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Abstract

One of the central aims of quantum information theory is to exploit quantum

mechanical phenomena such as superposition and entanglement to build a

quantum computer — a device capable of efficiently performing computational

tasks which are not feasible on a classical computer. In order to achieve this

goal it will be necessary to connect together the different components of a

quantum computer with channels which are capable of quickly and faithfully

transmitting quantum states. It has been suggested that a good channel for

this purpose is a chain of permanently coupled quantum spins and we begin

by reviewing some of the protocols which have been previously developed

to transfer quantum information along such a spin chain. We then examine

the effects of noise on the propagation of quantum information along spin

chains, using a toolkit of methods which include Lieb-Robinson bounds, the

Jordan-Wigner transform and correlation functions. Several fundamentally

different noise models are considered including a static (time-independent) on-

site disorder model and two different models of fluctuating (time-dependent)

on-site disorder. Each noise model has a different and distinctive effect on the

propagation of information — static disorder leads to exponential localisation

whilst dynamic disorder can lead to diffusive or even ballistic propagation of

information. We finish by reviewing how a spin chain (whether noisy or noise-

free) can be viewed as a depolarising channel and we make a detailed study

of the geometrical structure of all possible depolarising channels with respect

to various bases, concentrating on the Pauli, Gell-Mann and Heisenberg-Weyl

bases. In particular, we show precisely when the set of all possible depolarising

channels forms a simplex in compression space.
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Chapter 1

Introduction

The fields of quantum information theory and quantum computing were born

in 1982 when Richard Feynman proposed that the vast Hilbert space of a large

quantum mechanical system could be utilised to create a quantum computer

capable of simulating quantum systems which cannot be simulated efficiently

by classical methods [1]. Since then it has been one of the central aims of

quantum information theory to actually build such a device by exploiting

quantum mechanical phenomena such as superposition and entanglement. It

is worth noting that whilst entanglement is often necessary, it can be argued

that “it is nevertheless misleading to view entanglement as a key resource for

quantum computational power” [2].

In order to achieve the goal of building a quantum computer it will be nec-

essary to connect together the different components (such as quantum memo-

ries and quantum information processors) with channels which are capable of

quickly and faithfully transmitting arbitrary quantum states. The ideal chan-

nel to use over long distances is almost undoubtedly an optical fibre due to its

low decoherence rate; in this case the quantum information is stored and trans-

mitted as the quantum states of photonic qubits. Over shorter distances one

might dispense with the optical fibre and opt for free-space propagation of the

photonic qubits. However, unless the entire quantum computer is comprised

of optical devices, this is not such a practical solution for communicating over
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shorter distances: at each end of every optical channel there must be some

kind of interfacing device which transfers the quantum states of the photonic

qubits onto the non-optical qubits and vice-versa. Such interfaces are tricky to

engineer and inevitably introduce a source of noise or even information loss. It

has therefore been suggested that when the components of the quantum com-

puter are non-optical devices, a good channel for communicating over shorter

distances is a chain of permanently coupled quantum spins [3].

The purpose of this thesis is to examine the effects of noise (or disorder) on

the propagation of quantum information along such spin chains. Whilst the

effects of noise have been examined before, we consider fundamentally different

noise models to those previously studied and observe dramatically different

effects. Previous studies have considered noise on the interaction strengths

between the particles in the spin chain, whereas we study the effects of on-site

disorder (caused, perhaps, by a noisy transverse electromagnetic field). In the

first instance this on-site disorder is fixed in time (we call this static disorder)

and later on we study models where the on-site disorder fluctuates with time

in either strength or direction (we refer to these as dynamic disorder models).

We finish by reviewing how a spin chain (whether noisy or noise-free) can

be viewed as a generalised depolarising channel and we make a detailed study

of the geometrical structure of all possible generalised depolarising channels

with respect to various bases. We focus our attention on the Pauli, Gell-Mann

and Heisenberg-Weyl bases, but also show the effects of changing to other

bases. A key result is the proof and generalisation of a conjecture by Dixit

and Sudarshan [4], which allows us to determine precisely when the set of all

possible depolarising channels forms a simplex in compression space.
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1.1 Quantum information theory

This section reviews some of the basics of quantum information theory, concen-

trating on only those aspects which are used regularly throughout this thesis.

More detail and further information can be found in [5].

A quantum mechanical system of dimension D (a qudit) has a state |ψ〉
which can be thought of as a complex vector in a Hilbert space of dimension

D. (Recall that a Hilbert space is a complex inner product space.) The state

|ψ〉 can be written as a complex linear combination of D basis states; perhaps

the most common basis is the computational basis {|0〉 , |1〉 , . . . , |D − 1〉}, and

if we work in this basis then we can write

|ψ〉 =
D−1∑

j=0

αj |j〉 (1.1)

where αj are complex coefficients satisfying
∑

j |αj|2 = 1, which ensures nor-

malisation of the state: 〈ψ|ψ〉 = 1 where 〈ψ| is the dual to |ψ〉. It is worth

mentioning that whilst a qudit can be in a superposition of several basis states,

such as the state |ψ〉 above, when we measure it in the computational basis

we obtain measurement outcome “j” with probability |αj|2 in which case the

state of the qudit collapses to |j〉.
So far all the states we have considered are pure states, but a more general

class of states exists called mixed states. These are statistical ensembles of

pure states and can be written as a complex matrix which corresponds to the

pure states of the ensemble. A rank k mixed state can be written as a density

matrix

ρ =
k∑

j=1

pj |ψj〉 〈ψj| (1.2)

where |ψj〉 are pure states and pj are probabilities: 0 ≤ pj ≤ 1 and
∑

j pj = 1.

Like pure states, mixed states are normalised in the sense that the density

matrix has unit trace: tr ρ = 1.
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We have seen how to describe the quantum states of simple quantum sys-

tems, but how do we describe the states of larger systems comprising sev-

eral smaller systems? The answer lies in tensor products : if system A is in

state |ψA〉 and system B is in state |ψB〉 then the state of the joint system is

|ψA〉 ⊗ |ψB〉 which is often abbreviated to |ψA, ψB〉; similarly for mixed states,

if system A is in state ρA and system B is in state ρB then the state of the joint

system is ρA ⊗ ρB. We can write this because the Hilbert space of the joint

system is the tensor product of the Hilbert spaces of the individual systems

HAB = HA ⊗HB.

Physical processes acting on a quantum system cause the state of that sys-

tem to change. We describe these processes using operators which are essen-

tially linear maps. Let us suppose that a certain physical process corresponds

to the operator A, then a system whose initial state is |ψ〉 before this pro-

cess occurs is in the (normalised) state A|ψ〉
‖A|ψ〉‖ after the process has occurred.

Similarly, an initial mixed state ρ becomes AρA†

tr(AρA†) where A† is the hermitian

conjugate (the complex conjugate of the transpose) of A. Just as pure states

can be thought of as vectors and mixed states as matrices, operators can also

be thought of as matrices. We can calculate the (j, k)th entry of the matrix

A by finding the matrix element ajk = 〈j|A |k〉. This allows us to write

A =
D−1∑

j,k=0

ajk |j〉 〈k| (1.3)

It should be noted that we can find the matrix elements of density matrices

in precisely the same way.

The formalism introduced above is sufficient to fully describe quantum

spin chains and the way in which they can be used to transfer quantum states

and hence transmit quantum information. Indeed, it is sufficient to describe

quantum computing in general.

If a quantum system has a state |ψ(t)〉 which evolves in time (that is, there

is some physical process which is continuously affecting the system) then the
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system evolves in accordance with the Schrödinger equation [6]

∂

∂t
|ψ(t)〉 = −iH(t) |ψ(t)〉 (1.4)

where H(t) is the Hamiltonian of the system and is, generally speaking, time

dependent. When the Hamiltonian is independent of time (we simply write

H in this case) then the Schrödinger equation can be solved exactly to reveal

the dynamics of the system

|ψ(t)〉 = e−iHt |ψ(0)〉 (1.5)

If the Hamiltonian is time-dependent then in principle one can still solve the

Schrödinger equation exactly, but in practice the solution is not so simple to

calculate. In this case, the solution is

|ψ(t)〉 = T e−i
R t
0 H(s)ds |ψ(0)〉 (1.6)

where T denotes a time-ordered exponential.

Many Hamiltonians which describe systems consisting only of qubits (two-

dimensional qudits) are defined in terms of the Pauli matrices which are de-

fined as

σ0 = I =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

(1.7)

It is sometimes convenient to use the vector of Pauli matrices σ = (σx, σy, σz).

1.2 Quantum spin chains as quantum infor-

mation channels

Quantum spin chains consist of numerous quantum spin particles arranged

in a one-dimensional array where the particles interact with close neighbours

via local interactions. Figure 1.1 shows a typical example of a spin chain

consisting of N qubits with nearest-neighbour interactions hj acting between

qubits j and j + 1.
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Figure 1.1: A typical quantum spin chain of length N : the red spheres repre-
sent qubits, the bold arrows their spin (or quantum state) and the blue lines
between the qubits represent the local interactions hj.

Spin chains are not just of theoretical interest: there are many physical

manifestations which include arrays of Josephson junction qubits [7, 8, 9],

quantum dots [10, 11, 12, 13], nuclear magnetic resonance [14, 15, 16, 17],

atoms in optical lattices [18], coupled cavity arrays [19, 20, 21] and natural

spin chains in compounds such as Sr2CuO3 and SrCuO2 [22].

There are many ways in which one can use a quantum spin chain as a

quantum channel and Bose [23] provides an excellent overview of these. Most

protocols consider spin chains which exhibit nearest-neighbour interactions

only, with no longer range interactions present between the spins. However,

a few authors consider more general scenarios in which there might be next-

nearest-neighbour interactions [24, 25, 26] or perhaps interactions whose effect

decays algebraically with the distance between spins [27]. In this thesis we

focus exclusively on nearest-neighbour interactions as they usually dominate

over any longer-range interactions and are therefore are a good approximation

to many of the physical realisations of spin chains mentioned above.

We begin in section 1.2.1 by describing a basic protocol suggested by Bose

[3] which uses a spin chain with isotropic Heisenberg nearest-neighbour inter-

actions. This protocol is particularly simple and elegant but it suffers as a

result: the maximum possible fidelity of quantum communication in this pro-

tocol decays with increasing chain length. There have been many successful

attempts to improve on this and we briefly describe a small selection of them

in section 1.2.2.
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It should be noted that spin chain models are not just useful as quantum

communication channels, but are also of interest for their entanglement trans-

fer properties [28, 29], their ability to generate entanglement [30, 31, 32, 33, 34]

and for quantum computing in general [35, 36].

1.2.1 Basic protocol

We now describe the basic protocol first proposed in [3] which enables two

parties, Alice and Bob, to transmit quantum information along a quantum

spin chain from one end to the other.

Alice and Bob take a chain of qubits where each qubit is coupled to its

nearest-neighbours via an isotropic Heisenberg interaction. If this chain has

length N then the Hamiltonian for the whole system is

H = −
N−1∑

j=1

Jjσj · σj+1 −
N∑

j=1

Bjσ
z
j (1.8)

where the coupling strengths Jj > 0 and the magnetic field strengths Bj > 0

are all positive. The chain must now be cooled until it is in the ground state

|0〉 = |00 · · · 0〉 (that is, all spins are pointing down). Alice now places the

quantum state she wishes to send to Bob, |ψin〉 = α |0〉+ β |1〉, on the first

(left-hand) spin of the chain (see figure 1.2). We write the state of the whole

spin chain as

|ψ(0)〉 = α |0〉+ β |1〉 (1.9)

where we have introduced the notation |j〉 = |00 · · · 010 · · · 00〉 where the 1 is

in the jth position (j = 1, . . . , N). That is, |j〉 represents the spin chain in a

state where all the spins are down except for the jth spin which is up. The

spin chain is now allowed to evolve freely for a time t, after which its state has

become

|ψ(t)〉 = α |0〉+ β
N∑

j=1

〈j| e−iHt |1〉 |j〉 (1.10)
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Figure 1.2: The initial setup for the basic spin chain communication protocol:
all qubits are in the spin down ground state except Alice’s (left-hand) qubit
which is in the state |ψin〉.

At time t the reduced state of Bob’s qubit (the right-hand qubit, labelled

by N) is,

ρout(t) = p(t) |ψout〉 〈ψout|+ (1− p(t)) |0〉 〈0| (1.11)

where

|ψout〉 =
1√
p(t)

(
α |0〉+ β 〈N | e−iHt |1〉 |1〉

)
(1.12)

and the probability p(t) = |α|2 + |β|2| 〈N | e−iHt |1〉 |2 is, generally speaking,

less than unity.

Bob has therefore received an approximation ρout to the state that Alice

sent him and this state most closely approximates |ψin〉 〈ψin| when p(t) is at its

closest to unity. The success or failure of this protocol can be measured by the

averaged fidelity of the state transfer, F = 1
4π

∫
〈ψin| ρout |ψin〉 dΩ where the

integral is taken over all possible pure input states (i.e. the states which lie on

the surface of the Bloch sphere). It has been shown [3] that the fidelity is better

than that which could be achieved with a classical channel (namely F = 2/3)

for all chain lengths up to around N = 80, provided Bob can calculate and

choose the optimal time to extract his output ρout. Unfortunately for longer

chains the fidelity drops below that which is achievable with classical channels,

and it is to overcome this downfall that several advanced protocols have been

designed. We briefly review a small selection of these protocols in the next

section.
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1.2.2 Advanced protocols

There have been various attempts at improving on the fidelity achieved by the

basic protocol for transferring information along quantum spin chains [37, 38,

39, 40, 41, 42]. There are too many advancements to consider in detail here,

so we restrict ourselves to reviewing just a few schemes to illustrate the kind

of improvements that can be achieved.

Engineered spin chains

The first advanced protocol we consider is that of an engineered spin chain

which was discovered independently by Christandl et al. [43] and Nikolopoulus

et al. [44]; see also [45] for more information.

The engineered spin chain in question consists of XX-model interactions

of the form hj = Jj(σ
x
j σ

x
j+1 + σyjσ

y
j+1) where we are at liberty to choose each

of the interaction strengths Jj independently.

Now, theXX-model on a hypercube of dimension N − 1 with just two sites

on each edge allows perfect state transfer between antipodal vertices [43]. The

proof of this is based on some graph theoretic results and the fact that an

XX-chain of length 2 allows perfect transfer of states from one particle to the

other. One can map this hypercube onto anXX-model spin chain of length N ,

but to do so one must ensure that the coupling strengths are Jj =
√
j(N − j);

the Hamiltonian of the chain is therefore

H = −
N−1∑

j=1

√
j(N − j)

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
(1.13)

It is this engineered spin chain that allows perfect transfer of quantum

states and, as in the basic protocol, we must prepare the chain in the state |0〉
before Alice places the quantum state she wishes to transmit on the first spin

at her end of the chain (see figure 1.3). The chain is allowed to evolve freely

for a pre-determined length of time, after which Bob has received at his end

of the chain precisely the state which was input by Alice, ρout = |ψin〉 〈ψin|.
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Figure 1.3: The initial setup for the spin chain with engineered nearest-
neighbour couplings that achieves perfect transfer of quantum states: all qubits
are in the spin down state except Alice’s (left-hand) qubit which is in the
state |ψin〉. The thickness of the blue lines between the qubits represents the
strength of the interactions (thicker lines represent stronger couplings).

Spin rings

The problem with engineered spin chains is that it is very difficult — if not

impossible — to precisely engineer the interaction strengths as required. For

this reason we now consider a different scheme which, although not providing

perfect state transfer, nevertheless improves dramatically on what is possible

with the basic protocol. This protocol [46] utilises a spin ring of N sites; see

also [47] for more on spin rings. Alice and Bob both have access to a small

number of spins at diametrically opposite sites on which they can perform

unitary operations.

The first step of the protocol is to initialise the spin ring in the state |0〉.
However, instead of simply placing her input state |ψin〉 = α |0〉+ β |1〉 on a

single site, Alice encodes her input state as a truncated Gaussian wave-packet

|ψ〉 = α |0〉+ β |G〉, by applying unitary operations on the spins A to which

she has access (see figure 1.4). Free evolution of the spin ring now takes

place during which the wave-packet propagates around the ring, dispersing

slightly as it goes. The wave-packet is chosen to be Gaussian as this minimises

the dispersion, which equates to loss of information about the input state.

Choosing the truncation width of the wave-packet (which is identical to the

number of sites to which Alice has direct access) to be 3
√
N guarantees that

the final width of the wave-packet is essentially independent of the size of the

ring. Finally, Bob applies a set of decoding unitaries to the spins in his region

18



Figure 1.4: The initial setup for the spin ring communication protocol: all
qubits are in the spin down state except for those in Alice’s region A which
are in a truncated Gaussian wave-packet state |ψ〉 (which encodes Alice’s input
state |ψin〉). After a pre-determined time Bob will apply decoding unitaries
on his region B to extract his output ρout.

B to recover a good approximation to |ψin〉.

Dual rail protocol

The final protocol we describe is the dual rail scheme which combines the ad-

vantages of both the engineered spin chain and the spin ring: it provides perfect

state transfer but without the need to engineer specially designed chains.

The idea here is to use two identical parallel spin chains [48, 49]. Alice has

access to the left-hand spin of each chain and Bob has access to the right-hand

spins (see figure 1.5). If the Hamiltonian of each individual chain is H, then

the Hamiltonian for the whole system is H ⊗ I + I⊗H. We begin by cooling

both chains to their ground state |0〉, after which Alice encodes her input state

|ψin〉 = α |0〉+ β |1〉 as

|ψ1〉 = α |0,1〉+ β |1,0〉 (1.14)

where |j,k〉 represents the state of the system where the first spin chain is in

state |j〉 and the second chain in state |k〉.
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Figure 1.5: The initial setup for the dual rail communication protocol: all
qubits are in the spin down ground state except for those at Alice’s end of the
chains A which are in the state |ψ1〉 encoding Alice’s input state |ψin〉. Bob
will repeatedly attempt to extract this state at his end of the chains B until
he is successful.

Allowing the chains to evolve freely for a time t results in the state

|ψ(t)〉 =
N∑

j=1

〈j| e−iHt |1〉 |ψj〉 (1.15)

where |ψj〉 = α |0, j〉+ β |j,0〉. After this period of free evolution, Bob applies

a CNOT gate on his two qubits which transforms the state |ψ(t)〉 into

|ψCNOT (t)〉 = 〈N | e−iHt |1〉 (α |0〉+ β |N〉)⊗ |N〉+
N−1∑

j=1

〈j| e−iHt |1〉 |ψj〉

(1.16)

If Bob now measures his qubit on the second chain, he either gets measurement

outcome 1 (which happens with probability | 〈N | e−iHt |1〉 |2) and he is left

with |ψin〉 on his qubit in the first chain, or he gets measurement outcome 0

(which happens with probability 1− | 〈N | e−iHt |1〉 |2) and he is left with |0〉
on his qubit in the first chain — in which case the protocol has failed.

The advantage of this protocol is that when it fails, the information en-

coded in |ψin〉 remains in the spin chains — it has not been destroyed by the

measurement but rather it has been localised to the first N − 1 spins. When-

ever the protocol fails Bob simply waits for a short interval before repeating
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his measurement; eventually he will obtain a positive measurement outcome

and will be left with |ψin〉 on his qubit in the first spin chain. A rough ap-

proximation for the maximum length of time Bob will have to wait in order

to receive |ψin〉 with probability 1− ǫ is t ≈ 0.55J−1N5/3| ln ǫ| [48, 49] (where

J is the nearest-neighbour interaction coupling strength).

It is possible to generalise this protocol to the situation where Bob is only

able to perform finite-strength continuous measurements at the receiving end

of the chain [50].

