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Abstract 

 
The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, 

porcine and human hosts, amongst others. Avian intestinal spirochaetosis (AIS), the 

resulting disease from colonisation of the caeca and colon of poultry by Brachyspira 

leads to production losses, with an estimated annual cost of circa £18 million to the 

commercial layer industry in the United Kingdom. A lack of knowledge of the 

metabolic capabilities and little genomic information for Brachyspira has resulted in a 

limited understanding of the pathobiology of this genus. In addition, an emergence of 

antibiotic resistance in Brachyspira, together with bans on the prophylactic use of 

antimicrobials in animal feed, drive an urgent requirement for alternative treatment 

strategies for diseases such as AIS.  

In the first intra-species genome comparison within the genus Brachyspira, these 

studies report the whole genome sequence of an avian strain of B. pilosicoli, B2904, and 

the incomplete genome sequence of a human strain of B. pilosicoli, WesB. Comparisons 

are made between the de novo sequenced strains and those of B. pilosicoli 95/1000, a 

pig strain and other available Brachyspira genome sequences from public databases. 

Furthermore, this study reports the first application of the high-throughput Biolog 

phenotype screening tool to Brachyspira for detailed phenotypic analysis and 

confirmation of metabolic deductions made from the genotypic data. 

Probiotics have been reported as protecting against infection with common enteric 

pathogens in livestock and in this study investigations into which aspects of the biology 

of Brachyspira they antagonise were undertaken. Lactobacilli reduced the growth and 

motility of B. pilosicoli and its ability to adhere and invade epithelial cells in vitro. 

Following these encouraging results, an in vivo intervention study was performed using 

a B. pilosicoli challenge model in poultry to elucidate the potential for probiotic 

intervention against AIS. This study demonstrated that when administered in drinking 

water, L. reuteri LM1, isolated from a healthy chicken, reduced all aspects of the 

clinical presentation of AIS. 
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Chapter 1. 

 

Introduction 

 

 

 
1.1 Avian intestinal spirochaetosis 

 
1.1.1 Definition of avian intestinal spirochaetosis 

Avian intestinal spirochaetosis (AIS) refers to the disease resulting from the 

colonisation of the caeca and/or colo-rectum of poultry with spirochaetes. The disease 

presents in a number of ways but generally occurs at the onset of lay and in adult hens 

and is associated with diarrhoea, a reduction in growth rate, reductions in both egg 

production and egg weights, faecal staining of eggs and there may be increased 

mortality rates within infected flocks The two most commonly reported species in AIS 

are B. pilosicoli and B. intermedia (McLaren et al., 1997; Stephens and Hampson, 1999, 

2001) although B. alvinipulli is also considered a cause of disease in chickens (Stanton 

et al., 1998) and geese (Nemes et al., 2006). The term has also been associated with B. 

hyodysenteriae infection causing severe typhlitis in rheas. 

The term “intestinal spirochaetosis” is not limited to poultry and has been used to 

describe the colonisation of humans and swine with pathogenic Brachyspira species. 

Human intestinal spirochaetosis (HIS) describes the colonisation of humans with B. 

pilosicoli or B. aalborgi (Mikosza and Hampson, 2001). Porcine intestinal 

spirochaetosis (PIS) describes the colonisation of swine with B. pilosicoli (Hampson 

and Duhamel, 2006). B. hyodysenteriae is pathogenic in swine, but colonisation by this 

species and the resulting disease are described by the term “swine dysentery” (Hampson 

et al., 2006a). 
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1.1.2 History of avian intestinal spirochaetosis 

Initial accounts of the isolation of spirochaetes from avian species were of 

Borrelia anserina infecting chickens, ducks and geese, causing septicaemia and 

increased mortality rates (Marchoux and Salimbeni, 1903; Sakharoff, 1891). 

Spirochaetal colonisation of the avian gastrointestinal (GI) tract was first reported in the 

early twentieth century in the United Kingdom (Fantham, 1910). Helical bacteria which 

were 16.5 – 32.5 µm in length with 4 – 7 waves with pointed-to-tapered cell ends were 

isolated from the caeca and rectum of young and adult grouse, and were named 

“Spirochaeta lovati”. In 1930, spirochaete-like bacteria were visualised in the caecal 

droppings of 25% of randomly selected hens (Harris, 1930). The caecal droppings from 

many of the birds were described as yellowish-brown, semi-solid to pasty and exhibited 

a strong odour. Three morphologically distinct spirochaetal organisms were described; 

however no intestinal spirochaetes were identified in chicks or immature chickens. 

Moreover, some chickens received an oral inoculation of faeces containing spirochaete-

like bacteria, which did not induce clinical disease or intestinal lesions.  

In 1955, spirochaete-like bacteria associated with large caseous nodules in the 

caecal walls of turkeys, pheasants and chickens were isolated and propagated in chicken 

embryos (Mathey and Zander, 1955). When orally inoculated into turkeys, these 

organisms produced caecal nodules and the spirochaete-like bacteria were re-isolated. 

Interestingly, intravenous inoculation of day-old chicks failed to produce clinical 

disease or intestinal pathology. Although none of the organisms described in these early 

reports are available for examination, the descriptions of their size, morphology and 

mode of motility are consistent with spirochaetes. 

Not until the 1980s, were associations made between intestinal spirochaetes and 

enteric disease in poultry. Enteric disease syndromes associated with intestinal 

spirochaetes were reported in commercial laying hens and pullets in the Netherlands 

(Davelaar et al., 1986), United Kingdom (Griffiths et al., 1987) and United States of 

America (Swayne et al., 1992). Chickens exhibiting clinical diarrhoea without increased 

mortality rates were reported, but the species of spirochaete associated with the disease 

was unknown. However, subsequent studies in Australia (McLaren et al., 1996; Phillips 

et al., 2005; Stephens et al., 2005), Europe (Bano et al., 2008; Burch et al., 2006) and 

the United States of America (Trampel et al., 1994), which confirmed and extended this 

work, have identified and named the Brachyspira species causing AIS. Since 1990, AIS 

has been correlated with severe intestinal necrotic lesions and increased mortality in 

captive-bred greater or common rheas (Buckles et al., 1994; Sagartz et al., 1992). More 
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recently, AIS has been reported in geese (Nemes et al., 2006), partridges (Jansson et al., 

2001), pheasants (Webb et al., 1997) and turkeys (Shivaprasad and Duhamel, 2005).  

 

1.1.3 Significance of avian intestinal spirochaetosis 

 

1.1.3.1 Economic 
The cost of the disease to the United Kingdom commercial laying industry was 

estimated at £14 million (Burch et al., 2006) and more recently, £18 million, based on a 

national laying flock of 30 million hens, with 30 eggs lost per hen and an egg price of 5 

pence (Burch, D. J. S., 2009 personal communication). Losses similar to those in the 

United Kingdom are likely to occur elsewhere, since epidemiological surveys have 

reported a prevalence of AIS amongst laying hen flocks in Australia (McLaren et al., 

1996) and Italy (Bano et al., 2008), as common as it is across the United Kingdom. 

 

1.1.3.2 Public health 

Of the pathogenic avian intestinal spirochaetes, B. pilosicoli is considered a 

pathogen in humans, causing HIS. Some avian B. pilosicoli strains are closely related to 

strains of human origin (and from other animals) and it is likely that there is no barrier 

to cross-species transmission of B. pilosicoli (Hampson et al., 2006b). B. pilosicoli 

strains isolated from humans have successfully colonised day-old chicks (Dwars et al., 

1992a; Trott et al., 1995) and adult laying hens (Jamshidi and Hampson, 2003), 

however the potential for transmission from birds to humans remains to be explored. B. 

pilosicoli colonisation in humans is common in developing countries, but is mainly 

confined to immunocompromised, homosexual males in developed countries (Trivett-

Moore et al., 1998; Trott et al., 1997b). The occurrence of B. pilosicoli colonisation in 

humans has been linked with crowded and unhygienic living conditions, contaminated 

drinking water (Margawani et al., 2004) and has a high prevalence in cholera patients 

(Nelson et al., 2009). B. pilosicoli has been recovered from dam water inhabited by 

affected ducks, highlighting a potential source for zoonosis (Oxberry et al., 1998). 

 

1.1.4 Aetiology of avian intestinal spirochaetosis 

 The genus Brachyspira is described in greater detail in section 1.2, but of seven 

documented and several proposed species, three are considered pathogenic to poultry; 

B. intermedia, B. pilosicoli and to a lesser extent B. alvinipulli. These three species are 

capable of inducing clinical disease in experimentally challenged adult chickens 
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(Hampson and McLaren, 1999; Stephens and Hampson, 2002a). Despite having been 

isolated from avian species including laying hens (Feberwee et al., 2008), B. 

hyodysenteriae is considered non-pathogenic to poultry, although it is the aetiological 

agent of swine dysentery and causes necrotising typhilitis in rheas and ducks (Glavits et 

al., 2011; Sagartz et al., 1992). “B. pulli” is widespread and potentially pathogenic in 

poultry (Jordan and Hampson, 2007). Other Brachyspira species isolated from avian 

hosts are generally considered commensals. B. innocens has been associated with 

reduced egg production in free-range flocks (Burch et al., 2009), however, this study 

employed biochemical testing as the sole means of identification. B. aalborgi and “B. 

canis” are the only species that have not been recovered from avian hosts to date. It was 

postulated that avian species may have been the original hosts of an ancestral 

Brachyspira-like spirochaete when it first colonised the GI tract, explaining the wide 

diversity of species found in avian hosts (Hampson and Swayne, 2008). 

 

1.1.5 Epidemiology of avian intestinal spirochaetosis 

 

1.1.5.1 Host range 

Intestinal spirochaetes can colonise the caeca and colo-rectum of a variety avian 

species. Of domestic poultry, laying hens (Davelaar et al., 1986; Dwars et al., 1989; 

Griffiths et al., 1987; Swayne et al., 1992), broiler hens (Dwars et al., 1990), broiler 

breeder hens (Stephens and Hampson, 2002a), turkeys (Mathey and Zander, 1955), 

common rheas (Sagartz et al., 1992), corvid birds (Jansson et al., 2008), flamingos 

(Trott et al., 1996c), grouse (Fantham, 1910), laying geese (Nemes et al., 2006), 

mallards (Rasback et al., 2007a), ostriches (Stoutenburg and Swayne, 1992), pheasants 

(Webb et al., 1997), swans (Trott et al., 1996c), water birds (Oxberry et al., 1998) and 

even a snowy sheathbill from Antarctica (Jansson et al., 2009b). 

 

1.1.5.2 Transmission 
Avian intestinal spirochaetes colonise poultry from approximately 15 weeks of 

age and therefore hatchery and rearing flocks are an uncommon source of infection 

(Jordan and Hampson, 2007). Brachyspira can survive for a limited time in poultry 

faeces and are susceptible to a wide range of common disinfectants, thus making the 

local environment an unlikely source of infection in newly-stocked sheds provided it 

has been cleaned and rested (Phillips et al., 2003). A probable means of infection is via 

feral birds, rodents and domestic animals such as dogs, which can harbour intestinal 
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spirochaetes. Wild waterbirds can shed Brachyspira in their faeces and these may 

survive in ponds or dams providing drinking water (Jansson et al., 2001; Jansson et al., 

2004). Brachyspira can remain viable for up to 66 days in lake water at 6˚C (Oxberry et 

al., 1998). Contact between swine and poultry may provide a route of infection, since 

porcine intestinal spirochaetes can infect hens (Trott et al., 1995). The movement of 

staff and equipment between sheds is a likely route for transmission. Transmission can 

occur quickly via faeces and aerosols and hence, the prevalence within a flock increases 

with age, with up to a 100% colonisation rate in older flocks (Bano et al., 2008). 

 

1.1.5.3 Incidence and prevalence 

AIS has been reported across Europe, North America and Australasia and is 

believed to be endemic worldwide. Some studies have suggested that outdoor free-range 

flocks are more commonly infected than caged or housed flocks (Burch et al., 2009; 

Wagenaar et al., 2003). Few epidemiological surveys of AIS have been performed and 

of those that have, the methodology for the detection of the spirochaetes has varied 

greatly, hindering correlation between studies. The incidence of the disease in North 

America has not been investigated whereas surveys in Europe and Australasia have 

shown AIS to be particularly common in laying and broiler breeder flocks.  

In 1989 in the Netherlands, use of a fluorescent antibody test (FAT) demonstrated 

spirochaetes in the caeca of birds from 37 of 134 (27.6%) flocks with enteritis and only 

two of 45 (4.4%) flocks without intestinal disorders (Dwars et al., 1989). In 1996 in 

Western Australia, selective culture was employed to reveal intestinal spirochaetes in 

the faeces of 16 of 30 (53.3%) randomly selected laying flocks and 13 of 37 (35.1%) 

broiler breeder flocks (McLaren et al., 1996). Spirochaetes were isolated from 64.0% of 

flocks exhibiting diarrhoea or poor production and 28.0% of flocks with no disease 

symptoms. The greater sensitivity of selective culture compared to FAT may account 

for the greater reported prevalence of infection observed in Western Australia. 

More recent surveys have used selective culture alongside polymerase chain 

reaction (PCR) for the identification of the spirochaete species present. Such studies 

found a greater prevalence of the infection in Eastern Australia, where spirochaetes 

were recovered from 12 of 28 (42.9%) randomly selected broiler breeder flocks, 15 of 

22 (68.2%) laying flocks and none of 19 broiler flocks included in the study (Stephens 

and Hampson, 1999). Colonisation was significantly correlated with wet litter, whereby 

infected flocks exhibited 14.0% greater faecal moisture content than uninfected flocks. 

In 2008 in Northern Italy, selective culture was used to demonstrate the colonisation of 
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21 of 29 (72.4%) laying flocks with intestinal spirochaetes (Bano et al., 2008). 

Colonisation was associated with reduced egg production but no difference in faecal 

moisture content. In these studies in Australia and Italy, prevalence increased with age 

and was significantly greater in flocks over 40 weeks of age than in younger flocks. 

In 2007, a survey in the United Kingdom suggested 70.0% of flocks with poor 

performance were infected with intestinal spirochaetes (Burch, 2007). In 2009, selective 

culture was used alongside biochemical testing to reveal colonisation by intestinal 

spirochaetes in 99 of 108 (91.7%) free-range and organic laying flocks, 57 of 74 

(77.0%) caged laying flocks, 2 of 8 (25.0%) breeder and none of the 24 in-rear pullet 

flocks tested (Burch et al., 2009). Colonisation of free-range flocks was significantly 

correlated with poor performance and incidence increased with age.  

In the studies described above, approximately 70.0% and 50.0% of laying and 

breeding flocks, respectively, were colonised by intestinal spirochaetes. Approximately 

two-thirds of flocks were colonised by pathogenic species, of which B. intermedia 

accounts for about two-thirds and B. pilosicoli for the remainder (Bano et al., 2008; 

Stephens et al., 2005). In some cases, flocks were colonised by both of these pathogenic 

species (Phillips et al., 2005). B. alvinipulli has been isolated from laying hens in the 

United States of America (Swayne et al., 1992) and the Netherlands (Feberwee et al., 

2008), geese in Hungary (Nemes et al., 2006) and mallards in Sweden (Jansson et al., 

2011). High rates of faecal carriage, particularly of B. pilosicoli have been noted in 

waterbirds, which are a probable reservoir of infection for chickens (Oxberry et al., 

1998; Stoutenburg et al., 1995). B. hyodysenteriae has been isolated from laying 

chickens in the United Kingdom (Thomson et al., 2007), the Netherlands (Feberwee et 

al., 2008) and is widespread in rheas in the United States of America (Buckles et al., 

1997) and some feral and farmed mallards in Sweden (Jansson et al., 2004). 

 

1.1.5.4 Incubation period and persistence 

The incubation period of AIS is variable since dose, species and environment can 

have a profound influence (Hampson and Swayne, 2008). Clinical symptoms can 

manifest as early as 5 days following experimental challenge (Swayne et al., 1995). 

However, significant levels of colonisation and disease symptoms often appear several 

weeks after experimental challenge (Hampson et al., 2002a; Hampson et al., 2002b).  

Intestinal spirochaetes can colonise the caeca persistently (Davelaar et al., 1986; 

Dwars et al., 1990, 1992b). In experimentally challenged chickens, a B. intermedia 

strain was detected in the faeces from challenge until the end of the study, 23 weeks 
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later (Dwars et al., 1993; McLaren et al., 1997) and in another study this strain was 

present in the faeces of the chickens at 9 months after challenge (Dwars et al., 1990). 

Persistent colonisation, extending over 4 – 7 weeks, has been noted following 

experimental challenge of hens with B. pilosicoli (Jamshidi and Hampson, 2002, 2003). 

 

1.1.5.5 Influencing factors 

The different clinical outcomes in infected hens arise from different influences on 

intestinal colonisation, which may explain the heterogeneity in clinical signs and 

pathology in flocks with AIS. Housing birds in close proximity, facilitating transmission 

between birds, enhances the probability of high infection rates. However, a survey in the 

United Kingdom revealed greater colonisation of Brachyspira amongst free-range 

flocks than caged flocks and that free-range birds exhibit poorer performance (Burch et 

al., 2009). It was postulated that contact of free-range birds with one another and with 

feral birds and mammals carrying intestinal spirochaetes facilitated initial infection. 

Stress periods may predispose colonisation with spirochaetes since infection increases 

at the onset of lay and times of moulting (Jordan and Hampson, 2007). 

The pathogenicity of avian intestinal spirochaetes is greatest when delivered by 

oral gavage to day-old chicks (Swayne, 1994; Swayne et al., 1995), however natural 

intestinal spirochaete colonisation has not been noted in young birds. Older flocks are 

more commonly infected, with flocks over 40 weeks of age significantly more likely to 

be infected with intestinal spirochaetes and infection less common in birds under 15 

weeks of age (Bano et al., 2008; Myers et al., 2009; Phillips et al., 2005). Above 15 

weeks of age, infection increases gradually and the average prevalence in sheds 

containing birds aged 10 – 39 weeks was 40.5%, 40 – 69 weeks was 44.9% and 70 – 

100 weeks was 81.1% (Stephens and Hampson, 1999). Correlation been pathogenicity 

and incidence with age may reflect increasing exposure or changes in gut microbiota 

rather than age susceptibility, but this concept is yet to be challenged experimentally. 

Intestinal spirochaetes must reach the lower GI tract and establish interactions 

with the local niche environment for successful colonisation. Survival through the upper 

GI tract may be facilitated by the spirochaetes residing within boluses of food or faeces. 

Spirochaetes may interact with other anaerobic bacteria in the caeca and colon of pigs, 

including Clostridium and the species act in synergy to facilitate colonisation, 

inflammation and lesion formation (Harris et al., 1978; Joens et al., 1981; Whipp et al., 

1979). Such species were co-isolated with spirochaetes in hens (Feberwee et al., 2008). 
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The influence of diet on colonisation has been demonstrated in experimentally 

challenged hens. Wheat-based diets and particularly wheat varieties with high levels of 

non-starch polysaccharides promote colonisation by B. intermedia compared to barley 

and sorghum diets (Phillips et al., 2004a, b). The addition of dietary enzyme designed to 

hydrolyse non-starch polysaccharides in wheat reduced colonisation by B. intermedia in 

hens (Hampson et al., 2002b). Zinc bacitracin (ZnB), a supplemental growth promoter, 

reduced colonisation by B. intermedia but enhanced colonisation by B. pilosicoli in 

experimentally challenged hens (Hampson et al., 2002a; Jamshidi and Hampson, 2002; 

Stephens and Hampson, 2002a). Since ZnB primarily acts on Gram-positive bacteria, 

the conflicting results indicate that there may be complex interactions between different 

components of the intestinal microbiota and different species of spirochaetes. 

 

1.1.6 Pathology and clinical symptoms of avian intestinal spirochaetosis 

Understanding of the pathology and clinical symptoms of AIS has come from 

three sources; experimental challenge of day-old chicks, experimental challenge of adult 

chickens and observations of natural cases of the disease. Data from day-old chicks 

should be treated with caution as although they provide insight into the pathogenic 

potential, the associated disease is not representative of natural infection in adult birds. 

Experimental challenge of adult hens is more representative of natural disease, but 

unlike many commercial, caged flocks where AIS is apparent, the birds are usually 

individually caged, appropriately fed and relatively stress-free and birds often display 

only mild symptoms with an absence of histopathological changes (Hampson and 

McLaren, 1999). Moreover, the studies are often restricted to using one or few 

spirochaete strains, standard dietary and other conditions and there are no co-infections, 

which is common in commercial flocks. Observations from natural cases of AIS are of 

direct relevance to industry, however the studies are limited by the potential of other co-

infections that may go unrecognised or make it difficult to attribute aspects of pathology 

or clinical symptoms and early AIS case reports failed to speciate the aetiological agent 

(Davelaar et al., 1986; Griffiths et al., 1987). The resulting disease and colonisation of 

birds with intestinal spirochaetes has been classified into subclinical colonisation, mild 

to moderate clinical disease or severe clinical disease.  

 

1.1.6.1 Subclinical colonisation 

Colonisation with intestinal spirochaetes in the absence of clinical symptoms of 

disease is most common in wild birds and waterbirds, where they are considered to be 
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commensals. Subclinical colonisation in chickens has been associated with non-

pathogenic species such as B. murdochii (McLaren et al., 1996). In wild birds, 

subclinical colonisation may be by pathogenic and/or non-pathogenic species without 

clinical symptoms of the enteric disease (Jansson et al., 2004; Oxberry et al., 1998). 

Inoculation of non-pathogenic spirochaete strains from wild birds into day-old chicks 

caused mild diarrhoea, foamy caecal contents and reduced growth rates with the 

spirochaetes attaching to the surface epithelium, inducing inflammatory cell infiltration 

into the lamina propria (Prapasarakul et al., 2011; Swayne et al., 1993). 

 

1.1.6.2 Mild to moderate clinical disease 

Mild to moderate clinical disease is associated with colonisation by B. alvinipulli, 

B. intermedia and/or B. pilosicoli, especially in laying and broiler breeder hens. Clinical 

symptoms are not pathognomic, but indicate enteric disease (Stephens and Hampson, 

2001). Colonisation in laying hens was initially associated with prolonged diarrhoea and 

reduced egg production (Davelaar et al., 1986). Naturally infected birds exhibited mild 

typhlitis with increased numbers of goblet cells and focal lesions in the caecal 

epithelium containing spirochaetes with leukocytic infiltration. Subsequently, retarded 

growth rates and delayed onsets of lay were associated with spirochaetes colonising the 

caeca in adult pullets, inducing distended crypts and epithelial sloughing (Griffiths et 

al., 1987). In broiler breeder hens, AIS causes increased feed consumption, production 

of eggs too light for hatching and weak broiler chicks with retarded growth and poor 

feed conversion hatched from eggs of infected hens (Smit et al., 1998). 

To improve understanding of infection with B. alvinipulli, challenge of day-old 

chicks and adult hens resulted in foamy contents in dilated caeca and wet, yellow faeces 

in both age groups (Swayne et al., 1995). Infected birds displayed severe lymphoplastic 

typhlitis, caecal villous epithelial cell hyperplasia and submucosal lymphocytic follicles. 

Spirochaetes formed dense layers over the epithelial surface of the villi and crypts, often 

penetrating between caecal epithelial cells and in the crypt lumina. Challenge of day-old 

ducklings with B. alvinipulli resulted in a weight reduction but no gross pathology 

(Thuma et al., 2011). In naturally infected flocks, B. alvinipulli caused diarrhoea, faeces 

smeared around the vent (pasty vent), faecal staining on eggshells (Swayne et al., 1992) 

and in hens that presented typhlitis, focal necrosis and necrotic material containing 

spirochaetes in the lumen were noted (Feberwee et al., 2008). 

B. intermedia challenge of broiler chicks and laying hens resulted in reduced 

growth rates, wet droppings with increased lipid content, increased serum protein, lipid, 
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carotenoid and biliruben content and reduced egg production in adult hens (Dwars et al., 

1992a, 1993; Dwars et al., 1990, 1992b). The spirochaetes penetrated the caecal mucosa 

and accumulated under the epithelium, causing erosion but no signs of inflammation. 

Eggs from infected hens had lower weights, paler yolks and low carotenoid content. 

Despite an absence of spirochaetes, broiler chicks hatched from the eggs of infected 

hens exhibited pale, wet faeces, reduced weights and developed rickets. Other challenge 

studies with B. intermedia report reduced growth, increased faecal moisture content and 

decreased egg production (Hampson and McLaren, 1999; Phillips et al., 2004a).  

In experimental challenge studies with B. pilosicoli in chicks, diarrhoea and 

depressed growth rates were noted (Trott et al., 1995). In a similar study, clinical 

symptoms were absent, but vacuolation in the cytoplasm of enterocytes and crypt 

elongation were recorded (Dwars et al., 1992a). Challenge of adult hens with B. 

pilosicoli elicited increased faecal moisture content, faecal staining of eggshells, 

reduced egg production and foamy caecal contents but mild pathology was recorded if 

at all (Jamshidi and Hampson, 2003; Stephens and Hampson, 2002a). Natural infection 

of flocks with B. pilosicoli is associated with reduced egg production, diarrhoea, foamy 

caecal contents, pasty vent, typhlitis, non-productive ovaries and lethargy with dense 

layers of spirochaetes covering the apical surface of caecal enterocytes (Feberwee et al., 

2008; Trampel et al., 1994). The dense “false brush border”, characteristic of B. 

pilosicoli colonisation, can damage microvilli and terminal web microfilaments 

(Muniappa et al., 1996; Prapasarakul et al., 2011). Intestinal spirochaetes may act as 

copathogens with indigenous bacilli to cause caecal lesions (Swayne and McLaren, 

1997). Reactive and mild inflammatory changes can occur in the caeca alongside crypt 

hyperplasia, epithelial erosion and increased numbers of goblet cells (Figure 1.1A) with 

the spirochaetes forming dense fringes (Figure 1.1B). B. pilosicoli colonisation was 

associated with increased mortality rates in turkeys (Shivaprasad and Duhamel, 2005) 

and typhlocolitis, renal degeneration and hepatic/splenic amyloidosis in ducks (Glavits 

et al., 2011). Similar histopathology was noted in the turkeys and ducks as in the hens.  
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Figure 1.1 Histopathological observations in the caeca of a laying hen naturally 

infected with B. pilosicoli (Feberwee et al., 2008). The caecal wall displays crypt 

hyperplasia and infiltration of heterophils in the lamina propria (A). Spirochaetes form a 

dense layer on the surface of and penetrate between enterocytes (B). 

 

1.1.6.3 Severe disease 

Severe disease is associated with typhlitis observed in rheas naturally colonised by 

B. hyodysenteriae, where mortality rates can reach as high as 80% (Buckles et al., 1994; 

Sagartz et al., 1992). Typically, infected rheas are over 6 months of age and adult cases 

coincide with stress. Fatalities often occur without clinical symptoms (Sagartz et al., 

1992), however 1 – 2 days prior to death the rheas may present depression, reduced 

weights and wet faeces with caseous cores (Swayne, 1994). The caeca can be dilated, 

with thickened walls and ulcerations, severe mucosal necrosis, crypt elongation and 

goblet cell hyperplasia and the caecal lumina may be colonised by spirochaetes with 

fibrinonecrotic debris. Similar histopathology was noted in day-old chicks, turkeys and 

rheas challenged with B. hyodysenteriae isolated from rheas with severe AIS (Jensen et 

al., 1996). Challenge of day-old chicks with porcine strains of B. hyodysenteriae 

produced reduced weight, caecal atrophy with epithelial and goblet cell hyperplasia and 

crypt elongation (Adachi et al., 1985; Sueyoshi and Adachi, 1990; Trott and Hampson, 

1998). Severe disease was reported in geese colonised by B. alvinipulli presenting 

mortality rates ranging 18 – 28% (Nemes et al., 2006). The infection was linked with 

haemorrhagic and necrotic inflammation in the colo-rectal region and fibrinonecrotic 

typhlitis. Additionally, swollen kidneys displaying degeneration of tubular epithelial 

cells were reported and lymphohistiocytic inflammation was noted in the liver.  
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1.1.6.4 Anatomical location 

Avian intestinal spirochaetes are anaerobic chemoheterotrophs making the lower 

GI tract (colo-rectum and/or caeca) of animals and humans ideal for their colonisation. 

The spirochaetes situate in close physical proximity to the mucosal epithelium. 

Intestinal mucus secreted by goblet cells is likely to be important as a physical matrix 

and a chemical substrate. Mucin has been implicated as a chemo-attractant to B. 

hyodysenteriae and B. pilosicoli (Milner and Sellwood, 1994; Naresh and Hampson, 

2010). B. pilosicoli and B. aalborgi can colonise intestinal mucosal surfaces by 

attaching to enterocytes via one cell end to form densely packed parallel arrays of 

spirochaetes, often referred as a “false brush border” (Figure 1.2). B. pilosicoli forms 

such attachments in humans and pigs and chickens (Jensen et al., 2000; Muniappa et al., 

1996; Trott et al., 1996a), however they can colonise without attachment (Jamshidi and 

Hampson, 2003). Occurrences of spirochaetaemia have been reported in humans but no 

animals or avian species (Bait-Merabet et al., 2008; Prim et al., 2011); further 

investigation into the potential for blood infection of Brachyspira is required. 

 

 

 
 
 
 
 
Figure 1.2 Transmission electron 

micrograph of B. aalborgi end-on attached to 

the colonic mucosa forming a “false brush 

border” in a human (Kraaz et al., 2000). 

 

1.1.6.5 Immunity 

 The immunological response to infection with intestinal spirochaetes can be 

prolonged as shown in experimentally challenged birds (Dwars et al., 1990), but 

remains to be explored fully. Humoral antibody responses to intestinal spirochaetes 

appear to be non-specific since they may or may not be evident in birds from which 

spirochaetes have or have not been isolated (Mantle et al., 1989a; Stoutenburg et al., 

1995). 
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1.1.7 Diagnosis of avian intestinal spirochaetosis 

Clinical signs of AIS are indicative of the disease, but cannot be used for 

diagnosis and the presence of micro- or macro-pathological lesions alone is rarely 

sufficient to provide certain diagnosis of AIS. Thus, diagnosis of AIS is confirmed by 

microbiological and molecular identification of the aetiological agent. 

 

1.1.7.1 Isolation and visualisation of spirochaetes 

Isolation of spirochaetes by selective culture (as discussed in section 1.2.2.2) is 

important for further characterisation and speciation of the causative spirochaetes. The 

sensitivity of culture for detection depends on the number of organisms, type and 

condition of the sample. Fresh faeces or caecal mucosa are preferable samples for 

culture and may be chilled at 4˚C for a week (Hampson and Swayne, 2008). The 

presence of spirochaetes in faeces may be demonstrated visually by examining a wet 

smear under light, phase-contrast or dark-field microscopy and observing their 

characteristic morphology and movement (discussed in section 1.2.2.1). Their presence 

may be clarified by electron microscopy (EM), although this can be expensive and time-

consuming. The periplasmic flagella can be enumerated, which varies between species. 

 

1.1.7.2 Identification of spirochaetes by serological properties 

The presence of spirochaete antigens may be confirmed by direct or indirect 

(I)FAT (Davelaar et al., 1986; Dwars et al., 1989) and immunohistochemcial (IHC) 

methods using polyclonal antibodies (Fisher et al., 1997; Webb et al., 1997). Neither 

morphology, IFAT or IHC methods are sufficient to distinguish between all species. 

Antisera specific for the detection of B. hyodysenteriae by IFAT (Lemcke and Burrows, 

1981; Lysons and Lemcke, 1983) and monoclonal antibodies to envelope proteins of B. 

pilosicoli, which may be used to develop IFAT (Lee and Hampson, 1995; Tenaya et al., 

1998), have been reported. Serological tests including enzyme-linked immunosorbent 

assays (ELISA) (La et al., 2009; Song et al., 2012), slide and micro-agglutination 

(S/MAT) tests (Hampson, 1991; Lee and Hampson, 1996) can detect spirochaetes but 

with low specificity sensitivity (La and Hampson, 2001). 

 

1.1.7.3 Identification of spirochaetes by biochemical properties 

The difference in haemolytic patterns on blood agar and biochemical reactivity 

(discussed in section 1.2.2.4) can be used to speciate and group intestinal spirochaetes. 

Culture and biochemical testing can be time-consuming due to the fastidious nature of 
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Brachyspira (Phillips et al., 2006), although the sensitivity of such tests for 

identification is highly regarded (Rasback et al., 2006). Culture is useful for testing 

antimicrobial efficacy against intestinal spirochaetes (Brooke et al., 2003a).  

 

1.1.7.4 Identification of spirochaetes by genotypic properties 

The development of molecular-based tools for the identification and detection of 

spirochaetes was encouraged due to the inconsistencies of phenotyping and mixed 

species infections. PCR assays were developed to detect intestinal spirochaetes isolated 

by selective culture (Atyeo et al., 1998; Leser et al., 1997). The most reliable PCRs for 

B. pilosicoli were designed on the 16S ribosomal ribonucleic acid (rRNA) gene and for 

B. intermedia were designed on the nicotinamide adenine dinucleotide (NADH) oxidase 

(nox) gene (Phillips et al., 2005, 2006). PCRs based on the nox gene and a haemolysin 

(tly) gene have been used for B. hyodysenteriae (Fellstrom et al., 2001). Two duplex 

PCRs have been developed, one to detect B. intermedia and B. pilosicoli (Phillips et al., 

2006) and the other to detect B. hyodysenteriae and B. pilosicoli (La et al., 2003) from 

deoxyribonucleic acid (DNA) extracted from faeces. A Brachyspira genus-specific PCR 

may be performed prior to a species-specific duplex PCR, in a two-step nested duplex 

PCR to increase the detection limit. Two multiplex PCRs have been developed, one to 

simultaneously detect B. hyodysenteriae, B. pilosicoli and Lawsonia intracellularis 

(Nathues et al., 2007; Reiner et al., 2011) and another to detect the species considered 

pathogenic to poultry, B. alvinipulli, B. intermedia and B. pilosicoli (Abdelrahman et 

al., 2009). Sequencing of the 16S rRNA and nox genes aid in identification although 

this is not a preferred method due to sequence similarity between species (Jansson et al., 

2011). Poultry faeces contain PCR inhibitors such as uric acid, reducing the detection 

limit of PCR on faecal DNA, but this may be overcome using washed faecal samples. 

Other molecular methodology for identification include restriction fragment length 

polymorphism (RFLP) involving restriction digestion of specific PCR products to give 

species-specific banding patterns upon gel electrophoresis (Barcellos et al., 2000; 

Rohde and Habighorst-Blome, 2012). Fluorescent in situ hybridisation (FISH), using 

fluorescent oligonucleotide probes specific for Brachyspira can visualise spirochaetes 

associated with tissues (Boye et al., 1998; Jensen et al., 2000), which may be captured 

by laser microdissection and subjected to 16S rRNA gene PCR and sequence analysis to 

allow simultaneous identification and localisation of spirochaetes (Klitgaard et al., 

2005). Multilocus enzyme electrophoresis (MLEE) was pivotal in the differentiation of 

spirochaetes (Lee et al., 1993; McLaren et al., 1997), but has been replaced by pulsed 

http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
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field gel electrophoresis (PFGE), which provides better discrimination of species (Atyeo 

et al., 1996). Recently, randomly amplified polymorphic DNA (RAPD) (Backhans et 

al., 2011; Fellstrom et al., 2008) and multilocus sequence typing (MLST) (Osorio et al., 

2012; Rasback et al., 2007b) have been developed to type intestinal spirochaetes. 

 

1.1.8 Intervention and treatment of avian intestinal spirochaetosis 

 

1.1.8.1 Biosecurity and disinfectants 

Cleaning and disinfection is required to prevent transmission of AIS between 

flocks in addition to strict biosecurity to prevent the introduction of spirochaetes. 

Effective rodent, insect and wild bird control with consistently high levels of shed 

hygiene is essential in preventing the disease and its spread (Hampson and Swayne, 

2008). Physical containment of the birds should include security fencing and bird-proof 

netting around openings in the containment facilities. Entry of personnel should be 

restricted, preferably with shower-in and shower-out facilities and disinfectant boot-

dips. A clean water source and measures applied to minimise contact of birds with 

potentially infected faeces are important. Feed ingredients, such as wheat that can 

enhance colonisation, could be avoided. It is best to avoid raising rheas on swine farms 

and to separate flocks into age groups, implementing strict biosecurity measures to 

avoid transmission of spirochaetes from asymptomatic adult birds to susceptible chicks.  

Disinfectants including quaternary ammonium compounds, iodine, chlorine, and 

hydrogen peroxide can immediately inactivate Brachyspira in organic matter (Phillips 

et al., 2003). Several studies have revealed reduced effectiveness of disinfectants, such 

as Virkon S against porcine and human enteric organisms, including B. pilosicoli over 

time and have suggested an emerging resistance of spirochaetes to some disinfectants 

(Corona-Barrera et al., 2004; de la Puente Redondo et al., 1998; Isenberg et al., 1988). 

 

1.1.8.2 Antimicrobial control 

Spirochaetes are susceptible to a range of antimicrobials, however a limited 

number are effective in treating the clinical disease. It was postulated that compounds 

used to treat swine dysentery would be applicable to treat AIS (Swayne, 1997). The first 

in vitro antimicrobial susceptibility testing of avian intestinal spirochaetes demonstrated 

high susceptibilities of B. alvinipulli, B. hyodysenteriae and B. pilosicoli strains from 

chickens and rheas to antimicrobials used to treat swine dysentery, such as carbadox, 

lincomycin and tiamulin (Trampel et al., 1999). However, a resistance to streptomycin 
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was revealed in addition to variable results for bacitracin, chlortetracycline, 

eryhtromycin, neomycin, oxytetracycline and penicillin. Subsequent studies 

demostrated susceptibilites to lincomycin, metronidazole, tetracycline and tiamulin in B. 

intermedia and B. pilosicoli strains (Hampson et al., 2006c), although elevated 

minimum inhibitory concentration (MIC) values for ampicillin and tylosin were noted. 

Decreased susceptibilities to ampicillin, doxycycline, tiamulin, tylosin and valnemulin 

were later found in a range of Brachyspira strains from laying hens and wild mallards 

(Jansson and Pringle, 2011). Acquired resistance to doxycycline, tilmicosin, tylosin and 

lincomycin and low-level resistance to tiamulin and valnemulin has been shown in B. 

intermedia strains from laying hens (Verlinden et al., 2011). Resistance to macrolides 

and lincosamides, such as tylosin and erythromycin is conferred by a mutation in the 

peptidyl transferase region of the 23S rRNA gene (Karlsson et al., 1999).  

 Although no antimicrobials have been registered for the specific treatment of AIS, 

several studies have investigated the use of antimicrobials to treat AIS. In-feed 

dimetridazole has been successful in treating laying hens with AIS (Griffiths et al., 

1987). In-water 5-nitroimidazole was effective in treating broiler hens with AIS when 

administered before the onset of lay (Smit et al., 1998). The condition of broiler breeder 

hens with AIS was improved using either in-water lincospectin or tiamulin although 

infection did reappear following both treatments and in-water oxytetracycline was then 

used to remove or reduce the reoccuring infection (Stephens and Hampson, 1999), 

highlighting a requirement for regular treatment with courses of antimicrobials to 

prevent reinfection. In-water tiamulin successfully treated laying hens infected with B. 

pilosicoli, improving production and reducing mortality (Burch et al., 2006). Tiamulin 

and lincomycin have been effective in removing B. intermedia and B. pilosicoli from 

challenged birds (Stephens and Hampson, 2002b). Dimetridazole, erythromycin and 

lincomycin have been successful in treating severe AIS in rheas (Hanley et al., 1994).  

 Antimicrobial treatment in laying hens can be problematic due to the withdrawl 

times required to avoid the presence of residues in eggs. Moreoever, compounds such as 

nitroimidazoles are unsuituable for use in food-producing animals due to their 

genotoxicity (Franklin et al., 2006) and the use of tiamulin must be carefully considered 

as it cannot be used with ionophores due to toxicity (Weisman et al., 1983). 

   

1.1.8.3 Pre- and probiotic control 

Antimicrobial treatment in laying hens can be problematic (as discussed in section 

1.1.7.2) and in addition to emerging resistances to current antimicrobials and bans on 
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subtherapeutic antimicrobial usage, there is a drive to develop alternative treatment 

strategies for AIS. Few studies exist on investigating the potential of pre- and probitoic 

treatment of Brachyspira infection. In 2008, a patent application was published for the 

use of L. johnsonii as a probiotic, based on its ability to inhibit B. pilosicoli and B. 

hyodysenteriae growth, through the production of hydrogen peroxide and a proteineous 

antimicrobial (Se et al., 2008). L. rhamnosus and L. farciminis strains have been 

implicated in inhibiting Brachyspira motility via co-aggregation and eliciting a stress 

response in the Brachyspira (Bernardeau et al., 2009). Interestingly, the cell-free 

supernatant (CFS) of L. salivarius but not L. reuteri had a pH-dependant inhibitory 

effect on B. pilosicoli growth (Klose et al., 2010). Moreover, supplementing the diet of 

pigs experimentally challenged with B. hyodysenteriae with the prebiotic inulin 

protected the pigs against swine dysentery (Hansen et al., 2010), potentially through 

modifying the intestinal microbiota and microbial fermentation (Hansen et al., 2011). 

 

1.1.8.4 Vaccination 

A number of vaccines have been developed against Brachyspira to treat swine 

dysentery, although the protection provided has been ineffective and inconsistent 

(Hampson et al., 1993) whilst some vaccines have increased and accelerated swine 

dysentery caused by B. hyodysenteriae (Olson et al., 1994). There are currently no 

commercially available Brachyspira vaccines for use in poultry (Hampson and Swayne, 

2008). A bacterin vaccine was investigated to control B. intermedia in laying hens and 

although it gave a humoral response, antibody levels declined significantly following 

challenge with B. intermedia (Amin et al., 2009). Reverse vaccinology and the use of 

recombinant proteins has shown promise in reducing B. pilosicoli colonisation in a 

mouse model (Movahedi and Hampson, 2009). Experimental vaccines using live 

attenuated strains (Hyatt et al., 1994), recombinant proteins (La et al., 2004) or DNA 

(Davis et al., 2005) have been developed but not yet reached commercial production. 

 
1.1.9 Animal models for avian intestinal spirochaetosis 

 Pathogenicity, colonisation, host range and immune responses have been 

investigated in pig, guinea pig, mice and chicken models for intestinal spirochaetosis. 

Many different Brachyspira species and strains have been used to experimentally 

challenge chicks and adult hens (Table 1.1) and only a minority of strains (155-5, 

B256T, 155-20, 27042-94B, and 513AT) were unable to colonise the GI tract of chickens 

with a minority (CPSi1, SP16, 16242-94, Rosie 2299) also unable to produce symptoms 
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or lesions. Moreover, few challenge studies have been performed in other bird species 

including geese (Ivanics et al., 2007), common rheas (Swayne, 1994) and mallards 

(Jansson et al., 2009a). Swine dysentery is commonly investigated by experimental 

challenge of pigs and mice (Hutto and Wannemuehler, 1999; Jacobson et al., 2004). 

 

Table 1.1 Experimental challenge studies in chickens with strains of validated 

Brachyspira species (Jansson, 2009).  

Species  Strain(s) Origin Reference 

B. aalborgi 513AT Monkey (Trott and Hampson, 1998) 

B. alvinipulli C1 Chicken (Swayne et al., 1995) 

R1 Rhea (Swayne, 1994) B. hyodysenteriae 

B78T, B204R, WA15, SA3 Pig (Adachi et al., 1985; Sueyoshi and 

Adachi, 1990; Sueyoshi et al., 1987; 

Sueyoshi et al., 1986; Trott and 

Hampson, 1998; Trott et al., 1995) 

CPSi1 Chicken (Stephens and Hampson, 2002a) 

B256T, 155-5 Pig (Muniappa et al., 1997; Trott et al., 

1995) 

B. innocens 

27042-94B Dog (Muniappa et al., 1996) 

1380, HB60 Chicken (Dwars et al., 1993; Dwars et al., 

1990, 1992b; Hampson and McLaren, 

1999; Hampson et al., 2002b; Phillips 

et al., 2004a, b) 

B. intermedia 

889 Pig (Trott and Hampson, 1998) 

B. murdochii 155-20 Pig (Trott and Hampson, 1998) 

CPSp1 Chicken (Jamshidi and Hampson, 2002; 

Stephens and Hampson, 2002a, b) 

1648, 3295, UNL-3, UNL-

5, UNL-8, D9201243A, 

T9300098, T9301604B 

Pig (Muniappa et al., 1997; Trott and 

Hampson, 1998; Trott et al., 1995)  

S76 Widgeon (Swayne et al., 1993) 

K9-12, 16242-94 Dog (Muniappa et al., 1996) 

SP16, WesB, Kar, GAP 

401, Rosie 2299, 

HIV3AB2 

Human (Jamshidi and Hampson, 2003; 

Muniappa et al., 1996; Muniappa et 

al., 1998; Trott and Hampson, 1998; 

Trott et al., 1995) 

B. pilosicoli 

MMU27669, MMU26986, 

MMU26717  

Monkey (Muniappa et al., 1998) 
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1.2 Brachyspira 

 
1.2.1 Phylogeny and taxonomy of Brachyspira 

 

1.2.1.1 Phylum Spirochaetes 

The existence of helical-shaped, motile microorganisms in human faeces and the 

oral cavity has been noted shortly after the development of microscopy in the 17th 

century (Dobell, 1932) and the first named spirochaete (etymology Gr. speira “coil” and 

chaite “hair”) was Spirochaeta plicatilis (Ehrenberg, 1835). Until the 1960 – 1970s, 

spirochaetes were confused with protists, and their bacterial nature was eventually 

proven based on ultrastructural features (Holt, 1978; Ryter and Pillot, 1965). 

The domain Bacteria is currently subdivided in 24 phyla, including Spirochaetes, 

which contains all spirochaete species shown in Table 1.2 and this represents a 

monophyletic lineage and a major branch in eubacterial evolution with deeply 

branching subclusters within the clade, corresponding to different families and genera 

(Ludwig et al., 2008; Woese, 1987). There are over 200 proposed species and 

phylotypes of spirochaete, of which over half remain to be cultured in vitro (Paster and 

Dewhirst, 2000). Spirochaetes are considered to be evolutionary ancient organisms 

(Canale-Parola, 1977) supported by phylogenetic studies (Brown et al., 2001; Daubin et 

al., 2002), their presence in ancient ecosystems such as phototrophic bacterial mat 

communities (Margulis et al., 1993) and their symbiotic relationship with living fossils 

and termites in 15 – 20 million year-old amber (Pernice et al., 2007; Wier et al., 2002).  

 

Table 1.2 Proposed taxonomic outline (families, genera) of phylum Spirochaetes 

(Ludwig et al., 2008). 

Phylum Spirochaetes 

Family I Family II Family III Family IV Family V 

Spirochaetaceae Brachyspiraceae Brevinemataceae Leptospiraceae Incertae sedisa 

Spirochaeta Brachyspira Brevinema Leptospira Clevelandina 

Borrelia    Leptonema Diplocalyx 

Cristispira    Turneriella Hollandina 

Treponema       Pillotina 
a Uncertain placement of genera because strains and DNA sequences are unavailable. 

 

Spirochaetes are metabolically diverse chemoorganoheterotrophs with complex 

and different demands for nutrients and oxygen. They inhabit a diverse range of 
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environments, with both mesophilic and extremophilic (thermophile, alkaliphile and 

halophile) spirochaetes noted (Charon and Goldstein, 2002; Euzeby, 2008; Margulis et 

al., 1993). Many species are free-living in marine environments, hot springs, oil fields, 

soil and microbial mat communities. Some spirochaetes exist as commensals in 

eukaryotic hosts including insects, molluscs and vertebrates, with the genera 

Brachyspira and some Treponema capable of colonising the GI tract. Spirochaetes can 

exist in the hindgut of wood-eating termites participating in bio-recycling and nitrogen 

fixation (Warnecke and Hugenholtz, 2007) and in the digestive and excretory organs of 

molluscs as commensals (Pernice et al., 2007). Spirochaetes cause a range of diseases 

of vertebrate hosts with the epidemiology, host range, tissue tropism and invasiveness 

varying greatly between species. Treponema species are the aetiological agent of 

syphilis and yaws in humans, periodontitis in humans and dogs and digital dermatitis in 

cattle; Borrelia species cause Lyme disease in humans, dogs and horses and avian 

spirochaetosis in a range of poultry; Leptospira species cause leptospirosis in humans, 

dogs, cattle, pigs, sheep and horses and Brachyspira species can cause swine dysentery 

in pigs and intestinal spirochaetosis in humans, pigs and poultry.  

Spirochaetes divide by binary fission and are typically helical-shaped, but a flat 

wave and coccoid shape have been recorded (Charon et al., 2009; Droge et al., 2006). 

Spirochaetes in the genera Treponema, Borrelia, Leptospira, and Brachyspira can form 

spherical bodies, perhaps in response to adverse conditions (de Ciccio et al., 1999; 

Wood et al., 2006). Cell size range from 0.1 – 3.0 µm in diameter and 2.0 – 180.0 µm in 

length depending on the species (Charon and Goldstein, 2002; Hovind-Hougen et al., 

1982). The cell wall consists of a thin peptidoglycan layer on the cytoplasmic 

membrane and an outer membrane bilayer. Periplasmic flagella are subterminally 

attached at each cell end and reside in the periplasmic space forming bundles that 

overlap in the midsection of the cell (Charon et al., 2009). Their numbers vary from 2 – 

100s per cell, depending on the species. They contribute to morphology and motility by 

asymmetrical rotation allowing cells to penetrate and move efficiently in viscous media 

that would otherwise cause immobilisation, although immotile species have been noted 

(Droge et al., 2006). Spirochaetes typically possess circular chromosomes, however 

Borrelia burgodorferi has a linear chromosome with linear and circular plasmids 

(Kobryn and Chaconas, 2002). Currently, genome sequences are available for species of 

the genera Borrelia, Brachyspira, Leptonema, Leptospira, Spirochaeta, Treponema and 

Turneriella (GenBank, National Centre for Biotechnology Information, NCBI). 

  

http://www.ncbi.nlm.nih.gov/
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1.2.1.2 Genus Brachyspira 
Brachyspira (etymology Gr. brachy “short” and speira “coil”) are oxygen-tolerant, 

anaerobic spirochaetes, which have been isolated from the mammalian and avian GI 

tract, faecal-contaminated habitats and human blood. The genus currently consists of 

seven species that have standing in nomenclature and several proposed species detailed 

in Table 1.3.  

 

Table 1.3 Validated and proposed Brachyspira species and their known host range.a 

Speciesa Published host range Reference to species 

description or proposition 

B. aalborgi  Human, non-human primates (Hovind-Hougen et al., 1982) 

B. alvinipulli Chicken, domestic goose, Red breasted, 

merganser (Mergus serrator), dog 

(Stanton et al., 1998) 

B. hyodysenteriae Pig, rat, mouse, common rhea, mallard, 

chicken, goose 

(Harris et al., 1972a; Taylor and 

Alexander, 1971) 

B. innocens Pig, dog, horse, chicken (Kinyon and Harris, 1979; 

Stanton, 1992) 

B. intermedia Pig, chicken (Stanton et al., 1997) 

B. murdochii Pig, rat, chicken (Stanton et al., 1997) 

B. pilosicoli Pig, dog, horse, non-human primates, 

human, chicken, pheasant, grey partridge, 

feral water birds, common rhea 

(Trott et al., 1996d) 

“B. canis” Dog (Duhamel et al., 1998b) 

“B. christiani” Human (Jensen et al., 2001) 

“B. corvi” Jackdaw, hooded crow, rook (Jansson et al., 2008) 

“B. hampsonii” Pig (Mantle et al., 1989b) 

“B. ibaraki” Human (Tachibana et al., 2003) 

“B. pulli”  Chicken, dog  (Stephens and Hampson, 1999) 

“B. suanatina” Pig, mallard  (Rasback et al., 2007a) 
a Species within quotation marks are proposed (unvalidated). 
b Additional references to host ranges: (Duhamel, 2001; Duhamel et al., 1997; Feberwee et al., 2008; 

Hampson et al., 2006d; Jansson et al., 2008; Jansson et al., 2004; Jansson et al., 2011; Jensen et al., 

1996; Joens and Kinyon, 1982; Johansson et al., 2004; McLaren et al., 1997; Munshi et al., 2003; 

Nemes et al., 2006; Oxberry et al., 1998; Thomson et al., 2007; Trivett-Moore et al., 1998; Trott et 

al., 1996c; Trott et al., 1996d; Webb et al., 1997). 

 

Prior to the genus Brachyspira, spirochaetes that now come under this genus 

underwent several taxonomic changes. B. hyodysenteriae was first described as a vibrio-
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like microorganism (Vibrio coli) (Vimal et al., 2000) and was renamed Treponema 

hyodysenteriae a decade later having been identified as a spirochaete and that fulfilled 

Koch’s postulates (Harris et al., 1972a; Taylor and Alexander, 1971). All intestinal 

spirochaetes isolated from swine regardless of phenotype and pathogenicity were 

designated to this species (Harris et al., 1972a). It was later shown that pathogenic and 

non-pathogenic strains shared only 28% sequence homology (Miao et al., 1978) and 

weakly haemolytic, presumably non-pathogenic species isolated from swine faeces were 

classified as a new species, T. innocens (Kinyon and Harris, 1979). T. hyodysenteriae 

and T. innocens were distantly related to genus Treponema based on 16S rRNA 

sequencing, DNA-DNA relative reassociation, protein electrophoretic profiles and 

genomic DNA restriction enzyme analysis and thus, were reclassified to a new genus, 

Serpula (Paster et al., 1991; Stanton et al., 1991), later changed to Serpulina (Stanton, 

1992). A spirochaete proposed as Anguillina coli (Lee et al., 1993) was added to this 

genus as S. pilosicoli (Trott et al., 1996d), followed by S. intermedia and S. murdochii 

(Stanton et al., 1997). S. hyodysenteriae, S. innocens and S. pilosicoli were unified with 

B. aalborgi, isolated from humans in the genus Brachyspira (Ochiai et al., 1997). This 

genus was added as a footnote to the descriptions of S. alvinipulli and S. intermedia 

(Stanton et al., 1998) and S. murdochii was last to be unified (Hampson and La, 2006).  

