jour-

nal of Computer Systems and Sciences, 17:348–375, 1978.

[Mit91] J. C. Mitchell. Type inference with simple subtypes. Journal of

Functional Programming, 1(3):245–285, 1991.

[ML75] P. Martin-Löf. An intuitionistic theory of types: predicative part.

In H.Rose and J.C.Shepherdson, editors, Logic Colloquium’73,

1975.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[MM09] L. Marie-Magdeleine. Sous-typage coercitif en présence de

réductions non-standards dans un système aux types dépendants.

PhD thesis, Université de Toulouse, 2009.

[Mon74] R. Montague. Formal philosophy, 1974.

[NPS90] B. Nordstrom, K. Petersson, and J. Smith. Programming in

Martin-Löf ’s Type Theory: An Introduction. Oxford University

Press, Oxford, 1990.

[PM93] C. Paulin-Mohring. Inductive definition in the system Coq: rules

and properties. In Proceedings of Inter. Conf. on Typed Lambda

Calculi and Application (TLCA’93), LNCS 664, 1993.

[Pra73] D. Prawitz. Towards a foundation of a general proof theory. In

P. Suppes et al, editor, Logic, Methodology, and Phylosophy of

Science IV. 1973.

[Pra74] D. Prawitz. Synthese, 27, 1974.

[Pro12] Proof general. http://proofgeneral.inf.ad.ac.uk, 2012.

Bibliography 149

[Pus95] J. Pustejovsky. The Generative Lexicon. MIT, 1995.

[Pus05] J. Pustejovsky. A survey of dot objects. Manuscript, 2005.

[Pus11] J. Pustejovsky. Mechanisms of coercion in a general theory of

selection, 2011.

[Ran94] A. Ranta. Type-Theoretical Gramma. Oxford University Press,

Oxford, 1994.

[Rey74] J.C. Reynolds. Towards a theory of type structure. Lecture Notes

in Computer Science, 19, 1974.

[Säı97] A. Säıbi. Typing algorithm in type theory with inheritance. In Pro-

ceedings of 24th Annual Symposium on Principles of Programming

Languages (POPL’97), 1997.

[Sco70] D. Scott. Constructive validity. Symp. on Automatic Demonstra-

tion, Lecture Notes in Mathematics 125, 1970.

[SL02] S. Soloviev and Z. Luo. Coercion completion and conservativity

in coercive subtyping. Annals of Pure and Applied Logic, 113(1-

3):297–322, 2002.

[XL12] T. Xue and Z. Luo. Dot-types and their implementaion. Log-

ical Aspects of Computational Linguistics (LACL’2012). LNCS,

7351:234–249, 2012.

APPENDIX

A. ALGORITHMS

Notation A.1. If d is a derivation of a type system specified in LF, ending with a rule

labeled (m) which is of form J1 ... Jn
J , and each judgement Jk (k=1,...,n) has a derivation

dk, then we write d as R(m)(d1,, dn). For a special case, if d is ending with rule (1.3)

in Figure 4.1, we write it as R(m)(d1,Γ).

Algorithm A.2. (weakening)If in T [C]−, d is a derivation of Γ,Γ′ ` J , and d′ is a

derivation of Γ,Γ′′ ` valid, then wkn(d, d′,Γ) is a derivation of Γ,Γ′′,Γ′ ` J . (J is of

form: valid, K0 kind, k0 : K0, K1 = K2, k1 = k2 : K0, or K1 <c K2)

The algorithm is constructed inductively on the derivation of d, depending on the last

rule of d:

1. rule(1.1), d ≡
<>` valid

.

It means that Γ ≡<> and Γ′ ≡<>, hence

wkn(d, d′, <>) ≡ d′

2. rule(1.2), d ≡ Γ1

d1

` K kind
Γ1, x : K ` valid

It means that Γ,Γ′ ≡ Γ1, x : K

(a) Γ′ ≡<>, simply

wkn(d, d′,Γ) ≡ d′

(b) otherwise, Γ′ ≡ (Γ2, x : K) for a Γ2, hence Γ,Γ2 ≡ Γ1,

wkn(d, d′,Γ) ≡ R(1.2)(wkn(d1, d
′,Γ))

3. rule(SK1), d ≡ Γ,Γ′
d1

` A <c B : Type
Γ,Γ′ ` El(A) <c El(B)

,

wkn(d, d′) ≡ R(SK1)(R(ST7)(d1, d
′,Γ))

4. d ≡ R(d1, ... , dn), where R is any other rule applies to the case, and d1, ... , dn

are the premises of rule R,

wkn(d1, d
′,Γ) = R(wkn(d1, d

′,Γ), ... , wkn(dn, d
′,Γ))

A. Algorithms 152

Algorithm A.3. (presupposition algorithms 1) There exist algorithms pre1, pre2,

pre3, from derivations of T [C]− to derivations of T [C]− that satisfy the following proper-

ties.

1. If d is a derivation of Γ,Γ′ ` J , then pre1(d,Γ) is a derivation of Γ ` valid (J is

of form: valid, K0 kind, k0 : K0, K1 = K2, or k1 = k2 : K0);

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.1), d ≡
<>` valid

.

pre1(d,Γ1) ≡ d

(b) rule(1.2), d ≡ Γ1

d1

` K kind
Γ1, x : K ` valid

(x 6∈ FV (Γ1)).

It means that Γ,Γ′ ≡ Γ1, x : K

i. Γ′ ≡<>, hence Γ ≡ Γ1, x : K

pre1(d,Γ) ≡ d

ii. Γ′ 6≡<>
pre1(d,Γ) ≡ pre1(d1,Γ)

(c) d ≡ R(d1, ... , dn), where R is any other rule applies to the case (including

rule CA1, CA2 and CD), and d1, ... , dn are the premises of rule R,

pre1(d,Γ) = pre1(d1,Γ)

2. If d is a derivation of Γ, x : K,Γ′ ` J , then pre2(d,Γ) is a derivation of Γ ` K kind

(J is of form: valid, K0 kind, k0 : K0, K1 = K2, or k1 = k2 : K0)

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.1), d ≡
<>` valid

. It trivially doesn’t apply the case.

(b) rule(1.2), d ≡ Γ1

d1

` K0 kind
Γ1, y : K0 ` valid

(x 6∈ FV (Γ1)).

It means that Γ, x : K,Γ′ ≡ Γ1, y : K0

i. Γ′ ≡<>, hence Γ ≡ (Γ1,y : K0, x : K)

pre2(d,Γ) ≡ d1
ii. Γ′ 6≡<>,

pre2(d,Γ) ≡ pre2(d1,Γ)

A. Algorithms 153

(c) d ≡ R(d1, ... , dn), where R is any other rule applies to the case (including

rule CA1, CA1 and CD), and d1, ... , dn are the premises of rule R,

pre2(d,Γ) = pre2(d1,Γ)

3. If d is a derivation of Γ ` (x : K1)K2 kind, then pre3(d) is a derivation of

Γ, x : K1 ` K2 kind.

rule(6.1) is the only possible rule according to the syntax of the judgement.

d ≡ Γ
d1

` K kind Γ, x : K
d2

` K ′ kind
Γ ` (x : K)K ′ kind

pre3(d) ≡ d2

Algorithm A.4. (substitutions) There are following algorithms in T [C]−, constructed

simultaneously:

1. If in d is a derivation of Γ, x : K,Γ′ ` valid, d′ is a derivation of Γ ` k : K, then

sub1(d, d′) is a derivation of Γ, [k/x]Γ′ ` valid.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.1), d ≡
<>` valid

,

sub1(d, d′) ≡ d

(b) rule(1.2), d ≡ Γ1

d1

` K1 kind
Γ1, y : K1 ` valid

(y 6∈ FV (Γ1))

It means that (Γ, x : K,Γ′) ≡ (Γ1, y : K1)

i. if Γ′ ≡<>, hence Γ ≡ Γ1 and x : K ≡ y : K1,

sub1(d, d′) ≡ pre1(d,Γ)

ii. otherwise, Γ′ ≡ (Γ′′, y : K1) for some Γ′′,

sub1(d, d′) ≡ R(1.2)(sub2(d1, d
′))

2. If d is a derivation of Γ, x : K,Γ′ ` K ′ kind, d′ is a derivation of Γ ` k : K, then

sub2(d, d′) is a derivation of Γ, [k/x]Γ′ ` [k/x]K ′ kind.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(4.1), d ≡ Γ, x : K,Γ′
d1

` valid
Γ, x : K,Γ′ ` Type kind

,

sub2(d, d′) ≡ R(4.1)(sub1(d1, d
′))

A. Algorithms 154

(b) rule(4.2), d ≡ Γ, x : K,Γ′
d1

` A : Type
Γ, x : K,Γ′ ` El(A) kind

,

sub2(d, d′) ≡ R(4.2)(sub3(d1, d
′))