1.2.3 Noisy chains

So far we have considered only clean, idealistic spin chains. Of course any

physical realisation of these chains will deviate from the ideal as imperfections

inevitably find their way into the setup; we call these noisy spin chains.

Several examples of noisy spin chains have been analysed before including

a model similar to the basic protocol described above, but where each spin in

the chain is coupled to a spin bath. It has been shown [49, 51] that if the mean

square coupling to the environment (which consists of these spin baths) is G,

then the fidelity of state transfer is modulated by a factor of | cosGt|. Other

noisy models include chains where the interaction strengths Jj are random

variables (so, for example, Jk might be stronger than Jj). In this situation

there is plenty of evidence that perfect state transfer is still possible [49, 52, 53].

In this thesis we drive the study of noisy spin chains forward by consider-

ing noise models which are fundamentally different to those described above,

namely models where the noise manifests itself as on-site disorder (see fig-

ure 1.6). In particular we will study the effects of this noise on the speed with

which information can propagate along such spin chains. The results differ

quite dramatically from what has been observed in the noise models described

above.
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Figure 1.6: A typical initial setup of a noisy spin chain with on-site disorder
(represented by the blue arrows). This on-site disorder might be caused, for
example, by a non-uniform transverse electromagnetic field.

1.3 Bounds on the speed of propagation in

quantum spin systems

Having reviewed some of the ways in which one may use quantum spin chains

as quantum information channels, we now turn our attention to calculating the

speed with which information can propagate along such spin chains. We begin

by describing perhaps the most general tool for this, namely Lieb-Robinson

bounds. We also describe alternative but equivalent bounds and briefly discuss

the implications of both.

1.3.1 Lieb-Robinson bounds

Quantum lattice models (including quantum spin chains) obey a locality con-

dition: once locally excited the excitation will travel through the lattice at

a finite velocity. For spin models the speed at which information can propa-

gate is limited by the Lieb-Robinson bound [54] which says that there is an

effective light cone for correlations, with exponentially decaying tails, whose

radius grows linearly with time [55]. This light cone is not of the kind we

meet in special relativity: it is possible that information could propagate to

regions outside the light cone, although the probability of this happening is

exponentially small and the excitations are very likely to remain within the
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cone.

There have been many studies focusing on Lieb-Robinson bounds and these

have resulted in many simplified and alternative bounds [55, 56, 57, 58, 59]

which are reviewed along with their implications in [60].

In its most general form, the Lieb-Robinson bound is a way of measuring

the effect of an operator A applied to a region A of the lattice at time 0,

by computing its effect on another operator B applied to another region B
at time t. More formally, a Lieb-Robinson bound is an upper bound on the

Lieb-Robinson commutator

CB(t) := sup
A

‖[A,B(t)]‖
‖A‖ (1.17)

where the commutator [X,Y ] is defined to be [X,Y ] = XY − Y X and B(t)

is the Heisenberg picture representation of the operator B. There are many

different Lieb-Robinson bounds which apply to many different lattice systems,

but they typically have the generic form

CB(t) ≤ const× eµt−νd(A,B) (1.18)

where µ and ν are constants and d(A,B) is the minimum lattice distance

between the regions A and B. It is easy to see that this bound is exponentially

growing in t but exponentially decaying in the distance between the regions;

it is this feature that gives rise to the linear light cone and its exponentially

decaying tails described above.

There are many consequences of Lieb-Robinson bounds. Apart from the

aforementioned bounds on the velocity of information propagation, the Lieb-

Robinson bound was exploited to establish the Lieb-Schultz-Mattis theorem

in higher dimensions [56] (which relates periodicity in lattice systems to the

excitation gap between the ground state and the first excited state). In gener-

alising the proof of this theorem it was realised that the Lieb-Robinson bound

can be used to provide a method to efficiently simulate the properties of low-

dimensional spin networks [61, 62, 63, 64, 65, 66].

23



Figure 1.7: We approximate the Heisenberg picture time evolution of an op-
erator V which acts initially on a small number of sites (represented here by
a black sphere) by restricting evolution to a small block of sites A. We obtain
an approximation V ′(t) ≈ V (t).

1.3.2 An alternative bound

Consider a quantum lattice system whose Hamiltonian is H and also consider

a region A within this lattice whose Hamiltonian is HA. Note that HA can

be found by restricting H to the region A — that is, HA consists of only

those terms in H which correspond to interactions taking place within A.

Now consider any operator V which acts on a sub-region in the middle of

A. Assuming a time-independent Hamiltonian, we can approximate the time

evolution of the operator V (t) = e−itHV eitH by restricting to the region A in

the following manner: V ′(t) = e−itHAV eitHA (see figure 1.7).

Of course it is important to find out how good this approximation is by

calculating an upper bound for ‖V (t)− V ′(t)‖. This alternative bound also

describes the locality of the system and it has the same generic form [67] as

the Lieb-Robinson bound, namely:

‖V (t)− V ′(t)‖ ≤ const× eµt−ν|A| (1.19)

where |A| is the number of spins in A.

1.3.3 Improved bounds

Whilst we have not proved the Lieb-Robinson bound (or its alternative ver-

sion), suffice it to say that the argument underlying its proof relies only on

the ultra-violet cut-off imposed by the lattice structure and therefore the Lieb-

Robinson bound is very general. There are, however, some situations where

the Lieb-Robinson bound is not the best available. For example, when we
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know more about the structure of the interactions it should be possible to

construct tighter bounds.

Indeed, it is the pursuit of tighter bounds which occupies a large part

of this thesis. We prove new tighter Lieb-Robinson and alternative bounds

for one-dimensional quantum lattice systems, namely qubit spin chains, with

various types of on-site disorder. Depending on the details of the disorder, we

will find different bounds with different consequences for the propagation of

excitations (and hence information) through the spin chains.

1.4 Generalised depolarising channels

Perhaps the simplest model of noise in a quantum system is that of the

isotropic depolarising channel Φp where with probability p a quantum state ρ

is left untouched while with probability (1− p) it is mapped to the completely

mixed state I/D

Φp(ρ) = (1− p) I
D

+ pρ (1.20)

This channel results in the Bloch “ball” (the set of all quantum states) being

compressed isotropically by a factor of p.

One can imagine a slightly more complicated noise model whereby the noise

compresses the Bloch “ball” anisotropically along axes which are defined by

the basis we choose to work in. The amounts by which we compress along each

axis are called the compression coefficients and these form the components of

the compression vector.

These generalised depolarising channels (also called anisotropic depolaris-

ing channels) form a broad class of quantum channels which can be realised

experimentally (see for example [68]); in the single qubit case they include the

bit-flip and phase-flip channels. It is worth noting that any quantum channel

(including the use of a spin chain as a quantum channel) can be turned into a

generalised depolarising channel by the method described in chapter 5.
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Throughout this thesis we let {Mα}D
2−1

α=0 be a basis for D ×D complex

matrices (for example, density matrices of a quantum system with dimension

D) which satisfies the following conditions:

• M0 = I

• tr(Mα) = 0 for all α 6= 0

• tr(M †
αMβ) = 0 for all α 6= β

We call such a basis trace-orthogonal and, abusing terminology slightly, trace-

free (note that tr(M0) 6= 0). We do not need to restrict ourselves to trace-

orthonormal bases as we can simply divide by
√

tr(M †
αMα) when necessary to

normalise the basis.

If ρ is the density matrix of any D-dimensional quantum system, then we

may write

ρ =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

aαMα

)
(1.21)

We call a = (a0, . . . , aD2−1) the polarisation vector and aα the polarisation

coefficients of the state ρ with respect to the basis {Mα}. For notational con-

venience we add an extra zeroth component, a0 ≡ 1, which does not affect the

value of ‖a‖. We have chosen the normalisation in equation (1.21) such that

• ‖a‖ = 1 if and only if ρ is a pure state

• ‖a‖ < 1 if and only if ρ is a mixed state

where the norm of a is defined to be ‖a‖ ≡∑D2−1
α=1 |aα|2. (To see this, recall

that tr(ρ2) = 1 if and only if ρ is a pure state and tr(ρ2) < 1 if and only if ρ

is a mixed state.)

The Bloch “ball” is the set of all polarisation vectors corresponding to

quantum states. It is important to note that — except for the single qubit

case — the Bloch “ball” is not the ball of unit radius, but rather a convex
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subset of this ball. This is because forD > 2 some vectors lying within the unit

ball are not valid polarisation vectors as they do not correspond to positive

states.

We can now define a (generalised) depolarising channel with respect to the

basis {Mα} to be a map Φv which satisfies the following properties:

• Φv is a trace-preserving completely positive map

• Φv compresses the Bloch “ball” in the following manner:

Φv(ρ) =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

vαaαMα

)
(1.22)

We call v = (v0, . . . , vD2−1) the compression vector of the channel Φv as it

specifies the amount by which Φv compresses the Bloch “ball” along each axis;

the vα are called compression coefficients. Again, for notational convenience,

we have added a zeroth component v0 ≡ 1 (v0 is the compression coefficient

for M0 = I, so v0 = 1 ensures that Φv is trace-preserving).

Note that |vα| ≤ 1 for all α. To see this, let the largest possible magnitude

of the polarisation coefficient aα be ãα = supρ{|aα|} and let σ be a state with

|aα| = ãα (so σ lies on the boundary of the Bloch “ball”). If |vα| > 1 then

Φv(σ) is not a state (it lies outside the “Bloch ball”), so |vα| ≤ 1 as claimed.

It is important to note that the notion of generalised depolarising channels

is highly basis dependent: we must define such channels with respect to a

given basis.

If we work in a fixed basis it is clear that for each depolarising channel

there is a unique compression vector. It is therefore natural to ask the question

“which vectors v are valid compression vectors corresponding to depolarising

channels Φv?”. When we restrict to the case of a single qubit the answer to

this question is already known (see for example [69]): the set of all compression

vectors which lie in a specific tetrahedron (see figure 1.8) are the only possible

compression vectors which correspond to generalised depolarising channels.
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Figure 1.8: The tetrahedron in compression space representing all possible sin-
gle qubit generalised depolarising channels: v1, v2 and v3 are the compression
coefficients and the red tetrahedron encloses all compression vectors which
correspond to valid generalised depolarising channels. Φ(0), Φ(1), Φ(2) and Φ(3)

are the extremal channels whose compression vectors lie at the vertices of
the tetrahedron (they are the identity, bit-flip, bit-phase-flip and phase-flip
channels respectively).

Dixit and Sudarshan make a conjecture [4] which says that “when D = 2d

(d ∈ N) and we work in the Pauli basis, then the set of all compression vectors

forms a simplex in compression space”. This conjecture is a generalisation of

the single-qubit result discussed here; it is proved and generalised in chapter 6.

1.5 Structure of thesis

In this introduction we have reviewed the use of quantum spin chains as chan-

nels for quantum information. We have also reviewed Lieb-Robinson bounds

and associated alternative bounds with a discussion of their implications. Fi-

nally, we have introduced generalised depolarising channels.

The remainder of this thesis (excepting parts of chapter 5 which contain

review material) is devoted to original work.
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We begin in chapter 2 by finding a new Lieb-Robinson bound for a qubit

spin chain experiencing on-site disorder, the strength of which remains fixed

in time. This new bound gives rise to a light cone whose radius grows logarith-

mically with time. Contrast this to the original Lieb-Robinson bound which

exhibits a linear light cone. The work in this chapter is an expanded version

of the material first published in [70].

Chapters 3 and 4 find bounds on the propagation of information through

spin chains subjected to fluctuating on-site disorder. In chapter 3 we examine

disorder which fluctuates in strength but is fixed in direction and discover

bounds which imply that, on average, excitations (and hence information) are

localised to a small region around where they started, despite the fact that

individual excitations can propagate diffusively through the chain. Chapter 4

examines a model in which the on-site disorder can fluctuate in both strength

and direction and we prove a Lieb-Robinson bound that identifies a potential

noise threshold: above this threshold information is localised whilst below it

information can potentially propagate ballistically through the chain. These

chapters are an expanded version of work first published in [71].

Chapter 5 is a short review chapter which shows how any spin chain

(whether noisy or clean) can act as a generalised depolarising channel, whilst

chapter 6 studies these channels in detail, proving and generalising a conjec-

ture of Dixit and Sudarshan [4]; this work was published in [72].

Finally we summarise and draw conclusions in chapter 7.
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Chapter 2

Static disorder

In the previous chapter we saw how quantum spin chains can be used as

quantum channels to faithfully transmit quantum states (and hence quantum

information). In this chapter we study quantum spin chains which experience

on-site disorder which is fixed in time and we examine the effects of this noise

by calculating a Lieb-Robinson bound for this type of system.

This chapter is organised as follows. Once we have described the model in

detail (§ 2.1) we apply the Jordan-Wigner transformation (§ 2.2) which allows

us to calculate the dynamics (§ 2.3). Anderson localisation (§ 2.4) allows us to

calculate bounds on a restricted class of Lieb-Robinson commutators (§ 2.4.1);

coupling Anderson localisation with a decomposition of the propagator (§ 2.5)

allows us to calculate the general Lieb-Robinson bound (§ 2.6). We finish with

a short discussion (§ 2.7).

2.1 The static disorder model

Throughout this chapter we focus our attention on spin chains of length N

with XX-model interactions between nearest-neighbouring spins and on-site

disorder which is fixed in time but varies from site to site (see figure 2.1).

Typically the nearest-neighbour interactions hj = Jj(σ
x
j σ

x
j+1 + σyjσ

y
j+1) have

strengths which are all equal (Jj = −J for all j), but this restriction is not
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Figure 2.1: A spin chain experiencing static on-site disorder: the blue arrows
represent the on-site disorder (which might be caused, for example, by a noisy
electromagnetic field) and ξj is the strength of the disorder on site j.

necessary and we work with the more general case that they are all indepen-

dently chosen. The on-site disorder is fixed in the z-direction and could arise

experimentally from, for example, a transverse electromagnetic field whose

field strength varies from site to site but is fixed in time. These field strengths

ξj are drawn from independent identically distributed random variables Pj, the

only restriction being that the probability distributions have bounded proba-

bility density functions.

In summary, the spin chains we consider in this chapter have Hamiltonian

H =
N−1∑

j=1

Jj
(
σxj σ

x
j+1 + σyjσ

y
j+1

)
+

N∑

j=1

ξjσ
z
j (2.1)

Before we go any further it is important to note that this is a physical

model which can be experimentally realised (see section 1.2). It is arguably

the simplest of a class of models which preserve the number of excitations in

the spin chain and it is amenable to precise analytical treatment.

2.2 Jordan-Wigner transformation

In order to calculate the dynamics of our model we will apply the Jordan-

Wigner transformation [73], which maps systems of spin-half particles (for

example qubit spin chains) into systems of spinless fermions hopping on a
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Figure 2.2: Schematic illustration of the Jordan-Wigner transform: spin-up
qubits are mapped into spinless fermions (represented here by red spheres)
whilst spin down qubits are mapped into empty lattice sites (represented by
empty circles).

lattice. This is achieved by mapping an excited qubit (whose spin is up, corre-

sponding to computational basis state |1〉) into a fermion on the corresponding

lattice site; conversely an un-excited qubit (whose spin is down, correspond-

ing to computational basis state |0〉) is mapped into an empty lattice site (see

figure 2.2). Of course, any qubit which is in a superposition state α |0〉+ β |1〉
is mapped into a fermionic superposition state.

More precisely, the Jordan-Wigner transform is a relationship between the

Pauli matrices and the fermionic creation and annihilation operators (a†
j and

aj respectively), which is defined by

aj =
(
σz1 ⊗ · · · ⊗ σzj−1

)
⊗ σj where σj =

1

2

(
σxj + iσyj

)
= |0〉 〈1| (2.2)

In this form, the fermionic creation and annihilation operators (which satisfy

the anti-commutation relations {aj, a†
k} = δjk and {aj, ak} = {a†

j, a
†
k} = 0) are

given in terms of the Pauli matrices. One can invert this to give the Pauli

matrices in terms of fermionic creation and annihilation operators

σzj = aja
†
j − a†

jaj

σxj =
(∏j−1

k=1 σ
z
k

)(
a†
j + aj

)

σyj = i
(∏j−1

k=1 σ
z
k

)(
a†
j − aj

) (2.3)
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It is this form of Jordan-Wigner that allows us to rewrite the Hamiltonian of

our noisy spin chain as

H = 2
N−1∑

j=1

Jj

(
a†
jaj+1 + a†

j+1aj

)
− 2

N∑

j=1

ξja
†
jaj (2.4)

Note that we have applied the fermionic anti-commutation relations to the

on-site disorder terms and have ignored an irrelevant overall constant term
∑

j ξjI which simply shifts the energy eigenvalues by a constant
∑

j ξj.

We have seen how Jordan-Wigner maps the Pauli matrices into fermionic

operators and we now discuss its effect on the states of the spin chain. The

ground state |0〉 with all spins down (that is, all qubits are in the computa-

tional basis state |0〉) is mapped into the empty fermionic lattice (sometimes

referred to as the vacuum) which we denote by |Ω〉; note that this state is an

eigenstate of the Hamiltonian with eigenvalue 0. The states |j〉 of the chain

(which have all spins down except for spin j which is up) are mapped into

single fermions on lattice site j which we denote by |j〉 := a†
j |Ω〉. For the re-

mainder of this chapter we work exclusively in the single-excitation subspace

and therefore the states described above are sufficient to describe the dynamics

of our model.

2.3 Calculating the dynamics

Having applied the Jordan-Wigner transformation we are now in a position

to calculate the dynamics of our spin chain. To do this we first note that

the Hamiltonian preserves the number of excitations in the chain and these

excitations are non-interacting; we can therefore work in the single excitation

subspace. This allows us to write the Hamiltonian as a tri-diagonal N ×N
matrix, K, whose matrix elements are

〈j|K |j〉 = −2ξj for j ∈ {1, . . . , N}
〈j|K |j + 1〉 = 2Jj for j ∈ {1, . . . , N − 1}
〈j + 1|K |j〉 = 2Jj for j ∈ {1, . . . , N − 1}
〈j|K |k〉 = 0 otherwise

(2.5)
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The Hamiltonian may therefore be written as H =
∑N

j,k=1 〈j|K |k〉 a†
jak. We

can now diagonalise the Hamiltonian by performing a Bogoliubov transforma-

tion, which defines a new set of fermionic operators {bj} which are related to

the old set of fermionic operators {aj} by the relation

bj =
N∑

k=1

ujkak (2.6)

where ujk are complex numbers. By imposing the fermionic anti-commutation

relations on the new set of fermionic operators {bj} (namely {bj, b†k} = δjk and

{bj, bk} = {b†j, b†k} = 0) we force the following condition to hold

N∑

k=1

ujku
†
kl = δjl (2.7)

where u†
kl = u∗

lk. That is, the matrix U :=
∑

jk ujk |j〉 〈k| is a unitary matrix.

This allows us to invert the relationship of equation (2.6) to give the {aj} in

terms of the {bj}

aj =
N∑

k=1

u†
jkbk (2.8)

Now, we are at liberty to choose the matrix U to diagonalise the Hamilto-

nian: UKU † = Λ = diag{λ1, . . . , λN}, or in other words

H =
N∑

j=1

λjb
†
jbj (2.9)

We are now in a position to calculate the time evolution of the {bj} in the

Heisenberg picture: bj(t) := eitHbje
−itH . It is a simple matter to differentiate

bj(t) with respect to time to obtain

d

dt
bj(t) = −iλjbj(t) (2.10)

which has solution

bj(t) = e−iλjtbj (2.11)
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Since the Heisenberg picture time evolution of the {aj} can be written as

aj(t) =
∑N

j=1 u
†
jkbk(t), equation (2.11) allows us to calculate the time evolution

of the original fermionic annihilation operators

aj(t) =
N∑

k,l=1

u†
jke

−iλktuklal =:
N∑

k=1

cjk(t)ak (2.12)

The coefficients cjk(t) = 〈j|U †e−iΛtU |k〉 = 〈j| e−iKt |k〉 can be called correla-

tion functions — see section 3.3 of the next chapter, where we also demonstrate

an alternative method of calculating the dynamics without using the Bogoli-

ubov transformation.