Brachyspira is the sole genus in the family Brachyspiraceae within the order 

Spirochaetales, which contains four other families including Leptospiraceae and 

Spirochaetaceae. The order, Spirochaetales, belongs to the class Spirochaetes, which is 

a monophyletic lineage of the phylum Spirochaetes. Brachyspira share some general 

characteristics of spirochaetes, including a similar helical shape and ultrastructure, 16S 

rRNA gene sequences with signature sequences and natural resistance to rifampicin 

(Paster and Dewhirst, 2000). The unique ultrastructure and 16S rRNA gene sequences 

can be used to distinguish Brachyspira from other spirochaetes (Paster et al., 1991).  

To identify, differentiate and determine phylogenetic relationships of 

Brachyspira, MLEE has been a key molecular tool, permitting the prediction of new 

species and assembly of strains into MLEE groups (Duhamel et al., 1998b; Selander et 

al., 1986). Brachyspira represent a distinct line in spirochaete evolution based on 

comparative analysis of 16S rRNA gene (rrs) sequences (Paster et al., 1991; Stanton et 

al., 1996). Due to the similarity of 16S rRNA gene (rrs) sequences among Brachyspira, 

new species should be designated only after their phylogenetic relationships with known 

Brachyspira species are confirmed by MLEE and DNA sequence homology analysis by 

DNA-DNA relative reassociation (Stanton, 2006). Novel, uncharacterised Brachyspira 
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species have been proposed, based on 16S rRNA gene sequencing (Pettersson et al., 

2000). Phylogenetic analyses of 23S rRNA gene (rrl) sequences of Brachyspira are 

consistent with MLEE and 16S rRNA gene (rrs) phylogenies and 23S rRNA gene-

targeted PCR and PCR-RFLP can differentiate species despite high sequence similarity 

(Barcellos et al., 2000; Leser et al., 1997). In the future, it is likely that whole genome 

sequencing will be involved in determining phylogenetic relationships of Brachyspira. 

 

1.2.2 Phenotypic characteristics of Brachyspira 

 

1.2.2.1 Morphology 

Brachyspira are long, slender, helical-shaped, motile, Gram-negative bacteria as 

depicted in Figure 1.3 (Stanton et al., 1998). Cell lengths and widths ranges 2.0 – 14.0 

µm and 0.19 – 0.40 µm, respectively, with amplitudes ranging 0.45 – 0.79 µm and wave 

lengths ranging 2.7 – 3.7 µm (Harris et al., 1972a; Stanton et al., 1997; Stanton et al., 

1991; Stanton et al., 1998; Trott et al., 1996d). The cell end can be blunt, pointed or 

tapered, depending on the species (Hovind-Hougen et al., 1982; Ochiai et al., 1997; 

Stanton et al., 1997; Stanton et al., 1998; Trott et al., 1996b). The characteristics of the 

seven validated Brachyspira species are detailed in Table 1.4.  

 

 

 

 

 

 

Figure 1.3 Phase-contrast 

photomicrograph of wet mount 

preparation of B. alvinipulli C1T 

(Stanton et al., 1998). 

 

Typical of spirochaetes, Brachyspira have equal sets of flagella originating at 

either pole of the central protoplasmic cylinder, overlapping with each other midway 

along the cell (Canale-Parola, 1984). Rotation of periplasmic flagella between the outer 

sheath and the inner protoplasmic cylinder drives the characteristic sinuous spirochaetal 

movement that permit the spirochaetes to transverse viscous mucus, which would 

otherwise immobilise externally flagellated bacteria (Berg, 1976; Nakamura et al., 
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2006). The number of periplasmic flagella at each end of the cell varies between species 

(Table 1.4) and can be an important consideration when distinguishing strains using EM 

(Sellwood and Bland, 1997). Avian intestinal spirochaetes typically have 

end:middle:end flagella number ratios of 8:16:8 or 5:10:5 (Stoutenburg et al., 1995). 

When cells divide by binary fission, the new flagella appear prior to the division. The 

morphology of the spirochaete cell end can aid in strain characterisation (Table 1.4). 

 

Table 1.4 Phenotypic characteristics and major hosts of the seven validated 

Brachyspira species.a 

Species Length 

(µm) 

Diameter 

(µm) 

Flagella 

per cell 

Cell pole Major host 

B. aalborgi 2.0 – 6.0 0.20 8 Tapered Human 

B. alvinipulli 8.0 – 11.0 0.20 – 0.35 22 – 30 Blunt Chicken 

B. hyodysenteriae 7.0 – 9.0 0.30 – 0.40 22 – 28 Blunt Pig 

B. innocens 7.0 – 9.0 0.30 – 0.40 20 – 26 Blunt Pig, chicken 

B. intermedia 8.0 – 10.0 0.35 – 0.45 24 – 28 Blunt Pig, chicken 

B. murdochii 5.0 – 7.0 0.23 – 0.30 22 – 26 Blunt Pig, chicken 

B. pilosicoli 5.0 – 2.0 0.20 – 0.40 8 – 12 One or both 

ends pointed 

Pig, chickens, rodent, 

human 
a References to information: (de Smet et al., 1998; Duhamel et al., 1998a; Fellstrom and 

Gunnarsson, 1995; Fellstrom et al., 1999; Fellstrom et al., 1997; Harris et al., 1972b; Hovind-

Hougen et al., 1982; Kinyon and Harris, 1979; Kraaz et al., 2000; McLaren et al., 1997; Sellwood 

and Bland, 1997; Stanton et al., 1997; Stanton et al., 1991; Stanton et al., 1998; Stanton et al., 1996; 

Trott et al., 1996a; Trott et al., 1996c; Trott et al., 1997a). 

 

1.2.2.2 Culture  

Brachyspira are anaerobic but aerotolerant and tolerate transient exposure to air 

due to high activity of NADH oxidase (Harris et al., 1972a; Stanton and Lebo, 1988). 

Their growth is limited by strict anaerobic conditions and is optimal at atmosphere 

containing approximately 1% oxygen (Stanton and Cornell, 1987). Some species such 

as B. pilosicoli are able to grow in a concentration of up to 7% oxygen (Stephens and 

Hampson, 2001). Brachyspira are cultivable on solid or liquid media, supplemented 

with blood and/or serum. On solid blood medium, colonies are weakly or strongly β-

haemolytic depending on the species. Primary isolation of Brachyspira can be 

accomplished using blood agar base medium, such as Trypticase Soy agar with 5 – 10% 

(v/v) sheep blood and one to five selective antimicrobials, including spectinomycin, 

rifampin, spiramycin, vancomycin, polymixin and/or colistin (Swayne and McLaren, 



Chapter 1  Introduction 

 49

1997). Generally, Brachyspira selective agar contains 400 µg/ml spectinomycin and 25 

µg/ml each of colistin and vancomycin (Jenkinson and Wingar, 1981). Selective media 

is important to inhibit the growth of non-spirochaetal bacteria that would otherwise 

outgrow the slow-growing, fastidious spirochaetes. Typically, the growth of 

Brachyspira is viable after anaerobic incubation (10% hydrogen and 10% carbon 

dioxide in nitrogen) at 37 – 42˚C for 2 – 5 days (Brooke et al., 2003b). Mucin can be 

added to improve the growth, whilst citrated blood can increase haemolytic variation 

(Stephens and Hampson, 2001). Brachyspira can be propagated in broth culture, 

growing between 108 – 109 colony-forming units (CFU)/ml within 2 – 3 days. 

Typically, broth media includes pre-reduced anaerobic Trypticase Soy broth, containing 

2% (v/v) foetal calf serum (FCS) and a 1% (v/v) cholesterol solution (Kunkle et al., 

1986; Kunkle and Kinyon, 1988). Brachyspira utilise soluble sugars as carbon sources, 

such as glucose, from which they produce acetate, butyrate, hydrogen and carbon 

dioxide (Stanton, 2006). Cholesterol and phospholipids, of which erythrocytes are a 

source, are considered essential for Brachyspira growth (Lemcke and Burrows, 1980). 

 

1.2.2.3 Colony morphology 

On agar medium, avian intestinal spirochaetes grow as a dull, flat sheet that 

spreads over the surface and particularly strongly β-haemolytic spirochaetes may 

penetrate the agar. They form a confluent, cloudy film with defined edges surrounded 

by a zone of haemolysis. Most species are weakly β-haemolytic, although B. 

hyodysenteriae is typically strongly β-haemolytic. Occasionally, B. intermedia and 

other unidentified avian strains can cause intermediate to strong β-haemolysis (Jansson 

et al., 2001; McLaren et al., 1997). Examining a wet smear under dark field or phase 

contrast microscopy is routinely used to confirm spirochaetal growth and visualise their 

characteristic morphology and sinuous movement (Stephens and Hampson, 2001). 

 

1.2.2.4 Biochemical properties 

Brachyspira produce an array of specific enzymes and can be differentiated based 

on their biochemical properties, including testing for indole production and hippurate 

hydrolysis (Fellstrom et al., 1999) and commercial kits such as API-ZYM can be used 

for characterisation (Hunter and Wood, 1979). Brachyspira strains are differentiated 

biochemically by their intensity of haemolysis on blood agar, indole production, 

hippurate hydrolysis and activities of α-galactosidase, α-glucosidase, and β-glucosidase 

(Fellstrom et al., 1997; Fellstrom et al., 1995). Brachyspira species are assigned to a 



Chapter 1  Introduction 

 50

group based on biochemical test results (Table 1.5) (Fellstrom et al., 1999). Tests for 

carbohydrate utilisation are uncommon in diagnostics for Brachyspira and have been 

tested for few strains (Stanton et al., 1997; Trott et al., 1996b). Due to phenotypic 

variations and a lack of understanding of the metabolic capabilities of Brachyspira 

species, molecular techniques have replaced biochemical testing for identification. 

 

Table 1.5 Grouping of Brachyspira species based on biochemical properties (Fellstrom 

et al., 1999). 

Group Haemolysis Indole 

productiona 

Hippurate 

hydrolysisb 

α-galc α-glud β-glue Species 

indicated 

I strong ± – – ± + B. hyodysenteriae 

II weak + – – + + B. intermedia 

IIIa weak – – – – + B. murdochii 

IIIb weak – – ± – + B. innocens 

IIIc weak – – ± + + B. innocens 

IV weak – + ± ± – B. pilosicoli 

ND weak – + – – + B. alvinipulli 
a Test for ability to cleave indole from tryptophan; +, positive; −, negative; ±, positive/negative. 
b Test for ability to hydrolyse hippurate; +, positive; −, negative, ±, positive/negative. 
c Test for α-galactosidase activity; +, positive; −, negative; ±, positive/negative. 
d Test for α-glucosidase activity; +, positive; −, negative; ±, positive/negative. 
e Test for β-glucosidase activity; +, positive; −, negative; ±, positive/negative. 

 

1.2.2.5 Metabolic properties 

The central metabolic pathways present within Brachyspira, which have been 

supported by recent genome sequencing, have revealed adaptations to life in the lower 

GI tract. The central metabolic pathways for energy production include a glycolysis, 

gluconeogenesis and the non-oxidative pentose phosphate pathway, from which many 

metabolic pathways originate (Bellgard et al., 2009; Hafstrom et al., 2011; Pati et al., 

2010; Wanchanthuek et al., 2010). The end products of glucose metabolism in 

Brachyspira are acetate, butyrate, hydrogen and carbon dioxide, showing the species 

have similar catabolic routes (Stanton, 1989; Stanton et al., 1997; Stanton and Lebo, 

1988; Stanton et al., 1998; Trott et al., 1996b). Following glycolysis, pyruvate is 

catabolised to acetyl-CoA, hydrogen and carbon dioxide. Acetyl-CoA is further 

converted to acetate or butyrate via a branched fermentation pathway. Moreover, the 

complete repertoire of genes for nucleotide metabolism, lipopolysaccharides (LPS) 

biosynthesis and a respiratory electron transport chain have been identified, alongside 
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an incomplete tricarboxylic acid (TCA) cycle. Hence, adenosine triphosphate (ATP) is 

yielded via sugar fermentation and ATP-yielding mechanisms are substrate level 

phosphorylations mediated by phosphoglycerate kinase, pyruvate kinase and acetate 

kinase, genes for which were detected in the available Brachyspira genomes. Despite 

producing stoichiometricically less ATP than oxidative phosphorylation, substrate level 

phosphorylations form ATP more rapidly, which may be necessary to fuel the high 

motility of Brachyspira. Aerobic pyruvate dehydrogenase and anaerobic pyruvate 

formate lyase are present in Brachyspira and associated with mixed-acid fermentation. 

The incomplete TCA cycle may function in carbon assimilation and the generation of 

precursors for biosynthesis (Romano and Conway, 1996). The respiratory transport 

chain may enable the generation of ATP oxidative phosphorylation and interestingly, B. 

hyodysenteriae grow optimally in an atmosphere containing 1% oxygen and consume 

oxygen during growth (Stanton and Cornell, 1987; Stanton and Lebo, 1988). 

 

1.2.3 Genotypic characteristics of Brachyspira 

Brachyspira possess a circular chromosome with low G+C content (24.2 – 27.9%) 

(Liolios et al., 2008; Ochiai et al., 1997; Stanton et al., 1997; Stanton et al., 1998; Trott 

et al., 1996d; Wanchanthuek et al., 2010) and 16S rRNA gene sequences are highly 

conserved amongst Brachyspira (Stanton, 2006). Whole genome sequences are now 

available for B. hyodysenteriae WA1 (Bellgard et al., 2009), B. intermedia PWS/AT 

(Hafstrom et al., 2011), B. murdochii 56-150T (Pati et al., 2010) and B. pilosicoli 

95/1000 (Wanchanthuek et al., 2010) and genome projects are currently being 

undertaken for other species and strains (GenBank, NCBI). Of the available genomes, 

B. pilosicoli 95/1000 is the only strain not to harbour a plasmid. The general features of 

the four available Brachyspira genomes are compared in Table 1.6, based on a previous 

comparative genomic study (Hafstrom et al., 2011). As expected, the total number of 

predicted open reading frames (ORF) increased with genome size. 

Few tools are available for the genetic manipulation of Brachyspira, which has 

hindered the understanding of the pathobiology of this organism. Brachyspira strains 

with specific mutations in genes, such as those coding for haemolysins (ter Huurne et 

al., 1992), flagellar proteins (Rosey et al., 1995) and NADH oxidase (Stanton et al., 

1999) have been created by cloning the gene into Escherichia coli, inactivating the gene 

by insertion of a kanamycin resistance gene and then introducing the construct into 

Brachyspira cells by electroporation. Mutant Brachyspira cells, in which the knockout 

mutation had undergone allelic exchange with the wild type gene, can be selected by 
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plating on media containing kanamycin. Bacteriophage-like particles, smaller than but 

morphologically similar to the lambda (λ) phage of E. coli were initially described in B. 

hyodysenteriae and B. innocens (Humphrey et al., 1995) then in B. pilosicoli and B. 

intermedia (Motro et al., 2009; Stanton et al., 2003) and has been found in all available 

Brachyspira genomes alongside unique bacteriophages. This phage, named virus of S. 

hyodysenteriae (VSH)-1 can package random, 7.5 Kb linear DNA fragments and act an 

avirulent, gene transfer agent (GTA). VSH-1 can transfer of chloramphenicol resistance 

between B. hyodysenteriae strains (Humphrey et al., 1997). The VSH-1 genome is 

divided into clusters of 16.3 and 3.6 Kb and contains at least six genes that do not 

function in its production (Stanton et al., 2009). The use of phages for gene 

manipulation to improve understanding of Brachyspira remains to be explored. 

 

Table 1.6 General genome feature comparison of the available Brachyspira genome 

sequences including the number of open reading frames (ORFs) predicted from the 

comparative genomic study (Hafstrom et al., 2011). 
Feature B. hyodysenteriae 

WA1b 

B. intermedia 

PWS/ATa 

B. murdochii 

56-150Tc 

B. pilosicoli 

95/1000 

Size (bp) 3,000,694 3304788 3241804 2586443 

Coding region (%) 86.7 85.0 85.9 88.6 

G+C content (%) 27.1 27.2 27.6 27.9 

Total predicted ORFs 2613 2870 2809 2299 

     with function prediction 1755 1854 1993 1615 

     conserved/hypothetical  858 1016 816 684 

     ribosomal (r)RNA genes 3 3 3 3 

     transfer (t)RNA genes 34 33 34 33 
a B. hyodysenteriae WA1 has a 35940 bp plasmid; coding region 91.2%; G+C content, 22.4%; 29 

ORFs with predicted function and 2 conserved/hypothetical ORFs. 
b B. intermedia PWS/AT has a 3260 bp plasmid; coding region, 53.0%; G+C content, 21.0%; 3 

conserved/hypothetical ORFs. 
c B. murdochii 56-150T was also reported to have a 3.2 Kb plasmid with approximately 96% identity 

at the nucleotide sequence level to the B. intermedia PWS/AT plasmid. 

 

1.2.4 Host range of Brachyspira 

The presence of spirochaetes in the human GI tract has been known since the 

1900’s, although they were originally regarded as harmless commensals (Rotterdam, 

1997). Following the identification of large numbers of spirochaetes in the stools of 

human patients with dysentery-like diseases, it became apparent that some intestinal 
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spirochaetes were pathogenic (Parr, 1923). Human colonic and rectal mucosae can be 

colonised by dense arrays of spirochaetes, producing HIS (Barrett, 1997; Harland and 

Lee, 1967; Jensen et al., 2001). B. aalborgi, B. pilosicoli and as yet uncharacterised 

species have been associated with HIS (Brooke et al., 2003b; Hovind-Hougen et al., 

1982). HIS is more prevalent among humans living in poor conditions and 

immunocompromised patients and has been associated with intestinal disorders but also 

observed in healthy humans (Brooke et al., 2006; Mikosza and Hampson, 2001).  

Other than causing disease in humans, intestinal spirochaetosis poses significant 

problems to the porcine and poultry industries. Koch's postulates have been fulfilled for 

B. pilosicoli using gnotobiotic (Neef et al., 1994) and conventional swine (Duhamel, 

1996; Taylor et al., 1980; Trott et al., 1996a). The swine challenged with porcine or 

human B. pilosicoli exhibited diarrhoea, growth reduction and spirochaetes attached to 

apical surfaces of colonic enterocytes. Experimental challenge of hens with pathogenic 

Brachyspira species have also resulted in clinical disease (Dwars et al., 1993; Hampson 

and McLaren, 1999; Jamshidi and Hampson, 2003). Additionally, the inoculation of 

chicks with porcine and human B. pilosicoli led to the attachment of the spirochaetes to 

the caecal epithelium and invasion of the caecal wall (Dwars et al., 1992a; Muniappa et 

al., 1996; Trott et al., 1995). Alongside others, these studies fulfilled Koch’s postulates, 

confirming the pathogenicity of certain Brachyspira species to poultry. 

B. hyodysenteriae and B. pilosicoli are the agents of the disease in swine; B. 

hyodysenteriae infection is associated with swine dysentery and B. pilosicoli infection 

results in PIS (Hampson and Duhamel, 2006; Hampson et al., 2006a). Swine dysentery 

is a severe mucohaemorrhagic diarrhoeal disease that affects growing and finishing pigs 

in all major pig producing countries, caused by the colonisation of the caeca and colo-

recta by B. hyodysenteriae. Clinical symptoms include mucoid diarrhoea containing 

blood, reduced growth, poor feed conversion, and increased mortality. PIS often affects 

pigs a few weeks after weaning and causes mucoid diarrhoea often containing blood, 

unthriftiness, poor feed conversion and reduced growth rates (Hampson and Duhamel, 

2006). B. innocens and B. murdochii are considered as non-pathogenic in swine, 

however the enteropathogenic potential of B. intermedia is undetermined (Hampson et 

al., 2006a). The agents of AIS are B. intermedia, B. pilosicoli and less commonly, B. 

alvinipulli (Stephens and Hampson, 2001; Swayne, 1997) (as discussed in section 1.1).  

The potential for zoonotic transmission of Brachyspira has been investigated and 

described in a number of studies (Hampson et al., 2006b). Some species, including B. 

pilosicoli may infect across species barriers, since a B. pilosicoli strain recovered from a 
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human immunodeficiency virus (HIV)-infected patient with diarrhoea could infect adult 

hens, causing chronic diarrhoea (Jamshidi and Hampson, 2003). Moreover, Brachyspira 

have been isolated from dogs (Trott et al., 1997b), non-human primates (Munshi et al., 

2003), rodents including rats and mice (McLaren et al., 1997; Smith, 2005; Trott et al., 

1996c) and species detailed in Table 1.3. Feral birds, rodents and domestic animals can 

harbour Brachyspira and hence, are potential sources for transmission. 

 

1.2.5 Virulence of Brachyspira 

 Brachyspira exert their pathogenic effect within close proximity of mucus in the 

lumen and crypts of the caeca and/or colon, but virulence mechanisms are poorly 

understood. Brachyspira-associated diseases are multifactorial and the aetiological 

agent is influenced by factors such as host immunity, diet and the intestinal microbiota.  

 

1.2.5.1 Motility and chemotaxis  

 Chemotaxis and motility are important virulence factors for Brachyspira, 

facilitating penetration of the mucus and association to the intestinal mucosa (Kennedy 

et al., 1988). B. hyodysenteriae are highly motile in viscous media and exhibit 

chemoattraction towards mucosal glycoproteins (Kennedy and Yancey, 1996). The 

chemical components of mucin, fucose and L-serine, are potent chemo-attractants for 

Brachyspira (Milner and Sellwood, 1994; Naresh and Hampson, 2010). A homologue 

of the mglB gene, which mediates chemotaxis towards mucin was identified in B. 

pilosicoli (Zhang et al., 2000). Flagella enable high motility within mucus (Kennedy et 

al., 1988) and disruption of flagella genes reduces colonisation and virulence of 

Brachyspira in challenged pigs and mice (Kennedy et al., 1997; Rosey et al., 1996). 

 

1.2.5.2 Adherence and invasion 

 Pathogenesis of AIS and PIS caused by B. pilosicoli is poorly understood, but in 

these infections, the spirochaetes attach to the apical cell membrane of enterocytes in 

large numbers forming a “false brush border” and also invade crypts, epithelium and the 

lamina propria (Hampson and Duhamel, 2006). Only B. aalborgi and B. pilosicoli 

adhere to healthy epithelial cells, whereas other species adhere and enter the cytoplasm 

of disrupted epithelial cells (Kennedy and Strafuss, 1976; Teige et al., 1981). In natural 

and experimental B. pilosicoli infections in pigs, chicken and mice, one cell end of the 

spirochaetes may invaginate into mature columnar cells (Jensen et al., 2000; Sacco et 

al., 1997; Trott et al., 1995). Upon end-on attachment, the membrane remains intact, but 
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the attachment disrupts microvilli, interfering with fluid and nutrient absorption (Gad et 

al., 1977; Muniappa et al., 1998). Attachment and invasion determinants of Yersinia, 

Shigella and E. coli were not identified in B. pilosicoli (Hartland et al., 1998) and genes 

encoding known adhesins or toxins were not found in Brachyspira genomes. 

 

1.2.5.3 Haemolysis 

Haemolysin production is considered a virulence factor particularly in the strongly 

β-haemolytic B. hyodysenteriae. Other Brachyspira species are weakly β-haemolytic 

and the haemolysin is cytotoxic to a number of cell lines and is likely to contribute to 

lesion formation (Lysons et al., 1991; Muir et al., 1992). Cholesterol and phospholipids 

are essential growth factors and haemolysins are employed to obtain these and other 

nutrients from host cells. Extracted haemolysins caused lysis of erythrocytes, cytotoxic 

effects in eukaryotic cells and epithelial lesions in a murine model (Hutto and 

Wannemuehler, 1999). The β-haemolysin gene hlyA was identified in B. 

hyodysenteriae, but also in B. pilosicoli (Hsu et al., 2001; Zuerner and Stanton, 1994).  

 

1.2.5.4 NADH oxidase activity 

 As anaerobes, the ability of Brachyspira to colonise the colonic mucosa amongst 

respiring tissues is enhanced by NADH oxidase activity, protecting from oxygen 

toxicity (Stanton et al., 1999). All species contain NADH oxidase activity (Stanton et 

al., 1995). Mutation of the nox gene reduces virulence (Stanton and Jensen, 1993). 

 

1.2.5.5 Lipooligosaccharides 

Lipooligosaccharide (LOS) in the cell wall is associated with virulence. B. 

hyodysenteriae possesses rough LOS, which unlike smooth LOS, lacks O-side chains 

(Greer and Wannemuehler, 1989). Non-pathogenic B. innocens lacks a high molecular 

weight LOS (Joens, 1997). LOS is likely to be responsible for mucosal inflammation, as 

demonstrated in a mouse model (Halter and Joens, 1988; Nuessen et al., 1983).  

   

1.2.5.6 Iron import system 

B. hyodysenteriae possess an iron import system, to sequester iron from the host 

(Dugourd et al., 1999). This active transport system for iron import is common amongst 

Gram-negative bacteria and pathogens such as Neisseria (Adhikari et al., 1996). Genes 

for components for a secretory (Sec) pathway are present in Brachyspira, although no 

genes for toxin injection have been detected (Bellgard et al., 2009).  
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1.3 Probiotics 

 
1.3.1 Definitions of probiotic, prebiotic and synbiotic 

The term ‘probiotic’ (etymology Gr. pro “for” and biotic “life”) was coined by in 

1965 to describe secreted compounds from one microorganism that are able to stimulate 

the growth of another (Lilly and Stillwell, 1965). The term was also applied to the 

description of tissue extracts that promote microbial growth (Sperti, 1971). In 1974, the 

term was applied in the sense to which it is currently understood, defining it as 

“organisms and substances which contribute to intestinal microbial balance” (Parker, 

1974). The definition was amended in 1989 to specify that a probiotic is “a live 

microbial feed supplement, which beneficially affects the host animal by improving its 

microbial balance” (Fuller, 1989). This is arguably the most widely accepted and cited 

definition to date. More recently, the definition was updated to “a preparation of viable 

microorganisms, which is consumed by humans or other animals with the aim of 

inducing beneficial effects by qualitatively or quantitatively influencing their gut 

microbiota and/or modifying their immune status” (Fuller, 2004). 

The term ‘prebiotic’ (etymology Gr. pre “before” and biotic “life”) was introduced 

in 1995 as “non-digestible food ingredients that beneficially affect the host by 

selectively promoting growth and/or activity of one or a limited number of health-

promoting bacteria indigenous to the GI tract” (Gibson and Roberfroid, 1995). The term 

‘synbiotic’ (etymology Gr. pre “together with” and biotic “life”) was also proposed for 

the simultaneous application of prebiotics and probiotics to humans or other animals, 

whereby the former selectively stimulates the latter (Gibson and Roberfroid, 1995). 

 

1.3.2 History of probiotics 

The concept of probiotics and cultured dairy products that presumably contained 

live microorganisms for consumption dates back to a Persian version of the Old 

Testament (Genesis 18:8) that states “Abraham owed his longevity to the consumption 

of sour milk” (Schrezenmeir and de Vrese, 2001). Additionally in 76 BC, the Roman 

historian Plinius advocated the administration of fermented milk products to treat 

symptoms of gastroenteritis, including diarrhoea (Bottazzi, 1983). Interestingly, the 

therapeutic use of these products existed prior to the first description of bacteria (Shortt, 

1999). A fundamental breakthrough placing probiotics in the context of their current 

understanding, were observations published in 1907 by Eli Metchnikoff, who is widely 

accepted as the developer of the concept of probiotics. The seminal publication 
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attributed the regular consumption of fermented yoghurt containing Lactobacillus 

species to the extended life span of Bulgarian peasants (Metchnikoff, 1907). Shortly 

prior to Metchnikoff’s publication, Tissier demonstrated that the gut flora of breast fed 

infants consisted predominantly of Bifidobacterium species and proposed a need for 

specific bacteria in maintaining health (Tissier, 1900) and suggested administering 

bifidobacteria to infants suffering from diarrhoea, claiming that they supersede the 

putrefactive bacteria (Tissier, 1906). In 1916, Nissle demonstrated the use of non-lactic 

acid bacteria, including E. coli, as agents to “fight” against pathogens (Nissle, 1916). 

Encouraged by the work of Metchnikoff and subsequent research on probiotics, in 

1919, Carasso established the Spanish company DanoneTM and promoted the beneficial 

effects of yoghurts (Shortt, 1999). In the 1930’s, Shirota founded the Japanese 

company, YakultTM, producing a fermented yoghurt containing L. casei strain Shirota, 

capable of surviving transit through the human GI tract. By the 1950’s, the use of live 

microbial food supplements was established in food and medical industries and interest 

focused on their use to re-establish natural intestinal microbiota following antimicrobial 

treatment (Cheplin and Rettger, 1922; Rettger et al., 1936; Salminen et al., 1998).  

 

1.3.2.1 History of probiotic use in humans 

In humans, probiotics have been used clinically to treat diseases such as C. 

difficile-associated disease (CDAD), inflammatory bowel disease (IBD) and 

inflammatory bowel syndrome (IBS) (Nomoto, 2005). Moreover, probiotics have been 

administered as a functional foods based on the notion that their consumption may 

reduce constipation, gastritis, hypertension, lactose intolerance and serum cholesterol 

(Andersson et al., 2001; Harish and Varghese, 2006). The health benefits conferred by 

probiotics have been extensively reviewed (Andersson et al., 2001; Floch and 

Montrose, 2005; Harish and Varghese, 2006; Isolauri, 2001; Montrose and Floch, 

2005), however the reviews unanimously conclude that the majority of clinical trials for 

probiotics were poorly designed with too few subjects to draw significant conclusions. 

 

1.3.2.2 History of probiotic use in livestock 

The application of probiotics in livestock is based on the principle that healthy 

intestinal microbiota confers resistance to disease (Fuller, 1992). In intensive farming, it 

is common practice to remove offspring into isolated, clean environments, which limits 

the contact with the mother and limits the acquisition of passive immunity and the 

development of a normal healthy intestinal microbiota, rendering the animals more 
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susceptible to infections. Moreover, the offspring are subjected to a multitude of 

stresses such as transport, nutrition and temperature fluctuations, which may induce 

microbiota imbalance (Burkholder et al., 2008; Tannock and Savage, 1974). Nutritional 

stresses, such as a change in feed, can increase susceptibility to disease. Probiotics are 

used to restore and beneficially alter the microbiota present in young, stressed or 

antimicrobial-treated animals. Natural microbiota plays a vital role in resistance to 

enteric disease with health benefits including improved digestion, feed conversion and 

growth, resistance to infection, reduced mortality, increased egg production and quality 

(in poultry) and increased milk yield (in cattle) (Nurmi and Rantala, 1973). Although 

effective in removing target microorganisms causing infection, antimicrobials are 

associated with side effects due to alterations of the natural microbiota, such as 

antimicrobial-associated diarrhoea. The use of probiotics with antimicrobials is effective 

in preventing infection whilst restoring the microbiota (Surawicz, 2008). 

The range of bacteria selected for use as probiotics in livestock varies greatly and 

they are typically developed for use in monogastric animals, including poultry. Their 

use in ruminants is more complicated and probiotics are selected and targeted to 

alleviate acidosis, alter the feed conversion ratio and/or reduce the incidence of disease 

(Krehbiel et al., 2003). In addition to bacterial probiotics, yeasts and fungi have 

demonstrated particular efficacy in ruminants (Wallace, 1994). The commercially 

available veterinary probiotics, detailed in Table 1.7, are deemed safe for use in the 

target animals by the Scientific Committee for Animal Nutrition (SCAN). SCAN 

recognises that these probiotics pose no risk to the environment or to individuals 

handling or consuming products derived from animals that consumed the probiotics. 

Recently, interest in probiotics in the veterinary, medical and food industry has 

been enhanced due to the requirement for alternative therapies to antimicrobials, 

following the ban on subtherapeutic antimicrobial usage in Europe, the potential ban in 

the United States and the emerging resistance to current antimicrobials.  

 

1.3.3 Design and selection of probiotics 

 Criteria for the selection of probiotics can be divided into four categories 

(Klaenhammer and Kullen, 1999). Appropriateness criteria ensure the bacteria are 

generally regarded as safe (GRAS) and of host origin. Technological suitability criteria 

determine the practicalities of production and storage. Competitiveness criteria consider 

survival within the host and the ability to withstand environmental stresses. 

Performance and functionality criteria evaluate the beneficial effects on the host.  



Chapter 1  Introduction 

 59

 

Table 1.7 Commercially available veterinary probiotics deemed safe by the Scientific 

Committee for Animal Nutrition (SCAN) in the European Union (EU) (SCAN, 2003b). 

Product name Probiotic organism Culture 

collection 

Target organism 

Streptococcus infantarius CNCM I-841 Adjulact 2000®  

Lactobacillus plantarum CNCM I-840 

Calves 

Bactocell® Pediococcus acidilactici CNCM MA 18/5 Broilers 

Biacton® Lactobacillus farciminis CNCM MA 67/4 Piglets 

Bacillus licheniformis DSM 5749 Piglets / pigs for fattening Bioplus 2B® 

Bacillus subtilis DSM 5750 Broilers, calves and piglets / 

pigs for fattening  

Biosprint® Saccharomyces cerevisiae BCCM / MUCL 

39885 

Beef cattle and piglets / pigs 

for fattening 

Enterococcus faecium DSM 7134 Bonvital® 

Lactobacillus rhamnosus DSM 7133 

Calves and pigs for fattening  

Biosaf SC 47® Saccharomyces cerevisiae NCYC Sc 47 Beef / dairy cattle and piglets 

/ pigs 

Cylactin LBC® Enterococcus faecium NCIMB 10415 Broilers and calves and 

piglets / pigs for fattening 

Fecinor plus® Enterococcus faecium CECT 4515 Calves / beef cattle and 

piglets / pigs for fattening 

Lactobacillus casei NCIMB 30096 Gardion® 

Enterococcus faecium NCIMB 30098 

Calves 

Kluyten® Kluyveromyces marxiamus MUCL 39434 Dairy cattle 

Lactiferm® Enterococcus faecium NCIMB 11181 Calves and piglets 

L. acidophilus 

D2/CSL® 

Lactobacillus acidophilus CECT 4529 Broilers / laying hens 

Levucell SB20®  Saccharomyces cerevisiae CNCM I-1079 Piglets / pigs 

Levucell SC20® Saccharomyces cerevisiae CNCM I-1077 Beef / dairy cattle 

Microferm® Enterococcus faecium DSM 5464 Broilers, calves and piglets 

Mirimil-Biomin® Enterococcus faecium DSM 3520 Calves 

Oralin® Enterococcus faecium NCIMB 10415 Broilers, calves and pigs for 

fattening 

Primver Pro® Enterococcus mundtii CNCM MA 27/4 Lambs 

Enterococcus faecium DSM 4788 Probios PDFM 

Granular®  Enterococcus faecium DSM 4789 

Broilers 

Yea-Sacc® Saccharomyces cerevisiae CBS 493 94 Calves / beef / dairy cattle 
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In correlation with guidelines proposed by SCAN, the European Union (EU) 

devised regulations for the use of probiotics as animal feed supplements (von Wright, 

2005). Regulation 1831/2003 of the parliament and council of the EU regulates the use 

of animal feed additives, whilst council directive 87/153/EEC, which stipulates the 

assessment guidelines for the safety of feed additives. This directive states that 

probiotics must not produce toxins, virulence factors and antimicrobial substances of 

clinical significance or carry transmissible antimicrobial resistance determinants. 

There is increasing evidence for the transferability of antimicrobial resistance 

genes between resistant and sensitive species of probiotic species, such as enterococci 

and lactobacilli within the GI tract of humans and animals (Ashraf and Shah, 2011; 

Egervarn et al., 2010; Lester et al., 2006). Resistance can occur naturally within 

bacteria, for example, some lactobacilli are intrinsically resistant to vancomycin by 

possessing a different termini on peptidoglycan precursors, to which vancomycin cannot 

bind and prevent cross-linking of peptidoglycan in the cell wall (Roper et al., 2000). 

Acquired resistance is mediated by mobile genetic elements (MGE), such as plasmids 

and transposons and there is concern over the risk of such transfer from probiotic 

bacteria to pathogens. Lactobacillus species may be an environmental reservoir for 

antimicrobial resistance genes in broilers (Cauwerts et al., 2006; Danielsen, 2002), 

driving a requirement to monitor the carriage of antimicrobial resistance genes. When 

selecting probiotic candidates, it is useful to refer to the recommended MICs of 

clinically important antimicrobials in potential probiotic species (SCAN, 2003a). 

Bacteria that express mobile or acquired resistance genes are not suitable as probiotics. 

Competitiveness criteria tend to focus on the ability of the probiotic candidate to 

withstand environmental stresses, typically acid and bile, but also heat and desiccation 

to reflect manufacture and storage. Assays to determine the tolerance of probiotic 

candidates to gastric acid and biles are commonly performed (Barbosa et al., 2005; 

Hyronimus et al., 2000; Jin et al., 1998; Wang et al., 2012). In vitro models to simulate 

porcine gastric fluid have proved effective in selection (de Angelis et al., 2006). 

It is unclear as to whether fulfilling performance and functionality criteria will 

result in the selection of an efficacious probiotic since the mechanisms underlying the 

functional roles of probiotics remain to be elucidated. Beneficial probiotic effects may 

include the exclusion of pathogens, immunomodulation, reduction of the severity of 

diarrhoea, maintenance of mucosal integrity, improvement of host serum cholesterol 

and blood pressure, prevention of vaginitis and reduction of mutagenic activity 

(Klaenhammer and Kullen, 1999). Screening for in vitro adherence of probiotic 
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candidates to epithelial cells has been used as a selection criterion (Duary et al., 2011; 

Haeri et al., 2012), but whether such screening provides adequate evidence for the 

probiotic candidate to persist in the GI tract in vivo is unknown. The ability of probiotic 

candidates to exhibit antimicrobial activity or antagonism against pathogens is often 

screened (de Keersmaecker et al., 2006; Dunne et al., 2001). As the understanding of 

the modes of action of probiotics improves, the selection criteria for competitiveness, 

performance and functionality will become more appropriate and definitive.  

 

1.3.4 The use of probiotics in poultry 

The first probiotic preparation developed for poultry used crude caecal extracts 

from adult birds and was administered directly into the crop of chicks by oral gavage, 

conferring increased resistance to Salmonella infection (Nurmi and Rantala, 1973; 

Rantala and Nurmi, 1973). The studies introduced of the concept of competitive 

exclusion (CE) to describe the exclusion of pathogens from an ecological niche by out-

competition by probiotics. To date, studies have demonstrated CE by probiotics to 

protect hosts against pathogens including E. coli, Campylobacter, Salmonella and 

Yersinia (Soerjadi-Liem et al., 1984; Soerjadi et al., 1982a; Weinack et al., 1982).  

Poultry probiotics can be separated into defined and undefined products. The 

microorganisms that comprise the product have been identified in defined products, 

such as Protexin Pro-soluble®. However, undefined products such as Aviguard® and 

BROILACT®, which consist of bacterial cultures that are partially or completely 

undefined have demonstrated the most effective CE of pathogens, such as Salmonella, 

to date (Nakamura et al., 2002; Nuotio et al., 1992; Schneitz et al., 1992). Many of the 

probiotic products were derived from caecal contents, although single strain probiotics, 

particularly of the Lactobacillus genera can control pathogens such as E. coli and 

Salmonella (Higgins et al., 2007; La Ragione et al., 2004; Vicente et al., 2008). 

Bacteriocin-producing strains also reduced the numbers of viable pathogens in in vivo 

studies (Corr et al., 2007). Lactobacilli and bifidobacteria are the most extensively used 

probiotics in humans, whereas bacilli, enterococci and yeast are widely used in livestock 

(Simon et al., 2001). Recently, research on the use of Lactobacillus as probiotics in 

poultry has increased (Jin et al., 2000; Kalavathy et al., 2003; La Ragione et al., 2004).  

Studies of the use of probiotics in poultry have focused on CE against zoonoses to 

which poultry are a major reservoir including Campylobacter, Clostridium, E. coli and 

Salmonella. L. johnsonii can mitigate colonisation by Clostridium and E. coli in specific 

pathogen-free (SPF) chicks (La Ragione et al., 2004). Bacillus spores are effective in 
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the CE of Clostridium from day-old chicks, however a delayed effect suggests a need 

for the spores to germinate in the GI tract or immunomodulation to occur (Cartman et 

al., 2008). The protective effect of undefined CE preparations and caecal contents 

against Campylobacter, E. coli and Salmonella in chicks and chickens is well 

documented (Stavric et al., 1993; Weinack et al., 1981, 1982). However, the caecal 

contents required to protect against Campylobacter differs from that required against 

Salmonella (Fuller, 1992; Zhang et al., 2007b) and studies now focus on defining caecal 

preparations active against Campylobacter and Salmonella (Bhaskaran et al., 2011). 

Defined probiotic mixtures containing Citrobacter, Klebsiella and E. coli are effective 

in the CE of Campylobacter in chicks (Schoeni and Wong, 1994; Timmerman et al., 

2004). Treatment with undefined probiotics presents concerns over the potential of 

containing human or animal pathogens and regulatory bodies are becoming stricter with 

their policy and requirement for defined probiotics. The future of probiotics in poultry 

requires research of defined probiotics that exclude, preferably multiple, pathogens. 

 

1.3.5 The use of Lactobacillus species as probiotics in poultry 

The Lactobacillus (etymology Gr. lac “milk” and bacillum “small rod”) genus is 

in the family Lactobacillaceae, order Lactobacillales and class Bacilli, which belong to 

the phylum Firmicutes (Hammes and Hertel, 2009). Lactobacilli are Gram-positive, 

usually non-motile, fermentative, facultative anaerobes with varying morphology from 

long, slender, sometimes bent rods to short, often coryneform coccobacilli. 

In poultry, lactobacilli exist as commensals, commonly colonising the GI tract and 

lower reproductive tract. Dietary supplementation with lactobacilli, including L. reuteri 

and L. salivarius, in poultry is associated with CE of pathogens including 

Campylobacter (Ghareeb et al., 2012; Stern et al., 2001), Clostridium (Decroos et al., 

2004; Kizerwetter-Swida and Binek, 2009), E. coli (Edens et al., 1997) and Salmonella 

(Higgins et al., 2008; Pascual et al., 1999). Lactobacilli have been implicated in 

immunomodulation, whereby oral treatment with lactobacilli modulate systemic 

antibody- and cell-mediated immune responses, induce cytokine production and 

enhance phagocytic activity of cells in the caecum and ileum to protect against enteric 

pathogens (Ben Salah et al., 2012; Dalloul et al., 2003; Koenen et al., 2004). In poultry, 

gut-associated lymphoid tissue (GALT) plays an important role in protecting against 

viral, bacterial and toxic matter due to an absence of peripheral lymph nodes. The use of 

lactobacilli in poultry can improve body weight gain and feed conversion ratios and 

confer a hypolipidaemic effect (Capcarova et al., 2010; Kalavathy et al., 2003; Zulkifli 
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et al., 2000) and can enrich beneficial lactobacilli, suppress non-beneficial bacterial 

groups and maintain a natural stability of indigenous microbiota (Lan et al., 2004; 

Nakphaichit et al., 2011). The growth-promoting effects of certain probiotics have been 

compared to antimicrobial therapies (Cavazzoni et al., 1998; Mountzouris et al., 2007). 

 

1.3.6 Dose and administration of probiotics to poultry 

The dose of probiotics varies between commercial products based on the strength 

of probiotic action and industrial production limitations (Carita, 1992). Recommended 

doses usually range 108 – 1010 CFU/kg feed. Incubator hatched chicks are particularly 

amenable to probiotic intervention since they are deprived of protective microbiota that 

they would naturally acquire from the hen and environment. Probiotics are likely to be 

most effective when administered to newly hatched chicks, before the caecal microbiota 

stabilises at approximately 4 – 6 weeks of age (Mead, 1989). 

The first probiotic preparation for poultry was administered by oral gavage 

(Nurmi and Rantala, 1973), which, although useful in trials when precise control of the 

dose is required, is impractical for poultry farmers. Subsequently, administration via 

drinking water was introduced (Rantala, 1974), which has been as effective as oral 

gavage (Seuna et al., 1978; Wierup et al., 1988), although chicks may refuse to drink 

water containing the probiotic and the viability of anaerobes rapidly declines (Seuna et 

al., 1978). Aerosol (Pivnick and Nurmi, 1982) and spray applications (Goren et al., 

1984) have been developed and, particularly alongside administration in drinking water, 

have been effective in the CE of Salmonella and E. coli (Schneitz et al., 1990; 

Wolfenden et al., 2007). Probiotics rarely produce optimal results when administered in 

pelleted feed, which may be due to the partial or total destruction of the bacteria by the 

pelleting process. Bacillus species that sporulate can survive high temperatures and are 

ideal candidates for administration in feed (Cartman et al., 2008; La Ragione et al., 

2001). Other methods for administration to livestock include capsules, paste and powder 

(Fuller, 1992). The method of administration may depend on the aim of the use of the 

probiotic, the frequency of administration and the animal to which it is administered. 

 

1.3.7 Mechanisms of action of probiotics 

 

1.3.7.1 Competitive exclusion 

CE implies the prevention of entry of an entity into a certain environment by 

occupying the available space. This may occur by the competing entity being better 
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suited to establish and maintain itself in the environment or producing a product toxic to 

its competitor. The beneficial effects of consuming fermented yoghurt were first 

attributed to the colonisation of the GI tract by L. acidophilus in fermented yoghurt 

(Rettger and Chaplin, 1921). It was later demonstrated that natural resistance to 

infection in chickens develops with the establishment of mature intestinal microbiota 

(Milner and Shaffer, 1952) and that poultry caecal cultures inhibit the growth of 

pathogens in vitro (Royal and Mutimer, 1972), producing a similar effect to 

antimicrobials (Tortuero, 1973). The term “competitive exclusion” was introduced 

following studies that orally inoculated chicks with intestinal content from adult birds to 

increase resistance to Salmonella infection (Nurmi and Rantala, 1973). CE against a 

number of pathogens including Campylobacter, Clostridium, E. coli and Salmonella 

was subsequently demonstrated. Undefined preparations reduced the prevalence of 

Salmonella in experimentally challenged chicks (Goren et al., 1984), however results 

are variable under field conditions (Stavric and d’Aoust, 1993). Defined cultures have 

had less significant results under experimental conditions, with potency decreasing 

during storage and repeated laboratory manipulation (Mead et al., 1989; Stavric et al., 

1991). Defined cultures can act as CE agents in poultry, adhering to intestinal tissues 

and mitigating the colonisation of pathogens (Fuller, 1977; Jin et al., 1996b). 

Lactobacilli compete with pathogens for receptor sites of adherence on the intestinal 

surface (Sissons, 1989). The attachment of probiotic bacteria to host epithelial cells is 

well documented and their close association may affect intracellular activity and cell 

metabolism, suggesting a potential for cross-talk between the intestinal microbiota and 

epithelial cells (Hooper et al., 2002; Xu and Gordon, 2003). Adherence via the action of 

proteins or glycoproteins termed lectins, is essential for proliferation and reducing the 

rate of removal of the probiotic from the GI tract due to the peristaltic movement of 

digesta. In chicks, maximal colonisation by intestinal microbiota occurs at 48 – 72 hours 

after treatment (Soerjadi et al., 1982b). Early colonisation by a dense mat of microbiota 

is important to protect against infection since Salmonella colonise the GI tract of 

chickens in the absence of microbiota, supporting the notion of CE by direct 

competition for receptor binding sites (Conway et al., 1987; Stavric, 1987). 

CE is considered to result also from competition for nutrients leading to the out-

competition of pathogens by probiotics and indigenous microbiota. For example, the 

consumption of monosaccharides by probiotics may reduce the growth of clostridia, 

which rely on monosaccharides (Wilson and Perini, 1988). The complexity of nutrient 

utilisation in the GI tract makes it difficult to define the specifics of this mechanism. 
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1.3.7.2 Antagonistic activity 

Probiotics can antagonise pathogens through the production of antimicrobial 

substances. Both homo- and heterofermentative lactobacilli produce organic acids, 

which exert an antimicrobial effect on pathogens. Specifically, formate, proprionate and 

butyrate can modulate bacterial pathogenicity (Gantois et al., 2006; van Immerseel et 

al., 2006) and also mediate the pH of the GI tract, which further exerts a strong 

antimicrobial effect (Skrivanova and Marounek, 2007). The pH affects the amount of 

undissociated acid available to diffuse across the cell membrane and dissociate, creating 

a high proton concentration and depleting the proton motive force and intracellular 

ATP, which causes membrane permeabilisation and sensitises the cell to bacteriocins, 

detergents and bile (Coconnier-Polter et al., 2005; de Keersmaecker et al., 2006). Much 

of the antimicrobial activity of probiotics is attributed to the production of lactic acid, 

which acts as a membrane permeabiliser by lowering the internal pH of susceptible 

bacteria, causing sublethal damage (Fayol-Messaoudi et al., 2005; Makras et al., 2006). 

Bacteriocins have a biologically active protein moiety with bactericidal action 

(Tagg et al., 1976). Lactobacilli produce numerous antagonistic substances, including 

many characterized bacteriocins (Joerger and Klaenhammer, 1986; Upreti and Hinsdill, 

1975). One class of bacteriocins is lantibiotics, which are bactericidal and form pores in 

the cell membrane, causing non-specific leakage or inhibit peptidoglycan biosynthesis 

and cell wall formation (Brotz and Sahl, 2000). Another class of bacteriocins are the 

bacteriolysins, which hydrolyse the cell wall of sensitive bacteria, often via 

glycylglycine endopeptidase activity, which cleaves pentaglycine cross-bridges (Wu et 

al., 2003). 

  Reuterin or β-hydroxypropionaldehyde is a broad spectrum antimicrobial 

produced by some L. reuteri strains active against a range of pathogens and across a 

wide pH range (Rodriguez et al., 2003). It is produced by the activity of coenzyme B12-

dependant glycerol dehydratase in the presence of glycerol and anaerobic conditions. 

Moreover, reutericyclin is a tetrameric acid produced by L. reuteri that exhibits 

antimicrobial activity by dissipating the proton motive force (Ganzle, 2004). 

 Some lactobacilli produce hydrogen peroxide in presence of oxygen (Martin et al., 

2008a; Strus et al., 2004). Hydrogen peroxide-producing lactobacilli have shown strong 

antimicrobial activity against a range of pathogens, including Salmonella (Eschenbach 

et al., 1989). The antimicrobial effect is likely to result from the formation of a highly 

reactive oxygen species (hydroxyl group) from its dissociation (Halliwell, 1978).  

 

http://www.google.co.uk/search?hl=en&client=firefox-a&hs=uIS&rls=org.mozilla:en-GB:official&sa=X&ei=pVMtULS7BKqj0QWxhYG4DA&ved=0CEoQvwUoAQ&q=permeabilization&spell=1
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1.3.7.3 Digestion and gastrointestinal health 
Supplementing the diet with probiotics may aid in the metabolism of dietary 

nutrients. The addition lactobacilli in maize, barely and/or soybean diets of poultry can 

stimulate appetite and increase fat and mineral retention (Nahanshon et al., 1994, 1996). 

Lactobacilli produce digestive enzymes that may enrich the concentration of intestinal 

enzymes and specifically, lactobacilli from the GI tract of chickens have exhibited 

amylase, protease, and lipase activity (Jin et al., 1996a; Szylit et al., 1980). A probiotic 

mixture containing Lactobacillus species significantly increased carbohydrase activity 

in the mucosal tissue of pigs (Collington et al., 1990). In chickens fed L. acidophilus or 

yoghurt, the enzymic activities of nitroreductase, azoreductase and β-glucuronidase 

decreased (Cole et al., 1984; Coloe et al., 1984; Goldin and Gorbach, 1984). 

L. acidophilus and B. subtilis reduce the concentration of ammonia in the litter of 

poultry and improve the condition and growth of animals as ammonia damages the cell 

surface and increases susceptibility to infection (Chiang and Hsiem, 1995). Probiotics, 

including lactobacilli act as potent inducers of mucin secretion, which is vital in 

clearing the contents of the intestinal lumen and preventing the translocation of bacteria 

across the intestinal epithelium (Mack et al., 2003). Secreted mucins act as barriers to 

enteropathogens, although some such as Salmonella bind and utilise mucins (Vimal et 

al., 2000) and thus, the stimulation of mucins may not be ideal for their antagonisation. 

Probiotics can produce substances, perhaps secondary metabolites, that neutralise 

enterotoxins, such as a metabolite produced by L. bulgaricus that neutralises 

enterotoxins released from coli-forms (Schwab et al., 1980; Stuart et al., 1978).  

 

1.3.7.4 Immunomodulation 

Immunity resulting from exposure to a variety of antigens, including pathogens, is 

essential in the defence of young animals against enteric infections (Perdigon et al., 

1995). The administration of probiotics manipulates the gut microbiota and influences 

the immune response, but the mechanisms that facilitate immunomodulation are unclear 

(McCracken and Gaskins, 1999). Probiotics stimulate different immune cells to produce 

cytokines to regulate the immune response (Christensen et al., 2002; Lammers et al., 

2003). Lactobacilli can induce cytokines including γ-interferon, interleukins (IL) and 

tumour necrosis factor (TNF)-α (Blum et al., 2002; Rakoff-Nahoum et al., 2004; 

Schultz et al., 2003). The induction of IL-4 and IL-10 aids in the development of B cells 

and immunoglobulin (Ig) isotype switching required for the antibody production. 
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The effect of probiotics on immunomodulation in poultry has been investigated 

extensively. Lactobacilli can modulate the systemic antibody response to antigens in 

chickens (Apata, 2008; Huang et al., 2004; Kabir et al., 2004). Birds treated with L. 

reuteri exhibit longer ileal villi and deeper crypts in a response associated with 

enhanced T cell function and increased production of anti-Salmonella IgM antibodies 

(Dunham et al., 1993). Supplementation of chicken diets with lactobacilli can increase 

the cellularity of Peyer’s patches in the ileum and stimulate the mucosal immune system 

(Nahanshon et al., 1994) and production of antibodies, enhancing serum and intestinal 

natural antibody levels (Haghighi et al., 2005). Lactobacilli administered to poultry 

infected with Eimeria provided protection via immunomodulation and stimulation of 

early immune responses to improve defence against coccidiosis (Dalloul et al., 2003).  

