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Introduction

The Quaternary sciences represent the systematic
study of the Quaternary, or most recent geologic
period. This period is generally characterized by a
series of glaciations, or ice ages, interspersed with
relatively warm, interglacial intervals, such as the
current interglacial, the Holocene. The study of
Quaternary environments began in the late eighteenth
century. Quaternary geology and paleontology came
of age in the nineteenth century, and other important
aspects of Quaternary science, such as paleoceanogra-
phy (see Paleoceanography), paleoecology, and paleo-
climatology (see Introduction), developed to a much
greater extent in the twentieth century. As with many
branches of science, the pioneers in Quaternary stu-
dies had to work hard to overcome many widely held,
erroneous ideas from previous generations of scholars.

At the beginning of the nineteenth century, science
itself was rapidly changing. Up until that time, univer-
sity professors and other scholars who performed
scientific research were mostly generalists who dabbled
in many different fields. They looked upon themselves
as natural historians, studying the workings of the
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natural world, as their whimsy led them. The early
nineteenth century saw the beginnings of specialization
in science. As the level of scientific knowledge was
rapidly increasing, it was no longer possible for indivi-
dual scholars to keep abreast of all the new discoveries.
People began to devote their time and energy to one or
just a few lines of research. This new, focused style of
scientific study brought great leaps forward for science
as a whole, and for Quaternary science, in particular,
as we shall see, below.

Establishing the Geologic Framework

The term ‘Quaternary’ was coined by an Italian
mining engineer, Giovanni Arduino (1714-95). He
distinguished four orders of strata comprising all of
Earth’s history: Primary, Secondary, Tertiary, and
Quaternary (Schneer (1969), p.10). Arduino (Fig. 1)
distinguished four separate stages or ‘orders’ which
he recognized on the basis of very large strata
arranged one above the other.

These four ‘orders’ were expressed regionally in
Italy, as the Atesine Alps, the Alpine foothills, the
sub-Alpine hills, and the Po River plain, respectively.
The term ‘Quaternary’ apparently was not used again
until the French geologist Desnoyers (1829) used it to
differentiate Tertiary from Younger strata in the
Paris basin. It was redefined by another Frenchman
Reboul (1833) to include all strata containing extant
flora and fauna.

The Quaternary period, as we now know it, is
divided into two epochs: the Pleistocene and the
Holocene (see Overview). The history of these terms
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Figure 1 Giovanni Arduino (1714-95).
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Figure 2 Charles Lyell (1797-1875).

is likewise complicated. The term ‘Pleistocene’ was
coined by Scottish geologist, Charles Lyell (Fig. 2) in
1839, to replace his previous term ‘Newer Pliocene’
(1833).

Lyell defined the Pleistocene as the ‘most recent’
geologic era, and further specified that Pleistocene
rocks and sediments are characterized by containing
more than 90% fossil mollusks that are recognized as
living species. As glacial theory began to take shape
(see below), Forbes (1846) redefined the Pleistocene
as equivalent to the ‘Glacial Epoch.” Then Hornes
(1853) introduced the term Neogene to include
Lyell’s Miocene and Pliocene. In response, Lyell
(1873) specified that the term Pleistocene should be
used ‘as strictly synonymous with post-Pliocene.” In
the same publication, Lyell also separated the
Pleistocene (glacial) from the ‘Recent’ (postglacial)
time. The term ‘Recent’ was later replaced by the
term ‘Holocene’ by Gervais (1867-69).

Thus, by the end of the nineteenth century, the
stratigraphic nomenclature of the Quaternary period
was firmly established (see Overview). However, no
one knew when the Tertiary ended and the
Quaternary began. In geology, it is standard proce-
dure to designate a type locality that typifies such
boundaries between major stratigraphic units. The
18th International Geological Congress (London,
1948) resolved to select a type locality for the
Pliocene-Pleistocene (Tertiary—Quaternary) bound-
ary. After three decades of deliberations, the Vrica
section in Calabria, southern Italy, was finally
selected. Hence the Plio-Pleistocene boundary was
established at this site, where the boundary falls at
ca. 1.64 Ma (Aguirre and Pasini, 1985; Bassett,
1985). Hilgen (1991) calibrated this age, based on
an orbital forcing chronology, to an age of 1.81 Ma.



