
Implementing PassCard — a
CardSpace-based Password Manager

Haitham S. Al-Sinani and Chris J. Mitchell

Technical Report
RHUL–MA–2010–15
20 December 2010

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports



Abstract

The recently-proposed PassCard scheme enables CardSpace to be
used as a password manager, thereby both improving the usability
and security of passwords as well as encouraging CardSpace adoption.
However, this scheme does not work with websites using HTTPS, se-
riously limiting its practicality. In this paper we extend PassCard to
support sites using both HTTP and HTTPS. Usernames and pass-
words are stored in CardSpace personal cards, and these cards can
be used to sign on transparently to corresponding websites. PassCard
does not require any changes to login servers, default browser security
settings or to the CardSpace identity selector and, in particular, it does
not require websites to support CardSpace. We describe how this new
version of PassCard operates, and present a proof-of-concept proto-
type. Security, usability and operational analyses are also provided.

Keywords: CardSpace, PassCard, Password Manager, Browser Exten-
sion

1 Introduction

The most common means of user authentication remains the use of pass-
words, despite their well-known shortcomings. Moreover, as the number of
on-line services requiring passwords continues to grow, users increasingly re-
use passwords, write them down in insecure ways, and/or employ passwords
which can be readily guessed. The result is an ever-increasing risk of expo-
sure of passwords to malicious parties. Passwords could also be stolen [3, 7]
through key logging, phishing, sniffing, shoulder surfing, etc.

A solution that enables the use of site-unique strong passwords whilst
maintaining user security and privacy is thus needed [4]. Password man-
agers of various types have been proposed to meet this need. A password
manager stores usernames and passwords and makes them available when
required. Users are not required to remember any passwords apart from
a single master password which can be used to lock/un-lock the password
manager. Password managers can be particularly helpful when a relatively
large number of passwords are required to access multiple on-line services.
Password managers can be seen as potential alternatives to single sign-on
systems such as Windows Live ID, formally known as Passport1, Liberty
Alliance Project2 [15], and OpenID3.

1http://passport.net/
2http://www.projectliberty.org/
3http://openid.net/

1



CardSpace is a user-friendly tool supporting user authentication. To
sign on to a website, a CardSpace user selects a virtual card, known as an
information card (InfoCard), from an interface provided by the CardSpace
identity selector (CIdS), instead of providing a username and password.

Despite the introduction of CardSpace (and other similar systems), the
vast majority of websites still use username-password for authentication,
and this is likely to continue for at least the next few years [7]. One major
problem with CardSpace, and with other similar systems providing more
secure means of user authentication, is that the transition from username-
password is extremely difficult to achieve. Service providers will not wish
to do the work necessary to support CardSpace if very few users employ it;
equally, users are hardly likely to use CardSpace if it is only supported by a
tiny minority of websites. PassCard is designed to help overcome this barrier
to change by allowing an evolutionary deployment of CardSpace, initially
as a password manager and subsequently, once users are familiar with its
interface, as a more sophisticated means of user authentication.

In this paper we propose a new version of PassCard [1] that uses the
CIdS as a password manager. The goal is to develop a simple and intu-
itive approach to password management, transparent to both the CIdS and
relying parties (RPs). Unlike the previous version of PassCard [1], which
only supports sites using HTTP, the new version supports both HTTP and
HTTPS-enabled sites.

The remainder of the paper is organised as follows. Section 2 presents an
overview of CardSpace, and, in section 3, we describe the proposed scheme.
We describe a prototype implementation in section 4, and, in section 5, we
outline a number of PassCard features and limitations. Section 6 reviews
related work, and, finally, section 7 concludes the paper.

2 CardSpace

2.1 Introduction

Microsoft CardSpace is an identity management system that provides a se-
cure and consistent way for users to control and manage personal data, to
review personal data before sending it to a website, and to verify the identity
of visited websites. It also enables websites to obtain personal information
from users, e.g. to support user authentication and authorisation.

The CIdS enables users to manage digital identities issued by a variety
of identity providers (IdPs), and use them to access on-line services. Digital
identities are visually represented to users as InfoCards, which are imple-

2



mented as XML files that list the types of claim made by one party about
itself or another party. Users can employ one (virtual) InfoCard to identify
themselves to multiple websites. Alternatively, separate InfoCards can be
used in distinct situations. Websites can request different types of cards
and/or different types of claims.

There are two types of InfoCards: personal cards and managed cards.
Personal cards are created by users themselves, and the claims listed in such
an InfoCard are asserted by the self-issued identity provider (SIP) that co-
exists with the CIdS on the user machine. In this paper we take advantage of
such personal cards to enable CardSpace to function as a password manager.
Managed cards, on the other hand, are obtained from remote IdPs.

The InfoCards themselves do not contain any sensitive information; in-
stead an InfoCard carries metadata that indicates the types of personal data
associated with this identity, and from where assertions regarding this data
can be obtained. The data referred to by a personal card is stored on the
user machine, whereas the data referred to by a managed card is held by
the IdP that issued it [2, 8, 11].