 

1.3.8 Other food supplements and their effect on reducing infection in poultry 

In contrast to probiotics, where live microorganisms are ingested, prebiotics are 

administered to stimulate the growth and/or activity of the resident microbiota, which 

may suppress deleterious bacteria and have other health benefits on the host (Parracho 

et al., 2007; Sako et al., 1999). Prebiotics are typically oligosaccharides, found naturally 

in breast milk (galactooligosaccharide), chicory (fructooligosaccharide), garlic and 

onions (fructans) (Delzenne et al., 2003; Mikkelsen et al., 2003). They are non-

digestible in the GI tract and may bind to pathogens directly and be utilised by probiotic 

bacteria such as lactobacilli to produce metabolites such as bacteriocins in the lower GI 

tract (Collins and Gibson, 1999). Prebiotics can modify the composition and metabolic 

activity of the microbiota in the GI tract of poultry due to the fermentation of these 

oligosaccharides forming short-chain fatty acids (SCFA) and lactate (Corrigan et al., 

2011; Kim et al., 2011). Prebiotics can reduce intestinal colonisation by pathogens 

including Salmonella and Clostridium in poultry (Agunos et al., 2007; Collins et al., 

2009; Spring et al., 2000) and enhance the growth of intestinal microbiota and 

quantities of fermentation products, such as SCFAs (Depeint et al., 2008; Macfarlane et 

al., 2008; Rabiu et al., 2001). SCFAs can aid in mineral absorption, proliferation of 

enterocytes, suppression of inflammation, inhibition of pathogens and stimulation of 

mucus production (Ito et al., 1997; Scheppach, 1994; Tzortzis et al., 2005). 

Additionally, prebiotics can increase serum antibody levels and induce pro-

inflammatory cytokine and mucosal IgA responses, which may aid in bacterial 

clearance (Janardhana et al., 2009; Scholtens et al., 2008; Vos et al., 2007). 

http://en.wikipedia.org/wiki/Eimeria_acervulina
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1.4 Aims and objectives 

 
The aforegoing introduction provides evidence that Brachyspira is an important 

zoonotic pathogen that is a major cause of enteric disease in laying, broiler and meat-

breeder hens. The resulting disease, AIS, poses significant problems to farmers 

worldwide with significant economic impact. Alternative intervention strategies are 

urgently required against this disease that is reported to be increasing, at least partially 

attributed to the EU ban on the use of antimicrobials as growth promoters in livestock. 

A limited understanding of the pathobiology of the aetiological agent has hindered the 

development of effective intervention strategies for Brachyspira-related diseases, such 

as AIS. The aim of this study was towards gaining a better understanding of B. 

pilosicoli, a species known to cause AIS, through genotyping and phenotyping and to 

investigate potential probiotic intervention strategies against AIS. Thus, the testable 

hypothesis of this project is: 

 

Improving our understanding of the pathobiology of B. pilosicoli will aid the 

development of novel intervention strategies for related diseases, such as AIS 

 

To fulfil this testable hypothesis, the specific aims and objectives of this project are: 

 

• To develop an improved experimental challenge model for AIS in laying hens. 
 

• To improve understanding of the pathobiology of B. pilosicoli by sequencing the 

whole genome of a strain that has fulfilled Koch’s postulates, performing 

comparative genomics on available B. pilosicoli genome sequences and using 

phenotypic screening methods to validate genotypic differences. 
 

• To select Lactobacillus strains as probiotic candidates to be used in further 

studies to intervene in AIS. 
 

• To develop novel avian in vitro systems to model Brachyspira infection to 

evaluate probiotic intervention candidates prior to in vivo studies, using 

experimentally challenged laying hens. 



 

 

 
Chapter 2. 

 

Materials and methods 

 

 

 
2.1 Bacteriological methodology 

 
2.1.1 Bacterial strains and culture conditions 

A total of 29 Brachyspira strains were used in the studies presented in this thesis, 

representing six of the seven known species in addition to two proposed species. The 

host and source of each of the Brachyspira strains is detailed in Table 2.1. Brachyspira 

stock cultures were maintained in FCS (Sigma-Aldrich) + 30% (v/v) Brachyspira 

enrichment broth (BEB) (Rasback et al., 2005), at -80˚C. Brachyspira were cultured on 

fastidious anaerobe blood agar (FABA) or Brachyspira selective agar (Rasback et al., 

2005), which contains the selective ingredients spectinomycin dihydrochloride, 

vancomycin and colistin sulphamethane, in an anaerobic cabinet (10% hydrogen and 

10% carbon dioxide in nitrogen) (Don Whitley Scientific) at 37˚C for 3 – 5 days. Where 

Brachyspira broth cultures were required, under anaerobic conditions, bacterial cells 

were aseptically picked from the agar surface with a sterile cotton swab, suspended in 

BEB and incubated under the same conditions. 
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Table 2.1 Brachyspira strains used in the studies presented in this thesis. Details of the 

provenance of each strain are provided. 

Species Strain Host Sourcea

B. alvinipulli AN1263/2/04 Chicken SVA 

B. alvinipulli AN3382/2/03 Chicken SVA 

B. alvinipulli C1T Chicken Murdoch University 

B. alvinipulli C5 Chicken Murdoch University 

"B. canis" DogB Chicken Murdoch University 

"B. canis" D24 Chicken Murdoch University 

B. hyodysenteriae B78T Pig Murdoch University 

B. hyodysenteriae P18A Pig Murdoch University 

B. hyodysenteriae Q9348.6 Pig Murdoch University 

B. hyodysenteriae WA1 Pig Murdoch University 

B. innocens AN3165/2/03 Chicken SVA 

B. innocens AN4113/03 Chicken SVA 

B. innocens AN4341/03 Chicken SVA 

B. innocens B2960 Chicken AHVLA 

B. innocens Q97.3289.5.5 Chicken Murdoch University 

B. intermedia AN3370/03 Chicken SVA 

B. intermedia P280-1 Pig Murdoch University 

B. intermedia Q98.0446.2 Chicken Murdoch University 

B. intermedia UNL-2 Pig Murdoch University 

B. murdochii 155/20 Pig Murdoch University 

B. murdochii 56-150T Pig Murdoch University 

B. murdochii AN181/1/04 Chicken SVA 

B. murdochii AN3549/1/03 Chicken SVA 

B. pilosicoli 95/1000 Pig Murdoch University 

B. pilosicoli B2904 Chicken AHVLA 

B. pilosicoli WesB Human Murdoch University 

B. pilosicoli CPSp1 Chicken Murdoch University 

"B. pulli" B37ii Chicken Murdoch University 

"B. pulli" Bp605 Chicken Murdoch University 
a Source: Murdoch University, Perth, Australia (received from David J. Hampson); SVA, National 

Veterinary Institute, Uppsala, Sweden (received from Désirée S. Jansson); AHVLA, Animal Health 

and Veterinary Laboratories Agency, Winchester, United Kingdom (isolated from faeces of 

chickens). 
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Eighteen Lactobacillus strains were used in the studies presented in this thesis and 

are detailed in Table 2.2. All strains were obtained from the culture collection at the 

Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge, United 

Kingdom). Lactobacillus stock cultures were maintained in heart infusion broth (HIB) + 

30% (v/v) glycerol (Oxoid) at -80˚C. Lactobacilli were cultured on de Man-Rogosa-

Sharpe (MRS) agar and in MRS broth (de Man et al., 1960), microaerophilically in an 

anaerobic jar using a GasPak plus system (BBL) (94% hydrogen and 6% carbon 

dioxide) at 37˚C for 16 hours. Heat-inactivated lactobacilli were prepared by 

resuspending the lactobacilli in 0.1 M sterile phosphate buffered saline (PBS) at the 

desired cell density and heating aliquots of the viable bacterial suspensions at 80˚C for 

20 minutes in a thermal cycler (Alpha Labs). Lactobacilli spent growth medium was 

obtained by centrifuging the lactobacilli broth cultures (109 CFU/ml) (2500 × g) for 10 

minutes at ambient temperature and filtering the supernatant through a 0.2 µm filter 

(Sartorius Stedim) to yield the CFS. The pH value of the CFS was adjusted accordingly 

for each assay using 10 M sodium hydroxide (Sigma-Aldrich). 

 

Table 2.2 Lactobacillus strains used in the studies presented in this thesis. Details of the 

provenance of each strain are provided. 

Species Strain Origin 

L. acidophilus B2990 Human 

L. acidophilus B2993 Human 

L. buchneri B2997 Vegetable 

L. bulgaricus B2991 Dairy 

L. bulgaricus B2999 Dairy 

L. casei B2986 Human 

L. casei B2995 Dairy 

L. fermentum B2992 Vegetable 

L. plantarum B2989 Vegetable 

L. plantarum B2994 Vegetable 

L. plantarum B2996 Vegetable 

L. plantarum JC1 (B2028) Swine 

L. reuteri B2026 Swine 

L. reuteri LM1 Poultry 

L. rhamnosus B2987 Human 

L. rhamnosus B2988 Human 

L. rhamnosus B2998 Dairy 

L. salivarius  LM2 Poultry 
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E. coli K12 was obtained from Gibco. E. faecalis ATCC 29212 and E. faecium 

SF11770 were obtained from the culture collection at the Animal Health and Veterinary 

Laboratories Agency (AHVLA, Weybridge, United Kingdom). E. coli and E. faecalis 

stock cultures were maintained in HIB + 30% (v/v) glycerol at -80˚C. Both species were 

cultured aerobically on lysogeny broth (LB) agar without glucose (LB-G) (Bertani, 

1951, 2004) at 37˚C for 16 hours and in LB-G broth under the same conditions, with 

gentle agitation (225 rpm). 

 

2.1.2 Isolation of Brachyspira from chicken faeces 

The two Brachyspira strains obtained from the Animal Health and Veterinary 

Laboratories Agency (AHVLA, Winchester, United Kingdom) (Table 2.1), were 

isolated in the United Kingdom from chicken faeces. B. pilosicoli B2904 was originally 

isolated from the faeces of a chicken exhibiting clinical signs of AIS and B. innocens 

B2960 was isolated from the faeces of a healthy chicken.  

For the primary culture, a sterile swab was used to aseptically sample from the 

core of the faecal sample. The swab was then inoculated onto Brachyspira selective 

agar, which was incubated anaerobically at 37˚C for 3 – 8 days. When haemolytic 

growth was observed on the surface of the agar, the presence of Brachyspira was 

confirmed using a wet smear examined under dark field microscopy (Olympus CX21, 

×1000). Following confirmation of the presence of Brachyspira from uncontaminated 

primary culture, a small haemolytic block of Brachyspira selective agar was 

homogenised in 0.1 M sterile PBS and inoculated onto FABA agar. In cases where 

other contaminating bacterial species were evident, contaminants were removed from 

the surface of the agar using a sterile swab and small haemolytic blocks of Brachyspira 

selective agar were placed in the centre of a 0.2 µm filter disc (Whatman) on FABA 

agar and incubated anaerobically at 37˚C for 2 – 5 days to achieve pure Brachyspira 

culture. 

 

2.1.3 Isolation of Lactobacillus from chicken faeces 

L. reuteri LM1 and L. salivarius LM2 were isolated from the faeces of healthy 

conventional, commercial laying hens that were proven free from Brachyspira by 

culture and PCR (Phillips et al., 2005). Serial dilutions of the faeces in 0.1 M sterile 

PBS were inoculated onto MRS agar, which facilitated lactobacilli selection. Single 

colonies of different morphology were selected and stored in HIB with 30% (v/v) 

glycerol (Oxoid) at -80˚C for further characterisation. 
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2.1.4 Gram stain 

A sterile swab was used to smear surface growth of Brachyspira on FABA agar or 

Lactobacillus on MRS agar onto a glass slide, which was then heat-fixed and 1% (w/v) 

crystal violet (Sigma-Aldrich) added at ambient temperature for 60 seconds. After 

washing with sterile water, the slide was treated with Lugol’s iodine solution (Sigma-

Aldrich) for 60 seconds, then washed in acetone (Sigma-Aldrich) and the counter stain, 

dilute carbol fuchsin (Sigma-Aldrich) applied for 60 seconds. The slide was then 

washed with sterile water, air-dried and examined under oil immersion light microscopy 

(Olympus CX21, ×1000). The morphology and Gram stain of the bacteria present was 

recorded. 

 

2.1.5 Brachyspira identification and characterisation 

 

2.1.5.1 Indole test 

A heavy suspension of Brachyspira in BEB (≥ McFarland 4.0) was prepared by 

transferring surface growth from FABA agar using a sterile swab. The inoculated BEB 

broth was incubated anaerobically, at 37˚C for 24 hours, after which 150 µl API 

JAMES (Kovac’s) reagent (BioMérieux) was added. Following a 10 minute incubation 

at ambient temperature, results were recorded whereby the formation of a pink-red 

pellicle was regarded as positive and a yellow pellicle as negative for the ability to 

cleave indole from tryptophan.  

 

2.1.5.2 Hippurate test 

A cloudy suspension of Brachyspira in 1% (w/v) sodium hippurate solution 

(Sigma-Aldrich) (≥ McFarland 2.0) was prepared by transferring surface growth from 

FABA agar using a sterile swab. The suspensions were incubated anaerobically at 37˚C 

for 24 hours, after which 150 µl API NIN (ninhydrin) reagent (BioMérieux) was added. 

Following 10 minute incubation at ambient temperature, results were recorded whereby 

a blue-purple colour change was regarded as positive and a clear-orange colour change 

as negative for the ability to hydrolyse sodium hippurate to glycine and sodium 

benzoate. 

 

2.1.5.3 α-Glucosidase, β-glucosidase and α-galactosidase activity tests 
A heavy suspension of Brachyspira in 0.1 M sterile PBS (≥ McFarland 4.0) was 

prepared by transferring surface growth from FABA agar using a sterile swab. Three 
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aliquots of the suspension were transferred into separate universal tubes and an α-

glucosidase (p-nitrophenyl-α-D-glucopyranoside), β-glucosidase (p-nitrophenyl-β-D-

glucopyranoside) or α-galactosidase (p-nitrophenyl-α-D-galactopyranoside) diatab 

(Rosco Diagnostics) was added to each. The suspensions were incubated at 

anaerobically at 37˚C for 16 hours. Results were recorded whereby a yellow colour 

change was regarded as positive and no colour change as negative for the respective 

enzyme activity. 

 

2.1.5.4 Slide agglutination test 

Where necessary, the speciation of B. hyodysenteriae was confirmed using the 

SAT (Burrows and Lemcke, 1981; Hampson, 1991). A drop of B. hyodysenteriae 

antiserum was applied onto a glass slide. Surface growth of pure Brachyspira culture 

was transferred from FABA agar using a sterile swab and mixed with the antiserum to 

produce a milky suspension. After gentle agitation at ambient temperature for 30 

seconds, results for agglutination were recorded as positive or negative. 

 

2.1.5.5 Indirect fluorescent antibody test 

Where necessary, the speciation of B. hyodysenteriae was confirmed using the 

IFAT (Lemcke and Burrows, 1981; Lysons and Lemcke, 1983). A weak suspension of 

Brachyspira in sterile water (≥ McFarland 0.5) was prepared by transferring surface 

growth from FABA agar using a sterile swab. A wet smear was prepared on a glass 

slide and examined under dark field microscopy (×1000) to ensure the presence of 

approximately 20 – 30 Brachyspira cells per field. The slide was air-dried, fixed in 

acetone at ambient temperature for 10 minutes, air-dried again and a drop of B. 

hyodysenteriae antiserum was applied at 37˚C for 45 minutes. The slide was then 

washed in 0.1 M sterile PBS for 15 minutes, air-dried and a drop of anti-rabbit-

fluorescein isothiocyanate (FITC) secondary antibody (Sigma-Aldrich) was applied at 

37˚C for 45 minutes. After air-drying, the slide was mounted in Vectashield mountant 

(Vector Laboratories) and examined using confocal laser scanning microscopy (Leica 

TCS SP2 AOBS system attached to a Leica DM IRE2 microscope equipped with Ar-Kr, 

488 nm, He-Ne, 546 nm and diode, 405 nm laser excitation, Leica Microsystems) under 

oil-immersion, using ×40 and ×63 objectives. Results for fluorescence were recorded as 

positive or negative. 
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2.1.5.6 Antimicrobial susceptibility testing of Brachyspira strains 

Antimicrobial susceptibility testing in Brachyspira was performed by the agar 

dilution method as previously described (Brooke et al., 2003a). The antimicrobials 

tested were gentamicin, tiamulin and tylosin, which were obtained from Sigma-Aldrich. 

The antimicrobial doubling series for both gentamicin and tylosin ranged 0.25 – 512 

µg/ml and for tiamulin the doubling series ranged 0.016 – 0.5 µg/ml. Antimicrobial 

stock solutions were prepared as according to the manufacturer’s instructions, diluted in 

sterile water to double the highest tested concentration and filter-sterilised using a 0.2 

µm filter. Sterile antimicrobial solutions were further diluted into 10 ml volumes of 

sterile water containing defibrinated ovine blood and diluted over the required MIC 

range. The diluted antimicrobial solutions were poured into 10 ml molten double 

strength agar, melted at 54˚C in a water bath, gently agitated and immediately poured 

into a sterile Petri dish (Sterilin). The agar was then cooled to set and dried. The agar 

plates were prepared immediately prior to inoculation.  

Surface growth from a pure Brachyspira culture was transferred from FABA agar 

to BEB using a sterile swab and incubated anaerobically at 37˚C for 24 hours. The 

organisms were then dispersed by gentle agitation and suspensions prepared in 0.1 M 

sterile PBS (≥ McFarland 1.0), which were inoculated on the antimicrobial-containing 

agar plates using a multipoint inoculator. After 3 – 5 days of anaerobic incubation at 

37˚C, MICs were recorded as the minimum concentration to inhibit growth of the test 

organism by 90% of its normal growth. A negative control plate containing no 

antimicrobials was prepared and B. hyodysenteriae P18A was used as a control strain 

(Burch, 2008). 

 

2.1.5.7 Scanning electron microscopy of B. pilosicoli 

Surface growth from a pure Brachyspira B2904 culture was transferred from 

FABA agar to BEB using a sterile swab and incubated anaerobically at 37˚C for 3 days. 

The culture (5 × 107 CFU/ml) was washed in 0.1 M sterile PBS and fixed in 3% (v/v) 

glutaraldehyde (Sigma-Aldrich). Fixed cells were washed with 0.1 M sterile PBS, post-

fixed in 1% (w/v) osmium tetroxide (Agar Scientific), dehydrated in ethanol (Sigma-

Aldrich), of increasing concentrations to 100% (v/v), and subsequently treated with 

hexamethyldisilazane (Sigma-Aldrich) for 5 minutes. Air-dried cells were settled on 

poly-L-lysine glass cover slips (Sigma-Aldrich), attached to aluminium stubs, sputter-

coated with gold and examined under scanning (S)EM (Stereoscan S-250 MK3 SEM, 

Cambridge Instruments).   
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2.1.6 Identification and characterisation of Lactobacillus  

 
2.1.6.1 API 50 CH identification system  

The API 50 CH identification system (BioMérieux) was used to identify and 

speciate lactobacilli, according to the manufacturer’s instructions. Briefly, suspensions 

of Lactobacillus cells (≥ McFarland 2.0) were obtained by transferring colonies from 

MRS agar culture into suspension medium (BioMérieux). Six drops of this suspension 

was transferred into the API 50 CHL medium (BioMérieux), which was used to 

inoculate the tubes of the API strip. Mineral oil was added on top of each of the tubes of 

the strips, which were incubated aerobically at 37˚C for 48 hours. Results were recorded 

visually at 24 and 48 hours post-inoculation and analysed using an online database 

(apiwebTM, BioMérieux).  

 

2.1.6.2 Catalase test 

Surface growth of Lactobacillus was transferred from MRS agar and smeared onto 

a glass slide. A drop of 3% (w/v) hydrogen peroxide solution (Sigma-Aldrich) was 

applied to the slide. Results were recorded immediately with the production of gaseous 

bubbles regarded as catalase positive and the absence of gaseous bubbles as catalase 

negative. Catalase-positive E. coli K12 was used as a positive control.  

 

2.1.6.3 Hydrogen peroxide production assay 

The ability of lactobacilli to produce hydrogen peroxide was tested using an 

established method (Martin et al., 2008a). Briefly, MRS agar plates containing 100 µM 

3,3′,5,5′-tetramethylbenzidine (TMB) (Sigma-Aldrich) and 10 µg/ml horseradish 

peroxidase (HRP) (Sigma-Aldrich) was prepared. After air-drying, the lactobacilli were 

cultured on the agar plates and incubated micro-aerophilically at 37˚C for 48 hours. 

Following a 30 minute exposure to atmospheric air, results were recorded whereby the 

development of a pale or intense blue colour was regarded as positive for weak or 

strong hydrogen peroxide production, respectively and no colour change was regarded 

as negative. 

 

2.1.6.4 Antimicrobial susceptibility testing of Lactobacillus strains 

Antimicrobial susceptibility testing in Lactobacillus was performed by the broth 

microdilution method as recommended in the guidelines for testing for antimicrobial 

resistance in potential probiotic candidates (EFSA, 2008). All antimicrobials were 
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obtained from Sigma-Aldrich. The antimicrobial doubling series for ampicillin, 

chloramphenicol, clindamycin, erythromycin and gentamicin ranged 0.06 – 128 µg/ml 

and for kanamycin, streptomycin, tetracycline and vancomycin ranged 1 – 256 µg/ml. 

Antimicrobial stock solutions were prepared as according to the manufacturer’s 

instructions, diluted in sterile water to double the highest tested concentration and filter-

sterilised using a 0.2 µm filter. The double strength concentration of antimicrobial was 

added to the first well and double diluted into Lactic acid bacteria (LAB) susceptibility 

medium (LSM), which supports Lactobacillus growth and has no effect on the potency 

of antimicrobials tested (Klare et al., 2005). 

E. faecalis ATCC 29212 was used as a control strain. Suspensions of 

Lactobacillus and E. faecalis in 0.1 M sterile PBS (≥ McFarland 1.0) were prepared by 

transferring surface growth of pure culture MRS or LB-G agar respectively, using a 

sterile swab. The cell suspension (10 µl) was added to the wells of a 24-well plate 

(Nunc) containing the test antimicrobial dilutions (1 ml) and incubated aerobically at 

37˚C for 24 hours. MICs were recorded as the lowest antimicrobial concentration to 

inhibit growth of the test organism.  

 

2.1.6.5 Gastric acid tolerance assay 

Gastric juice was retrieved and prepared from SPF chickens as described 

previously (Lin et al., 2007). Briefly, SPF chickens were euthanased by cervical 

dislocation and the gizzard aseptically removed. Digesta was collected from the gizzard, 

mixed with double the volume of sterile water and centrifuged (3000 × g) for 30 

minutes. The supernatants were collected, pH measured and adjusted where necessary 

to pH 2.0, 2.5 and 3.0. Prior to use, the gastric juice was filtered through a 0.45 µm 

sterile filter (Sartorius Stedim). 

To test the tolerance of L. reuteri LM1 and L. salivarius LM2 to the avian gastric 

acid, Lactobacillus MRS broth culture (109 CFU/ml) was centrifuged (5000 × g) for 10 

minutes and the pellet was resuspended in an equal volume of sterile gastric juice, at pH 

2.0, 2.5 or 3.0 and 0.1 M PBS (pH 7.2) as a control. The lactobacilli were incubated in 

these conditions micro-aerophilically at 37˚C for 3 hours. Viable bacterial counts were 

determined at 0 and 3 hours, by plating serial dilutions in 0.1 M sterile PBS onto MRS 

agar and incubating micro-aerophilically at 37˚C for 48 hours. Assays were performed 

in triplicate on three separate occasions. 
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2.1.6.6 Bile tolerance assay 

The tolerance of the L. reuteri LM1 and L. salivarius LM2 to oxgall (Sigma-

Aldrich), containing bovine bile salts, the two major poultry bile salts, taurocholic acid 

and sodium taurochenodeoxycholate (Sigma-Aldrich) and bile collected from the gall 

bladder of SPF chickens was determined by modification of previously described 

methods (Tsai et al., 2005; Yu and Tsen, 1993). Lactobacillus MRS broth culture (109 

CFU/ml) was inoculated at 0.1% (v/v) into MRS broth with and without oxgall, 

taurocholic acid, sodium taurochenodeoxycholate at 0.3% (w/v) and poultry bile at 

0.3%, 0.6% and 0.9% (v/v). For each condition, 100 µl of each broth mixture was 

transferred to a 96-well microtitre plate (Iwaki) and incubated in the FLUOstar 

OPTIMA (BMG Labtech) at 37˚C in triplicate. MRS broth mixtures without lactobacilli 

were added to standardise the optical density (OD) readings, which were taken at an 

absorbance of 600 nm, every 15 minutes for 30 hours. Assays were performed in 

triplicate on three separate occasions. 

Data were analysed using a previously proposed method (Chateau et al., 1994), 

whereby the length of time it took growth to reach a 0.3 unit difference in absorbance at 

600 nm was used to determine the delay of growth, or lag time, between the control and 

test conditions. The lag time was used to categorise strains as resistant, where the delay 

was equal to or less than 15 minutes; tolerant, where the delay was between 15 and 40 

minutes; weakly tolerant, where the delay was between 40 and 60 minutes and sensitive, 

where the delay was over 60 minutes. 

 

2.1.7 Growth and inhibition assay of B. pilosicoli 

In preliminary growth and inhibition assays, Lactobacillus CFS (pH 3.8) at 10% 

(v/v) was added to BEB inoculated with B. pilosicoli B2904 (106 CFU/ml) and 

incubated anaerobically at 37˚C. Control broths were prepared containing MRS (pH 

5.8) at 10% (v/v). Brachyspira were enumerated at 24 hour intervals over a 120 hour 

period using a Helber counting chamber (Hawksley) under dark field microscopy 

(×1000). Assays were performed in triplicate on three separate occasions. 

In subsequent assays, heat-inactivated lactobacilli (106 CFU/ml) and their CFS, at 

10% (v/v), at original (3.8) or adjusted (4.5 and 7.2) pH value, was added to BEB 

inoculated with either B. pilosicoli B2904 or B. innocens B2960 (106 CFU/ml) and 

incubated anaerobically at 37˚C. Control broths were prepared containing MRS, at 10% 

(v/v), at pH 3.8, 4.5 and 7.2. Brachyspira were enumerated at 24 hour intervals over a 

120 hour period using a Helber counting chamber under dark field microscopy (×1000). 
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Additionally, 100 µl of each broth mixture was transferred to a 96-well microtitre plate 

and incubated in the FLUOstar OPTIMA under anaerobic atmosphere, at 37˚C. BEB 

broth mixtures without Brachyspira were added to standardise the OD readings, which 

were taken at an absorbance of 600 nm, every 2.77 hours for 125 hours. Assays were 

performed in triplicate on three separate occasions. 

 

2.1.8 Agar motility and haemolysis inhibition assay of B. pilosicoli 

 Agar motility inhibition assays were performed using the ‘spot test’ as previously 

described (Bernardeau et al., 2009). Each Lactobacillus strain, viable or heat-

inactivated, resuspended in 0.1 M sterile PBS (109 CFU/ml) was pre-incubated with 

either B. pilosicoli B2904 or B. innocens B2960 cell suspensions in 0.1 M PBS (109 

CFU/ml) (1/1, v/v) in a microcentrifuge tube (Eppendorf), anaerobically, at 37˚C for 4 

and 24 hours. Following pre-incubation, 5 µl of each mixed suspension was spotted in 

triplicate onto Brachyspira selective agar (Rasback et al., 2005) and incubated 

anaerobically at 37˚C for 8 days. The extent of motility and hemolysis were examined 

visually at 24 hour intervals and compared to the growth of B. pilosicoli B2904 or B. 

innocens B2960 cell suspension controls, respectively. Following the monitoring 

period, growth from each assay was subcultured onto FABA to assess viability. Assays 

were performed in triplicate on three separate occasions. 

 

2.1.9 Biolog Phenotype MicroArrayTM

 All Brachyspira strains (Table 2.1) excluding B. innocens B2960 were analysed 

using the Biolog Phenotype MicroarrayTM (PM) technology (Bochner et al., 2001; 

Borglin et al., 2009) for high throughput substrate utilisation screening, which included 

191 unique carbon sources (PM1 and PM2). Biolog PMTM panels and reagents were 

supplied by Biolog and used according to the manufacturer’s instructions. Briefly, under 

anaerobic conditions, bacterial cells were aseptically picked from the FABA agar 

surface with a sterile cotton swab and suspended in 10 ml of Biolog inoculating fluid 

(IF-0) until a cell density of 40% transmittance was reached on a Biolog turbidimeter. 

Prior to addition to 96-well Biolog PMTM microtitre plates, bacterial suspensions were 

further diluted into 12 ml of IF-0 (per plate) in sterile water. Biolog PMTM microtitre 

plates were pre-incubated with two AGELESS® oxygen absorbers (Mitsubishi) 48 hours 

prior to inoculation, at ambient temperature. The resuspended bacterial cells were 

pipetted into the 96-well plates at a volume of 100 µl/well. Prior to removal from the 

anaerobic chamber, one AGELESS® oxygen absorber and one CO2GEN compact sachet 
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(Oxoid) were attached per Biolog PMTM panel, which were then placed into 4 oz Whirl-

Pak® Long-Term Sample Retention Bags (Nasco) with the open end heat-sealed. 

Substrate utilisation was measured via the reduction of a tetrazolium dye (clear 

yellow) to formazan (purple), indicative of cellular respiration at 37˚C. Experiments 

were also run at 42˚C, using bacteria cultured at this temperature. Formazan formation 

was monitored at 15 minute intervals for 120 hours in OmniLog apparatus. Kinetic data 

were analysed with OmniLog-PM software. Each experiment was performed on at least 

two separate occasions for each strain. It was noted that although tetrazolium dye 

reduction is indicative of cellular respiration, it can occur independent of cell growth 

(Bochner, 2009; Bochner et al., 2001). 

Blank PM1 and PM2 controls were run, whereby IF-0 was added in place of the 

bacterial cell suspension, to assess for abiotic reactions that occur in the anaerobic 

atmosphere across the 120 hour monitoring period. The following compounds were 

omitted from analysis due to the nature of the abiotic reactions that occurred in wells 

containing these compounds, under the conditions of the study: D-arabinose and L-

arabinose, dihydroxyacetone, D-glucosamine, 5-keto-D-gluconate, L-lyxose, palatinose, 

D-ribose, 2-deoxy-D-ribose, sorbate, D-tagatose and D-xylose. 

 80



Chapter 2  Materials and methods 

2.2 Molecular biology methodology 

 
2.2.1 Extraction of genomic DNA 

The cetyltrimethylammonium bromide (CTAB) DNA extraction method was used 

to purify high molecular weight genomic DNA from pure bacterial culture (Wilson, 

1990). A heavy suspension of Brachyspira or Lactobacillus in 0.1 M sterile PBS (≥ 

McFarland 4.0) was prepared by transferring surface growth from FABA or MRS agar, 

respectively using a sterile swab. Cell suspensions were centrifuged (2500 × g) for 10 

minutes and the supernatant discarded. The pellet was resuspended in 400 µl Tris-

ethylene-diamine tetra-acetic acid (EDTA) (TE) buffer (1×) (Sigma-Aldrich) and the 

cells lysed by the addition of 10% (w/v) sodium dodecyl sulphate (SDS) (Sigma-

Aldrich) and proteinase K solution (20 mg/ml) (Sigma-Aldrich) at 55˚C for 10 minutes. 

For lactobacilli, prior to the addition of SDS and proteinase K solution, the pellet was 

resuspended in TE buffer (1×) containing lysozyme (20 mg/ml) at 37˚C for 60 minutes. 

RNase (10 mg/ml) (Sigma-Aldrich) was added and incubated at 37˚C for 30 minutes 

followed by 100 µl 5 M sodium chloride (Sigma-Aldrich) and 80 µl CTAB (Sigma-

Aldrich) at 55˚C for 10 minutes. Subsequently, 750 µl chloroform/isoamyl alcohol 

(24:1) (Sigma-Aldrich) was added and the suspension centrifuged (16000 × g) for 5 

minutes. The aqueous phase was transferred to a phase lock tube (Eppendorf) and the 

chloroform/isoamyl alcohol wash was repeated twice. The aqueous phase was then 

transferred to a microcentrifuge tube and 400 µl isopropanol (Sigma-Aldrich) was 

added at -20˚C for 30 minutes and then centrifuged (16000 × g) for 10 minutes. The 

pellet was washed in 70% (v/v) ethanol, centrifuged briefly and the supernatant 

carefully removed using a pipette. After air-drying, the pellet was resuspended in 50 µl 

nuclease-free water (Ambion). The NanoDropTM spectrophotometer (Thermo Scientific) 

was used to determine the concentration of DNA in the extract, measured by absorbance 

at 260 nm and the purity of the DNA was determined from the ratio of absorbance at 

260 nm to absorbance at 280 nm, of which pure DNA has a ratio of 1.7 – 1.9. The DNA 

extract was stored at -20˚C. 

 

2.2.2 Extraction of bacterial DNA from faeces 
The QIAamp DNA stool mini kit (Qiagen) was employed for faecal DNA 

extraction from poultry faecal samples according to the manufacturer’s instructions. 

Briefly, a sample (180 – 220 mg) was taken from the core of the faeces and placed in a 

microcentrifuge tube on ice. The faecal sample was lysed by the addition of buffer ASL, 
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vortexed to homogenise the sample and incubated at 70˚C for 5 minutes. The sample 

was then vortexed for 15 seconds and centrifuged (16000 × g) at ambient temperature 

for 60 seconds. The supernatant was transferred to a new microcentrifuge tube and an 

InhibitEX tablet was added and vortexed to suspend the tablet and remove DNA-

degrading substances and PCR inhibitors present in the stool sample, which adsorb to 

the InhibitEX matrix. The sample was centrifuged (16000 × g) for 3 minutes and the 

supernatant transferred to a microcentrifuge tube and centrifuged (16000 × g) for 3 

minutes. The supernatant was transferred to a microcentrifuge tube with proteinase K 

and the cell lysis buffer AL was added, vortexed and incubated at 70˚C for 10 minutes. 

Subsequently, 100% (v/v) ethanol was added to the lysate and this was transferred to the 

QIAamp spin column placed in a collection tube. The spin column was centrifuged 

(16000 × g) for 60 seconds and then placed in a new collection tube. The DNA bound to 

the QIAamp silica membrane in the spin column was washed with buffer AW1 and then 

AW2, centrifuging (16000 × g) for 3 minutes after the application of each buffer, to 

ensure removal of residual impurities. The spin column was transferred to a 

microcentrifuge tube and 50 µl elution buffer AE was applied directly to the QIAamp 

membrane and centrifuged (16000 × g) for 60 seconds to elute the DNA. The 

concentration and purity of the genomic DNA was assessed using the NanoDropTM 

spectrophotometer. The DNA extract was stored at -20˚C. 

 

2.2.3 Polymerase chain reaction 

PCR was use to amplify target DNA sequence up to 1500 bp (Saiki et al., 1988). 

Briefly, a 20 µl reaction mixture was prepared, consisting of HotStarTaq® DNA 

polymerase MasterMix (Qiagen), forward and reverse primers designed for the 

amplification of the target sequence (20 pmol each) (Sigma-Aldrich), template DNA (20 

– 50 ng/µl) and sterile water. The volume of each of the constituents was scaled 

accordingly for PCR reactions of greater volumes. 

PCR amplifications were performed using a GeneAmp® PCR system 9700 thermal 

cycler (Applied Biosystems) as follows; 95˚C for 15 minutes, followed by 30 cycles of 

denaturation at 95˚C for 60 seconds, annealing at the required temperature (45 – 65˚C) 

for 60 seconds and extension at 72˚C for the required extension time (45 – 60 seconds 

per Kb), and a final extension at 72˚C for 7 minutes before cooling to 4˚C.  
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2.2.4 Long-range PCR 

Where the amplification of target DNA sequence >1500 bp was necessary, long-

range PCR was performed using Elongase® enzyme mix (Invitrogen). The 50 µl 

reaction consisted of 200 µM deoxyribonucleotide triphosphate (dNTP) mix, 200 nM 

each of the forward and reverse primers, genomic DNA template (100 ng), 60 mM tris-

sulphate, 18 mM ammonium sulphate, 1.6 mM magnesium sulphate, Elongase® enzyme 

mix and sterile water. 

PCR amplifications were performed on a GeneAmp® PCR system 9700 thermal 

cycler as follows; 94˚C for 30 seconds, followed by 30 cycles of denaturation at 94˚C 

for 30 seconds, annealing at the required temperature (55 – 65˚C) for 60 seconds and 

extension at 68˚C for the required time (45 – 65 seconds per Kb), then temperature 

cooled to 4˚C.  

 

2.2.5 Purification of PCR products 

The QIAquick® PCR purification kit (Qiagen) was used for the purification of 

PCR products (100 bp – 10 Kb) by the removal of unwanted primers and impurities 

according to the manufacturer’s instructions. Briefly, five volumes of the binding buffer 

PB was added to one volume of the PCR product and the mixture was transferred to a 

QIAquick spin column in a collection tube, which was centrifuged (16000 × g) for 60 

seconds. The flow-through was discarded and the ethanol-containing buffer PE was 

applied to the spin column to remove salts. After centrifuging (16000 × g) for 60 

seconds, the flow-through was discarded and an additional centrifugation step 

performed to remove any residual buffer. The spin column was placed in a 

microcentrifuge tube and 30 µl elution buffer EB applied to the centre of the QIAquick 

silica membrane. The PCR product was eluted by centrifugation (16000 × g) for 60 

seconds and the eluent was stored at -20˚C. 

 

2.2.6 Gel electrophoresis 

Agarose (Promega) was melted in Tris-Acetate-EDTA (TAE) buffer (1×) (Sigma-

Aldrich) at 0.8% (w/v) and set in a gel casting tray using a comb to form loading wells. 

The gel was placed in a Sub-Cell tank (Bio-Rad), submerged in TAE buffer (1×) and 1 

µl DNA loading buffer (6×) (Promega) was added to each 5 – 10 µl DNA or PCR 

sample prior to loading. A 100 bp or 1 Kb DNA molecular marker ladder (Promega) 

was run alongside DNA samples. Once all samples were loaded, the gel was 

electrophoresed at 70 volts (V) for approximately 60 minutes. Subsequently, the gel was 
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stained in 1 µg/ml ethidium bromide solution (Sigma-Aldrich) for 30 minutes, de-

stained in distilled water for 10 minutes and then visualised under ultra-violet (UV) 

light using a GeneGenius gel imaging system (Syngene).  

 

2.2.7 Identification of Brachyspira using PCR 

Established Brachyspira genus- and species-specific PCRs were employed for the 

identification of Brachyspira strains and the detection of Brachyspira in the in vitro and 

in vivo studies presented in this thesis; primer sequences and product size for each PCR 

are detailed in Table 2.3. Two-genus specific PCRs based on the 16S rRNA gene were 

used for the initial identification of all strains and also to confirm the presence or 

absence of Brachyspira in chicken faeces (Johansson et al., 2004; Phillips et al., 2005). 

Species-specific PCRs based on the NADH oxidase (nox) and 16S rRNA genes were 

used for the identification of B. hyodysenteriae, B. intermedia and B. pilosicoli strains 

(La et al., 2003; Phillips et al., 2006). A further B. pilosicoli-specific PCR based on the 

16S rRNA gene was used for the detection of this species in chicken faeces (Mikosza et 

al., 2001a). The standard method was followed for each PCR (section 2.2.3). 

 

Table 2.3 Primers for Brachyspira genus- and species-specific PCRs. Details are 

provided of the target gene, primer sequence and product size for each primer pair.  

Target 

species 

Target 

gene 

Primer 

name 

Primer sequence (5' – 3') Size 

(bp) 

Reference 

Br16S-F  TGAGTAACACGTAGGTAATC Brachya 16S 

rRNA Br16S-R GCTAACGACTTCAGGTAAAAC 

1309 (Phillips et 

al., 2005) 

kag007F GTTTGATYCTGGCTCAGARCKAACG Brachya 16S 

rRNA kag009R CTTCCGGTACGGMTGCCTTGTTACG 

1509 (Johansson 

et al., 2004) 

H1-F ACTAAAGATCCTGATGTATTTG Bhyb nox 

H2-R CTAATAAACGTCTGCTGC 

354 (La et al., 

2003) 

Int1-F AGAGTTTGATGATAATTATGAC Bimc nox 

Int2-R ATAAACATCAGGATCTTTGC 

567 (Phillips et 

al., 2006) 

P1-F AGAGGAAAGTTTTTTCGCTTC Bpid 16S 

rRNA P2-R GCACCTATGTTAAACGTCCTTG 

823 (La et al., 

2003) 

Acoli-F AGAGGAAAGTTTTTTCGCTTC Bpid 16S 

rRNA Acoli-R CCCCTACAATATCCAAGACT 

439 (Mikosza et 

al., 2001a) 
a Brachyspira genus-specific PCR. 
b B. hyodysenteriae species-specific PCR. 
c B. intermedia species-specific PCR. 
d B. pilosicoli species-specific PCR. 
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2.2.8 Identification and characterisation of Lactobacillus  

 

2.2.8.1 Multiplex PCR 

An established multiplex PCR was employed for the identification of 

Lactobacillus species and also individual primer sets were used for the detection of 

Lactobacillus species from poultry faeces (Kwon et al., 2004). The species-specific 

primers were based on unique regions extending from the 16S rRNA to the 23S rRNA 

gene and are detailed in Table 2.4. The 50 µl reaction mixture consisted of HotStarTaq® 

DNA polymerase MasterMix, primers (20 pmol each), Lactobacillus genomic DNA 

template (20 – 50 ng/µl) and sterile water.  

PCR amplifications were performed on a GeneAmp® PCR system 9700 thermal 

cycler (Applied Biosystems) as follows: 95˚C for 15 minutes, followed by 35 cycles 

consisting of denaturation at 95˚C for 30 seconds, annealing at 56˚C for 30 seconds and 

extension at 72˚C for 30 seconds, and a final 7 minute extension step at 72˚C before 

cooling to 4˚C. 

 

Table 2.4 Primers for the Lactobacillus multiplex PCR (Kwon et al., 2004). Details are 

provided of the primer sequence and product size for each primer pair.  

Target species Primer name Primer sequence (5' – 3') Size (bp)a

All Lactobacillus IDL03R CCACCTTCCTCCGGTTTGTCA – 

All Lactobacillus IDL04F AGGGTGAAGTCGTAACAAGTAGCC – 

L. casei groupb IDL11F TGGTCGGCAGAGTAACTGTTGTCG 727 

L. acidophilus IDL22R AACTATCGCTTACGCTACCACTTTGC 606 

L. delbrueckii IDL31F CTGTGCTACACCTAGAGATAGGTGG 184 

L. gasseri IDL42R ATTTCAAGTTGAGTCTCTCTCTC 272 

L. reuteri IDL52F ACCTGATTGACGATGGATCACCAGT 1105 

L. plantarum IDL62R CTAGTGGTAACAGTTGATTAAAACTGC 428 

L. rhamnosus IDL73R GCCAACAAGCTATGTGTTCGCTTGC 448 
a Approximated length of each PCR product derived from primer pairs composed of species-specific 

primer and Lactobacillus conserved primer (IDL03R or IDL04F). 
b L. casei group includes all L. casei-related species, including L. casei and L. rhamnosus. 

 

2.2.8.2 16S rRNA gene sequencing 

The 16S rRNA gene was amplified by PCR from a Lactobacillus genomic DNA 

template using primers 63F (5’-CAGGCCTAACACATGCAAGTC-3’) and 1387R (5’-

GGGCGGWGTGTACAAGGC-3’) (Marchesi et al., 1998). The 1324 bp PCR product 

was confirmed by gel electrophoresis and purified prior to sequencing. ABI sequencing 
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reactions were performed at the Central Sequencing Unit (AHVLA, Weybridge, United 

Kingdom). The BigDye® Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) 

was used for sequencing according to the manufacturer’s instructions and run on an ABI 

sequencer. The 10 µl reaction consisted of sequencing buffer, primer (1 pmol), DNA 

template (1 – 2 ng DNA per 100 bp) BigDye®. ABI cycle sequencing was carried out on 

3130xl Genetic Analyzer (Applied Biosystems) with a 50 cm capillary using the 

following PCR parameters: 25 cycles of 96˚C for 10 seconds, 50˚C for 5 seconds and 

60˚C for 2 minutes.  

Sequence traces were analysed and edited in SeqMan (DNAstar, Lasergene) and 

consensus DNA sequences were saved in EditSeq (DNAstar, Lasergene). Homology 

searches were performed using the Basic Local Alignment Search Tool (BLAST) 

(Altschul et al., 1990) to compare the sequences to an online database (GenBank, 

NCBI). 

 

2.2.8.3 Gram-positive antimicrobial resistance microarray 

 The Identibac AMR+veTM microarray was employed to detect antimicrobial 

resistance genes in L. reuteri LM2 and L. salivarius LM2, using the E. faecium 

SF11770 control strain, according to the manufacturer’s instructions (Perreten et al., 

2005). Genomic DNA was labelled by a randomly primed polymerisation reaction using 

Sequenase (USB Corporation) as previously described (Bohlander et al., 1992). 

Genomic DNA (10 – 100 ng) was denatured at 94˚C for 2 minutes with primer A (5’-

GTTTCCCAGTCACGATCNNNNNNNNN-3’) (40 pmol) with Sequenase buffer and 

whilst cooling to 10˚C for 5 minutes, Sequenase polymerase was added with dNTPs, 

bovine serum albumin (BSA) and dithiothreitol (DTT). In a thermal cycler, the reaction 

mixture was subjected to temperature ramping from 10˚C to 37˚C across 8 minutes, 

37˚C for 8 minutes, 94˚C for 2 minutes, 10˚C whilst adding diluted Sequenase buffer 

for 5 minutes, ramping from 10˚C to 37˚C across 8 mintes and finally 37˚C for 8 

minutes. The product was added with sterile water to a master mix containing dNTPs, 

biotin-16-deoxyuridine triphosphate (dUTP), Taq polymerase and primer B (5’-

GTTTCCCAGTCACGATC-3’) (100 pmol). In a thermal cycler, the reaction mixture 

was subjected to 35 cycles of 94˚C for 30 seconds, 40˚C for 30 seconds, 50˚C for 30 

seconds and 72˚C for 2 minutes before cooling to 4˚C. The PCR product was subjected 

to gel electrophoresis to check for a smear (0.5 – 1 Kb), confirming the labelling 

amplification reaction as successful.  
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Microarray tubes were washed with sterile water and then hybridisation buffer was 

added at ambient temperature for 5 minutes. The PCR product, diluted in hybridisation 

buffer, was incubated at 95˚C for 5 minutes and cooled on ice prior to adding to the 

microarray tube at 60˚C for 60 minutes (550 rpm). Microarray tubes were subsequently 

washed three times with washing buffer at weakening concentrations at 30˚C for 5 

minutes (550 rpm). The microarrays were blocked with a solution containing 2% (w/v) 

milk powder at 30˚C for 15 minutes (550 rpm). Poly-HRP Streptavidin (Clondiag) was 

added and incubated at 30 for 15 minutes (550 rpm). Microarrays were again washed 

three times with washing buffer at weakening concentrations at 30˚C for 5 minutes (550 

rpm). Hybridised probes were enhanced by adding a 3,3',5,5'-TMB analog (Seramun 

Grün) at 25˚C for 15 minutes. Microarray images were generated by ATR-01 Reader 

and the data were analysed using Iconoclust software (Clondiag). Hybridisation 

analyses were performed in duplicate. 

 

2.2.9 Genome sequencing and comparative genomics of B. pilosicoli 

 

2.2.9.1 Genomic DNA preparation, library construction and sequencing 

CTAB extraction was used to purify high molecular weight genomic DNA 

(Wilson, 1990) (as described in section 2.2.1). The B. pilosicoli B2904 and WesB 

genomes were sequenced on a Roche 454 FLX platform (454 Life Sciences), using a 

standard preparation for a 3 Kb and 8 Kb library, respectively.  

For the B2904 genome, a de novo assembly of the sequence reads into contiguous 

sequences was generated using Newbler assembler software (454 Life Sciences). The 

reads were assembled into one scaffold of 173 contigs with an average coverage of ×20. 

Remaining gaps were closed by PCR walking between unlinked, contiguous sequences 

(Wilson, 1990), followed by Sanger sequencing. In total, 170 Sanger reads were 

incorporated into the assembly. 

For the WesB genome, sequence data were initially assembled with Short 

Oligonucleotide Alignment Program (SOAP) (Li et al., 2008) and subsequently 

Newbler assembler software was used to create a combined assembly with Illumina 

reads. Iterative Mapping and Assembly for Gap Elimination (IMAGE) (Tsai et al., 

2010) improved genome assemblies by targeted re-assembly of Illumina reads to span 

gaps within scaffolds. To check for indels (insertion/deletions) and single nucleotide 

polymorphisms (SNP), Iterative Correction of Reference Nucleotides (iCORN) (Otto et 

al., 2010) was applied to the genome and appropriate corrections were made. All repeats 
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over 100 bp were checked to ensure that they were confirmed by at least two spanning 

read pairs. The incomplete WesB genome was sequenced within one scaffold, with an 

average coverage of ×34. 

 

2.2.9.2 Sequence analysis and annotation 

The complete nucleotide sequence and annotation of B. pilosicoli B2904 

(accession number: CP003490 Project ID: 80999) and partial nucleotide sequence and 

annotation of B. pilosicoli WesB B2904 (accession number HE793032; Project ID: 

89437) have been deposited in GenBank. Scaffold sequences for unpublished genomes 

B. alvinipulli C1T and B. intermedia HB60 can be accessed from the Centre for 

Comparative Genomics, Murdoch University via e-mail request (ccg.murdoch.edu.au/). 

The draft genome scaffolds for B. aalborgii are available at the MetaHit website 

(www.sanger.ac.uk/resources/downloads/bacteria/metahit/). 

Sequence and protein analysis and annotation (including rRNA and tRNA 

prediction) for the complete B. pilosicoli B2904 and partial B. pilosicoli WesB genomes 

was as previously described for B. hyodysenteriae WA1 (Bellgard et al., 2009) and B. 

pilosicoli 95/1000 (Wanchanthuek et al., 2010) unless otherwise stated. 

Gene prediction and gene and protein sequence extraction was achieved using 

prodigal 2.50 (compbio.ornl.gov/prodigal/) (Hyatt et al., 2010). Initial coding DNA 

sequence (CDS) annotation was completed with an in-house updated compilation of the 

Automatic Functional Annotation and Classification Tool (AutoFACT) 3.4 (Koski et 

al., 2005), which uses BLAST to compare the CDS sequences to online databases; 

UniRef90 and UniRef100 (Suzek et al., 2007), Cluster of Orthologous Groups (COG) 

(Tatusov et al., 1997), Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa 

and Goto, 2000), Pfam (Sonnhammer et al., 1997), Simple Modular Architecture 

Research Tool (SMART) (Schultz et al., 1998), EST others (Boguski et al., 1993), 

Large SubUnit (LSU) rRNA (de Rijk et al., 2000), Small SubUnit (SSU) rRNA (van de 

Peer et al., 2000) and the non-redundant (nr) database (NCBI). When there is a 

significant match based on length and percentage identity (PID), to one of the rRNA 

databases, the sequence is classified as rRNA. Non-rRNA CDS are compared against 

the remaining databases based on a threshold e-value of 1e-05. Resulting annotations 

were manually checked and edited where appropriate to be consistent with previous 

Brachyspira genome annotation methodologies for comparative purposes (Bellgard et 

al., 2009; Hafstrom et al., 2011; Wanchanthuek et al., 2010). Final annotations were 
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assessed with the NCBI Microbial Genome Submission Tool 

(preview.ncbi.nlm.nih.gov/genomes/frameshifts/). 

Circular maps of the chromosome were produced using Circos 0.48 

(mkweb.bcgsc.ca/circus/) (Krzywinski et al., 2009). The chromosomes were orientated 

from the oriC, which were identified using the Ori-Finder program 

(tubic.tju.edu.cn/Ori-Finder/) (Gao and Zhang, 2008). All genes were colour-coded 

according to COG functional categories. The open source utility ‘Freckle’ was used for 

sequence dot plotting (code.google.com/p/freckle/), which was an in-house 

development of the Dotter tool (Sonnhammer and Durbin, 1995). Pairwise genome 

alignments were performed with the Artemis Comparison Tool (ACT) (Carver et al., 

2005). 

 

2.2.9.3 Multilocus sequence typing 

The MLST dendrogram of six Brachyspira strains that have undergone genome 

sequencing, and three that are currently within unpublished genome sequencing projects 

being undertaken by the authors was calculated and constructed from the concatenation 

of seven gene nucleotide sequences (adh, pgm, est, glp, gdh, thi, alp) (Rasback et al., 

2007b). These concatenated sequences were aligned by ClustalW (Larkin et al., 2007) 

and the maximum likelihood dendrogram was generated via molecular evolutionary 

genetics analysis (MEGA) 5 (Tamura et al., 2011). The condensed bootstrap maximum 

likelihood dendrogram was constructed from the General Time Reversible (GTR) 

model with a Gamma of 2.83 (+G) and an assumption that a fraction of sites (0.27) are 

evolutionarily invariable (+I). 

 

2.2.9.4 Protein cluster analysis 

Protein reciprocal blast similarity searches with a threshold maximum expected 

value 1e-20 were conducted with BlastlineMCL, which is an implementation of the 

Markov clustering algorithm (MCL) for graphs (www.micans.org/mcl/). The granularity 

of the output cluster was set with an inflation value of 2.5.  
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2.3 In vitro methodology 

 
2.3.1 Culture of mucus-secreting colonic, HT29-16E cells 

HT29-16E bead stock cultures were stored in liquid nitrogen (-196˚C). Cells were 

thawed at 37˚C in a water bath and were then reconstituted in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Sigma-Aldrich) supplemented with 10% (v/v) FCS, 1% 

(v/v) non-essential amino acids (100×) (Sigma-Aldrich), 2 mM L-glutamine (Sigma-

Aldrich) and gentamicin (50 µg/ml), in a 250 ml tissue culture flask and incubated in 

the presence of 5% carbon dioxide, at 37˚C, until a confluent monolayer was present. 

For monolayer growth, trypsinised cells were suspended in the supplemented DMEM 

medium, sown at 2 × 105 cells per well in 6-well plates (Nunc) and grown to confluency 

for 120 hours prior to use (Searle et al., 2009).  

HT29-16E cells were cultured in a three-dimensional (3D) cell model as 

previously described (Honer zu Bentrup et al., 2006). Trypsinised cells were 

resuspended in GTSF-2 medium (Lelkes et al., 1997), to yield 2 × 105 cells/ml and 

combined with 5 mg/ml CytodexTM microcarrier beads (Cytodex 3, 133 – 215 µm) 

(Sigma-Aldrich) and 500 µl sterile glucose solution (1 g/L), then dispensed into a 50 ml 

rotating wall vessel (RWV) (Synthecon). The RWV was incubated in the presence of 

5% carbon dioxide at 37˚C for 21 – 23 days to allow cell adherence to the beads. The 

culture medium was not changed for the first 48 hours, but subsequently, 90% of the 

culture medium was changed every 24 hours. Over the 21 – 23 days, the rotation speed 

was gradually increased from 13.0 to 30.0 rpm, to ensure cell-bead aggregates remained 

in suspension. Following 21 – 23 days of incubation, cell aggregates were removed 

from the RWV, resuspended to yield 5 × 105 cells/ml and seeded into 1.5 ml 

microcentrifuge tubes immediately prior to use. 