12 INTRODUCTION/History of Quaternary Science

These age designations were only made possible
through the invention of radiometric dating methods,
which came about in the latter half of the twentieth
century (see below).

The Discovery of Pleistocene Mammals

The threads of research that eventually led to modern
Quaternary science came from a variety of disci-
plines, and were driven by scientific observations in
a number of fields. One of these was the field of
vertebrate paleontology (see Vertebrate Overview).
As with many branches of science, pivotal discoveries
often launch major new lines of research. One such
discovery was made at a Pleistocene site in Kentucky,
called Big Bone Lick. The site lies on a tributary of
the Ohio River, about 30 km southwest of Cincinnati
Ohio. It was the first major New World fossil locality
known to Europeans. Baron Charles de Lougueuil,
the commander of a French military expedition, may
have been the first European to visit the site in 1739.
He collected some mastodon fossils that were later
studied by the French naturalists, Daubenton,
Buffon, and Cuvier. Cuvier (1825) published a
description of the Big Bone Lick mastodon remains.
Inspired by this and other Pleistocene fossil discov-
eries, Cuvier developed his theory of global cooling
that led to the extinction of these strange beasts.

In 1807, at the behest of Thomas Jefferson,
William Clark conducted a major collecting expedi-
tion at Big Bone Lick that yielded about 300 speci-
mens, most of which can still be found either at the
National Museum of Natural History in Paris or at
the Academy of Natural Sciences in Philadelphia.
Thus, the fossils from this one site helped to launch
Pleistocene vertebrate paleontology on two conti-
nents. The discovery of mastodon and other large
Pleistocene mammal remains at this site sparked the
imagination of scientists and politicians alike. In
1803, the United States purchased the Louisiana
Territory from France. This territory included more
than 2 million sq. km of land extending from the
Mississippi River to the Rocky Mountains. When
President Thomas Jefferson sent Meriwether Lewis
and William Clark to explore and map this new
American territory, he expected that they might find
living specimens of mastodon and other large
Pleistocene mammals, roaming the uncharted wild-
erness of the West. Jefferson was an avid naturalist,
and took great interest in the fossil bones from Big
Bone Lick.

Based on discoveries such as these, the field of verte-
brate paleontology was starting to take shape during
the late eighteenth and early nineteenth centuries. As
discussed above, one of the most important leaders in

Figure 3 Georges Cuvier (1769-1832).

this newly emerging field was the French scientist,
Georges Cuvier (Fig. 3). At the start of the nineteenth
century, Cuvier was a professor of animal anatomy at
the Musée National d’Histoire Naturelle (National
Museum of Natural History) in Paris.

An opponent of the theory of evolution, Cuvier’s
most important contribution to science was the
establishment of extinction of ancient species, based
on fossil records. Until the nineteenth century, most
philosophers and natural historians rejected the idea
that some species had died out, and that new species
had evolved over time. Most Europeans held to a
strict, literal interpretation of the Bible which dic-
tated that the Earth was created in just 6 days, only
a few thousand years ago. But the fossil record that
was just beginning to be unearthed by a handful of
paleontologists began to challenge this view.

Although Cuvier remained a Creationist, the fossils
he was describing were re-shaping his views on the
nature of that creation. Cuvier believed in the great
antiquity of the Earth, and held that more-or-less mod-
ern conditions had been in existence for most of Earth’s
history. However, in order to explain the extinction of
species Cuvier had seen in the fossil record, he invoked
periodic ‘revolutions’ in Earth’s history. Each ‘revolu-
tion’ was a natural event that had brought about the
extinction of a number of species. Unlike others of his
time (notably the Reverend William Buckland, who
invoked the Biblical Flood), Cuvier did not equate
these ‘revolutions’ with Biblical or historical events.

Cuvier considered that the last great ‘revolution,’ the
one that brought about the extinction of such specta-
cular animals as mammoths and mastodons, might
have been a severe and sudden cooling of the planet.
Louis Agassiz (Fig. 4) took this idea and developed it
further, into the concept of a ‘Great Ice Age.’
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Figure 4 Louis Agassiz (1807-73).