By default, CardSpace is supported in Internet Explorer (IE) from ver-
sion 7 onwards. Extensions to other browsers, such as Firefox4 and Safari5,
also exist. Microsoft has recently released an updated version of CardSpace,
known as Windows CardSpace 2.0 Beta 26. However, in this paper we refer
throughout to the CardSpace version that is shipped by default as part of
Windows Vista and Windows 7, which has also been approved as an OASIS
standard [9].

2.2 CardSpace Personal Cards

Since PassCard builds on personal cards, we next outline their use. Pre-
requisites for use of a personal card include a CardSpace-enabled RP and a
CardSpace-enabled user agent, e.g. a web browser capable of invoking the
CIdS. Personal cards can contain claims of the following 14 (editable) types:
First Name, Last Name, Email Address, Street, City, State, Postal Code,
Country/Region, Home Phone, Other Phone, Mobile Phone, Date of Birth,
Gender, and Web Page.

When using personal cards, CardSpace adopts the following protocol.
We assume that the RP does not employ a security token service (STS)7.

4https://addons.mozilla.org/en-US/firefox/addon/10292
5http://www.hccp.org/safari-plug-in.html
6http://technet.microsoft.com/en-us/library/dd996657(WS.10).aspx
7An STS is a software component responsible for security policy and token management

3



1. User agent → RP. HTTP/S request: GET (a login page).

2. RP → user agent. HTTP/S response. A login page is returned con-
taining CardSpace-enabling tags in which the RP policy is embedded.

3. The user agent offers the user the option to use CardSpace (e.g. via a
button on the RP page), and selection of this option causes the agent
to invoke the CIdS and pass it the RP policy. If this is the first time
that this RP has been contacted, the CIdS will display the RP identity
and give the user the option to either proceed or abort the protocol.

4. After evaluating the RP policy the CIdS highlights the InfoCards
matching the policy, and greys out the rest. InfoCards previously
used for this RP are displayed in the upper half of the selector screen.

5. The user chooses a personal card. (Alternatively, the user could cre-
ate and choose a new personal card). At this point the user can check
the requested claim types and decide whether or not to proceed. The
selected InfoCard may contain several claims, but only the claims ex-
plicitly requested in the policy will be passed to the requesting RP.

6. The CIdS creates and sends a SAML-based request security token
(RST) to the SIP, which responds with a SAML-based request security
token response (RSTR).

7. The RSTR is passed to the user agent, which forwards it to the RP.

8. The RP validates the received token, and, if satisfied, grants access.

Note that if the visited site uses HTTPS, then the RSTR message in
step 7 (above) will be encrypted using the public key of the requesting
RP. This explains why the previous version of PassCard, which relies on
a browser extension that parses the RSTR, only works with websites using
HTTP. The extension does not have access to the key necessary to decrypt
the token, and hence cannot operate. This issue is addressed in the revised
PassCard scheme described in section 3 below.

Details of how CardSpace managed cards are used are given in the rele-
vant specifications [2, 8, 9, 11].

within an IdP and, optionally, within an RP.

4



3 PassCard

We now describe the operation of the new version of PassCard. The parties
involved are a CardSpace-enabled RP, a CardSpace-enabled user agent (e.g.
a suitable web browser), an HTTP Server (HS), and a browser extension
implementing the protocol described in 3.2. The introduction of the HS (see
also section 4.3.2 below) addresses the main limitation with the previous
version of PassCard (described at the end of section 2.2), thus enabling
PassCard to also operate with HTTPS-based websites.

3.1 Prerequisites

The scheme has the following operational requirements.

• Either prior to, or during, use of the scheme, the user must first create
a special personal card, referred to here as a PassCard, containing
a username and password in certain card fields, the choice of which
is implementation-specific. Basic protection against phishing can be
provided if the URL of the target website is included in the PassCard.
However, this is optional, as users may wish to use a single PassCard
with multiple websites sharing the same user credentials.

• As in the previous version [1], PassCard is based on a browser extension
which must be able to read, inspect and modify browser-rendered web
pages, and must also be able to read CardSpace-issued RSTR tokens.
In addition, it must be able to automatically invoke the CIdS, fill in and
submit login forms, and forward username-password values (via HTTP
redirects) to RPs. Furthermore, it must be able to start automatically
and be enabled or disabled by the user. Finally, the browser extension
must be able to add a clickable PassCard logo (see Fig. 3), a modified
version of the CardSpace logo, to the RP web page. This enables
the user to invoke the CIdS and to subsequently select (or create) a
PassCard.

3.2 PassCard Operation

We now describe the protocol steps for PassCard. Its operation differs de-
pending on whether the RP uses HTTP or HTTPS. We therefore divide
the protocol description into two cases. Protocol steps 1–3c are the same
for both cases, and hence we describe these steps first. Note that the HTTP
case is precisely the same as the previous version of PassCard [1]; we include
the description here for completeness.