 

2.3.2 Adhesion and invasion assays using HT29-16E cell models 

Human, mucus-secreting colonic cells, HT29-16E, were selected for use in 

adhesion and invasion assays since this cell line is well-established in studies of the 

interaction of enteroinvasive bacteria, such as Salmonella and E. coli, with the intestinal 

epithelium (Kerneis et al., 1994; Mellor et al., 2009), and have demonstrated an ability 

to differentiate (Cohen et al., 1999; Jessup et al., 2000). Moreover, preliminary studies 

(not presented) confirmed that B. pilosicoli B2904 adhered and invaded this cell line.  

Adhesion and invasion assays were performed essentially, as described previously 

(Dibb-Fuller et al., 1999; Searle et al., 2009; Searle et al., 2010). Briefly, B. pilosicoli 
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and lactobacilli inocula were prepared by centrifugation (2447 × g, 10 minutes) of a 5 

day and 24 hour broth culture, respectively, after which, the pellet was resuspended in 

tissue culture media to yield 5 × 107 CFU/ml.  

The HT29-16E monolayer and 3D cells were inoculated under different 

experimental strategies detailed in Table 2.5. A total of 4 ml bacterial inoculum was 

added to the cells seeded in the 6-well plate in the monolayer assays, whereas 1 ml 

bacterial inoculum was added to the cell aggregates in microcentrifuge tubes in 3D cell 

assays and incubated at 37˚C in an anaerobic cabinet with gentle agitation. 

To enumerate the B. pilosicoli associated with the HT29-16E cells following the 

respective incubation, the cells were washed three times with Hank’s balanced salt 

solution (HBSS) (Sigma-Aldrich) and a homogenous cell suspension was achieved by 

gentle pipetting and by the use of a cell scraper (Corning) in monolayer assays. To 

differentiate the number of intracellular (invaded) B. pilosicoli, 100 µg/ml gentamicin 

solution (Sigma-Aldrich) was added to incomplete DMEM and delivered to each well, 

in monolayer assays or microcentrifuge tube, in 3D cell assays, and incubated for a 

further 2 hours. Cells were subsequently washed three times with HBSS and a 

homogenous cell suspension prepared as described above. Cell suspensions were diluted 

serially (100 – 10-7), plated onto Brachyspira selective agar and incubated anaerobically 

at 37˚C for 3 – 5 days. The number of adherent Brachyspira was determined by 

subtracting the number of invaded from the number of associated Brachyspira. All 

HT29-16E cell experiments were conducted in triplicate on three separate occasions. 

 

2.3.3 Avian caecal in vitro organ culture association assay 

Immediately prior to in vitro organ culture (IVOC) studies, thirty-six commercial 

20 week-old ISA brown laying hens (confirmed free of Brachyspira by pooled faeces 

culture and PCR) were euthanased by cervical dislocation and, at post-mortem 

examination, the caeca were aseptically sampled and stored in pre-cooled complete 

Roswell Park Memorial Institute (RPMI)-1640 medium containing 10% (v/v) FCS, 

0.25% (w/v) lactalbumin hydrosylate, 75 mM mercaptoethanol, 0.2 µg/ml 

hydrocortisone (chloroform/ethanol 1:1), 0.1 µg/ml insulin and 2 mM L-glutamine and 

L-aspartate (Girard et al., 2005); all constituents were obtained from Sigma-Aldrich. 

Tissues were prepared as described previously (Collins et al., 2010). Briefly, tissues 

were washed in complete medium and trimmed aseptically to remove excess mesenteric 

adipose tissue. Tissue sections were immobilised in CellCrownsTM (Scaffdex) so that 

the mucosal side was immobilised between the CellCrownTM and its base, providing a 
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polarised IVOC system with fixed surface area and where the bacterial inoculum was 

limited to the mucosal side of the explant tissue. Immobilised tissues were placed into a 

24-well plate (Nunc) with the mucosal side face-upwards and submerged in 500 µl 

complete medium.  

For IVOC association assays, B. pilosicoli and both viable and heat-inactivated 

lactobacilli inocula were prepared by centrifugation (2447 × g, 10 minutes) of a 5 day 

and 24 hour broth culture, respectively, after which, the pellet was resuspended in 

complete medium to yield 108 CFU/ml. Tissues were inoculated under different 

experimental strategies detailed in Table 2.5. A total of 1 ml bacterial inoculum was 

added to the tissues in the 24-well plate and incubated anaerobically at 37˚C. Uninfected 

control tissues were used to confirm the absence of pre-existing Brachyspira infection. 

Following infection, tissues were washed thoroughly using HBSS, homogenised in 0.1 

M PBS and serially diluted to facilitate enumeration. Dilutions (100 – 10-7) were plated 

onto Brachyspira selective agar and incubated anaerobically at 37˚C for 3 – 5 days; to 

determine numbers of associated Brachyspira. All IVOC experiments enumerating 

viable bacteria were repeated in quadruplicate on two separate occasions.  

 

2.3.4 Electron microscopy 

 Samples from 3D cell and IVOC studies were fixed in 3% (v/v) glutaraldehyde 

(Sigma-Aldrich) for at least 24 hours prior to processing by the Electron Microscopy 

Unit (AHVLA, Weybridge). SEM and transmission (T)EM were carried out as 

previously described (La Ragione et al., 2002). Duplicate samples of each condition 

were examined blind. For SEM, fixed specimens were washed in 0.1 M sterile PBS, 

post-fixed in 1% (w/v) osmium tetroxide, rinsed with 0.1 M sterile PBS, dehydrated in 

ethanol and placed in hexamethyldisizane (Sigma-Aldrich) for 5 minutes. Specimens 

were critical point dried with liquid carbon dioxide, fixed to aluminium stubs with silver 

conductive paint, sputter-coated with gold and examined under SEM (Stereoscan S-250 

mk 3 SEM, Cambridge Instruments). 

For TEM, fixed specimens were cut to 1 – 2 mm thickness, washed in 0.1 M 

sterile PBS, post-fixed in 1% (w/v) osmium tetroxide, dehydrated in ethanol and placed 

in propylene oxide prior to embedding in araldite resin (Sigma-Aldrich). The resin was 

polymerised at 60˚C for 48 hours and ultrathin sections at 70 – 90 nm thickness were 

prepared on copper grids and stained with uranyl acetate and lead citrate (Sigma-

Aldrich). Sections were examined under TEM (CM-10 TEM, Philips). 
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Bacterial inoculation (CFU/ml) (incubation time) Assay  Experimental strategy or step 

HT29-16E monolayer / 3D cells Avian caecal IVOCc

L. reuteri or L. salivarius pre-incubation. 5 × 107 (30 minutes) 108 (30 minutes) Protectiona

B. pilosicoli inoculation. 5 × 107 (5 hours) 108 (2 hours) 

Competition Simultaneous inoculation of L. reuteri or L. 

salivarius and B. pilosicoli. 

5 × 107 (5 hours)d 108 (2 hours)d

B. pilosicoli inoculation. 5 × 107 (5 hours) 108 (2 hours) Displacementa

L. reuteri or L. salivarius post-incubation. 5 × 107 (30 minutes) 108 (30 minutes) 

CFS B. pilosicoli inoculation with 10% (v/v) L. 

reuteri or L. salivarius CFS. 

5 × 107 (5 hours) 108 (2 hours) 

B. pilosicoli 

B2904b

B. pilosicoli inoculation with medium in 

place of Lactobacillus inoculation (containing 

10% (v/v) MRS for CFS assay control). 

5 × 107 (5 hours) 108 (2 hours) 

L. reuteri LM1/ 

L. salivarius LM2b

L. reuteri or L. salivarius inoculation with 

medium in place of B. pilosicoli inoculation. 

5 × 107 (30 minutes in protection and 

displacement and 5 hours in competition assays) 

108 (30 minutes in protection and displacement 

and 2 hours in competition assays) 

Uninfectedb Complete media added only (supplemented 

with 10% (v/v) MRS, pH 5.8 and 3.8, for 

CFS assay control). 

No bacterial inoculum added No bacterial inoculum added 

Table 2.5 Experimental strategies for HT29-16E monolayer and three-dimensional (3D) cell and avian caecal in vitro organ culture (IVOC) studies. 

c Both viable and heat-inactivated lactobacilli were administered in separate conditions for avian caecal IVOC assays. 

a Between delivery of different bacterial inocula, HT29-16E cells or IVOC tissues were washed twice with HBSS.  

d The values refer to the concentrations and incubation times of both B. pilosicoli and the Lactobacillus spp. 

b Control conditions. 
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2.4 In vivo methodology 

 
2.4.1 Experimental birds 

 

2.4.1.1 Experimental challenge study 

Thirty ISA Warren laying pullets were purchased from a commercial breeder at 

approximately 16 weeks of age. Upon arrival (day 1), the birds were randomly divided 

into three groups of ten birds each. The groups of birds were housed in separate, 

negative pressure rooms within a biosecure containment facility with 12 hours of 

artificial light per 24 hours. Commercial un-medicated pelleted feed and drinking water 

were provided ad libitum.  

 

2.4.1.2 Intervention study 

Thirty ISA Warren laying pullets were purchased from a commercial breeder at 

approximately 17 weeks of age. Upon arrival (day 1), the birds were randomly divided 

into two groups of fifteen birds each. The groups of birds were housed in separate, 

negative pressure rooms within a biosecure containment facility with 12 hours of 

artificial light per 24 hours. Commercial un-medicated pelleted feed and drinking water 

were provided ad libitum. One group received distilled water and the other, probiotic-

treated group, received distilled water containing 2.5 × 108 CFU/ml L. reuteri LM1 

throughout the study, from day 1 with replacements provided daily. L. reuteri LM1 was 

shown to survive in distilled water for 2.5 hours without significant reduction in 

viability and assuming chicken drink approximately 200 ml per day (20.8 ml in 2.5 

hours), the chicken should consume circa 5 × 109 CFU viable lactobacilli. Furthermore, 

non-viable lactobacilli were shown to also inhibit B. pilosicoli motility. 

 

2.4.2 Preparation of bacterial strains for administration to birds 

 
2.4.2.1 Experimental challenge study 

 B. pilosicoli strains CPSp1, isolated from a chicken in Australia (Stephens and 

Hampson, 2002b) and B2904, isolated from a chicken in the United Kingdom were 

harvested by centrifugation of a 5 day BEB broth culture (2447 × g, 10 minutes) and the 

pellet was resuspended in 0.1 M sterile PBS to yield 5 × 108 CFU/ml. 
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2.4.2.2 Intervention study 

 B. pilosicoli B2904, isolated from a chicken in the United Kingdom was harvested 

by centrifugation of a 5 day BEB broth culture (2447 × g, 10 minutes) and the pellet 

was resuspended in 0.1 M sterile PBS to yield 5 × 108 CFU/ml. L. reuteri LM1, isolated 

from healthy conventional laying hen faeces, was harvested by centrifugation of a MRS 

broth culture (2447 × g, 10 minutes). The pellets were resuspended in 10 L distilled 

water, in which they have been shown to remain viable without significant depletion in 

numbers for 2.5 hours, yielding 2.5 × 108 CFU/ml.  

 

2.4.3 Experimental challenge 

 
2.4.3.1 Experimental challenge study 

Following a week of acclimatisation, at 17 weeks of age, ten birds in the three 

groups were challenged with B. pilosicoli or sham-challenged with 0.1 M sterile PBS by 

oral gavage on three alternate days (days 6, 8 and 10). Each of the birds in all three 

groups was first dosed with 2 ml 10% (w/v) sodium bicarbonate solution (Sigma-

Aldrich) by oral gavage to neutralise the crop acid, as used previously (Carroll et al., 

2004; Randall et al., 2006). Following 20 minutes after the dose of sodium bicarbonate, 

all birds in one group were challenged by oral gavage, with 1 ml B. pilosicoli B2904 

suspension (5 × 108 CFU/ml), another with B. pilosicoli CPSp1 suspension and a 

negative control group was sham-challenged with 1 ml 0.1 M sterile PBS. 

 

2.4.3.2 Intervention study 

For the intervention study, after a week of acclimatisation, at 18 weeks of age, 

fifteen birds in the two groups were challenged with B. pilosicoli by oral gavage on 

three alternate days (days 8, 10 and 12). Each of the birds in both groups was first dosed 

with 2 ml 10% (w/v) sodium bicarbonate solution by oral gavage to neutralise the crop 

acid. Following 20 minutes after the dose of sodium bicarbonate, all birds were 

challenged by oral gavage, with 1 ml B. pilosicoli B2904 suspension (5 × 108 CFU/ml). 

 

2.4.4 Experimental monitoring during in vivo studies 

The chickens were weighed and cloacally swabbed upon arrival and throughout 

both the experimental challenge and intervention studies. Cloacal swabs were plated 

onto Brachyspira selective agar, which were incubated anaerobically at 37˚C for 8 days; 

the plates were examined at 24 hour intervals for spirochaetal growth. When growth 
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was detected visually, cells were picked from the plate using a sterile swab and 

subjected to PCR to verify genus (Phillips et al., 2005) and species (Mikosza et al., 

2001b). 

Eggs were collected daily and weighed. Furthermore, in the intervention study, 

eggs were scored on the degree of faecal eggshell staining without knowledge of which 

group they belonged; scores ranged from 0 for a clean eggshell to 5 for a heavily stained 

eggshell, as previously described (Stephens and Hampson, 2002b).  

A representative sample of fresh faeces were taken from the floor of each of the 

rooms on a daily basis for the duration of the study and mixed portions (1 g) were 

weighed and dried to constant weight to determine faecal moisture content. In the 

intervention study, three faecal DNA extracts were prepared from the mixed faecal 

samples and subjected to PCR, using previously described primers to test for the 

presence of the Brachyspira genus (Phillips et al., 2005), B. pilosicoli (Mikosza et al., 

2001b) and L. reuteri (Kwon et al., 2004). 

 

2.4.5 Post-mortem examinations 

 

2.4.5.1 Experimental challenge study 

Three birds per group were euthanased by cervical dislocation and subjected to 

post-mortem examination at 5 and 18 days after the final challenge with B. pilosicoli. At 

both post-mortem examinations, the caeca were aseptically removed and weighed and 

sections (approximately 1 g) of each of the duodenum, jejunum, ileum, caeca, colon, 

liver, spleen were aseptically sampled and placed in 0.1 M sterile PBS for bacterial 

enumeration and 10% (v/v) neutral buffered formalin (Sigma-Aldrich) for 

histopathological examination by haematoxylin and eosin (HE) staining. The 

anatomical locations of tissues sampled from the chicken GI tract is outlined in Figure 

2.1A. In the first post-mortem examination, 5 days after the final dose, the oviduct was 

aseptically removed and fixed for histopathological examination. In the final post-

mortem examination, 18 days after the final dose, sections (approximately 1 g) from the 

ovary, infundibulum, magnum, isthmus and the uterus/vagina region were sampled for 

bacteriology and histopathology. The anatomical locations of tissues sampled from the 

chicken oviduct is outlined in Figure 2.1B. 
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Figure 2.1 The anatomy of the gastrointestinal (GI) tract and the female reproductive 

tract of poultry (IACUC, 2007). Tissues sampled at post-mortem examination in the 

experimental challenge and intervention studies are emboldened. 

 
2.4.5.2 Intervention study 

Three birds per group were euthanased by cervical dislocation and subjected to 

post-mortem examination at 5 and 21 days after the final challenge with B. pilosicoli. At 

both post-mortem examinations, the caeca were aseptically removed and weighed and 

sections (approximately 1 g) of each of the duodenum, jejunum, ileum, caeca, colon, 

liver, spleen, ovary, infundibulum, magnum, isthmus, uterus and vagina (Figure 2.1) 

were aseptically sampled and placed in 0.1 M sterile PBS for bacterial enumeration. 

Sections of each of the caecal tonsil, caecum, colon and liver were fixed in 10% (v/v) 

neutral buffered formalin for histopathological examination by HE staining. 

 

2.4.6 Bacteriological enumeration at post-mortem examination 

For bacteriology, tissues were homogenised in 9 ml 0.1 M sterile PBS, diluted 

serially (100 – 10-7) and 20 µl samples plated onto Brachyspira selective agar and 

incubated anaerobically at 37˚C for 3 – 5 days. This process was performed swiftly to 

minimise exposure to oxygen. B. pilosicoli colonies were subsequently enumerated and 

colonies confirmed as B. pilosicoli by PCR (Mikosza et al., 2001b; Phillips et al., 

2005). Similarly, PCR tests were performed on the tissue homogenates to confirm the 

presence/absence of Brachyspira in tissues that were negative by culture. In the absence 

of distinguishing features of the B. pilosicoli, it was assumed that these were the strains 
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used for challenge, since the poultry were B. pilosicoli-free prior to challenge and were 

kept in biosecure containment.  

 

2.4.7 Haematoxylin and eosin stain 

Trimmed tissues fixed in 10% (v/v) neutral buffered formalin were processed in 

paraffin wax and 4 µm sections were HE stained. The samples were examined and 

photographed using a light microscope (Leica DM4000B microscope attached to a 

Leica DFC480 digital camera, Leica Microsystems, ×100, ×200, ×400). 
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2.5 Statistical analyses 

 
All experiments presented in this thesis excluding the in vivo intervention study, 

consisted of three or more experimental groups, including control groups. Therefore, 

equivalent data from each group were compared using the one-way analysis of variance 

(ANOVA) and the Bonferroni post test with a 95% confidence interval. This statistical 

analysis compares all groups of data as a whole and indicates whether the results of at 

least one group differ significantly from those of another. The data were presented in 

graphs and tables as the mean and standard deviation of the mean and significance (p 

value) between the groups of data were calculated 

The in vivo intervention study consisted of two experimental groups, the data of 

which were compared using an unpaired Student’s t-test with a 95% confidence 

interval. The data were presented in graphs and tables as the mean and standard 

deviation of the mean and the significance (p value) between the groups of data were 

calculated. 

For the analysis of bacterial counts from in vitro and in vivo studies, the bacterial 

counts were transformed to their logarithms to base ten (log10) for statistical analysis. 

Statistical analysis of the data presented in this thesis was performed and the exact 

p values calculated using commercially available software (GraphPad Prism). Where 

the p value was below 0.05 on comparing groups of data, the difference was considered 

significant. Furthermore, categorisation of the p values was applied on graphs using an 

asterisk (*) grading system (Table 2.6). 

 

Table 2. 6 Summary of p value categorisation. In the graphs and tables presented in this 

thesis, p values are associated with an asterisk representing the degree of significance 

between groups of data.  

p value Degree of significance Asterisk grade 

≤0.001 Extremely significant *** 

>0.001 to ≤0.01 Very significant ** 

>0.01 to ≤0.05 Significant * 

>0.05 Not significant ns 
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Chapter 3. 

 

Characterisation of Brachyspira and development of 

a novel experimental challenge model for avian 

intestinal spirochaetosis 

 
3.1 Introduction 

 
AIS is an enteric disease of poultry that arises from the colonisation of the caeca 

and colon by the anaerobic spirochaete, Brachyspira (Stephens and Hampson, 2001; 

Swayne and McLaren, 1997), as introduced in Chapter 1 (specifically in section 1.1). 

Currently, three species of this genus are considered avian pathogens; B. alvinipulli 

(Stanton et al., 1998), B. intermedia (Hampson and McLaren, 1999) and B. pilosicoli 

(Stephens and Hampson, 2002a). B. pilosicoli has a wide host range, also causing PIS in 

pigs (PIS) (Trott et al., 1996d) and HIS in humans (Tsinganou and Gebbers, 2010), with 

a potential for zoonosis (Hampson et al., 2006b). 

AIS is common in adult layer and broiler breeder flocks (Stephens and Hampson, 

1999), and has been associated with a delayed onset of lay, reduced egg weights, 

diarrhoea, faecal staining of eggshells, reduced growth rates, increased feed 

consumption and non-productive ovaries (Davelaar et al., 1986; Feberwee et al., 2008; 

Griffiths et al., 1987; Swayne et al., 1992). A characteristic of colonisation of birds by 

B. pilosicoli is the ability to form end-on attachments to the intestinal epithelial surface 

and invade (Feberwee et al., 2008; Jensen et al., 2001; Jensen et al., 2000). Moreover, 

B. pilosicoli has been found to form a dense fringe penetrating between enterocytes that 

is associated with reactive and mild inflammatory responses, crypt hyperplasia and 

increased numbers of goblet cells (Feberwee et al., 2008). Similar observations have 

been recorded in experimental challenge studies that used B. pilosicoli but the disease
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induced is often reported as milder than that observed in the field (Jamshidi and 

Hampson, 2002, 2003; Stephens and Hampson, 2002a, b). To date, no experimental 

challenge studies have produced a quantitative output for the colonisation of poultry by 

Brachyspira. 

Until recently, the identification of Brachyspira species has been highly reliant on 

phenotypic characteristics involving biochemical testing, such as tests for indole 

production and hippurate hydrolysis, and microscopy to differentiate species by cell 

length, morphology and the number of periplasmic flagella. However, in recent years a 

number of molecular methods for the detection and speciation of Brachyspira have been 

developed (La et al., 2003; Phillips et al., 2006). For the studies presented in this 

chapter, this array of phenotypic and genotypic tests were used to accurately identify the 

Brachyspira species. Accurate identification was imperative to future studies relating to 

AIS given that only B. alvinipulli, B. intermedia and B. pilosicoli are considered 

pathogenic to poultry (Hampson and McLaren, 1999; Stanton et al., 1998; Stephens and 

Hampson, 2002a) and an additional objective was set, namely to confirm Koch’s 

postulates by poultry challenge studies using a newly isolated B. pilosicoli strain. As 

part of these in vivo studies, the aim was to improve on recent variable AIS models by 

the development of a novel in vivo model for AIS that produced novel clinical 

observations and a quantitative output of colonisation.  
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3.2 Results 

 
3.2.1 Speciation and characterisation of Brachyspira 

 

3.2.1.1 Phenotypic characterisation 

Brachyspira strains were isolated from the faeces of poultry with suspected AIS 

using Brachyspira selective agar and subsequent subculture onto FABA agar to ensure 

purity. The role of the anaerobic bacteriology group at the Animal Health and 

Veterinary Laboratories Agency (AHVLA, Winchester, United Kingdom) who aided in 

this process is acknowledged. In addition, well-characterised strains were obtained from 

Prof. David Hampson at Murdoch University (Perth, Australia) and Dr. Désirée Jansson 

at the National Veterinary Institute (SVA, Uppsala, Sweden) and these were 

successfully cultured on FABA and Brachyspira selective agar.  

Gram staining performed on each of the 29 Brachyspira strains, followed by 

examination under light microscopy revealed Gram-negative, helical spirochaetes. 

Examination of wet smears under dark field microscopy confirmed all strains as highly 

motile, helical spirochaetes. The 29 Brachyspira strains were used in biochemical tests 

(Fellstrom and Gunnarsson, 1995; Hommez et al., 1998) to identify or confirm their 

speciation (Table 3.1). All strains were grown on FABA agar and typical of B. 

hyodysenteriae, all strains of this species were strongly β-haemolytic and those of the 

other species were weakly β-haemolytic. Where speciation as B. hyodysenteriae was 

suspected, this was confirmed serologically via the SAT and/or IFAT tests, which 

involved the application of B. hyodysenteriae antiserum (Burrows and Lemcke, 1981). 

 

3.2.1.2 Molecular characterisation 

In order to perform molecular characterisation tests on the Brachyspira strains, 

genomic DNA was extracted, using the CTAB genomic DNA extraction method for use 

in two different Brachyspira genus-specific PCRs; both were based on the amplification 

of the 16S rRNA gene but one specifically of a 1309 bp fragment (Phillips et al., 2005) 

and the other of a 1509 bp fragment (Johansson et al., 2004). Species-specific PCR tests 

for B. hyodysenteriae, targeting a 354 bp region of the NADH oxidase (nox) gene, for B. 

intermedia, targeting a 557 bp region also of the nox gene and for B. pilosicoli, targeting 

a 823 bp region of the 16S rRNA gene, were also performed on DNA extracted from all 

strains (La et al., 2003; Phillips et al., 2006). Gel electrophoresis of the PCR products 

was performed and the results for each of the PCR tests are summarised in Table 3.2. 
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Table 3.1 Biochemical properties of Brachyspira strains used in further studies that 

aided in the phenotypic speciation of these strains. Where possible, the group to which 

each strain/species is assigned is given (Fellstrom and Gunnarsson, 1995; Hommez et 

al., 1998). 
Species Strain Group Inda  Hippb  α-galc α-glud β-glue

B. alvinipulli AN1263/2/04  − + − − + 

B. alvinipulli AN3382/2/03  − + − − + 

B. alvinipulli C1T  − + − − + 

B. alvinipulli C5  − + − − + 

"B. canis" DogB III − − − − + 

"B. canis" D24 III − − − − + 

B. hyodysenteriae B78T I + − − + + 

B. hyodysenteriae P18A I + − − + + 

B. hyodysenteriae Q9348.6 I + − − + + 

B. hyodysenteriae WA1 I + − − + + 

B. innocens AN3165/2/03 IIIb − − + − + 

B. innocens AN4113/03 IIIb − − + − + 

B. innocens AN4341/03 IIIb − − + − + 

B. innocens B2960 IIIc − − + + + 

B. innocens Q97.3289.5.5 IIIc − − − + + 

B. intermedia AN3370/03 II + − − + + 

B. intermedia P280-1 II + − − + + 

B. intermedia Q98.0446.2 II + − − + + 

B. intermedia UNL-2 II + − − + + 

B. murdochii 155/20 III − − − − + 

B. murdochii 56-150T III − − − − + 

B. murdochii AN181/1/04 III + + + + + 

B. murdochii AN3549/1/03 III + + + + + 

B. pilosicoli 95/1000 IV − + + − − 

B. pilosicoli B2904 IV − + + − − 

B. pilosicoli WesB IV − + + − − 

B. pilosicoli CPSp1 IV − + + − − 

"B. pulli" B37ii  − − + − + 

"B. pulli" Bp605  − − + − + 
a Test for ability to cleave indole from tryptophan; +, positive; −, negative. 
b Test for ability to hydrolyse hippurate to glycine and benzoate; +, positive; −, negative. 
c Test for α-galactosidase activity; +, positive; −, negative. 
d Test for α-glucosidase activity; +, positive; −, negative. 
e Test for β-glucosidase activity; +, positive; −, negative. 
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Table 3.2 Molecular speciation of Brachyspira strains by PCR. Results of the two 

Brachyspira genus-specific and the three species-specific PCR tests are displayed. 

PCRaSpecies Strain 

Brachyb Bhyc Bimd Bpie

B. alvinipulli AN1263/2/04 + − − − 

B. alvinipulli AN3382/2/03 + − − − 

B. alvinipulli C1T + − − − 

B. alvinipulli C5 + − − − 

"B. canis" DogB + − − − 

"B. canis" D24 + − − − 

B. hyodysenteriae B78T + + − − 

B. hyodysenteriae P18A + + − − 

B. hyodysenteriae Q9348.6 + + − − 

B. hyodysenteriae WA1 + + − − 

B. innocens AN3165/2/03 + − − − 

B. innocens AN4113/03 + − − − 

B. innocens AN4341/03 + − − − 

B. innocens B2960 + − − − 

B. innocens Q97.3289.5.5 + − − − 

B. intermedia AN3370/03 + − + − 

B. intermedia P280-1 + − + − 

B. intermedia Q98.0446.2 + − + − 

B. intermedia UNL-2 + − + − 

B. murdochii 155/20 + − − − 

B. murdochii 56-150T + − − − 

B. murdochii AN181/1/04 + − − − 

B. murdochii AN3549/1/03 + − − − 

B. pilosicoli 95/1000 + − − + 

B. pilosicoli B2904 + − − + 

B. pilosicoli WesB + − − + 

B. pilosicoli CPSp1 + − − + 

"B. pulli" B37ii + − − − 

"B. pulli" Bp605 + − − − 
a PCR result for DNA band when subjected to gel electrophoresis; +, positive; −, negative. 
b Two Brachyspira genus-specific PCR. (Johansson et al., 2004; Phillips et al., 2005). 
c B. hyodysenteriae species-specific PCR (La et al., 2003). 
d B. intermedia species-specific PCR (Phillips et al., 2006). 
e B. pilosicoli species-specific PCR (Phillips et al., 2006). 
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3.2.1.3 Antimicrobial susceptibility 
As part of the characterisation, antimicrobial susceptibility testing was performed 

on all Brachyspira strains used in the studies presented in this thesis. The MIC of the 

antimicrobials gentamicin, tiamulin and tylosin were determined. Tiamulin and tylosin 

were selected as these antimicrobials have been reported as effective against 

Brachyspira but with an emerging resistance against them (Karlsson et al., 1999; 

Pringle et al., 2006). It was important to determine the MIC of gentamicin against 

Brachyspira for its use in tissue culture adhesion and invasion/association studies (as 

discussed in Chapter 6), where this aided the determination of the number of invading 

B. pilosicoli. B. hyodysenteriae P18A also acted as a control for MIC testing (Burch, 

2008). The MICs of the three antimicrobials against each of the Brachyspira strains are 

displayed in Table 3.3. 
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Table 3.3 Minimum inhibitory concentrations (MIC) of the antimicrobials tiamulin, 

tylosin and gentamicin against the Brachyspira strains used in the studies presented in 

this thesis. 
MIC (µg/ml) Species Strain 

Tiamulina Tylosinb Gentamicinb

B. alvinipulli AN1263/2/04 0.016 2 2 

B. alvinipulli AN3382/2/03 0.016 2 1 

B. alvinipulli C1T 0.016 1 4 

B. alvinipulli C5 0.016 2 4 

"B. canis" DogB 0.016 2 2 

"B. canis" D24 0.016 2 2 

B. hyodysenteriae B78T 0.25 4 2 

B. hyodysenteriae P18A 0.062 256 1 

B. hyodysenteriae Q9348.6 0.062 4 8 

B. hyodysenteriae WA1 0.062 16 8 

B. innocens AN3165/2/03 0.016 4 8 

B. innocens AN4113/03 0.125 1 8 

B. innocens AN4341/03 0.016 4 8 

B. innocens B2960 0.03 128 1 

B. innocens Q97.3289.5.5 0.125 128 8 

B. intermedia AN3370/03 0.016 16 2 

B. intermedia P280-1 0.016 2 1 

B. intermedia Q98.0446.2 0.062 128 4 

B. intermedia UNL-2 0.062 16 4 

B. murdochii 155/20 0.016 2 1 

B. murdochii 56-150T 0.016 256 2 

B. murdochii AN181/1/04 0.016 4 8 

B. murdochii AN3549/1/03 0.016 1 4 

B. pilosicoli 95/1000 0.016 256 2 

B. pilosicoli B2904 0.125 256 1 

B. pilosicoli WesB 0.016 2 1 

B. pilosicoli CPSp1 0.016 1 4 

"B. pulli" B37ii 0.016 2 1 

"B. pulli" Bp605 0.016 2 1 
a Antimicrobial tested doubling series ranged 0.016 – 0.5 µg/ml. 
b Antimicrobial tested doubling series ranged 0.25 – 512 µg/ml. 
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3.2.1.4 Cell shape and structure 

Each Brachyspira was examined morphologically by SEM and an example of the 

outputs for one strain, B. pilosicoli B2904, which was the strain used in all studies and 

was also selected for whole genome sequencing, is displayed in Figure 3.1. SEM 

revealed spirochaete cells of approximately 12.0 µm in length and 0.25 µm in width. 

Both cell ends of this strain were pointed, with five periplasmic flagella originating at 

either end (Figure 3.1C). Midway along the cells where the periplasmic flagella from 

each pole of the cell overlap, ten periplasmic flagella were observed wrapped around the 

cell (Figure 3.1D). This resulted in a periplasmic flagella end:middle:end conformation 

of 5:10:5. 

 

 
Figure 3.1 Examination of B. pilosicoli B2904 from broth culture (BEB) by scanning 

electron microscopy (SEM). The entire cell showing helical morphology (A) and once 

pointed cell end of B. pilosicoli B2904 with the flagella exposed due to disruption of 

outer sheath (B), are shown. Periplasmic flagella (arrows) originating at both cell ends, 

wrap around the spirochaete (C) and midway along the B. pilosicoli axis, the 

periplasmic flagella from either end overlap (D). 

 107



Chapter 3   Characterisation of Brachyspira 

3.2.2 Establishing a novel experimental challenge model for avian intestinal 

spirochaetosis using B. pilosicoli 

Due to its isolation from the faeces of a chicken exhibiting clinical symptoms of 

AIS and ability to grow well in vitro, B. pilosicoli B2904 was selected for use in an 

experimental challenge study to demonstrate its pathogenicity in chickens and fulfil 

Koch’s postulates. B. pilosicoli CPSp1 was used as a positive control, to challenge a 

group of ISA Warren laying pullets alongside the B2904-challenged group, as 

experimental challenge with the CPSp1 strain was shown previously to elicit clinical 

symptoms comparable to that of AIS (Jamshidi and Hampson, 2002; Stephens and 

Hampson, 2002b). In order to improve on previous experimental challenge models for 

AIS, birds were pre-dosed with 10% sodium bicarbonate to neutralise the crop acid, as 

used previously in chickens experimentally challenged with Salmonella (Carroll et al., 

2004; Randall et al., 2006). Furthermore, as will be demonstrated this is the first study 

to produce a quantitative output on Brachyspira colonisation at post-mortem 

examination.  

 

3.2.2.1 Colonisation of poultry by B. pilosicoli 

The birds in all groups were cloacally swabbed upon arrival and throughout the 

experiment (on days indicated in Figure 3.2A) and swiftly plated onto Brachyspira 

selective agar and incubated anaerobically at 37˚C for 8 days, to minimise exposure to 

oxygen. The plates were examined at 24 hour intervals for spirochaetal growth and 

growth was detected visually, cells were picked from the plate and subjected to PCR to 

verify genus (Phillips et al., 2005) and species (Mikosza et al., 2001b). All birds were 

free from Brachyspira as tested by culture and PCR prior to challenge. Following 

challenge, cloacal swabs from 80.0 – 85.7% of birds were positive for B. pilosicoli by 

culture with species confirmation by PCR (Figure 3.2). However, the sensitivity of this 

method for the detection of B. pilosicoli is unknown. 

 

3.2.2.2 Bird weights 

The chickens were weighed upon arrival and throughout the study (on days 

indicated in Figure 3.2B). Weight gain was reduced in the challenged groups with the 

final mean weight significantly lower than the negative control in both the B2904- 

(p<0.05) and CPSp1-challenged (p<0.01) groups (Figure 3.2B).  
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3.2.2.3 Faecal moisture content 

A representative sample of fresh faeces were taken from the floor of each of the 

rooms for the duration of the study (on days indicated in Figure 3.2C) and portions (1 g) 

were weighed and dried to constant weight to determine faecal moisture content. 

Following challenge with CPSp1, faecal moisture content increased by 0.5 – 5.3%, but 

by the end of the study there was no significant difference compared to the control 

group (Figure 3.2C). However, challenge with B2904 increased faecal moisture by 4.1 – 

7.6% compared to the control group, which was a significant difference that remained 

until the end of study (p<0.01). 

 
3.2.2.4 Egg production 

For the in vivo model, the age of inoculation with B. pilosicoli was selected as 17 

weeks of age, as the birds come into lay. The objective was to assess the impact of the 

deliberate inoculations on the timing of coming into to lay and on egg production. Eggs 

were collected daily and weighed. Control birds came into lay at 18 weeks of age (day 

15) whereas a delay was noted in both challenged groups (onset of lay day 22/23) 

(Figure 3.3). CPSp1-challenged birds laid considerably fewer eggs (n = 7) compared 

with B2904-challenged birds (n = 25) that were productively comparable to the control 

birds (n = 26). However, egg weight for the control group (54.05 g ±5.92) was 

significantly greater than the B2904- (48.55 g ±3.49, p<0.001) and CPSp1-challenged 

(46.65 g ±3.12, p<0.01) groups. Faecal staining was detected only on the eggs of the 

challenged groups only. 
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Figure 3.2 Experimental monitoring of birds throughout the experimental challenge study showing the percentage of swabs positive for B. pilosicoli 

by culture and PCR (A), the average bird weight (B) and the faecal moisture content (C). The average was based on ten birds until day 15 and then 

seven birds until the study end, in each of the negative control (closed circle, solid line), B2904-challenged (open square, dashed line) and CPSp1-

challenged (closed triangle, dotted line) groups. The arrows on the x-axis indicate the days of challenge. Significance is shown in cases where the final 

data points of the challenged groups and the negative control group differed significantly; * p<0.05; ** p<0.01; *** p<0.001. 
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Figure 3.3 Egg production (lines) and average egg weights (bars) each day of the 

experimental challenge study for the point of the first egg lay. Seven birds were present 

from day 15 in each of the negative control (closed bar/closed circle, solid line), B2904-

challenged (open bar/open square, dashed line) and CPSp1-challenged (hatched 

bar/closed triangle, dotted line) groups. 

 
3.2.2.5 Post-mortem examination at five days post final challenge 

At five days after the final challenge (day 15) three birds from each group were 

euthanased by cervical dislocation and subjected to post-mortem examination. B. 

pilosicoli were isolated at approximately 10-fold higher numbers from the caeca of the 

B2904- than CPSp1-challenged birds (Figure 3.4A). Caecal weight of the B2904-

challenged (13.25 g ±1.48, p<0.05) but not the CPSp1-challenged (14.22 g ±0.80) birds 

was significantly lower than the control group (16.00 g ±0.24). The presence of 

lymphoplasmacytic cells in the caeca and colon was variable in the control and 

challenged birds without evidence of typhlitis. Other than the caeca and colon, B. 

pilosicoli were recovered in low numbers from the ileum, liver and spleen of two 

B2904-challenged birds. Pathology in the ileum of these birds included lymphoid 

hyperplasia, crypt abscesses and intraepithelial trafficking, mainly lymphocytic in villi 
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tips and crypts. In the spleen, lymphoid hyperplasia with proliferation of ellipsoid 

macrophages and germinal centres were recorded with increased pyknotic and 

karyorrhectic debris. B. pilosicoli was isolated from the liver of two B2904-challenged 

birds with moderate to severe hepatic lipidosis noted in all three birds. Petchia were 

detected in the duodenum of CPSp1-challenged birds, but no spirochaetes were isolated 

from this tissue. 

 

3.2.2.6 Post-mortem examination at eighteen days post final challenge 

At 18 days after the final challenge (day 28) three birds from each group were 

euthanased by cervical dislocation and subjected to post-mortem examination. Contrary 

to the first post-mortem, by the end of the study, the number of CPSp1 associated with 

caecal tissue was significantly greater than B2904 (p<0.05) (Figure 3.4B). The number 

of B. pilosicoli associated with caecal tissue was significantly greater at the end of the 

study compared to at five days post final challenge (p<0.05). Moreover, B2904 was not 

isolated from the ileum, liver and spleen whereas CPSp1 was isolated from the liver and 

spleen of one of the three birds examined.  

Non-specific histological changes were noted in B2904-challenged birds, such as 

haemorrhages in lymphoid tissue, distended crypts and secondary follicle proliferation 

in the caeca of B2904-challenged birds (Figure 3.5A). By the end of the study, 

prominent changes were recorded in tissues of CPSp1-challenged birds with larger, 

more numerous crypt abscesses and dilated crypts containing cellular debris and 

inflammatory cells in the caecal tonsil (Figure 3.5B), indicating bacterial colonisation. 

The epithelium surrounding crypts displayed attenuation, degradation and necrosis 

alongside crypt hyperplasia, which was previously associated with Brachyspira 

infection (Feberwee et al., 2008). Caecal haemorrhages were common in CPSp1-

challenged birds and they had more lymphocytic aggregates in the liver (Figure 2.5C) 

with moderate granulocytic hepatitis in one bird, perhaps associated to the isolation of 

B. pilosicoli from the liver. Prominent sheathed capillaries and secondary follicle 

proliferation were also noted in the spleen (Figure 3.5D), correlating with the isolation 

of B. pilosicoli from these tissues. The ileum of two CPSp1-challenged birds was 

distended with no spirochaetes isolated from this tissue. Regions of the oviduct were 

sampled at this point and both B. pilosicoli strains were isolated from the uterus/vagina 

region of one bird of each group (Figure 3.4B). Aside from a focal area of 

lymphoplasmacytic cells accumulated in the magnum of a B2904-challenged bird, no 

other significant histopathological changes were noted.  
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Figure 3.4 Colonisation of B. pilosicoli in different tissues sampled at post-mortem, at 

five days post final challenge (A) and 18 days post final challenge (B). The average was 

taken from three birds examined at the two time-points, from birds of the negative 

control (closed bar), B2904-challenged (open bar) and CPSp1-challenged (hatched bar) 

groups. Significance is shown in cases where colonisation of the two B. pilosicoli 

strains differed significantly; * p<0.05; ** p<0.01; *** p<0.001. 

 



Figure 3.5 Histopathological findings 

in haematoxylin and eosin (HE)-stained 

caecal tonsil (A and B), liver (C) and 

spleen (D) tissues of birds 

experimentally challenged with B. 

pilosicoli B2904 (A) and CPSp1 (B-D). 

Pathology included haemorrhages in 

lymphoid tissue (i) and secondary 

follicle proliferation in caecal tonsils 

and spleen (ii). In the caecal tonsils, 

distended crypts containing a mixture 

of hyaline material, slough epithelial 

cells and inflammatory cells (crypt 

abscess) (iii) with epithelial attenuation 

and heterophilic infiltration (iv) were 

noted. Acute hepatitis was noted in the 

liver with heterophilic infiltration in 

periportal region and sinusoids (v). 

Prominent sheathed capillaries (vi) 

were observed in the spleen. 
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3.3 Discussion 

 
In the studies presented in this thesis, two strains of each of “B. canis” and “B. 

pulli”, four strains of each of B. alvinipulli, B. hyodysenteriae, B. intermedia, B. 

murdochii and B. pilosicoli and five strains of B. innocens were used. This included two 

newly isolated strains, B. innocens B2960 and B. pilosicoli B2904. All strains were 

cultured on FABA and Brachyspira selective agar, the latter of which contains the 

selective ingredients, spectinomycin, vancomycin and colistin, demonstrating all strains 

exhibited the intrinsic resistance characteristic to Brachyspira (Jenkinson and Wingar, 

1981; Songer et al., 1976). Gram staining and examination of wet smears under dark 

filed microscopy revealed the Brachyspira strains to be Gram-negative and possess the 

characteristic helical morphology and sinuous movement of Brachyspira.  

Phenotypic speciation of Brachyspira strains was by means of biochemical testing 

and a grouping system that has been described previously (Fellstrom and Gunnarsson, 

1995; Hommez et al., 1998) (Table 3.1). In conjunction with molecular speciation by 

application of genus and species-specific PCRs (Table 3.2), two strains isolated from 

the faeces of poultry at the Animal Health and Veterinary Laboratories Agency 

(AHVLA, Winchester, United Kingdom) were speciated and the species of the strains 

received from Murdoch University (Perth, Australia) and the National Veterinary 

Institute (SVA, Uppsala, Sweden) was confirmed.  

Antimicrobial MIC testing was performed on all Brachyspira strains as part of 

their characterisation. Tiamulin and tylosin were tested as these are the antimicrobials 

most frequently used to treat Brachyspira infection, whereas the MIC of gentamicin was 

important for use as the antimicrobial in tissues culture experiments described in 

Chapter 6. Clinical breakpoint values previously reported for tiamulin and tylosin 

against intestinal spirochaetes, interpreted strains with an MIC >4 µg/ml as resistant, >1 

to ≤4 µg/ml as intermediate and ≤1 µg/ml as sensitive (Ronne and Szancer, 1990). 

Moreover, clinical breakpoint values reported for gentamicin against intestinal 

spirochaetes, interpreted strains with an MIC ≥10 µg/ml as resistant, 5 µg/ml as 

intermediate and ≤1 µg/ml as sensitive (Duhamel et al., 1998a). In spite of reports of 

emerging tiamulin resistance amongst Brachyspira (Clothier et al., 2011; Fossi et al., 

1999; Pringle et al., 2006), all strains used in the studies presented in this thesis were 

susceptible to tiamulin (Table 3.3). This was an interesting observation because the 

strains were isolated from many farms with AIS where tiamulin had been used for 

control purposes on several of those premises (Burch, D. J. S., 2009 personal 
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communication). The antimicrobial effect of tiamulin and also tylosin is through their 

ability to inhibit protein synthesis by binding to the 23S ribosomal subunit at or close to 

the peptidyl transferase region. Point mutations in domain V of the 23S rRNA gene 

and/or the ribosomal protein L3 gene, particularly G→A mutations at position 2032, 

have been associated with resistance to tiamulin and other pleuromutilin antimicrobials 

in Brachyspira (Hidalgo et al., 2011; Pringle et al., 2004) and such resistance has been 

demonstrated in vitro through exposure to the antimicrobial (Karlsson et al., 2001). Of 

the 29 Brachyspira test strains, only four were susceptible to tylosin, with 15 strains 

classed as intermediate and 10 as resistant. Tylosin resistance is more widespread 

amongst Brachyspira, particularly B. hyodysenteriae, which is not surprising in view of 

selective pressure due to the wide use of tylosin as a therapeutic and growth promoter in 

swine production (Karlsson et al., 2003; Kitai et al., 1987; Molnar, 1996). Resistance to 

tylosin and other macrolide antimicrobials in Brachyspira has been associated with an 

A→T or A→G mutation in the nucleotide position homologous with position 2058 of 

the E. coli 23S rRNA gene and susceptible strains have become resistant in vitro 

through exposure to the antimicrobial (Karlsson et al., 1999). No strains were 

considered resistant to gentamicin and nine were considered sensitive with an MIC of 1 

µg/ml, including both B. pilosicoli B2904 and B. innocens B2960. This was fortuitous 

and as will be described later in the thesis, this permitted tissue culture studies to be 

undertaken where gentamicin was applied in order to allow determination of the 

numbers of bacteria that had invaded and are consequently protected from the action of 

gentamicin as this antimicrobial does not penetrate eukaryotic cells. The range of MIC 

values for gentamicin against the Brachyspira strains were similar to those previously 

noted (Clothier et al., 2011; Duhamel et al., 1998a). 

For morphological characterisation, SEM was performed on a broth culture of the 

Brachyspira strains, as displayed for B. pilosicoli B2904 (Figure 3.1). This analysis 

revealed the typical helical morphology of Brachyspira species with periplasmic 

flagella winding around the protoplasmic cylinder, enclosed in the outer sheath. The cell 

dimensions were consistent with previous analysis for each species and B. pilosicoli 

B2904 had an approximate width and length of 0.25 µm and 12.0 µm, respectively, 

which is typical of this species (Sellwood and Bland, 1997). Moreover, this strain had 

pointed cell ends with five periplasmic flagella inserted at each pole, giving a 

periplasmic flagella end:middle:end ratio of 5:10:5 (Figure 3.1C and D), which is 

characteristic of this species (Sellwood and Bland, 1997) and more widely of avian 

intestinal spirochaetes (Stoutenburg et al., 1995). 
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In order to fulfil Koch’s postulates, the newly isolated B. pilosicoli B2904 was 

selected for use in a novel experimental challenge model. This strain was selected due 

to it being isolated from the faeces of a chicken exhibiting clinical symptoms of AIS, 

displaying an ability to grow well in vitro and also demonstrating susceptibility to 

gentamicin (Table 3.3), which was important for in vitro tissue culture assays discussed 

in Chapter 6. In the experimental challenge study, B. pilosicoli CPSp1 was used as a 

positive control, due its ability to induce clinical symptoms comparable to that of AIS in 

experimentally challenged hens, as described previously (Jamshidi and Hampson, 2002; 

Stephens and Hampson, 2002b). 

The experimental challenge model developed and described here appears to have 

produced more severe clinical symptoms, consistent with AIS, than previously 

described models. The colonisation rates, assessed by culture from cloacal swabs, 

reached 80.0 – 85.7% (Figure 3.2A), which is greater than previously described models 

that also used the CPSp1 strain in which colonisation rates were as low as 10.0% in 

some groups (Jamshidi and Hampson, 2002; Stephens and Hampson, 2002b). 

Furthermore, weight gain was significantly reduced in both challenged groups (p<0.05) 

(Figure 3.2B), whereas the CPSp1 strain had little effect on hen weight in previous 

experimental challenge studies (Jamshidi and Hampson, 2003; Stephens and Hampson, 

2002a, b). This suggests that neutralising the crop prior to infection challenge may 

improve the survival of B. pilosicoli transversing the crop acid barrier facilitating 

enhanced colonisation of the distal intestinal tract and causing disease. 

At post-mortem, the pathology recorded in the caeca, particularly of the B2904-

challenged birds at five days post final challenge, was consistent with lymphoid 

hyperplasia, previously described in chickens naturally infected with B. pilosicoli 

(Feberwee et al., 2008) and an increased frequency of crypt abscesses colonised by B. 

pilosicoli was noted. Aside from the caeca and colon, B. pilosicoli were recovered in 

low numbers from the ileum, liver and spleen of the challenged birds. In humans, B. 

pilosicoli-like spirochaetes have been isolated from extra-intestinal tissues, including 

the liver (Kostman et al., 1995) and the bloodstream (Trott et al., 1997a). In duck 

flocks, Brachyspira infection was associated with hepatic and splenic amyloidosis 

(Glavits et al., 2011). The findings presented in this chapter report the first isolation of 

B. pilosicoli from the liver and spleen of chickens. 

Despite a reduction in the severity of clinical symptoms by the final post-mortem 

examination, colonisation by B. pilosicoli persisted in both groups. B. pilosicoli were 

isolated from the caeca and colon of birds from both the B2904- and CPSp1-challenged 
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groups, despite their detection from cloacal swabs diminishing toward the study end 

(Figure 3.2A). At this stage, B2904 was not isolated from the ileum, liver and spleen, 

however CPSp1 was. This finding suggests B2904 may have produced pathology in the 

birds at an early stage of infection, relating to the normalisation of egg production and 

bird weight by the end of the study (Figures 3.2B and 3.3). The lack of pathology and 

absence of colonisation of the upper oviduct of both groups does not provide 

explanation for the delayed and reduced egg production. However, it is possible that B. 

pilosicoli produced pathology in the upper oviduct at an earlier stage of infection. 

This experimental challenge model for AIS revealed more pathological changes 

previously unreported in the literature of Brachyspira infection in chickens, such as in 

the liver and spleen. Direct visualisation of the aetiological agent will be necessary to 

determine the specificity of the changes. The differences in the clinical symptoms and 

pathology between the B2904- and CPSp1-challenged birds may arise from differences 

in the pathogenicity of the two strains, requiring further investigation that may be aided 

by the increasing availability of Brachyspira genome sequence, although they may arise 

from other factors such as dose. The experiment was controlled and thus, the deep tissue 

colonisation is believed to be a true phenomenon and not the result of an extraneous 

factor, such as co-infection. Overall, the novel model of Brachyspira infection has 

improved rates of colonisation and induced hitherto unreported pathology. Furthermore, 

subsequent studies using the B2904-challenge model to evaluate AIS intervention 

strategies have shown findings consistent with this study (as discussed in Chapter 7).  

In conclusion, this chapter has described the identification and characterisation of 

29 Brachyspira strains, which will be used in the studies presented in the subsequent 

chapters of this thesis. B. pilosicoli B2904 was selected for use in the development of a 

novel experimental challenge model for AIS. The establishment of this experimental 

challenge model was vital for in vivo studies to evaluate AIS intervention strategies (as 

discussed in Chapter 7). In turn, this study demonstrated the pathogenicity of B. 

pilosicoli B2904 in chickens, providing a B. pilosicoli strain for which Koch’s 

postulates have been fulfilled. As will be discussed in Chapter 4, B. pilosicoli B2904 

was also selected for whole genome sequencing. 

 118



 

 

 

 
Chapter 4. 

 

Comparative genomics of three strains of 

Brachyspira pilosicoli and correlation with 

phenotypic diversity 

 
4.1 Introduction 

 
Spirochaetes represent a monophyletic lineage and a major branch in eubacterial 

evolution; Brachyspira is the sole genus of the family Brachyspiraceae within the order 

Spirochaetales, which belongs to the spirochaete phylum (Ludwig et al., 2008). 

Brachyspira are Gram-negative, loosely coiled, aerotolerant anaerobes that colonise the 

lower GI tract of mammals and birds, but vary in pathogenicity. There are seven species 

of Brachyspira that are currently officially recognised: B. aalborgi, a potential human 

pathogen (Hovind-Hougen et al., 1982); the porcine pathogen, B. hyodysenteriae 

(Harris et al., 1972a); the avian pathogens, B. alvinipulli (Stanton et al., 1998) and B. 

intermedia (Stanton et al., 1997); the avian, porcine and human pathogen, B. pilosicoli 

(Trott et al., 1996d); non-pathogenic B. innocens (Kinyon and Harris, 1979) and B. 

murdochii, which is of uncertain pathogenic potential (Stanton et al., 1997). In addition, 

there are a number of proposed species including “B. canis” (Duhamel et al., 1998b), 

“B. pulli” (Stephens and Hampson, 1999) and “B. suanatina” (Rasback et al., 2007a) 

amongst others. The classification of the genus is still immature and the often used 

descriptors of certain Brachyspira as pathogenic, intermediate pathogenic or non-

pathogenic is subject to debate. 

B. pilosicoli is an aetiological agent of colitis and occasional spirochaetaemia in 

humans (Tsinganou and Gebbers, 2010), and a cause of PIS and AIS (Smith, 2005). It 
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may also cause disease in other species (Duhamel et al., 1998b) and has demonstrated 

potential for zoonotic transmission (Hampson et al., 2006b). B. pilosicoli is commonly 

found in humans living in densely populated areas with poor hygienic conditions (Lee 

and Hampson, 1992; Margawani et al., 2004; Munshi et al., 2004; Trott et al., 1997b), 

and in homosexual males (Trivett-Moore et al., 1998). B. pilosicoli infections are highly 

prevalent in intensively farmed swine and poultry, inducing inflammation in the colon 

and caeca, diarrhoea and reducing growth and productivity (Smith, 2005). Motility and 

chemotaxis are deemed important virulence factors, and, as with B. hyodysenteriae, B. 

pilosicoli has a chemoattraction to mucin that facilitates penetration of the mucus and 

association with the underlying intestinal epithelial surface (Milner and Sellwood, 1994; 

Naresh and Hampson, 2010). The intimate contact with the epithelia induces an 

outpouring of mucus and epithelial sloughing (Kennedy et al., 1988). An unusual 

feature of B. pilosicoli infection, which is shared only by B. aalborgi, is the ability to 

insert one cell end into the luminal surface of enterocytes in the large intestine, forming 

a pit-like structure, with arrays of such attached spirochaetes giving the appearance of a 

“false brush-border” (Harland and Lee, 1967; Trott et al., 1996a). This unusual form of 

attachment of B. pilosicoli also occurs in Caco-2 cells in vitro, resulting in apoptosis, 

actin rearrangement and elevated interleukin expression (Naresh et al., 2009). 