Agassiz was a Swiss naturalist who started his career
as Cuvier’s assistant. Agassiz thought that mammoths
and other extinct mammals must have been adapted to
a tropical climate. Here is how he described their
demise in the face of the oncoming ice age:

The gigantic quadrupeds, the Mastodons, Elephants,
Tigers, Lions, Hyenas, Bears, whose remains are found
in Europe from its southern promontories to the north-
ernmost limits of Siberia and Scandinavia- - -may indeed
be said to have possessed the earth in those days. But
their reign was over. A sudden intense winter, that was
also to last for ages, fell upon our globe; it spread over
the very countries where these tropical animals had their
homes, and so suddenly did it come upon them that they
were embalmed beneath masses of snow and ice, with-
out time even for the decay which follows death.

(Agassiz (1866), p. 208).

The Discovery of Pleistocene Glaciations

Agassiz’s theory of the Great Ice Age was first pre-
sented to the Swiss Society of Natural Sciences in
Neuchatel in 1837. This was an ideal setting in
which to convince geologists and natural historians,
Agassiz could demonstrate the effects of glacial ice in
the landscapes of the Alps (see Vertebrate Overview).
He pointed to large boulders that had been trans-
ported by ice (glacial erratics), piles of rocks moved
by glacial ice (glacial moraines), and scratched sur-
face lines in bedrock, made by the passage of glacial
ice and debris. Agassiz published his theory in the
books Etude sur les glaciers, in 1840, and Systeme

glaciare, in 1847. These books summarized his find-
ings from Europe. He later found even more evidence
of glaciation in North America. Agassiz’s theory was
initially rejected by many leading geologists, who still
held to the idea that the transportation of surficial
sediments was mainly due to the effects of the
Biblical Flood. Agassiz’s ideas on the glaciation even-
tually won the day, but his ideas about the nature of
the Pleistocene megafauna turned out to be largely
nonsensical. Far from being tropically adapted ani-
mals, the mammoths, mastodons, and other Ice Age
mammals of Europe were adapted to the very same
glacial environments to which Agassiz had ascribed
their demise. Most of these animals died out during
the transition to warm climate at the end of the last
glaciation, not at its beginning.

Evidence for glaciation had been seen by some of
Agassiz’s contemporaries in other parts of Europe. For
instance, Esmark noted the existence of glacial depos-
its in Norway, Bernhardi found evidence for glaciation
in Germany, and de Venetz and Charpentier found
evidence for the advance of glacial ice far beyond the
limits of modern Alpine glaciers in Switzerland (see
Vertebrate Overview). Agassiz himself traveled to
Britain and North America and argued that surficial
deposits that had previously been considered flood
deposits should be reclassified as glacial.

Convinced by Agassiz’s ice age theory, field geolo-
gists of the middle and late nineteenth century began
looking for evidence to help reconstruct the actual
history of glacial events. Agassiz had proposed a
single, massive glacial event in which ice sheets cov-
ered much of the middle latitudes, as well as the high
latitudes of the Earth. Evidence started accumulating
that pointed to multiple glaciations, separated by
warm periods. By the 1850s, evidence was pointing
toward at least two major glaciations in Europe. By
1877, James Geikie (Fig. 5) had developed the con-
cept of four or five large glaciations during the
Pleistocene, based on stratigraphic evidence.

Evidence from North America made it clear that the
last glaciation had not been the largest one, because it
had not entirely destroyed the evidence for earlier, larger
glaciations (see Late Quaternary in North America).
Geologists coined the terms ‘Nebraskan,” ‘Kansan,’
‘Illinoian,” and ‘Wisconsinan,” to describe a sequence
of four glacial epochs in North America. These were
separated by three warm, or interglacial periods (the
Aftonian, Yarmouthian, and Sangamon), based on the
presence of ancient soils buried between glacial deposits.

Pioneering work on establishing the European gla-
cial sequence was carried out by Albrecht Penck and
Eduard Briickner (Fig. 6), who identified four glacia-
tions, the Gunz, Mindel, Riss, and Wiirm (see Late
Pleistocene Glaciations in Europe).
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Figure 5 James Geikie (1839-1915).

Figure 6 Eduard Brickner (1862—1927) and Albrecht Penck
(1858-1945).