(c) rule(6.1), d ≡ Γ, x : K,Γ′
d1

` K1 kind Γ, x : K,Γ′, y : K1

d2

` K2 kind
Γ, x : K,Γ′ ` (y : K1)K2 kind

,

sub2(d, d′) ≡ R(6.1)(sub2(d1, d
′), sub2(d2, d

′))

3. If d is a derivation of Γ, x : K,Γ′ ` k′ : K ′, d′ is a derivation of Γ ` k : K, then

sub3(d, d′) is a derivation of Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K ′.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.3), d ≡ Γ1, y : K1,Γ2

d1

` valid
Γ1, y : K1,Γ2 ` y : K1

It means that (Γ, x : K,Γ′ ` k′ : K ′) ≡ (Γ1, y : K1,Γ2 ` y : K1)

i. x : K is in Γ2, so there is a Γ3, such that Γ ≡ (Γ1, y : K1,Γ3), and x is

not free in K1,

sub3(d, d′) ≡ R(1.3)(sub1(d1, d
′),Γ1)

ii. x : K is in Γ1, so there is a Γ4, such that (Γ, x : K,Γ4) ≡ Γ1, hence

Γ′ ≡ (Γ4, y : K1,Γ2),

sub3(d, d′) ≡ R(1.3)(sub1(d1, d
′), (Γ, [k/x]Γ4))

iii. x : K is exactly y : K1, so Γ ≡ Γ1, Γ′ ≡ Γ2. Hence sub1(d1, d
′) is a

derivation of Γ, [k/x]Γ′ ` valid,

sub3(d, d′) ≡ wkn(d′, sub1(d1, d
′),Γ)

(b) rule(3.1), d ≡ Γ, x : K,Γ′
d1

` k′ : K ′′ Γ, x : K,Γ′
d2

` K ′′ = K ′

Γ, x : K,Γ′ ` k′ : K ′
,

sub3(d, d′) ≡ R(3.1)(sub3(d1, d
′), sub4(d2, d

′))

(c) rule(6.3), d ≡ Γ, x : K,Γ′, y : K1

d1

` k1 : K ′1
Γ, x : K,Γ′ ` [y : K1]k1 : (y : K1)K ′1

It means that k′ : K ′ ≡ [y : K1]k1 : (y : K1)K ′1,

sub3(d, d′) ≡ R(6.3)(sub3(d1, d
′))

(d) rule(6.5), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K ′1 Γ, x : K,Γ′
d2

` k1 : K1

Γ, x : K,Γ′ ` f(k1) : [k1/y]K ′1
It means that k′ : K ′ ≡ f(k1) : [k1/y]K ′,

sub3(d, d′) ≡ R(6.5)(sub3(d1, d
′), sub3(d2, d

′))

(e) rule(CA1), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K ′ Γ, x : K,Γ′
d2

` k0 : K0 Γ, x : K,Γ′
d3

` K0 <c K1

Γ, x : K,Γ′ ` f(k0) : [c(k0)/y]K ′
,

sub3(d, d′) ≡ R(CA1)(sub3(d1, d
′), sub3(d2, d

′), subK(d3, d
′))

A. Algorithms 155

4. If d is a derivation of Γ, x : K,Γ′ ` K ′ = K ′′, d′ is a derivation of Γ ` k : K, then

sub4(d, d′) is a derivation of Γ, [k/x]Γ′ ` [k/x]K ′ = [k/x]K ′′.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(2.1), d ≡ Γ, x : K,Γ′
d1

` K ′ kind
Γ, x : K,Γ′ ` K ′ = K ′

,

sub4(d, d′) ≡ R(2.1)(sub2(d1, d
′))

(b) rule(2.2), d ≡ Γ, x : K,Γ′
d1

` K ′′ = K ′

Γ, x : K,Γ′ ` K ′ = K ′′
,

sub4(d, d′) ≡ R(2.2)(sub4(d1, d
′))

(c) rule(2.3), d ≡ Γ, x : K,Γ′
d1

` K ′ = K ′′′ Γ, x : K,Γ′
d2

` K ′′′ = K ′

Γ, x : K,Γ′ ` K ′ = K ′′
,

sub4(d, d′) ≡ R(2.3)(sub3(d1, d
′), sub4(d2, d

′)

(d) rule(4.3), d ≡ Γ, x : K,Γ′
d1

` A = B : Type
Γ, x : K,Γ′ ` El(A) = El(B)

,

sub5(d, d′) ≡ R(4.3)(sub5(d1, d
′))

(e) rule(6.2), d ≡ Γ, x : K,Γ′
d1

` K1 = K2 Γ, x : K,Γ′, y : K1

d2

` K ′1 = K ′2
Γ, x : K,Γ′ ` (y : K1)K ′1 = (y : K2)K ′2

,

sub4(d, d′) ≡ R(6.2)(sub4(d1, d
′), sub4(d2, d

′)

5. If d is a derivation of Γ, x : K,Γ′ ` k′ = k′′ : K ′, d′ is a derivation of Γ ` k : K,

then sub5(d, d′) is a derivation of Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K ′.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(2.4), d ≡ Γ, x : K,Γ′
d1

` k′ : K ′

Γ, x : K,Γ′ ` k′ = k′ : K ′
,

sub5(d, d′) ≡ R(2.4)(sub3(d1, d
′))

(b) rule(2.5), d ≡ Γ, x : K,Γ′
d1

` k′′ = k′ : K ′

Γ, x : K,Γ′ ` k′ = k′′ : K ′
,

sub5(d, d′) ≡ R(2.5)(sub5(d1, d
′))

(c) rule(2.6), d ≡ Γ, x : K,Γ′
d1

` k′ = k′′′ : K ′ Γ, x : K,Γ′
d2

` k′′′ = k′′ : K ′

Γ, x : K,Γ′ ` k′ = k′′ : K ′
,

sub5(d, d′) ≡ R(2.6)(sub5(d1, d
′), sub5(d2, d

′))

(d) rule(3.2), d ≡ Γ, x : K,Γ′
d1

` k′ = k′′ : K ′′ Γ, x : K,Γ′
d2

` K ′′ = K ′

Γ, x : K,Γ′ ` k′ = k′′ : K ′
,

sub5(d, d′) ≡ R(3.2)(sub5(d1, d
′), sub4(d2, d

′))

A. Algorithms 156

(e) rule(6.4), d ≡ Γ, x : K,Γ′
d1

` K1 = K2 Γ, x : K,Γ′, y : K1

d2

` k1 = k2 : K3

Γ, x : K,Γ′ ` [y : K1]k1 = [y : K2]k2 : (y : K1)K3
,

sub5(d, d′) ≡ R(6.4)(sub4(d1, d
′), sub5(d2, d

′))

(f) rule(6.6), d ≡ Γ, x : K,Γ′
d1

` f1 = f2 : (y : K1)K2 Γ, x : K,Γ′
d2

` k1 = k2 : K1

Γ, x : K,Γ′ ` f1(k1) = f2(k2) : [k1/y]K2
,

sub5(d, d′) ≡ R(6.6)(sub5(d1, d
′), sub5(d2, d

′))

(g) rule(6.7), d ≡ Γ, x : K,Γ′, y : K1

d1

` k2 : K2 Γ, x : K,Γ′
d2

` k1 : K1

Γ, x : K,Γ′ ` ([y : K1]k2)k1 = [k1/y]k2 : [k1/y]K2
,

sub5(d, d′) ≡ R(6.7)(sub3(d1, d
′), sub3(d2, d

′)

(h) rule(6.8), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K2

Γ, x : K,Γ′ ` [y : K1]f(y) = f : (y : K1) : K2
,

(y 6∈ FV (Γ, x : K,Γ′))

sub5(d, d′) ≡ R(6.8)(sub3(d1, d
′))

(i) rule(CA2),

d ≡ Γ, x : K,Γ′
d1

` f = f ′ : (y : K1)K ′ Γ, x : K,Γ′
d2

` k0 = k′0 : K0 Γ, x : K,Γ′
d3

` K0 <c K1

Γ, x : K,Γ′ ` f(k0) = f ′(k′0) : [c(k0)/y]K ′

sub5(d, d′) ≡ R(CA2)(sub5(d1, d
′), sub5(d2, d

′), subK(d3, d
′))

(j) rule(CD), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K ′ Γ, x : K,Γ′
d2

` k0 : K0 Γ, x : K,Γ′
d3

` K0 <c K1

Γ, x : K,Γ′ ` f(k0) = f(c(k0)) : [c(k0)/y]K ′

sub5(d, d′) ≡ R(CD)(sub3(d1, d
′), sub3(d2, d

′), subK(d3, d
′))

6. If d is a derivation of Γ, x : K,Γ′ ` K1 <c K2, d′ is a derivation of Γ ` k : K, then

subK(d, d′) is a derivation of Γ, [k/x]Γ′ ` [k/x]K1 <[k/x]c [k/x]K2.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(SK1), d ≡ Γ, x : K,Γ′
d1

` A <c B : Type
Γ, x : K,Γ′ ` El(A) <c El(B)

,

subK(d, d′) ≡ R(SK1)(R(ST6)(d1, d
′))