5



1. User agent → RP. HTTP request: GET (a login page).

2. RP → user agent. HTTP response: (the login page is returned).

3. The browser extension performs the following processes using the login
page provided by the RP.

(a) It scans the page for a login form containing a username and
password field and a submit button.

(b) If all are found, it highlights the username and password fields.

(c) It determines the communication protocol (i.e. HTTP or HTTPS)
in use.

Execution continues as described in sections 3.2.1 and 3.2.2, depending on
whether the RP is using HTTP or HTTPS, respectively.

3.2.1 HTTP-based PassCard

Steps 3d–8 below apply in the case where the RP uses HTTP.

3. Following step 3c in section 3.2, the extension continues as follows.

(d) It adds CardSpace-enabling tags to the login page, setting the
associated security policy to require a token asserting claims of
the types in which the user credentials are stored.

(e) It adds a function to the login page to intercept the RSTR token
that will later be returned by the CIdS.

(f) It causes the PassCard logo to appear above the submit button,
in such a way that clicking it invokes the CIdS.

4. The user clicks on the PassCard logo and the CIdS lights up.

5. The user selects and submits a PassCard. Alternatively, the user could
create and choose a new PassCard. The CIdS creates and sends an
RST to the SIP, which responds with an RSTR.

6. The CIdS passes the RSTR to the browser.

7. The browser extension performs the following tasks.

(a) It intercepts and parses the SAML token (i.e. the RSTR).

6



(b) If the token contains the URL of the target site, the extension
compares it with the URL of the visited site, and only proceeds
if they match.

(c) It extracts the username and password from the pre-specified
fields.

(d) It auto-populates and auto-submits the login form.

8. The RP verifies the credentials and, if satisfied, grants access.

3.2.2 HTTPS-based PassCard

Steps 3d–8 below apply in the case where the RP uses HTTPS.

3. Following step 3c in section 3.2, the extension continues as follows.

(d) It obtains the page’s fully qualified domain name (FQDN), re-
ferred to below as the ‘target URL’.

(e) It causes the PassCard logo to appear above the submit field, in
such a way that clicking it results in an HTTP redirect.

4. If the user clicks the logo, the browser is redirected to the pre-specified
HS, and the target URL is also transmitted as a URL query parameter
or as a hidden HTML form variable.

5. While interacting with the HS, the browser extension:

(a) adds a ‘hidden’ password-login form to the returned HS page,
if it does not already have one, at which point steps 3d–3f of
section 3.2.1 are executed;

(b) recovers and stores the target URL; and

(c) transparently invokes the CIdS, at which point steps 5–7c of sec-
tion 3.2.1 are executed.

7. The browser extension continues as follows.

(d) It encrypts the username and password values with a secret key
known only to the browser extension (see section 3.3.3).

(e) It transparently redirects the user to the target URL, and the ‘en-
crypted’ username-password values are also transmitted as URL
query parameters or as hidden HTML form variables.

8. While interacting with the target URL site, the browser extension:

7



(a) recovers and decrypts the username and password values;

(b) locates the username, password and submit fields; and

(c) auto-populates and auto-submits the login form, after which step
8 of section 3.2.1 is executed.

3.3 Discussion

3.3.1 User Experience

The PassCard user experience when operating in HTTP mode is precisely
the same as with ‘conventional’ password-based authentication except that,
instead of manually entering and submitting a username and password, the
PassCard user selects and submits a virtual card. The user experience in
HTTPS mode is similar to that of HTTP mode, except that users (depending
on their Internet speed, machine speed, etc.) may or may not experience a
redirect from the target HTTPS site to the HS and vice versa, resulting in
the temporary display of the HS web page. Note that, in both PassCard
modes, users are not required to click the PassCard logo more than once or
to remember any passwords.

3.3.2 CardSpace-enabled RPs

Regardless of whether or not an RP already supports CardSpace, the browser
extension will always add the PassCard logo to the RP web page, as long as
it detects username-password prompts on the page. This means that, if an
RP supports CardSpace and simultaneously supports username-password
authentication, as does the ‘myOpenID’ website8 (sampled on 24/11/2010),
the browser extension will still insert the PassCard logo above the submit
button of the password-based login form. Informal tests on the prototype
implementation suggest that this will not disrupt the normal operation of
CardSpace.

The RP page will thus display both the CardSpace and the PassCard
logos. In such a case, users will have (at least) three login options:

1. populating the username and password fields and submitting the login
form manually;

2. using PassCard to auto-populate and auto-submit the login form; or

3. clicking the CardSpace logo to use CardSpace-based authentication.

8https://www.myopenid.com/

8



Note that, as Fig. 1 shows, hovering the mouse over the PassCard logo results
in the display of text indicating that clicking it will activate PassCard.

Figure 1: PassCard co-operating with a CardSpace-enabled RP

3.3.3 Use of Cryptography

The encryption of the username and password in step 7d of section 3.2.2
is not necessary to prevent channel eavesdropping, because an SST/TLS
channel is already established between the browser and the target HTTPS
site. However, if the username and password are sent as part of the URL (as
is the case in the PassCard prototype), then if sent in plaintext these values
will be vulnerable to shoulder-surfing attacks since they will be shown in
the browser address bar (and possibly also in the browser status bar). The
prototype implementation uses a simple symmetric encryption scheme for
username/password encryption to minimise the overhead.