2.4 Anderson localisation

Applying Jordan-Wigner maps our spin chain into the tight-binding Anderson

model [74] with on-site disorder. This is a particularly well studied model of

disorder and we can exploit some of its properties. In particular we make use

of the phenomenon of Anderson localisation; this is a general phenomenon in

sufficiently disordered systems and it is characterised by the absence of wave

diffusion through such systems.

Anderson localisation is typically characterised by exponential localisation

of the energy eigenstates, a type of localisation referred to as exponential lo-

calisation [75]. However, our particular model exhibits a stronger form of

localisation called strong sub-exponential HS-kernel decay (SSEHSKD) [75],

which can be expressed as the following theorem

Theorem 1. For any 0 < ζ < 1 and j, k ∈ {1, . . . , N} then

| 〈j| e−iKt |k〉 | ≤ cζe
−|j−k|ζ for all t (2.13)

with probability ≥ 1− e−Lζ
k where N−1

2
≥ Lk ≥

(
N−1

2

) 1
α with 1 < α < 2

Proof. As the on-site disorder field strengths ξj are drawn from a probability

distribution with bounded density we satisfy the assumptions of theorem 6.5

in [75], the proof of which establishes theorem 1.
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This theorem is proved by a technique called multiscale analysis ; see [76]

for a good intorduction to this topic. Multiscale analysis is an inductive proof

technique which is used to prove localisation of the Anderson model on the

infinite lattice. The inductive step assumes localisation of the model when re-

stricted to a small box of size Lk and uses this to prove localisation on a larger

box of size Lk+1 = Lαk with 1 < α < 2. (The initial scale satisfies L0 = econst×γ

where γ is the second moment of the probability distribution Pj.) Our disor-

dered spin chain of length N is simply the one-dimensional infinite lattice An-

derson model restricted to a finite sub-lattice with 2Lk+1 + 1 ≥ N ≥ 2Lk + 1

for some integer k.

Multiscale analysis proves what is observed in practice, namely that An-

derson localisation is a general phenomenon which applies to a wide range of

noise models [74, 77, 78, 79].

It is important to note that, due to the probabilistic nature of the on-site

disorder, certain realisations of the on-site noise might lead to non-localised

dynamics. However, the probability of this happening is exponentially small

(≤ e−Lζ
k). For the remainder of this chapter we assume that the on-site noise

terms lead to localisation as characterised by theorem 1, as we know that this

occurs with very high probability.

For any 0 < ζ < 1, Theorem 1 provides the following bound on the corre-

lation functions of equation 2.12

|cjk(t)| ≤ cζe
−|j−k|ζ (2.14)

It is now evident that the correlation functions are all exponentially small

excepting those for which |j − k| is small; this reflects the “almost diagonal”

structure of the propagator e−iKt for all times.
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2.4.1 Direct calculation of a bound on a restricted class
of Lieb-Robinson commutators

The purpose of this chapter is to calculate a Lieb-Robinson bound for our

model of a spin chain experiencing static on-site disorder. Recall that a

Lieb-Robinson bound is an upper bound on the Lieb-Robinson commutator

‖[A,B(t)]‖ of equation (1.17). We are now in a position to calculate upper

bounds on a restricted class of Lieb-Robinson commutators (namely those in

which the operators A and B are linear combinations of the identity I and the

Pauli z matrix σz on single sites).

Unfortunately, due to the non-local nature of the Jordan-Wigner trans-

formation (recall that aj =
(∏j−1

k=1 σ
z
k

) (
σxj + iσyj

)
), direct calculation of an

upper bound on arbitrary Lieb-Robinson commutators is futile: we obtain an

extremely poor bound which contains a large constant and is therefore worse

than the trivial bound ‖[A,B(t)]‖ ≤ 2‖A‖‖B‖. Later on we use alternative

methods to calculate an improved bound on arbitrary Lieb-Robinson commu-

tators, beginning in section 2.5.

In order to calculate upper bounds on the restricted class of Lieb-Robinson

commutators, we need only consider commutators such as ‖[σzj , σzk(t)]‖ (as the

identity I commutes with everything). Working in the Heisenberg picture we

apply Jordan-Wigner to the Pauli z matrix

σzk(t) = ak(t)a
†
k(t)− a†

k(t)ak(t) =
N∑

l,m=1

ckl(t)c
†
mk(t)

(
ala

†
m − a†

mal
)

(2.15)

Recalling that the {aj} satisfy the fermionic anti-commutation relations given

in section 2.2 allows us to use the above expression to directly calculate our

Lieb-Robinson commutators

[
σzj , σ

z
k(t)
]

= 2
N∑

l=1

ckl(t)c
†
jk(t)

(
ala

†
j − a†

jal

)
+2

N∑

m=1

ckj(t)c
†
mk(t)

(
aja

†
m − a†

maj
)

(2.16)

(This calculation is straight-forward but somewhat lengthy.) The Gersgorin
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disk theorem [80] tells us that ‖aja†
k − a†

kaj‖ ≤ 2; using this and recalling the

bound (2.14) on the correlation functions allows us to calculate an upper bound

for the commutator of equation (2.16), namely

∥∥[σzj , σzk(t)
]∥∥ ≤ 4

N∑

l=1

(
|ckl(t)||c†jk(t)|+ |ckj(t)||c†lk(t)|

)
≤ 8κζcζe

−|j−k|ζ (2.17)

where we have employed the bound
∑N

l=1 e
−|k−l|ζ ≤ κζ where κζ is a constant.

This bound holds as only those terms where |k − l| < const contribute signif-

icantly to the sum. As an illustrative example, for a chain of length N = 101

with ζ = 0.99 and k = 51 (picking k to be in the middle of the chain max-

imises the sum), we numerically calculate that κ ≈ 2.18. It is a simple matter

to check that for all ζ the constant κζ satisfies κζ ≤ κ0 ≤ N
e

In summary we have directly calculated an upper bound for a class of Lieb-

Robinson commutators with A = µAI + κAσ
z and B = µBI + κBσ

z (with µA,

µB, κA and κB constants), namely

‖[Aj, Bk(t)]‖ ≤ 8κζκAκBcζe
−|j−k|ζ for any 0 < ζ < 1 (2.18)

Finally, we comment that this bound explains a phenomenon observed

in tDMRG (time-dependent density matrix renormalisation group) numeri-

cal investigations reported in [81], where the two-point correlation functions

C(r, t) := 2−N tr(σzj (t)σ
z
j+r) exhibit a freezing in space after sufficiently large

times. What is essentially happening is that at large times the above bound

becomes saturated.

2.5 Calculation of the propagator

In the previous section we calculated upper bounds on a restricted class of Lieb-

Robinson commutators. We now employ a different technique which allows

us to calculate upper bounds on arbitrary Lieb-Robinson commutators, giving

rise to a Lieb-Robinson bound which bounds the dynamics of state transfer

(and hence information propagation) through our noisy spin chain.
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We follow and adapt the scheme laid down by Osborne in [61] to approxi-

mate the propagator up to a known error. First we bipartition the chain into

two parts, A and B. We let each partition evolve freely for a time t according

to its local propagator, e−itHA or e−itHB , before applying a patching-up opera-

tor V (t) which is designed to exactly compensate for the local interaction that

has been excluded due to the partitioning procedure

e−itH = V (t)e−it(HA+HB) (2.19)

The intuition to bear in mind is that although V (t) acts on the whole chain,

it acts most strongly on the sites around the partition boundary and acts in

an increasingly weak manner as we move away from this boundary. For this

reason it is possible to approximate V (t) with another operator V W(t) which

acts only on a small number of sites close to the boundary between the two

partitions (see figure 2.3). Before we formally define the operator V W(t) we

must first study V (t) a little more closely. Noting that V (t) = e−itHeit(HA+HB)

and choosing the partition boundary to lie between sites m and m+ 1 we can

find a differential equation for V (t)

d

dt
V (t) = −ihm(t)V (t) (2.20)

where we have defined hm(t) = e−itHhmeitH . This differential equation has

solution V (t) = T e−i
R t
0 hm(s)ds where T denotes time-ordering.

We letW denote a set of |W| spins centred on the partition boundary. By

defining hW
m (t) = hm(t)

∣∣
W to be the local interaction hm(t) truncated to the

set W (that is, hW
m (t) = PWhm(t)PW where PW is the orthogonal projector

onto W), we may formally define V W(t) via the differential equation

d

dt
V W(t) = −ihW

m (t)V W(t) (2.21)

We now wish to calculate the error introduced when we approximate V (t)

by V W(t) which we do by finding an upper bound on the normed difference
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Figure 2.3: Bipartition of the propagator e−itH into two halves (e−itHA and
e−itHB) corrected by the patching-up operator V W(t) which bridges the gap
between the two partitions (and compensates for the missing local interaction).

between these two operators, ‖V (t)− V W(t)‖ [82]. The Lie-Trotter expansion

allows us to write

V (t) = lim
r→∞

r−1∏

j=0

e−ihm( jt
r

) j
r and V W(t) = lim

r→∞

r−1∏

j=0

e−ihWm ( jt
r

) j
r (2.22)

These Lie-Trotter expansions coupled with the differential equations (2.20)

and (2.21) allow us [61] to bound

∥∥V (t)− V W(t)
∥∥ ≤

∫ t

0

∥∥hm(s)− hW
m (s)

∥∥ ds (2.23)

Calculating
∥∥hm(t)− hW

m (t)
∥∥ is a lengthy but simple task which we sum-

marise below. We begin by noting that after application of the Jordan-Wigner

transform the local interactions have the form hm = 2Jm(a†
mam+1 + a†

m+1am)

and so we must bound terms such as
∥∥a†

m(t)am+1(t)−
(
a†
m(t)am+1(t)

)∣∣
W
∥∥.

Recalling equation (2.12) which gives the Heisenberg picture fermionic annihi-

lation operator in terms of the correlation functions, am(t) =
∑N

k=1 cmk(t)ak,

allows us to conclude that

(
a†
j(t)ak(t)

)∣∣∣
W

= a†
j(t)
∣∣∣
W
ak(t)

∣∣∣
W

= a†W
j (t)aW

k (t) (2.24)
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(where a|W is the restriction of a onto W) which in turn allows us to bound

∥∥a†
m(t)am+1(t)− aW†

m (t)aW
m+1(t)

∥∥ =
∥∥a†

m(t)am+1(t)− a†
m(t)aW

m+1(t)
+a†

m(t)aW
m+1(t)− aW†

m (t)aW
m+1(t)

∥∥

≤
∥∥a†

m(t)
∥∥∥∥am+1(t)− aW

m+1(t)
∥∥

+
∥∥a†

m(t)− aW†
m (t)

∥∥∥∥aW
m+1(t)

∥∥
(2.25)

Since aW
m (t) is a restriction of am(t) we know that ‖aW

m (t)‖ ≤ ‖am(t)‖ (as

‖PW‖ ≤ 1) and the Gersgorin disk theorem [80] coupled with the unitary

equivalence of the operator norm allows us to calculate ‖am(t)‖ ≤ 1.

To find an expression for the truncated operator aW
m (t) we simply truncate

the expression for am(t) to the sites in W to obtain: aW
m (t) =

∑
k∈W cmk(t)ak.

We may now conclude our argument by bounding the terms on the right hand

side of equation (2.25), for example

∥∥am+1(t)− aW
m+1(t)

∥∥ ≤
∥∥∥∥∥
∑

k/∈W
cmk(t)ak

∥∥∥∥∥ ≤
∑

k/∈W
cζe

−|m−k|ζ (2.26)

SinceW is a set centred on the boundary between the partitions we know that

|m− k| ≥ |W|/2 for all k /∈ W, which simplifies the above bound to

∥∥am+1(t)− aW
m+1(t)

∥∥ ≤ cζ(N − |W|)e−( |W|
2 )

ζ

(2.27)

Finally, we may now bound the normed difference between the patching-

up operator V (t) and its approximation V W(t) by substituting the bound

‖hm(t)− hW
m (t)‖ ≤ 8|Jm|cζNe−( |W|

2 )
ζ

into equation (2.23) to obtain

∥∥V (t)− V W(t)
∥∥ ≤ cζκtNe

−( |W|
2 )

ζ

(2.28)

where κ ≤ supj 8|Jj| is a constant. In particular, for any ε ≥ 0 choosing W to

be a large enough set
(

|W|
2

)ζ
≥ log (cζκtN/ε) ensures that V W(t) approximates

V (t) to within an error of at most ε

∥∥V (t)− V W(t)
∥∥ ≤ ε (2.29)
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Figure 2.4: Complete decomposition of the propagator e−itH into multiple
blocks (each with its own propagator U) and the corresponding array of
patching-up operators V , each of which bridges the gap between a pair of
blocks and compensates for a missing local interaction.

We may therefore conclude that the propagator e−itH may be approximated

by the bipartioning and patching-up procedure to within a known error

e−itH = V W(t)e−it(HA+HB) +O
(
cζκtNe

−( |W|
2 )

ζ
)

(2.30)

Having discovered that the partitioning and patching-up procedure allows

a good approximation of the propagator, we recursively apply this procedure

to obtain a quantum cellular automata decomposition of the propagator [61]

(see figure 2.4). Algebraically speaking, this decomposition can be written as

e−itH =



N/|W|⊗

k=0

V W ′
k(t)





N/|W|⊗

j=1

e−itHWj


+O

(
cζκtN

2

|W| e−( |W|
2 )

ζ
)

(2.31)

where P1 = {Wj} is a partition of the chain into N
|W| blocks (each of size |W|)

and P2 = {W ′
k} is a partition of the chain into N

|W| + 1 blocks obtained by

shifting partition P1 along by |W|
2

sites (each block is of size |W| excepting the

blocks at each end which are each half this size). Note that we accumulate an

error term for each partition we introduce and this is reflected in the increased

size of the error term in equation (2.31).

2.6 A Lieb-Robinson bound for static disorder

In the previous section we saw how to repeatedly partition the chain in order

to approximate the propagator (up to a known error, see equation (2.31))
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and we now use this result to provide a new Lieb-Robinson bound for our

noisy spin chain model which is far tighter than the original Lieb-Robinson

bound. The original bound is extremely general and applies to a wide range of

quantum lattice systems, in contrast with our new bound which applies only

to the model studied in this chapter.

We define an operator Q(t) to be the decomposition of the propagator we

derived in the previous section, namely

Q(t) =



N/|W|⊗

k=0

V W ′
k(t)





N/|W|⊗

j=1

e−itHWj


 (2.32)

We begin by approximating the Heisenberg picture time evolution of the

operator B by evolving according to the approximated propagatorQ(t) instead

of the actual propagator e−itH

B(t) = B̃(t) +O(ǫ) (2.33)

where ǫ =
cζκtN

2

|W| e−( |W|
2 )

ζ

and the approximation B̃(t) = Q†(t)BQ(t) acts triv-

ially on all sites which are a distance of more than 3
2
|W| away from those on

which B acts. Therefore if the distance between the sites on which A and

B act is large enough, d(A,B) ≥ 3
2
|W|, then A commutes with B̃ (that is,

[A, B̃(t)] = 0) and so

‖[A,B(t)]‖ = ‖[A,O(ǫ)]‖ ≤ 2‖A‖‖O(ǫ)‖ ≤ 2‖A‖cζκtN2

|W| e−( |W|
2 )

ζ

(2.34)

It is now clear that the tightest bound on the Lieb-Robinson commutator

is achieved by picking |W| to be as large as possible whilst still satisfying

d(A,B) ≥ 3
2
|W|. Making the choice |W| = 2

3
d(A,B) and defining the constant

c′ζ = 3‖A‖cζκ gives us the Lieb-Robinson bound

‖[A,B(t)]‖ ≤
c′ζtN

2

|d(A,B)|e
−( d(A,B)

3 )
ζ

for any 0 < ζ < 1 (2.35)

This is the main result of this chapter.
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2.7 Discussion

We have derived a new Lieb-Robinson bound for our noisy spin chain with

static on-site disorder, but what are the consequences? Where the original

Lieb-Robinson bound gave rise to a linear light cone, our new bound gives rise

to a light cone whose radius grows logarithmically with time.

To derive the form of these light cones, we fix the value of the right-hand-

side of the relevant bound and examine the possible values of t and d(A,B)

which are consistent with this value. Recalling the original Lieb-Robinson

bound, ‖[A,B(t)]‖ ≤ const× ek1t−k2d(A,B) (with k1 and k2 constants), we see

that d(A,B) must grow in proportion to t for the right-hand side to remain

constant (and so the radius of the light cone grows linearly with time). For our

new bound, ‖[A,B(t)]‖ ≤ const× te−kd(A,B)ζ
(with k a constant), we see that

d(A,B)ζ must grow in proportion to the logarithm of t for the right-hand-side

to remain constant (and so the radius of the light cone grows logarithmically

with time).

The logarithmic light cone is problematic if we wish to use this spin chain

as a quantum channel for transmitting quantum information between Alice

and Bob (see chapter 1 for examples of how one might achieve this). Even if

the protocol used guarantees perfect state transfer in the noise-free scenario,

it will almost certainly fail in the presence of noise if we take into account

the realistic situation where the spin chain is not perfectly isolated from the

surrounding environment. Our bound shows that non-negligible amounts of

information can can reach Bob only when the time elapsed is exponential in the

distance between Alice and Bob. In practice this exponentially long waiting

time will lead to decoherence (due to interactions between the spin chain and

the environment) which will corrupt the quantum information.

There is however partial mitigation of this bad news: in some situations it

is possible to communicate beyond the localisation length [83] of our model.

44



This is done by performing error correction [5, 84, 85, 86, 87] at short intervals

along the chain. Unfortunately there are some drawbacks to this solution; for

example, it requires controllable access to the interior of the spin chain (which

may not be possible in a practical situation).

It is worth noting that several other studies [88, 89, 90, 91, 92] have used

tDMRG (time-dependent density matrix renormalisation group) to simulate

the time evolution of our model and they numerically confirm our findings.

We have only examined one very specific model (the XX-model) of a noisy

spin chain but multiscale analysis [76, 75] can be used to prove similar levels

of localisation for many other models.
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Chapter 3

Dynamic disorder: fluctuating
field strengths

In chapter 2 we studied an XX-model spin chain with static on-site disorder.

In this chapter we study the same model with a fluctuating disordered field

oriented in the z-direction, a setting which is ubiquitous in the condensed

matter context (see for example [93, 94, 95]). We abandon the Lieb-Robinson

bound in favour of bounds on various correlation functions which are easier

to calculate in this setting, discussing the reasons why a full Lieb-Robinson

bound is unattainable in section 3.6.

This chapter is organised as follows. We describe the model in detail (§ 3.1)

before deriving a master equation (§ 3.2) which governs the evolution of the

system. We then define and calculate some ensemble averaged correlation

functions (§ 3.3) and some ensemble variance correlation functions (§ 3.4)

before analysing the results (§ 3.5). We finish with a short discussion (§ 3.6).