(b) rule(SK2),

d ≡ Γ, x : K,Γ′
d1

` K ′1 <c1 K1 Γ, x : K,Γ′, x′ : K ′1
d2

` [c1(x′)/x]K2 = K ′2 Γ, x : K,Γ′, y : K1

d3

` K2 kind
Γ, x : K,Γ′ ` (y : K1)K2 <c (x′ : K ′1)K ′2

,

where c ≡ [f : (y : K1)K2][x′ : K ′1]f(c1(x′))

subK(d, d′) ≡ R(SK2)(subK(d1, d
′), sub4(d2), sub2(d3))

(c) rule(SK3),

d ≡ Γ, x : K,Γ′
d1

` K ′1 = K1 Γ, x : K,Γ′, x′ : K ′1
d2

` K2 <c2 K
′
2 Γ, x : K,Γ′, y : K1

d3

` K2 kind
Γ, x : K,Γ′ ` (y : K1)K2 <c (x′ : K ′1)K ′2

,

where c ≡ [f : (y : K1)K2][x′ : K ′1]c2f(x′)

A. Algorithms 157

subK(d, d′) ≡ R(SK3)sub4(d1, d
′), subK(d2, d

′), sub2(d3, d
′)

(d) rule(SK4),

d ≡ Γ, x : K,Γ′
d1

` K ′1 <c1 K1 Γ, x : K,Γ′, x′ : K ′1
d2

` [c1(x′)/x]K2 <c2 K
′
2 Γ, x : K,Γ′, y : K1

d3

` K2 kind
Γ, x : K,Γ′ ` (y : K1)K2 <c (x′ : K ′1)K ′2

,

where c ≡ [f : (y : K1)K2][x′ : K ′1]c2(f(c1(x′)))

subK(d, d′) ≡ R(SK4)(subK(d1, d
′), subK(d2, d

′), sub2(d3, d
′))

(e) rule(SK5), d ≡ Γ, x : K,Γ′
d1

` K <c K
′ Γ, x : K,Γ′

d2

` c = c′ : (K)K ′

Γ, x : K,Γ′ ` K <c′ K
′′ ,

subK(d, d′) ≡ R(SK5)(subK(d1, d
′), sub5(d2, d

′))

(f) rule(SK6), d ≡ Γ, x : K,Γ′
d1

` K1 <c K2 Γ, x : K,Γ′
d2

` K1 = K ′1
Γ, x : K,Γ′ ` K ′1 <c K2

,

subK(d, d′) ≡ R(SK6)(subK(d1, d
′), sub4(d2, d

′))

(g) rule(SK7), d ≡ Γ, x : K,Γ′
d1

` K1 <c K2 Γ, x : K,Γ′
d2

` K2 = K ′2
Γ, x : K,Γ′ ` K1 <c K

′
2

,

subK(d, d′) ≡ R(SK7)(subK(d1, d
′), sub4(d2, d

′))

(h) rule(SK8), d ≡ Γ, x : K,Γ′
d1

` K1 <c1 K2 Γ, x : K,Γ′
d2

` K2 <c2 K3

Γ, x : K,Γ′ ` K1 <c2◦c1 K
′
3

,

subK(d, d′) ≡ R(SK8)(subK(d1, d
′), subK(d2, d

′))

Algorithm A.5. (weak equality substitutions) The following two algorithms are held

in T [C]−:

1. If d is a derivation of Γ, x : K,Γ′ ` K ′ kind, d′ is a derivation of Γ ` k1 = k2 : K,

d′′ is a derivation of Γ ` k1 : K, d′′′ is a derivation of Γ ` k2 : K, then

sub′6(d, d′, d′′, d′′′) is a derivation of Γ, [k1/x]Γ′ ` [k1/x]K ′ = [k2/x]K ′.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(4.1), d ≡ Γ, x : K,Γ′
d1

` valid
Γ, x : K,Γ′ ` Type kind

sub′6(d, d′, d′′, d′′′) ≡ R(2.1)(R(4.1)(sub1(d1, d
′′)))

(b) rule(4.2), d ≡ Γ, x : K,Γ′
d1

` A : Type
Γ, x : K,Γ′ ` El(A) kind

sub′6(d, d′, d′′, d′′′) ≡ R(4.3)(sub
′
7(d1, d

′, d′′, d′′′))

(c) rule(6.1), d ≡ Γ, x : K,Γ′
d1

` K1 kind Γ, x : K,Γ′, y : K1

d2

` K2 kind
Γ, x : K,Γ′ ` (y : K1)K2 kind

sub′6(d, d′, d′′, d′′′) ≡ R(6.2)(sub
′
6(d1, d

′, d′′, d′′′), sub′6(d2, d
′, d′′, d′′′))

A. Algorithms 158

2. If d is a derivation of Γ, x : K,Γ′ ` k′ : K ′, d′ is a derivation of Γ ` k1 = k2 :

K, then sub′7(d, d′, d′′, d′′′) is a derivation of Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ :

[k1/x]K ′.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.3), d ≡ Γ1, y : K1,Γ2

d1

` valid
Γ1, y : K1,Γ2 ` y : K1

.

It means that Γ, x : K,Γ′ ≡ Γ1, y : K1,Γ
′.

i. x : K is in Γ2, which means that, there’s Γ3 such that Γ ≡ (Γ1, y :

K1,Γ3). Hence x is not free in K1,

sub′7(d, d′, d′′, d′′′) ≡ R(2.4)(sub3(d1, d
′′))

ii. x : K is y : K1, which means that Γ ≡ Γ1, Γ′ ≡ Γ2 and x : K ≡ y : K1.

So ([k1/x]y = [k2/x]y : [k1/x]K1) ≡ (k1 = k2 : K), hence,

sub′7(d, d′, d′′, d′′′) ≡ wkn(d′, sub1(d1, d
′′),Γ)

iii. x : K is in Γ1, which means that, there’s Γ4 such that (Γ, x : K,Γ4) ≡ Γ1,

sub′7(d, d′, d′′, d′′′) ≡ R(2.4)(sub3(d1, d
′′))

(b) rule(3.1), d ≡ Γ, x : K,Γ′
d1

` k′ : K ′′ Γ, x : K,Γ′
d2

` K ′′ = K ′

Γ, x : K,Γ′ ` k′ : K ′

sub′7(d, d′, d′′, d′′′) ≡ R(3.1)(sub
′
7(d1, d

′, d′′, d′′′), sub4(d2, d
′))

(c) rule(6.3), d ≡ Γ, x : K,Γ′, y : K1

d1

` k0 : K0

Γ, x : K,Γ′ ` [y : K1]k0 : (y : K1)K0

sub′7(d, d′, d′′, d′′′) ≡ R(6.4)(sub
′
6(pre2(d1, (Γ, x : K,Γ′)), d′, d′′, d′′′), sub′7(d1, d

′, d′′, d′′′))

(d) rule(6.5), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K2 Γ, x : K,Γ′
d2

` m : K1

Γ, x : K,Γ′ ` f(m) : [m/y]K2

sub7(d, d′, d′′, d′′′) ≡ R(6.6)(sub
′
7(d1, d

′, d′′, d′′′), sub′7(d2, d
′, d′′, d′′′))

(e) rule(CA1), d ≡ Γ, x : K,Γ′
d1

` f : (y : K1)K ′ Γ, x : K,Γ′
d2

` k0 : K0 Γ, x : K,Γ′
d3

` K0 <c K1

Γ, x : K,Γ′ ` f(k0) : [c(k0)/y]K ′

sub7(d, d′, d′′, d′′′) ≡ R(CA1)(sub7(d1, d
′, d′′, d′′′), sub3(d2, d

′, d′′, d′′′), subK(d3, d
′))

Algorithm A.6. (weak context retyping) If d is a derivation of Γ, x : K,Γ′ ` J , d′

is a derivation of Γ ` K = K ′, d′′ is a derivation of Γ ` K kind, d′′′ is a derivation of

Γ ` K ′ kind, then we have ctx′(d, d′, d′′, d′′′) as a derivation of Γ, x : K ′,Γ′ ` J (J is of

form: valid, K0 kind, k0 : K0, K1 = K2, k1 = k2 : K0, or K1 <c K2).