9



4 Prototype Realisation

We next give details of a prototype implementation of the scheme. The
prototype is coded as a plug-in using JavaScript [12], chosen because its
wide adoption should simplify the task of porting the prototype to a range
of other browsers. It uses the Document Object Model (DOM) to inspect
and manipulate HTML pages and XML documents. The JavaScript code
is executed using a C#-driven browser helper object (BHO), a Dynamic-
link library (DLL) module designed as a plug-in for IE. Once installed, the
BHO attaches itself to IE, thus gaining access to the current page’s DOM.
PassCard can readily be enabled or disabled using the add-on manager in
the IE Tools menu. The PassCard prototype is an open source research
project (http://iescripts.org/view-scripts-808p1.htm and/or http:

//sourceforge.net/projects/passcard/).

4.1 Registration

Prior to, or during, use of PassCard, the user invokes the CIdS and creates
a PassCard, inserting their username in the firstname field and password in
the lastname field. Optionally, the user could also insert the URL of the
target website in the web page field9. For ease of identification, the user can
give the PassCard a meaningful name, e.g. of the corresponding website.
The user can also upload an image for the PassCard, e.g. containing the
logo of the intended site. Example PassCards are shown in Fig. 2.

Figure 2: PassCards

4.2 Operation

The prototype implements the protocol steps specified in section 3.2. In
step 3, the plug-in processes the RP web page in the following way.

9The web page field was chosen to contain the URL of the target website since it seemed
the logical choice; however, this is an implementation option.

10



1. The plug-in scans the web page for a login form containing a pair of
username and password fields and a submit button. More specifically,
the following procedure is used.

(a) The plug-in scans the web page for a form tag.

(b) If a form tag is found, it searches the form for three input tags
referring to username, password, and submit, as follows:

i. it searches for an input tag of type ‘text’;

ii. if found, it searches for another input tag of type ‘password’;
and

iii. if found, it searches for another input tag of type ‘submit’. If
no input tag of type ‘submit’ is found, the plug-in searches
for an input tag of type ‘image’ and, if unsuccessful, searches
for an event-based input tag of type ‘button’.

(c) If all three fields are detected, then the plug-in highlights the
username and password fields in green for ease of identification.

The above process involves the following detailed processing.

• Highlighting does not take place unless both the username and
password fields and the submit button have been detected in a
single form, as a web page could potentially contain more than
one input tag of type ‘text’, such as those used for searching.

• To differentiate between registration and login web pages, the
plug-in terminates if it detects more than one password field be-
tween the username and submit fields. Whereas it appears com-
mon for a login page to only have a single password field before
the submit button, registration pages typically have two password
fields (before the submit button): the first for the user to enter
their password, and the second to confirm their password. Ex-
amples include the registration and login pages hosted by major
websites such as Google, YouTube, Yahoo, Microsoft Research,
SpringerLink10, etc.

• When searching for the form submission button, if no submitting
input tag is found then the plug-in searches for an ‘image’ tag.
This is because, instead of a submit button, some websites display
a clickable image11 with similar functionality.

10Websites most recently checked on 24/11/2010.
11This includes an image tag embedded in a hyperlink (anchor) tag, an image tag on

its own, an image tag embedded inside a button tag, an event-based button tag, etc.

11



• Whereas it appears common for a username field to be imme-
diately followed by a password field, a submit button may not
always immediately follow a password field. For example, some
major websites (e.g. Google, YouTube, Yahoo, Gmail, Springer-
Link) add a ‘Stay signed in’ or ‘Remember me’ check box be-
tween the password field and the submit button12. The plug-in
addresses this issue by skipping all tags between the password
field and the submit button, including those of type ‘checkbox’.

2. It uses the JavaScript inherent property ‘document.location.protocol’
to discover whether HTTP or HTTPS is in use.

4.2.1 HTTP-specific Implementation Details

In the following we refer throughout to the step numbers given in sec-
tion 3.2.1.

• In step 3, the plug-in makes the following modifications to the login
page provided by the RP.

1. It adds an HTML object tag that allows the user to invoke the
CIdS. Within the object tag, it sets the param tags to indicate
that the RP security policy requires PassCards to contain two
fields: the firstname and the lastname fields, (or three fields if
protection against phishing is required, in which case the third
field would be the web page field). Alternatively, the security
policy could be configured so that the web page field is optional.

2. It adds a function to the head section of the RP login page to
intercept the XML-based RSTR message returned by the CIdS.

3. It inserts the PassCard logo, causing it to appear just before
the ‘login’ button in the login page, as illustrated in Fig. 3. The
logo is associated with an ‘on-click’ event, so that, if clicked, the
CIdS is invoked (after calling the added function). To cater for
users with sight difficulties or web browsers configured not to
display images, a text field can replace the logo. This text is
also displayed when the mouse is held over the PassCard logo,
indicating that PassCard can be used to sign on.