These glaciations were named after four rivers in
southern Germany. Penck and Briickner’s (1909)
work was based on the identification of the strati-
graphic sequence of river terraces in the valleys of the

northern Alps (Fig. 7). In many parts of the world,
diligent field studies in the last century have failed to
find evidence for more than four glaciations on land.
The ways in which these glaciations were recognized
varied from one part of the world to another. In
Europe, only the ice advances that reached farther
south than younger ones were recognized as separate
glaciations. The traces of any intermediate ice expan-
sion were essentially overridden and destroyed by sub-
sequent larger glacial advances. American glaciations
were originally defined as times when the ice sheets
extended south to the American Midwest. Interglacials
were the times when the Midwest region was ice free.
The classical North American Pleistocene subdivision
is one of long interglacials and short glacials, whereas
the North European system recognizes short intergla-
cials and long glacials (Kukla, 2005). Penck and
Bruckner’s Alpine glaciation scheme was the most
widely used system of classification in the twentieth
century for the correlation of Pleistocene deposits
between continents (Flint, 1971) (see Overview).

Development of Theories on the Causes
of Glaciation

As we have seen, by the late nineteenth century, the
geologic evidence for repeated, large-scale glaciations
of the globe was firmly established. The causes of
glaciation, however, remained a mystery. Geikie’s
geologic evidence from Scotland showed that warm
intervals had developed between glaciations. While
the relative length of glacial and interglacial periods
remained unknown, it was becoming clear that large-
scale climatic oscillations had taken place over many
thousands of years of Earth’s recent history. Various
suggestions were put forward to explain these cycles.
Changes in carbon dioxide levels were proposed, as
well as changes in solar intensity.

Croll’s Orbital Theory

One of the earliest theories on the cause of glacial/
interglacial cycles was developed by the Scottish
scientist, James Croll (Fig. 8). Croll had little formal
education, but he was a voracious reader.

In 1859, his pursuit of knowledge led him to enter
academia ‘through the back door,” by becoming a
janitor at the museum at Anderson’s Institution in
Glasgow. Once there, he began developing a theory
about the causes of glaciation. He began writing let-
ters to Charles Lyell, discussing his ideas on the con-
nections between glaciation and variations in the
Earth’s orbit. Lyell was suitably impressed with
Croll’s scholarship, and helped him obtain a clerical
position at the Geological Survey of Scotland in 1867.
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Figure 8 James Croll (1821-90). Photo by J. C. Irons, 1896.

It was here that Croll was encouraged by Archibald
Geikie to further develop his theory. Charles Darwin
was also a regular correspondent with Croll, and both
scientists benefited from this exchange of ideas.

Croll started publishing his theories in 1867, and
his major contributions include Climate and Time, in
their Geological Relations (1875) and Climate and
Cosmology (1885).

In 1846, French astronomer Urbain Le Verrier pub-
lished formulas that allow the calculation of changes
in the shape of a planet’s orbit and its axial precession.
In 1864, Croll used these formulas to plot changes in
the shape of Earth’s orbit (called orbital eccentricity)
over the past 3 Myr. He found that a pattern of high
eccentricity had persisted for hundreds of thousands of
years, followed by a pattern of low eccentricity, as is
the case today. The more elliptical the orbit, the
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Figure 9 Diagram illustrating Croll’s (1887) explanation of ice
ages, based on changes in Earth’s orbit around the Sun.

greater the difference in incoming solar radiation
(insolation) between the different seasons of the year.
Croll realized the importance of calculating the sea-
sonality of insolation, which is one of his major con-
tributions to the science of paleoclimatology. Changes
in Earth’s orbit that act to prolong the winter season
cause greater amounts of snow to accumulate in the
high latitudes (Fig. 9).

The extra snow cover reflects more solar energy
back out into space, thereby amplifying the orbital
effects. Croll argued that this amplification is what
triggers the growth of ice sheets.

Croll’s theory introduced important new concepts in
the field of climatology. Subsequent research has shown
that Croll’s theory is insufficient to explain the global
pattern of Pleistocene glaciations, and Croll’s chronol-
ogy of glaciations has been shown to be in error.
Specifically, Croll’s scheme made the last ice age much
older than was inferred from the geologic evidence of
Geikie and others. Ultimately, Croll failed to convince
most of his contemporaries, and his ideas remained
largely ignored by other researchers until the 1940s.