The algorithm is constructed inductively on the derivation of d, depending on the last

rule of d:

A. Algorithms 159

1. rule(1.2), d ≡ Γ1

d1

` K1 kind
Γ1, y : K1 ` valid

(y 6∈ FV (Γ))

It means that (Γ, x : K,Γ′) ≡ (Γ1, y : K1)

(a) Γ′ ≡<>, hence Γ ≡ Γ1 and x : K ≡ y : K1,

ctx′(d, d′, d′′, d′′′) ≡ R(1.2)(d
′′)

(b) y : K1 is the tail of Γ′, there’s Γ′′ such that Γ′ ≡ (Γ′′, y : K1) and (Γ, x :

K,Γ′′) ≡ Γ1,

ctx′(d, d′, d′′, d′′′) ≡ R(1.2)(ctx
′(d1, d

′, d′′, d′′′))

2. rule(SK1), d ≡ Γ, x : K,Γ′
d1

` A <c B : Type
Γ, x : K,Γ′ ` El(A) <c El(B)

,

ctx′(d, d′, d′′, d′′′) ≡ R(SK1)(R(ST8)(d1, d
′))

3. d ≡ R(d1, ... , dn), where R is any other rule applies to the case, and d1, ... , dn

are the premises of rule R,

ctx′(d1, d
′, d′′, d′′′) = R(ctx′(d1, d

′, d′′, d′′′), ... , ctx′(dn, d
′, d′′, d′′′))

Algorithm A.7. (presupposition algorithms 2)

1. If d is a derivation of Γ ` K1 = K2, then pre14(d) is a derivation of Γ ` K1 kind,

then we have pre24(d) as a derivation of Γ ` K2 kind;

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(2.1), d ≡ Γ
d1

` K kind
Γ ` K = K

,

pre14(d) ≡ pre24(d) ≡ d1

(b) rule(2.2), d ≡ Γ
d1

` K = K ′

Γ ` K ′ = K
,

pre14(d) ≡ pre24(d1)

pre24(d) ≡ pre14(d1)

(c) rule(2.3), d ≡ Γ
d1

` K = K ′ Γ
d2

` K ′ = K ′′

Γ ` K = K ′′
,

pre14(d) ≡ pre14(d1)

pre24(d) ≡ pre24(d2)

(d) rule(4.3), d ≡ Γ
d1

` A = B : Type
Γ ` El(A) = El(B)

,

pre14(d) ≡ R(4.3)(pre
1
5(d1))

pre24(d) ≡ R(4.3)(pre
2
5(d1))

A. Algorithms 160

(e) rule(6.2), d ≡ Γ
d1

` K1 = K2 Γ, x : K1

d2

` K ′1 = K ′2
Γ ` (x : K1)K ′1 = (x : K2)K ′2

,

pre14(d) ≡ R(6.1)(pre
1
4(d1), pre14(d2))

pre24(d) ≡ R(6.1)(pre
2
4(d1), ctx′(pre24(d2), d1, pre

1
4(d1), pre24(d1)))

2. If d is a derivation of Γ ` k1 = k2 : K, then pre15(d) is a derivation of Γ ` k1 : K,

pre25(d) is a derivation of Γ ` k2 : K.

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(2.4), d ≡ Γ
d1

` k : K
Γ ` k = k : K

,

pre15(d) ≡ pre25(d) ≡ d1

(b) rule(2.5), d ≡ Γ
d1

` k = k′ : K
Γ ` k′ = k : K

,

pre15(d) ≡ pre25(d1)

pre25(d) ≡ pre15(d1)

(c) rule(2.6), d ≡ Γ
d1

` k = k′ : K Γ
d2

` k′ = k′′

Γ ` k = k′′ : K
,

pre15(d) ≡ pre15(d1)

pre25(d) ≡ pre25(d2)

(d) rule(3.2), d ≡ Γ
d1

` k = k′ : K Γ
d2

` K = K ′

Γ ` k = k′ : K ′
,

pre15(d) ≡ R(3.1)(pre
1
5(d1), d2)

pre25(d) ≡ R(3.1)(pre
2
5(d1), d2)

(e) rule(6.4), d ≡ Γ
d1

` K1 = K2 Γ, x : K1

d2

` k1 = k2 : K
Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

,

pre15(d) ≡ R(6.3)(pre
1
5(d2))

pre25(d) ≡ R(3.1)(R(6.3)(h1), h2)

where

h1 ≡ ctx′(pre25(d2), d1, pre
1
4(d1), pre24(d1))

h2 ≡ R(2.2)(R(6.2)(d1, R(2.1)(pre6(d2))))

(f) rule(6.6), d ≡ Γ
d1

` f = f ′ : (x : K)K ′ Γ
d2

` k1 = k2 : K
Γ ` f(k1) = f ′(k2) : [k1/x]K ′

,

pre15(d) ≡ R(6.5)(pre
1
5(d1), pre15(d2))

pre25(d) ≡ R(3.2)(R(6.5)(pre
2
5(d1), pre25(d2)), R(2.2)(h))

where

h ≡ sub′6(pre3(pre6(d1)), d2, pre
1
5(d2), pre25(d2))

A. Algorithms 161

(g) rule(6.7), d ≡ Γ, x : K
d1

` k′ : K ′ Γ
d2

` k : K
Γ ` ([x : K]k′)k = [k/x]k′ : [k/x]K ′

,

pre15(d) ≡ R(6.5)(R(6.3)(d1), d2)

pre25(d) ≡ sub3(d, d′)

(h) rule(6.8), d ≡ Γ
d1

` f : (x : K)K ′

Γ ` [x : K]f(x) = f : (x : K)K ′
(x 6∈ FV (Γ)) ,

pre15(d) ≡ R(6.3)(R(6.5)(h1, h2))

where

h1 ≡ wkn(d1, pre1(pre3(d1), (Γ, x : K)),Γ)

h2 ≡ R(1.3)(pre1(pre3(d1), (Γ, x : K)),Γ)

pre25(d) ≡ d1

(i) rule(CA2), d ≡ Γ
d1

` f = f ′ : (x : K1)K ′ Γ
d2

` k0 = k′0 : K0 Γ
d3

` K0 <c K1

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′
,

pre15(d) ≡ R(CA1)(pre
1
5(d1), pre25(d2), d3)

pre25(d) ≡ R(3.1)(R(CA1)(pre
1
5(d1), pre25(d2), d3), R(2.2)(sub

′
6(per3(pre6(d1)), h1, h2, h3)))

where

h1 ≡ R(6.6)(R(2.4)(co(d3), d2))

h2 ≡ R(6.5)(co(d3), pre15(d2))

h3 ≡ R(6.5)(co(d3), pre25(d2))

(j) rule(CD), d ≡ Γ
d1

` f : (x : K1)K ′ Γ
d2

` k0 : K0 Γ
d3

` K0 <c K1

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′
,

pre15(d) ≡ R(CA1)(d1, d2, d3)

pre25(d) ≡ R(6.5)(d1, R(6.5)(d2, co(d3)))

3. If d is a derivation of Γ ` Σ : K, then pre6(d) is a derivation of Γ ` K kind (Σ

denotes term or term equality here).

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(1.3), d ≡ Γ, x : K,Γ′
d1

` valid
Γ, x : K,Γ′ ` x : K

,

pre6(d) ≡ wkn(pre2(d1,Γ), d1,Γ)

(b) rule(2.4), d ≡ Γ
d1

` k : K
Γ ` k = k : K

,

pre6(d) ≡ pre6(d1)

(c) rule(2.5), d ≡ Γ
d1

` k = k′ : K
Γ ` k′ = k : K

,

pre6(d) ≡ pre6(d1)

A. Algorithms 162

(d) rule(2.6), d ≡ Γ
d1

` k = k′ : K Γ
d2

` k′ = k′′ : K
Γ ` k = k′′ : K

,

pre6(d) ≡ pre6(d1)

(e) rule(3.1), d ≡ Γ
d1

` k : K Γ
d2

` K = K ′

Γ ` k : K ′
,

pre6(d) ≡ pre24(d2)

(f) rule(3.2), d ≡ Γ
d1

` k = k′ : K Γ
d2

` K = K ′

Γ ` k = k′ : K ′
,

pre6(d) ≡ pre24(d2)

(g) rule(6.3), d ≡ Γ, x : K
d1

` k : K ′

Γ ` [x : K]k : (x : K)K ′
,

pre6(d) ≡ R(6.1)(pre6(d1))

(h) rule(6.4), d ≡ Γ
d1

` K1 = K2 Γ, x : K1

d2

` k1 = k2 : K
Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

,

pre6(d) ≡ R(6.1)(pre6(d2))

(i) d ≡ Γ
d1

` f : (x : K)K ′ Γ
d2

` k : K
Γ ` f(k) : [k/x]K ′

,

pre6(d) ≡ sub2(pre3(pre6(d1)), d2)

(j) d ≡ Γ
d1

` f = f ′ : (x : K)K ′ Γ
d2

` k1 = k2 : K
Γ ` f(k1) = f ′(k2) : [k1/x]K ′

,

pre6(d) ≡ sub2(pre3(pre6(d1)), pre15(d2))

(k) d ≡ Γ, x : K
d1

` k′ : K ′ Γ
d2

` k : K
Γ ` ([x : K]k′)k = [k/x]k′ : [k/x]K ′

,

pre6(d) ≡ sub2(pre6(d1)), d2)

(l) d ≡ Γ
d1

` f : (x : K)K ′

Γ ` [x : K]f(x) = f : (x : K)K ′
(x 6∈ FV (Γ)) ,

pre6(d) ≡ pre6(d1)

(m) rule(CA1), d ≡ Γ
d1

` f : (x : K1)K ′ Γ
d2

` k0 : K0 Γ
d3

` K0 <c K1

Γ ` f(k0) : [c(k0)/x]K ′
,

pre6(d) ≡ sub2(pre3(pre6(d1)), R(6.5)(co(d3), d2))

(n) rule(CA2), d ≡ Γ
d1

` f = f ′ : (x : K1)K ′ Γ
d2

` k0 = k′0 : K0 Γ
d3

` K0 <c K1

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′
,

pre6(d) ≡ sub2(pre3(pre6(d1)), R(6.5)(co(d3), pre15(d2))

(o) rule(CD), d ≡ Γ
d1

` f : (x : K1)K ′ Γ
d2

` k0 : K0 Γ
d3

` K0 <c K1

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′
,

pre6(d) ≡ sub2(pre3(pre6(d1)), R(6.5)(co(d3), d2))

A. Algorithms 163

4. If d is a derivation of Γ ` A <c B : Type, then pre17(d) is a derivation of Γ `
A : Type, pre27(d) is a derivation of Γ ` B : Type, cot(d) is a derivation of

Γ ` c : (El(A))El(B)

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(ST1), d ≡ Γ ` A <c B : Type ∈ C
Γ ` A <c B : Type

,

the algorithm simply generated by the coherence.