The paucity of genomic information and absence of tools for genetic manipulation 

are responsible, at least partly, for the lack of knowledge regarding the adaptations that 

Brachyspira have undergone to colonise the lower GI tract of animals and humans, and 

for the pathogenic species to induce disease. Hence, this has also hindered the 

development of novel intervention strategies for Brachyspira-related diseases. 

Brachyspira whole genome sequences have only recently been made available for the 

following species: B. hyodysenteriae (Bellgard et al., 2009), B. intermedia (Hafstrom et 

al., 2011), B. murdochii (Pati et al., 2010) and B. pilosicoli (Wanchanthuek et al., 

2010). Analysis of the four published sequences showed substantial genetic diversity, 

and their availability has facilitated research on the corresponding species. However, the 

availability of only one genome sequence per species has limited the conclusions that 

can be drawn from the genome as a representation for the species as a whole, and does 

not allow analysis of intra-species genomic variation. In this chapter, the whole genome 

sequence of B. pilosicoli B2904 is reported; this strain was isolated from a chicken that 

exhibited clinical symptoms of AIS in the United Kingdom and shown to fulfil Koch’s 

postulates by inducing disease with symptoms akin to AIS in chickens (as discussed in 

Chapter 3). The genome of B. pilosicoli WesB, isolated from an Australian Aboriginal 
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child with diarrhoea, was also partially sequenced. Experimentally, the latter strain has 

been shown to colonise and cause disease in pigs (Trott et al., 1996a). Although the 

strains were isolated originally from different host species, it is unlikely that the 

differences that were found between them were related to their host species of origin 

(Hampson et al., 2006b). The genomes are presented alongside the whole genome 

sequence of B. pilosicoli 95/1000, isolated from a pig with PIS in Australia, and which 

has been confirmed to be virulent in experimental infection studies in pigs (Trott et al., 

1996a). In order to correlate genotype with phenotype, Biolog PMTM technology was 

employed (Bochner, 2009; Bochner et al., 2001) to assess carbon source utilisation in 

the three strains of B. pilosicoli. These studies facilitated the validation of genotypic 

variation observed in the genome sequences and permitted detailed correlation between 

genotype and phenotype.  
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4.2 Results 
 

4.2.1 Genetic relatedness of Brachyspira genomes 

A dendrogram was produced based on MLST data derived from genome sequence 

data for six strains of Brachyspira that have been genome sequenced, and three that are 

currently within unpublished genome sequencing projects (Figure 4.1). MLST 

highlighted the close relationship between the B. pilosicoli 95/1000, B2904 and WesB, 

with B. aalborgi being distinct, but most closely related to B. pilosicoli and distantly 

related to B. hyodysenteriae. The two strains of B. intermedia included appeared less 

closely related than might be expected. 

 

Figure 4.1 A dendrogram illustrating the relationships among nine strains of 

Brachyspira, representing six of the seven known species. Analysis was based on 

concatenated DNA sequences of seven multilocus sequence typing (MLST) loci 

(Rasback et al., 2007b). The genome sequences of the strains used in the analysis have 

either been completed or are currently within a genome sequencing project (*). The tree 

was constructed using the maximum likelihood method. Bootstrap values (%) are 

shown for stable nodes. The length of the scale bar is equivalent. 

 

4.2.2 Comparison of general genome features 

The general genome features of the three sequenced B. pilosicoli genomes are 

compared in Table 4.1. The G+C content of the B. pilosicoli genomes were very similar 

to each other (27.44% to 27.9%), and to that of other chromosomes in the genus, which 

range from 27.1% to 27.9% (Hafstrom et al., 2011). The complete genome sequence of 

B. pilosicoli B2904 consisted of a 2,765,477 bp circular chromosome (Figure 4.2), 
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whereas the incomplete WesB genome was larger, at 2,889,522 bp. The 2,586,443 bp 

genome of strain 95/1000 was the smallest of the three genomes. Not only did the B. 

pilosicoli genomes show size variability, but they were smaller than the genomes of the 

other sequenced species, apart from B. aalborgi 513T which preliminary findings 

suggest is ~2.5 Mb.  

 

Table 4.1 General genome feature comparison for strains of B. pilosicoli of different 

host origin. The comparison includes strains 95/1000 (porcine), B2904 (avian) and 

WesB (human). 

Genome features 95/1000 B2904 WesBa

Genome size (bp) 2586443 2765477 2889522 

G+C content 27.90% 27.79% 27.45% 

Total predicted ORFs 2339 2696 2690 

Non-significant PID and coverage ORFs 3 23 101 

Significant PID and/or coverage ORFs 2336 2673 2589 

     rRNA genes 3 3 3 

     tRNA genes 34 34 34 

     tmRNA genes 1 1 1 

     hypothetical/conserved hypothetical proteins 657 590 545 

     genes with function prediction 1641 2045 2006 

Genes assigned to COGb 1201 1196 1276 

Genes assigned a KO numberbc 1048 1082 1128 

Genes assigned E.C. numbersb 523 567 563 

Genes with signal peptide 244 322 316 

Genes with transmembrane helices 48 61 68 

Suspected truncated proteins 55 130 64 

Suspected protein frameshift/deletions 4 223 50 
a The incomplete WesB strain genome was within one scaffold. 
b Those genes with significant PID and/or query/target coverage hits; significance equals 

blastx/blastp PID of at least 25% and/or 75% query or target coverage. 
c Assigned to KO via KEGG Automatic Annotation Server (KAAS). 

 

The disparity between the number of ORFs and genome size between the B2904 

and WesB strains and the high number of non-significant PID and coverage ORFs in the 

WesB genome may be an artefact of the incomplete nature of this genome, which is the 

largest of the three strains. In 95/1000, 44.8% of ORFs were assigned a KEGG 

Orthology (KO), whereas only 40.5% and 43.6% of ORFs were assigned in B2904 and 
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WesB, respectively. A lower proportion of ORFs were matched in the COG database 

for B2904 and WesB compared to 95/1000.  

All three strains of B. pilosicoli harboured the same number of tRNA, rRNA and 

transfer-messenger (tm)RNA genes (Table 4.1). The tRNA genes represented all 20 

amino acids and there were single copies of the 5S, 16S and 23S rRNA genes. The rrf 

(5S) and rrl (23S) genes were co-located in all three B. pilosicoli genomes, with the rrs 

(16S) gene located approximately 645 Kb, 679 Kb and 773 Kb from the other rRNA 

genes in the 95/1000, B2904 and WesB genomes, respectively. 

The origin of replication of the B. pilosicoli genomes was set according to the 

position of the oriC and GC-skew pattern, as previously suggested (Hafstrom et al., 

2011); this was supported by the Ori-Finder program (Gao and Zhang, 2008). 

 

 
Figure 4.2 Circos circular representation of the complete 2.77 Mb B. pilosicoli B2904 

genome with annotated genes. The genome is orientated from the oriC and also displays 

the location of dnaA. Circles range from 1 (outer circle) to 7 (inner circle). Circle 1, 

Cluster of Orthologous Group (COG)-coded forward strand genes; circle 2, COG-coded 

reverse strand genes; circle 3, forward strand tRNA; circle 4, reverse (cont’d p. 125) 
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Figure 4.2 (cont’d) strand tRNA; circle 5, forward strand rRNA; circle 6, reverse strand 

rRNA; circle 7, GC skew ((G-C)/(G+C); red indicates values >0; green indicates values 

<0). All genes are colour-coded according to COG functions shown in the key table; A, 

RNA processing and modification; B, chromatin structure and dynamics; C, energy 

production and conversion; D, cell cycle control, cell division and chromosome 

partitioning; E, amino acid transport and metabolism; F, nucleotide transport and 

metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and 

metabolism; I, lipid transport and metabolism; J, translation, ribosomal structure and 

biogenesis; K, transcription; L, replication, recombination and repair; M, cell wall, 

membrane and envelope biogenesis; N, cell motility and secretion; O, post-translational 

modification, protein turnover and chaperones; P, inorganic ion transport and 

metabolism; Q, secondary metabolite biosynthesis, transport and catabolism; T, signal 

transduction mechanisms; U, intracellular trafficking, secretion and vesicular transport; 

V, defence mechanisms; W, extracellular structures; Y, nuclear structure wheat for cell 

division and chromosome partitioning; Z, cytoskeleton; R, general function prediction 

only; S, function unknown. 

 

4.2.3 Genome sequence alignments 

Dot plot comparisons of the three B. pilosicoli genomes revealed that there have 

been chromosomal rearrangements that are arranged symmetrically around the origin or 

terminus of replication, highlighted by the X-patterns in the alignments (Figure 4.3). 

The genome rearrangements were confirmed by PCR. 

Whole genome comparisons of the strains of B. pilosicoli were performed using 

ACT (Carver et al., 2005). On comparing B2904 with 95/1000, four major genome 

rearrangement events appeared to have occurred, whereas two profound rearrangements 

were evident when comparing WesB to 95/1000 (Figure 4.4). Mobile genetic elements 

(MGE) were found adjacent to or within close proximity of the sites where 

recombination events appear to have occurred in the B2904 and WesB genomes. Fifty-

seven and 30 MGEs, including insertion sequence elements (ISE), recombinases, 

transposases and integrases were identified in the B2904 and WesB genomes, 

respectively, compared to just four in the 95/1000 genome. The proportion of these 

features therefore seems to correlate with the extent of rearrangement within the 

genome. Furthermore, multiple copies of a transposase/integrase gene that was absent 

from the 95/1000 genome was identified in the genomes of B2904 (n = 43) and WesB 
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(n = 7) (Appendix I). The lower number of copies in WesB may be an artefact of the 

genes not assembling in the incomplete genome. 

The fewest suspected pseudogenes (gene truncation or frameshift) were found in 

95/1000 and the most in B2904 (Table 4.1), a finding that correlates to the number of 

MGEs and degree of genome rearrangements in these strains. Of the total number of 

pseudogenes in each strain, 91.5%, 84.5% and 81.3% were in a cluster with orthologs in 

the other two strains in 95/1000, B2904 and WesB, respectively. Most strikingly, all 

strains shared clusters included either multiple B2904 and/or WesB pseudogenes with a 

complete 95/1000 gene. 

 Despite extensive chromosomal rearrangements, the genome alignments (Figure 

4.3 and 4.4), show that the majority of the genome sequence is shared between the three 

strains, with B2904 and WesB possessing the greatest proportion of unique sequences. 

Furthermore, a 26 Kb region, likely to have involvement in horizontal gene transfer 

(HGT), and that is partially conserved in all previously reported Brachyspira genomes 

as well as E. faecalis and E. coli (Motro et al., 2008), was identified in the B. pilosicoli 

B2904 and WesB genomes.  

 

 
Figure 4.3 Dot matrix plots comparing the genomes of B. pilosicoli B2904, 95/1000 

and WesB. The dot matrix plots of the three genome sequences linearised at the oriC 

were generated using Freckle. The incomplete WesB strain genome was within one 

scaffold. The output displays a two-dimensional plot, whereby the dots represent 

matched regions between the three genomes. The minimum size of matched sequences 

was set to 20 bp. 

 
 
 
 
 
 
 



Figure 4.4 Pairwise 

genome alignments of 

B. pilosicoli strains 

95/1000, B2904 and 

WesB. The Artemis 

Comparison Tool (ACT) 

was used to compare the 

three genome sequences 

against each other. The 

genome sequences were 

aligned from the 

predicted oriC and 

visualised in ACT with 

a cut-off set to blast 

scores >500. Red and 

blue bars indicate 

regions of similarity in 

the same orientation 

(red) and inverted 

(blue). 
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4.2.4 Global genome feature comparisons 

 
4.2.4.1 Functional prediction comparisons 

Functional classifications were assigned to each of the protein-coding genes of the 

three strains of B. pilosicoli using the COG database. The analysis revealed that the 

general distribution of features into categories was similar for the three strains (Table 

4.2), and this highlighted their close relationship. 

 

Table 4.2 Distribution of Cluster of Orthologous Group (COG) categories in B. 

pilosicoli 95/1000, B2904 and WesB. The number and percentage of total genes within 

each of the genomes, assigned to each functional group are shown (cont’d p 129).a

Function (COG category) 95/1000 % B2904 % WesBb % 

Cellular Processes 

Translation, ribosomal structure and 

biogenesis (J) 

122 5.22 119 4.45 125 4.83 

Transcription (K) 51 2.18 49 1.83 61 2.36 

Replication, recombination and repair (L) 51 2.18 56 2.10 61 2.36 

Cellular Processes and Signalling 

Cell cycle control, cell division and 

chromosome partitioning (D) 

10 0.43 8 0.30 9 0.35 

Defence mechanisms (V) 35 1.50 33 1.23 35 1.35 

Signal transduction mechanisms (T) 16 0.68 15 0.56 15 0.58 

Cell wall, membrane and envelope 

biogenesis (M) 

74 3.17 72 2.69 79 3.05 

Cell motility (N) 40 1.71 39 1.46 40 1.54 

Intracellular trafficking, secretion and 

vesicular transport (U) 

11 0.47 7 0.26 9 0.35 

Post-translational modification, protein 

turnover and chaperones (O) 

40 1.71 36 1.35 39 1.51 

Metabolism 

Energy production and conservation (C) 89 3.81 84 3.14 84 3.24 

Carbohydrate transport and metabolism 

(G) 

101 4.32 123 4.60 139 5.37 

Amino acid transport and metabolism (E) 141 6.03 138 5.16 149 5.76 

Nucleotide transport and metabolism (F) 49 2.10 54 2.02 57 2.20 

Coenzyme transport and metabolism (H) 47 2.01 44 1.65 48 1.85 

Lipid transport and metabolism (I) 41 1.75 33 1.23 34 1.31 

Inorganic ion transport and metabolism (P) 53 2.27 53 1.98 49 1.89 
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Table 4.2 (cont’d). 

Function (COG category) 95/1000 % B2904 % WesBb % 

Secondary metabolites biosynthesis, 

transport and catabolism (Q) 

9 0.38 10 0.37 9 0.35 

Poorly characterised 

General function prediction only (R) 149 6.37 147 5.50 157 6.06 

Function unknown (S) 72 3.08 76 2.84 77 2.97 

Unassigned 

Not in COG (X) 1137 48.63 1477 55.26 1313 50.71 

TOTAL  2338 100 2673 100 2589 100 
a Those genes with significant PID and/or query/target coverage hits; significance equals 

blastx/blastp PID of at least 25% and/or 75% query or target coverage. 
b The incomplete WesB strain genome was within one scaffold. 

 

4.2.4.2 Genome feature comparisons between B. pilosicoli genomes 

The three strains of B. pilosicoli contained 2,132 conserved genes, and these 

contribute to defining the B. pilosicoli pan-genome (Figure 4.5); this related to 92.6%, 

80.2% and 80.4% of the total genes of the 95/1000, B2904 and WesB genomes, 

respectively. B. pilosicoli WesB harboured the greatest number of unique genes, with 

10.0% of its genes being absent from the other genomes; B2904 had a similar 

proportion (9.5%), whereas 95/1000 had considerably fewer (4.9%). B. pilosicoli B2904 

and WesB shared the greatest proportion of genes (~8.9%) while B2904 shared a greater 

percentage of its genes with 95/1000 (1.4%) than with WesB (0.7%). 

 

4.2.4.3 Genome feature comparisons between B. pilosicoli and other 

Brachyspira species genomes 

Complete genome sequences of B. hyodysenteriae WA1, B. intermedia PWS/AT, 

B. pilosicoli 95/1000 and B. murdochii 56-150T have previously undergone comparative 

analysis (Hafstrom et al., 2011; Wanchanthuek et al., 2010). Genome sequences of B. 

pilosicoli B2904 and WesB can now be added to these comparisons, giving the first 

opportunity for a Brachyspira intra-species genome comparison. A protein blastmatrix 

comparison was performed on the four previously sequenced genomes, the two newly-

sequenced B. pilosicoli genomes and the unpublished, draft genome scaffolds of B. 

aalborgi 513T, B. alvinipulli C1T and B. intermedia HB60 (Table 4.3). 
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Figure 4.5 Venn diagram of genes unique to and shared between B. pilosicoli 95/1000, 

B2904 and WesB. The Venn diagram was resolved via BLASTlineMCL protein 

clustering. Each circle represents the total number of protein-coding genes in the 

genome, whereby overlapping regions indicate the number of genes shared between the 

respective genomes. 

 

A protein Markov clustering analysis of the six published Brachyspira genomes 

identified 1,647 protein clusters shared by all six strains (Table 4.4), the encoding genes 

of which may be used to define a Brachyspira species pan-genome. 

 
4.2.5 Screening for potential virulence features 

Virulence factor screening in Brachyspira genomes was performed as described 

previously (Bellgard et al., 2009; Wanchanthuek et al., 2010), but with the analysis 

encompassing a greater array of genes, particularly in categories relating to adhesion 

and/or surface proteins and MGEs (Table 4.5). The greatest number of potential 

virulence features was in B2904, however additional features may be identified in the 

WesB genome once it is completed. 
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Table 4.3 Protein blastmatrix analysis of nine Brachyspira genomes. The percentage of the total coding DNA sequences (CDS) that were identified in 

other genomes (green) and the proportion of protein repeats within the genome (red) is shown. A cut-off e-value of 1e-05 was used. 

 B. aalborgi 

513Ta

2257 CDS 

B. alvinipulli 

C1Ta

3228 CDS 

B. hyodysenteriae 

WA1 

2613 CDS 

B. intermedia 

PWS/AT

2890 CDS 

B. intermedia 

HB60a

3392 CDS 

B. murdochii 

56-150T

2809 CDS 

B. pilosicoli 

B2904 

2658 CDS 

B. pilosicoli 

95/1000 

2301 CDS 

B. pilosicoli 

WesBb

2652 CDS 

WesBb 21.36% 21.65% 22.73% 24.95% 19.84% 25.95% 68.43% 65.32% 1.73% 

95/1000 17.94% 18.56% 20.78% 20.90% 16.77% 22.11% 54.93% 0.74%  

B2904 20.47% 21.25% 21.74% 23.60% 19.25% 25.35% 2.71%   

56-150T 22.37% 31.51% 33.68% 36.40% 29.33% 5.30%    

HB60a 20.65% 31.23% 46.77% 57.65% 1.77%     

PWS/AT 21.05% 32.03% 50.33% 1.56%      

WA1 17.72% 27.48% 1.11%       

C1Ta 23.48% 2.54%        

513Ta 1.11%         
a Incomplete genome currently within a genome sequencing project. 
b The incomplete WesB strain genome was within one scaffold. 
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Table 4.4 Conserved and shared protein clusters between the six genome-sequenced 

strains of Brachyspira. B. hyodysenteriae WA1 (H), B. intermedia PWS/AT (I), B. 

murdochii 56-150T (M) and B. pilosicoli 95/1000 (Pa), B2904 (Pb) and WesB (Pc) 

strains were included in the protein cluster analysis. A cut-off e-value of 1e-20 was 

used. 

Combination of 

species/strains 

Number of 

clusters  

Combination of 

species/strains 

Number of 

clusters 

H 186  I M Pb 1 

I 277  I M Pc 7 

M 223  I Pa Pb 5 

Pa 85  I Pa Pc 0 

Pb 138  I Pb Pc 2 

Pc 185  M Pa Pb 9 

H I 61  M Pa Pc 0 

H M 14  M Pb Pc 29 

H Pa 3  Pa Pb Pc 110 

H Pb 2  H I M Pa 10 

H Pc 3  H I M Pb 8 

I M 30  H I M Pc 1 

I Pa 4  H I Pa Pb 3 

I Pb 3  H I Pa Pc 0 

I Pc 36  H I Pb Pc 3 

M Pa 2  H M Pa Pb 0 

M Pb 7  H M Pa Pc 0 

M Pc 16  H M Pb Pc 2 

Pa Pb 12  H Pa Pb Pc 4 

Pa Pc 6  I M Pa Pb 4 

Pb Pc 47  I M Pa Pc 1 

H I M 173  I M Pb Pc 9 

H I Pa 4  I Pa Pb Pc 14 

H I Pb 2  M Pa Pb Pc 58 

H I Pc 7  H I M Pa Pb 3 

H M Pa 1  H I M Pa Pc 6 

H M Pb 5  H I M Pb Pc 16 

H M Pc 2  H I Pa Pb Pc  45 

H Pa Pb 1  H M Pa Pb Pc 8 

H Pa Pc  1  I M Pa Pb Pc 34 

H Pb Pc 7  H I M Pa Pb Pc 1,647 

I M Pa 2    
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Table 4.5 The number of genes with potential roles in pathogenesis and virulence in the 

three B. pilosicoli genomes. The analysis categorised the genes from the genomes of B. 

pilosicoli 95/1000, B2904 and WesB.  

Role of putative gene 95/1000 B2904 WesBa

Core genes involved in LPS biosynthesisb 27 30 32 

Chemotaxis    

     putative methyl-accepting chemotaxis protein 7 7 10 

     methyl-accepting chemotaxis protein A (mcpA) 2 0 2 

     methyl-accepting chemotaxis protein B (mcpB) 8 11 11 

     chemotaxis protein 15 15 15 

Flagella 42 42 42 

Adhesion and membrane protein    

     lipoprotein 21 31 29 

     variable surface protein 3 4 4 

     integral membrane protein 1 1 1 

     outer membrane protein 25 25 23 

     periplasmic protein 25 25 28 

     inner membrane protein 75 83 83 

Host tissue degradation    

     haemolysis 12 12 12 

     phospholipase 2 3 2 

peptidase 44 48 48 

protease 19 19 17 

Oxidative stress 7 7 7 

Ankyrin-like protein 31 34 35 

Phage and other MGEs 46 109 100 

Total 412 506 501 
a The incomplete WesB strain genome was within one scaffold. 
b Core LOS biosynthesis genes. 

 
4.2.6 Comparison of central metabolism phenotypes 

 
4.2.6.1 Comparison of carbon source utilisation by Brachyspira 

Analysis of the genomes of B. hyodysenteriae and B. pilosicoli has revealed that 

these species share many metabolic capabilities (Bellgard et al., 2009; Wanchanthuek 

et al., 2010). In these studies, the analysis of central metabolic pathway detection in 

Brachyspira genomes was extended by application of Biolog PMTM technology for 

phenotypic determination of carbon source utilisation of four strains each of B. 

alvinipulli, B. hyodysenteriae, B. innocens, B. intermedia, B. murdochii and B. 
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pilosicoli and two strains each of “B. canis” and “B. pulli”. The utilisation of 178 

unique carbon compounds by the strains was screened (Appendix II). 

All strains of Brachyspira tested were capable of utilising the following 

compounds as a carbon source; N-acetyl-D-glucosamine, D-galactose, D-alanine, D-

glucose-6-phosphate, D-fructose, α-D-glucose, maltose, D-melibiose, α-ketoglutaric 

acid, α-ketobutyric acid, α-D-lactose, lactulose, D-glucose-1-phosphate, D-fructose-6-

phosphate, maltotriose, D-threonine, glyoxylic acid, L-serine, L-threonine, L-alanine 

and arbutin. When analysing the results at a species level, differences in the utilisation 

of 71 compounds between species were noted (Table 4.6); this included differences that 

were based only on consistent results of strains within each species. 

 

Table 4.6 Differences in the utilisation of unique carbon sources by six species of 

Brachyspira and two proposed species tested analysed using the Biolog Phenotype 

MicroArrayTM (PM) system. This summary table is based on the results of two repeats 

for four strains each of B. alvinipulli, B. hyodysenteriae, B. innocens, B. intermedia, B. 

murdochii and B. pilosicoli and two strains each of “B. canis” and “B. pulli” (Appendix 

II). Results are shown only for compounds where differences in its utilisation were 

observed for all tested strains of a species (cont’d p. 135).  

Ability to utilise carbon sourcea 

Balb Bcac Bhyd Bine Bimf Bmug Bpih Bpui

L-Aspartic acid + ± ± + ± ± − + 

L-Proline ± + + + + ± − + 

D-Trehalose + + + ± ± ± − ± 

D-Serine + + + + + + − + 

Glycerol − − − − − − + − 

D-Gluconic acid ± + + ± ± + − − 

Formic acid ± − − − − − − + 

L-Glutamic acid + + + + + + − + 

D,L-Malic acid ± − + − ± − + ± 

Tween 20 + − + + ± ± − ± 

L-Rhamnose − − + − + ± + ± 

Thymidine − − ± ± ± ± + − 

L-Asparagine − − + ± ± ± − − 

D-Aspartic acid ± + + ± ± + − + 

Tween 40 ± − ± + ± ± − ± 

α-Methyl-D-galactoside − − + + − ± − + 

Uridine − ± + + + ± + + 
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Table 4.6 (cont’d p. 136). 

Ability to utilise carbon sourcea 

Balb Bcac Bhyd Bine Bimf Bmug Bpih Bpui

L-Glutamine ± + ± + ± + − − 

m-Tartaric acid ± − + ± ± ± − ± 

Tween 80 ± − − + ± ± − ± 

β-Methyl-D-glucoside + − + + ± + − + 

Adonitol ± − − + − − − + 

2`-Deoxyadenosine + − + − + + + − 

Adenosine ± + + − + − + − 

Glycyl-L-aspartic acid + + + + + + − + 

m-Inositol + + + + ± ± − + 

Propionic acid + − + + + + + + 

Mucic acid + − + + ± + − − 

Glycolic acid + + ± + ± + − − 

Inosine + ± + − + ± + ± 

Glycyl-L-glutamic acid ± ± + + + ± − ± 

L-Alanyl-glycine + + ± + − ± − + 

Acetoacetic acid + + + + + − + − 

N-Acetyl-β-D-mannosamine + − + + + ± + + 

Methyl pyruvate + ± − + + ± − ± 

D-Malic acid ± − − + − ± − ± 

Glycyl-L-proline + + + + ± + − + 

p-Hydroxyphenylacetic acid ± − ± + ± ± − − 

m-Hydroxyphenylacetic acid ± − ± + ± ± − − 

Tyramine + + ± + + + − + 

Glucuronamide − + ± − ± ± ± − 

β-Phenylethylamine ± + ± + ± + − + 

Ethanolamine ± + ± + ± + − + 

α-Cyclodextrin − − − + + + − − 

Dextrin − − − − + − + − 

Inulin ± − + − − − − − 

Pectin ± − + + + ± − + 

N-Acetyl-D-galactosamine ± − + − − ± + − 

N-Acetylneuraminic acid ± − + − + − + − 

β-D-Allose ± ± + − ± − ± ± 

3-O-β-D-Galactopyranosyl-D-

arabinose 

± − ± ± − − + ± 

Gentiobiose − ± + + − ± + ± 
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Table 4.6 (cont’d). 

Ability to utilise carbon sourcea 

Balb Bcac Bhyd Bine Bimf Bmug Bpih Bpui

L-Glucose − ± + ± − ± + ± 

D-Lactitol ± − + + ± − − ± 

β-Methyl-D-galactoside ± − + ± + − + − 

3-O-Methyl-glucose + ± + − − − + ± 

D-Raffinose − − ± ± + ± − ± 

Salicin + − + − + − + − 

Turanose ± ± ± − − ± + + 

N-Acetyl-D-glucosaminitol + ± + + ± + + − 

D,L-Citramalic acid + − − − − ± − − 

β-Hydroxybutyric acid ± − + ± ± ± − − 

γ-Hydroxybutyric acid + − + ± − − − − 

α-Ketovaleric acid ± ± + ± − ± − ± 

Oxalomalic acid − − + ± − − − ± 

D-Tartaric acid ± − ± − − − + − 

L-Tartaric acid − − + − − − + − 

Glycine − − + − + − + − 

L-Histidine ± − + − + − − − 

L-Leucine − − + − + − − − 

D,L-Carnitine ± − + − − − − − 
a Utilisation of compound as a carbon source; +, all strains of species able of utilisation; −, all strains 

of the species unable of utilisation; ±, some but not all strains of the species able of utilisation.  
b B. alvinipulli. 
c “B. canis”. 
d B. hyodysenteriae. 
e B. innocens. 
f B. intermedia. 
g B. murdochii. 
h B. pilosicoli. 
i “B. pulli”. 

 

4.2.6.2 Correlation of differences in B. pilosicoli phenotype with genotype  

The metabolic capabilities of the strains of B. pilosicoli tested were highly 

conserved (Appendix II). Differences were found in the utilisation of just seven carbon 

sources, which were directly correlated with genotypic variations (Table 4.7).
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Table 4.7 Correlation between differences in carbon source utilisation and genotype of B. pilosicoli 95/1000, B2904 and WesB. Possible explanations 

for the differences in phenotype relate to differences in genomic features.  

Unique carbon source 

compound tested 

95/1000 B2904 WesB Possible explanation for difference in phenotype based on genotype 

D-Mannose 
− − + 

WesB is the only strain with the mannose/sorbose-specific PTS system IIABCD components (wesB_1269, 

wesB_1270, wesB_1271 and wesB_1272) for uptake and phosphorylation of D-mannose. 

D-Glucuronic acid 

− + + 

95/1000 lacks the pfkB carbohydrate kinase, 2-dehydro-3-deoxygluconate kinase, which links D-glucuronic acid 

metabolism to glycolysis. This enzyme is found in both B2904 (B2904_orf899 and B2904_orf900) and WesB 

(wesB_1781). 

D-Mannitol 
− + − 

B2904 is the only strain with the D-mannitol PTS system IIABC components (B2904_orf2447) and also a 

mannitol-1-phosphate 5-dehydrogenase (B2904_orf2446) for D-mannitol, uptake, phosphorylation and catabolism. 

Glucuronamide 

− + + 

95/1000 lacks the pfkB carbohydrate kinase, 2-dehydro-3-deoxygluconate kinase, which links D-glucuronic acid 

and related compound metabolism to glycolysis. This enzyme is found in both B2904 (B2904_orf899 and 

B2904_orf899 and B2904_orf900) and WesB (wesB_1781). 

β-D-Allose 
− − + 

WesB is the only strains with D-allose ABC transporter components (wesB_1171, wesB_1172 and wesB_1175) 

and D-allose kinase (wesB_0259 and wesB_1174) for uptake and metabolism of D-allose. 

β-Methyl-D-glucuronic 

acid − + + 

95/1000 lacks the pfkB carbohydrate kinase, 2-dehydro-3-deoxygluconate kinase, which links D-glucuronic acid 

and related compound metabolism to glycolysis. This enzyme is found in both B2904 (B2904_orf899 and 

B2904_orf900) and WesB (wesB_1781). 

L-Sorbose 
− − + 

WesB is the only strain with the mannose/sorbose-specific PTS system IIABCD (wesB_1269, wesB_1270, 

wesB_1271, wesB_1272) components for uptake and phosphorylation of L-sorbose. 
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4.3 Discussion

 
4.3.1 Comparison of general genome features 

The dendrogram based on the MLST data for the nine strains of Brachyspira 

demonstrated relatedness between the species that was concordant with previous 

findings (Hafstrom et al., 2011; Wanchanthuek et al., 2010). A close relationship was 

noted between the three strains of B. pilosicoli however the two strains of B. intermedia 

were less closely related, which supports reports of extensive diversity in this species 

based on results of PFGE (Fellstrom et al., 2008), and a previous MLST study which 

indicated that these two strains belong to distinct groups (Phillips et al., 2010). It has 

been suggested that not all isolates with the B. intermedia phenotype should be assigned 

to this species (Hafstrom et al., 2011). 

The relatively small size of the B. pilosicoli genomes is most likely due to them 

being members of a more specialised species that has undergone a high degree of 

reductive genome evolution. Its has been suggested that if this is the case, then B. 

pilosicoli is likely to be an older pathogen than other Brachyspira species such as B. 

hyodysenteriae (Hafstrom et al., 2011). Such reductive genome evolution may have 

allowed improved energy efficiency and enhanced pathogenic potential. Reductive 

genome evolution is particularly evident in obligate, intracellular bacterial pathogens 

(Andersson and Kurland, 1998) and consistent with this, of the Brachyspira species, 

only B. pilosicoli and B. aalborgi show long-term intimate associations with the surface 

of enterocytes, into which they interdigitate one of their cell ends. In addition to their 

small genomes, the sequenced strains of B. pilosicoli lacked plasmids, whereas the 

genomes of the other fully sequenced Brachyspira species have included plasmids 

(Hafstrom et al., 2011).  

The rRNA gene organisation observed in the strains of B. pilosicoli has been 

considered a distinguishing feature of Brachyspira (Zuerner and Stanton, 1994), since 

other spirochaetes typically have differing copy numbers and organisations (Fukunaga 

et al., 1992b; Fukunaga et al., 1992c). However, similar arrangements to Brachyspira 

have been detected in the spirochaete Borrelia burgdorferi (Fukunaga et al., 1992a). 

Situated between the rrs gene and rrf-rrl cluster, which are either side of the oriC, was 

the tmRNA (ssrA, 10Sa RNA) gene and nine of the total 34 tRNAs that were dispersed 

throughout the genome (Figure 4.2). 

The origin of replication was originally considered to be adjacent to the dnaA gene 

(Bellgard et al., 2009; Wanchanthuek et al., 2010), however there was no association 
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between the oriC and dnaA genes in the B. pilosicoli B2904 genome (Figure 4.2), as 

found in other Brachyspira genomes (Hafstrom et al., 2011). The arrangement of genes 

surrounding the dnaA gene was consistent between the strains of B. pilosicoli, as with 

the other sequenced Brachyspira genomes (Wanchanthuek et al., 2010). The genes at 

the oriC, although consistent between the strains of B. pilosicoli analysed, appear to 

vary extensively between the species.  

 

4.3.2 B. pilosicoli genome architecture 

MGEs were found adjacent to or within close proximity of the sites where 

recombination events appear to have occurred in the B2904 and WesB genomes (Figure 

4.3 and 4.4). The greater number of MGEs, including ISEs, recombinases, transposases 

and integrases identified in the B2904 and WesB genomes compared to the 95/1000 

genome seems to correlate with the extent of genome rearrangement (Appendix I). 

MGEs have been implicated in chromosomal rearrangements, gene disruptions resulting 

in pseudogenes, and eventual loss of genes, which may contribute to reductive genome 

evolution (Moran and Plague, 2004). Species and strains that are undergoing or have 

recently undergone reductive genome evolution, and hence become more specialised 

pathogens, typically harbour large numbers of MGEs (Plague et al., 2008; Schmitz-

Esser et al., 2011; Song et al., 2010). Coincidentally, fewest suspected pseudogenes 

were noted in 95/1000 and most in B2904 (Table 4.1). 

Differences in the number of MGEs in the three B. pilosicoli genomes may relate 

to their different stages of reductive genome evolution. Strain 95/1000, which had the 

smallest genome, also had the fewest MGEs and this could be interpreted as indicating 

that the MGEs that induced the genome reduction in this strain have become lost. 

Alternatively, MGE expansion may not have occurred in 95/1000 to the same degree as 

in B2904 and WesB, as MGEs are generally lost in a fragmentary manner by 

pseudogenisation. This would mean that 95/1000 has not undergone niche specialisation 

relative to the other two strains, and hence its genome is unlikely to have been reduced 

in this way. On the other hand, the greater number of pseudogenes in the larger B2904 

and WesB genomes does suggest that they may be undergoing genome reduction. A 

possible explanation would be that these strains are in the initial stages of genome 

reduction, at the point at which MGE expansion occurs (Moran and Plague, 2004; Song 

et al., 2010). Genome reduction and MGE expansion is often associated with niche 

specialisation or host restriction (Parkhill et al., 2003; Parkhill et al., 2001). However, 

B. pilosicoli are not considered host-restricted, and WesB, of human origin, has been 
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shown also to have the capacity to infect chickens and pigs (Trott et al., 1996a; Trott et 

al., 1995). B. pilosicoli is a highly recombinant species (Trott et al., 1998), and despite 

differences in genome arrangement and the number of pseudogenes, part of the 

variation in the genome sizes simply reflects the carriage of different subsets of the pan-

genome. 

The dot plot comparison of the three B. pilosicoli genomes revealed that the 

rearrangements were symmetrical around the origin or terminus of replication (Figure 

4.3). It has been postulated that symmetrical rearrangements occur because 

recombination events are determined by the replication forks that are approximately 

equal distance from the oriC during bidirectional replication (Tillier and Collins, 2000). 

It has also been argued that non-symmetrical rearrangements can be disadvantageous, 

and so genome rearrangements such as those found in the strains of B. pilosicoli are a 

product of selection (Mackiewicz et al., 2001). 

 
4.3.3 Global feature comparisons between the strains of B. pilosicoli 

The general distribution of features into COG categories was similar for the three 

strains (Table 4.2), highlighting their close relationship. Despite having the smallest 

genome, B. pilosicoli 95/1000 possessed the greatest number of features in six 

categories. B2904 contained the most features in eight categories, and WesB in one 

category. A striking difference between the strains was in the carbohydrate (G), amino 

acid (E) and nucleotide (F) transport and metabolism categories, with the larger WesB 

genome containing considerably more features than the B2904 and 95/1000 genomes. 

In addition, compared to other Brachyspira species the strains of B. pilosicoli had a 

reduced number of features associated with inorganic ion transport and metabolism (P) 

(Hafstrom et al., 2011; Wanchanthuek et al., 2010). 

From the three B. pilosicoli genomes available, the pan-genome could be defined 

by 2,132 conserved genes (Figure 4.5). As expected, there was a greater number of core 

genes between the strains of B. pilosicoli than between strains of different species; 

substantially fewer core genes (1,087) were identified for B. hyodysenteriae WA1, B. 

pilosicoli 95/1000 and B. murdochii 56-150T (Wanchanthuek et al., 2010). 

 
4.3.4 Global feature comparisons between the B. pilosicoli genomes and other 

Brachyspira genomes 

The protein blastmatrix comparison performed on the nine available Brachyspira 

genomes (published and unpublished), revealed that the strains of B. pilosicoli shared 
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the greatest proportion of proteins (54.9 – 68.4%) (Table 4.3). Of the strains of B. 

pilosicoli, B2904 harboured the greatest proportion of protein repeats relating to 

paralogs (2.7%), despite not possessing the largest genome. Overall, the non-pathogenic 

B. murdochii had the greatest proportion of protein repeats (5.3%), perhaps relating to 

its large genome. High proportions of shared proteins highlighted the close relationships 

of B. hyodysenteriae with B. intermedia (>46.7%) and B. murdochii (33.7%) (Figure 

4.1). B. aalborgi shared the lowest percentage of proteins with other Brachyspira 

species, consistent with evidence that this is the most divergent species (Figure 4.1). 

The protein Markov clustering analysis of the six published Brachyspira genomes 

revealed B. intermedia PWS/AT harboured the greatest number of clusters not found in 

the other sequenced Brachyspira genomes (n = 277) and it has the largest genome 

(Table 4.4). The greatest number of clusters shared only between two strains was with 

B. intermedia PWS/AT and B. hyodysenteriae WA1 (n = 61), consistent with the close 

relationship of these species (Figure 4.1). Of the strains of B. pilosicoli, B2904 and 

WesB shared the most unique protein clusters (n = 47), and WesB also shared the 

greatest number of clusters with a non-B. pilosicoli strain, having 36 clusters in 

common with B. intermedia and 16 with B. murdochii. The strains of B. pilosicoli 

collectively shared the most clusters with B. murdochii 56-150T (n = 58), and fewest 

with B. hyodysenteriae WA1 (n = 4), as noted previously (Hafstrom et al., 2011). Non-

B. pilosicoli strains shared 173 clusters, whereas the strains of B. pilosicoli shared 110 

clusters, reflecting gene loss and genome reduction. 

 

4.3.4.1 Features unique to the B. pilosicoli species 

Of 110 protein clusters present only in the B. pilosicoli genomes (Table 4.4), 

54.6% were hypothetical or unclassified. The majority of protein clusters were 

metabolic features, including an α-galactosidase (BP951000_0276; B2904_orf1586; 

wesB_1069), the activity of which is a distinguishing feature of the species (Fellstrom 

and Gunnarsson, 1995; Fellstrom et al., 1997). Although it was suggested that B. 

pilosicoli had lost many transport-related genes during reductive evolution (Hafstrom et 

al., 2011), 13 clusters were found to be for transport proteins. Sialidase family-like 

protein genes unique to B. pilosicoli 95/1000 (BP951000_0858, BP951000_0859 and 

BP951000_0861) (Hafstrom et al., 2011; Wanchanthuek et al., 2010) were also present 

in B2904 (B2904_orf1812, B2904_orf1813 and B2904_orf1814) and WesB 

(wesB_0922, wesB_0923 and wesB_0924); the products of such genes may play a role 

in adherence to host cells, forming binding sites through glycosaminoglycans 
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modification (Piotrowski et al., 1991). Clusters for an α-1,2-fucosyl transferase 

(BP951000_1232; B2904_orf14; wesB_0014), two membrane proteins 

(BP951000_1751; B2904_orf2268; wesB_0587) (BP951000_1752; B2904_orf2267; 

wesB_0586) and two glycosyltransferases (BP951000_0003; B2904_orf1276; 

wesB_1428) (BP951000_2338; B2904_orf1277 and B2904_orf1282; wesB_1429) were 

unique to B. pilosicoli and may contribute to host cell adherence. Other B. pilosicoli-

specific clusters were for an ankyrin repeat protein (BP951000_0080; B2904_orf1369; 

wesB_1511), a β-lactamase (BP95100_1338; B2904_orf2576; wesB_0148), two 

peptidases (BP951000_1129; B2904_orf205; wesB_2479) (BP951000_1260; 

B2904_orf40; wesB_0047) and phage proteins (BP951000_1211; B2904_orf2686; 

wesB_2642) (BP951000_1258; B2904_orf39; wesB_0046).  

 

4.3.4.2 Unique features shared by two strains of B. pilosicoli 

Of the strains of B. pilosicoli, B2904 and WesB shared most unique clusters 

(Table 4.4). Fewer clusters were shared with 95/1000, but of twelve clusters unique to 

95/1000 and B2904, all but N-acetyl mannosamine-6-phosphate 2-epimerase 

(BP951000_2135; B2904_orf1689) were hypothetical. Six clusters were unique to 

95/1000 and WesB, all lacking a specified function. Of 47 clusters unique to B2904 and 

WesB, 51.1% were hypothetical; notable clusters shared between these strains were for 

a further sialidase-like protein (B2904_orf1811; wesB_0925) and a peptidase 

(B2904_orf863; wesB_1557). The glycine reductase complex locus of 95/1000 

(BP951000_1852 – BP951000_1860) and B. murdochii 56-150T (Bmur_2720 – 

Bmur_2728) (Wanchanthuek et al., 2010) was identified in B2904 (B2904_orf665 – 

B2904_orf673) and WesB (wesB_0746 – wesB_0754), but with an additional ATP-

binding cassette (ABC)-type glycine betaine transport component in a separate locus 

(B2904_orf1065; wesB_1632). Moreover, a cluster for a transposase unique to B2904 

(n = 47) and WesB (n = 7) was detected. Genes that were shared only by the larger 

B2904 and WesB genomes and were absent from 95/1000, without apparent detriment, 

presumably have some specialised function that is not essential for survival. These 

features may have been lost from 95/1000, as they are not essential, or acquired in 

B2904 and WesB, perhaps by HGT. 

 

4.3.4.3 B. pilosicoli strain-unique features 

B. pilosicoli 95/1000 harboured the fewest and WesB the most unique features 

(Table 4.4), correlating with their genome size. As discussed above, the 95/1000 strain 
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may have become more specialised, having lost non-essential features through reductive 

evolution (Andersson and Kurland, 1998); alternatively, the absence of orthologs in 

other strains or species may suggest that these features have been acquired via HGT. Of 

the strain-unique clusters, 77.7%, 65.9% and 68.1% were for hypothetical proteins in 

95/1000, B2904 and WesB, respectively. In 95/1000, unique clusters included a sodium/ 

pantothenate symporter and an outer membrane lipoprotein (BP951000_0731) with a 

potential role in host cell adherence (BP951000_0634). In B2904, unique clusters 

included putative phage proteins (B2904_orf136, B2904_orf143 and B2904_orf816), 

additional glycine reductase complex proteins (B2904_orf2051 and B2904_orf2052) 

and proteins involved in ascorbate metabolism (B2904_orf1019, B2904_orf1020 and 

B2904_orf1024) and mannitol metabolism (B2904_orf2446 and B2904_orf2447). In 

WesB, unique features included mannose/sorbose-specific phosphotransferase system 

(PTS) components (wesB_1270, wesB_1271 and wesB_1272), fructose-specific PTS 

components (wesB_2317 and wesB_2318) and a D-allose kinase (wesB_1174). Six 

unique phage-related features and an integrase were identified at two loci in the WesB 

genome (wesB_0297, wesB_0298, wesB_2528, wesB_2540, wesB_2545, wesB_2550 

and wesB_2567). Interestingly, each of the strains harboured unique genes for ankyrin 

proteins (BP951000_0037; B2904_orf892 and B2904_orf1944; wesB_0903). 

 

4.3.5 Comparison of potential virulence features 

 

4.3.5.1 Lipooligosaccharides 

A rfbBADC cluster, encoding proteins for nucleotide sugar biosynthesis and with a 

suggested role in O-antigen assimilation (Whitfield, 1995; Wildschutte et al., 2004), 

was identified on the B. hyodysenteriae WA1 plasmid (Bellgard et al., 2009). Although 

lacking this cluster, the three strains of B. pilosicoli possessed rfbA (BP951000_1687; 

B2904_orf2229; wesB_0523) and rfbB (BP951000_1148; B2904_orf2569; 

wesB_2572), but rfbC was noted only in B2904 (n = 1) and WesB (n = 2) 

(B2904_orf117; wesB_0130 and wesB_0131). Genes involved in the biosynthesis of 

3,5-dideoxyhexose, an O-antigen component of LPS (Kessler et al., 1993), were found 

located adjacent to the rfbC gene(s) in B2904 and WesB; both strains contained rfbF 

(B2904_orf115; wesB_0127) and rfbG (B2904_orf116; wesB_0128), but rfbH was 

present only in WesB (wesB_0129). The absence of such genes in the pathogenic strain 

95/1000 suggests that they may have a limited impact on virulence. 
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4.3.5.2 Motility and chemotaxis 

As with 95/1000, the two other strains of B. pilosicoli possessed fewer chemotaxis 

genes than B. hyodysenteriae and B. murdochii (Table 4.5) (Wanchanthuek et al., 2010). 

No mcpC genes were found in the strains of B. pilosicoli, despite their detection in the 

genomes of the other fully sequenced Brachyspira species. The inter-species differences 

in the number and complement of chemotaxis-related genes may account for differences 

in their attraction to mucins and affinity to local host niches (Naresh and Hampson, 

2010). No mcpA genes were identified in B2904, but two copies were found in the other 

strains of B. pilosicoli. The same complement of chemosensory transducer genes was 

identified in all three strains, as was the previously described cluster of seven such 

genes (Wanchanthuek et al., 2010). Differences in the number of chemotaxis-related 

genes between the three strains may translate from differences in genome size. This may 

denote a redundancy of features that can be lost without apparent detriment to long-term 

survival. The same flagella genes were shared by all three strains of B. pilosicoli. 

 

4.3.5.3 Adhesion and membrane proteins 

End-on attachment of the spirochaete to the luminal epithelial surface of the lower 

intestinal tract is characteristic of colonisation by B. pilosicoli and B. aalborgi (Hovind-

Hougen et al., 1982; McLaren et al., 1997). Thus, surface-associated proteins or 

lipoproteins are potential candidates for virulence. All lipoprotein genes in 95/1000 

were found in both B2904 and WesB strains. However, these strains also had a 

predicted secreted lipoprotein (B2904_orf1676; wesB_1576) and a lipoprotein carrier 

protein, LolA (B2904_orf608; wesB_0637), which anchors lipoproteins to the outer 

membrane (Takeda et al., 2003). The same complement of genes encoding variable 

surface proteins found in 95/1000 (Wanchanthuek et al., 2010) and the putative integral 

membrane virulence factor, MviN (B2904_orf469; wesB_2218) were noted in B2904 

and WesB. Genes for outer membrane proteins with a potential role in virulence were 

identified, including BspA antigens, which may bind fibronectin and initiate a 

serological response (Sharma et al., 1998), OmpA proteins, similar to proteins 

implicated in Leptospira virulence (Ristow et al., 2007), and Tia invasion determinants. 

Genes encoding TolC were identified in all three strains of B. pilosicoli, and this protein 

has been implicated in host invasion, virulence gene expression, and as an outer 

membrane component of efflux pumps (Ferhat et al., 2009; Minato et al., 2011; 

Zgurskaya et al., 2011). The periplasmic proteins identified were predicted to be 

primarily associated with other membrane proteins, and constitute ABC transporters 
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with putative roles in virulence (Davidson et al., 2008). Gene duplications were largely 

responsible for the greater number of inner membrane virulence factors in B2904 and 

WesB, but since they were absent from 95/1000, it is unlikely that they have significant 

impact on virulence. WesB harboured two additional genes encoding OppA, which has 

suggested involvement in spirochaete-host interactions in Treponema denticola (

)

Fenno 

et al., 2000 . Genes encoding P-type ATPase components, such as cadA and zntA, were 

noted in the three strains and these have been implicated in the ability of pathogens to 

sense and adapt to intracellular environments through heavy metal ion regulation 

(Francis and Thomas, 1997; Silver and Walderhaug, 1992), in addition to Trk potassium 

transport components, required for invasion and intracellular growth of Salmonella (Su 

et al., 2009). Genes encoding outer, periplasmic and inner membrane proteins that 

constitute transport systems implicated in bacterial virulence mechanisms were 

detected, such as polyamine ABC-type transport, which is important for Streptococcus 

pneumoniae pathogenesis ( )Shah et al., 2008 , TonB-dependant iron transport, which is 

related to Shigella dysenteriae virulence ( )Reeves et al., 2000 , and PTS systems 

implicated in the virulence of Mycobacterium tuberculosis and E. coli (

; )

Lamarche et al., 

2005 Peirs et al., 2005 . Genes were found encoding components of the AcrAB-TolC 

complex, which confers antimicrobial resistance and survival in the GI tract (Perez et 

al., 2012), a ferrous iron transporter, feoB, for iron acquisition, gut colonisation and 

intracellular survival of multiple enteropathogens (Naikare et al., 2006; Velayudhan et 

al., 2000), and a glutamine transporter gene, glnQ, which has been implicated in 

Streptococcus adherence and virulence (Tamura et al., 2002). In the strains of B. 

pilosicoli, an mgl operon similar to one with a proposed role in virulence expression in 

Treponema pallidum (Porcella et al., 1996) was noted. Multidrug efflux features were 

found in all three strains, which aside from drug resistance, are attributed with a range 

of roles in pathogenesis (Piddock, 2006a). Genes for the Sec pathway described in 

95/1000 (Wanchanthuek et al., 2010), with no needle-associated genes were also noted 

in B2904 and WesB, with an additional secA-like gene in WesB (wesB_0869). 

 

4.3.5.4 Host tissue degradation  

The complement of haemolysis-related genes was identical between the three 

strains. Compared to previous analysis, other genes were detected including a 

haemolysin, previously undetected in 95/1000 (BP951000_1925) and three putative 

streptolysin genes, sagB (BP951000_0919; B2904_orf445; wesB_2241), sagC 

(BP951000_0918; B2904_orf446; wesB_2240) and sagD (BP951000_0917; 
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B2904_orf447; wesB_2239), involved in β-haemolysis and virulence in streptococci 

(Betschel et al., 1998; Sierig et al., 2003). A putative phospholipase/carboxylesterase 

(B2904_orf1218) was found in B2904. The three strains contained similar numbers of 

peptidases and proteases, which may participate in local degradation of host tissues, 

however 95/1000 lacked peptidase E, which had no effect on protein degradation in 

Salmonella (Carter and Miller, 1984), and hence, this non-essential enzyme may have 

been lost through reductive evolution.  

 

4.3.5.5 Oxidative stress 
Genes related to oxidative stress were shared by the three strains. A partial BatI 

(Bacteroides aerotolerance) operon (Tang et al., 1999) was noted in all strains, in close 

proximity to one of the nox genes and consisted of batB (BP951000_0196; 

B2904_orf1493; wesB_1155), batC (BP951000_0195; B2904_orf1492; wesB_1156), 

batD (BP951000_0194; B2904_orf1491; wesB_1157) and batE (BP951000_0193; 

B2904_orf1490; wesB_1158). The batA gene was in a distinct locus in each of the three 

strains (BP951000_1387; B2904_orf2546; wesB_0200). 

 

4.3.5.6 Ankyrin-like protein  

There was little difference in the number of genes encoding ankyrin-like proteins 

between the strains of B. pilosicoli, which may be involved in host cell interactions 

through their ability to bind host chromatin (Cho et al., 2005). B. pilosicoli harboured 

consistently fewer of these genes than B. hyodysenteriae (Wanchanthuek et al., 2010). 