• In step 7, the plug-in performs the following steps.

12Websites most recently checked on 24/11/2010.

12



1. It intercepts the XML-based RSTR message using the added
function.

2. It parses the intercepted token and extracts the values of the
firstname and lastname fields. The plug-in uses an XML parser
built into the browser to read and manipulate the intercepted
XML token. The plug-in passes the token to the parser, which
reads it and converts it into an XML DOM object that can be
accessed and manipulated by JavaScript.

3. It checks if the HTTPS-mode-signalling cookie (see section 4.3.1)
is set; if so, it moves to step 7d of section 3.2.2. If not, it continues.

4. If a URL is present in the web page field of the RSTR message,
it compares it with the URL of the visited website, and only
proceeds if they match.

5. It automatically fills in the username and password fields with
the firstname and lastname values, respectively.

6. It auto-submits the login form using the JavaScript ‘click()’ method.

Figure 3: PassCard logo

4.2.2 HTTPS-specific Implementation Details

In the following we refer throughout to the step numbers given in sec-
tion 3.2.2.

• In steps 3d and 3e, the plug-in processes the RP web page in the
following way.

13



1. It obtains the HTTPS site’s (full) URL, referred to as the ‘target
URL’, using the JavaScript property ‘document.location.href’, re-
moving any query parameters that may be attached to the URL.

2. It creates an HTML hyperlink (a) tag, and sets its ‘href’ attribute
to point to the HS. It also embeds an HTML ‘img’ (image) tag,
that points to the PassCard logo, inside the hyperlink tag. In
addition, it creates a title and alternative text, so that if the
mouse is held over the PassCard logo, or if the image is not
displayed, text is displayed indicating that PassCard can be used
to sign on.

• In step 4, if the PassCard logo is clicked, the plug-in redirects the user
to the HS. The target URL and the PassCard namespace are sent as
query parameters (see Fig. 4).

Figure 4: Redirect URL (target URL → HS)

• In step 5, the plug-in processes the HS web page in the following way.

1. If no password-based login form is served by the HS web page,
it creates a ‘div’ section and inserts an HTML form. The form
includes a username (input tag of type ‘text’), password (input
tag of type ‘password’) and submit (input tag of type ‘submit’)
elements. The ‘div’ section is then embedded in the HS page.
To keep the changes to the HS page transparent to the user, the
plug-in hides this form by setting the style of the ‘div’ section
(which contains the added form) to ‘visibility: hidden’. Note
that embedding a form in the HS page enables the re-use of the
code that was previously developed to handle HTTP mode.

2. It parses the URL query parameters to obtain the target URL,
and stores it in a cookie.

3. It creates/sets the HTTPS-mode-signalling cookie (see section 4.3.1).

4. It auto-invokes the CIdS using the JavaScript ‘click()’ method.

• In steps 7d and 7e, the plug-in:

14



1. encrypts the username and password values using AES in CBC
mode with a secret key known only to the plug-in.

2. transparently redirects the user to the target URL, using the
JavaScript property ‘window.location’. The encrypted username
and password values and the PassCard namespace are sent as
query parameters (see Fig. 5).

Figure 5: Redirect URL (HS → target URL)

• In step 8, the plug-in processes the target URL web page in the fol-
lowing way.

1. It parses the URL query parameters to obtain the encrypted val-
ues of the username and password, and decrypts them using its
internally stored secret key.

2. It locates the username, password, and submit fields.

3. It auto-populates the username and password fields with the de-
crypted username and password values.

4. It creates a three-second-long-living cookie to ensure that it does
not re-submit the username-password values again before a three-
second delay has elapsed (see section 4.3.3).

5. It auto-submits the login form using the JavaScript click method.

4.3 Discussion

We now consider development issues of the scheme.

4.3.1 HTTP/HTTPS Modes

As a result of using the same program code to handle both the HTTP and
HTTPS cases (to keep development efforts to a minimum and to maximise
code efficiency), a cookie is used to signal to the browser extension that
HTTPS mode is activated. This tells the browser extension to perform

15



step 7d of section 3.2.2 instead of step 7d of section 3.2.1. More specifi-
cally, the HTTPS-mode-signalling cookie is created between steps 5b and
5c of section 3.2.2, and this cookie is checked between steps 7c and 7d of
section 3.2.1; if set, HTTPS mode is activated, otherwise HTTP mode con-
tinues.

4.3.2 HTTP Server (HS)

The role of the HS in the PassCard system is not fully explained above.
The HS can be any HTTP site, and is not actively involved in the protocol
except to serve a web page when requested. It simply acts as a convenient
way to avoid the problems associated with use of CardSpace with an HTTPS
site. The choice of HS is not particularly privacy-sensitive in that it does
not learn any sensitive data; it simply learns that a client at a particular IP
address is using PassCard. The choice of HS is a configuration option in the
prototype, so if the default site is regarded as privacy-threatening then a
user can change it to any trusted address, e.g. that of a personal web page.
In addition, users can use a local web server running on their own machines.
Setting up a local web server is typically straightforward, e.g. by installing
XAMPP13.