(b) rule(ST2), d ≡ Γ
d1

` A <c B : Type Γ
d2

` c = c′ : (El(A))El(B)
Γ ` A <c′ B : Type

,

pre17(d) ≡ pre17(d1)

pre27(d) ≡ pre27(d1)

cot(d) ≡ pre25(d2)

(c) rule(ST3), d ≡ Γ
d1

` A <c B : Type Γ
d2

` A = A′ : Type
Γ ` A′ <c B : Type

,

pre17(d) ≡ pre25(d2)

pre27(d) ≡ pre27(d1)

cot(d) ≡ R(3.1)(cot(d1), R(6.2)(R(5.3)(d2), wkn(h1, h2,Γ)))

where

h1 ≡ R(2.1)(R(5.2)(pre
2
7(d1)))

h2 ≡ R(1.2)(R(5.2)(pre
1
7(d1)))

(d) rule(ST4), d ≡ Γ
d1

` A <c B : Type Γ
d2

` B = B′ : Type
Γ ` A <c B

′ : Type
,

pre17(d) ≡ pre17(d1)

pre27(d) ≡ pre25(d2)

cot(d) ≡ R(3.1)(cot(d1), R(6.2)(h1, wkn(R(5.2)(d2), h2,Γ)))

where

h1 ≡ R(5.2)(pre
1
7(d1))

h2 ≡ R(3.2)(pre
1
7(d1))

(e) rule(ST5), d ≡ Γ ` A <c1 B : Type Γ ` B <c2 C : Type
Γ ` A <c2◦c1 C : Type

,

pre17(d) ≡ pre17(d1)

pre27(d) ≡ pre27(d2)

cot(d) ≡ R(6.3)(R(6.5)(wkn(cot(d2), h1,Γ), R(6.5)(wkn(cot(d1), h1,Γ), R(1.3)(h1,Γ))),

where h1 ≡ R(1.2)(R(5.2)(pre
1
7(d1)))

A. Algorithms 164

(f) rule(ST6), d ≡ Γ, x : K,Γ′
d1

` A <c B : Type Γ
d2

` k : K
Γ, [k/x]Γ′ ` [k/x]A <[k/x]c [k/x]B : Type

,

pre17(d) ≡ sub3(pre17(d1), d2)

pre27(d) ≡ sub3(pre27(d1), d2)

cot(d) ≡ sub3(cot(d1), d2)

(g) rule(ST7), d ≡ Γ,Γ′
d1

` A <c B : Type Γ,Γ′′
d2

` valid
Γ,Γ′′,Γ′ ` A <c B : Type

,

pre17(d) ≡ wkn(pre17(d1), d2,Γ)

pre27(d) ≡ wkn(pre27(d1), d2,Γ)

cot(d) ≡ wkn(cot(d1), d2,Γ)

(h) rule(ST8), d ≡ Γ, x : K,Γ′
d1

` A <c B : Type Γ
d2

` K = K ′

Γ, x : K ′,Γ′ ` A <c B : Type
,

pre17(d) ≡ ctx′(pre17(d1), d2, pre
1
5(d2), pre25(d2))

pre27(d) ≡ ctx′(pre27(d1), d2, pre
1
5(d2), pre25(d2))

cot(d) ≡ ctx′(cot(d1), d2, pre
1
5(d2), pre25(d2))

5. If d is a derivation of Γ ` K1 <c K2, then pre18(d) is a derivation of Γ ` K1 kind,

pre28(d) is a derivation of Γ ` K2 kind, co(d) is a derivation of Γ ` c : (K1)K2

The algorithm is constructed inductively on the derivation of d, depending on the

last rule of d:

(a) rule(SK1), d ≡ Γ
d1

` A <c B : Type
Γ ` El(A) <c El(B)

,

pre18(d) ≡ R(5.2)(pre
1
7(d1))

pre28(d) ≡ R(5.2)(pre
2
7(d1))

co(d) ≡ cot(d1)

(b) rule(SK2), d ≡ Γ
d1

` K ′1 <c1 K1 Γ, x′ : K ′1
d2

` [c1(x′)/x]K2 = K ′2 Γ, x : K1

d3

` K2 kind
Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

,

where c ≡ [f : (x : K1)K2][x′ : K ′1]f(c1(x′)) ,

pre18(d) ≡ R(6.1)(d3)

pre28(d) ≡ R(6.1)(pre
2
4(d2))

co(d) ≡ R(6.3)(R(6.3)(R(3.1)(h3, wkn(d2, h1,Γ))))

where

h0 ≡ pre1(d2, (Γ, x
′ : K ′1))

h1 ≡ R(1.2)(R(6.1)(d3))

h2 ≡ R(6.5)(wkn(co(d1), h0,Γ), R(1.3)(h0,Γ))

h3 ≡ R(6.5)(R(1.3)(wkn(h0, h1,Γ),Γ), wkn(h2, h1,Γ))

A. Algorithms 165

(c) rule(SK3), d ≡ Γ
d1

` K ′1 = K1 Γ, x′ : K ′1
d2

` K2 <c2 K
′
2 Γ, x : K1

d3

` K2 kind
Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

,

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(x′),

pre18(d) ≡ R(6.1)(d3)

pre28(d) ≡ R(6.1)(pre
2
8(d2))

co(d) ≡ R(6.3)(R(6.3)(R(6.5)(wkn(co(d2), h1,Γ), h3)))

where

h0 ≡ pre1(d2, (Γ, x
′ : K ′1))

h1 ≡ R(1.2)(R(6.1)(d3))

h2 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d1, h0,Γ)

h3 ≡ R(6.5)(R(1.3)(h4,Γ), wkn(h2, h1,Γ))

h4 ≡ wkn(h0, h1,Γ)

(d) rule(SK4), d ≡ Γ
d1

` K ′1 <c1 K1 Γ, x′ : K ′1
d2

` [c1(x′)/x]K2 <c2 K
′
2 Γ, x : K1

d3

` K2 kind
Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]c2(f(c1(x′))),

pre18(d) ≡ R(6.1)(d3)

pre28(d) ≡ R(6.1)(pre
2
8(d2))

co(d) ≡ R(6.3)(R(6.3)(R(6.5)(wkn(co(d2), h1,Γ), h3)))

where

h0 ≡ pre1(d2, (Γ, x
′ : K ′1))

h1 ≡ R(1.2)(R(6.1)(d3))

h2 ≡ R(6.5)(wkn(co(d1), h0,Γ), R(1.3)(h0,Γ))

h3 ≡ R(6.5)(R(1.3)(wkn(h0, h1,Γ),Γ), wkn(h2, h1,Γ))

(e) rule(SK5), d ≡ Γ
d1

` K <c K
′ Γ

d2

` c = c′ : (K)K ′

Γ ` K <c′ K
′ ,

pre18(d) ≡ pre18(d1)

pre28(d) ≡ pre28(d1)

co(d) ≡ pre25(d2)

(f) rule(SK6), d ≡ Γ
d1

` K1 <c K2 Γ
d2

` K1 = K ′1
Γ ` K ′1 <c K2

,

pre18(d) ≡ pre25(d2)

pre28(d) ≡ pre28(d2)

co(d) ≡ R(3.1)(co(d1), R(6.2)(d2, wkn(h1, h2,Γ))),

where

h1 ≡ R(2.1)(pre
2
8(d1))

h2 ≡ R(1.2)(pre
1
8(d1))

A. Algorithms 166

(g) rule(SK7), d ≡ Γ
d1

` K1 <c K2 Γ
d2

` K2 = K ′2
Γ ` K1 <c K

′
2

,

pre18(d) ≡ pre18(d1)

pre28(d) ≡ pre25(d2)

co(d) ≡ R(3.1)(co(d1), R(6.2)(h1, wkn(d2, h2,Γ)))

where

h1 ≡ R(2.1)(pre
1
8(d1))

h2 ≡ R(1.2)(pre
1
8(d1))

(h) rule(SK8), d ≡ Γ
d1

` K1 <c1 K2 Γ
d2

` K2 <c2 K3

Γ ` K1 <c2◦c1 K3
,

pre18(d) ≡ pre18(d1)

pre28(d) ≡ pre28(d2)

cot(d) ≡ R(6.3)(R(6.5)(wkn(co(d2), h1,Γ), R(6.5)(wkn(co(d1), h1,Γ), R(1.3)(h1,Γ))),

where h1 ≡ R(1.2)(pre
1
8(d1))

Algorithm A.8. (substitutions 2 – equality substitutions)

1. If d is a derivation of Γ, x : K,Γ′ ` K ′ kind, d′ is a derivation of Γ ` k1 = k2 : K,

then sub6(d, d′) is a derivation of Γ, [k1/x]Γ′ ` [k1/x]K ′ = [k2/x]K ′.