3.1 The dynamic disorder model with fixed

field direction

In this chapter we study the XX-model on either a finite spin ring (with

N sites) or an infinite spin chain. In either case, the model experiences on-

site disorder which is fixed in the z-direction but whose field strengths ξj(t)
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Figure 3.1: A spin chain with on-site disorder which fluctuates in the z-
direction: ξj(t) are the field strengths which fluctuate in time independently
on each site.

fluctuate in time independently on each site (see figure 3.1). The Hamiltonian

of the system is therefore

H(ξ, t) =
∑

j

Jj
(
σxj σ

x
j+1 + σyjσ

y
j+1

)
+
∑

j

ξj(t)σ
z
j (3.1)

Throughout this chapter and the next, we use ξ (with no subscript) to remind

ourselves that the object in question (in this case the Hamiltonian H(ξ, t)) is

dependent upon the disorder.

At each instant in time the field strengths ξj(t) are independent, identically

distributed random variables drawn from a probability distribution Pξ which

has a finite second moment.

This well-studied model [96, 97, 98, 99] is a physical one: it is physically re-

alisable as a continuously monitored dynamical process which can be simulated

to an arbitrary level of precision by engineering a quantum system whereby

we sequentially interact N quantum spins (which are evolving according to a

particular spin-chain Hamiltonian — in our case the XX-model Hamiltonian)

with a collection of harmonic oscillators, one after the other. This is the well-

understood interaction of Caves and Milburn [100] and this forms the basis of

the derivation of the master equation which follows in section 3.2. In partic-

ular, at each time step we interact each spin with its own harmonic oscillator

with a strength that is proportional to the square root of the time step; this
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process is well known to converge as the time step goes to zero to the so-called

continuous measurement process.

In what follows we always intend the word fluctuations to mean fluctu-

ations arising from measurement back-action, and do not mean fluctuations

arising from interactions with a thermal bath at finite temperature. Indeed,

we model the non-equilibrium noise induced by repeated measurement (an ac-

tive process) and it should be noted that our spin chain is not in equilibrium

with its environment.

3.2 A master equation for dynamic disorder

By solving the Schrödinger equation we see that the propagator is the time-

ordered exponential

U(ξ, t) = T exp

(
−i
∫ t

0

H(ξ, s)ds

)
(3.2)

In the static disorder model of chapter 2, the Hamiltonian was time-

independent and so this time ordered exponential reduced to e−itH and, cour-

tesy of Anderson localisation, we were able to directly calculate bounds on the

matrix elements of this propagator (which we called correlation functions).

Unfortunately the model in this chapter has a time-dependent Hamiltonian

and so U(ξ, t) cannot be calculated in the same manner. We do not know

the exact details of the noise (we only know the probability distribution from

which the field strengths are drawn at each instant in time) and so we can-

not calculate U(ξ, t) exactly; neither can we directly calculate bounds on it.

However, as we show below, it is possible to derive a master equation which

governs the dynamics of our model and allows us to calculate the correlation

functions we require to establish the localisation properties of this model.

After free evolution for a time t an initial state ρ(0) of the spin chain

becomes

ρ(ξ, t) = U(ξ, t)ρ(0)U †(ξ, t) (3.3)
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Clearly the state of the system at time t is dependent upon the path taken

by the random field strengths ξj(s) (0 ≤ s ≤ t) of which we have no specific

knowledge except the probability distribution from which they were drawn.

We are therefore motivated to take an ensemble average over all possible re-

alisations of random field strengths, which we denote by Eξ.

By closely following and generalising the method laid down by Caves and

Milburn [100], we derive a master equation for the ensemble averaged density

operator

ρ(t) ≡ Eξ ρ(ξ, t) (3.4)

By applying the Jordan-Wigner transformation we find that (up to an irrel-

evant constant) the Pauli spin operator σzj is mapped to the fermionic number

operator, nj = a†
jaj. Note that nj is an operator which essentially performs a

measurement of the excitation number of site j (it measures whether or not

there is a fermion on lattice site j). As this measurement outcome is neither

observed nor stored in any way, we see that the transverse field is effectively

performing a continuous variable-strength non-selective measurement on the

system. We model this process as a sequence of instantaneous measurements

taking place at times tr = rτ where τ is the time interval between measure-

ments. Ultimately we will take the continuous measurement limit (τ → 0) in

such a way as to avoid the infinite strength quantum Zeno effect. In the deriva-

tion that follows it does not matter whether we use σzj or nj, so we choose to

work with the former as it simplifies the generalisation of this derivation to

the model in chapter 4.

In our measurement model the system is coupled to a series of ancilla sys-

tems called meters. The meter for the rth measurement on site j has canon-

ical variables x̄jr and p̄jr which satisfy the canonical commutation relations

[x̄jr, p̄ks] = iδjkδrs. (Throughout this derivation we use the bar to denote an

operator or measurement outcome on the meters.) We assume that the intrin-

sic Hamiltonian for each meter is the identity and can therefore be ignored.
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The total Hamiltonian for our measurement model consisting of both the spin

chain and the ancillary meters is therefore

H(ξ, t) = H0 +
∑

j

M∑

r=1

δ(t− rτ)σzj ξjrp̄jr (3.5)

where 0 ≤ t ≤Mτ , H0 is the intrinsic system Hamiltonian and ξjr = ξj(tr) is

the field strength on site j at time tr. We further assume that each of the

measurements has an identical description and that each meter is prepared

initially in a Gaussian state of width s

|Gjr〉 = (πs)−1/4

∫
e−x̄2/2s |x̄〉 dx̄ (3.6)

To simplify the notation in what follows we define

|Gr〉 = ⊗j |Gjr〉 (3.7)

That is, |Gr〉 is the joint state of all the meters involved in the rth set of

measurements (which take place at time tr).

If we let ρ(ξ, tr−) be the state of the system immediately prior to the rth

set of measurements, then the joint state of the system and the rth set of

meters immediately after the measurement interaction is

ρ̃(ξ, tr+) = e−iP

j σ
z
j ξjr p̄jr (|Gr〉 〈Gr| ⊗ ρ(tr−, ξ)) ei

P

j σ
z
j ξjr p̄jr (3.8)

We define the following Gaussian operator on the chain

G(ξ, x̄r) = 〈x̄r| e−iP

j σ
z
j ξjr p̄jr |Gr〉 (3.9)

If we assume that the measurement outcome on the rth set of meters

is x̄r = {x̄jr}j∈I (where I = {1, . . . , N} for the finite ring and I = Z for the

infinite chain) then we see that the state of the system immediately after the

rth measurement is

ρ(ξ, tr+, x̄r) =
〈x̄r| ρ̃(ξ, tr+) |x̄r〉

P(x̄r|ξ)
=
G(ξ, x̄r)ρ(ξ, tr−)G†(ξ, x̄r)

P(x̄r|ξ)
(3.10)
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where the probability of outcome x̄r from the rth set of measurements is

P(x̄r|ξ) = tr (|x̄r〉 〈x̄r| ρ̃(ξ, tr+)) = tr
(
G†(ξ, x̄r)G(ξ, x̄r)ρ(ξ, tr−)

)
(3.11)

Now, between measurement interactions the system evolves freely under

the intrinsic system Hamiltonian H0 with corresponding propagator

U(τ) = e−iH0τ (3.12)

If the measurement results from the first M sets of measurements form a

sequence x̄ = {x̄r}Mr=1 then the state of the system immediately after the Mth

measurement (at time tM = Mτ) is

ρ(ξ, tM+, x̄) =
V (ξ, tM , x̄)ρ(0)V †(ξ, tM , x̄)

P(x̄|ξ) (3.13)

where V (ξ, tM , x̄) =
∏1

r=M (G(ξ, x̄r)U(τ)).

Because the measurements are performed by the on-site disordered field we

do not learn what their outcomes are (they are non-selective measurements)

and so at time t the system is in the corresponding non-selective state, namely

ρ(ξ, tM+) =

∫
ρ(ξ, tM+, x̄)P(x̄|ξ)dx̄ (3.14)

Whilst this state is the final non-selective state of our system it neverthe-

less depends on the particular realisation of the disorder which has occurred

throughout its evolution. We now take an ensemble average over all possible

realisations of the disorder to obtain the ensemble averaged state, namely

ρ(tM+) = Eξ ρ(ξ, tM+) (3.15)

We are now in a position to form a differential equation for ρ(t) which we

do by taking the continuous limit (i.e., M →∞, τ → 0 and D := sτ = const)

d

dt
ρ(t) = lim

τ→0

ρ(tM+)− ρ(tM−1+)

τ
(3.16)

Note that we require D to be a finite constant: if this were not the case

we would either have D → 0 in which case we would encounter the infinite
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strength quantum Zeno effect and the measurement model would inhibit any

evolution of the system; or we would have D →∞ in which case we would be

performing an infinitely weak measurement which is equivalent to turning off

the on-site disorder term in the system Hamiltonian (3.1).

One should think of D as a physical parameter which is defined by the

experimental setup. Technically speaking, we have modelled a continuous

process by a series of very frequent measurements on the system (performed

by the fluctuating field), which is approximated by a continuous measurement

process. This approximation is valid provided all time scales of interest are

larger than the typical time scale of the fluctuations in the on-site disorder

(see [100] for further discussion). For example, if Alice and Bob were to use

our system to attempt quantum communication, we would require the typical

fluctuation time for the on-site disorder to be somewhat shorter than the time

required to perform the quantum gates necessary for Alice to input and for

Bob to extract the quantum information.

Utilising equations (3.13), (3.14) and (3.15) we may rewrite dρ
dt

(equa-

tion (3.16)) as

d

dt
ρ(t) = Eξ lim

τ→0

1

τ

(
−ρ(ξ, tM−1+) +

∫
G(ξ, x̄M)U(τ)ρ(ξ, tM−1+)U †(τ)G†(ξ, x̄M)dx̄M

)

(3.17)

We note the following Gaussian integral identity which is proved in sec-

tion 3.2.1:
∫
G(ξ, x̄r)AG

†(ξ, x̄r)dx̄r = A− 1

4s

∑

j

ξ2
jr[σ

z
j , [σ

z
j , A]] +O

(
1

s2

)
(3.18)

Setting A = U(τ)ρ(tM−1+, ξ)U
†(τ) in the Gaussian identity, and making

use of the small τ limit U(τ) = 1− iH0τ +O(τ 2), we derive a master equation

for our spin chain with fluctuating noise

d

dt
ρ(t) = −i[H0, ρ(t)]− γ

∑

j

[σzj , [σ
z
j , ρ(t)]] (3.19)
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where γ = E(ξ2
j )/4D characterises the strength of the disorder: E(ξ2

j ) is the

second moment of the probability distribution Pξ from which the transverse

field strengths are drawn; large γ corresponds to strong disorder whilst small

γ corresponds to weak disorder.

3.2.1 Deriving the Gaussian identity

This brief technical section proves the Gaussian integral identity of equa-

tion (3.18) that was used in the derivation of the master equation (3.19).

We begin our proof by defining the Gaussian integral

Ir(A) =

∫
G(ξ, x̄r)AG

†(ξ, x̄r)dx̄r (3.20)

The relation e−iλp̄ |x̄〉 = |x̄+ λ〉 allows us to rewrite G(ξ, x̄r) as

G(ξ, x̄r) = 〈x̄r| e−iP

j σ
z
j ξjr p̄jr |Gr〉

=
∏

j 〈x̄jr| e−iσz
j ξjr p̄jr |Gjr〉

=
∏

j(πs)
−1/4 〈x̄jr|

∫
e−x̄2/2s ∣∣x̄+ σzj ξjr

〉
dx̄

=
∏

j(πs)
−1/4 〈x̄jr|

∫
e−(x̄−σz

j ξjr)2/2s |x̄〉 dx̄
=

∏
j(πs)

−1/4e−(x̄jr−σz
j ξjr)2/2s

(3.21)

which in turn allows us to rewrite the Gaussian integral as

Ir(A) =

∫
e− P

j(x̄jr−σz
j ξjr)2/2sAe− P

j(x̄jr−σz
j ξjr)2/2s

(∏

j

dx̄jr√
πs

)
(3.22)

We expand the exponentials as infinite sums to obtain

Ir(A) =
∑∞

α,β=0

∫ (∏
j
dx̄jr√
πs

)
e
− P

j(x̄
2
jr)/s

α!β!(2s)α+β

×
(∑

j 2x̄jrξjrσ
z
j − (ξjrσ

z
j )

2
)α
A

×
(∑

j 2x̄jrξjrσ
z
j − (ξjrσ

z
j )

2
)β

(3.23)

Working through this integral term by term allows us to conclude that

Ir(A) = A− 1

4s

∑

j

ξ2
jr

[
σzj ,
[
σzj , A

]]
+O

(
1

s2

)
(3.24)

as claimed.
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3.3 Correlation functions

In order to calculate the dynamics of our fluctuating disorder model we apply

the Jordan-Wigner transform (as we did for our static disorder model); this

transforms the system Hamiltonian into

H(ξ, t) =
∑

j

(
a†
jaj+1 + a†

j+1aj + ξj(t)a
†
jaj

)
(3.25)

where the sum is over a finite ring or an infinite chain. If the sum is over

a finite ring consisting of N sites we impose periodic boundary conditions by

identifying siteN + 1 with site 1: |N + 1〉 ≡ |1〉 and ξN+1(t) ≡ ξ1(t). Applying

Jordan-Wigner to the master equation (3.19) results in

d

dt
ρ(t) = −i[H0, ρ(t)]− γ

∑

j

[a†
jaj, [a

†
jaj, ρ(t)]] (3.26)

where H0 =
∑

j(a
†
jaj+1 + a†

j+1aj) is the intrinsic Hamiltonian and γ quantifies

the strength of the disorder.

Now, we are interested in the propagation of information through this

system and (as the particles are the mediators of information propagation) one

way of studying this is to find the probability amplitude for a single particle

to propagate from site k to site j when the system evolves freely for a time t

cjk(ξ, t) = 〈Ω| ajU(ξ, t)a†
k |Ω〉 (3.27)

We call such a quantity a correlation function and we also define an ensemble

averaged correlation function

cjk(t) = Eξ cjk(ξ, t) (3.28)

Noting that the vacuum |Ω〉 is an eigenstate of the Hamiltonian (3.25) with

eigenvalue zero (and it is therefore an eigenstate of the propagator U(ξ, t) with

eigenvalue one) enables us to rewrite the correlation functions as

cjk(t) = Eξ 〈Ω| aj(ξ, t)a†
k |Ω〉 (3.29)
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where aj(ξ, t) = U †(ξ, t)ajU(ξ, t) is the annihilation operator in the Heisenberg

picture. We define the ensemble averaged annihilation operator in the Heisen-

berg picture to be aj(t) = Eξ aj(ξ, t), which allows us to simplify the expression

for the ensemble averaged correlation function: cjk(t) = 〈Ω| aj(t)a†
k |Ω〉.

In chapter 2 we used a Bogoliubov transformation to calculate a(t) in

terms of the correlation functions which, courtesy of Anderson localisation,

we were able to bound. With the fluctuating disorder model studied here we

have no way of bounding the correlation functions directly and so we follow

an alternative route making use of the master equation (3.26). To do this we

define

d
(ρ)
j (t) = 〈aj(t)〉ρ = tr (ajρ(t)) (3.30)

Using the master equation we are able to form a differential equation for d
(ρ)
j (t)

d
dt
d

(ρ)
j (t) = tr

(
aj

d
dt
ρ(t)

)
= −i∑r tr

(
ρ(t)

[
aj, a

†
rar+1 + a†

r+1ar

])

−γ∑r tr
(
ρ(t)

[
a†
rar,

[
a†
rar, aj

]])

= −i
(
d

(ρ)
j+1(t) + d

(ρ)
j−1(t)

)
− γd(ρ)

j (t)

(3.31)

where we have used the cyclic rule of trace (trABC = trBCA) several times.

Since equation (3.31) holds for all choices of ρ we infer that a similar equation

holds for the ensemble averaged annihilation operator

d

dt
aj(t) = −i (aj+1(t) + aj−1(t))− γaj(t) (3.32)

By defining the vector a(t) = (aj(t)) we rewrite the above equation as a vector

differential equation
d

dt
a(t) = (−iR− γI)a(t) (3.33)

where I is the identity matrix and R =
∑

j (|j〉 〈j + 1|+ |j + 1〉 〈j|) is the ma-

trix corresponding to the intrinsic Hamiltonian H0 after the Jordan-Wigner

transformation has been applied. The vector differential equation (3.32) has

solution

a(t) = e(−iR−γI)ta(0) = e−γte−iRta(0) (3.34)
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whose component form is

aj(t) = e−γt
∑

k

〈j| e−iRt |k〉 ak (3.35)

Substituting this solution into equation (3.29) yields an expression for the

ensemble averaged correlation function, namely

cjk(t) = e−γt
∑

r

〈j| e−iRt |r〉 〈Ω| ara†
k |Ω〉 = e−γt 〈j| e−iRt |k〉 (3.36)

We leave the analysis of this result to section 3.5.1.

3.4 Ensemble variances

The ensemble averaged correlation functions of the previous section define

the average-case dynamics of our system, but one must be careful with their

interpretation: it may be tempting to assume that the dynamics of our model

are always close to the averaged dynamics, but this may not be the case.

One must remember that cjk(t) is an ensemble average over the disorder-

dependent correlation functions cjk(ξ, t). It is therefore perfectly possible that

some realisations of the disorder will lead to dynamics which stray significantly

from those represented by the ensemble averaged correlation functions and in

section 3.5.2 we will see that this is indeed the case for our model.

In order to quantify how far the dynamics may stray from the average-

case dynamics, we must look at the difference between the ensemble aver-

aged correlation functions and the disorder-dependent correlation functions,

|cjk(t)− cjk(ξ, t)|. We do this by studying ensemble variances

vjk(t) = Varξ cjk(ξ, t) = Eξ |cjk(ξ, t)|2 − |Eξ cjk(ξ, t)|2 (3.37)

Clearly the second term on the right hand side of equation (3.37) is just the

square of the ensemble averaged correlation function which we have already

found, so we now move on to study the first term which we do by introducing
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a new quantity

wljk(t) = Eξ cjk(ξ, t)c
∗
lk(ξ, t) (3.38)

where c∗ denotes the complex conjugate of c. Whilst we are only interested in

the quantities wjjk(t), the dynamics of our system couples these quantities to

quantities such as wljk(t) with l 6= j. We note that wljk(t) can be written as

wljk(t) = Eξ tr (πljπkk(ξ, t)) = tr (πljπkk(t)) (3.39)

where πjk = a†
j |Ω〉 〈Ω| ak is a projector, πjk(ξ, t) = U(ξ, t)πjkU

†(ξ, t) is the

disorder-dependent time-evolved projector and πjk(t) = Eξ πjk(ξ, t) is an en-

semble averaged projector. We use the master equation (3.26) to form a dif-

ferential equation for wljk(t)

d

dt
wljk(t) =− i (wl,j+1,k(t) + wl,j−1,k(t)− wl+1,jk(t)− wl−1,jk(t))

− 2γ (wljk(t)− δjlwjjk(t))
(3.40)

which we cast into a matrix equation by defining the matrices

Wk(t) =
∑

j,l

wljk(t) |l〉 〈j| (3.41)

Having defined these matrices we see that equation (3.40) becomes

d

dt
Wk(t) = i [R,Wk(t)]− γD (Wk(t)) (3.42)

whereD(M) = 2(M − diag(M)) is a dissipative operator which takes a general

operator M and sets its diagonal entries to zero. The initial conditions of this

equation are Wk(0) = πkk (that is, Wk(0) is a matrix with all entries equal to

zero excepting a 1 in the kth position on the diagonal).

Note that the matrix differential equation (3.42) is essentially the same as

the master equation (3.26) for which there appears to be no analytic solution.

(If there was an analytic solution we would solve for ρ(t) directly and the

correlation functions would be redundant.)
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As we do not have an analytic solution for the master equation, we now

present a method of bounding the diagonal elements of Wk(t), and therefore

the ensemble variance correlation functions wjjk(t) that we are trying to cal-

culate. This method only works for the infinite chain (some steps are not valid

for finite rings) and for this reason we restrict ourselves to working with an

infinite chain for the remainder of this chapter.