The use of a personal web page also leads to other advantages, including
minimising the load on the PassCard default HS. Also, if the default HS is
down for whatever reason (e.g. hosting costs, network failure, etc.) users can
always rely on or switch to their own HS. Moreover, the use of a personal
web page is likely to make users feel more confident in its use, thereby
encouraging the adoption of PassCard and CardSpace.

The HS could also be implemented as a proxy server. This would max-
imise user transparency in the sense that users would not experience a redi-
rect from the target HTTPS site to another HS and vice versa. However,
such a change would deny users the opportunity to use their own site. In
addition, the proxy site will need to be trusted by the user, since username-
password values will need to be given to the proxy server so that it can
deliver them transparently to the target HTTPS site. Furthermore, if an
HTTP proxy [10] is used, the user must force the browser to use the proxy.
This is potentially inconvenient and may not always be possible (e.g. the
user may not have permission to make the necessary change to the browser
settings) [6]. Finally, PassCard would stop working if the proxy site was
unavailable for any reason, e.g. networking failures, overloading, etc.

13http://www.apachefriends.org/en/xampp.html

16



4.3.3 Failed Authentication Attempts

When some websites, e.g. those of Microsoft Research14 and RHUL’s net-
work authentication page15, have incorrect credentials submitted to them,
they do not change the URL (e.g. by redirecting the user to a new web page).
Instead they inform the user of the failure of their authentication attempt
on the same login page, maintaining the same URL in the browser’s address
bar.

When the PassCard plug-in is executing in HTTPS mode, such an event
will cause it to run again, because the page has been refreshed but the URL
is unchanged. When it runs, the plug-in will see the same URL with the
same query parameters (as were redirected/sent by the PassCard plug-in
when running on the HS’s page), and will thus attempt to automatically
sign in the user again with the same (wrong) credentials, because it believes
the user has just been redirected from the HS. The website will deny access
once again, and the same process will repeat indefinitely, resulting in either
the user getting locked out after a certain number of failed authentication
attempts or the browser becoming stuck in an (infinite) loop.

To address this issue, the plug-in creates a short-lived cookie just before
attempting to auto-sign in the user for the first time, to ensure that it does
not attempt to log in the user again before a certain period of time (e.g. 3
seconds) has elapsed. If the plug-in discovers that the user has been denied
access following an attempt to automatically sign in, it informs the user and
terminates. It also attempts to close the visited page, after first obtaining
permission from the user. This termination is based on the assumption that
the user has either inserted the wrong credentials in the current PassCard
or has simply selected the wrong PassCard.

Other solutions to address this particular issue have been tried, but
found not to work. For example, it is tempting to try to use the HTTP
referrer16 field, which can identify the web page that the user was visiting
before they arrived at the current page. Indeed, JavaScript provides its
own built-in property for HTTP referrer, namely ‘document.referrer’. Thus,
the PassCard plug-in could use this to attempt to sign in the user only
if redirected from the HS; if not, it simply terminates on the assumption
that the user has already attempted to sign in but has been denied access.
However, informal tests suggest that this technique does not work for the
PassCard plug-in, probably because the redirect from the HS to the target

14https://cmt.research.microsoft.com/IDTRUST2010/Default.aspx
15https://nac.rhul.ac.uk/authentication/, most recently checked on 24/11/2010.
16http://tools.ietf.org/html/rfc2616#section-14.36

17



site is initiated by the plug-in itself (using the ‘windlow.location’ property)
and not by the HS server.

In any case, the use of the HTTP referrer field should be avoided because:

• if the HS and the target URL fall under the same domain, the HTTP
referrer field would prevent the plug-in from automatically signing in
the user; and

• the referrer field could be disabled or faked.

4.3.4 CardSpace-enabled RPs

We next discuss two alternative approaches to that presented in section 3.3.2.

1. After identifying that an RP supports username-password authenti-
cation, the browser extension could be configured to detect whether
the RP already supports CardSpace; if so, the browser extension will
deactivate PassCard. However, since the RP already offers passwords
as a login option, offering PassCard may help password users and does
not prevent users using the CardSpace-based authentication.

2. Instead of de-activating PassCard automatically if the RP supports
CardSpace, as suggested above, the browser extension could ask users
(e.g. via a JavaScript pop box) whether to activate PassCard. Al-
though this would provide a greater degree of user control, repeated
user prompting could become very intrusive. Nevertheless, this effect
would be mitigated if the user’s answer was stored.

5 PassCard Properties

We now consider a number of PassCard features and limitations.

5.1 Security

PassCard uses the functionality of the CIdS, and is supported by its built-in
security features. For example, the CIdS runs in a separate private desktop
session, preventing other applications, e.g. malware, from interacting or in-
terfering with it. In addition, all values inserted in the fields of a PassCard
are stored in encrypted form on the user machine.