The algorithm is constructed as follows:

sub6(d, d′) ≡ sub′6(d, d′, pre15(d′), pre25(d′))

2. If d is a derivation of Γ, x : K,Γ′ ` k′ : K ′, d′ is a derivation of Γ ` k1 = k2 : K,

then sub7(d, d′) is a derivation of Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K ′.

The algorithm is constructed as follows:

sub7(d, d′) ≡ sub′7(d, d′, pre15(d′), pre25(d′))

Algorithm A.9. (context retyping) If d is a derivation of Γ, x : K,Γ′ ` J , d′ is a

derivation of Γ ` K = K ′, then we have ctx(d, d′) as a derivation of Γ, x : K ′,Γ′ ` J .

The algorithm is constructed as follows:

ctx(d, d′) ≡ ctx′(d, d′, pre14(d′), pre24(d′))

Lemma A.10. In system T [C]0K , the following hold:

1. If Γ ` El(A) = K is derivable, then there is a term B, such that K ≡ El(B).

2. If Γ ` K = El(A) is derivable, then there is a term B, such that K ≡ El(B).

A. Algorithms 167

Proof. Proof the two properties simultaneously.

1. Induction on the derivation d of Γ ` El(A) = K, depending on the last rule of d,

rule(6.2) doesn’t satisfy the syntax.

(a) rule(2.1), K ≡ El(A)

(b) rule(2.2), proved by IH with 2

(c) rule(2.3), d ≡ Γ
d1

` El(A) = K0 Γ
d2

` K0 = K
Γ ` El(A) = K

We first use IH on d1, there’s a term C, such that K0 ≡ El(C). Then use IH

on d2, lemma is proved.

(d) rule(5.3), lemma is proved trivially.

2. Induction on the derivation d of Γ ` K = El(A), depending on the last rule of d,

rule(6.2) doesn’t satisfy the syntax.

(a) rule(2.1), K ≡ El(A)

(b) rule(2.2), proved by IH with 1

(c) rule(2.3), d ≡ Γ
d1

` K = K0 Γ
d2

` K0 = El(A)
Γ ` K = El(A)

We first use IH on d2, there’s a term C, such that K0 ≡ El(C). Then use IH

on d1, lemma is proved.

(d) rule(5.3), lemma is proved trivially.

Algorithm A.11. tp is a transformation from T [C]−0K to T [C]−0K . For any derivation d

of judgement Γ ` El(A) = El(B) in T [C]−0K , tp(d) is a derivation of Γ ` A = B : Type.

The algorithm is constructed inductively on the derivation of d, according to the last

rule of d:

1. rule(2.1), d ≡ Γ
d1

` El(A) kind
Γ ` El(A) = El(A)

.

The derivation d1 could only be d1 ≡ Γ
d′
1

` A : Type
Γ ` El(A) kind

, hence

tp(d) ≡ R(2.4)(d
′
1)

2. rule(2.2), d ≡ Γ
d1

` El(B) = El(A)
Γ ` El(A) = El(B)

.

tp(d) ≡ R(2.2)(tp(d1))

A. Algorithms 168

3. rule(2.3), d ≡ Γ
d1

` El(A) = K Γ
d2

` K = El(B)
Γ ` El(A) = El(B)

.

Using lemma A.10, there’s term C such that K ≡ El(C),

tp(d) ≡ R(2.3)(tp(d1), tp(d2))

4. rule(5.3), d ≡ Γ
d1

` A = B : Type
Γ ` El(A) = El(B)

.

tp(d) ≡ d1

5. rule(6.2), the syntax doesn’t apply to the case.

Lemma A.12. In system T [C]0K , the following hold:

1. If Γ ` (x : K1)K2 = M , then there are terms N1, N2, such that M ≡ (x : N1)N2.

2. If Γ `M = (x : K1)K2, then there are terms N1, N2, such that M ≡ (x : N1)N2.

Proof. Proof the two properties simultaneously.

1. Induction on the derivation d of Γ ` (x : K1)K2 = M , according to the last rule of

d, rule(5.3) doesn’t satisfy the syntax.

(a) rule(2.1), M ≡ (x : K1)K2

(b) rule(2.2), proved by IH with 2

(c) rule(2.3), d ≡ Γ
d1

` (x : K1)K2 = M0 Γ
d2

` M0 = M
Γ ` (x : K1)K2 = M

.

We first use IH on d1, there’re terms N ′1, N
′
2, such that M0 ≡ (x : N ′1)N ′2.

Then use IH on d2, lemma is proved.

(d) rule(6.2), lemma is proved trivially.

2. Induction on the derivation d of Γ `M = (x : K1)K2, according to the last rule of

d, rule(5.3) doesn’t satisfy the syntax.

(a) rule(2.1), M ≡ (x : K1)K2

(b) rule(2.2), proved by IH with 1

(c) rule(2.3), d ≡ Γ
d1

` M = M0 Γ
d2

` M0 = (x : K1)K2

Γ `M = (x : K1)K2
.

We first use IH on d2, there’re terms N ′1, N
′
2, such that M0 ≡ (x : N ′1)N ′2.

Then use IH on d1, lemma is proved.

(d) rule(6.2), lemma is proved trivially.

A. Algorithms 169

Algorithm A.13. prod1 and prod2 are transformations from T [C]−0K to T [C]−0K . For

any derivation d of judgement Γ ` (x : K1)K2 = (x : N1)N2 in T [C]−0K , prod1(d) is a

derivation of Γ ` K1 = N1 and prod2(d) is a derivation of Γ, x : K1 ` K2 = N2.

The algorithm is constructed inductively on the derivation of d, according to the last

rule of d:

1. rule(2.1), d ≡ Γ
d1

` (x : K1)K2 kind
Γ ` (x : K1)K2 = (x : K1)K2

.

prod1(d) ≡ R(2.1)(pre2(pre3(d1)),Γ)

prod2(d) ≡ R(2.1)(pre3(d1))

2. rule(2.2), d ≡ Γ
d1

` (x : N1)N2 = (x : K1)K2

Γ ` (x : K1)K2 = (x : N1)N2
.

prod1(d) ≡ R(2.2)(prod1(d1))

prod2(d) ≡ R(2.2)(ctx(prod2(d1), prod1(d1)))

3. rule(2.3), d ≡ Γ
d1

` (x : K1)K2 = M Γ
d2

` M = (x : N1)N2

Γ ` (x : K1)K2 = (x : N1)N2
.

Using lemma A.12, there are terms M1, M2 such that M ≡ (x : M1)M2,

prod1(d) ≡ R(2.3)(prod1(d1), prod1(d2))

prod2(d) ≡ R(2.3)(prod2(d1), ctx(prod2(d2), R(2.2)(prod1(d1))))

4. rule(5.3), the syntax doesn’t apply to the case.

5. rule(6.2), d ≡ Γ
d1

` K1 = N1 Γ, x : K1

d2

` K2 = N2

Γ ` (x : K1)K2 = (x : N1)N2
.

prod1(d) ≡ d1
prod2(d) ≡ d2

Algorithm A.14. If d is a derivation of Γ ` K1 <c K2, d′ is a derivation of Γ ` K1 = K ′1,

trans1(d, d′) is a derivation of Γ ` K ′1 <c K2.

The algorithm is constructed inductively on the derivation of d, according to the last

rule of d.

1. rule(SK1), d ≡ Γ
d1

` A <c B : Type
Γ ` El(A) <c El(B)

.

So d′ is a derivation of Γ ` El(A) = K ′1, using lemma A.10, there’s term A′, such

that K ′1 ≡ El(A′).

trans1(d, d′) ≡ R(SK1)(R(ST3)(d1, tp(d
′)))

A. Algorithms 170

2. rule(SK2), d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 = M ′2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]f(c1(x′)).

So d′ is a derivation of Γ ` (x : M1)M2 = K ′1, using lemma A.12, there are terms

N1 and N2, such that K ′1 ≡ (x : N1)N2.