 

4.3.5.7 Phage and other mobile genetic elements 

Outside of bacteriophage regions, four, 54 and 28 MGEs were identified in 

95/1000, B2904 and WesB, respectively, correlating with the extent of genomic 

rearrangements. The types and copy number of all MGEs in the B. pilosicoli genomes 

are detailed in Appendix I. The region encoding genes related to the VSH-1 prophage-

like GTA in 95/1000 (Wanchanthuek et al., 2010), was identified in B2904 

(B2904_orf2669 – B2904_orf2692) and WesB (wesB_2625 – wesB_2648). This region 

was ~15 Kb in 95/1000 compared to ~21 Kb in B2904 and WesB due to an insertion 

between genes encoding OrfE and Hvp53, containing genes for a monosaccharide-

transporting ATPase (B2904_orf2671; wesB_2628), an ABC transporter-related protein 

(B2904_orf2672; wesB_2629), a ROK family protein (B2904_orf2674; wesB_2631), 

an integrase in B2904 only (B2904_orf2675), and a periplasmic binding protein/LacI 
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transcriptional regulator (B2904_orf2673; wesB_2627 and wesB_2630). Generally, 

these features had high homology with those in Clostridium carboxidivorans (e-value < 

1e-74), consistent with the finding that Brachyspira share a high degree of gene 

similarity with Clostridium (Bellgard et al., 2009), and supporting the notion that the 

bacteriophages exchange genetic material between species (Hafstrom et al., 2011). In 

WesB, an additional cluster of VSH-1-associated genes, flanked by a phage terminase, 

was detected (wesB_2527 – wesB_2553); the different genes in this region shared 

highest homology with C. carboxidivorans, B. hyodysenteriae, B. intermedia, B. 

pilosicoli and B. murdochii, suggesting that the GTA had involvement in intra- and 

inter-species gene transfer. The bacteriophage that was identified in B. pilosicoli 

95/1000 (pP1), and in B. murdochii 56-150T (pM1, pM2 and pM3) (Hafstrom et al., 

2011; Wanchanthuek et al., 2010), was also found in B2904 (pP2; B2904_orf1942 – 

B2904_orf1970) and WesB (pP3; wesB_0739 – wesB_0708) (Figure 4.6). In B. 

pilosicoli, the bacteriophage size was proportional to genome size. Hypothetical 

proteins encoded in this region were shared between 95/1000 and B2904, however 

WesB contained four unique hypothetical genes. The B2904 pP2 bacteriophage 

possessed a unique ankyrin repeat protein (B2904_orf1943). An adenine-specific DNA 

methyltransferase gene was present only in the WesB pP3 bacteriophage (wesB_0711), 

adjacent to the DNA methylase gene found in bacteriophages of B. pilosicoli 

(BP951000_1480; B2904_orf1968; wesB_0710), but absent from those of B. murdochii 

56-150T. Two separate novel bacteriophages regions were found in B2904 (pP4) and 

WesB (pP5). The ~29 Kb pP4 bacteriophage contained seven phage proteins 

(B2904_orf133 – B2904_orf180), six predicted proteins with homology to sequences of 

other Brachyspira species, and 35 unique hypothetical genes. The ~28 Kb pP5 

bacteriophage (wesB_0301 – wesB_0341) shared all the components of the pI1 

bacteriophage of B. intermedia PWS/AT, suggesting transfer of the bacteriophage in an 

inter-species HGT event. Interestingly, pP5 was flanked by VSH-1 components 

(wesB_0297, wesB_0298 and wesB_0343), and hence the VSH-1 GTA may be 

responsible for mediating the HGT event. Two nuclease genes (wesB_0306 and 

wesB_0308) and a number of unique hypothetical genes in pP5 were not identified in 

pI1. Clustered regularly interspaced short palindromic repeats (CRISPR), which provide 

bacteria with acquired resistance to bacteriophages (Sorek et al., 2008), were only 

identified in the non-pathogenic B. murdochii 56-150T, which suggests a role for 

bacteriophages in the pathogenicity of Brachyspira. B. pilosicoli B2904 and B. 

intermedia PWS/AT did however possess a bacteriophage resistance protein 
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(B2904_orf2624; Bint_2390) which has been implicated in protecting against 

bacteriophages (Fineran et al., 2009). 

 

 
Figure 4.6 Comparison of the organisation of the bacteriophages in the three B. 

pilosicoli genomes and B. murdochii 56-150T genome. A comparison of bacteriophages 

pP1 in 95/1000, pP2 in B2904 and pP3 in WesB and also the three bacteriophages 

found in B. murdochii 56-150T; pM1, pM2 and pM3. Genes encoding hypothetical 

proteins (grey) and genes with predicted protein function (yellow) are indicated. 

 

4.3.6 Central metabolism and correlation with phenotype 

 

4.3.6.1 Carbohydrate metabolism 

High proportions (4.32 – 5.37%) of the B. pilosicoli genomes were associated with 

carbohydrate transport and metabolism (Table 4.2), and from metabolic pathway 

reconstructions it is evident that glycolysis constitutes a major backbone of energy 

production (Wanchanthuek et al., 2010). Collectively the strains of B. pilosicoli utilised 

51.9% of carbohydrate compounds tested, and more specifically 69.4% of hexose 

sugars (Appendix II). Genes for enzymes involved in converting glucose-6-phosphate to 

ribulose-5-phosphate that were identified in B. hyodysenteriae WA1 (Bellgard et al., 

2009), were found in the B. pilosicoli genomes. These features are likely to direct 

carbohydrate oxidation towards the non-oxidative pentose phosphate pathway, to 

generate reducing power required for biosynthetic pathways. B. pilosicoli is 

characterised by an absence of β-glucosidase activity (Fellstrom and Gunnarsson, 

1995), however a novel system for metabolising β-glucosides found in 95/1000 
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(Wanchanthuek et al., 2010) was also present in B2904 and WesB, which, alongside 

specific PTS systems, is likely to be involved in the utilisation of D-cellobiose and 

arbutin as carbon sources. Despite lacking β-glucosidase, metabolism of β-glucosides 

may be important to the virulence of B. pilosicoli as this phenotype is associated with 

bacterial growth, adhesion and colonisation (Kilic et al., 2004). Of the disaccharides 

tested, 64.3% were utilised by the strains of B. pilosicoli, whereas, of the 

oligosaccharides only dextrin was utilised, which is likely to be attributed to α-

glucosidase activity (BP951000_1130; B2904_orf204; wesB_2480). 

 

4.3.6.2 Amino acid metabolism 

Of the COG categories related to metabolism, the greatest proportion of the 

genome was related to amino acid transport and metabolism (Table 4.2). Phenotypic 

studies revealed that despite the high number of genes for amino acid/oligopeptide 

transporters found in the genomes, only five of the tested amino acids were able to 

support B. pilosicoli as a sole carbon source (Appendix II). Genes encoding enzymes to 

direct these amino acids towards pyruvate metabolism and hence energy production 

were identified, including alanine dehydrogenase (BP951000_0036; B2904_orf1321; 

wesB_1465), threonine aldolase (BP951000_1568; B2904_orf2409; wesB_0396), 

glycine hydroxymethyltransferase (BP951000_1528; B2904_orf2450; wesB_0361) and 

L-serine dehydratase (BP951000_0452 and BP951000_0453; B2904_orf939 and 

B2904_orf940; wesB_1746 and wesB_1747). Interestingly, B. pilosicoli was the only 

species that was unable to utilise the amino acids D-serine and L-glutamic acid (Table 

4.6), consistent with the absence of genes required for their catabolism in the B. 

pilosicoli genomes. Moreover, a glycine reductase complex found in the strains of B. 

pilosicoli, which catalyses the reductive deamination of glycine, forming ATP, would 

be involved in the utilisation of glycine. A high proportion of amino acid metabolic 

features in B. pilosicoli were related to biosynthesis and potentially maintaining 

intermediates of the partial TCA cycle identified in this species (Wanchanthuek et al., 

2010), rather than catabolism to produce energy. L-glutamic acid and L-glutamine were 

insufficient to sustain B. pilosicoli as a sole carbon source; these amino acids are 

primary products of ammonia assimilation used in peptidoglycan, LOS and outer 

membrane protein biosynthesis (Merrick and Edwards, 1995), hence their metabolism is 

redirected to energy yielding pathways. The strains of B. pilosicoli possessed genes for 

glutamate dehydrogenase (BP951000_1312; B2904_orf93; wesB_0103), which 

catalyses the reversible synthesis of glutamic acid from α-ketoglutaric acid and 
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ammonium. Since α-ketoglutaric acid was able to sustain B. pilosicoli, the presence of a 

transporter for α-ketoglutaric acid and not glutamic acid may explain this phenotype. 

The ability to utilise amino acids as an energy source may have become redundant in 

Brachyspira, which typically occupy the nutrient-rich lower GI tract, and hence 

associated features may have been lost through reductive evolution. 

 

4.3.6.3 Nucleotide metabolism 

The strains of B. pilosicoli were able to utilise three purine and two pyrimidine 

nucleosides tested as a sole carbon source (Appendix II). The enzymes suggested to 

complete a metabolic link between nucleoside and central metabolism in B. 

hyodysenteriae WA1 (Bellgard et al., 2009) were identified in the strains of B. 

pilosicoli.  

 

4.3.6.4 Lipid metabolism 

Despite the presence of enzymes involved in the β-oxidation of fatty acids, 

including a long chain fatty acid-CoA ligase (BP951000_0887; B2904_orf479; 

wesB_2210), no long chain fatty acids tested were utilised by B. pilosicoli as a carbon 

source; however, the short chain fatty acids, butyric acid and propionic acid, were 

utilised (Appendix II). Uniquely to B. pilosicoli (Table 4.6), glycerol was utilised as a 

carbon source, and genes for its metabolism were detected including those for a glycerol 

uptake facilitator (BP951000_0799; B2904_orf2190; wesB_2118), glycerol kinase 

(BP951000_0800; B2904_orf2191; wesB_2119) and glycerol-3-phosphate 

dehydrogenase (BP951000_1696; B2904_orf2220; wesB_0532). Glycerol is an 

important carbon and energy source for pathogens; glycerol-catabolising enzymes have 

been considered crucial for intracellular growth of Listeria (Joseph et al., 2006) and the 

ability to utilise this compound has been considered a key factor in allowing the 

reductive evolution of Mycoplasma (Halbedel et al., 2004). The gene set required for 

fatty acid biosynthesis was incomplete in B2904 and WesB, as it was in 95/1000 

(Wanchanthuek et al., 2010).  

 

4.3.6.5 Differences in carbon source utilisation by Brachyspira 

Previous genomic analysis B. hyodysenteriae and B. pilosicoli revealed that these 

species share many metabolic capabilities (Bellgard et al., 2009; Wanchanthuek et al., 

2010). By application of Biolog PMTM technology for phenotypic determination of 

carbon source utilisation of four strains each of B. alvinipulli, B. hyodysenteriae, B. 
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innocens, B. intermedia, B. murdochii and B. pilosicoli and two strains each of “B. 

canis” and “B. pulli” (Appendix II), differences in carbon source utilisation between 

species were determined. B. alvinipulli, B. hyodysenteriae, B innocens and B. 

murdochii had the most intra-species differences in the utilisation of carbon sources, 

with intra-species differences in the utilisation of 42 to 47 carbon sources each 

(Appendix II). “B. canis”, B. intermedia and “B. pulli” had between 19 and 26 intra-

species differences in carbon source utilisation each (Appendix II), with B. pilosicoli 

having fewest, with just 7, all of which were accounted for genotypically (Table 4.7). 

As more Brachyspira genome sequences become available for intra-species 

comparisons, particularly in the species B. alvinipulli, B. hyodysenteriae, B innocens 

and B. murdochii, considerable differences in the complement of metabolic features in 

the strains of each species may be expected. The analysis, however was based only on 

four strains of each of the known species and two strains of both proposed species, and 

therefore, may have underestimated the extent of the intra-species differences.  

At a species level, differences in the utilisation of 71 carbon sources were noted 

(Table 4.6). Amongst the other species tested, B. pilosicoli demonstrated a unique 

ability to utilise glycerol and a unique inability to utilise L-glutamic acid, glycyl-L-

aspartate and D-serine. B. pilosicoli was the only species in which all tested strains 

were able to utilise 3-O-β-D-galactopyranosyl-D-arabinose, D-tartaric acid and 

thymidine, and unable to utilise D-aspartic acid, L-aspartic acid, ethanolamine, glycyl-

L-glutamic acid, glycyl-L-proline, m-inositol, β-phenylethylamine, L-proline, D-

trehalose and tyramine. These phenotypic differences have potential to improve current 

biochemical identification testing, however a wider strain set for each of the species 

would be required to confirm these unique phenotypes amongst the species. Moreover, 

further work is required in order to correlate phenotypic and genotypic differences 

between the strains and species, for which genome sequences are available.  

Preliminary work to associate phenotypic differences with genotype in other 

Brachyspira species did find some correlations. For example, B. alvinipulli was the only 

species where all the strains tested were unable to utilise uridine (Table 4.6) and 

coincidentally the gene encoding uridine phosphorylase for the first step in uridine 

catabolism, was found in all available Brachyspira genomes (in two or more copies) 

except that of B. alvinipulli C1T. Moreover, B. alvinipulli was the only species in which 

strains, including C1T, showed the ability to utilise the dicarboxylates, oxalic acid, 

bromosuccinic acid, sebacic acid and citraconcic acid (Appendix II), and this may be 

explained by the presence of the dctA gene, encoding a dicarboxylate transport protein, 
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found only in the B. alvinipulli C1T genome. Similarly, the ability of only strains of B. 

hyodysenteriae to utilise the tricarboxylate, citric acid (Appendix II), may be associated 

to the presence of the genes tctA, tctB and tctC, which encode components of a 

tricarboxylate transport protein and citD, citE and citF, which encode subunits of the 

enzyme citrate lyase, only in the B. hyodysenteriae WA1 genome. 

 

4.3.7 Concluding remarks 

In this chapter, the genome of B. pilosicoli strain B2904 and the near complete 

genome of strain WesB were reported. Together with the previously reported 95/1000 

genome, this allowed the first intra-species genome comparison within the genus 

Brachyspira. The feature-based analysis revealed a high level of similarity between the 

three strains and identified genes that different strains of the spirochaete may have lost 

in a process of reductive genome evolution. Sequence-based comparisons showed the 

majority of sequence was shared between the strains, with few unique regions; however, 

genome rearrangements were observed around the oriC. MGEs were found associated 

to areas of rearrangements, and these features may be a factor that has driven or is 

driving reductive evolution. Novel bacteriophages were identified in the newly-

sequenced genomes, which displayed evidence of intra- and inter-species HGT, and 

these may have key practical applications for use in genetic manipulation. This is the 

first analysis of the spirochaete in a high-throughput phenotype screening tool, allowing 

correlation between genotype and phenotype. Future work may focus on the application 

of this technology to a wider range of Brachyspira species to validate genome 

differences, potentially providing a means by which these phenotypes can be used for 

rapid screening to infer genotypes and improve current diagnostic methods. With the 

increasing availability of Brachyspira genome sequences, such technology should 

facilitate the validation of metabolic models based on genome sequence. 
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Chapter 5. 

 

The characterisation and selection of Lactobacillus 

species as prospective probiotics for the control of 

avian intestinal spirochaetosis 

 
5.1 Introduction 

 
An approach to the control of AIS has been the use of antimicrobials such as 

tiamulin. However, given the drive in animal husbandry to reduce antimicrobial usage, 

alternative control measures are required. Probiotics are viable microorganisms used as 

feed supplements, which lead to beneficial effects in the host (Fuller, 1989) and were 

introduced in Chapter 1 (specifically in section 1.3). The bacterial genera commonly 

used as probiotics include Bacillus, Bifidobacteium, Enterococcus, Lactobacillus and 

Streptococcus. Probiotics are thought to exert beneficial health benefits to the host by 

immunomodulation of the gut mucosa, enhancing epithelia barrier function, modulation 

of the gut microbiota and by CE of pathogenic microbes, via competition for nutrients 

and receptor sites and production of antimicrobial compounds (Collins et al., 2009; 

Gerritsen et al., 2011; Klaenhammer and Kullen, 1999). One testable hypothesis of this 

thesis is that lactic acid bacteria such as lactobacilli from poultry may have properties 

suitable for the control of AIS, specifically by interference with aspects of the biology 

of Brachyspira species. 

Since May 2003, the responsibility over the risk assessment of animal feed 

additives for use in Europe was taken over by the European Food Safety Authority 

(EFSA) from the SCAN (Anadon et al., 2006; von Wright, 2005). The approval and risk 

management of a probiotic product is the responsibility of the European Commission
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(EC) and its constituent member states, to which, the EFSA provide scientific advice. 

Accurate and consistent characterisation and identification of probiotic lactobacilli 

strains was fundamental to the studies presented in this thesis, as probiotic candidates 

must meet the EU guidelines proposed in council directive 87/153/EEC, which stipulate 

the assessment guidelines for the safe use of probiotic feed additives (von Wright, 

2005). To fulfil current EU directives on animal feed additives, probiotic products must 

be clearly identified and characterised to the species level, supported in claims on their 

efficacy, tolerated by the target animal species, safe for the operator have no risk to the 

safety of the end-consumer (SCAN, 2001). Moreover, novel probiotic products must not 

harbour acquired antimicrobial resistance determinants, which have the potential to be 

transferred to other bacteria (EFSA, 2005, 2008; SCAN, 2001, 2003b). Poor quality 

control has been reported previously of probiotic bacteria in the commercial sector 

(Coeuret et al., 2004; Yeung et al., 2002); to avoid this, it is important to accurately and 

consistently identify the species in use from an early stage in the selection process.  

Selection criteria for probiotics can be divided into four categories (Klaenhammer 

and Kullen, 1999). Appropriateness criteria ensure the bacteria are GRAS and of host 

origin. Technological suitability criteria determine practical aspects of production and 

storage. Competitiveness criteria consider bacterial survival within the host and 

tolerance to environmental stresses, such as gastric acid and bile. Performance and 

functionality criteria relate to the beneficial effect of the probiotic to the host. 

This chapter describes the phenotypic and molecular characterisation of 

Lactobacillus strains, which were used as probiotic candidates in the studies discussed 

in Chapters 6 and 7. Furthermore, the initial screening for properties of the lactobacilli 

indicative of them acting as potential probiotics and the further characterisation of the 

selected strains, including acid and bile tolerance assays and screening for antimicrobial 

resistance is described in this chapter. This further characterisation was conducted in 

order to comply with current EU regulations on animal feed additives, hereby 

highlighting essential future work required for the commercial use of such potential 

probiotic strains.  
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5.2 Results 

 
5.2.1 Speciation and characterisation of poultry isolates of Lactobacillus  
 

5.2.1.1 Phenotypic characterisation 

Of the eighteen Lactobacillus strains utilised in the studies presented in this thesis, 

sixteen were obtained from the Animal Health and Veterinary Laboratories Agency 

(AHVLA, Weybridge, United Kingdom) culture collection. A further two strains, 

designated LM1 and LM2, were isolated as part of this study from the faeces of healthy 

conventional, commercial laying hens by the inoculation of serial dilutions of faeces (in 

0.1 M sterile PBS) onto MRS agar, which facilitated the selection of lactobacilli. Single 

colonies of the presumptive Lactobacillus strains were picked and expanded by further 

subculture on MRS agar prior to preparation of a stock culture. 

Gram staining was performed on all of the 16 AHVLA Lactobacillus strains and 

the two presumptive Lactobacillus strains, LM1 and LM2, followed by examination 

under light microscopy. All strains were Gram-positive, rod-shaped bacteria. 

Biochemical speciation of all Lactobacillus strains was performed using the API 50 CH 

system. API result profiles of all of the strains were recorded and analysed using the 

online database of API fermentation profiles (apiwebTM, BioMérieux), which returned 

PID of the speciation of each of the strains (Table 5.1). All of the AHVLA derived 

strains were correctly identified by this method with the notable exception for strains 

classified by AHVLA as L. reuteri were identified as L. fermentum. Strains LM1 and 

LM2 were given presumptive identities of L. fermentum and L. salivarius respectively. 

The catalase test revealed all Lactobacillus strains to be catalase-negative (Table 

5.1). Furthermore, the ability of the strains to produce hydrogen peroxide, a potential 

antimicrobial substance, was assayed using an established method (Martin et al., 2008a; 

Rabe and Hillier, 2003). Five of the strains were positive for hydrogen peroxide 

production including the LM1 strain. 

 

5.2.1.2 Molecular characterisation  

A multiplex PCR, which amplified unique regions of sequence between the 16S 

and 23S rRNA genes (Kwon et al., 2004), was employed for molecular speciation of the 

eighteen Lactobacillus strains. The multiplex PCR is capable of the detection of L. 

acidophilus, L. casei, L. delbrueckii, L. gasseri, L. plantarum, L. reuteri and L. 

rhamnosus, amplifying products of specific length for each; 606, 727, 184, 272, 428, 
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1105 and 448 bp, respectively. Following the multiplex PCR, the products were 

subjected to gel electrophoresis in order to determine the amplicon length, if any, and 

provide a speciation based on the multiplex PCR (Table 5.1). Three of the strains, 

including the LM2 strain, were not speciated by the multiplex PCR employed and gave 

inconclusive results with either no amplicons or amplicons of multiple lengths. 

However, speciation of the LM1 strain was indicated as L. reuteri, a result at variance 

with the API data. 

Further to the multiplex PCR, 16S rRNA gene sequencing was employed to 

confirm and in some cases clarify speciation. Universal 16S rRNA gene primers were 

employed for amplification of the gene (Marchesi et al., 1998), and the resultant 

amplicons were sequenced by ABI sequencing. Following alignment of the forward and 

reverse sequences, the 16S rRNA gene sequence of each of the strains was compared to 

an online database (GenBank, NCBI), using BLAST. The species and GenBank 

accession number with highest PID match to the 16S rRNA gene sequence of each 

strain in GenBank database is shown in Table 5.1. The LM1 strain was confirmed as L. 

reuteri and the LM2 strain as L. salivarius.  



 

Table 5.1 Phenotypic and molecular speciation and characterisation Lactobacillus strains used in the studies presented in this thesis. Results of the API 

50 CH system, multiplex PCR and 16S rRNA gene sequencing were used for speciation of the Lactobacillus strains. Results of the API 50 CH system 

were analysed using the online database of API fermentation profiles (apiwebTM, BioMérieux) and 16S rRNA gene sequences were compared to an 

online database (GenBank, NCBI), using BLAST. As part of characterisation, the lactobacilli were tested for the activity of catalase and their ability to 

produce hydrogen peroxide (cont’d p 158). 
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API 50 CH ID 16S rRNA sequencingbSpecies Strain 

Species PID 

Multiplex PCRa

Match species Genbank accession PID 

Catalasec Hydrogen 

peroxided

L. acidophilus B2990 L. acidophilus 47.00% L. acidophilus L. acidophilus EU878007.1 99.00% − + 

L. acidophilus B2993 L. acidophilus 76.40% L. acidophilus L. acidophilus JQ350808.1 100.00% − + 

L. buchneri B2997 L. buchneri 45.50% − L. buchneri AB425940.1 100.00% − − 

L. bulgaricus B2991 L. delbrueckii 57.80% L. delbrueckii L. bulgaricus FJ749381.1 98.00% − + 

L. bulgaricus B2999 L. delbrueckii 88.60% L. delbrueckii L. bulgaricus EU547306.1 100.00% − + 

L. casei B2986 L. paracasei 80.00% L. casei L. casei JN560879.1 99.00% − − 

L. casei B2995 L. paracasei 80.00% L. casei L. casei JN560917.1 100.00% − − 

L. fermentum B2992 L. fermentum 59.80% − L. fermentum EU626018.1 99.00% − − 

L. plantarum B2989 L. plantarum 99.90% L. plantarum L. plantarum GU451062.1 98.00% − − 

L. plantarum B2994 L. plantarum 99.90% L. plantarum L. plantarum GU451062.1 98.00% − − 

L. plantarum B2996 L. plantarum 99.90% L. plantarum L. plantarum AM279764.2 100.00% − − 

L. plantarum JC1 (B2028) L. plantarum 99.90% L. plantarum L. plantarum JQ278711.1 100.00% − − 

L. reuteri B2026 L. fermentum 99.30% L. reuteri L. reuteri JN981867.1 98.00% − − 

L. reuteri LM1 L. fermentum 99.30% L. reuteri L. reuteri JF927766.1 100.00% − + 

L. rhamnosus B2987 L. rhamnosus 96.50% L. rhamnosus L. rhamnosus HQ293051.1 97.00% − − 

 

http://www.ncbi.nlm.nih.gov/nucleotide/194719382?report=genbank&log$=nucltop&blast_rank=2&RID=U4M3MAMJ013
http://www.ncbi.nlm.nih.gov/nucleotide/384406814?report=genbank&log$=nucltop&blast_rank=1&RID=U4JGMKFC013
http://www.ncbi.nlm.nih.gov/nucleotide/282154612?report=genbank&log$=nucltop&blast_rank=493&RID=U4HNP84401S
http://www.ncbi.nlm.nih.gov/nucleotide/225029213?report=genbank&log$=nucltop&blast_rank=1&RID=U4J2M50M016
http://www.ncbi.nlm.nih.gov/nucleotide/188572051?report=genbank&log$=nucltop&blast_rank=2&RID=U4KXKEGU012
http://www.ncbi.nlm.nih.gov/nucleotide/344323415?report=genbank&log$=nucltop&blast_rank=394&RID=U2WDSSSH012
http://www.ncbi.nlm.nih.gov/nucleotide/344323453?report=genbank&log$=nucltop&blast_rank=289&RID=U4EE7VX401S
http://www.ncbi.nlm.nih.gov/nucleotide/187235731?report=genbank&log$=nucltop&blast_rank=123&RID=U4DTBVG601S
http://www.ncbi.nlm.nih.gov/nucleotide/289595148?report=genbank&log$=nucltop&blast_rank=385&RID=U4DZS0E2013
http://www.ncbi.nlm.nih.gov/nucleotide/289595148?report=genbank&log$=nucltop&blast_rank=304&RID=U4GNN6YS01S
http://www.ncbi.nlm.nih.gov/nucleotide/109287631?report=genbank&log$=nucltop&blast_rank=261&RID=U4KM6YA8013
http://www.ncbi.nlm.nih.gov/nucleotide/383932375?report=genbank&log$=nucltop&blast_rank=2&RID=U4M8VZPJ012
http://www.ncbi.nlm.nih.gov/nucleotide/362054060?report=genbank&log$=nucltop&blast_rank=1&RID=U4F9AW8R012
http://www.ncbi.nlm.nih.gov/nucleotide/337730748?report=genbank&log$=nucltop&blast_rank=1&RID=U2T3DDSF013
http://www.ncbi.nlm.nih.gov/nucleotide/310757395?report=genbank&log$=nucltop&blast_rank=488&RID=U4EE7VX401S


C
hapter 5 

           C
haracterisation and selection of Lactobacillus

Table 5.2 (cont’d). 

API 50 CH ID 16S rRNA sequencingbSpecies Strain 

Species PID 

Multiplex PCRa

Match species Genbank accession PID 

Catalasec Hydrogen 

peroxided

L. rhamnosus B2988 L. rhamnosus 99.70% L. rhamnosus L. rhamnosus JQ621982.1 98.00% − − 

L. rhamnosus B2998 L. rhamnosus 99.90% L. rhamnosus L. rhamnosus HQ293051.1 100.00% − − 

L. salivarius  LM2 L. salivarius  94.80% − L. salivarius  HQ293056.1 99.00% − − 
a Multiplex PCR (Kwon et al., 2004) detects L. acidophilus, L. casei, L. delbrueckii, L. gasseri, L. plantarum, L. reuteri and L. rhamnosus; −, inconclusive result. 
b Species and accession number with highest PID match to the 16S rRNA gene sequence in GenBank database. 

 

c Test for catalase activity; +, positive; −, negative. 
d Test for ability to produce hydrogen peroxide; +, positive; −, negative. 
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5.2.2 Selection of Lactobacillus strains as prospective probiotics 

 

5.2.2.1 Screening for an inhibitory effect of Lactobacillus cell-free supernatant 

on the growth of B. pilosicoli 

The test panel of Lactobacillus strains (Table 5.1) were screened for their 

inhibitory activity against the growth and motility of B. pilosicoli. Whilst a relatively 

trivial test, the technicality of preparing and testing multiple Brachyspira isolates was 

logistically not possible. Thus, all initial screening was limited to the use of strain 

B2904. The CFS of each Lactobacillus strain was obtained from spent MRS, of which 

the median pH was pH 3.8. The CFS was added to BEB at 10% (v/v), using a control 

whereby 10% (v/v) MRS (pH 5.8) was added. The effect of the Lactobacillus CFS on 

the growth of B. pilosicoli B2904 was monitored at 24 hours intervals over a 120 hour 

period using a Helber counting chamber for bacterial enumeration. Of the CFS from 

eighteen Lactobacillus strains screened, seven gave significant inhibition of the growth 

compared to the MRS control (p<0.05) (Figure 5.1). These strains were L. acidophilus 

B2990, L. bulgaricus B2991, L. plantarum B2994, L. reuteri B2026, L. reuteri LM1, L. 

rhamnosus B2988 and L. salivarius LM2.  

 

5.2.2.2 Screening for an inhibitory effect of Lactobacillus on the motility of B. 

pilosicoli  

 Agar motility and haemolysis inhibition assays were performed as described 

previously (Bernardeau et al., 2009), as motility is considered an essential virulence 

factor and inhibition of this feature may be key in the intervention of Brachyspira. The 

ability of the panel of Lactobacillus strains (Table 5.1), both viable and heat-inactivated, 

to inhibit the motility of the motile B. pilosicoli B2904 strain following 4 and 24 hour 

contact times, was tested. Heat-inactivated lactobacilli cells were used to eliminate the 

potential effect of competition for nutrients and the synthesis of antimicrobial 

substances. A 5 µl spot of the suspension containing B. pilosicoli and lactobacilli (1:1) 

was inoculated on FABA agar after the respective contact time and incubated 

anaerobically for 8 days. The extent of motility and haemolysis was examined visually 

each day. With the exception of L. casei B2986, L. casei B2995 and L. fermentum 

B2992, all Lactobacillus strains tested had a supressive effect on the motility or 

haemolysis of B. pilosicoli. The inhibition of motility and haemolysis for the 

Lactobacillus strains that also significantly inhibited the growth of B. pilosicoli is 
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shown in Table 5.2. B. pilosicoli were recovered by subculture from all assays that 

displayed motility and hemolytic growth of the spirochaete, indicating viability. 

 

 

Figure 5.1 Growth of B. pilosicoli B2904 in broth culture (BEB) supplemented with 

10% (v/v) cell-free supernatant (CFS) (pH 3.8) of Lactobacillus strains that gave 

significant inhibition of the growth of the spirochaete (p<0.05); L. acidophilus B2990 

(closed squares, dashed line), L. bulgaricus B2991 (closed triangles, dotted line), L. 

plantarum B2994 (closed circles, solid line), L. reuteri B2026 (open circles, solid line), 

L. reuteri LM1 (closed diamonds, dash-dotted line), L. rhamnosus B2988 (open 

squares, dashed line) and L. salivarius LM2 (open triangles, dotted line). Controls with 

MRS (pH 5.8) supplemented at 10% (v/v) to the B. pilosicoli culture (x’s) are shown. B. 

pilosicoli were enumerated using a Helber counting chamber at 25 hour intervals over 

the 120 hour period. Values presented are means with standard deviation of 9 repeats. 
Significance was determined between the final growth point readings of the B. pilosicoli 

with lactobacilli CFS compared to the MRS (pH 5.8) control. 
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Table 5.3 The effect of viable or heat-inactivated Lactobacillus strains on the motility 

of B. pilosicoli B2904 following 4 and 24 hour contact times. A B. pilosicoli B2904 

only suspension in PBS was used as a control. Lactobacillus strains, of which the cell-

free supernatant (CFS) significantly inhibited B. pilosicoli B2904 growth, are shown. 

Condition   Contact time (hr) Haemolysisa Motilityb

4 + + PBS control  

24 + + 

L. acidophilus B2990 Viable 4 + – 

24 + – 

Heat-inactivated 4 + + 

24 + – 

4 + + Viable L. bulgaricus B2991 

24 – – 

4 + + Heat-inactivated 

24 – – 

L. plantarum B2994 Viable 4 + – 

24 – – 

Heat-inactivated 4 + + 

24 + – 

4 + + Viable L. reuteri B2026 

24 + – 

4 + + Heat-inactivated 

24 + – 

L. reuteri LM1 Viable 4 – – 

24 – – 

Heat-inactivated 4 + – 

24 + – 

4 – – Viable L. rhamnosus B2988 

24 – – 

4 + + Heat-inactivated 

24 – – 

L. salivarius LM2  Viable 4 + + 

24 – – 

Heat-inactivated 4 + + 

  24 + – 
a Haemolytic ability of B. pilosicoli B2904 following the incubation with the Lactobacillus strain; +, 

positive; −, negative. 
b Motile ability of B. pilosicoli B2904 following the incubation with the Lactobacillus strain; +, 

positive; −, negative. 
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5.2.3 Further characterisation of L. reuteri LM1 and L. salivarius LM2 

From the initial studies performed on the panel on Lactobacillus strains (discussed 

in sections 5.2.1 and 5.2.2), L. reuteri LM1 and L. salivarius LM2 were selected as 

potential probiotic candidates for further investigation of their ability to intervene 

against AIS. These strains were selected as their origin was the same as the host for the 

intended treatment, which is an important selection criterion for probiotics 

(Klaenhammer and Kullen, 1999) and also indicates an ability to colonise the intended 

host. Furthermore, selection criteria stipulate that probiotic candidates should exhibit 

antimicrobial activity against target pathogens or some degree of antagonism, which 

both of these strains have demonstrated in growth and motility inhibition assays. For the 

purpose of intellectual property protection and potential commercial exploitation, the 

use of novel strains, such as LM1 and LM2, is ideal. 

 

5.2.3.1 Antimicrobial susceptibility 

It is essential to demonstrate that novel probiotic products do not harbour any 

acquired antimicrobial resistance determinants, which may be transferable to other 

bacteria, in order to comply with current EU regulations for animal feed additives 

(EFSA, 2008). The MICs of ampicillin, chloramphenicol, clindamycin, erythromycin, 

gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were determined for 

L. reuteri LM1 and L. salivarius LM2, which were the probiotic candidate strains 

selected for further investigation in in vitro studies and L. reuteri LM2 in in vivo studies 

(Table 5.3). This array of antimicrobials was selected in order to maximise the 

identification of resistance genotypes to the most common antimicrobials used by 

assessing the resistance phenotypes. It is important to note that some Lactobacillus 

species are innately resistant to ampicillin and vancomycin, which does not pose the 

risk of transmissible antimicrobial resistance genes. 

Preliminary studies that used the Identibac AMR+veTM microarray for the 

detection of 90 antimicrobial resistance genes in Gram-positive bacteria (Perreten et al., 

2005), indicated the presence of tetracycline resistance genes in both L. reuteri LM1 

(tetM) and L. salivarius LM2 (tetW and tetZ). Moreover, the microarray indicated the 

presence of the cat-86 gene, which mediates chloramphenicol resistance in L. salivarius 

LM2. However, no studies have been performed to confirm the presence of such genes 

in the Lactobacillus strains. 
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Table 5.4 Minimum inhibitory concentration (MIC) of nine antimicrobials against L. 

reuteri LM1 and L. salivarius LM2. The MIC was determined for nine of the ten 

stipulated antimicrobials in the guidelines for antimicrobial resistance screening in 

probiotic candidates (EFSA, 2008). 

MIC (µg/ml) Antimicrobial 

L. reuteri LM1 L. salivarius LM2 

Ampicillina,c 1 0.5 

Chloramphenicola 4 8d

Clindamycina 0.25 0.125 
aErythromycin 0.5 0.5 

Gentamicina 1 32d

bKanamycin 32 128d

bStreptomycin 32 128d

Tetracyclineb 256d 128d

Vancomycinb,c 256d d>256
a Antimicrobial tested doubling series ranged 0.06 – 128 µg/ml. 
b Antimicrobial tested doubling series ranged 1 – 256 µg/ml. 
c Some Lactobacillus species and strains are inherently resistant. 
d Strain considered resistant as the MIC is greater than the proposed breakpoint (EFSA, 2008).  

  

5.2.3.2 Tolerance to avian gastric acid  

L. reuteri LM1 and L. salivarius LM2, which were selected as probiotic 

candidates for further in vitro and in vivo testing, were assessed for their ability to 

tolerate gastric acid retrieved and prepared from SPF chickens. The lactobacilli were 

resuspended at 109 CFU/ml in sterile gastric juice prepared from SPF poultry gizzard 

digesta and adjusted to pH 2.0, 2.5 and 3.0. Both strains were also resuspended in 0.1 M 

PBS (pH 7.2). A significant reduction in the numbers of L. salivarius LM2 was 

observed after 3 hours incubation in gastric juice at all three pH levels tested, whereas a 

significant reduction in numbers of L. reuteri LM1 was evident only at the lowest tested 

pH level (Table 5.4). No significant difference in the numbers of either Lactobacillus 

strain was observed when incubated for 3 hours in 0.1 M PBS (pH 7.2). A 3 hour 

incubation was used as it is unlikely that the bacteria would be exposed to the low pH 

for any longer amount of time, due to the shorter GI tract of poultry. 
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Table 5.5 Survival of L. reuteri LM1 and L. salivarius LM2 following 3 hours 

incubation in poultry gastric juice adjusted to pH 2.0, 2.5 and 3.0. Values presented are 

means with standard deviation of 9 repeats. Significance is shown where Lactobacillus 

cell numbers differed significantly from 0 hours. *, p< 0.05; **, p< 0.01; ***, p< 0.001. 

L. reuteri LM1 (log10 CFU/ml) L. salivarius LM2 (log10 CFU/ml)   

0 hr 3 hr 0 hr 3 hr 

pH 3.0 9.19 ± 0.04 9.18 ± 0.07 9.25 ± 0.04 8.93 ± 0.10* 

pH 2.5 9.27 ± 0.02 9.18 ± 0.02 9.14 ± 0.05 8.02 ± 0.15*** 

pH 2.0 9.16 ± 0.01 8.79 ± 0.10*** 9.35 ± 0.01 8.14 ± 0.10*** 

 

5.2.3.3 Tolerance to avian and bovine bile salts and avian bile extract 

The tolerance of L. reuteri LM1 and L. salivarius LM2 to two major poultry bile 

salts, taurocholic acid and sodium taurochenodeoxycholate (Yeh and Hwang, 2001) and 

oxgall, containing bovine bile salts, was determined by measuring OD600 to monitor 

growth of the lactobacilli in the presence of 0.3% (w/v) of each of the bile salts tested 

over a 30 hour period (Figure 5.2A and B). Furthermore, the tolerance of the lactobacilli 

to three concentrations (0.3%, 0.6% and 0.9%, v/v) of bile collected from the gall 

bladder of SPF chicken was also determined (Figure 5.2C and D). The delay in growth 

of lactobacilli was associated with the addition of bile products (Table 5.5) was deduced 

by the application of a previously described method (Chateau et al., 1994). 



C
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Figure 5.2 Tolerance of L. reuteri LM1 

(A and C) and L. salivarius LM2 (B and 

D) to bile salts and bile collected from 

the gall bladder of specific pathogen-free 

(SPF) chickens. Poultry bile salts, 

taurocholic acid (closed triangles, dotted 

line) and sodium taurochenodeoxy-

cholate (open squares, dashed line) and 

the bovine bile salt, oxgall (closed 

diamonds, dash-dotted line), were tested 

at 0.3% (w/v) in MRS (A and B). 

Poultry bile extracts were tested at 0.3% 

(closed squares, dashed line), 0.6% 

(open triangles, dotted line) and 0.9% 

(v/v) (open diamonds, dash-dotted line) 

in MRS (C and D). MRS only controls 

were used (closed circles, solid line). 

Growth was measured using OD600 as a 

reporter. Values presented are means 

with standard deviation of 9 repeats. 
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Table 5.6 Tolerance measured in lag time of L. reuteri LM1 and L. salivarius LM2 to 

poultry bile salts, sodium taurochenodeoxycholate (STCDC) and taurocholic acid (TA) 

and oxgall, containing bovine bile salts at 0.3% (w/v) and their tolerance to bile 

collected from specific pathogen-free (SPF) chickens at 0.3%, 0.6% and 0.9% (v/v). 

Values presented are means with standard deviation of 9 repeats. 

Time to reach 0.3 unit difference in OD600 (hr) 

L. reuteri LM1 L. salivarius LM2 

Bile product 

added  

No bile With bile Lag timea Lag timeaNo bile With bile 

0.3% STCDCb 5.00 ± 0.10 7.37 ± 1.70 2.37 ± 1.63 4.57 ± 0.15 10.9 ± 0.17 6.33 ± 0.32 

0.3% TAc 5.00 ± 0.10 5.43 ± 0.25 0.43 ± 0.32 4.57 ± 0.15 6.13 ± 0.06 1.57 ± 0.21 

0.3% Oxgall 5.00 ± 0.10 – – 4.57 ± 0.15 – – 

0.3% Biled 5.27 ± 0.15 5.77 ± 0.32 0.50 ± 0.17 4.63 ± 0.21 5.27 ± 0.15 0.63 ± 0.06 

0.6% Biled 5.27 ± 0.15 5.93 ± 0.29 0.67 ± 0.15 4.63 ± 0.21 5.73 ± 0.12 1.10 ± 0.10 

0.9% Biled 5.27 ± 0.15 5.50 ± 0.17 0.23 ± 0.06 4.63 ± 0.21 6.70 ± 0.10 1.07 ± 0.12 
a Lag time between the no bile and with bile conditions; –, 0.3 unit difference not reached. 
b Sodium taurochenodeoxycholate, poultry bile salt. 
c Taurocholic acid, poultry bile salt. 
d Bile extracts collected from the gall bladder of SPF chickens. 
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5.3 Discussion 

 
Eighteen candidate probiotics, of the genus Lactobacillus, were screened for their 

antagonistic properties against B. pilosicoli; two strains of L. acidophilus, one L. 

buchneri, two L. delbrueckii subsp. bulgaricus, two L. casei, one L. fermentum, four L. 

plantarum, two L. reuteri, three L. rhamnosus and one L. salivarius. All Lactobacillus 

strains were cultured on MRS agar, which is widely used for the culture of lactobacilli 

and aids in the selection of this bacterial species (de Man et al., 1960). L. reuteri LM1 

and L. salivarius LM2 were isolated from the faeces of healthy conventional laying 

hens using MRS agar, and they conformed to the basic biochemical and physiological 

parameters of Lactobacillus strains (Kandler and Weiss, 1986). All strains were 

confirmed as Gram-positive, rod-shape bacteria and were catalase negative, which aside 

from a minor proportion of strains, is typical of the Lactobacillus genus (Dacre and 

Sharpe, 1956). 

The API 50 CH system was used as a preliminary tool to speciate the strains 

isolated from poultry faeces and confirm the species of strains obtained from the 

Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge, United 

Kingdom) culture collection (Table 5.1). The majority of the Lactobacillus strains were 

correctly identified by this biochemical method of speciation with high PID, but with 

some as low as 45.5%, perhaps due to strain variation in fermentation profiles or 

incorrect interpretation of indistinguishable results. The two L. bulgaricus strains were 

identified as L. delbrueckii as the former is a subspecies of the latter, L. delbrueckii 

subsp. bulgaricus. The two L. casei strains were identified as L. paracasei, resulting 

from the close relationship and the phenotypic similarity of these species, which, until 

recently, were under dispute of the Judicial Commission of the International Committee 

on Systematics of Bacteria Felis et al., 2009 (JCICSB) in the field of taxonomy ( ; 

JCICSB, 2008). Both L. reuteri strains, one of which was isolated from the poultry 

faeces, were incorrectly identified as L. fermentum using the API 50 CH system; the 

API 50 CH system has previously incorrectly identified L. reuteri as L. fermentum with 

high identification (>92.5%) (Kwon et al., 2004). Both L. reuteri strains had identical 

fermentation profiles to an L. reuteri strain previously tested, fermenting only L-

arabinose, ribose, galactose, glucose, maltose lactose melibiose, saccharose, raffinose 

and gluconate in API 50 CH (Rosander et al., 2008). It was not unreasonably concluded 

that reliance upon API identification alone would likely be unreliable. Thus, additional 

classification approaches were used. 
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Molecular methods were used to further validate the speciation of each strain in 

the form of multiplex PCR and 16S rRNA sequencing (Table 5.1). The multiplex PCR 

employed was able to detect the species, L. acidophilus, L. casei, L. delbrueckii, L. 

gasseri, L. plantarum, L. reuteri and L. rhamnosus, using primers based on the species-

specific sequences of 16S rRNA or 16S-23S rRNA intergenic spacer region (Kwon et 

al., 2004). For species that were detectable by the multiplex PCR, bands of expected 

sizes were noted when the PCR product was subjected to gel electrophoresis. As with 

the API 50 CH speciation, L. bulgaricus was identified as L. delbrueckii, as the former 

is a subspecies of the latter. The results of the multiplex PCR were inconclusive for the 

strains of L. buchneri, L. fermentum and L. salivarius, having either no band or multiple 

weak bands. Final clarification of the species of each strain was achieved by sequencing 

the product of a PCR performed using universal primer to amplify the 16S rRNA gene 

(Marchesi et al., 1998). The 16S rRNA sequence of each strain had a high PID match to 

the sequence of this gene in strains of the expected species (≥97.0%), found in the 

GenBank database (Table 5.1). As anticipated from the debates in the taxonomy 

literature, multiple approaches were required to establish presumptive identifications 

within the existing classification for the lactobacilli. 

Initial studies to select Lactobacillus strains as prospective probiotics focused on 

screening for an inhibitory effect of the CFS of the Lactobacillus strains on the growth 

of B. pilosicoli B2904. These growth inhibition assays revealed the CFS, at 10% (v/v), 

of seven of the eighteen strains screened gave a significant inhibition of B. pilosicoli 

growth, including that of L. reuteri LM1 and L. salivarius LM2 (Figure 5.1). In these 

initial studies, the pH of the CFS was not adjusted (as described in Chapter 6), and was 

approximately pH 3.8 for all strains. Furthermore, the composition of the acids in the 

CFS that generated the pH drop to pH 3.8 was not investigated; the relative ratios of 

acid depend on whether the strains were hetero- or homofermentative. Not all CFS had 

a significant effect on the growth of B. pilosicoli and, hence, the effect observed for the 

CFS of the seven significantly inhibiting strains is unlikely to be wholly pH-dependant. 

For example, acetic acid is more inhibitory than lactic acid and it may be that the 

relative abundance of acetic acid at pH 3.8 is of significance in these CFS tests. Also, 

the production of antimicrobial compounds, such as bacteriocins or reuterin, by these 

strains may explain their inhibitory effect on the growth of B. pilosicoli (Klose et al., 

2010). L. acidophilus B2990, L. bulgaricus B2991 and L. reuteri LM1 are capable of 

hydrogen peroxide production (Table 5.1), which may be responsible for the inhibitory 

effect by these strains, since this GRAS antimicrobial agent can be lethally oxidising to 
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other microorganisms. Other strains that did not inhibit the growth of B. pilosicoli 

significantly were, however, capable of the production of hydrogen peroxide; 

quantification of the production levels would be necessary to assess the potential 

contribution of this compound. A metabonomic approach to assess the type and 

abundance of the products of the metabolism of the lactobacilli may be a useful research 

area in the future.  

Motility and haemolysis are properties of Brachyspira that are considered to 

contribute to their pathogenicity; motility to gain access to the site of colonisation and 

haemolysis demonstrates the ability to damage eukaryotic cells. Assays for these two 

properties were performed and to test the inhibitory effect of live and heat-inactivated 

cells of the Lactobacillus strains on these properties of B. pilosicoli B2904, after 4 and 

24 hour contact. Aside from the L. casei and L. fermentum strains, all strains had an 

inhibitory effect on the motility and/or haemolysis of B. pilosicoli, which included the 

seven strains of which the CFS significantly inhibited the growth of B. pilosicoli (Table 

5.2). Inhibition of motility and haemolysis occurred most commonly with viable cells 

and after a 24 hour contact time. Inhibition of motility often occurred in the absence of 

an inhibition of haemolysis, indicating that that B. pilosicoli were viable and they were 

subsequently subcultured on Brachyspira selective agar. Furthermore, where inhibition 

of motility and/or haemolysis was observed with the viable Lactobacillus strain, the 

heat-inactivated bacterial cells also elicited inhibition, suggesting the effect was not due 

to competition for nutrients between the two bacterial species or synthesis of 

antimicrobial substances by the lactobacilli. It is likely that the prevention of the 

motility of B. pilosicoli is a consequence of co-aggregation between the lactobacilli and 

the spirochaetes, as previously suggested (Bernardeau et al., 2009). However, it is also 

possible that metabolites from the lactobacilli are still present in heat-inactivated cells 

and these act in trans. 

L. reuteri LM1 and L. salivarius LM2 were deemed suitable candidates for further 

investigation of their inhibitory effect on Brachyspira as a potential treatment strategy 

for AIS and related diseases. Ideally, the origin of the probiotic strains should be the 

same as the host species for the intended treatment, which supports the selection of L. 

reuteri LM1 and L. salivarius LM2, both of poultry origin, for further study (Collins et 

al., 2009; Klaenhammer and Kullen, 1999). This also indicates that the probiotic is able 

to colonise the intended host, although this does need testing and confirmation. 

Selection criteria stipulate that probiotic candidates should exhibit antimicrobial activity 

against target pathogens or some degree of antagonism, which both of these strains have 
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demonstrated in the growth and motility inhibition assays. L. reuteri LM1 has also been 

shown to produce the antimicrobial compound, hydrogen peroxide. However, it is 

important to note and that the abundance of metabolites and the degree of inhibition 

seen in these in vitro tests may have less significant impact on B. pilosicoli in vivo. 

Further work should consider the site in the gut where the Lactobacillus probiotic 

candidate strains will colonise and their metabolites potentially have greatest impact. 

It is generally accepted that lactobacilli are GRAS and do not cause disease in 

humans or food producing animals, however, with the increasing use of this species in 

probiotic food products, concerns over the safety of its use include deleterious 

metabolic activation, excessive immune stimulation and gene transfer of virulence and 

antimicrobial resistance genes amongst microorganisms (Agostoni et al., 2004; 

Marteau, 2001). Such health considerations have led to the publication of guidelines for 

the selection of probiotics proposed in council directive 87/153/EEC (von Wright, 

2005). The guidelines state that probiotic strains must not produce toxins, virulence 

factors or antimicrobial substances of clinical or veterinary significance and they must 

not carry transmissible antimicrobial resistance determinants. Since both L. reuteri LM1 

and L. salivarius LM2 were isolated from healthy chickens, they are unlikely to possess 

any virulence factors that would pose significant risk, however, screening for virulence 

determinants and antimicrobial substance production in these two strains would be 

required.  

Guidelines for screening for antimicrobial resistance stipulate that probiotic 

candidates must be examined to establish their susceptibility to a relevant range of 

antimicrobials of human or veterinary importance (EFSA, 2008). As a basic 

requirement the MIC of nine of the ten stipulated antimicrobials, excluding 

quinupristin/dalfopristin was determined for both strains (Table 5.3). These 

antimicrobials were selected to maximise the identification of resistance genotypes to 

the most common antimicrobials by assessing phenotype. Aside from antimicrobials 

that lactobacilli are considered intrinsically resistant to, L. reuteri LM1 demonstrated 

resistance to tetracycline and L. salivarius LM2 to chloramphenicol, gentamicin, 

kanamycin, streptomycin and tetracycline. The genetic basis of this resistance requires 

further investigation, however preliminary results of the Identibac AMR+veTM 

microarray indicated the presence of tetracycline resistance genes in L. reuteri LM1 

(tetM) and L. salivarius LM2 (tetW and tetZ), with a chloramphenicol resistance (cat-

86) gene also noted in the latter. Antimicrobial resistance genes, including tetM have 

been associated with MGEs in lactobacilli and can be transferred to other bacterial 
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strains and species (Gevers et al., 2003 Teuber et al., 1999; ). The tetM and tetW genes 

encode ribosomal protection proteins that intervene in the binding of tetracycline to the 

ribosome and prevent its inhibitory effect on translation, whereas the tetZ gene encodes 

a efflux system to remove tetracycline from the cytoplasm. The cat-86 gene encodes a 

chloramphenicol acetyltransferase, which binds and acetylates the antimicrobial and in 

turn, prevents it binding ribosomes and inhibiting protein synthesis. Curative strategies 

may be applied to probiotic strains to remove antimicrobial resistance genes or plasmids 

carrying such genes (Huys et al., 2006); such as the removal of two plasmids, one 

carrying a tetW gene, from the commercial probiotic strain L. reuteri ATCC 55730, 

deriving the daughter strain DSM 17938, without losing probiotic characteristics 

(Rosander et al., 2008).  

As part of competitiveness criteria, probiotic candidates should demonstrate an 

ability to resist environmental stresses, such as bile and acids (Klaenhammer and 

Kullen, 1999). Tests were performed at pH 2.0, 2.5 and 3.0 covering the range of 

poultry gastric juice that ranges from pH 2.0 to 3.0 depending on the feeding state and 

growth stage of the birds (Lin et al., 2007; Yu and Tsen, 1993). The 3 hour incubation 

length was selected as it is unlikely that the bacteria would be exposed to the low pH for 

any longer than 3 hours, due to the shorter GI tract of poultry, for which entire passage 

has been estimated at 2 – 5 hours (Duke, 1977). Gastric acid tolerance assays 

demonstrated that L. reuteri LM1 tolerated avian gastric juice to a greater extent at pH 

3.0 and 2.5 than L. salivarius LM2, which after 3 hours had significantly reduced viable 

counts (p<0.001) (Table 5.4). The normal pH of gastric juice in chickens can be as low 

as pH 2.0 (Ehrmann et al., 2002), and after incubation at pH 2.0 for 3 hours, the 

numbers of surviving L. reuteri LM1 and L. salivarius LM2, were significantly 

decreased from the 0 hour control (p<0.001). Despite this, a proportion of the initial 

inocula for both strains did survive this low pH and in vivo it might be anticipated that a 

higher proportion may survive due to protection from acids by other materials in the 

chyme and hence, the surviving bacteria may reach and populate the lower GI tract, 

exerting their probiotic effect.  

Bile tolerance assays illustrated the sensitivity of both L. reuteri LM1 and L. 

salivarius LM2 to 0.3% (w/v) oxgall, a product containing bovine bile salts (Figure 

5.1A and B). Enhanced growth was observed in the presence of the poultry bile salts, 

sodium taurochenodeoxycholate and taurocholic acid, at 0.3% (w/v) (Figure 5.1A and 

B). Strains were categorised as resistant, where the lag time was equal to or less than 15 

minutes; tolerant, where the lag time was between 15 and 40 minutes; weakly tolerant, 

 171



Chapter 5  Characterisation and selection of Lactobacillus 

where the lag time was between 40 and 60 minutes and sensitive, where the lag time 

was over 60 minutes (Chateau et al., 1994). Both L. reuteri LM1 and L. salivarius LM2 

were deemed sensitive to 0.3% (w/v) sodium taurochenodeoxy-cholate and, although L. 

salivarius LM2 was sensitive to 0.3% (w/v) taurocholic acid, L. reuteri LM1 was 

classed as tolerant (Table 5.5). Furthermore, both strains grew well in the presence of 

the poultry bile extract and in some cases to greater extents than the control (Figure 

5.1C and D), suggesting a potential capability in utilising components of the poultry 

bile. From the lag time analysis, L. reuteri LM1 was resistant to weakly tolerant to the 

three tested concentrations of poultry bile, but L. salivarius LM2 was tolerant at 0.3% 

(v/v), but sensitive at 0.6% (v/v) and 0.9% (v/v) (Table 5.5). Despite any sensitivity to 

the bile salts or extract, in most cases, bacterial growth was observed (Figure 5.1), 

hence, when viable bacteria reach the lower GI tract, they may populate these areas and 

exert their probiotic effect. 