The Milankovitch Theory

Milutin Milankovitch (Fig. 10) was a Serbian mathe-
matician who specialized in astronomy and geophysics.
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Figure 10 Portrait of Milutin Milankovitch (1879-1958) by Paja
Jovanovic, 1943. Courtesy of the Serbian Academy of Sciences
and Arts.

In 1909 he became a member of the faculty in applied
mathematics at the University of Belgrade.

Imprisoned by the Austro-Hungarian Army in the
First World War, he recommenced work on his math-
ematical theory of climate change in 1920, completing
this work in 1941. Milankovitch built his theory from
previous work done by J.A. Adhemar and James Croll.
In 1842 Adhemar explained glacial climate using only
precession. Milankovitch used Croll’s work to help him
develop a mathematical model of climate change. This
model incorporates the cyclical variations in
three elements of Earth’s orbit around the Sun: eccen-
tricity, obliquity, and precession. Using these three orbi-
tal factors, Milankovitch developed a comprehensive
mathematical model that calculated latitudinal differ-
ences in insolation and the corresponding surface tem-
peratures during the last 600kyr (see Milankovitch
Theory and Paleoclimate, and Introduction) (Fig. 11).

The next step in Milankovitch’s work was an
attempt to correlate the orbital variations with gla-
cial/interglacial cycles. Milankovitch worked on the
assumption that radiation changes in some latitudes
and seasons are key to triggering glaciation and degla-
ciation. Working with German Climatologist Vladimir
Koppen, he chose the summer insolation values at 65°
N as the critical latitude and season. Their reasoning
was that the continental ice sheets grew near this
latitude, and that cooler summers might reduce
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Figure 11 Orbital variations predicted by the Milankovitch the-

ory. From Berger A and Loutre M F (1991) Insolation values for
the climate of the last 10 million years. Quaternary Science
Reviews 10: 297-317.

summer snowmelt, leading to a buildup of snow
pack, and eventually to the growth of ice sheets.

Sadly, Milankovitch’s theory was largely ignored
for decades. However, in 1976, Hays et al. pub-
lished a study of deep-sea sediment cores and
found that Milankovitch’s predictions matched
their own interpretations of the timing and intensity
of climate change during the last 450kyr (see
Paleoceanography). Specifically, they found that
major variations in climate were closely associated
with changes in the eccentricity, obliquity, and pre-
cession of Earth’s orbit.

The Invention of Dating Methods

Without a means of obtaining an absolute age for
events in the Quaternary, there would have been no
way to test the validity of Milankovitch’s orbital
variation theory. Until the latter half of the twentieth
century, Quaternary scientists lacked the tools to
obtain such absolute ages, and could only infer the
ages of events through relatively dating techniques. In
other words, they could sometimes establish the
‘sequence’ of events, for instance, by determining
the relative stratigraphic position of various kinds
of fossils. But they could not tell whether a given
sequence of events took place 50 or 150ka, unless
they were dealing with long sequences of sedimentary
layers that accumulated in recognizable, annual
layers (a very rare phenomenon).
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Uranium-Series Dating

Radiometric dating methods were developed in
the twentieth century, and have revolutionized
Quaternary science. In 1902, physicists Ernest
Rutherford and Frederick Soddy had discovered
that radioactive elements broke down into other ele-
ments in a definite sequence or series, through the
process of nuclear fission. The possibility of using
this radioactivity as a means of measuring geologic
time was first discussed by Rutherford in 1904. In
1906, Rutherford began calculating the rate of radio-
active decay of uranium. This decay process (ura-
nium decaying to lead) has since been discovered to
go through multiple steps, with intermediate daugh-
ter products. It is now possible to use various ura-
nium-series decay processes to derive age estimates
for uranium-bearing fossils and sediments, back
many millions of years (see Paleoceanography).