Γ
d′

` (x : M1)M2 = (x : N1)N2

prod1(d′) is a derivation of Γ ` M1 = N1, prod2(d′) is a derivation of Γ, x : M1 `
M2 = N2

trans1(d, d′) ≡ R(SK5)(h3, h7)

where

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(6.5)(wkn(co(d1), h0), R(1.3)(h0,Γ))

h2 ≡ R(2.3)(R(2.2)(sub4(wkn(prod2(d′), h0), h1)), d2)

h3 ≡ R(SK2)(trans2(d1, prod1(d′)), h2, pre3(pre24(d′)))

h4 ≡ R(1.2)(pre
2
4(d′))

h5 ≡ R(3.2)(h1, wkn(prod1(d′), h0))

h6 ≡ R(3.2)(R(6.5)(R(1.3)(wkn(h0, h4),Γ), wkn(h5, h4)), wkn(h2, h4))

h7 ≡ R(6.4)(R(2.2)(d
′), R(2.5)(R(6.3)(h6)))

3. rule(SK3), d ≡ Γ
d1

` M ′1 = M1 Γ, x′ : M ′1
d2

` [x′/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2f(x′).

So d′ is a derivation of Γ ` (x : M1)M2 = K ′1, using lemma A.12, there are terms

N1 and N2, such that K ′1 ≡ (x : N1)N2.

Γ
d′

` (x : M1)M2 = (x : N1)N2

prod1(d′) is a derivation of Γ ` M1 = N1, prod2(d′) is a derivation of Γ, x : M1 `
M2 = N2

trans1(d, d′) ≡ R(SK5)(h3, h8)

where

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d1, h0))

h2 ≡ sub4(wkn(prod2(d′), h0), h1)

h3 ≡ R(SK2)(R(2.3)(d1, prod1(d′)), trans1(d2, h2), pre3(pre24(d′)))

h4 ≡ R(1.2)(pre
2
4)

h5 ≡ R(3.1)(h1, wkn(prod1(d′), h0)

A. Algorithms 171

h6 ≡ R(3.1)(R(6.5)(R(1.3)(wkn(h0, h4),Γ), h5), R(2.2)(wkn(h2, h4)))

h7 ≡ R(6.5(wkn(co(d2), h4), h6)

h8 ≡ R(6.4)(R(2.2)(d
′), R(2.5)(R(6.3)(h7)))

4. rule(SK4), d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(c1(x′))).

So d′ is a derivation of Γ ` (x : M1)M2 = K ′1, using lemma A.12, there are terms

N1 and N2, such that K ′1 ≡ (x : N1)N2.

Γ
d′

` (x : M1)M2 = (x : N1)N2

prod1(d′) is a derivation of Γ ` M1 = N1, prod2(d′) is a derivation of Γ, x : M1 `
M2 = N2

trans1(d, d′) ≡ R(SK5)(h3, h8) where,

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(6.5)(wkn(co(d1), h0), R(1.3)(h0,Γ))

h2 ≡ R(3.1)(R(2.2)(sub4(wkn(prod2(d′), h0), h1)), d2)

h3 ≡ R(SK4)(R(2.2)(trans2(d1, prod1(d′)), trans1(d2, h2), pre3(pre24(d′)))

h4 ≡ R(1.2)(pre
2
4)

h5 ≡ R(3.1)(h1, wkn(prod1(d′), h0)

h6 ≡ R(3.1)(R(6.5)(R(1.3)(wkn(h0, h4),Γ), wkn(h5, h4)), R(2.2)(wkn(h2, h4)))

h7 ≡ R(6.5(wkn(co(d2), h4), h6)

h8 ≡ R(6.4)(R(2.2)(d
′), R(2.5)(R(6.3)(h7)))

5. rule(SK5), d ≡ Γ
d1

` K1 <c K2 Γ
d2

` c = c′ : (K1)K2

Γ ` K1 <c′ K2
,

trans1(d, d′) ≡ R(SK5)(trans1(d1, d
′), R(3.2)(d2, h))

where h ≡ R(6.2)(d
′, R(2.1)(pre3(pre6(d2))))

Algorithm A.15. If d is a derivation of Γ ` K1 <c K2, d′ is a derivation of Γ ` K2 = K ′2,

trans2(d, d′) is a derivation of Γ ` K1 <c K
′
2.

The algorithm is constructed inductively on the derivation of d, according to the last

rule of d.

1. rule(SK1), d ≡ Γ
d1

` A <c B : Type
Γ ` El(A) <c El(B)

.

So d′ is a derivation of Γ ` El(B) = K ′2, using lemma A.10, there’s term B′, such

that K ′2 ≡ El(B′).

trans2(d, d′) ≡ R(SK1)(R(ST4)(d1, tp(d
′)))

A. Algorithms 172

2. rule(SK2), d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 = M ′2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]f(c1(x′)).

So d′ is a derivation of Γ ` (x′ : M ′1)M ′2 = K ′2, using lemma A.12, there are terms

N1 and N2, such that K ′2 ≡ (x′ : N1)N2.

Γ
d′

` (x′ : M ′1)M ′2 = (x′ : N1)N2

prod1(d′) is a derivation of Γ ` M ′1 = N1, prod2(d′) is a derivation of Γ, x′ : M ′1 `
M ′2 = N2

trans2(d, d′) ≡ R(SK5)(h1, h6)

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(SK2)(trans1(d1, prod(d
′)), R(2.3)(d2, prod2(d′)), d3)

h2 ≡ R(1.2)(pre
1
7(d))

h3 ≡ R(6.5)(wkn(co(d1), h0), R(1.3)(h0,Γ))

h4 ≡ R(3.1)(R(6.5)(R(1.3)(wkn(h0, h2),Γ)), wkn(R(2.3)(d2, prod2(d′)), h2))

h5 ≡ R(6.4)(R(2.2)(wkn(prod1(d′), h2)), R(2.5)(ctx(h4, wkn(prod1(d′), h2))))

h6 ≡ R(6.4)(R(2.1)(pre
1
7(d)), h5)

3. rule(SK3), d ≡ Γ
d1

` M ′1 = M1 Γ, x′ : M ′1
d2

` [x′/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(x′)).

So d′ is a derivation of Γ ` (x′ : M ′1)M ′2 = K ′2, using lemma A.12, there are terms

N1 and N2, such that K ′2 ≡ (x′ : N1)N2.

Γ
d′

` (x′ : M ′1)M ′2 = (x′ : N1)N2

prod1(d′) is a derivation of Γ ` M ′1 = N1, prod2(d′) is a derivation of Γ, x′ : M ′1 `
M ′2 = N2

trans2(d, d′) ≡ R(SK5)(h1, h7)

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(SK3)(R(2.3)(d1, prod1(d′)), trans2(d2, prod2(d′)), d3)

h2 ≡ R(1.2)(pre
1
7(d))

h3 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d1, h0))

h4 ≡ R(6.5)(R(1.3)(wkn(h0, h2),Γ), wkn(h3, h2))

h5 ≡ R(3.1)(R(6.5)(wkn(co(d2), h2), h4), wkn(prod2(d′), h2)

h6 ≡ R(6.4)(R(2.2)(wkn(prod1(d′), h2)), R(2.5)(ctx(h5, wkn(prod1(d′), h2))))

h7 ≡ R(6.4)(R(2.1)(pre
1
7(d)), h6)

A. Algorithms 173

4. rule(SK4), d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(c1(x′))).

So d′ is a derivation of Γ ` (x′ : M ′1)M ′2 = K ′2, using lemma A.12, there are terms

N1 and N2, such that K ′2 ≡ (x′ : N1)N2.

Γ
d′

` (x′ : M ′1)M ′2 = (x′ : N1)N2

prod1(d′) is a derivation of Γ ` M ′1 = N1, prod2(d′) is a derivation of Γ, x′ : M ′1 `
M ′2 = N2

trans2(d, d′) ≡ R(SK5)(h1, h7) where,

h0 ≡ pre1(d2, (Γ, x
′ : M ′1))

h1 ≡ R(SK4)(trans1(d1, prod1(d′)), trans2(d2, prod2(d′)), d3)

h2 ≡ R(1.2)(pre
1
7(d))

h3 ≡ R(6.5)(R(1.3)(wkn(co(d1), h0), R(1.3)(h0,Γ))

h4 ≡ R(6.5)(R(1.3)(wkn(h0, h2),Γ), wkn(h3, h2))

h5 ≡ R(3.1)(R(6.5)(wkn(co(d2), h2), h4), wkn(prod2(d′), h2)

h6 ≡ R(6.4)(R(2.2)(wkn(prod1(d′), h2)), R(2.5)(ctx(h5, wkn(prod1(d′), h2))))

h7 ≡ R(6.4)(R(2.1)(pre
1
7(d)), h6)

5. rule(SK5), d ≡ Γ
d1

` K1 <c K2 Γ
d2

` c = c′ : (K1)K2

Γ ` K1 <c′ K2
,

trans2(d, d′) ≡ R(SK5)(trans1(d1, d
′), R(3.2)(d2, h)) where,

h ≡ R(6.2)(R(2.1)(pre
1
7(d1)), wkn(d′, R(1.2)(pre

1
7(d1))))

Algorithm A.16. If d is a derivation of Γ ` K1 <c K2, d′ is a derivation of Γ ` K2 <c′

K3, trans3(d, d′) is a derivation of Γ ` K1 <c′◦c K3.