L. reuteri LM1 and L. salivarius, LM2, isolated from the faeces of healthy 

convention laying hens, were selected as probiotic candidates for use in further 

experiments to evaluate their potential in the intervention of AIS. The novel strains 

were selected since they are of host origin for the intended host and they displayed an 

ability to significantly inhibit the growth of B. pilosicoli B2904 and also the motility of 

this strain. L. reuteri LM1 has been shown to be resistant to fewer antimicrobials and 

demonstrated better tolerance to acids and biles, making this strain more ideal for use as 

a probiotic.  

 172



 

 

 
Chapter 6. 

 

Investigating the ability of lactobacilli to antagonise 

Brachyspira pilosicoli in vitro: a potential 

intervention against avian intestinal spirochaetosis 

 
6.1 Introduction 

 
AIS is an enteric disease that affects layer and broiler breeder chickens leading to 

clinical enteritis and reduced performance, resulting from the colonisation of the caeca 

and colo-rectum by the spirochaete, Brachyspira (Stephens and Hampson, 2001). 

Clinical symptoms of AIS include reduced egg production with delayed onset of lay, 

chronic diarrhoea with faecal staining of eggs, weight loss and increased flock 

morbidity rates (Burch et al., 2006; Smit et al., 1998). B. alvinipulli, B. intermedia and 

B. pilosicoli are considered pathogenic to poultry (Hampson and McLaren, 1999; 

Stanton et al., 1998; Stephens and Hampson, 2002a). Although the mechanisms of 

pathogenesis are unclear, colonisation of poultry, swine and humans by B. pilosicoli is 

characterised by its ability to form end-on attachments to and invade the intestinal 

surface epithelium (Feberwee et al., 2008; Jensen et al., 2001; Jensen et al., 2000).  

In the United Kingdom, the incidence of Brachyspira in commercial and free-

range flocks has been estimated at 74% and 90%, respectively (Burch, 2010). AIS 

disease associated with Brachyspira infection is reported to be increasing, which may 

be at least partially attributed to the 2006 EU ban on the use of antimicrobials as growth 

promoters in livestock (Castanon, 2007). In 2006, the annual cost of the disease to the 

United Kingdom laying industry was estimated at £14 million and this figure continues 

to rise (Burch et al., 2006). In addition, antimicrobial resistance appears to be increasing 

amongst Brachyspira, including an emerging resistance to the most commonly-used
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antimicrobial for AIS treatment, tiamulin; resistance has been reported in porcine strains 

of Brachyspira (Karlsson et al., 2003; Lobova et al., 2004; Pringle et al., 2006), and 

elevated MICs have been demonstrated in strains of poultry origin (Hampson et al., 

2006c) and were also demonstrated in strains used in the studies presented in this thesis 

(as discussed in Chapter 3). Moreover, antimicrobial resistance genes have been 

reported in the genomes of Brachyspira (Jansson and Pringle, 2011; Karlsson et al., 

1999; Karlsson et al., 2004; Mortimer-Jones et al., 2008) and the B. pilosicoli genomes 

reported in this thesis (as discussed in Chapter 4). 

The rise of endemic diseases since the ban and antimicrobial resistance has 

renewed interest in developing alternative intervention strategies; one such alternative 

therapy which is being extensively researched is the use of probiotics (Collins et al., 

2009). Probiotics that include genera such as bifidobacteria and lactobacilli (Collins et 

al., 2009) are described as live microorganisms that confer health benefits on the host 

when administered in adequate quantities (FAO/WHO, 2001). Multiple mechanisms 

have been proposed for the protective effect that probiotics confer against pathogenic 

microorganisms, including secretion of antimicrobial compounds, competition for 

essential nutrients, competition for host cell binding receptors and immunomodulation 

of the gut mucosa (Vanderpool et al., 2008). Probiotics have demonstrated promise, in 

vitro and in vivo, as CE agents against E. coli, Salmonella, Clostridia and 

Campylobacter infection in poultry (La Ragione et al., 2004; La Ragione and 

Woodward, 2003; Schoeni and Wong, 1994; Stern et al., 2006; Vicente et al., 2008) and 

can colonise the caeca (Pascual et al., 1999), the host niche of many pathogens, such as 

Brachyspira. Recently, a patent application was published (Se et al., 2008) describing 

the use of L. johnsonii D115 as a probiotic against Brachyspira. Additionally, L. 

rhamnosus and L. farciminis strains have been implicated in inhibiting the motility of 

Brachyspira by co-aggregation and eliciting a stress response (Bernardeau et al., 2009). 

To date, no studies have investigated the adherence and invasion dynamics of 

avian B. pilosicoli to epithelial cells in relation to treatment with probiotics. Hence, in 

this chapter, the development and use of a human, colonic epithelial 3D cell and avian 

caecal IVOC model to aid such investigations is reported. From preliminary probiotic 

screening studies described in Chapter 5, L. reuteri LM1 and L. salivarius LM2 were 

selected for further investigation of their potential use in the intervention against B. 

pilosicoli. The studies presented in this chapter employed motility, growth inhibition 

and adhesion and invasion assays to investigate in vitro the antagonistic effect of L. 

reuteri LM1 and L. salivarius LM2 on B. pilosicoli B2904. 
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6.2 Results 

 
6.2.1 pH-dependent inhibition of B. pilosicoli growth by Lactobacillus cell-free 

supernatant 

 The CFS obtained from spent MRS after culture of Lactobacillus was pH 3.8 

whereas MRS was pH 5.8 prior to growth. The effect of a 10% (v/v) dilution of the CFS 

of L. reuteri LM1 and L. salivarius LM2 and adjusted to pH 3.8, 4.5 and 7.2 on the 

growth of B. pilosicoli B2904 in BEB was monitored using FLUOstar OPTIMA to 

measure OD (Figure 6.1) and bacterial cell counts using a Helber counting chamber. In 

comparison with MRS controls at the respective pH value, significant inhibition of 

growth of B. pilosicoli was observed with CFS from both L. reuteri (p<0.05) and L. 

salivarius (p<0.001) at pH 3.8 and with the CFS of L. reuteri only at pH 4.5 (p<0.001). 

At pH 7.2 neither CFS had an effect on the growth of B. pilosicoli. Neither of the two 

heat-inactivated lactobacilli strains had a significant impact on the growth of B. 

pilosicoli. Furthermore, the effect of the CFS on the growth of non-pathogenic B. 

innocens was also tested in order to understand if the effect was strain or species-

dependant. The growth of B. innocens in each of the conditions was similar to that of B. 

pilosicoli. 

 

6.2.2 Inhibitory effect of Lactobacillus whole cells on B. pilosicoli motility 

As discussed in Chapter 5, agar motility inhibition assays were performed to 

investigate the ability of viable and heat-inactivated lactobacilli to inhibit the motility of 

B. pilosicoli B2904. The motility of B. pilosicoli was inhibited by both viable and heat-

inactivated L. reuteri LM1 and L. salivarius LM2 following a 4 hour and a 24 hour 

contact time, respectively (Table 5.3). Viable lactobacilli inhibited hemolysis by B. 

pilosicoli in these tests. B. pilosicoli recovered by subculture from all assays displayed 

motility and hemolytic growth, indicating viability. The effect of the lactobacilli on the 

motility and haemolysis of non-pathogenic B. innocens was also tested in order to 

understand if the effect was strain or species-dependant. The effect of each of the 

conditions on motility was similar for both B. pilosicoli and B. innocens. 
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Figure 6.1 Growth of B. pilosicoli B2904 in broth culture (BEB) supplemented with 

10% (v/v) cell-free supernatant (CFS) of L. reuteri LM1 (A) and L. salivarius LM2 (B) 

(open shapes) adjusted to pH 3.8 (circles), 4.5 (squares) and 7.2 (triangles) and heat-

inactivated lactobacilli (diamonds), measured using OD600 as a reporter of growth. 

Controls with pH-adjusted MRS (closed shapes) and with no additive to B. pilosicoli 

culture (x’s) are shown. B. pilosicoli cells were also enumerated using a Helber 

counting chamber; an OD600 of 0.05 represents ~107 CFU/ml and an OD600 of 0.25 

represents ~3.5 × 108 CFU/ml. Means with standard deviation of 9 repeats are 

presented. Significance is shown for differences between the final growth point readings 

of B. pilosicoli with the CFS of Lactobacillus and those for the respective control (+ 

10% (v/v) MRS); *, p<0.05; **, p<0.01; ***, p<0.001. 
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6.2.3 Adhesion and invasion assays using HT29-16E cell culture models 

 

6.2.3.1 Comparison of the monolayer and three-dimensional models 

Human, mucus-secreting colonic cells, HT29-16E, were selected for use in 

adhesion and invasion assays as this is a well-established cell line for studying the 

interactions of enteric pathogens such as Salmonella and E. coli with the intestinal 

epithelium (Kerneis et al., 1994; Mellor et al., 2009), and capable of differentiation 

(Cohen et al., 1999; Jessup et al., 2000). Preliminary studies illustrated an ability of B. 

pilosicoli B2904 to adhere and invade the cell line, which may be attributed to a 

chemoattraction towards mucin secreted by this cell line (Naresh and Hampson, 2010).  

HT29-16E 3D cells displayed differentiated brush borders, confluent across the 

cell surface and tight junctions between cells (Figure 6.2B and D), that were superior in 

comparison to monolayers (Figure 6.2A and C), as previously noted (Honer zu Bentrup 

et al., 2006). HT29-16E 3D cells grew predominantly as multilayered cell aggregates, 

measuring up to 350 µm in diameter, similar to previous findings (Searle et al., 2010). 

 

 
Figure 6.2 Examination of human, mucus-secreting colonic cell, HT29-16E, monolayer 

(A, C) and three-dimensional (3D) cell (B, D) uninfected control samples by scanning 

and transmission electron microscopy (S/TEM). The three-dimensional (3D) cells have 

more prominent brush borders (i) and superiorly differentiated tight junctions (ii). 
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6.2.3.2 Inhibitory effect of lactobacilli on the adherence and invasion of B. 

pilosicoli to HT29-16E cells 

To determine whether L. reuteri LM1 or L. salivarius LM2 were able to reduce 

the adherence and invasion of B. pilosicoli to HT29-16E cells, protection, competition 

and displacement assays (as described in Chapter 2 and specifically section 2.3.2) were 

performed using monolayer and 3D cell models (Table 2.5). Generally, results were 

similar between the two models. However, on comparing the numbers of adhering and 

invading B. pilosicoli in control assays, adhesion was significantly greater and invasion 

was significantly lower in the 3D cell model (p<0.001). Adherence and invasion of B. 

pilosicoli was significantly reduced by L. reuteri and L. salivarius, in protection and 

competition assays in the monolayer (Figure 6.3A and B) and 3D cell (Figure 6.4A and 

B) models (p<0.01). Both strains gave greater reduction in the adherence and invasion 

of B. pilosicoli in competition assays than protection assays. In the monolayer model, L. 

reuteri and L. salivarius reduced the invasion of B. pilosicoli to a significantly greater 

degree in competition as opposed to protection assays (p<0.05) and in the 3D cell 

model, L. reuteri reduced invasion by B. pilosicoli 13.6-fold in protection assays and 

30.0-fold in competition assays. In displacement assays, little effect was observed on 

the adherence and invasion of B. pilosicoli (Figure 6.3C and 6.4C), with a reduction in 

adherence noted only with L. reuteri in the monolayer model (p<0.05). In both models, 

L. reuteri was associated with a significantly greater reduction of adherence and 

invasion by B. pilosicoli than L. salivarius (p<0.05).  

The assays described above were also performed with CFS rather than lactobacilli 

(Table 2.5) to determine whether the inhibitory effect on the adherence and invasion of 

B. pilosicoli was a result of compounds secreted by the lactobacilli or the bacteria 

themselves. No significant reduction of the adherence of B. pilosicoli was observed with 

lactobacilli CFS (Figure 6.3D and 6.4D). However, the invasion of B. pilosicoli was 

significantly reduced in the presence of 10% (v/v) L. reuteri CFS (p<0.001), but only in 

the monolayer model. 

 



 

Figure 6.3 Effect of Lactobacillus treatment on 

B. pilosicoli B2904 adherence to (white bars) 

and invasion of (hatched bars) HT29-16E 

monolayers. L. reuteri LM1 and L. salivarius 

LM2 were used in protection (A), competition 

(B) and displacement (C) assays and their cell-

free supernatant (CFS) were used at 10% (v/v) 

(D). B. pilosicoli only controls are shown, 

where tissue culture medium was added in place 

of lactobacilli and 10% (v/v) MRS (pH 5.8 and 

3.8) was added as a control in CFS assays. E. 

coli K12 acted as a negative control for invasion 

(black bars). Values presented are means with 

standard deviation of 9 repeats. Significance is 

shown where adhered or invaded B. pilosicoli 

cell numbers differed significantly between 

Lactobacillus treatment and no-Lactobacillus 

control or where CFS treatment differed 

significantly from the MRS (pH 3.8) control. *, 

p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 6.4 Effect of Lactobacillus treatment on 

B. pilosicoli B2904 adherence to (white bars) 

and invasion of (hatched bars) HT29-16E three-

dimensional (3D) cells. L. reuteri LM1 and L. 

salivarius LM2 were used in protection (A), 

competition (B) and displacement (C) assays 

and their cell-free supernatant (CFS) were used 

at 10% (v/v) (D). B. pilosicoli only controls are 

shown, where tissue culture medium was added 

in place of lactobacilli and 10% (v/v) MRS (pH 

5.8 and 3.8) was added as a control in CFS 

assays. E. coli K12 acted as a negative control 

for invasion (black bars). Values presented are 

means with standard deviation of 9 repeats. 

Significance is shown where adhered or invaded 

B. pilosicoli cell numbers differed significantly 

between Lactobacillus treatment and no-

Lactobacillus control or where CFS treatment 

differed significantly from the MRS (pH 3.8) 

control. *, p<0.05; **, p<0.01; ***, p<0.001.
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6.2.3.3 Electron microscopical analysis of HT29-16E monolayer and three-

dimensional cells following adhesion and invasion assays  

From the monolayer assays, samples from protection assays, in which significant 

reductions in the adherence and invasion of B. pilosicoli were noted, were examined by 

SEM and TEM (Figure 6.5). In the absence of lactobacilli, high numbers of B. pilosicoli 

were noted adhering by end-on attachment (Figure 6.5A) and invading the cells (Figure 

6.5B). Fewer B. pilosicoli were observed adhering to and invading the monolayers 

following pre-treatment with L. reuteri LM1 (Figure 6.5C and D) or L. salivarius LM2 

(Figure 6.5E and F), supporting the bacteriological count data. Direct interactions and 

co-aggregation were noted between B. pilosicoli and the lactobacilli (Figures 6.5C-F). 

From the 3D cell assays, samples from competition assays, in which the greatest 

effect was observed on the adherence and invasion of B. pilosicoli, were examined by 

SEM and TEM (Figure 6.6). Qualitatively, greater numbers of adherent B. pilosicoli 

were observed in the absence of lactobacilli, with dense populations invading at tight 

junctions (Figure 6.6A), supporting the data derived from bacteriological counts. Of 

particular note were direct interactions between B. pilosicoli and both L. reuteri LM1 

(Figure 6.6D and E) and L. salivarius LM2 (Figure 6.6F). EM of cell aggregates that 

were infected with Brachyspira alone indicated apoptosis (blebbing, loss of microvilli, 

disintegrated cytoplasm with vacuolation, chromatin condensation and fragmentation 

and cell sloughing) (Figure 6.6B and C). With co-administration of L. reuteri LM1 or L. 

salivarius LM2 (Figure 6.6D-F), end-on attachment of B. pilosicoli was observed less 

frequently, with apparent interactions between the two bacterial species and co-

localisation at the cell surface. Minimal pathology was apparent in the presence of 

lactobacilli and the integrity of the brush border was maintained (Figure 6.6D-F). 
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Figure 6.5 Examination of HT29-16E monolayers infected with B. pilosicoli B2904 (A, 

B) and following pre-treatment with L. reuteri LM1 (C, D) and L. salivarius LM2 (E, F) 

by scanning and transmission electron microscopy (S/TEM). B. pilosicoli were 

observed adhering to the cells via end-on attachment (i) and invading the cells (ii). 

Following pre-treatment with lactobacilli, adherent lactobacilli were observed (iii) in 

addition to their interactions and co-aggregation with the B. pilosicoli (iv).  
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Figure 6.6 Examination of HT29-16E three-dimensional (3D) cells infected with B. 

pilosicoli B2904 (A-C) and following co-incubation with L. reuteri LM1 (D, E) and L. 

salivarius LM2 (F) by scanning and transmission electron microscopy (S/TEM). B. 

pilosicoli were observed adhering at the epithelial cell surface (i) and cells treated with 

B. pilosicoli only, exhibited signs of blebbing (ii), loss of microvilli (iii), disintegrated 

cytoplasm with vacuolation (iv), chromatin condensation and fragmentation (v) and cell 

sloughing (vi). Where lactobacilli were co-administered, adherent lactobacilli were 

observed (vii) in addition to their interactions and co-aggregation with the B. pilosicoli 

(viii). Overall minimal pathology was apparent in the presence of lactobacilli and 

specifically the integrity of the brush border was maintained (ix).  
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6.2.4 Association assays using an avian caecal in vitro organ culture models 

 

6.2.4.1 Establishment of the avian caecal in vitro organ culture model 

CellCrownTM technology was employed to create a polarised IVOC system; avian 

caecal tissue explants were immobilised within the CellCrownTM, in a modification of a 

previously described method (Collins et al., 2010). This model allowed the separation 

of the apical, mucosal surface and basolateral side of the tissue and the subsequent 

inoculation of a defined concentration of B. pilosicoli, lactobacilli or a combination of 

the two (Table 2.5), onto a fixed area of the mucosal surface of the caecal explants. 

Hence, the model generated a physiologically relevant platform from which 

reproducible bacterial association values could be obtained. SEM showed the IVOC 

tissues remained well-preserved throughout the study (Figure 6.7), however a limitation 

of the model was the inability to remove the entire natural microflora associated with 

the surface of the tissue.  

 

 
Figure 6.7 Examination of uninfected control avian caecal in vitro organ culture 

(IVOC) tissue samples by scanning electron microscopy (SEM). Tissues maintained an 

intact surface epithelium (i) with few resident microflora associated with the mucosal 

surface (ii). 

 

6.2.4.2 Inhibitory effect of lactobacilli on the association of B. pilosicoli to 

avian caecal in vitro organ culture tissues 

Avian caecal IVOC association assays were performed to determine whether L. 

reuteri LM1 or L. salivarius LM2, viable or heat-inactivated, were able to reduce the 

association of B. pilosicoli (as described in Chapter 2 and specifically section 2.3.3). 

This model generated reproducible bacterial association values and was used alongside 

the data generated in monolayer and 3D cell assays to compare and validate the findings 
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of each method. As found in the HT29-16E cell assays, viable L. reuteri and L. 

salivarius significantly reduced the association of B. pilosicoli to caecal IVOC tissue in 

protection and competition assays (Figure 6.8A and B) (p<0.001). Heat-inactivated 

lactobacilli had a similar effect (p<0.01), with the level of reduction in association 

observed in protection and competition assays decreased by up to 6.5-fold. A greater 

reduction of the association of B. pilosicoli resulted when viable or heat-inactivated 

lactobacilli were administered in competition, as previously noted in the HT29-16E cell 

assays and L. reuteri reduced the association of B. pilosicoli to a greater degree than L. 

salivarius. In displacement assays neither of the Lactobacillus strains displayed any 

significant ability to reduce B. pilosicoli association (Figure 6.8C).  

  CFS assays were also performed in the IVOC model (Table 2.5), to assess the 

effect of secreted compounds from the lactobacilli on B. pilosicoli association. The L. 

salivarius CFS exerted no effect on B. pilosicoli association. However, association was 

decreased significantly in the presence of the CFS from L. reuteri (p<0.001) (Figure 

6.8D).  

 

6.2.4.3 Electron microscopical analysis of avian caecal in vitro organ culture 

tissues following association assays 

Samples from competition assays were processed by SEM as the most significant 

reduction in B. pilosicoli association was noted in this condition (Figure 6.9). From 

qualitative analysis, adherent B. pilosicoli were observed in greater abundance in the 

absence of lactobacilli co-administration in competition assays (Figure 6.9A and B), 

confirming bacteriological counts. In the presence of viable L. reuteri LM1 (Figure 

6.9C and D) and L. salivarius LM2 (Figure 6.9E and F), direct interactions between the 

two bacterial species were apparent. 

 



Figure 6.8 Effect of Lactobacillus treatment on 

association of B. pilosicoli B2904 with avian 

caecal in vitro organ culture (IVOC) tissues. 

Viable (white bars) and heat-inactivated 

(hatched bars) L. reuteri LM1 and L. salivarius 

LM2 were used in protection (A), competition 

(B), and displacement (C) assays and their cell-

free supernatant (CFS) were used at 10% (v/v) 

in CFS studies (D). B. pilosicoli only controls 

(gray bars) are shown, where tissue culture 

medium was added in place of lactobacilli and 

10% (v/v) MRS (pH 5.8 and 3.8) was added as 

a control in CFS assays. Values presented are 

means with standard deviation of 8 repeats. 

Significance is shown where associated B. 

pilosicoli cell numbers differed significantly 

between Lactobacillus treatment and no-

Lactobacillus control or where CFS treatment 

differed significantly from the MRS (pH 3.8) 

control. *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 6.9 Examination of avian caecal in vitro organ culture (IVOC) tissues infected 

with B. pilosicoli B2904 (A, B) and co-incubation with viable L. reuteri LM1 (C, D) 

and L. salivarius LM2 (E, F) by scanning electron microscopy (SEM). B. pilosicoli 

were observed adhering to the mucosal surface of the tissue (i) and where lactobacilli 

were co-administered, adherent lactobacilli were also observed (ii) in addition to their 

interactions with B. pilosicoli (iii).  
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6.3 Discussion 

 
Growth inhibition studies indicated that the CFS of L. reuteri LM1 and L. 

salivarius LM2 suppressed the growth of B. pilosicoli B2904 in a pH-dependent 

manner. L. salivarius CFS elicited a greater suppressive effect on the growth of B. 

pilosicoli at pH 3.8 than the CFS of L. reuteri although the CFS of L. reuteri also 

induced significant suppression of B. pilosicoli growth at pH 4.5 (Figure 6.1). The 

suppression induced by CFS at pH 3.8 was significantly greater than that by MRS at the 

same pH value suggesting that the suppressive effect is not attributed solely to acidity. 

A possible explanation may be the strain-dependent production of pH-dependent active 

compound(s) such as hydrogen peroxide and/or other antimicrobial compounds such as 

reuterin or bacteriocins (Klose et al., 2010). Lactobacilli CFS has been shown to induce 

a stress response in Brachyspira, often with lethal effect, attributable to lactic acid 

(Bernardeau et al., 2009). Heat-inactivated lactobacilli had no effect on the growth of B. 

pilosicoli, supporting the role of secreted compounds in inhibiting the growth. Since 

heat-inactivated lactobacilli and CFS had a similar effect on both B. innocens and B. 

pilosicoli growth, it appears the CFS has a universal effect on both pathogenic and non-

pathogenic Brachyspira growth.  

Incubation of B. pilosicoli B2904 or B. innocens B2960 with both lactobacilli 

strains, whether viable or heat-inactivated, resulted in a loss of motility (Table 3.5). The 

similarity of results for the viable and heat-inactivated assays suggests this was a 

passive process and not physiological. Since B. pilosicoli and B. innocens motility was 

inhibited in similar conditions, the factor which results in this inhibition most likely 

does not relate to the pathogenicity of the Brachyspira. The EM observations showed 

co-aggregation between the two bacterial species (Figure 6.5C-F, 6.6C-F and 6.9C-F) 

supporting similar observations described previously (Bernardeau et al., 2009). Co-

aggregation may prove detrimental to Brachyspira by rendering them incapable of 

escaping the eliminating effect of mucus for which motility and chemotaxis are 

considered key virulence features of spirochaetes (Lux et al., 2000; Nakamura et al., 

2006). Interestingly, the motility of B. pilosicoli and B. innocens was inhibited after 4 

hour incubation with L. reuteri but, only after 24 hour incubation with L. salivarius. The 

biochemical basis of adherence and the avidity of binding (Aslim et al., 2007; Ruas-

Madiedo et al., 2006; Schachtsiek et al., 2004) is worthy of further investigation as this 

may identify the lectins for further development and exploitation. 
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Prior to adhesion and invasion studies, preliminary studies confirmed the adhesive 

and invasive properties of B. pilosicoli B2904 to HT29-16E cells; this tropism may be 

attributed to the mucus-secreting properties of this cell line, since B. pilosicoli have 

previously exhibited chemoattraction to mucin (Naresh and Hampson, 2010). Further to 

the monolayer studies, a 3D cell model which maintains a differentiated 3D architecture 

of the parental tissue (Figure 6.2) that creates a more physiologically relevant platform 

was adopted for adhesion and invasion assays. Results from the assays in the 3D cell 

model reflected those in the monolayer model; however the number B. pilosicoli cells 

that adhered was significantly greater and those that invaded was significantly lower in 

the 3D cell model. This tropism was noted previously for E. coli, C. difficile and S. 

Typhimurium (Eveillard et al., 1993; Honer zu Bentrup et al., 2006; Kerneis et al., 

1994; Searle et al., 2010) and results from cell differentiation, which affects pathogen 

infection, up-regulating adherence and down-regulating invasion (Gabastou et al., 

1995). Findings from HT19-16E cell assays encouraged the continuation of studies 

using in vitro-cultured caecal tissue explants from laying hens; a novel and possibly 

more physiologically relevant in vitro platform on which to study the potential use of 

probiotics to protect against AIS. In IVOC studies, tissues were maintained 

physiologically active with their natural architecture and mucin layers; SEM showed the 

tissues remained well-preserved throughout the study (Figure 6.7). However, the nature 

of the IVOC study did not allow separate enumeration of adherent and invaded B. 

pilosicoli, thus total association was assessed.  

L. reuteri LM1 and L. salivarius LM2 reduced significantly the adherence and 

invasion of B. pilosicoli to HT29-16E cells and the mucosal surface of avian caeca 

IVOC tissues when administered in protection and competition assays (Figure 6.3, 6.4 

and 6.8). This may be most probably explained by co-aggregation between the 

lactobacilli and B. pilosicoli (Figure 6.5C-F, 6.6C-F and 6.9C-F). High levels of 

exopolysaccharide (EPS) production have been associated with the co-aggregative 

properties of lactobacilli with enteric pathogens such as E. coli (Aslim et al., 2007); 

EPSs are produced by other probiotic members of the normal gut microflora including 

bifidobacteria (Ruas-Madiedo et al., 2006) and thus, may provide additional protection 

against Brachyspira infection. Surface proteins, such as co-aggregation promoting 

factor (Cpf), have also been implicated in the co-aggregative phenotype of lactobacilli 

with pathogens (Schachtsiek et al., 2004). Whether there was any physiological, pH-

dependent impact on adherence and invasion is unclear. However, this is less likely to 

have occurred than passive co-aggregation because there was no evidence of pH-
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associated cellular tissue damage of the HT29-16E cells and the mucosal surface of 

avian caeca IVOC tissues.  

When co-administered in protection assays, the viable lactobacilli were evenly 

distributed across the cell surface of the HT29-16E monolayers (Figure 6.5C-F), 3D 

cells (Figure 6.6C-F) and the mucosal surface of the avian caecal IVOC tissue (Figure 

6.9C-F), potentially occupying specific receptor sites, limiting the number of adherent 

Brachyspira by niche competition. Greater numbers of lactobacilli would have been 

present in competition assays, as compared with protection assays, where the washes 

following the 30 minute pre-treatment would have removed non-adhered lactobacilli; 

hence, this may explain the greater reduction of the adherence and invasion of B. 

pilosicoli in competition assays, as more lactobacilli were available to interact with the 

Brachyspira. L. reuteri induced a greater reduction of B. pilosicoli adherence and 

invasion than L. salivarius, regardless of delivery. This trait may be attributed to an 

ability of L. reuteri to compete for a wider range of receptor binding sites, produce 

additional antimicrobial compounds or co-aggregate more efficiently.  

The inability of either lactobacilli strain to reduce the adherence or invasion of B. 

pilosicoli in displacement assays (Figure 6.3C, 6.4C and 6.8C) may be due to the 

absence of lactobacilli to interact with the B. pilosicoli during the 5 hour incubation and 

the inability of the lactobacilli post-treatment to reverse adherence and invasion. These 

results suggest the lactobacilli must be present prior to or with the Brachyspira in order 

to interact with the spirochaete and prevent association with the epithelial cells. This 

data suggests that Lactobacillus treatment may have little effect in birds that are already 

colonised with B. pilosicoli. However, this approach may aid recovery after 

antimicrobial treatment when re-infection from the environment is possible. In this 

study the opportunity to assess other health benefits of the lactobacilli, other than to 

control AIS was not possible due to the lack of time and animal studies. It would be 

valuable to assess a combined antimicrobial-probiotic approach to not only control 

disease but also speed recovery. 

The inability of lactobacilli CFS to reduce the adherence and invasion of B. 

pilosicoli in the 3D cell model (Figure 6.4D) further supports the notion that direct 

interactions with lactobacilli are crucial in reducing B. pilosicoli association. In spite of 

this, CFS studies in the monolayer and IVOC models revealed a small, but statistically 

significant ability of the CFS of L. reuteri, but not that of L. salivarius, to reduce the 

association of B. pilosicoli. The effect of L. reuteri CFS on the association of B. 

pilosicoli may be due to the production and release of one or more metabolic by-
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product(s) capable of limiting B. pilosicoli association or bioactive component(s) that 

may block adhesion molecules on the B. pilosicoli or host cells. Interestingly, the CFS 

of L. delbrueckii spp. bulgaricus inhibits the cytotoxic effects of C. difficile and its 

adhesion to Caco-2 cells attributable to the production of bioactive compounds that 

inhibit the toxin, its receptors or bacterial adhesion molecules (Banerjee et al., 2009).  

Further supporting the concept of passive co-aggregation between the lactobacilli 

and Brachyspira was the ability of heat-inactivated lactobacilli to elicit a significant 

reduction in Brachyspira association in protection and competition assays in the IVOC 

model (Figure 6.8A and B). However, heat-inactivated lactobacilli reduced B. pilosicoli 

association to a lesser degree than viable lactobacilli; this may be due to the increasing 

numbers of the viable lactobacilli throughout the assays, or perhaps the active 

production and secretion of inhibitory compounds. A probable mechanism by which the 

lactobacilli induce a significant reduction in B. pilosicoli association when delivered 

prior to or with the Brachyspira, result in the passive co-aggregation between the 

different species which inhibits Brachyspira motility, hence trapping the spirochaete 

and mitigating its ability to adhere and invade host cells. 

In 3D cell assays, HT29-16E cells that had been infected with B. pilosicoli showed 

signs of membrane blebbing (Figure 6.6B and C), indicative of apoptosis due to 

physical or chemical stresses (Cunningham, 1995; Fackler and Grosse, 2008). B. 

pilosicoli may induce bleb formation via a type three secretion system (TTSS)-

dependent invasion mechanism, as has been observed with Pseudomonas aeruginosa 

(Angus et al., 2008), or they may adopt a similar mechanism to Bacteroides fragilis, 

which produce an enterotoxin that acts on the cytoskeleton (Donelli et al., 1996). Genes 

encoding components of a TTSS and putative cytotoxin genes have been reported in 

Brachyspira (Bellgard et al., 2009; Wanchanthuek et al., 2010). Effacement of 

microvilli was observed in addition to shrunken cytoplasm, intracellular vacuolation and 

cell sloughing, indicative of apoptosis; these findings are consistent with 

histopathological studies of tissues from infected birds (Jansson et al., 2009a; 

Shivaprasad and Duhamel, 2005). Moreover, chromatin condensation was noted, which 

has been observed in infected avian tissues and human colo-rectal cell (Caco-2) 

monolayers (Naresh et al., 2009); genes encoding ankyrin proteins which bind host cell 

chromatin, have been identified in Brachyspira (Bellgard et al., 2009). Further 

supporting the ability of lactobacilli to intervene in Brachyspira infection in vitro was 

the apparent protection against this cellular pathology that they conferred in competition 

assays (Figure 6.6D-F). 
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The effect of lactobacilli on the growth, motility and association of B. pilosicoli to 

host cells encourages in vivo studies to assess the efficacy of these strains to protect 

against AIS. The rapid growth and robust nature of lactobacilli as compared with the 

slow-growing, fastidious Brachyspira make these species ideal probiotic candidates for 

intervention against Brachyspira infection by niche competition. The results indicate 

that acidification will inhibit the B. pilosicoli, however this may be detrimental to the 

host and therefore a key effector in control may be the passive co-aggregation that was 

observed. Supplementing the diet of poultry with co-aggregative lactobacilli may 

therefore be a useful control strategy for AIS.  
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Chapter 7. 

 

Investigating the ability of Lactobacillus reuteri LM1 

to reduce Brachyspira pilosicoli-induced pathology 

in experimentally challenged chickens 

 
7.1 Introduction 

 
AIS is a disease of poultry that arises from the colonisation of the caeca and colon 

of birds by the anaerobic spirochaete, Brachyspira (Stephens and Hampson, 2001; 

Swayne and McLaren, 1997). Of the seven documented Brachyspira species, three are 

considered pathogenic in poultry as demonstrated by in vivo experimental challenge 

with B. alvinipulli (Stanton et al., 1998), B. intermedia (Hampson and McLaren, 1999) 

and B. pilosicoli (Stephens and Hampson, 2002a). B. pilosicoli has a wide host range, 

also causing PIS in pigs (Trott et al., 1996) and HIS in humans (Tsinganou and 

Gebbers, 2010), with potential for zoonosis (Hampson et al., 2006b). AIS in layer and 

broiler breeder flocks has been associated with a delayed onset of lay, reduced egg 

weights, diarrhoea, faecal staining of eggshells, reduced growth rates, increased feed 

consumption and non-productive ovaries (Davelaar et al., 1986; Feberwee et al., 2008; 

Griffiths et al., 1987; Swayne et al., 1992). Colonisation by B. pilosicoli has been 

characterised by an ability of the organism to form end-on attachments to and invade the 

intestinal epithelia, forming dense fringes penetrating between enterocytes associated 

with inflammatory responses (Feberwee et al., 2008; Jensen et al., 2001; Jensen et al., 

2000). 

In the United Kingdom, the incidence of Brachyspira in commercial and free-

range flocks has been estimated at 74% and 90%, respectively (Burch, 2010), with AIS
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reported to be increasing at least partially attributed to the 2006 EU ban on the use of 

antibiotics as growth promoters in livestock (Castanon, 2007). With increasing 

antimicrobial resistance amongst Brachyspira, including to tiamulin which is currently 

the preferred therapeutic for AIS (Hampson et al., 2006c; Pringle et al., 2006), there is 

increased interest in developing alternative intervention strategies (Collins et al., 2009).  

Probiotics have been described as live microorganisms that confer health benefits 

on the host when administered in adequate quantities (FAO/WHO, 2001) and include 

many enteric commensal species including bifidobacteria and lactobacilli. With regard 

to the CE of pathogens by probiotics, several mechanisms have been suggested that 

include the secretion of antimicrobial compounds, competition for essential nutrients 

and host cell binding receptors and immunomodulation of the gut mucosa (Vanderpool 

et al., 2008). Probiotics have been demonstrated to reduce the colonisation of the lower 

GI tract by various pathogens in poultry including E. coli, Salmonella, Clostridia and 

Campylobacter (La Ragione et al., 2004; La Ragione and Woodward, 2003; Pascual et 

al., 1999; Schoeni and Wong, 1994; Stern et al., 2006; Vicente et al., 2008). In this 

chapter, the aim was to determine whether probiotics may reduce the colonisation of the 

GI tract by Brachyspira especially as this pathogen has been shown to colonise the 

same niche as many of these pathogens. 

Lactobacillus strains have been shown to inhibit various aspects of the biology of 

Brachyspira in vitro in Chapter 6 and in other reported studies. For example, L. 

johnsonii exhibited antimicrobial activity against B. pilosicoli and B. hyodysenteriae 

through the production of hydrogen peroxide and a proteineous antimicrobial compound 

(Se et al., 2008). L. rhamnosus and L. farciminis strains have also been implicated in 

inhibiting the motility of Brachyspira by co-aggregation with the spirochaetes and 

eliciting a bacterial stress response (Bernardeau et al., 2009). In Chapter 6, L. reuteri 

LM1 and L. salivarius LM2 were demonstrated to inhibit the motility, growth and 

adherence to host cells of B. pilosicoli B2904 in vitro. This chapter describes in vivo 

studies using the novel experimental challenge model described in Chapter 3 to test the 

hypothesis that L. reuteri LM1 will compete against and reduce the pathogenic impact 

of B. pilosicoli in the chicken. 
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7.2 Results 

 
7.2.1 Colonisation of 18 week-old chickens by B. pilosicoli and L. reuteri 

The birds in all groups were cloacally swabbed upon arrival and throughout the 

experiment (on days indicated in Figure 7.1A). Swabs were plated swiftly onto 

Brachyspira selective agar and incubated anaerobically at 37˚C for 8 days to minimise 

exposure to oxygen. The plates were examined visually at 24 hour intervals for 

spirochaetal growth and to verify the genus and species of any putative spirochaetes, 

cells were picked from the plate and subjected to PCR (Mikosza et al., 2001b; Phillips 

et al., 2005). All cultures from cloacal swabs from both groups of birds prior to 

challenge with B. pilosicoli B2904 were negative for spirochaetal growth. Moreover, 

representative random faecal samples taken from the floor of both of the rooms of birds 

were negative by PCR for the Brachyspira genus and B. pilosicoli species.  

Following the three challenges with B. pilosicoli B2904, the percentage of birds 

that tested positive by culture from the cloacal swab increased from zero to 83.3% and 

75.0% in the untreated control and L. reuteri LM1-treated groups, respectively (Figure 

7.1A). In the untreated group, ≥75.0% remained culture positive until 12 days after final 

challenge (day 24), whereas, in the L. reuteri LM1-treated group by this point, the 

percentage of positive birds decreased to 50.0%. By 19 days after final challenge (day 

33), the percentage of culture positive birds decreased to 50.0% in the untreated and 

16.7% in the L. reuteri LM1-treated group. 

Faecal DNA isolated from representative random faeces taken from the floor of 

each of the rooms of birds tested positive for the Brachyspira genus and B. pilosicoli 

species by PCR from the day of the final challenge (day 12) and remained positive 

throughout the study in the untreated group. In the L. reuteri LM1-treated group, 

however, the faecal samples tested positive until 16 days post final challenge (day 28) 

and then negative until the end of the study. The detection of B. pilosicoli by culture 

was mostly synonymous with direct PCR on faecal DNA. However B. pilosicoli was 

detected by PCR only on five days from untreated group faeces (days 12, 14, 24, 30, 32) 

and two days from L. reuteri LM1-treated group faeces (days 13 and 27).  

L. reuteri LM1 was shown to survive in distilled water for 2.5 hours without 

significant reduction in viability and hence, assuming each chicken consumed 

approximately 200 ml per day (20.8 ml in 2.5 hours) (Grashorn and Simonovic, 2009), 

each chicken should have consumed circa 5 × 109 CFU viable lactobacilli. Furthermore, 

non-viable lactobacilli have been shown to inhibit the motility of B. pilosicoli (as 
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discussed in Chapter 6) and hence any non-viable cells ingested may aid in the 

intervention of B. pilosicoli. To detect the L. reuteri species in faeces, faecal DNA 

extracts were prepared from a mixed pool of faecal samples and subjected to PCR to 

specifically detect L. reuteri (Kwon et al., 2004). Representative faecal samples from 

the L. reuteri LM1-treated group tested positive for L. reuteri by PCR from day 1 and 

on each day throughout the study. Faecal samples from the untreated group tested 

positive from day 1 throughout the study excluding days 11, 13 to 18 inclusive, 23 and 

24, which tested negative for L. reuteri.  

 

7.2.2 Bird weights 

The chickens were weighed upon arrival and throughout the study (on days 

indicated in Figure 7.1B). The average weight of the birds in both groups increased 

throughout the course of the experiment, although the rate of weight gain was greater in 

the L. reuteri LM1-treated group (Figure 7.1B). By the end of the study (day 31), the 

mean weight of the birds in the L. reuteri LM1-treated group was approximately 0.09 

kg higher than that of the untreated group (p<0.01). 

 

7.2.3 Faecal moisture content 

Representative samples of fresh faeces were taken from the floor of each of the 

rooms for the duration of the study (on days indicated in Figure 7.1C) and portions (1 g) 

were weighed and dried to constant weight to determine faecal moisture content. The 

average faecal moisture content of the two groups was similar until the day following 

the final Brachyspira challenge (day 13), where the faecal moisture content of the 

untreated group increased significantly compared to the L. reuteri LM1-treated group 

(p<0.05) (Figure 7.1C). The faecal moisture content of the untreated group continued to 

increase until eight days post final Brachyspira challenge (day 20), where it was 

significantly greater (approx. 6.8%) than that of the L. reuteri LM1-treated group 

(p<0.05). The faecal moisture content of both groups decreased after day 21 to the end 

of the study (day 33). There was no significant difference in faecal moisture content of 

the L. reuteri LM1-treated group between the first and final days of the study. However 

there were significant differences between these time points for the untreated group 

(p<0.05). On the final day of the study, the faecal moisture content of the L. reuteri 

LM1-treated group was significantly lower than that of the untreated group (p<0.05). 
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Figure 7.1 Experimental monitoring of birds throughout the intervention study demonstrating the percentage of cloacal swabs positive for B. pilosicoli 

by culture and PCR (A), the mean bird weight (B) and the mean faecal moisture content (C). The mean was based on fifteen birds until day 17 and then 

twelve birds until the study end in both the untreated (closed circle, solid line) and L. reuteri LM1-treated (open square, dashed line) groups. The 

arrows on the x-axis indicate the days of challenge. Significance is shown in cases where the final data points of the challenged groups and the negative 

control group differed significantly; * p<0.05; ** p<0.01; *** p<0.001. 
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7.2.4 Egg production 

Eggs were collected daily and weighed and scored for the extent of faecal eggshell 

staining without knowledge of which group they belonged to. Scoring was performed 

blind with 0 denoting a clean eggshell and 5 for a heavily stained eggshell, as 

previously described (Stephens and Hampson, 2002b). Egg production in both groups of 

birds commenced at the start of the study (day 1). The number of eggs produced per day 

in both groups increased at similar rates until the challenge period, following which, the 

number of eggs laid by the L. reuteri LM1-treated group continued to rise, peaking at 14 

eggs laid by the 15 birds on day 16, whereas the untreated group also peaked at this 

time but laying two fewer eggs (Figure 7.2A). From six days post final challenge (day 

18), the number of eggs laid per day appeared to stabilise with the birds laying between 

eight and eleven eggs per day.  

The average egg weight between the two groups was similar up to and during the 

challenge period. However, on all days following the final challenge except days 15, 17 

and 32, the average egg weight of the L. reuteri LM1-treated group was greater than 

that of the untreated group (Figure 7.2A). The average egg weights of the L. reuteri 

LM1-treated group were significantly greater than that of the untreated group on day 18, 

days 25 – 31 and day 33 (p<0.05). The average weight of eggs from across the whole 

study was significantly greater for the L. reuteri LM1-treated (54.81 g ±8.23) than the 

untreated (52.27 g ±5.58) group (p<0.001). 

Following the final challenge (day 12), although the average score for the faecal 

staining of the eggs did increase in the L. reuteri LM1-treated group, the average score 

was greater in the untreated group on most days for the duration of the experiment 

(Figure 7.2B); specifically, greater average scores were noted on nine of the 21 days of 

the experiment after the final challenge (p<0.05). 
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Figure 7.2 Monitoring of egg production; the number of eggs laid (lines) and average egg weights (bars) were recorded (A) alongside average scores 

for the faecal staining of eggshells (B) on a daily basis throughout the intervention study. Fifteen birds were present in the study until day 17 and then 

twelve birds present until the study end in both the untreated (closed bar/closed circle, solid line) and L. reuteri LM1-treated (open bar/open square, 

dashed line) groups. The arrows on the x-axis indicate the days of challenge. Significance is shown in cases where the mean score for the faecal 

staining differed significantly between the two groups; * p<0.05; ** p<0.01; *** p<0.001. 
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7.2.5 Bacteriological findings at post-mortem examination 

At five and 21 days after the final challenge with B. pilosicoli, three birds per 

group were euthanased by cervical dislocation and subjected to post-mortem 

examination. At five days post final challenge, post-mortem examination revealed few 

macroscopic pathological findings however, petchia were detected in the duodenum and 

upper jejunum of two birds in both groups. However, no Brachyspira were isolated 

from these tissues. Interestingly, the caeca from the untreated group were smaller, with 

the average caecal weight of the untreated group (12.6 g ±2.4) lower, without 

significance, than that of the L. reuteri LM1-treated group (13.8 g ±1.2). B. pilosicoli 

were recovered from the caeca and colon of all three birds in both groups, but at 

significantly greater numbers in the caeca (p<0.05) and colon (p<0.001) of birds from 

the untreated group (Figure 7.3A). The average numbers of B. pilosicoli recovered from 

the caeca and colon of the untreated group were nine- and 50-fold greater, respectively, 

than the numbers recovered from these tissues of the birds from the L. reuteri LM1-

treated group. B. pilosicoli were also isolated from the ileum, spleen and isthmus of one 

bird from the untreated group and two birds from the L. reuteri LM1-treated group, the 

vagina of two birds from the untreated group and one bird from the L. reuteri LM1-

treated group, the liver of one bird from each group and the uterus of just one bird from 

the untreated group.  

Post-mortem examination at 21 days after the final challenge revealed the caeca 

were again smaller in the birds of the untreated group with their average caecal weight 

(18.1 g ±3.7) 1.6 g lower, without significance, than the average caecal weight of the L. 

reuteri LM1-treated group birds (19.7 g ±4.4). B. pilosicoli were recovered from the 

caeca and colon of all three birds of the untreated group, but from the caeca of only two 

birds and colon of one bird from the L. reuteri LM1-treated group. The average number 

of B. pilosicoli isolated from the caeca of birds from the untreated group was 

approximately 33-fold greater than that of the L. reuteri LM1-treated group (p<0.05) 

(Figure 7.3B). Moreover, the average number isolated from the colon of birds from the 

untreated group was approximately 24-fold greater than that of the L. reuteri LM1-

treated group (p<0.01). Interestingly, Brachyspira were recovered from the ileum, liver 

and uterus of one bird from the untreated group, the isthmus of one bird of the untreated 

and two birds of the L. reuteri LM1-treated group and the vagina of two birds from the 

untreated and one bird from the L. reuteri LM1-treated group.  
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Figure 7.3 Colonisation of B. pilosicoli in different tissues sampled at post-mortem, at 

five days (A) and 21 days post final challenge (B). The average was taken from three 

birds examined at the two time-points from birds of the untreated (closed bar) and L. 

reuteri LM1-treated (open bar) groups. Significance is shown in cases where 

colonisation by B. pilosicoli in the same tissue samples of the two groups differed 

significantly; * p<0.05; ** p<0.01; *** p<0.001. 
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7.2.6 Histopathological findings at post-mortem examination 
Microscopical examination of the tissues sampled at five days post final 

Brachyspira challenge, frequent multifocal lymphohistiocytic infiltration was observed 

in the periportal spaces in the liver of two birds examined at post-mortem from the 

untreated group (Figure 7.4A). This pathology was not observed in the birds examined 

from the L. reuteri LM1-treated group (Figure 7.4B). However, small crypt abscesses, a 

paucity of secondary follicles and abundant diffuse GALT were noted in the caecal 

tonsil of one bird of this group.  

At 21 days post final Brachyspira challenge, less evident pathology was noted in 

the liver, with only a few areas of lymphocytic infiltration in one of the three birds 

examined at post-mortem from the untreated group. In the three birds examined from 

the untreated group, lymphoid hyperplasia and secondary follicle proliferation (Figure 

7.4C) were noted in addition to crypt abscesses, distended crypts containing bacterial 

colonies (and rare protozoa) and subepithelial haemorrhages (Figure 7.4C and E). In 

birds from the L. reuteri LM1-treated group, active secondary follicles were noted in the 

caecal tonsil of one bird and crypt abscesses in the caecal tonsil of another. Generally 

the tissues examined from the L. reuteri LM1-treated exhibited less pathology than that 

those from the untreated group (Figure 7.4D and F). 
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Figure 7.4 Haematoxylin and eosin (HE)-stained tissues demonstrating 

histopathological changes in birds experimentally challenged with B. pilosicoli B2904 

from the untreated (A, C and E) and L. reuteri LM1-treated groups (B, D and F). 

Pathology was noted in the liver at five days post Brachyspira challenge (A and B) and 

the caecal tonsil (C-F) at 21 days post final Brachyspira challenge. In tissues examined 

from birds in the untreated group, periportal lymphocytic infiltration was observed in 

the in liver (i). Haemorrhages (ii), abundant secondary follicles (iii) and distended 

crypts containing bacterial colonies (iv) were observed in caecal tonsil tissues. Only 

mild pathology was noted in the tissues examined from the L. reuteri LM1-treated 

group. 
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7.3 Discussion 

 
Lactobacillus strains have effectively excluded various enteric pathogens from 

poultry including Campylobacter (Zhang et al., 2007a), Clostridium (La Ragione et al., 

2004), E. coli (Edens et al., 1997) and Salmonella (Higgins et al., 2008; Pascual et al., 

1999; Vicente et al., 2008; Zhang et al., 2007b). In Chapter 6, a variety of in vitro 

assays were employed to demonstrate that Lactobacillus strains including L. reuteri 

LM1 mitigate against the pathobiology induced by Brachyspira by significantly 

inhibiting growth, motility and adherence. Thus, the scope of the studies described in 

this chapter focused upon the potential CE effect of L. reuteri LM1 against AIS in 

chickens experimentally challenged with B. pilosicoli B2904 using the novel 

experimental challenge model described in Chapter 3. The studies compared the clinical 

symptoms and colonisation of Brachyspira in L. reuteri LM1-treated birds with 

untreated birds. Given the weight of data indicating a reduction in clinical symptoms 

and the reduction in colonisation, it can be argued that L. reuteri LM1 does indeed 

confer health benefits in vivo and can be truly described as a probiotic. 

Following B. pilosicoli challenge, the spirochaetes were readily re-isolated from 

cloacal swabs of both groups. However, fewer birds were positive for B. pilosicoli by 

culture in the L. reuteri LM1-treated group (75.0%) than in the untreated group (83.3%) 

(Figure 7.1A), perhaps attributed to the protective effect of L. reuteri LM1 provided in 

the drinking water from a week prior to challenge and throughout the study. The 

number of B. pilosicoli-positive birds decreased throughout the study but at a greater 

rate in the L. reuteri LM1-treated group. The mechanism of this effect is unclear and 

may be due to CE by L. reuteri LM1 and/or via a potential effect on the modulation of 

the intestinal microbiota. Given the in vitro study data (discussed in Chapter 6), it is not 

unreasonable to argue that the negative impact on growth, motility and cellular invasion 

mediated by L. reuteri LM1 contributed to the protective effects observed against B. 

pilosicoli. It would be interesting in further in vivo work to interrogate these 

mechanisms. Interestingly, the sensitivity of culture for the detection of B. pilosicoli 

from representative random samples of fresh faeces taken from the floor of each of the 

rooms was lower than that of PCR on faecal DNA with B. pilosicoli detected only by 

PCR and not culture on five days for the untreated group and two days for the L. reuteri 

LM1-treated group. B. pilosicoli were detected by PCR on all days of the study for the 

untreated group and only until 16 days post final challenge (day 28) for the L. reuteri 
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LM1-treated group, perhaps reflecting an extensive reduction in the number of B. 

pilosicoli-positive birds.  

The average bird weight increased at a similar rate for both groups up to 

Brachyspira challenge period, where the rate of weight gain in the L. reuteri LM1-

treated-group was unaffected, whereas in the untreated group, the rate decreased (Figure 

7.1B). By the end of the study, the average weight of the L. reuteri LM1-treated birds 

was significantly greater than that of the untreated birds (p<0.01). Interestingly, the 

administration of Lactobacillus probiotics has previously demonstrated a positive effect 

on weight gain in chickens (Lan et al., 2003; Timmerman et al., 2006).  

Following the challenges with B. pilosicoli, the faecal moisture content of the 

untreated group increased significantly compared to the L. reuteri LM1-treated group 

(p<0.05) (Figure 7.1C). Rather than a direct effect of the lactobacilli on reducing faecal 

moisture content, it is probable that this effect resulted from the ability of lactobacilli to 

mitigate against the infection and colonisation of B. pilosicoli (as discussed in Chapter 

6), hence, alleviating clinical symptoms such as the increase in faecal moisture content 

(Jamshidi and Hampson, 2003).  

Egg production in both groups was similar up to Brachyspira challenge, after 

which there was an eight day period where the L. reuteri LM1-treated group generally 

laid slightly greater numbers of eggs per day than the untreated group (Figure 7.2A). 