Radiocarbon Dating

Perhaps the most important breakthrough in the
absolute dating of Quaternary fossils and sediments
was the invention of radiometric dating methods,
especially radiocarbon dating. In 1940, American
physicists Martin Kamen and Sam Ruben discovered
the long-lived radioactive carbon isotope, carbon-14.
Kamen used '*C as a tracer in biological systems.
Kamen found that some of the nitrogen in the atmo-
sphere was turned into carbon-14 when bombarded
with cosmic rays. The existence of *C had been
postulated since 1934, but it had never been directly
observed nor characterized. Kamen succeeded in pre-
paring "*C in sufficient amounts to determine its half-
life (5700 yr), that is, the amount of time it takes for
half of a sample of '*C to break down to the stable
N isotope of nitrogen (see Conventional Method).

Building on Kamen’s discoveries, in 1947
American chemist Willard Libby (Fig. 12) deter-
mined that plants absorb traces of *C during their
uptake of carbon in photosynthesis. At death, the
plant would stop absorbing carbon, and the '*C it
contained would decay at its usual rate without being
replaced. By measuring the concentration of '*C left
in the remains of a plant, Libby (1952) discovered
that it was possible to calculate the amount of time
since the plant had died. In addition, it was found
that the same concentrations of '*C occur in the
tissues of animals as in plants, since animals either
directly or indirectly ingest the carbon from plant
tissues as their food. Given that it is possible to
measure the concentration of remaining *C back to
nine or ten half-lives, it has thus become possible to
obtain absolute age estimates of fossil specimens
(both plant and animal), back to about 45-50 kyr.

Figure 12 Photograph of Willard F. Libby, inventor of the radio-
carbon dating method. Photo courtesy of Geoscience Analytical Inc.

For his work on carbon-14 dating, Libby received the
Nobel prize in chemistry in 1960.

Conclusions

Other articles in this Encyclopedia will highlight the
state of the art in the above-mentioned fields of
Quaternary stratigraphy, vertebrate paleontology,
Pleistocene glaciology, paleoclimatology, and dating
methods. As with all branches of science, the current
generation of researchers has built on the founda-
tions of people such as Agassiz, Lyell, Cuvier,
Milankovitch, and Libby. We owe these pioneers an
enormous debt of gratitude. Many of these people
worked in relative obscurity during their own life-
times, and their theories were openly ridiculed by
their contemporaries. Many survived major political
upheavals and wars in the rapidly changing world of
the nineteenth and twentieth centuries. The unifying
themes of their lives are their intellectual curiosity,
their diligence and perseverance, and their breadth of
vision. May the same be said of twenty-first century
Quaternary scientists, by future generations.

See also: Glaciation, Causes: Milankovitch Theory and
Paleoclimate. Glaciations: Overview; Late Pleistocene
Glaciations in Europe; Late Quaternary in North America.
Introduction: History of Recent Major Projects.
Paleoceanography. Paleoclimate: Introduction.
Quaternary Stratigraphy: Overview. Radiocarbon
Dating: Conventional Method. Vertebrate Overview.
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The first methods for dating Quaternary materials
resulted from the discovery of radioactivity 120
years ago. In addition, other dating methods have
been developed that rely on other time-dependent
changes that occur in natural materials. The different
methods can be used to obtain the age of formation
of either organic or inorganic materials.

Early Developments

Numerical dating methods based on natural radioac-
tive phenomena were initially developed as a means of
determining the age of the Earth (Dalrymple, 1991).
Arguments on this topic raged in the second half of the
19th century, a time when the effects of recent glacia-
tion were also being debated. However, it was not until
the discovery of radioactivity in the 1880s that consid-
eration was given to radioactive isotopes for use as
natural clocks. As early as 1906, Rutherford suggested
that ages could be obtained based on the production of
helium by the decay of uranium in rocks. The first
calculation of the age of the Earth based on the amount
of radium in the Earth’s crust was made by Russell in
1921. However, it was not until the 1930s, when Nier
brought together the understanding of natural isotopes
in the uranium and thorium decay chains and the con-
struction of the first mass spectrometers, that it became
possible to measure a range of isotopes. Also at this
time, the potential of several different decay series that
could be used for dating was proposed, based on a
better understanding of the atomic structure of ele-
ments in the periodic table. The relationship between
these early radiometric dates and the evolution of the
geological timescale has been covered in a history of the
work of Arthur Holmes (Lewis, 2000).

Radiocarbon Dating

The speed at which new geochronological tools based
on radioactivity became relevant to Quaternary
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