We begin by defining the squared position operator

x̂2 =
∞∑

j=−∞
j2 |j〉 〈j| (3.43)

whose expectation is

〈x̂2〉(t) = tr
(
x̂2ρ(t)

)
= tr

(
x̂2(t)ρ(0)

)
(3.44)

where x̂2(t) = Eξ U
†(ξ, t)x̂2U(ξ, t) is the ensemble average of the squared posi-

tion operator in the Heisenberg picture. By repeating the steps used to derive

the master equation, we find that x̂2(t) obeys

d

dt
x̂2(t) = i

[
R, x̂2(t)

]
− γD

(
x̂2(t)

)
(3.45)

This is essentially the same as equation (3.42) which is satisfied by the variance

matrices Wk(t). In order to find bounds on the corresponding dynamics we

must first define another set of matrices

ηβα =
∞∑

j=−∞

(
jα |j〉 〈j + β|+ (−1)βjα |j + β〉 〈j|

)
(3.46)

(Observe that η0
0 = 2I and η0

2 = 2x̂2.) We now prove a small lemma which tells

us that the dynamics we are interested in are spanned by just five of these ηβα

matrices.

Lemma 2. The dynamics generated by equation (3.45) acting on the set

E = {x̂2, I, η1
0, η

1
1, η

2
0} is closed. That is

[R, η] ∈ E and D(η) ∈ E for all η ∈ E (3.47)
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Proof. It is a simple matter to explicitly calculate the following

[R, x̂2] = 2η1
1 + η1

0 D(x̂2) = 0
[R, I] = 0 D(I) = 0
[R, η1

0] = 0 D(η1
0) = 2η1

0

[R, η1
1] = η2

0 − 2I D(η1
1) = 2η1

1

[R, η2
0] = 0 D(η2

0) = 2η2
0

(3.48)

which completes the proof.

Note that this lemma does not hold for finite rings and it is for this reason

that we are now restricted to working with infinite chains.

Since the dynamics we are interested in are spanned by the set E , we define

the following linear combination of the members of this set

η(t) = cx(t)x̂
2 + cI(t)I + c10(t)η

1
0 + c11(t)η

1
1 + c20(t)η

2
0 (3.49)

Noting that η(t) obeys a master equation similar to (3.45) we find that the

coefficients obey the simultaneous differential equations

d

dt




cx(t)
cI(t)
c10(t)
c11(t)
c20(t)




=




0 0 0 0 0
0 0 0 −2i 0
i 0 −2γ 0 0
2i 0 0 −2γ 0
0 0 0 i −2γ







cx(t)
cI(t)
c10(t)
c11(t)
c20(t)




(3.50)

We are interested in finding x̂2(t) so we use the initial conditions η(0) = x̂2

as this allows us to write η(t) = x̂2(t). Before solving this system of coupled

differential equations we recall that (in order to calculate the ensemble variance

correlation functions) our aim is to calculate 〈x̂2〉(t) with initial condition

ρ(0) = |k〉 〈k|, which allows us to write

〈x̂2〉(t) = tr (x̂2(t) |k〉 〈k|)
= cx(t) 〈k| x̂2 |k〉+ cI(t) 〈k| I |k〉
= k2cx(t) + cI(t)

(3.51)

We see, therefore, that we only need the partial solution of equation (3.50)

which calculates cx(t) and cI(t); this is given in the following lemma.
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Lemma 3. The partial solution to equation (3.50) that we require is

cx(t) = 1 cI(t) =
2t

γ
+
e−2γt − 1

γ2
(3.52)

Proof. From equation (3.50) we see that the coefficient cx(t) does not evolve

in time
(
d
dt
cx(t) = 0

)
and so it is constant: cx(t) = cx(0) = 1. We also see

that the coefficients c11(t) and cI(t) evolve in time according to the differential

equations

d

dt
c11(t) = 2icx(t)− 2γc11(t) and

d

dt
cI(t) = −2ic11(t) (3.53)

whose solutions are

c11(t) =
i

γ
(1− e−2γt) and cI(t) =

2t

γ
+

1

γ2
(e−2γt − 1) (3.54)

Combining equation (3.51) and the result of lemma 3 allows us to explicitly

calculate 〈x̂2〉(t) according to the initial condition ρ(0) = |0〉 〈0|

〈x̂2〉(t) =
2t

γ
+
e−2γt − 1

γ2
=: f(t) (3.55)

We are now in a position to bound the diagonal elements of ρ(t) (with

initial condition ρ(0) = |0〉 〈0|) and to do so we rewrite 〈x̂2〉(t) as

〈x̂2〉(t) = tr
(
ρ(t)x̂2

)
=
∑

j

j2 〈j| ρ(t) |j〉 (3.56)

This allows us to bound the diagonal elements of ρ(t) by 〈j| ρ(t) |j〉 ≤ f(t)
j2

for j 6= 0. Combining this with the trivial bound 〈j| ρ(t) |j〉 ≤ 1 we have

〈j| ρ(t) |j〉 ≤ min
{

1, f(t)
j2

}
for j 6= 0 and ρ(0) = |0〉 〈0|. Translational invari-

ance of the infinite chain allows us to claim a similar bound for all initial

conditions of the form ρ(0) = |k〉 〈k|

〈j| ρ(t) |j〉 ≤ min

{
1,

f(t)

|j − k|2
}

for ρ(0) = |k〉 〈k| and j 6= k (3.57)
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We are now in a position to state a bound on the ensemble variances of the

disorder-dependent correlation functions for the infinite chain. Recall that

vjk(t) = Varξ cjk(ξ, t) = wjjk(t)− (cjk(t))
2 ≤ wjjk(t) (3.58)

Furthermore, cjk(t)→ 0 as t→∞ and so this bound becomes tight in the

large time limit. Since wjjk(t) is the jth diagonal element of the matrix Wk(t)

which has initial condition Wk(0) = |k〉 〈k| we can apply the result (3.57) to

bound the ensemble variances of the correlation functions

vjk(t) ≤ min

{
1,

f(t)

|j − k|2
}

(3.59)

where f(t) (defined in (3.55)) is asymptotically equivalent to 2t/γ for large t.

Furthermore, f(t) ≤ 2t/γ for all t.

This is the main result of this section: it tells us how far the dynamics of

our system can stray from the average-case dynamics found in the previous

section. We analyse this bound and its consequences in section 3.5.2.

3.5 Analysis of results

In this section we analyse the consequences of both the ensemble averaged cor-

relation functions (section 3.5.1) and the ensemble variance correlation func-

tions (section 3.5.2).

3.5.1 Analysis of ensemble averaged correlation
functions

Recall that in section 3.3 we calculated the ensemble averaged correlation

functions to be

cjk(t) = e−γt 〈j| e−iRt |k〉 (3.60)

(see equation (3.36)). The unitary matrix e−iRt corresponds to free evolution

of the system when no disorder is present and this would allow cjk(t) to become

significantly non-zero after a time proportional to the distance |j − k| were it
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not for the exponentially decaying term e−γt which exponentially suppresses

all correlations. In this section we will show that the only correlation functions

which are appreciably non-zero are those for which both |j − k| and t are small

which essentially means that, on average, fermions can hop (and information

can propagate) by at most a small number of sites along the chain.

We now analyse the expression (3.60) for the ensemble averaged correlation

functions in detail and make the above statements precise.

Since e−iRt is a unitary matrix there is the trivial bound | 〈j| e−iRt |k〉 | ≤ 1

(for all j, k and t) which implies that |cjk(t)| is exponentially small for large

t. More precisely, for t ≥ tǫ = log (1
ǫ
)/γ we may bound |cjk(t)| ≤ ǫ and so

by picking ǫ to be suitably small we may say that the ensemble averaged

probability amplitude for a fermion to hop from site j to site k is negligible

for t ≥ tǫ.

Having shown that the ensemble averaged correlation functions cjk(t) are

negligible for large times t ≥ tǫ we now analyse the behaviour at small times

t < tǫ. To do this we bound

∣∣〈j| e−iRt |k〉
∣∣ =

∣∣∣∣∣
∞∑

l=0

〈j| (−iRt)l |k〉
l!

∣∣∣∣∣ ≤
∞∑

l=0

‖R‖l|t|l
l!

(3.61)

Stirling’s approximation n! =
√

2nπ
(
n
e

)n (
1 +O

(
1
n

))
gives rise to a lower

bound on factorials

n! ≥
√

2nπ
(n
e

)n
for n ≥ 1 (3.62)

which in turn gives rise to the upper bound

‖R‖l|t|l
l!

≤ 1√
2lπ

(
e‖R‖|t|

l

)l
(3.63)

The right hand side of this inequality is small for large l and furthermore the

semi-infinite sum (from l = m to ∞) over such terms is negligible (smaller

than ǫ) for m > tκǫ for some constant κǫ.
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We now define

Qm(t) = e−iRt −
m−1∑

l=0

(−iRt)l
l!

=
∞∑

l=m

(−iRt)l
l!

(3.64)

and we see (courtesy of equation 3.63) that ‖Qm(t)‖ ≤ ǫ is negligible when

m ≥ tκǫ. By noting the tri-diagonal form of R (which has 1s on the sub-

diagonals and 0s elsewhere) we see thatRm ism-banded (that is, 〈j|Rm |k〉 = 0

for |j − k| > m) and so

〈j|Qm(t) |k〉 = 〈j| e−iRt |k〉 for |j − k| ≥ m (3.65)

Hence we see that if |j − k| ≥ tκǫ then |cjk(t)| is negligible.

We have now shown that |cjk(t)| is negligible if either

• t ≥ tǫ = log (1
ǫ
)/γ

• |j − k| ≥ tκǫ for some constant κǫ

Equivalently |cjk(t)| is non-negligible only when |j − k| < κǫtǫ and so a fermion

can, on average, hop by at most κǫtǫ sites. This can be restated in an infor-

mation theoretic manner as “non-negligible amounts of information can prop-

agate, on average, by at most κǫtǫ sites”.

Note that the second bullet point is essentially the original Lieb-Robinson

bound: information can propagate by a distance proportional to the time

elapsed. Our contribution is to add in the first bullet point for this noise

model, which is in essence a cut-off point beyond which no non-negligible

amount of information can, on average, propagate.

3.5.2 Analysis of ensemble variance correlation
functions

Recall that in section 3.4 we calculated an upper bound (equation (3.59)) on

the ensemble variances of the disorder-dependent correlation functions

vjk(t) ≤ min

{
1,

f(t)

|j − k|2
}

where f(t) =
2t

γ
+
e−2γt − 1

γ2
(3.66)
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This bound tells us that for small times t≪ γ|j − k|2/2 the ensemble vari-

ances vjk(t) are small and so no realisation of disorder is likely to lead to

dynamics which are significantly different from the average-case dynamics rep-

resented by cjk(t). However for large times it is possible that the variances

vjk(t) are large and so the actual dynamics may be very different from the

averaged dynamics.

Recalling that 〈j| ρ(t) |j〉 (with initial condition ρ(0) = |k〉 〈k|) satisfies

the same bound as vjk(t), we see that a particle placed on site k at time

t = 0 has a low probability of diffusing through the lattice to a site j with

|j − k| ≫
√

2t/γ. In other words we have a probabilistic light cone whose ra-

dius grows in proportion to the square root of the time elapsed, which means

that one must wait for a time proportional to the square of the distance |j − k|
before there can be a high probability of a particle diffusing from site k to j.

To make the above statement about a light cone more precise we employ

Chebyshev’s inequality which states that for a random variable X with mean

µ and finite variance σ2 and for any positive real number κ

P (|X − µ| ≥ κσ) ≤ 1

κ2
(3.67)

Choosing κ to be the constant of proportionality for the radius of the square-

root light cone and identifying X = cjk(ξ, t), µ = cjk(t) and σ2 = vjk(t) we are

able to say that a particle placed initially on site k remains within this light

cone with probability greater than
(
1− 1

κ2

)
.

Recall that for a one-dimensional classical random walk with equal prob-

abilities of stepping left and right, the expected distance from the starting

point after N steps of the random walk is of order
√
N . That is, with high

probability the particle is positioned within a light cone whose radius grows

in proportion to the square root of the number of steps taken (or the time

elapsed). This is exactly what we have observed for the fluctuating disorder

model in this chapter and we may therefore conclude that in some sense the
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noise in our system reduces the quantum mechanical behaviour of our model

into classical random walk dynamics.

3.6 Discussion

To summarise the results of this chapter, we have found that information can

propagate (on average) by at most a constant number of sites before it is lost

in the noise of the system. However this is not so much a real physical effect

but rather an effect of the ensemble averaging process we used. In reality, for

a typical realisation of the disorder, information can propagate within a light

cone whose radius grows in proportion to the square root of the time elapsed.

There is a certain amount of similarity here with a classical random walk.

In contrast to the static disorder model of chapter 2 where the localisation

was due to Anderson localisation, the localisation in this model is due to the fi-

nite strength quantum Zeno effect [101, 102, 103] caused by the on-site disorder

which effectively performs continuous non-selective quantum measurements on

the system.

Note that the correlation function cjk(t) in chapter 2 is really a disorder-

dependent correlation function which we denote by cjk(ξ, t) in this chapter. In

chapter 2 we did not average over the noise but simply said that with very high

probability (exponentially close to 1) Anderson localisation occurs, which gives

the bound |cjk(t)| < cζe
−|j−k|ζ . Comparing this with the ensemble averaged

correlation function found in this chapter, namely cjk(t) = e−γt 〈j| e−iRt |k〉,
reveals that the dynamics of the two models differ significantly: for static noise

the correlations are exponentially localised for all time, whereas for dynamic

disorder the correlations are (on average) exponentially suppressed with time

(although it is important to remember that this is a factor of the averaging

process and not a real phenomenon).

In chapter 2 we calculated a Lieb-Robinson bound for the static disorder
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model. A Lieb-Robinson bound is a general tool which describes the evolution

of arbitrary operators in the Heisenberg picture, in contrast to correlation

functions which calculate the dynamics of single excitations in the system. It

would therefore be nice to calculate a Lieb-Robinson bound for the model of

dynamic disorder studied in this chapter, but unfortunately if we attempt to

calculate one using the same technique as that used in chapter 2 we run into

problems: the derivation requires us to find the the ensemble average of a

product of two disorder-dependent operators (for example, a†
m(ξ, t)am+1(ξ, t)).

Unfortunately we are unable to do this as we would need to solve an equation

similar to the variance equation (which we don’t know how to do). The solution

used in this chapter (to bound the ensemble variances vjk(t)) would be of no

help as it only bounds the diagonal elements whereas we would require bounds

on the off-diagonal elements too.

Neither can we calculate a Lieb-Robinson bound directly using the method

in chapter 4 as the calculations there rely on a symmetry (namely that the

on-site disorder can point in any direction) which is not present in this model

(where the on-site disorder is fixed in direction).

In conclusion, although a Lieb-Robinson bound for this model is very de-

sirable, we have been unable to provide one and must instead rely on ensemble

averages and ensemble variances of disorder-dependent correlation functions

to describe the dynamics of the model.
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Chapter 4

Dynamic disorder: fluctuating
field directions

In the previous chapter we studied a noisy spin chain model where the on-

site disorder fluctuated in strength but was fixed in the z-direction. In this

chapter we study a similar model where both the strength and direction of

the on-site disorder are free to fluctuate. The intrinsic Hamiltonian is an

arbitrary nearest-neighbour Hamiltonian, in contrast with the previous two

chapters where it was restricted to being the XX-model Hamiltonian. The

additional symmetry present in this model (which was lacking in the previous

dynamic disorder model due to the fixed field direction) allows us to once

again calculate a Lieb-Robinson bound for the system.

This chapter is organised as follows. After describing the model (§ 4.1) we

explain how to generalise the derivation of the master equation in chapter 3

to the model studied in this chapter, which allows us to form a differential

equation for the Lieb-Robinson commutators (§ 4.2). We solve this differential

equation to give a Lieb-Robinson bound (§ 4.3) which we analyse in detail

(§ 4.4) and we finish with a short discussion (§ 4.5).
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Figure 4.1: A spin chain with on-site disorder which fluctuates in both strength
and direction: the disorder strengths ξj(t) =

(
ξxj (t), ξ

y
j (t), ξ

z
j (t)
)

have compo-
nents ξαj (t) which fluctuate in time independently in each direction on each
site.

4.1 The dynamic disorder model with fluctu-

ating field direction

The model studied in this chapter is that of a qubit spin chain of length N

whose intrinsic Hamiltonian H0 consists of arbitrary nearest-neighbour inter-

actions. Whilst it could be the XX-model Hamiltonian studied in chapters 2

and 3 it could also be any other nearest-neighbour Hamiltonian with finite

norm ‖H0‖ <∞. The on-site disorder is free to fluctuate in both strength and

direction independently on each site (see figure 4.1). In particular we model

this noise by allowing the on-site disorder strengths to fluctuate independently

in each of the three cardinal directions (x, y and z) with corresponding com-

ponents ξαj (t) (α ∈ {x, y, z}). As with the fluctuating noise of chapter 3, at

each instant in time the field strengths ξαj (t) are independent, identically dis-

tributed random variables which are drawn from a probability distribution Pξ
which has a finite second moment.

The system Hamiltonian for this model is therefore

H(ξ, t) = H0 +
N∑

j=1

∑

α∈{x,y,z}
ξαj (t)σαj (4.1)
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4.2 A differential equation for the

Lieb-Robinson commutator

In this chapter we will calculate a Lieb-Robinson bound, which is an upper

bound on the Lieb-Robinson commutator (see equation (1.17))

CB(t) = sup
A

‖[A,B(t)]‖
‖A‖ (4.2)

where B(t) = Eξ U
†(ξ, t)BU(ξ, t) is an ensemble average over all possible re-

alisations of the operator B in the Heisenberg picture and the norm ‖ · ‖ is

the operator norm. We begin by calculating a Lieb-Robinson bound with the

restriction that A has support only on site n and for this reason we relabel A

to An and define a corresponding Lieb-Robinson commutator

CB(n, t) = sup
An

CA,B(n, t) where CA,B(n, t) =
‖[An, B(t)]‖
‖An‖

(4.3)

Once we have proved a bound on these Lieb-Robinson commutators, we will

extend the result to a general Lieb-Robinson bound for arbitrary operators A

(see section 4.3).

We begin by generalising the derivation of the master equation (3.19) of

chapter 3, which we do by increasing the number of meters for each mea-

surement site j at each time interval tr from one to three: one for each of

the three cardinal directions (x, y and z). These meters now have canoni-

cal variables x̄αjr and p̄αjr which satisfy the canonical commutation relations

[x̄αjr, p̄
β
ks] = iδjkδrsδαβ. Following precisely the same steps as in chapter 3 leads

to a master equation for the model we are studying in this chapter

d

dt
ρ(t) = −i[H0, ρ(t)]− γ

N∑

j=1

∑

α∈{x,y,z}
[σαj , [σ

α
j , ρ(t)]] (4.4)

The remainder of this section shows how to use this master equation to form

a differential equation for the Lieb-Robinson commutators of equation (4.3).

In the next section we solve this differential equation to obtain a bound on the

commutators, which is then generalised to give a full Lieb-Robinson bound.
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AsB(t) is the ensemble average of the operatorB in the Heisenberg picture,

it obeys an equation similar to the master equation, namely

d

dt
B(t) = i [H0, B(t)]− γF(B(t)) (4.5)

where we have written the dissipation term as

F(B) =
N∑

j=1

Fj(B) where Fj(B) =
∑

α∈{x,y,z}
[σαj , [σ

α
j , B]] (4.6)

In order to form a differential equation for CB(n, t) we first use a Taylor

expansion to calculate

‖An‖CA,B(n, t+ ǫ) = ‖[An, B(t) + iǫ[H0, B(t)]− ǫγF(B(t))] +O(ǫ2)‖

≤ (1− 8ǫγN)‖[An, B(t) + iǫ[H0, B(t)]]‖
+ǫγ‖[An, 8NB(t)−F(B(t))]‖+O(ǫ2)

(4.7)

where ǫ is chosen to be small enough so that 1− 8ǫγN ≥ 0 (later on we will

take the limit ǫ→ 0 and so this condition will be automatically satisfied).