Previous studies have related probiotic supplementation to improved egg production 

(Kurtoglu et al., 2004; Tortuero and Fernandez, 1995); however others have noted no 

effect on egg production (Balevi et al., 2001). Moreover, the average egg weight for the 

L. reuteri LM1-treated group was significantly greater than the untreated group 

(p<0.001) (Figure 7.2A). Significant increases in egg weight were previously associated 

with probiotic supplementation and it was postulated that this resulted from increased 

digestion of nutrients by probiotic bacteria (Nahanshon et al., 1992; Nahanshon et al., 

1994; Tortuero and Fernandez, 1995). In this study, the greater egg weights of the L. 

reuteri LM1-treated group may simply reflect the mitigation of B. pilosicoli infection 

aided by administration of L. reuteri LM1. Eggs were scored on the extent of faecal 

staining without knowledge to which group they belonged. The average score for the 

faecal staining of eggs from the L. reuteri LM1-treated group were generally lower than 

the untreated group after the challenge with B. pilosicoli (Figure 7.2B); on nine of the 

21 days after the final challenge, there was significant difference between the average 

scores of the two groups (p<0.05).  
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 At five days after final challenge, B. pilosicoli were recovered at significantly 

greater numbers from the caeca and colon of the untreated group (p<0.05) (Figure 

7.3A). This suggests that L. reuteri LM1 may have inhibited the growth, motility and/or 

adherence of B. pilosicoli, an effect that was observed in vitro, as discussed in Chapter 

6. This greater colonisation in the untreated birds may relate to the reduced average 

weight of the caeca. Interestingly, no pathology was noted in the colon and caecal 

tissues in the untreated birds examined at post-mortem. However, crypt abscesses, 

secondary follicles and abundant diffuse GALT were identified in the caecal tonsils of 

one of the three birds examined from the L. reuteri LM1-treated group. B. pilosicoli 

were also isolated from the ileum, liver, spleen, isthmus and vagina of birds from both 

groups and the uterus of a bird from the untreated group. Upon histopathological 

examination at 21 days after challenge, the liver of two birds from the untreated group 

showed multifocal lymphohistiocytic infiltration in periportal spaces (Figure 7.4A), 

whilst in the livers of the three birds from the L. reuteri LM1-treated group no 

pathology was noted (Figure 7.4B). B. pilosicoli have previously been isolated from the 

liver (Kostman et al., 1995) and bloodstream (Bait-Merabet et al., 2008; Prim et al., 

2011) in humans and Brachyspira infection was associated with hepatic and splenic 

amyloidosis in duck flocks (Glavits et al., 2011). However, this is the first report of the 

isolation of Brachyspira from the liver of chickens. 

At 21 days post final challenge, B. pilosicoli were isolated at significantly lower 

numbers from the caeca and colon of the birds examined at post-mortem from both 

groups, compared to the post-mortem at five days after challenge (Figure 7.3B). The 

greatest numbers of B. pilosicoli were isolated from the caeca and colon, but at 

significantly lower numbers in birds from the L. reuteri LM1-treated group (p<0.05). 

These findings correlated with the histopathological findings, whereby more severe 

pathology was noted in birds from the untreated group including secondary follicle 

proliferation, lymphoid hyperplasia (Figure 7.4C), crypt abscesses, distended crypts and 

subepithelial haemorrhages (Figure 7.4E), which have been described previously in 

poultry colonised by B. pilosicoli (Feberwee et al., 2008). The smaller caeca from birds 

of the untreated group at this time-point may again be explained by the greater extent of 

colonisation by B. pilosicoli in untreated birds. The spirochaete was also isolated from 

the isthmus and vagina of birds from both groups and the ileum, liver and uterus of 

birds from one birds of the untreated group. The liver of the bird from the untreated 

group, from which B. pilosicoli was isolated displayed few areas of lymphocytic 

infiltration, perhaps induced by B. pilosicoli infection. The reduction in the colonisation 
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of B. pilosicoli and the severity of the pathology observed in L. reuteri LM1-treated 

birds highlights a potential protective function of L. reuteri LM1 against AIS. 

The data strongly support the hypothesis that L. reuteri LM1 ameliorated the 

effects of the pathogenicity of B. pilosicoli. However, faecal samples from the L. reuteri 

LM1-treated group tested positive for L. reuteri by PCR at all time points throughout 

the study, whereas those from the untreated group were variably positive. Specifically, 

the birds of both groups were L. reuteri-positive at day 1. However, since the birds of 

the untreated group were negative for L. reuteri on nine days of the study, the level of 

colonisation of this species was likely to have been lower in this group due to its 

absence from the drinking water. The PCR test used was not specific for L. reuteri LM1 

and therefore the PCR will have detected both LM1 and other strains native to that bird 

population. Thus, L. reuteri species are considered to have colonised the birds of both 

groups prior to the study. As this species is a common commensal of the GI tract 

(Abbas Hilmi et al., 2007) and the birds were 17 weeks of age on arrival, this is not 

unreasonable. It may be argued however, that as groups were kept in biosecure 

containment, the effects seen were due to the additional L. reuteri LM1 treatment. 

Without distinguishing features to enable specific detection of L. reuteri LM1, detection 

of L. reuteri primarily in the treated group strongly supported the argument that it was 

indeed L. reuteri LM1, a strain of chicken origin that colonised the chickens to which it 

was administered in the drinking water. In summary, the data indicate elevated numbers 

of L. reuteri in the treated group, which were probably strain LM1 plus any native 

strains already present. The control group contained L. reuteri but in lower numbers 

and, therefore, it is not unreasonable to argue that the biological impact on B. pilosicoli 

infection may be due to the elevated numbers of all L. reuteri strains or LM1 

specifically. Furthermore, nutritional modification by prebiotics for example may 

enhance L. reuteri numbers to induce the same effect as supplementation of water with 

strain LM1. Clearly further work is required to assess this. 

Further to the in vitro studies presented in Chapter 6, the promise of L. reuteri 

LM1 as a probiotic that affords some protection against AIS has been demonstrated by 

in vivo experimentation, since the administration of L. reuteri LM1 in the drinking 

water reduced the severity of clinical symptoms associated with B. pilosicoli infection. 

Whilst some differences between the two groups may be related to a direct effect from 

the probiotic supplementation, such as weight gain and increase in egg weight, it is 

possible that the antagonistic effect L. reuteri LM1 exerts on B. pilosicoli is largely 

responsible. The rapid growth and robust nature of lactobacilli as compared with the 
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slow-growing, fastidious Brachyspira make these species ideal probiotic candidates for 

intervention against AIS, possibly by niche competition, however further work would 

be required to study the mode of action. L. reuteri LM1 may have reduced colonisation 

of B. pilosicoli, alleviating the associated clinical symptoms by acidification, which has 

been shown to inhibit B. pilosicoli and/or passive co-aggregation (as discussed in 

Chapter 6). Supplementing the diet of poultry with co-aggregative lactobacilli may 

therefore be a useful control strategy for AIS. This study warrants further investigation 

into the development of L. reuteri LM1 as a prophylactic probiotic to protect against 

enteric infections such as Brachyspira and potentially as a therapeutic treatment for 

these infections.  
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Chapter 8. 

 

General discussion 

 

 

 
AIS is a worldwide-recognised enteric disease that affects laying and broiler 

breeder chickens and hence, poses significant economic complications to poultry 

farmers. The aetiological agent of the disease is the spirochaete, Brachyspira, which 

colonises the caeca and/or colo-rectum of infected poultry. The limited understanding of 

the pathobiology of aetiological agent has hindered the development of novel 

intervention strategies for AIS and other Brachyspira-related diseases, such as swine 

dysentery. Recently, whole genome sequencing of Brachyspira has assisted in 

improving the understanding of this pathogen and particularly, comparative genome 

studies are important for elucidating the genotypic explanations for differences in 

pathogenicity between species (Bellgard et al., 2009; Hafstrom et al., 2011; Pati et al., 

2010; Wanchanthuek et al., 2010). However, genome sequence information is still not 

available for all Brachyspira species, and genome sequence information is restricted to 

one strain for those that have been genome sequenced, limiting the conclusions that can 

be drawn from such analysis. Indeed, it can be justifiably argued that the need is for not 

only comprehensive coverage of pathogenic, intermediate and non-pathogenic strains, 

but also geospatially distinct populations of each species in order to draw firmer 

conclusions. This thesis has contributed to this research by sequencing and analysing 

one novel B. pilosicoli genome. 

 

One aim of the studies presented in this thesis was to gain a better understanding 

of the pathobiology of B. pilosicoli, one of the Brachyspira species considered 
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pathogenic to poultry, in order to develop novel intervention strategies against AIS. B. 

pilosicoli is currently the only species that is acknowledged as a pathogen in poultry, 

swine and humans and hence, a strain of this species was selected for use in further 

studies, including whole genome sequencing, due to the potential of the results to have 

wider implications. All Brachyspira strains used in the studies presented in this thesis 

were characterised thoroughly (as discussed in Chapter 3 and specifically section 3.2.1), 

and B. pilosicoli B2904 was selected for use in the further studies. This strain was 

isolated from the faeces of a chicken that exhibited clinical symptoms of AIS in the 

United Kingdom and was selected due to its ability to grow well in vitro, susceptibility 

to gentamicin, which was important for tissue culture assays (as discussed in Chapter 6) 

and its isolation from a case of AIS. It seems unlikely that these selection criteria for 

this specific strain introduced any undue bias. Given there was no genome sequence 

available for B. pilosicoli of poultry origin, and the strain selected was associated with 

pathology in the chicken, it can be fairly argued that that this new data is a valuable 

building block for further studies and is likely to be genuinely representative of B. 

pilosicoli, at least of those in circulation in the United Kingdom. 

In order to fulfil the aim of sequencing the whole genome of a B. pilosicoli strain 

for which Koch’s postulates had been proven in a chicken, B. pilosicoli B2904 was used 

in an experimental challenge model. This aim coincided with the aim to develop a novel 

and improved experimental challenge model for AIS for which the efficacy of future 

potential interventions could be evaluated (such as that discussed in Chapter 7). In order 

to make this novel experimental infection model comparable with those described 

previously, B. pilosicoli CPSp1 was used to challenge one of the groups of birds, as this 

strain was used in previous experimental challenge studies to induce AIS-like clinical 

symptoms (Jamshidi and Hampson, 2002; Stephens and Hampson, 2002a, b) and hence, 

also served as a positive control in the studies reported here.  

The experimental challenge model developed and described in this thesis 

produced improved rates of colonisation and induced hitherto more severe clinical 

symptoms consistent with AIS and unreported pathology, compared to previously 

described models ( ; ; 

; ; , ; 

; ). The model for AIS that has been described in 

this thesis used sodium bicarbonate to neutralise the crop acid barrier prior to challenge, 

which may have improved the survival of B. pilosicoli transversing the crop, facilitating 

enhanced colonisation of the distal GI tract and thus, resulting in more severe clinical 

Amin et al., 2009 Hampson and McLaren, 1999 Hampson et al., 

2002a Hampson et al., 2002b Jamshidi and Hampson, 2002 2003 Jamshidian et al., 

2004 Stephens and Hampson, 2002a

 210



Chapter 8  General discussion 

symptoms. In addition to more severe clinical symptoms that are akin to those observed 

with AIS in the field ( ; ; ), this 

was the first study to provide a quantitative output on Brachyspira colonisation at post-

mortem. In vivo models for AIS have been important tools to evaluate the efficacy of 

novel intervention strategies, such as vaccines ( ), antimicrobials 

( ; , ) and dietary supplements 

( ). Thus, this novel in vivo model for AIS would be useful in 

testing such intervention strategies and would allow investigators to determine whether 

the treatment elicited a reduction in colonisation in specific tissues. This model was 

applied to test the efficacy of probiotic intervention in AIS (as discussed in Chapter 7) 

and future studies to test other novel intervention strategies or the pathogenicity of 

Brachyspira strains in poultry, may also benefit from using sodium bicarbonate to 

neutralise the crop acid prior to challenge and the quantitative approach to evaluate 

Brachyspira colonisation at post-mortem. Whilst the data from the in vivo studies 

reported in this thesis give considerable encouragement for the wider application of the 

modified inoculation approach, care must be taken in that the in vivo studies were 

modest in terms of numbers of animals used and that no larger scale study was 

performed to repeat the findings. However, confidence in the findings arises from the 

comparability with CPSp1 as both a control and a reference to prior infection studies. It 

seems highly unlikely, given the containment and general health status of the animals 

used, that the pathological outcome of the infections were in any way artefactual or 

associated with adventitious infectious agents co-infecting during the study. 

Dwars et al., 1990 Feberwee et al., 2008 Smit et al., 1998

Amin et al., 2009

Hampson et al., 2002a Stephens and Hampson, 2002a b

Hampson et al., 2002b

In the experimental challenge model described in this thesis, novel pathology was 

associated with B. pilosicoli colonisation in the liver and spleen. Previously, 

Brachyspira have been isolated from extra-intestinal tissues in humans, including the 

liver ( ) and the bloodstream ( a) and have also been 

associated with hepatic and splenic amyloidosis in duck flocks ( ). 

However, this was the first report of the recovery of Brachyspira from such tissues in 

chickens. Future work should focus on the direct visualisation of the aetiological agent 

in order to determine the specificity of the pathological changes noted in these tissues. 

In situ visualisation of Brachyspira has previously been performed via IHC (

; ; ), FISH ( ; 

) or staining methods, such as Warthin-Starry ( a; 

; ). Such intricate analysis of samples may reveal 

insight into the different colonisation patterns and pathology caused by different strains, 

Kostman et al., 1995 Trott et al., 1997

Glavits et al., 2011

Feberwee 

et al., 2008 Ivanics et al., 2007 Thuma et al., 2011 Herzog et al., 2005 Jensen 

et al., 2001 Jansson et al., 2009 Jensen 

et al., 2000 Trott and Hampson, 1998
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as noted for B2904 and CPSp1 and may aid in understanding the delayed and reduced 

egg production. Differences in the disease caused by the two strains may arise from 

differences in their pathogenicity. Future work may involve sequencing the whole 

genome of the CPSp1 strain for a comparative analysis with the B2904 genome in order 

to improve the understanding of such differences. The experiment was carefully 

controlled and thus, the deep tissue colonisation was considered to be a true 

phenomenon and not the result of an extraneous factor, such as co-infection. 

Furthermore, subsequent studies using the B2904-challenge model to evaluate AIS 

intervention strategies have shown findings consistent with this study (as discussed in 

Chapter 7). It may be of interest, however, for further work to be performed to provide 

additional validation of the novel observations from these studies. 

 

B. pilosicoli B2904 was isolated from a chicken that exhibited clinical symptoms 

of AIS and having proven the pathogenicity of this strain in experimentally challenged 

chickens, the whole genome of this was sequenced. Alongside the incomplete genome 

sequence of B. pilosicoli WesB, of human origin, and the previously reported whole 

genome sequence of B. pilosicoli 95/1000 ( ), of porcine 

origin, this permitted the first intra-species genome comparison within the Brachyspira 

genus (as discussed in Chapter 4). Comparing the B. pilosicoli genome sequences and 

features with each other and also with available genome sequences for other 

Brachyspira species may reveal insight into the unique pathogenicity of this species, 

since this is the only species that is considered capable of inducing disease in poultry, 

swine and humans. Alongside B. aalborgi, these species are also unique in their ability 

to form intimate end-on attachments to the intestinal epithelium of the host. Of other 

Brachyspira species, whole genome sequences have been published for B. 

hyodysenteriae WA1 ( ), B. intermedia PWS/A  (

) and B. murdochii 56-150  ( ) and the 

Wanchanthuek et al., 2010

Bellgard et al., 2009 T Hafstrom et al., 

2011 T Pati et al., 2010 unpublished, draft genome 

scaffolds of B. aalborgi 513T, B. alvinipulli C1T and B. intermedia HB60 were also 

available for limited analysis. 

MLST analysis revealed the three B. pilosicoli strains to be closely related; 

however future work could validate such findings and the relationships between the 

other Brachyspira strains, by use of other molecular typing methods such as MLEE, 

PFGE, RAPD and 16S rRNA gene sequence analysis, as previously performed for 

Brachyspira (Fellstrom et al., 2008; Fossi et al., 2004; Hidalgo et al., 2009; Rasback et 

al., 2007b). The relatively small size of the B. pilosicoli genomes may suggest that they 
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are members of a more specialised species that has undergone a high degree of 

reductive genome evolution. This would suggest that B. pilosicoli is likely to be an 

older pathogen than other Brachyspira species (Hafstrom et al., 2011) and is likely to 

have allowed improved energy efficiency and enhanced pathogenic potential. Reductive 

genome evolution is particularly evident in obligate, intracellular bacterial pathogens 

(Andersson and Kurland, 1998) and consistent with this, B. pilosicoli and B. aalborgi, 

which appear to have the smallest genomes, develop long-term intimate associations 

with the surface of enterocytes, into which they interdigitate one of their cell ends.  

Genome rearrangements oriented around the oriC were observed in the B. 

pilosicoli genomes, particularly of the B2904 and WesB strains, which had larger 

genomes. The rearrangements correlated largely with the positions of MGEs, of which 

greater numbers were noted in the B2904 and WesB genomes and were likely to have 

driven chromosomal rearrangements, gene disruptions and eventual loss of genes 

(Moran and Plague, 2004; Plague et al., 2008; Schmitz-Esser et al., 2011; Song et al., 

2010). Strain 95/1000 had the fewest MGEs and this may be interpreted as indicating 

that the MGEs that induced the genome reduction in this strain have become lost. 

Alternatively, the B2904 and WesB genomes may be in the initial stages of genome 

reduction at which point MGE expansion occurs (Moran and Plague, 2004; Song et al., 

2010). The MGEs are then generally lost in a fragmentary manner by pseudogenisation, 

which correlates with the greater number of pseudogenes recorded in the B2904 and 

WesB genomes. Genome reduction and MGE expansion is often associated with niche 

specialisation or host restriction (Parkhill et al., 2003; Parkhill et al., 2001), although B. 

pilosicoli are not considered host-restricted and the WesB strain, of human origin, has 

been shown to have the capacity to infect chickens and pigs (Trott et al., 1996a; Trott et 

al., 1995). MGEs driving genome rearrangements and reduction may be a key factor in 

the pathogenicity of B. pilosicoli. With an increasing availability of genome sequences 

for Brachyspira species, it is likely that further intra-species genome comparisons will 

be performed in the future, and it would be interesting to investigate the relationships of 

genome rearrangements and MGEs in other species. 

B. pilosicoli is a highly recombinant species (Trott et al., 1998), and despite 

differences in genome arrangement and the number of pseudogenes, part of the 

variation in the genome sizes simply reflects the carriage of different subsets of the pan-

genome. Feature-based analysis revealed a high level of similarity between the three B. 

pilosicoli strains and allowed the identification of genes that may have been lost in a 

process of reductive genome evolution due to their absence from some strains, such as a 

 213



Chapter 8  General discussion 

peptidase, glycine reductase complex components and transposases that were absent 

from the 95/1000 strain. Virulence factor screening was also performed in the three B. 

pilosicoli strains, highlighting the presence of genes for LOS biosynthesis, chemotaxis 

and motility, adhesion, host tissue degradation, oxidative stress, ankyrin repeat proteins 

and phage, all of which may contribute to the pathogenicity of the strains. Novel 

bacteriophages were detected in the newly-sequenced B. pilosicoli genomes, which 

appeared to have involvement in intra- and inter-species HGT and hence, may have had 

involvement in the pathogenicity of these strains. Alongside other MGEs, these may 

have also played a role in the acquisition of antimicrobial resistance genes noted in the 

B. pilosicoli genomes  

To complement the genomic comparisons, this study was also the first to apply a 

high-throughput phenotype screening tool to correlate genotype with phenotype in 

Brachyspira. This allowed validation of phenotypic differences predicted from genome 

analysis, such as the lack of genes for glucuronate catabolism in 95/1000. The 

phenotypic data for the 28 Brachyspira strains of different known and proposed species 

presented in this thesis has potential for thorough interrogation to elucidate metabolic 

differences between different species of varying pathogenicity. Future work may focus 

on linking this phenotypic data to genotypic findings in species for which genome 

sequences are available or may become available. It would be interesting to perform 

MLST on all 28 strains used to compare the relatedness of these strains based on 

molecular as well as phenotypic methods. Such analysis of genotype and phenotype 

alongside one another, could play an important role in the validation of proposed 

species such as “B. canis”, “B. pulli” and the recently reported “B. hampsonii” (Chander 

et al., 2012). Application of this technology to other genome-sequenced Brachyspira 

will be greatly beneficial to understanding the differences in pathogenicity within this 

genus. This technology will allow comparison on the metabolic profiles of different 

strains of different species and also has potential to be an important application in the 

validation of metabolic models, as has previously been performed for E. coli (Feist et al., 

2007) and Salmonella (Abuoun et al., 2009). With the increasing availability of 

Brachyspira genome sequences, such technology should aid in improving the 

understanding of Brachyspira metabolic competence that is likely to relate to or even 

contribute directly to pathogenicity. Genes for motility, LOS synthesis, iron metabolism 

and others associated with pathogenesis were identified but the contribution to the 

pathogenic process of other genes such as those associated with central or peripheral 

(e.g. import and use of monosaccharides) metabolism are worthy of further 
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investigation. Certain metabolic competences may lead to host preference, niche 

colonisation or energetically favourable catabolism of mucins for example. The need is 

for the ability to rapidly generate knock-out and knock-down mutants to start this type 

of interrogation. 

Both genomic and phenotypic analysis revealed interesting differences between 

the three B. pilosicoli strains, worthy of further investigation. These strains were 

isolated from different hosts and geographical locations. However, with just three 

strains the conclusions that could be drawn were limited. Research is in this field would 

greatly benefit from sequencing the genomes of wider strain sets from more and each of 

the hosts and geographical locations. 

 

Antimicrobials such as tiamulin are usually employed for the treatment of 

Brachyspira-related diseases including AIS. However, novel intervention strategies are 

required for such diseases due to the ban of the subtherapeutic use of antimicrobials in 

livestock and an emergence of resistance within enteric pathogens including 

Brachyspira (Clothier et al., 2011; Duhamel et al., 1998a; Hampson et al., 2006c; 

Karlsson et al., 2003; Karlsson et al., 2004; Pringle et al., 2006; Pringle et al., 2004). 

Antimicrobial resistance genes were demonstrated in the three B. pilosicoli strains for 

which the genomes have been sequenced including multidrug efflux pumps (as 

discussed in Chapter 4) which can confer resistance to multiple antimicrobials (Piddock, 

2006b; Poole, 2001; Webber and Piddock, 2003). The use of lactobacilli as probiotics 

for the CE of Brachyspira was considered to be an ideal potential alternative 

intervention as the sensitivity of Brachyspira to organic acids, such as those produced 

by lactobacilli, has been reported (Corona-Barrera et al., 2004). Moreover, adherence to 

the host intestinal epithelium is considered an important virulence trait in B. pilosicoli 

(Jensen et al., 2000) and lactobacilli have been suggested to compete for receptor 

binding sites, to prevent binding of the pathogen. Genes that are potentially associated 

with adherence were identified in all three B. pilosicoli genomes sequenced (as 

discussed in Chapter 4 and specifically section 4.3.5.3). Furthermore, the use of 

lactobacilli as probiotics in poultry is well established and such treatment has been 

reported as effective against other enteric disease in poultry including Campylobacter, 

Clostridium, E. coli and Salmonella (Collins et al., 2009; Patterson and Burkholder, 

2003; Schneitz, 2005). 

Recently, some studies have investigated the potential of probiotics to intervene in 

Brachyspira infection. Inhibitory effects of probiotics, including lactobacilli, have been 
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reported on Brachyspira growth and attributed to the production and release of organic 

acids, particularly lactic acid, hydrogen peroxide and other antimicrobial compounds 

(Klose et al., 2010; Klose et al., 2009; Se et al., 2008). Furthermore, Lactobacillus 

probiotics have been implicated in inhibiting Brachyspira motility via co-aggregation 

with the spirochaetes and eliciting a stress response in the Brachyspira (Bernardeau et 

al., 2009). Motility is regarded as an important virulence feature of Brachyspira and is 

considered vital for inhabiting the GI tract and inducing enteric disease. Hence, 

inhibition of such features would be detrimental to the survival of Brachyspira in the 

host environment. 

Of eighteen probiotic candidates of the genus Lactobacillus that were screened for 

their ability to inhibit B. pilosicoli growth, motility and haemolysis, L. reuteri LM1 and 

L. salivarius LM2 were selected (as discussed in Chapter 5). These strains were isolated 

from the faeces of healthy conventional, commercial laying hens, fulfilling the probiotic 

selection criterion of being of host origin, whilst also indicating that the strains are able 

to colonise the intended host. Selection criteria stipulate that probiotic candidates should 

exhibit antimicrobial activity against target pathogens or some degree of antagonism, 

which both of these strains demonstrated against the growth, motility and haemolysis of 

B. pilosicoli. It is important to note and that the abundance of metabolites and the 

degree of inhibition observed in these in vitro tests may be of less significant impact on 

B. pilosicoli in vivo. Further work should consider this and also the site in the gut where 

the Lactobacillus probiotic candidate strains colonise and hence, where their 

metabolites potentially have greatest impact. 

In concordance with guidelines for the selection of probiotics (von Wright, 2005), 

L. reuteri LM1 and L. salivarius LM2 were screened for antimicrobial resistance, which 

suggested these strains may carry resistance genes to chloramphenicol and tetracycline. 

Curative strategies have been applied to probiotic strains to remove antimicrobial 

resistance genes or plasmids carrying such genes previously (Huys et al., 2006). For the 

commercial use of these strains as probiotics, further work to remove any such 

antimicrobial resistance genes is essential. The ability of L. reuteri LM1 and L. 

salivarius LM2 to resist gastric acid and bile was investigated to fulfil some selection 

criteria that ensure probiotics candidates are tolerant to environmental stresses. Both 

strains demonstrated sufficient tolerance to both poultry gastric acid and bile and it can 

be argued that these properties would enable passage of viable probiotic organisms to 

the lower GI tract. Again, it is assumed that the impact of the probiotic is mediated in 

the lower GI tract and most likely in the caeca and colon, however evidence for this 
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needs to be gained. Future work could investigate a multitude of other selection criteria 

that have been suggested and focus on an array of properties, such as amenability to 

mass production and storage, genetic stability, resistance to bacteriocins, acids and other 

antimicrobials produced by resident microflora and immunostimulatory capacity 

(Klaenhammer and Kullen, 1999). 

 

L. reuteri LM1 and L. salivarius LM2 were used in studies to further investigate 

their ability to inhibit the growth, motility and adherence of B. pilosicoli and elucidate 

some of the potential mechanisms giving rise to these effects (as discussed in Chapter 6). 

The suppression of the growth of B. pilosicoli B2904 was determined to be of a pH-

dependent manner and the findings suggested that the suppressive effect was not 

attributed solely to acidity. This would indicate that there may have been a strain-

dependent production of pH-dependent active compound(s) such as hydrogen peroxide 

and/or other antimicrobial compounds such as reuterin or bacteriocins, as suggested 

previously to have been involved in the inhibition of Brachyspira growth (Klose et al., 

2010). L. reuteri LM1 has been shown to produce hydrogen peroxide (as discussed in 

Chapter 5), which may have contributed to its inhibitory effect. However, further 

investigation is required to evaluate the composition of the acids in CFS that generated 

the pH drop to pH 3.8 and the relative ratios of acid, which may depend on whether the 

strains were hetero- or homofermentative. Metabolomic and metabonomic approaches 

to assess the type and abundance of the products of the metabolism of the lactobacilli 

and the metabolic response of the host to probiotic treatment would also be a useful 

research area in the future. Metabolomic approaches using chromatographic methods, 

such as high-performance liquid chromatography (HPLC) to separate the constituents of 

the CFS of probiotic strains and proteomic methods, usually mass spectrometry, such as 

matrix-assisted laser desorption/ionisation (MALDI) to identify active components of 

the CFS (Kim et al., 2008; Laughton et al., 2006; Svetoch et al., 2011). Metabonomic 

approaches, often using nuclear magnetic resonance (NMR) have been used to 

investigate probiotic modulation of symbiotic gut microbial-host metabolic interactions 

in mouse models (Hong et al., 2010; Martin et al., 2008b) and in human samples (Hong 

et al., 2011). 

EM examination revealed that the two probiotic candidates inhibited the motility 

of B. pilosicoli by co-aggregation, which would render the spirochaetes incapable of 

escaping the eliminating effect of mucus for which motility and chemotaxis are 

considered key virulence features (Lux et al., 2000; Nakamura et al., 2006). This aspect 
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of inhibition was also considered to play a key role in the reduction of B. pilosicoli 

adherence and invasion in in vitro protection and competition assays (as discussed in 

Chapter 6). Genes encoding membrane proteins that could be involved in such 

interactions were identified in the three genome-sequenced B. pilosicoli strains (as 

discussed in Chapter 4 and specifically in section 4.3.5.3). Surface proteins, such as co-

aggregation-promoting factor (Cpf) and EPSs have been implicated in the co-

aggregation of lactobacilli with enteric pathogens (Aslim et al., 2007; Schachtsiek et al., 

2004). However, the biochemical basis of adherence and the avidity of binding in both 

Brachyspira and the Lactobacillus strains is worthy of further investigation as this may 

identify the lectins for further development and exploitation. It is also probable that the 

lactobacilli competed with the B. pilosicoli for specific receptor binding sites limiting 

the number of adherent Brachyspira by niche competition. The potential ability of the 

lactobacilli to produce antimicrobial compounds, such as hydrogen peroxide production 

in L. reuteri LM1, or bioactive components, which may block adhesion molecules on 

the B. pilosicoli or host cells, may have further contributed to this effect. This is 

supported by the small reduction in the adherence and invasion of B. pilosicoli in CFS 

assays. Further supporting the ability of L. reuteri LM1 and L. salivarius LM2 to 

intervene in Brachyspira infection in vitro was the apparent protection against this 

cellular pathology that they conferred in competition assays using 3D cells. If intimate 

association is one of the mechanisms of inhibition, it becomes very reasonable to argue 

that other factors that act in trans, such as hydrogen peroxide and organic acids, will be 

involved in the overall inhibition process because of proximity and reduced opportunity 

for dilution or metabolism of products by other organisms. A key question arises as to 

which of these speculated mechanisms of inhibition plays the greater, sole or any role in 

vivo. 

 The rapid growth and robust nature of lactobacilli as compared with the slow-

growing, fastidious Brachyspira make these species ideal probiotic candidates for 

intervention against Brachyspira infection by niche competition. The results indicated 

that acidification inhibited the B. pilosicoli, however this may be detrimental to the host 

and therefore a key effector in control may be the passive co-aggregation that was 

observed. Supplementing the diet of poultry with co-aggregative lactobacilli may 

therefore be a useful control strategy for AIS. The effect of L. reuteri LM1 and L. 

salivarius LM2 on the growth, motility and association of B. pilosicoli to host cells 

encouraged in vivo studies to assess the efficacy of these strains to protect against AIS. 

L. reuteri LM1 was selected for use in an in vivo intervention study against B. pilosicoli 
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B2904 that was used to experimentally challenge laying hens in the novel model that 

was developed (as discussed in Chapter 3). L. reuteri LM1 was selected since it had a 

more significant impact in the inhibition of the growth, motility, adherence and invasion 

of B. pilosicoli in the in vitro assays. 

 

 The scope of the in vivo intervention study focused upon the potential CE effect of 

L. reuteri LM1 against AIS in chickens experimentally challenged with B. pilosicoli 

B2904 by comparing the clinical symptoms and colonisation of Brachyspira in L. 

reuteri LM1-treated birds with untreated birds (as discussed in Chapter 7). Given the 

weight of data indicating a reduction in clinical symptoms and the reduction in 

colonisation, there is reason to strongly argue that L. reuteri LM1 does indeed confer 

health benefits in vivo and can be truly described as a probiotic. Of interest, is the 

apparent controlling effects of the L. reuteri LM1 in vivo and the question arises as to 

whether those features of inhibition observed in vitro (as discussed in Chapter 6), are 

those that impact in vivo. It could be argued that the addition of L. reuteri provided in 

the drinking water is a minority in the gut population and any inhibitory metabolites 

produced may be utilised by other gut commensals or even be diluted to become 

ineffectual. The fact that Lactobacillus did afford protection clearly indicates that the 

probiotic was effective but the mechanism which could be assumed to be those 

demonstrated in the in vitro studies could be challenged. 

 Although the mechanism of the effect of L. reuteri LM1 against B. pilosicoli in 

vivo is unclear, it may be due to CE by L. reuteri LM1 and/or via a potential effect on 

the modulation of the intestinal microbiota. Given the in vitro study data (as discussed 

in Chapter 6) it is not unreasonable to argue that the negative impact on growth, motility 

and cellular invasion mediated by L. reuteri LM1 contributed to the protective effects 

observed against B. pilosicoli. It would be interesting in further in vivo work to 

interrogate these mechanisms. This study was focused on the CE effect of the probiotics 

and their effect on clinical symptoms, however in the future, it would be interesting to 

investigate the other aspects by which this strain by exert beneficial effects to the health 

of chickens, such as increasing feed intake and digestion, reducing ammonia 

production, modulating the gut microbiota, modulating the secretion of intestinal 

mucins and immunomodulation. 

 A limitation of the in vivo intervention study was the absence of distinguishing 

features of L. reuteri LM1 and hence, inability to specifically and quantitatively detect 

this strain. The detection of L. reuteri primarily in the treated group strongly supported 
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the argument that it was indeed the LM1 strain, which was of chicken origin and hence, 

was likely to have colonised the chickens to which it was administered. It would be of 

interest to develop a method for the specific detection of L. reuteri LM1 and to further 

investigate the colonisation patterns of this strain in poultry. A method to screen the 

expression of putative adhesin genes involved in the binding mechanism in lactobacilli 

has been previously described and could be employed (Turpin et al., 2012). This would 

help determine whether this probiotic strain was capable of colonising the caecal and 

colo-rectal regions and exclude B. pilosicoli by niche competition. Although the 

chickens were already colonised by L. reuteri, it was not necessarily identical to the 

probiotic added in the drinking water, and it can be argued that the inhibitory effects 

were enhanced by an accumulative effect. Perhaps the increased numbers of L. reuteri 

overcame any diluting effect that was discussed earlier. Also, if the position is taken 

that increased numbers are important in inhibition, then co-localisation of the L. reuteri 

and the Brachyspira should have a similar controlling effect. Thus, it becomes 

imperative to study sites of colonisation of the gut of both pathogen and probiotic in 

order to shed further light on the true mechanisms of inhibition.  

 This in vivo study was conducted in a controlled environment and future work 

should investigate the ability of L. reuteri LM1 to intervene in AIS in the field and 

perhaps in chickens already infected with Brachyspira. Moreover, B. pilosicoli was 

focused upon as an aetiological agent of AIS and it would be of interest to this research 

to investigate the effect of L. reuteri LM1 treatment in chickens infected with other 

species known to cause AIS, namely B. alvinipulli and B. intermedia. Since B. pilosicoli 

is the aetiological agent of HIS and PIS, the use of L. reuteri LM1 to intervene in 

Brachyspira-related diseases in other host species may be worthy of further 

investigation. In order to develop this probiotic for commercial use, future work on this 

strain will need to focus on the production and storage practicalities, since in these 

preliminary studies the lactobacilli were harvested from fresh broth culture, which 

would be an impractical application in the commercial poultry industry. 

 

The novel research studies presented in this thesis have focused on gaining a 

better understanding of the pathobiology of B. pilosicoli in order to develop novel 

intervention strategies against AIS. B. pilosicoli are unique in their pathogenicity in 

poultry, swine and human host and despite this wide host range, comparative genomic 

analysis has demonstrated the similarity of strains of different origins. Therefore, it is 

likely that some of the findings presented in this thesis regarding probiotic intervention 
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against AIS, will be applicable to other diseases caused by this pathogen in different 

hosts, such as PIS and HIS. In vitro and in vivo studies have indicated that the use of L. 

reuteri LM1 as a probiotic intervention against AIS will be an effective treatment. 

Future work will need to focus on the efficacy of this intervention in treating AIS in the 

field and caused by other strains and species that cause the disease. Moreover, research 

should focus on developing practical and safe methods for the use of L. reuteri LM1 as 

a commercial probiotic in livestock. 
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Appendix I. Type and copy number of mobile genetic elements (MGE) in the genomes 

of B. pilosicoli 95/1000, B2904 and WesB. A combination of protein markov cluster 

analysis and reciprocal blast searches against the conserved domain database (CDD) 

was used to determine the copy number of each type of MGE across the three B. 

pilosicoli genomes, using a cut-off e-value of 1e-20. The open reading frame (ORF) 

number, position, and size of all MGEs identified in each of the B. pilosicoli genomes is 

displayed. 

 

Appendix II. Comparison of the utilisation of unique carbon sources by four strains 

each of B. alvinipulli, B. hyodysenteriae, B. innocens, B. intermedia, B. murdochii and 

B. pilosicoli and two strains each of “B. canis” and “B. pulli”. Biolog Phenotype 

MicroArrayTM (PM) technology was employed for these studies and OmniLog apparatus 

was used to detect formazan formation and hence, respiration due to utilisation of the 

carbon source; +, able to utilise the compound; −, unable to utilise the compound. 



 

Appendix I. (cont’d p. 270). 

95/1000 B2904 WesB 

Position Position Position 

Type of 

MGE in 

cluster 
No. of 

copies

ORF 

number 

(BP951000) 
Start End

Size 

(bp)

No. of 

copies

ORF 

number 

(B2904_orf)
Start End 

Size 

(bp)

No. of 

copies

ORF 

number 

(wesB_)
Start End 

Size 

(bp) 

131 139589 139897 308 164 177409 178065 656 

132 139946 140251 305 285 302068 302319 251 

862 874327 874644 317 286 302375 302722 347 

1758 1817867 1818313 446 344 349841 350158 317 

1759 1818255 1818515 260 508 541858 542514 656 

1865 1931503 1931949 446 895 964112 964429 317 

1866 1931891 1932151 260 991 1074208 1074864 656 

2118 2164601 2165029 428 1190 1298341 1298997 656 

2119 2164971 2165231 260 1481 1638395 1639051 656 

2175 2220218 2220673 455 1555 1715503 1715763 260 

2176 2220615 2220875 260 1661 1843494 1843775 281 

2574 2645754 2646200 446 2013 2233848 2234165 317 

2575 2646142 2646402 260 2035 2255602 2255919 317 

2609 2677670 2678116 446 2036 2255986 2256267 281 

2135 2374103 2374423 320 

2136 2374413 2374760 347 

Insertion 

element 

IS1016 

transposase 

0 - - - - 15 

2610 2678058 2678318 260 

17 

2193 2433494 2434150 656 

Integrase 0 - - - - 43 62 67238 68143 905 7 293 312156 312326 170 
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Appendix I. (cont’d p. 271). 

266 257036 257383 347 371 378714 379349 635 

267 257427 257873 446 1309 1433802 1434218 416 

430 412755 413591 836 1331 1460303 1460905 602 

509 496965 497801 836 1373 1506314 1506607 293 

559 548359 549195 836 2030 2249777 2250970 1193

578 566443 567336 893 

646 643066 643971 905 

681 684734 685570 836 

703 707119 707955 836 

864 875534 876274 740 

1081 1112697 1113755 1058

1082 1113777 1114241 464 

1083 1114189 1114578 389 

1167 1211169 1211951 782 

1187 1228253 1229089 836 

1227 1267962 1268867 905 

1261 1302499 1303404 905 

1290 1338640 1339482 842 

1302 1348409 1349245 836 

1357 1403944 1404849 905 

1358 1404985 1405890 905 

       

1379 1426063 1426899 836 

 

2595 2834743 2835240 497 
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Appendix I. (cont’d p. 272). 

1538 1594748 1595164 416 

1539 1595233 1595652 419 

1568 1627747 1628583 836 

1686 1751629 1752534 905 

1881 1946934 1947839 905 

1914 1979779 1980600 821 

2019 2067987 2068892 905 

2068 2113372 2114277 905 

2165 2207793 2208629 836 

2206 2255145 2256050 905 

2216 2268934 2269755 821 

2262 2320210 2321046 836 

2304 2361461 2362297 836 

2382 2446227 2447132 905 

2436 2504446 2505282 836 

2559 2630021 2630539 518 

2622 2687361 2688197 836 

2637 2709835 2710740 905 

2639 2711887 2712792 905 

       

2675 2746351 2747187 836 

     

Integrase 0 - - - - 0 - - - - 1 319 327900 329609 1709 

Integrase 0 - - - - 0 - - - - 1 739 785668 786816 1148 
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Appendix I. (cont’d). 

Integrase 0 - - - - 0 - - - - 1 2567 2797020 2798153 1133 

Transposase 1 627 697109 697405 296 1 739 748759 748941 182 1 1932 2147424 2147720 296 

Transposase 0 - - - - 0 - - - - 1 1495 1656211 1656804 593 

Transposase 1 1186 1309277 1310314 1037 0 - - - - 0 - - - - 

XerD site-

specific 

tyrosine 

recombinase 

1 451 505412 506278 866 1 941 958688 959614 926 1 1745 1939246 1940172 926 

XerD site-

specific 

tyrosine 

recombinase 

1 2141 2347639 2348562 923 1 1037 1063318 1064241 923 1 1655 

 
 
 
 

1834931 1835854 923 
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Appendix II. (cont’d p. 274). 

B. alvinipulli B. canis B. hyodysenteriae B. innocens B. intermedia B. murdochii B. pilosicoli B. pulli 

A

N1

26

3/2

/04 

A

N3

38

2/2

/03 

C

1
T 

C

5

D

o 

g

B 

D 

2 

4 

B

7 

8
T 

P

1 

8

A 

Q

93

48

.6 

W

A

1 

A

N3

16

5/2

/03 

A

N4

11

3/

03 

A

N4

34

1/

03 

Q9

7.3

28

9.5

.5 

A

N3

37

0/0

3 

P

2

8

0-

1 

Q9

8.0

44

6.2 

U

N

L

-

2 

1

5

5/

2

0 

5

6/

1

5

0T 

A

N1

81/

1/0

4 

A

N3

54

9/1

/03 

95

/1

00

0 

B

2

9

0

4 

W

e

s

B 

C

P

S

p

1 

B

3

7 

ii 

Bp

60

5 

N-Acetyl-D-glucosamine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Saccharic acid − − − − − − − − − − − − − − − − − − + − − + − − − − − − 

Succinic acid + − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Galactose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

L-Aspartic acid + + + + + − − + + + + + + + − − + + + − + + − − − − + + 

L-Proline + + + − + + + + + + + + + + + + + + + − + + − − − − + + 

D-Alanine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Trehalose + + + + + + + + + + − + + − + − + + + − + − − − − − + − 

D-Mannose + + + + + + + + + + + + + + + + + + + + − + − − + + + − 

Dulcitol − − − + − − − − − − − − − − − − − + − − − − − − − − + − 

D-Serine + + + + + + + + + + + + + + + + + + + + + + − − − − + + 

D-Sorbitol − − − − − − − + + + − − − − + − − + + − − − − − − − − − 

Glycerol − − − − − − − − − − − − − − − − − − − − − − + + + + − − 

L-Fucose + + + − + + − + + + + + + + + + + − + + + + + + + + + + 

D-Glucuronic acid + + + + + + + + + + + + + + + + + + + + + + − + + + + + 

D-Gluconic acid + + + − + + + + + + + − + − + − + + + + + + − − − − − − 
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Appendix II. (cont’d p. 275). 

D,L-α-Glycerol-

phosphate 

+ + + − + + + + + + + + + + + + + + + + + + + + + + + + 

L-Lactic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Formic acid − + − − − − − − − − − − − − − − − − − − − − − − − − + + 

D-Mannitol − − − − + − − − − − + + − − − − − − − − − − − + − − − − 

L-Glutamic acid + + + + + + + + + + + + + + + + + + + + + + − − − − + + 

D-Glucose-6-phosphate + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Galactonic acid-γ-

lactone 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D,L-Malic acid − − + − − − + + + + − − − − − − + − − − − − + + + + − + 

Tween 20 + + + + − − + + + + + + + + + − + + + − + − − − − − − + 

L-Rhamnose − − − − − − + + + + − − − − + + + + + + − − + + + + + − 

D-Fructose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Acetic acid + + + − − + − + + + + + + − + − + + + − − + + + + + − + 

α-D-Glucose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Maltose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Melibiose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Thymidine − − − − − − + − + + + − + − − − + + + − − − + + + + − − 

L-Asparagine − − − − − − + + + + + + + − + − + − + − − − − − − − − − 

D-Aspartic acid + + + − + + + + + + + + + − − − + + + + + + − − − − + + 

D-Glucosaminic acid − − − − − − − + + − − − − − − − − − − − − − − − − − − − 

1,2-Propanediol − − − − − − − + + + − − − − + − + + − − − − − − − − − − 
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Appendix II. (cont’d p. 276). 

Tween 40 + + + − − − + + − + + + + + + − + + + − + − − − − − − + 

α-Ketoglutaric acid + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

α-Ketobutyric acid + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

α-Methyl-D-galactoside − − − − − − + + + + + + + + − − − − + − + − − − − − + + 

α-D-Lactose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Lactulose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Sucrose + + − − − + + + + + + + + + + − + + + + + + + + + + + + 

Uridine − − − − − + + + + + + + + + + + + + + + + − + + + + + + 

L-Glutamine + + + − + + + + + − + + + + + − + + + + + + − − − − − − 

m-Tartaric acid + + + − − − + + + + + + + − − − + + + − + + − − − − − + 

D-Glucose-1-phosphate + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Fructose-6-phosphate + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Tween 80 + + + − − − − − − − + + + + + + − + + − + − − − − − − + 

α-Hydroxyglutaric acid-γ-

lactone 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − 

α-Hydroxybutyric acid + + + − − − + − + + − − − − − − − − + − + − − − − − − + 

β-Methyl-D-glucoside + + + + − − + + + + + + + + + − − + + + + + − − − − + + 

Adonitol + − − + − − − − − − + + + + − − − − − − − − − − − − + + 

Maltotriose + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

2`-Deoxyadenosine + + + + − − + + + + − − − − + + + + + + + + + + + + − − 

Adenosine + + − − + + + + + + − − − − + + + + − − − − + + + + − − 

Glycyl-L-aspartic acid + + + + + + + + + + + + + + + + + + + + + + − − − − + + 
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Appendix II. (cont’d p. 277). 

Citric acid − − − − − − + + − + − − − − − − − − − − − − − − − − − − 

m-Inositol + + + + + + + + + + + + + + − + + + + − + + − − − − + + 

D-Threonine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fumaric acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Bromosuccinic acid − + + − − − − − − − − − − − − − − − − − − − − − − − − − 

Propionic acid + + + + − − + + + + + + + + + + + + + + + + + + + + + + 

Mucic acid + + + + − − + + + + + + + + − − + + + + + + − − − − − − 

Glycolic acid + + + + − − − + + − + + + + − − + + + + + + − − − − − − 

Glyoxylic acid + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

D-Cellobiose + + + + + + − + + + + + + + + + + + + + + + + + + + + + 

Inosine + + + + − + + + + + − − − − + + + + + − + − + + + + − + 

Glycyl-L-glutamic acid + + + − − + + + + + + + + + + + + + + − + + − − − − − + 

Tricarballylic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

L-Serine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

L-Threonine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

L-Alanine + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

L-Alanyl-glycine + + + + + + − + + + + + + + − − − − + − + + − − − − + + 

Acetoacetic acid + + + + + + + + + + + + + + + + + + − − − − + + + + − − 

N-Acetyl-β-D-

mannosamine 

+ + + + − − + + + + + + + + + + + + + − + + + + + + + + 

Monomethyl succinate − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Methyl pyruvate + + + + − + − − − − + + + + + + + + + − − + − − − − + − 
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Appendix II. (cont’d p. 278). 

D-Malic acid + + − + − − − − − − + + + + − − − − + − + − − − − − − + 

L-Malic acid + + + + − + + + + + + + + + + + + + + − + − + + + + + + 

Glycyl-L-proline + + + + + + + + + + + + + + + − + + + + + + − − − − + + 

p-Hydroxyphenylacetic 

acid 

+ + + − − − − + + + + + + + + − + − + − + − − − − − − − 

m-Hydroxyphenylacetic 

acid 

+ + + − − − − + + + + + + + + − + − + − + − − − − − − − 

Tyramine + + + + + + − + + + + + + + + + + + + + + + − − − − + + 

D-Psicose + + + + + + + + + + + + + + + + + + + + − + + + + + + + 

Glucuronamide − − − − + + − + + + − − − − + − + + + + − + − + + + − − 

Pyruvic acid + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

L-Galactonic acid-γ-

lactone 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Galacturonic acid + + + + + + + − + + + + + + + + + + + + + + + + + + + + 

β-Phenylethylamine + − + + + + + − + + + + + + + + − + + + + + − − − − + + 

Ethanolamine + − + + + + + − + + + + + + + − + + + + + + − − − − + + 

Chondroitin sulfate C − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

α-Cyclodextrin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

β-Cyclodextrin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

γ-Cyclodextrin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Dextrin − − − − − − − − − − − − − − + + + + − − − − + + + + − − 

Gelatin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 
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Appendix II. (cont’d p. 279). 

Glycogen − − − − − − − + + + − − − − − − − − − − − − − − − − − − 

Inulin − − + − − − + + + + − − − − − − − − − − − − − − − − − − 

Laminarin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Mannan − − − − − − + − − + − − − − − − − − − − − − − − − − − − 

Pectin + + − − − − + + + + + + + + + + + + + − − + − − − − + + 

N-Acetyl-D-

galactosamine 

− − + − − − + + + + − − − − − − − − + + − − + + + + − − 

N-Acetylneuraminic acid − + − − − − + + + + − − − − + + + + + − − − + + + + − − 

β-D-Allose − + + − + − + + + + − − − − + − + + − − − − − − + − + − 

Amygdalin − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Arabitol − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

L-Arabitol − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Arbutin + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

i-Erythritol − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Fucose − + − − + − + + + + − + + + + + + + − + − − + + + + + − 

3-O-β-D-Galacto 

pyranosyl-D-arabinose 

+ − − − − − − − + + − − + + − − − − − − − − + + + + − + 

Gentiobiose − − − − + − + + + + + + + + − − − − − + − − + + + + + − 

L-Glucose − − − − + − + + + + − − − + − − − − − + − − + + + + + − 

D-Lactitol − + + − − − + + + + + + + + + − + + − − − − − − − − + − 

D-Melezitose − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Maltitol − − − − − − − − − − − − − − − − − − − − − − − − − − − − 
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Appendix II. (cont’d p. 280). 

α-Methyl-D-glucoside − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

β-Methyl-D-galactoside + − + − − − + + + + − − + + + + + + − − − − + + + + − − 

3-O-Methyl-glucose + + + + + − + + + + − − − − − − − − − − − − + + + + + − 

β-Methyl-D-glucuronic 

acid 

− − − − − − − − − − − − − − − − − − − − − − − + + − − − 

α-Methyl-D-mannoside − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

β-Methyl-D-xyloside − − − − − − − − − − − − − + + + − − − − − − − − − − − − 

D-Raffinose − − − − − − − − + + − − + + + + + + + + − − − − − − + − 

Salicin + + + + − − + + + + − − − − + + + + − − − − + + + + − − 

Sedoheptulosan − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

L-Sorbose − − − − − − − − + + − − − − − − − − − − − − − − + − − − 

Stachyose − − − − − − − − + + − − + + + − − + − − − − − − − − − − 

Turanose + − − + + − + − − + − − − + − − − − + + + − + + + + + + 

Xylitol − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

N-Acetyl-D-

glucosaminitol 

+ + + + + − + + + + + + + + + − − + + + + + + + + + − − 

γ-Aminobutyric acid − − − − − − + − − + − − − − − − − − − − − − − − − − − − 

δ-Aminovaleric acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Butyric Acid − − − − − − − − + + + − − − + − + + − − − − − − − − − − 

Capric Acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Caproic Acid − − − − − − − − + + − − − − − − − − − − − − − − − − − − 

Citraconic acid − + + − − − − − − − − − − − − − − − − − − − − − − − − − 
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Appendix II. (cont’d p. 281). 

D,L-Citramalic acid + + + + − − − − − − − − − − − − − − + − − − − − − − − − 

2-Hydroxybenzoic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

4-Hydroxybenzoic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

β-Hydroxybutyric acid − − + − − − + + + + − + − − + − + − − − − + − − − − − − 

γ-Hydroxybutyric acid + + + + − − + + + + − − − − − − − − − − − − − − − − − − 

α-Ketovaleric acid + + − − + − + + + + − − + + − − − − + + − + − − − − + − 

Itaconic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Lactic acid methyl ester − − + − − − − − − − − − − − − − − − − − − − − − − − − − 

Malonic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Melibionic acid − − − − − − + − + + − − − − + − + + − − − − − − − − − − 

Oxalic acid − + + − − − − − − − − − − − − − − − − − − − − − − − − − 

Oxalomalic acid − − − − − − + + + + − + − + − − − − − − − − − − − − + − 

Quinic acid − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Ribono-1,4-lactone − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

Sebacic acid − + + − − − − − − − − − − − − − − − − − − − − − − − − − 

Succinamic acid − + − − − − − − − − − − − − − − − − − − − − − − − − − − 

D-Tartaric acid − − + − − − − − + + − − − − − − − − − − − − + + + + − − 

L-Tartaric acid − − − − − − + + + + − − − − − − − − − − − − + + + + − − 

Acetamide − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

L-Alaninamide − − − − − − − − − − − + − + − − − − − + − − − − − − − − 

N-Acetyl-L-glutamic acid − − + − − − − − − − − − − − − − − − − − − − − − − − − − 
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Appendix II. (cont’d). 

L-Arginine − − − − + − − − + + − − − − + − + + − − − − − − − − − − 

Glycine − − − − − − + + + + − − − − + + + + − − − − + + + + − − 

L-Histidine − − + − − − + + + + − − − − + + + + − − − − − − − − − − 

L-Homoserine − − − − − − − − + + − − − − + − + + − − − − − − − − − − 

trans-4-Hydroxy-L-

proline 

− − − − − − − − + + − − − − + − + + − − − − − − − − − − 

L-Isoleucine − − − − − − − − + + − − − − + − + + − − − − − − − − − − 

L-Leucine − − − − − − + + + + − − − − + + + + − − − − − − − − − − 

L-Lysine − − − − − − − − + + − − − − + − + + − − − − − − − − − − 

L-Methionine − − − − − − + + + + − − − − + − + + − − − − − − − − − − 

L-Ornithine − − − − − − − − + + − − − − + − + + − − − − − − − − − − 

L-Phenylalanine − − + − − − − − − + − − − − + − + + − − − − − − − − − − 

L-Pyroglutamic acid − − − − − − − − + + − − − − − − − − − − − − − − − − − − 

L-Valine − − − − − − − − + + − − − − + − + − − − − − − − − − − − 

D,L-Carnitine − + − − − − + + + + − − − − − − − − − − − − − − − − − − 

sec-Butylamine + + + + + + + + + + + + + − + + + + + − + + + + + + − + 

D,L-Octopamine − − − − − − − − + + − − − − + − + + − − − − − − − − − − 

Putrescine − − − − − − + − + + − − − − + − + + − − − − − − − − − − 

2,3-Butanediol − − − − − − + − + + − − − − + − + + − − − − − − − − − − 

2,3-Butanone − − − − − − − − − − − − − − − − − − − − − − − − − − − − 

3-Hydroxy-2-butanone − − − − − − + − + + − − − − − − − − − − − − − − − − − − 
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