Furthermore, the CIdS identifies the RP to the user and indicates whether
or not they have visited that particular RP before; if the user is visiting this

18



RP for the first time, CardSpace requests the user’s permission to proceed17.
This helps to support mutual authentication since the user and the RP are
both identified to each other.

As with any local password manager, PassCard (when running in HTTP
mode) avoids the need for trusted third parties. In addition, the automatic
form-filling feature reduces exposure to shoulder-surfing attacks and also
helps to thwart key loggers.

PassCard reduces the threat of phishing attacks involving impersonation
of legitimate sites by comparing the URL in the PassCard with that of the
visited website. PassCard also supports the use of strong per-site passwords,
since users no longer need to memorise or write down passwords.

Finally, note that the PassCard browser extension does not require any
changes to default IE security settings, thereby avoiding potential vulnera-
bilities resulting from lowered browser security settings.

5.2 Usability

PassCard provides a simple, intuitive user experience through its use of the
CIdS interface. At the same time, it familiarises users with CardSpace,
thereby potentially facilitating future adoption of more secure means of au-
thentication. Unlike other password managers which represent credentials
in text form, PassCard credentials are stored in PassCards which can be
equipped with a readily recognisable image, e.g. an RP logo.

PassCard operates completely transparently to external parties, and
hence does not require any changes to RPs, identity selectors or to default
browser security settings. The scheme is also highly flexible, since users
can choose to use it simply by clicking the PassCard logo. It also supports
flexibility in the choice of the HS when running in HTTPS mode.

Finally, by making use of CardSpace features, PassCard supports a de-
gree of roaming. A user can transfer PassCards from one PC to another
using the CardSpace backup facilities. Indeed, if the CardSpace backup file
(which holds data in encrypted form) is stored on a portable storage medium
(e.g. a USB drive) then full mobility is provided, as well as robustness in
the form of protection against loss of credential data.

17This enhances security by comparison with ‘conventional’ password-based authenti-
cation, where the RP is not identified to the user.

19



5.3 Limitations

Perhaps the most obvious limitation of PassCard is that anyone with access
to a Windows user account can access the PassCards and use the stored
credentials. This is a fundamental limitation of CardSpace which, by default,
does not impose any additional password protection on the use of the CIdS.
To address this issue, we observe that CardSpace allows individual InfoCards
to be PIN-protected, which should be considered for PassCards stored on
machines accessible to other users. In addition, it may be possible to cause
CardSpace to run under User Account Control, so that running CardSpace
causes Windows to prompt the user for an admin password.

The browser extension must scan every browser-rendered web page to
detect whether it supports username-password authentication, and this may
affect system performance. However, informal tests on the PassCard pro-
totype suggest that this is not a serious issue. In addition, the browser
extension can be configured so that it only operates with certain websites.

The current PassCard prototype has not yet been tested with the re-
cently released CardSpace 2.018. We are thus unable to provide precise
operational details for this version.

Like OpenID19, we have used URL query parameters in the PassCard
prototype to exchange data between the HS site and the target HTTPS site.
This could give rise to the well-known issue of URL size limitations. For
example, some ‘older’ servers may impose restrictions on the URL length;
indeed the HTTP specification [5], whilst not specifying a maximum URL or
path length, states that servers should be cautious about depending on URI
(a generalisation of a URL) lengths greater than 255 bytes, because they may
not be properly supported by some older client or proxy implementations.
Additionally, the HTML 3 specification [13] states that the attribute value,
e.g. a URL that was set as the value to the ‘href’ attribute in a hyperlink
tag, is limited to 1024 characters20; however, the HTML 4 specifications [14]
omit this restriction21. According to the Microsoft help and support centre,
Microsoft IE supports a maximum URL length of 2083 characters22, which is
much larger than the length of a typical PassCard-generated URL (approx-
imately 300 characters), as informal prototype testing suggests. Therefore,
URL size limitations are not likely to be a major usability barrier.

18CardSpace 2.0 has not yet been standardised; in fact, at the time of writing,
CardSpace 2.0 has only been released as a Beta prototype.

19http://openid.net
20http://www.w3.org/MarkUp/html3/HTMLandSGML.html
21http://www.w3.org/TR/html4/intro/sgmltut.html#h-3.2.2
22http://support.microsoft.com/kb/208427

20



Finally, older browsers (or browsers with scripting disabled) may not
be able to run PassCard, as it was built using JavaScript. However, most
modern browsers support JavaScript (or ECMAscript), and so this seems
unlikely to be a major usability obstacle.

6 Related Work

Password managers, which store passwords in a secure location either on
the user PC or remotely, are now widely available. They typically store
passwords in encrypted form and, unlike PassCard, require users to use a
single master password to access the password store. Some are also capa-
ble of masking passwords, and others, much like PassCard, provide auto-
matic password entry. Examples of password managers include open source
schemes such as Password Safe23, KeePass24, Qubliette25, Password Go-
rilla26 and PINs27 as well as commercial products such as RoboForm28, Any
Password29 and Turbopasswords30.