We can rewrite the first term on the right-hand-side of equation (4.7) as

‖[An, B(t) + iǫ[H0, B(t)]]‖ = ‖[An, eiǫH0B(t)e−iǫH0 ] +O(ǫ2)‖
= ‖[e−iǫH0Ane

iǫH0 , B(t)] +O(ǫ2)‖
= ‖[An − iǫ[H0, An], B(t)] +O(ǫ2)‖
≤ ‖An‖CA,B(n, t) + ǫ‖[[H0, An], B(t)]‖+O(ǫ2)

(4.8)

where we have used unitary invariance of the operator norm and made re-

peated use of Taylor expansions. To deal with the double commutator term

in equation (4.8) we make use of the trivial bound ‖[H0, An]‖ ≤ 2‖H0‖‖An‖
which allows us to rewrite

[H0, An] = 2‖H0‖‖An‖V with ‖V ‖ ≤ 1 (4.9)

Since H0 consists only of nearest-neighbour interactions we may write V as

V =
∑

α,β∈{x,y,z,0}

(
vαβn−1σ

α
n−1σ

β
n + vαβn σαnσ

β
n+1

)
(4.10)
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where |vαβm | ≤ ‖V ‖ ≤ 1, which allows us to bound

‖[V,B(t)]‖ ≤
∑

α,β∈{x,y,z,0}

(
|vαβn−1|‖[σαn−1σ

β
n, B(t)]‖+ |vαβn |‖[σαnσβn+1, B(t)]‖

)

(4.11)

Using this and the commutator identity [AB,C] = A[B,C] + [A,C]B allows

us to calculate a bound on the double commutator term, namely

‖[H0,An],B(t)]‖
‖An‖ = 2‖H0‖‖[V,B(t)]‖

≤ 32‖H0‖ (2CB(n, t) + CB(n− 1, t) + CB(n+ 1, t))
(4.12)

Having expressed the first term on the right hand side of equation (4.7) in

terms of the Lieb-Robinson commutators CA,B(n, t) and CB(n, t) we now do

the same for the second term. We begin by noting the effect of the dissipation

operators Fk on the Pauli matrices

Fk(σαj ) = 8δjkσ
α
k for α ∈ {x, y, z}

Fk(σ0
j ) = 0 where σ0 = I (4.13)

We now restrict B(t) to be of a tensor product form

Bα = σα1
1 ⊗ · · · ⊗ σαN

N (4.14)

and later on we will extend to general B(t) by linearity. It is straightforward

to use equation (4.13) to find the effect of the dissipation operators on Bα,

which in turn allows us to calculate the following

8Bα−Fk(Bα) = 8Bα−
(⊗

j 6=k σ
αj

j

)
⊗Fk(σαk

k )

=

{
0 if σαk

k 6= Ik
8Bα if σαk

k = Ik
= 4 trk (Bα)⊗ Ik

(4.15)

It is a simple matter to verify the following Pauli matrix identities

∑
α∈{0,x,y,z} σ

α
kσ

β
kσ

α
k = 0 for β 6= 0∑

α∈{0,x,y,z} σ
α
kσ

0
kσ

α
k = 4Ik

(4.16)

which allow us to re-express

8Bα−Fk(Bα) =
∑

β∈{0,x,y,z}
2σβkBασ

β
k (4.17)
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Finally we observe that

[An,
∑

β∈{0,x,y,z}
σβnBασ

β
n] = 0 (4.18)

which allows us to calculate an upper bound on the second term of the right-

hand-side of equation (4.7) (with the restriction that B(t) = Bα has tensor

product form)

ǫγ‖[An, 8NBα−F(Bα)]‖ ≤ ǫγ
∑

k ‖[An, 8Bα−Fk(Bα)]‖
≤ 2ǫγ

∑
k 6=n
∑

β∈{0,x,y,z} ‖[An, σβkBασ
β
k ]‖

= 8ǫγ(N − 1)‖An‖CA,Bα (n, t)
(4.19)

(we have used: ‖[An, σβkBασ
β
k ]‖ = ‖[σβkAnσβk , Bα]‖ = ‖[An, Bα]‖ when k 6= n).

We now extend this result to general B(t) by linearity

B(t) =
∑

α

cα(t)Bα (4.20)

It is straightforward to check that

8B −Fk(B) = . . . =
∑

α

cα(t)
∑

β∈{0,x,y,z}
2σβkBασ

β
k (4.21)

which allows us to bound the second term on the right-hand-side of equa-

tion (4.7)

ǫγ‖[An, 8NB(t)−F(B(t))]‖ ≤ 8ǫγ(N − 1)‖An‖CA,B(n, t) (4.22)

In summary, we have now bounded both terms on the right-hand-side of

equation (4.7), which can therefore be rewritten as

CA,B(n, t+ ǫ) ≤ 32‖H0‖ǫ (2CB(n, t) + CB(n− 1, t) + CB(n+ 1, t))
+(1− 8ǫγ)CA,B(n, t) +O(ǫ2)

(4.23)

This expression holds for all A and in particular it holds for Ã, which is

defined by the equality CB(n, t) = CÃ,B(n, t). This allows us to bound the

Lieb-Robinson commutator

CB(n, t+ ǫ) ≤ (1− 8ǫ(γ − 8‖H0‖))CB(n, t)
+32‖H0‖ (CB(n− 1, t) + CB(n+ 1, t)) +O(ǫ2)

(4.24)
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Finally we arrive at a bound on the time derivative of the Lieb-Robinson

commutator CB(n, t)

d
dt
CB(n, t) = limǫ→0

CB(n,t+ǫ)−CB(n,t)
ǫ

≤ −8(γ − 8‖H0‖)CB(n, t)
+32‖H0‖ (CB(n− 1, t) + CB(n+ 1, t))

(4.25)

This is the main result of this section.

4.3 A Lieb-Robinson bound for dynamic

disorder

In this section we use the bound on the time derivative of the Lieb-Robinson

commutator (equation (4.25) of the previous section) to find a Lieb-Robinson

bound for single-site operators, An. We then generalise this result to arbitrary

operators A, giving a fully general Lieb-Robinson bound for this noise model.

We begin by recasting equation (4.25) into a vector inequality by defining

CB(t) =




CB(1, t)
...

CB(N, t)


 (4.26)

which allows us to rewrite equation (4.25) as

d

dt
CB(t) ≤ (−8(γ − 8‖H0‖)I + 32‖H0‖R)CB(t) (4.27)

where the inequality is to be understood component-wise, I is the N ×N
identity matrix and R =

∑N−1
j=1 (|j〉 〈j + 1|+ |j + 1〉 〈j|) as in chapter 3.

This differential inequality has solution

CB(t) ≤ e−8(γ−8‖H0‖)te32‖H0‖RtCB(0) (4.28)

which is the vector form of the Lieb-Robinson bound (for single-site operators

An) applicable to the fluctuating disorder model studied in this chapter.

To extract the component form of this bound, we must analyse the struc-

ture of the matrix exponential e32‖H0‖Rt. Noting that each matrix element of
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the matrix eDt is upper bounded by e‖D‖t, and defining E to be the matrix with

every entry equal to unity (that is, 〈j|E |k〉 = 1 for all j and k) we re-write

the above Lieb-Robinson bound as

CB(t) ≤ e−8(γ−8‖H0‖)te32‖H0‖‖R‖tECB(0) (4.29)

whose components are

CB(n, t) ≤ e−8(γ−8‖H0‖)te32‖H0‖‖R‖tC (4.30)

where C is the constant

C =
∑

j

CB(j, 0) (4.31)

Whilst a more careful analysis of the matrix e32‖H0‖Rt might lead to a

smaller value of C this would only improve the bound by a constant factor

and would not affect the generic form of the bound. For this reason we do not

perform a more detailed analysis of e32‖H0‖Rt here.

We now show how to generalise this result for single-site operators An to

arbitrary operators A with support on M contiguous sites n1, . . . , nM . To do

this, we expand A in the Pauli basis

A =
∑

α1,...,αM
∈{0,x,y,z}

aα1,...,αM
σα1
n1
⊗ · · · ⊗ σαM

nM
(4.32)

which allows us to bound the commutator

‖[A,B(t)]‖ ≤
∑

α1,...,αM
∈{0,x,y,z}

|aα1,...,αM
|
∥∥[σα1

n1
⊗ · · · ⊗ σαM

nM
, B(t)

]∥∥ (4.33)

In section 4.2 we used the commutator identity [AB,C] = A[B,C] + [A,C]B;

this can be applied iteratively to give a more general version, namely

[A1 · · ·AM , B] =
M∑

j=1

(
j−1∏

k=0

Ak

)
[Aj, B]

(
M+1∏

k=j+1

Ak

)
(4.34)

where (for notational convenience) we have introduced A0 = AM+1 = I.
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Noting that |aα1,...,αM
| ≤ ‖A‖, applying the above commutator identity and

recalling that ‖σαj
nj ‖ = 1 allows us to calculate

‖[A,B(t)]‖ ≤
∑

α1,...,αM
∈{0,x,y,z}

‖A‖
M∑

j=1

∥∥∥
[
σαj
nj
, B(t)

]∥∥∥ ≤ 4M‖A‖
M∑

j=1

CB(nj, t) (4.35)

Finally we are in a position to calculate a general Lieb-Robinson bound

for the noise model of this chapter with arbitrary operators A and B, namely

CB(t) ≤ e−8(γ−8‖H0‖)te32‖H0‖‖R‖tC ′ (4.36)

where

C ′ = M4M
∑

j

CB(j, 0) (4.37)

Note that this has the same form as the Lieb-Robinson bound (4.30) for single-

site operators An excepting a constant multiplicative term which is exponential

in the size of the support of the operator A. It is worth noting that if we

have specific knowledge about the structure of the operator A, we may be

able to dramatically reduce the number of terms in the expansion (4.32) and

consequently reduce the size of the constantM4M in the Lieb-Robinson bound.

4.4 Analysis of the new Lieb-Robinson bound

We now perform a detailed analysis of the general Lieb-Robinson bound (4.36)

for the fluctuating disorder model studied in this chapter.

We see that the bound is decaying in time if γ > (8 + 4‖R‖)‖H0‖; con-

versely, if γ < (8 + 4‖R‖)‖H0‖ our bound is exponentially growing in time

and is a useless bound: the original Lieb-Robinson bound is far superior to

ours in this regime. We have therefore identified a potential noise threshold:

if the noise level γ is below the threshold (8 + 4‖R‖)‖H0‖ then our bound di-

verges and we are limited only by the ballistic transport of quantum states (and

hence quantum information) identified in the original Lieb-Robinson bound;
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however if the noise level is above the threshold then the dynamics are more

localised.

We now analyse the localisation of the dynamics in the noisy regime

(γ > (8 + 4‖R‖)‖H0‖). Assuming the support of A is initially disjoint with

the support of B then CB(0) = 0. For small times (when the exponentially

decaying term is still fairly close to unity) the matrix e32‖H0‖Rt causes the sup-

port of B(t) to grow at a rate limited by the linear light cone of the original

Lieb-Robinson bound. In other words, CB(0) is negligibly small if the distance

between the supports of A and B is greater than O(t). However at larger times

the decaying term e−8(γ−8‖H0‖)t exponentially suppresses CB(t), irrespective of

the distance between the supports of A and B. We note that information can

propagate from the region supporting A to to the region supporting B in time

t only if the Lieb-Robinson commutator CB(t) is non-negligible. This means

that information can (on average) spread by at most a constant number of sites

along the chain before CB(t) is exponentially suppressed and the information

is lost in the noise of the system.

We now rigorously analyse the Lieb-Robinson bound to make the above

statements more precise. We begin by restating the Lieb-Robinson bound as

CB(t) ≤ e−γ̃teR̃tC ′ (4.38)

where γ̃ = 8(γ − 8‖H0‖) and R̃ = 32‖H0‖R. This expression highlights the

similarity of this Lieb-Robinson bound to the expression (3.60) for the corre-

lation functions of chapter 3; for this reason the analysis below is very similar

to that performed in section 3.5.1.

Defining a new constant Γ = 8γ − 8(8 + 4‖R‖)‖H0‖ allows us to rewrite

the Lieb-Robinson bound as

CB(t) ≤ e−ΓtC ′ (4.39)

(Note that as γ > (8 + 4‖R‖)‖H0‖ is above the noise threshold then Γ > 0.)
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From this version of the bound it is clear that CB(t) is negligible (that is

CB(t) ≤ ǫ) for large times t ≥ t̃ǫ where t̃ǫ = log(C
′
ǫ
)/Γ.

Having analysed the large time behaviour of the Lieb-Robinson bound we

now turn to the small time t < t̃ǫ behaviour. We define

Q̃m(t) =
∞∑

l=m

(R̃t)l

l!
(4.40)

and use the same argument as in section 3.5.1 to see that ‖Q̃m(t)‖ ≤ ǫ when

m ≥ tκ̃ǫ where κ̃ǫ is a constant. Noting that R̃ is tri-diagonal (as was R in

section 3.5.1) we see that

〈j| Q̃m(t) |k〉 = 〈j| eR̃t |k〉 for |j − k| > m (4.41)

which tells us that eR̃t (and hence the right-hand-side of the Lieb-Robinson

bound) is negligible if |j − k| ≥ tκ̃ǫ.

In summary, we have shown that the right-hand-side of our Lieb-Robinson

bound is negligible if either

• t ≥ t̃ǫ = log (C
ǫ
)/Γ

• |j − k| ≥ tκ̃ǫ for some constant κ̃ǫ

Equivalently, the right-hand-side of the Lieb-Robinson bound is non-negligible

only when |j − k| < κ̃ǫt̃ǫ or in other words the support of B(t) can, on average,

grow by at most κ̃ǫt̃ǫ sites. (Strictly speaking the support of B can grow

more than this, however outside this range the support of B is exponentially

suppressed.) This can be restated in an information theoretic manner as “non-

negligible amounts of information can propagate, on average, by at most κ̃ǫt̃ǫ

sites”.

4.5 Discussion

To summarise the results of this chapter, we have identified a potential noise

threshold for our model of a spin chain experiencing on-site disorder which
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fluctuates in both strength and direction. If this threshold is real (and not

just a function of the way we calculated the bound), then it is similar to

a quantum-to-classical phase transition, where low noise levels allow us to

perform quantum computation but high noise levels prohibit this [104]. In the

high noise regime, we have found that information can propagate (on average)

by at most a constant number of sites before the information is lost in the

noise of the system.

There is a fundamental difference between the dynamic disorder model

studied in this chapter and that of chapter 3. In chapter 3 the noise model

preserves the number of excitations in the spin chain (allowing, for example,

the dual rail protocol discussed in section 1.2.2 to be used). However in the

model studied in this chapter the on-site disorder components in the x and

y directions create and destroy excitations. Therefore we can argue that any

initial excitation really is lost in the noise and (unlike in chapter 3) this is not

just a consequence of the averaging process but rather a real phenomenon.

Consequently any attempt by Alice and Bob to use this spin chain for com-

munication is going to run into problems: since excitations in the chain are

indistinguishable, if Bob detects an excitation he cannot know if it is the

excitation transmitted by Alice or an excitation created by the noise.

Note that (as with ensemble averaged correlation functions in chapter 3)

this bound does not provide the full picture about the dynamics due to the

ensemble averaging process we used to average over the noise. In order to

better understand the dynamics we need to estimate the difference between

the actual dynamics of B and the ensemble averaged dynamics. This would

require a bound on ‖B(t)−B(ξ, t)‖ but we cannot calculate this directly as

we do not know the exact details of the noise (we only know the distribution

of the field strengths at each instant in time).

Note that due to the fundamental differences between the two dynamic

disorder models, we cannot simply assume that a square-root light cone exists
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as it did for the noise model of chapter 3. We conjecture that (due to the

creation and destruction of excitations in this model) this ensemble averaged

Lieb-Robinson bound represents a fairly truthful picture of the dynamics for

all realisations of the disorder: for high levels of noise (γ > (8 + 4‖R‖)‖H0‖)
the initial excitation will become completely lost in the noise of the system.

If this is true, then communication of a fidelity high enough to allow quantum

error correction is only possible for short times and consequently over short

distances.

To confirm or disprove this conjecture one could attempt a variance cal-

culation approach to finding ‖B(t)−B(ξ, t)‖, but it is not entirely clear how

one should do this. One might also be tempted to try and investigate further

by using correlation functions (as we did in chapter 3) but unfortunately this

does not work: |0〉 (or |Ω〉 if we apply the Jordan-Wigner transformation) is

not an eigenstate of the Hamiltonian and so the method used to calculate the

correlation functions in chapter 3 will not work here.

We do not provide a solution to this problem, but merely comment that

further investigation is required if we are to fully understand the dynamics of

this model.
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Chapter 5

Spin chains as generalised
depolarising channels

Generalised depolarising channels are an interesting area of study in their own

right; furthermore, they are realistic models of noisy quantum channels and

they are experimentally realisable [68]. However they are particularly impor-

tant because any quantum channel Φ can be transformed into a generalised

depolarising channel in the following manner.

The channel Φ is used to transmit one half of a bipartite maximally entan-

gled state. The resultant state (which, generally speaking, will no longer be

maximally entangled) is then used by Alice and Bob to attempt quantum tele-

portation [105] of a quantum state ρin = |ψ〉 〈ψ| with resultant output state

ρout. The map ρin 7→ ρout is a generalised depolarising channel [106].

This is particularly relevant to us if we use a spin chain communication

protocol as the quantum channel Φ in the protocol described above; it is with

this focus on spin chains that we explain the protocol in more detail.

It is worth noting that antiferromagnetic qubit spin chains at finite tem-

perature can also be used to teleport or transfer the state of a qubit in a way

which results in depolarising channels [107], although we do not study this

here.

In this chapter, we first review the definition of a generalised depolarising

channel (§ 5.1). We then describe how arbitrary chains consisting of spins of
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dimension D can be used as generalised depolarising channels (§ 5.2); we focus

on excitation-preserving spin chains (§ 5.2.1) before giving a worked example

and some numerical simulations of qubit spin chains (§ 5.2.2). We finish by

showing that a generalisation of the noise model where the on-site disorder

fluctuates in both strength and direction can act as a generalised depolarising

channel (§ 5.3).

5.1 Recap of generalised depolarising

channels

We briefly recall the definition of generalised depolarising channels introduced

in section 1.4, but first we recall that the state of a qudit (a D-dimensional

quantum system) can be written as

ρ(t) =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

aα(t)Mα

)
(5.1)

where M0 = I and {Mα}D
2−1

α=0 is a basis which is trace-free (tr(Mα) = 0 for

all α 6= 0) and trace-orthogonal (tr(M †
αMβ) = 0 for all α 6= β). The vector

a = (a0, . . . , aD2−1) is called the polarisation vector and its components aα the

polarisation coefficients. The normalisation in equation (5.1) is chosen so that

pure states have a polarisation vector of unit norm ‖a‖ :=
∑D2−1

α=1 |aα|2 = 1

and mixed states have a polarisation vector of norm strictly less than unity

‖a‖ < 1. Recall that a0 = 1 to ensure that ρ is normalised with unit trace.