The algorithm is constructed inductively on the derivation of d and d′, according to

the last rule of the derivations.

1. If one of the derivations ends with rule(SK5),

(a) d ≡ Γ
d1

` K1 <c1 K2 Γ
d2

` c1 = c : (K1)K2

Γ ` K1 <c K2
,

trans3(d, d′) ≡ R(SK5)(trans3(d1, d
′), h1) where,

h0 ≡ R(1.2)(pre
1
7(d))

h1 ≡ R(6.4)(R(2.1)(pre
1
7(d)), R(6.6)(R(2.4)(wkn(co(d′), h0)), R(6.6)(wkn(d2, h0), R(1.3)(h0,Γ))))

A. Algorithms 174

(b) d′ ≡
Γ

d′
1

` K2 <c′1
K3 Γ

d′
2

` c′1 = c′ : (K2)K3

Γ ` K2 <c′ K3

trans3(d, d′) ≡ R(SK5)(trans3(d1, d
′), h1) where,

h0 ≡ R(1.2)(pre
1
7(d))

h1 ≡ R(6.4)(R(2.1)(pre
1
7(d)), R(6.6)(wkn(d′2, h0), R(2.4)(R(6.5)(wkn(co(d), h0), R(1.3)(h0,Γ)))))

2. Both d and d′ end with rule(SK1),

d ≡ Γ
d1

` A <c B : Type
Γ ` El(A) <c El(B)

and d′ ≡ Γ
d′
1

` B <′c C : Type
Γ ` El(B) <c′ El(C)

.

K1 ≡ El(A), K2 ≡ El(B) and K3 ≡ El(C)

trans3(d, d′) ≡ R(SK1)(R(ST5)(d1, d
′
1))

3. Both d and d′ end with rule(SK2-4).

(a) d rule(SK2), d′ rule(SK2)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 = M ′2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]f(c1(x′)).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 = M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]f ′(c′1(x′′)).

trans3(d, d′) ≡ R(SK2)(trans3(d′1, d1), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ R(2.3)(sub4(wkn(d2, h0), h1), d′2)

(b) d rule(SK2), d′ rule(SK3)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 = M ′2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]f(c1(x′)).

d′ ≡
Γ

d′
1

` M ′′1 = M ′1 Γ, x′′ : M ′′1

d′
2

` [x′′/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(x′′)).

trans3(d, d′) ≡ R(SK4)(trans1(d1, R(2.2)(d
′
1)), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d′1, h0))

A. Algorithms 175

h2 ≡ sub4(wkn(d2, h0), h1)

(c) d rule(SK2), d′ rule(SK4)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 = M ′2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]f(c1(x′)).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(c′1(x′′))).

trans3(d, d′) ≡ R(SK4)(trans3(d′1, d1), h2, d3) where,

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ trans1(d′2, R(2.2)(sub4(wkn(d2, h0), h1)))

(d) d rule(SK3), d′ rule(SK2)

d ≡ Γ
d1

` M ′1 = M1 Γ, x′ : M ′1
d2

` [x′/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(x′)).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 = M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]f ′(c′1(x′′)).

trans3(d, d′) ≡ R(SK4)(trans2(d′1, d1), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ (trans2(subK(wkn(d2, h0), h1), d′2)

(e) d rule(SK3), d′ rule(SK3)

d ≡ Γ
d1

` M ′1 = M1 Γ, x′ : M ′1
d2

` [x′/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(x′)).

d′ ≡
Γ

d′
1

` M ′′1 = M ′1 Γ, x′′ : M ′′1

d′
2

` [x′′/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(x′′)).

trans3(d, d′) ≡ R(SK3
(R(2.3)(d

′
1, d1), h2, d3)

where

h0 ≡ pre1(d′2, (Γ, x
′′ : M ′′1))

A. Algorithms 176

h1 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d′1, h0))

h2 ≡ trans3(subK(wkn(d2, h0), h1), d′2)

(f) d rule(SK3), d′ rule(SK4)

d ≡ Γ
d1

` M ′1 = M1 Γ, x′ : M ′1
d2

` [x′/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

,

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(x′)).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(c′1(x′′))).

trans3(d, d′) ≡ R(SK4)(trans2(d′1, d1), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ trans3(subK(wkn(d2, h0), h1), d′2)

(g) d rule(SK4), d′ rule(SK2)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(c1(x′))).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 = M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]f ′(c′1(x′′)).

trans3(d, d′) ≡ R(SK4)(trans3(d′1, d1), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ trans2(subK(wkn(d2, h0), h1), d′2)

(h) d rule(SK4), d′ rule(SK3)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(c1(x′))).

d′ ≡
Γ

d′
1

` M ′′1 = M ′1 Γ, x′′ : M ′′1

d′
2

` [x′′/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
,

where c′ ≡ [f ′ : (x : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(x′′)).

trans3(d, d′) ≡ R(SK4)(trans1(d1, R(2.2)d
′
1), h2, d3)

A. Algorithms 177

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(3.1)(R(1.3)(h0,Γ), wkn(d′1, d0))

h2 ≡ trans3(subK(wkn(d2, h0), h1), d′2)

(i) d rule(SK4), d′ rule(SK4)

d ≡ Γ
d1

` M ′1 <c1 M1 Γ, x′ : M ′1
d2

` [c1(x′)/x]M2 <c2 M
′
2 Γ, x : M1

d3

` M2 kind
Γ ` (x : M1)M2 <c (x′ : M ′1)M ′2

where c ≡ [f : (x : M1)M2][x′ : M ′1]c2(f(c1(x′))).

d′ ≡
Γ

d′
1

` M ′′1 <c′1
M ′1 Γ, x′′ : M ′′1

d′
2

` [c′1(x′′)/x′]M ′2 <c′2
M ′′2 Γ, x′ : M ′1

d′
3

` M ′2 kind

Γ ` (x′ : M ′1)M ′2 <c′ (x′′ : M ′′1)M ′′2
where c′ ≡ [f ′ : (x′ : M ′1)M ′2][x′′ : M ′′1]c′2(f ′(c′1(x′′))).

trans3(d, d′) ≡ R(SK4)(trans3(d′1, d1), h2, d3)

where

h0 ≡ pre1(d2, (Γ, x
′′ : M ′′1))

h1 ≡ R(6.5)(wkn(d′1, h0), R(1.3)(h0,Γ))

h2 ≡ trans3(subK(wkn(d2, h0), h1), d′2)

	Declaration
	Abstract
	Acknowledgements
	Copyright
	Introduction
	Basic Concepts of Type Theory
	Objects and Types
	Inductive Data Types
	Different Views of Type Theory
	Logical Framework and UTT
	Subtyping
	How to Introduce Subtypes
	How to Use Subtypes

	Type Theory and Linguistic Semantics
	Implementation: Proof Assistants
	Motivation and Contributions
	Overview of the Thesis

	Logical Framework and UTT
	Logical Framework
	The Logical Framework
	Specifying Type Theory in LF

	The Formulation of UTT
	The Internal Logical Mechanism
	Inductive Types
	Predicative Universes

	Coercive Subtyping � the idea, original description and problems
	The Idea of Coercive Subtyping
	T[R] � the original description of coercive subtyping
	Judgements
	Presupposed Judgements
	Equality between Judgements

	Conservative Extension
	Coherence
	A Problem of Original Formulation
	An Intermediate System with `*'

	Definitional Extension
	Coercive Subtyping and Subsumptive Subtyping

	Coercive Subtyping and Proof
	Description of the Systems
	System T[C]0
	System T[C]0K
	The Systems T[C] and T[C]*

	Relationship between the Systems
	Coercion Insertion Algorithms
	Basic Ideas of the Coercion Insertion Algorithms
	Transformations of Derivations: Exact Formulation

	The Proof of The Theorems
	Totality of The Transformations
	Other Theorems

	Coercive Subtyping in Plastic
	Coercions in a Logical Framework
	Argument Coercions
	Type Coercions
	Function Coercions

	Proof Assistant Plastic
	Declaration and Definition
	Product of Kinds
	Inductive Types

	Implementation of Coercions in Plastic
	Different Ways of Using Coercive Subtyping in Plastic
	Declaring Coercions
	Transitivity and Coherence
	Problems and Improvement

	Dot-types with Coercive Subtyping
	Dot-types in Formal Semantics
	Dot-types in Modern Type Theories
	Dot-types and Coercive Subtyping
	Dot-types in Type Theory: a Formal Formulation

	Implementation
	Dot-types in Plastic
	Examples of Dot-types in Plastic

	Conclusion and Future Work
	Summary
	Discussion and Future Work

	Bibliography
	Appendix
	Algorithms