Perhaps the most distinctive feature of PassCard is its dependence on
CardSpace, whereas other password managers are independent applications.
PassCard can thus benefit from the CardSpace security features, which may
give users greater confidence in its use. Most importantly, it is hoped that
its introduction, with immediate practical benefits to the end user, will help
encourage the adoption of more sophisticated identity management schemes
like CardSpace. Such schemes offer the potential for a step forward in the
practice of user authentication and authorisation, with potential benefits
for all legitimate parties operating via the Internet. Indeed, without simple
paths to adoption for schemes like CardSpace, there is a danger that it and
all the other identity initiatives will fail.

7 Conclusions and Future Work

In this paper we have proposed a new version of PassCard, which (unlike
its predecessor) supports almost all websites, including those using HTTPS.

23http://passwordsafe.sourceforge.net/
24http://KeePass.info/
25http://tranglos.com/free/oubliette.html
26http://fpx.de/fp/Software/Gorilla/
27mirekw.com/winfreeware/pins.html
28http://roboform.com/
29http://anypassword.com/
30http://chapura.com/passwordmanager.php

21



Users store their usernames and passwords in CardSpace personal cards,
and use such cards to transparently sign on to corresponding websites. The
scheme is based on a browser extension, and requires no changes to login
servers; in particular, it does not require them to support CardSpace. Nei-
ther does the scheme require any changes to the current CardSpace identity
selector, or to default browser security settings.

The scheme uses the CardSpace identity selector interface to seamlessly
authenticate users to websites. It extends the use of personal cards to allow
for transparent password management. Such an approach could help to
extend the applicability of CardSpace.

Planned future work includes building a scheme that enables the use of
CardSpace as a password-based single sign-on system. In addition, a possible
topic for future work could be investigating the possibility of building a
portable version of PassCard to support users who do not have installation
privileges or are forced to use untrusted machines when travelling.

Acknowledgements

The first author is sponsored by the Diwan of Royal Court, Sultanate of
Oman.

References

[1] Haitham S. Al-Sinani and Chris J. Mitchell. Using CardSpace as a
password manager. In Elisabeth de Leeuw, Simone Fischer-Hübner,
and Lothar Fritsch, editors, proceedings of the IFIP IDMAN 2010 —
2nd IFIP WG 11.6 Working Conference on Policies and Research in
Identity Management, volume 343 of IFIP Advances in Information and
Communication Technology, pages 18–30. Springer, Boston, 2010.

[2] Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding
Windows CardSpace: An Introduction to the Concepts and Challenges
of Digital Identities. Addison-Wesley, Reading, Massachusetts, 2008.

[3] Art Conklin, Glenn Dietrich, and Diane Walz. Password-based au-
thentication: a system perspective. In Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS 04) —
Track 7. IEEE Computer Society, Los Alamitos, CA, 70170b, 2004.

22



[4] Marco De Luca. Password Management for Distributed Environments.
VDM Verlag, Saarbrücken, 2008.

[5] R. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. RFC
2616, Internet Engineering Task Force, 1999. http://www.ietf.org/

rfc/rfc2616.txt.

[6] Dinei Florêncio and Cormac Herley. One-time password access to any
server without changing the server. In Tzong-Chen Wu, Chin-Laung
Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Information Security,
11th International Conference, ISC 2008, Taipei, Taiwan, September
15-18, 2008. Proceedings, volume 5222 of Lecture Notes in Computer
Science, pages 401–420. Springer-Verlag, Berlin, Heidelberg, 2008.

[7] Cormac Herley, Paul C. van Oorschot, and Andrew S. Patrick. Pass-
words: If we’re so smart, why are we still using them? In Roger Din-
gledine and Philippe Golle, editors, Financial Cryptography and Data
Security, volume 5628 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, 230–237, 2009.

[8] Michael B. Jones. A Guide to Using the Identity Selector Interoper-
ability Profile V1.5 within Web Applications and Browsers. Microsoft
Corporation, 2008.

[9] Michael B. Jones and Michael McIntosh (editors). Identity Metasystem
Interoperability Version 1.0 (IMI 1.0). OASIS Standard, 2009. http:

//docs.oasis-open.org/imi/identity/v1.0/identity.html.

[10] Ari Luotonen. Web Proxy Servers. Prentice Hall PTR, New Jersey,
1997.

[11] Marc Mercuri. Beginning Information Cards and CardSpace: From
Novice to Professional. Apress, New York, 2007.

[12] Thomas A. Powell and Fritz Schneider. Javascript: The Complete Ref-
erence. McGraw-Hill Osborne Media, Berkeley, CA, 2nd edition, 2004.

[13] Dave Raggett. HTML 3.2 Reference Specification. W3C Recommenda-
tion, 1997. http://www.w3.org/TR/REC-html32.html.

[14] Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors). HTML 4.01
Specification. W3C Recommendation, 1999. http://www.w3.org/TR/

html401/.

23



[15] Anita Sobe. Single Sign-On in IMS-based IPTV Systems: Towards
the Interworking of the Generic Bootstrapping Architecture and Liberty
Alliance Identity Federation. VDM Verlag and Co. KG, Saarbrücken,
2009.

24