A generalised depolarising channel Φv (with respect to the basis {Mα})
is defined to be a completely positive, trace-preserving map which maps a

quantum state ρ into

Φv(ρ) =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

vαaαMα

)
(5.2)

where the vector v = (v0, . . . , vD2−1) is the compression vector and its com-

ponents vα are the compression coefficients which satisfy |vα| ≤ 1 for all α.

Recall that v0 = 1 to ensure that Φv is trace-preserving.

81



5.2 Arbitrary spin chains as generalised depo-

larising channels

In this section we show in detail how arbitrary spin chains (whether noisy or

noise-free) consisting of D-dimensional qudits (spin D−1
2

particles) can be used

as generalised depolarising channels. In particular, this applies to the noisy

chains of qubits we studied in chapters 2, 3 and 4. By restricting to permuta-

tion Hamiltonians we are able to give an explicit formula for the compression

coefficients and we present some numerical simulations to illustrate this in the

case of qubits.

We begin by defining the Heisenberg-Weyl basis to be {Mjk}D−1
j,k=0 where

Mjk := XjZk and where

X :=
D−1∑

j=0

|j〉 〈j + 1(modD)| and Z :=
D−1∑

j=0

ωj |j〉 〈j| (5.3)

(ω = e2πi/D is the primitive Dth root of unity.)

The bipartite maximally entangled states of two qudits can be conveniently

expressed in terms of the Heisenberg-Weyl basis

|Φrs〉 = (Mrs ⊗ I)
1√
D

D−1∑

j=0

|j, j〉 =
1√
D

D−1∑

j=0

ωjs |j − r, j〉 (5.4)

where |j, k〉 = |j〉 ⊗ |k〉.
If Alice has a maximally entangled bipartite state |Φrs〉, she can retain one

half of this state (on a qudit labelled by 0) and place the other half of it on

the first site of a qudit spin chain of length N which has been initialised in

the state |0〉 = |0〉1 ⊗ · · · ⊗ |0〉N . If she does this then the state of the whole

system is

|ψ(0)〉 =
1√
D

D−1∑

j=0

ωjs |j − r〉0 ⊗ |j〉1 ⊗ |0〉c0,1 (5.5)

where |0〉
c0,k = |0〉1 ⊗ · · · ⊗ |0〉k−1 ⊗ |0〉k+1 ⊗ · · · ⊗ |0〉N (and 0̂, k represents all

sites except sites 0 and k).
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If the Hamiltonian for the spin chain is H(t) then solving the Schrödinger

equation reveals that the propagator is U(t) = T e−i
R t
0 H(s)ds and so after free

evolution for a time t the spin chain is in the state

|ψ(t)〉 =
1√
D

D−1∑

j=0

ωjs |j − r〉0 ⊗
(
U(t) |j〉1 ⊗ |0〉c0,1

)
(5.6)

Tracing out all sites of the spin chain except for site N (Bob’s qudit) reveals

that Alice and Bob now share the entangled state

χrs(t) = tr
d0,N |ψ(t)〉 〈ψ(t)| (5.7)

which, when expanded in full, can be written as

χrs(t) =
1

D

D−1∑

j,k=0

ω(j−k)s |j − r〉0 〈k − r|0⊗tr
d0,N

(
U(t) |j〉1 |0〉c0,1 〈k|1 〈0|c0,1 U †(t)

)

(5.8)

It is known [106] that if we use χrs(t) to teleport the qudit ρin from Alice

to Bob then Bob obtains output state

ρ̃rs =
D−1∑

p,q=0

tr (χrs(t) |Φpq〉 〈Φpq|)
(
X−pZq

)
ρin
(
X−pZq

)†
(5.9)

which, due to the relationXaZb = ωabZbXa, is a generalised depolarising chan-

nel with compression coefficients

v
(rs)
lm (t) =

D−1∑

p,q=0

p(rs)
pq (t)ω−mp−lq where p(rs)

pq (t) = 〈Φpq|χrs(t) |Φpq〉

(5.10)

(One can check that p
(rs)
pq are probabilities: 0 ≤ p

(rs)
pq ≤ 1 and

∑D−1
p,q=0 p

(rs)
pq = 1.)

5.2.1 Excitation-preserving spin chains

We now apply the above results to spin chains whose Hamiltonians are per-

mutation Hamiltonians (which preserve the number and type of excitations);

this allows us to explicitly calculate the probabilities p
(rs)
pq .
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A simple permutation Hamiltonian

We first consider a simple nearest-neighbour Hamiltonian for a qudit spin

chain of length N

H =
N−1∑

j=1

Pj,j+1 where Pj,j+1 =
D−1∑

r,s=0

(XrZs)j ⊗
(
ω−rsX−rZ−s)

j+1

(5.11)

Observe that the local interaction Pj,j+1 acts on states as follows

Pj,j+1 |α〉j ⊗ |β〉j+1 = N |β〉j ⊗ |α〉j+1 where α, β ∈ {0, . . . , D − 1}
(5.12)

This shows us that our Hamiltonian preserves the number and type of excita-

tions and is therefore a permutation Hamiltonian.

Generalised XX-Hamiltonian

We define the generalised XX-Hamiltonian to be

H =
N−1∑

j=1

hj,j+1 where hj,j+1 =
D−1∑

r=1

D−1∑

s=0

(XrZs)j ⊗
(
ω−rsX−rZ−s)

j+1

(5.13)

This time the local interaction hj,j+1 acts on states as

hj,j+1 |α〉j ⊗ |β〉j+1 =

{
N |β〉j ⊗ |α〉j+1 α 6= β

0 α = β
α, β ∈ {0, . . . , D − 1}

(5.14)

and we see that this Hamiltonian is also a permutation Hamiltonian.

General permutation Hamiltonians

If H is a general permutation Hamiltonian then an initial state of the spin

chain |j〉1 ⊗ |0〉b1 evolves in time to become

U(t) |j〉1 ⊗ |0〉b1 =
N∑

k=1

f
(j)
1,k(t) |j〉k ⊗ |0〉bk (5.15)

where f
(j)
1,k(t) are matrix elements of the propagator f

(j)
1,k(t) = 〈j|k U(t) |j〉1

which, due to the unitarity of the propagator, satisfy
∑N

k=1 |f
(j)
1,k(t)| = 1.
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This allows us to find an explicit expression for the entangled state shared

by Alice and Bob

χrs =
1

D

(
|−r, 0〉+

D−1∑

j=1

ωjsf
(j)
1,N |j − r, j〉

)(
〈−r, 0|+

D−1∑

k=1

ω−ksf (k)∗
1,N 〈k − r, k|

)

+
1

D

D−1∑

j=1

(
1−

∣∣∣f (j)
1,N

∣∣∣
2
)
|j − r, 0〉 〈j − r, 0|

(5.16)

(This calculation is straight forward but somewhat lengthy.) Observe that

if f
(j)
1,N = 1 for all j (which corresponds to perfect state transfer along the

spin chain) then χrs = |Φrs〉 〈Φrs| is a maximally entangled state as we would

expect.

The expression (5.16) allows us to calculate the probabilities p
(rs)
pq explicitly

p(rs)
pq =

1

D2


(1− δrp)

(
1−

∣∣∣f (r−p)
1,N

∣∣∣
2
)

+ δrp

∣∣∣∣∣1 +
D−1∑

j=1

ωj(s−q)f (j)
1,N

∣∣∣∣∣

2

 (5.17)

Substituting this result into equation (5.10) completes an explicit expression

for the compression coefficients and demonstrates the exact manner in which

D-dimensional quantum spin chains can be used as D-dimensional generalised

depolarising channels.

5.2.2 Qubit spin chains

The expressions (5.16) and (5.17) are somewhat long and unwieldy, so in an

attempt to demonstrate the essence of what they show we consider an arbitrary

qubit spin chain and use this as a generalised qubit depolarising channel.

Suppose that Alice and Bob share the maximally entangled (Bell) state

|Φ00〉 = |00〉+|11〉√
2

. Then equation (5.16) reduces to

χ00 =

( |00〉+ f |11〉√
2

)(〈00|+ f ∗ 〈11|√
2

)
+

(
1− |f |2

2

)
|10〉 〈10| (5.18)
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where, for notational convenience, we have written f := f
(1)
1,N . Using equa-

tion (5.17) we find that the probabilities for this spin chain are

p
(00)
00 =

|1 + f |2
4

p
(00)
01 =

|1− f |2
4

p
(00)
10 =

1− |f |2
4

p
(00)
11 =

1− |f |2
4

(5.19)

which in turn allows us to use equation (5.10) to calculate the compression

coefficients of the generalised depolarising channel

v
(00)
00 = p

(00)
00 + p

(00)
01 + p

(00)
10 + p

(00)
11 = 1

v
(00)
01 = p

(00)
00 + p

(00)
01 − p(00)

10 − p(00)
11 = |f |2

v
(00)
10 = p

(00)
00 − p(00)

01 + p
(00)
10 − p(00)

11 = f+f∗

2
= Re(f)

v
(00)
11 = p

(00)
00 − p(00)

01 − p(00)
10 + p

(00)
11 = f+f∗

2
= Re(f)

(5.20)

We know (see section 1.4) that all single qubit generalised depolarising

channels lie within a certain tetrahedron in compression space. Numerical sim-

ulations of XX-model qubit spin chains give simple demonstrations of how the

resultant generalised depolarising channels evolve (and how their compression

vector wanders around the tetrahedron) as time progresses.

Figure 5.1 presents numerical simulations of the generalised depolarising

channels (whose compression coefficients are given by equation (5.20)) which

arise when Alice and Bob share the Bell state |Φ00〉 = |00〉+|11〉√
2

along a clean

(noise-free) XX-model qubit spin chain. The top row shows the evolution of

the generalised depolarising channel which arises from a chain of length N = 2

(which is known to allow perfect state transfer at certain times); the bottom

row depicts a similar scenario but with a chain of length N = 16.

Figure 5.2 presents numerical simulations of the generalised depolarising

channels which arise when Alice and Bob share the Bell state |Φ00〉 along

a noisy XX-model qubit spin chain with static on-site disorder distributed

according to a Cauchy distribution of width δ (see chapter 2). The top row

shows the evolution of channels arising from low levels of disorder (that is, the

Cauchy distribution is narrow, δ = 0.01); the middle row depicts moderate
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Figure 5.1: The generalised depolarising channels arising when Alice and Bob
attempt to share the Bell state |Φ00〉 = |00〉+|11〉√

2
through clean (noise-free) XX-

model spin chains before using this resource to attempt quantum teleporta-
tion. The left-hand diagrams show the line in the tetrahedron along which
the generalised depolarising channels lie and the right-hand diagrams param-
eterise the evolution of the channels along this line. top row: a chain of
length N = 2 evolving for times 0 ≤ t ≤ 10; bottom row: a chain of length
N = 16 evolving for times 0 ≤ t ≤ 50.
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Figure 5.2: The generalised depolarising channels arising when Alice and Bob
attempt to share the Bell state |Φ00〉 = |00〉+|11〉√

2
through noisy XX-model spin

chains (with Cauchy-distributed static on-site disorder) before using this re-
source to attempt quantum teleportation. All chains depicted are of length
N = 4 and evolution is shown for times 0 ≤ t ≤ 10. top row: small disorder
(δ = 0.01); middle row: moderate disorder (δ = 0.1); bottom row: large
disorder (δ = 1.0).
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levels of disorder (δ = 0.1); and the bottom row depicts high levels of disorder

(δ = 1.0).

As one might expect, low levels of disorder give rise to channels which

are close to the ones we obtain when the chain is noise-free, whilst moderate

disorder levels produce significant variation from the noise-free scenario. High

levels of disorder mean that Anderson localisation sets in (the localisation

length of the energy eigenstates is shorter than the length of the chain) which

results in Alice and Bob sharing minimal amounts of entanglement. This

gives rise to channels which are close to the completely depolarising channel

(which maps every input state to the completely mixed state). Note that for

longer chains Anderson localisation sets in at lower levels of disorder, δ; this is

because the localisation length of the energy eigenstates (which scales as 1/δ)

is shorter than the chain length N for all disorder levels greater than O(1/N).

5.3 Fluctuating noise as a generalised depo-

larising channel

In this section we show how a generalised version of the fluctuating on-site

disorder model acting on a single qudit acts on the state of that qudit as a

generalised depolarising channel.

Consider a single qudit experiencing on-site disorder which has one fluctu-

ating component for each direction α 6= 0. The field strengths ξα(t) are drawn

at each instant in time from probability distributions Pα with finite second

moments. This is very similar to the noise model in chapter 4, but this time

we allow the field strengths to have a different distribution in each direction.

Working with this noise model, we can generalise the derivation of the

master equation given in chapter 3 by increasing the number of meters for each

time interval tr from one to (D2 − 1): one meter for each of the fluctuating

fields ξα(t) with α 6= 0. Following the same derivation as in chapter 3 (and
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remembering that the Mα may not be hermitian) we arrive at the following

master equation which governs the average case evolution of the state ρ(t) of

our qudit

d

dt
ρ(t) = −i[H0, ρ(t)]−

D2−1∑

α=1

γα
(
MαMαρ(t) + ρ(t)M †

αM
†
α − 2Mαρ(t)M

†
α

)

(5.21)

where H0 is the intrinsic Hamiltonian of the qudit and γα ∝ E(ξα)2 is propor-

tional to the second moment of the probability distribution Pα. If the basis

{Mα} is hermitian then the dissipative term in this master equation reduces

to the familiar double commutator of chapters 3 and 4.

We now restrict ourselves to working in a basis which is unitary, hermitian

and which satisfies

MαMβ = eiθαβMβMα where θαβ ∈ R (5.22)

This allows us to rewrite the dissipative term of the master equation as
∑D2−1

α=0 2γα (ρ(t)−Mαρ(t)Mα).

Assuming that the intrinsic Hamiltonian of the qudit is the identityH0 = I,

we can use the master equation (5.21) and the expressions (5.1) and (5.22) to

write the time derivative of the state ρ(t) as

d

dt
ρ(t) = − 1

D

(
I +

D2−1∑

α,β=1

√
D(D − 1)

tr(M †
βMβ)

2γα(1− eiθαβ)aβ(t)Mβ

)
(5.23)

From this differential equation, we are able to read off the differential equations

satisfied by the polarisation coefficients aβ(t), namely

d

dt
aβ(t) = −

D2−1∑

α=1

2γα(1− eiθαβ)aβ(t) (5.24)

which have solution

aβ(t) = exp

(
−2
∑

α 6=0

γα(1− eiθαβ)t

)
aβ(0) (5.25)
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This allows us to conclude that the fluctuating on-site disorder acts as a gen-

eralised depolarising channel on the state ρ(t) of the qudit, with compression

coefficients

vβ = exp

(
−2
∑

α 6=0

γα(1− eiθαβ)t

)
(5.26)
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Chapter 6

Depolarising channels

In chapter 5 we showed how any quantum channel (and in particular a qudit

spin chain) can be used as a generalised depolarising channel. In this chapter

we study these generalised depolarising channels in detail, focusing on the

structure (in compression space) of the set of all such channels with respect

to a given basis.

Recall that the state of an arbitrary qudit (a D-dimensional quantum par-

ticle) can be written as

ρ =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

aαMα

)
(6.1)

where the basis {Mα}D
2−1

α=0 is trace-free and trace-orthogonal (except forM0 = I

which has non-zero trace). Also recall that a generalised depolarising channel

Φv (with respect to the basis {Mα}) is a trace-preserving completely positive

map which maps ρ into

Φv(ρ) =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

vαaαMα

)
(6.2)

The polarisation coefficients aα are the components of the polarisation vector

a = (a0, . . . , aD2−1) and the compression coefficients vα are the components of

the compression vector v = (v0, . . . , vD2−1). (Recall that a0 ≡ 1 so that ρ is

normalised and v0 ≡ 1 so that Φv is trace-preserving.)
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We make the following observation regarding the polarisation and com-

pression coefficients

• If Mα = γM †
β then the hermiticity of ρ tells us that aαγ = a∗

β (where M †

is the hermitian conjugate of M and a∗ the complex conjugate of a).

Furthermore, since Φv(ρ) must be a quantum state (and must therefore

be hermitian), vα = v∗
β.

We also note some special cases of the above observation, namely

• If Mα = γM †
α then aαγ = a∗

α and vα = v∗
α ∈ R.

• If Mα is hermitian (γ = 1) then aα ∈ R and vα ∈ R.

• If Mα is skew-hermitian (γ = −1) then aα is pure imaginary and vα ∈ R.

If we work in a fixed basis {Mα} then it is clear that for each generalised

depolarising channel there is a unique compression vector. It is therefore

natural to ask the question “which vectors v are valid compression vectors

corresponding to depolarising channels Φv?” From the definition of a depo-

larising channel given above it is clear that the answer to this question is “a

vector v is a valid compression vector when the induced map Φv is completely

positive and v0 = 1 (Φv is trace-preserving)”. The purpose of this chapter is

to identify which vectors v meet this criterion.

It is clear from the observation |vα| ≤ 1 (made in section 1.4) that all com-

pression vectors v which induce depolarising channels Φv lie within the finite

region V = {v such that |vα| ≤ 1 for all α}. However we will see that in gen-

eral the converse is not true: not all vectors in V induce depolarising channels.

Indeed, we have already seen this for qubits: the set V (which is the unit cube)

is larger than the tetrahedron which encloses all possible compression vectors

(see sections 1.4 and 6.2) and so there are vectors v ∈ V which lie outside the

tetrahedron and are therefore not valid compression vectors.
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This chapter is organised as follows. We begin by making use of the Choi-

Jamiolkowski representation (§ 6.1) to reformulate the problem of complete

positivity into an equivalent problem concerning the positivity of large ma-

trices. Having done this we discover the geometrical structure of the set of

all possible compression vectors when we work in three specific bases: the

Pauli basis (§ 6.2), the Gell-Mann basis (§ 6.3) and the Heisenberg-Weyl basis

(§ 6.4). We also consider arbitrary bases (§ 6.5) and consider the effects of

changing basis (§ 6.6) before showing how our formalism can be used to study

more general channels (§ 6.7). Finally we conjecture that one can average any

quantum channel with a generalised depolarising channel to obtain a mixed

unitary channel (§ 6.8). We draw the chapter to a close with a brief summary

of the results (§ 6.9).

6.1 Choi-Jamiolkowski representation

To help us decide which compression vectors v induce completely positive

maps Φv (which are therefore generalised depolarising channels) we employ

the Choi-Jamiolkowski representation of a map Φ

J(Φ) =
D−1∑

j,k=0

Φ (|j〉 〈k|)⊗ |j〉 〈k| (6.3)

It is known [108, 109] that a map Φ is completely positive if and only if its

Choi-Jamiolkowski representation J(Φ) is positive, which allows us to refor-

mulate the problem of identifying completely positive maps into the problem

of identifying positive matrices (which is a considerably easier task). In par-

ticular if

Φ(ρ) = tr(A†ρ)B (6.4)

where A =
∑D−1

l,m=0 alm |l〉 〈m| and B =
∑D−1

l,m=0 blm |l〉 〈m| are D ×D matrices
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then

J(Φ) =
D−1∑

j,k=0

tr

(
D−1∑

l,m=0

a∗
ml |l〉 〈m|j〉 〈k|

)
B ⊗ |j〉 〈k|

=
D−1∑

j,k=0

a∗
jkB ⊗ |j〉 〈k| = B ⊗ A∗

(6.5)

Since the basis {Mα} is trace-orthogonal, we may write

ρ =
D2−1∑

α=0

tr(M †
αρ)

tr(M †
αMα)

Mα and Φv(ρ) =
D2−1∑

α=0

tr(M †
αρ)

tr(M †
αMα)

vαMα (6.6)

which allows us to employ equation (6.5) to calculate the Choi-Jamiolkowski

representation of an arbitrary map Φv

J(Φv) =
D2−1∑

α=0

vα
Mα ⊗M∗

α

tr(M †
αMα)

(6.7)

Depending upon the compression vector v, the map Φv may or may not be

a generalised depolarising channel: Φv is completely positive only when the

eigenvalues of J(Φ) are all non-negative. In the following sections we work

in different bases to determine precisely which vectors v induce generalised

depolarising channels Φv.

6.2 Pauli basis

In this section we prove a conjecture by Dixit and Sudarshan [4], which states

that when D = 2d (d ∈ N) and we work in the Pauli basis then the set of

all valid compression vectors forms a simplex in compression space. We also

illustrate our techniques with a worked example for single qubit generalised

depolarising channels.

We restrict ourselves to a multiple qubit setting (D = 2d) and choose the

basis {Mα} to be formed of tensor products of the single qubit Pauli matrices.

Let α be the number whose base-4 representation is αdαd−1 · · ·α1

α =
d∑

j=1

4j−1αj (6.8)

95



Then we define the basis matrices Mα by

Mα = σα1 ⊗ · · · ⊗ σαd (6.9)

where σ0, σ1, σ2 and σ3 are the Pauli matrices I, σx, σy and σz. Note that this

basis is trace-free and trace-orthogonal; furthermore each Mα is hermitian and

so by the observation at the beginning of this chapter all aα and vα are real.

In this case it is a simple matter to find the eigenvectors and eigenvalues of

J(Φv) and hence to determine which maps J(Φv) are depolarising channels.

Since J(Φ) is a D2 ×D2 matrix (it is a superoperator) we can think of it as

being an operator on 2d qubits (as D2 = 22d). We define

|Ψnm〉j =
∑

r=0,1

(−1)rm |r〉j⊗|r + n(mod 2)〉j+d where n,m ∈ {0, 1} (6.10)

to be the maximally entangled Bell states on qubits j and j + d (in more usual

notation we have |Ψ00〉 = |Φ+〉, |Ψ01〉 = |Φ−〉, |Ψ10〉 = |Ψ+〉 and |Ψ11〉 = |Ψ−〉).
Observe the following relations

σ0
j ⊗ (σ0

j+d)
∗ |Ψnm〉j = |Ψnm〉j

σ1
j ⊗ (σ1

j+d)
∗ |Ψnm〉j = (−1)m |Ψnm〉j

σ2
j ⊗ (σ2

j+d)
∗ |Ψnm〉j = (−1)n+m |Ψnm〉j

σ3
j ⊗ (σ3

j+d)
∗ |Ψnm〉j = (−1)n |Ψnm〉j

(6.11)

which may be summarised as

σαj ⊗ (σαj+d)
∗ |Ψnm〉j = (−1)f(α,n,m) |Ψnm〉j (6.12)

where

f(α, n,m) :=
⌊α

2

⌋
n+

⌊
α+ 1

2

⌋
m (6.13)

It is now a straight forward matter to check that the eigenvectors |Jnm〉
of the Choi-Jamiolkowski representation of an induced map Φv are tensor

products of these Bell states

|Jnm〉 =
d⊗

j=1

∣∣Ψnjmj

〉
j

n = (n1, . . . , nd)
m = (m1, . . . ,md)

(6.14)
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with corresponding eigenvalues

λnm =
D2−1∑

α=0

vα
D

(−1)
Pd

j=1 f(αj ,nj ,mj) (6.15)

Since there are 22d = D2 different eigenvectors |Jnm〉 and eigenvalues λnm,

these are all the eigenvectors and eigenvalues of J(Φ). The important thing

to notice here is that each λnm is a linear combination of the compression

coefficients vα.

We have therefore shown which vectors v induce depolarising channels Φv

— namely those for which all eigenvalues of the Choi-Jamiolkowski represen-

tation of Φv are non-negative: λnm ≥ 0 for all n and m. We are now in a

position to prove a conjecture of Dixit and Sudarshan [4], which we present as

the following theorem.

Theorem 4. When D = 2d and we work in the Pauli basis, the set of all

compression vectors forms a simplex in compression space.

Proof. Since each λnm is linear in the compression coefficients vα then the

equation λnm = 0 defines a hyperplane in compression space (which is a real

Euclidean vector space of dimension D2 − 1, with one dimension for each

component of the compression vector excepting the zeroth component which

we suppress as it is identically equal to 1).

Since Φv is completely positive if and only if all eigenvalues λnm are non-

negative, the hyperplanes λnm = 0 must enclose precisely the set of of vectors

which induce completely positive depolarising channels Φv. In particular the

hyperplanes enclose a finite region of compression space and the shape of this

enclosed region must therefore be a simplex.

We now prove a small lemma before finding the extremal channels of the

simplex (which are the depolarising channels whose compression vectors form

the vertices of the simplex).
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Lemma 5. The eigenvalues of the Choi-Jamiolkowski representation of Φv

sum to the system dimension, D.

Proof. First recall that the sum of the eigenvalues of a matrix is simply the

trace of that matrix. Then
∑

n,mλnm = tr(J(Φv))

= tr
(∑D−1

j,k=0 Φv(|j〉 〈k|)⊗ |j〉 〈k|
)

= tr
(∑D−1

j=0 Φv(|j〉 〈j|)
)

= D tr Φv

( I
D

)
= D tr

( I
D

)
= D

(6.16)

Theorem 6. The extremal channels are conjugations by the basis matrices

Φ(α)(ρ) := M †
αρMα α ∈ {0, . . . , D2 − 1} (6.17)

Proof. First note the identity

σβσασβ = (−1)g(α,β)σα α, β ∈ {0, 1, 2, 3} (6.18)

where

g(α, β) ≡





1 (mod 2) if (α, β) = (1, 2), (1, 3), (2, 3),
(2, 1), (3, 1), (3, 2)

0 (mod 2) otherwise

≡ αβ(α− β)/2 (mod 2)

(6.19)

We now fix β and prove that Φ(β) is an extremal channel. First note that

Φ(β) is completely positive (see for example [5]) and apply the above identity

to see that

Φ(β)(ρ) =
D2−1∑

α=0

tr(M †
βρ)

tr(M †
αMα)

M †
βMαMβ

=
D2−1∑

α=0

tr(M †
βρ)

tr(M †
αMα)

(−1)
Pd

j=1 g(αj ,βj)Mα

(6.20)

It is then clear that Φ(β) is a depolarising channel whose compression vector

has components

vα = (−1)
Pd

j=1 g(αj ,βj) (6.21)
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By combining expressions for the eigenvalue λpq (6.15) and the compression

coefficients vα (6.21) we see that

λpq =
D2−1∑

α=0

1

D
(−1)

Pd
j=1 g(αj ,βj)+f(αj ,pj ,qj) (6.22)

For fixed β and for all α, it is clear that if

sαβpq :=
d∑

j=1

g(αj, βj) + f(αj, pj, qj) ≡ 0 (mod 2) (6.23)

then λpq = D. We now show that there exist p and q such that (6.23) holds:

• When α = 4r−1 (i.e. αr = 1 and αj = 0 for all j 6= r) then

sαβpq ≡
βr(1− βr)

2
+ qr (mod 2) (6.24)

and so (6.23) holds when

qr ≡
βr(1− βr)

2
(6.25)

• When α = 3× 4r−1 (i.e. αr = 3 and αj = 0 for all j 6= r) then

sαβpq ≡
3βr(3− βr)

2
+ pr (mod 2) (6.26)

and so (6.23) holds when

pr ≡
3βr(3− βr)

2
(6.27)

• When α = 2× 4r−1 (i.e. αr = 2 and αj = 0 for all j 6= r) then

sαβpq ≡
2βr(2− βr)

2
+ pr + qr (mod 2) (6.28)

and so (6.23) holds when pr and qr are picked as in (6.25) and (6.27)

above.
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We have now shown that there exist p and q with λpq = D. Since Φ(β) is

completely positive then all the eigenvalues of J(Φ(β)) are non-negative; they

sum to D and we have found one which is equal to D; therefore all other

eigenvalues are zero

λpq = D and λnm = 0 for all (n,m) 6= (p, q) (6.29)

Clearly then the compression vector v of the map Φ(β) lies on all the hyper-

planes λnm = 0 except λpq = 0, and so Φ(β) must be an extremal channel.

To finish the proof, note that the simplex has D2 vertices and there are D2

channels of the form Φ(β) so we have found all the extremal channels.

It is worth pointing out that any compression vector in the simplex can

be written as a convex linear combination of the extremal compression vectors

(which are the compression vectors forming the vertices of the simplex). This

implies that any depolarising channel can be written as a convex linear com-

bination of the extremal channels

Φv =
D2−1∑

α=0

pαΦ
(α)(ρ) where 0 ≤ pα ≤ 1 and

D2−1∑

α=0

pα = 1 (6.30)

Conversely, noting the relationship

vα =
D2−1∑

β=0

pβ(−1)
Pd

j=1 g(αj ,βj) (6.31)

allows us to conclude that any channel of the form (6.30) is a depolarising

channel.

Example 7. For a single qubit (D = 2) the compression space has dimension

3 and we see that for a general channel Φv

v0 = p0 + p1 + p2 + p3 = 1
v1 = p0 + p1 − p2 − p3

v2 = p0 − p1 + p2 − p3

v3 = p0 − p1 − p2 + p3

(6.32)
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and so we have the following correspondence between extremal channels and

compression vectors (we suppress the zeroth component of v which is always

equal to 1)
Φ(0)(ρ) = IρI ←→ v = ( 1, 1, 1)
Φ(1)(ρ) = XρX ←→ v = ( 1,−1,−1)
Φ(2)(ρ) = Y ρY ←→ v = (−1, 1,−1)
Φ(3)(ρ) = ZρZ ←→ v = (−1,−1, 1)

(6.33)

6.3 Gell-Mann basis

In the previous section we restricted the dimension of the quantum system

to be D = 2d so that we could employ the Pauli basis for multiple qubits. In

this section we choose one possible generalisation of the Pauli basis, namely

the Gell-Mann basis, which allows us to study systems of arbitrary dimension

D ∈ N. We will find that, in contrast to what was observed when we worked

in the Pauli basis, the set of all generalised depolarising channels with respect

to the Gell-Mann basis does not form a simplex in compression space.

The Gell-Mann basis is defined to be

Xjk := |j〉 〈k|+ |k〉 〈j|
Yjk := −i(|j〉 〈k| − |k〉 〈j|)
Zl :=

√
2

l(l+1)

(∑l−1
r=0 |r〉 〈r| − l |l〉 〈l|

) where





j ∈ {0, . . . , D − 2}
k, l ∈ {1, . . . , D − 1}
j < k

(6.34)

For notational consistency with the rest of the chapter we identify

M0 = I
Mα = Zα 1 ≤ α ≤ D − 1
Mα = Xjk α = D(1 + 2j) + 2k − (j + 1)(j + 2)
Mα = Yjk α = D(1 + 2j) + 2k − (j + 1)(j + 2) + 1

(6.35)

(i.e. {M0, . . . ,MD2−1} = {I, Z1, . . . , ZD−1, X01, Y01, . . . , XD−2,D−1, YD−2,D−1})
This basis is trace-free and trace-orthogonal (and reduces to the Pauli basis

when D = 2). Furthermore each Mα is hermitian and so all aα and vα are real.

We now attempt to find the eigenvectors and eigenvalues of J(Φv) and

begin by defining
∣∣J±
jk

〉
=

1√
2

(|j, k〉 ± |k, j〉) (6.36)
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where j, k ∈ {0, . . . , D − 1} and j < k. It is a simple matter to check that

I⊗ I∗ ∣∣J±
jk

〉
=

∣∣J±
jk

〉

Zl ⊗ Z∗
l

∣∣J±
jk

〉
=





0
∣∣J±
jk

〉
l < k

−2
l+1

∣∣J±
jk

〉
l = k

2
l(l+1)

∣∣J±
jk

〉
l > k

Xlm ⊗X∗
lm

∣∣J±
jk

〉
=

{ ±
∣∣J±
jk

〉
l = j and m = k

0
∣∣J±
jk

〉
else

Ylm ⊗ Y ∗
lm

∣∣J±
jk

〉
=

{ ∓
∣∣J±
jk

〉
l = j and m = k

0
∣∣J±
jk

〉
else

(6.37)

and so it is clear that
∣∣J±
jk

〉
are eigenvectors of J(Φv) and that the correspond-

ing eigenvalues λ±
jk are linear in the compression coefficients vα.

Now, J(Φv) has D2 eigenvalues and we have found D2 −D of them. We let

the remaining D eigenvalues be λj (j ∈ {0, . . . , D − 1}). In order to establish

which vectors in compression space induce depolarising channels we must now

find when these remaining D eigenvalues of J(Φv) are non-negative.

Since Mα ⊗M∗
α is symmetric for all α, J(Φv) is also symmetric and con-

sequently has real eigenvalues. By considering the matrix elements of J(Φv)

carefully we see that the only non-zero entries in the two columns indexed by

〈j, k| and 〈k, j| (with j < k) are in the two rows indexed by |j, k〉 and |k, j〉.
We may conjugate J(Φv) by a permutation matrix P (to permute the rows and

columns) to form a matrix J ′(Φv) which has identical eigenvalues to J(Φv).

By repeatedly conjugating by permutation matrices we can block-diagonalise

J(Φv) to obtain a matrix J̃(Φv) which has the following structure

J̃(Φv) =




[2× 2]
. . .

[2× 2]
[K(Φv)]


 (6.38)

There are D(D − 1)/2 blocks of size 2× 2 (each of which has two eigenvalues,

λ+
jk and λ−

jk, for some j and k) and a large block of size D ×D called K(Φv)

(which has eigenvalues λ0, . . . , λD−1).
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By considering the characteristic equation of the matrix K(Φv) we see that

the eigenvalues λ0, . . . , λD−1 satisfy

0 = (t− λ0) · · · (t− λD−1) =:
D∑

j=0

(−1)jtD−jSj (6.39)

where we have defined the eigenvalue sums Sj to be

S0 := 1 and (for j ∈ {1, . . . , D}) Sj :=
∑

0≤k1<···<kj≤D−1

λk1 · · ·λkj
(6.40)

The following lemma proves that the eigenvalues λ0, . . . , λD−1 are all non-

negative precisely when the eigenvalue sums S0, . . . , SD are all non-negative.

Lemma 8. λj ≥ 0 for all j ∈ {0, . . . , D − 1} if and only if Sk ≥ 0 for all

k ∈ {0, . . . , D}.

Proof. One way is trivial: if λj ≥ 0 for all j then Sk ≥ 0 for all k. We prove

the converse by contradiction.

Assume that Sk ≥ 0 for all k ∈ {1, . . . , D}, recall that S0 = 1 and note that

for any j ∈ {0, . . . , D − 1}

SD = λj(SD−1 − λj(SD−2 − · · · − λj(S1 − λj) · · · ))

=
D∑

k=1

(−1)k−1λkjSD−k
(6.41)

(this is essentially an inclusion-exclusion argument). But then we may split

this sum up into two terms

SD = λj
∑

k odd

λk−1
j SD−k −

∑

k even

λkjSD−k (6.42)

It is clear that these sums over k odd and k even are both non-negative since

each Sj is non-negative and λj appears to an even power in each term. But

then λj < 0 implies that SD < 0 also, which contradicts the assumption that

SD ≥ 0; we therefore conclude that the eigenvalues λj ≥ 0 are all non-negative.

Since this argument holds for all j ∈ {0, . . . , D − 1} the proof is complete.

103



Returning to J(Φv) we see from equation (6.7) that each matrix element

consists of a linear combination of the compression coefficients vα, a prop-

erty which is inherited by K(Φv). Careful consideration reveals that Sj is a

jth-order polynomial in the compression coefficients

Sj =
∑

0≤α1≤···≤αj≤D2−1

cα1···αj
vα1 · · · vαj

(6.43)

It is tempting to conclude that Sj = 0 is a jth-order surface in compression

space, but we must be careful: it is possible that all jth-order coefficients

cα1···αj
(i.e. those with αk 6= 0 for all k) are equal to zero, in which case the

degree of the surface Sj = 0 is strictly less than j. For example, when D = 2

the Gell-Mann basis reduces to the Pauli basis and we have already seen in the

previous section that all eigenvalues are linear in the compression coefficients;

in this case the surface S2 = 0 is a plane and not a quadratic surface. In

general we may only conclude that Sj = 0 is a surface of order at most j.

We have now proved that the set of all vectors v which induce depolarising

channels Φv (with respect to the Gell-Mann basis) form a finite region in

compression space which is bounded by

• D2 −D + 1 hyperplanes

(D2 −D are given by λ±
jk = 0 and the remaining one is given by S1 = 0)

• A surface with order at most 2 (S2 = 0)

...

• A surface with order at most D (SD = 0)

Note that the above does not tell us whether the eigenvalues λ0, . . . , λD−1

are linear in the compression coefficients. It turns out that when D > 2 at

least one of the λj must be non-linear in the compression coefficients (a fact

which is proved in lemma 13 in section 6.5).
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Whilst it is a slight disappointment that we have been unable to explicitly

give expressions for all the eigenvalues of J(Φv), we can draw some solace

from the fact that we have simplified the problem somewhat. In order to

see if a vector v induces a depolarising channel we must check to see if all

the eigenvalues of the Choi-Jamiolkowski representation J(Φv) of the induced

map Φv are non-negative. Without the above results we would have to use

a “brute-force” algorithm to calculate the D2 eigenvalues of J(Φv) directly

but the above results enable us to calculate D2 −D of these quickly and

efficiently, leaving only D to be calculated by the brute-force algorithm (which

is a substantial improvement and computational speed-up).

6.4 Heisenberg-Weyl basis

In this section we work in the Heisenberg-Weyl basis which is an alternative

generalisation of the single-qubit Pauli basis to arbitrary dimension D. It has

certain advantages over the Gell-Mann basis (for example all the Heisenberg-

Weyl basis matrices are invertible whilst most of the Gell-Mann basis ma-

trices are singular). However there is a price to pay for such convenience:

the Heisenberg-Weyl basis is not hermitian and so the compression space is

a complex vector space. We will show that when we work in the Heisenberg-

Weyl basis, the set of all generalised depolarising channels forms a simplex in

compression space.

Let us first recall the definition of the Heisenberg-Weyl basis

Mα = Mjk := XjZk where j, k ∈ {0, . . . , D − 1}
and α = jD + k

(6.44)

where X and Z are defined to be

X :=
D−1∑

j=0

|j〉 〈j + 1(modD)| and Z :=
D−1∑

j=0

ωj |j〉 〈j| (6.45)

and where ω = e2πi/D is the primitive Dth root of unity. Note that this basis

is trace-free and trace-orthogonal.
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The rth powers (r ∈ {0, . . . , D − 1}) ofX and Z areXr =
∑D−1

j=0 |j〉 〈j + r|
and Zr =

∑D−1
j=0 ω

jr |j〉 〈j| and their inverses are X−r and Z−r .

We can now find the eigenvectors and eigenvalues of J(Φv) by defining

|Jjk〉 =
D−1∑

r=0

ωkr |r, r + j〉 (6.46)

Then it is a simple matter to check that

Mjk ⊗M∗
jk |Jlm〉 = ωmj−kl |Jlm〉 (6.47)

which shows us that |Jlm〉 are eigenvectors of J(Φv). Furthermore, there are

D2 distinct |Jlm〉 and we have therefore found all the eigenvectors of J(Φv).

Relabelling the compression coefficients vα as vjk (with α = Dj + k) we see

that the eigenvalues of J(Φv) are

λlm =
D−1∑

j,k=0

vjkω
mj−kl

D
(6.48)

The identity XrZs = ωrsZsXr allows us to show that M †
jk = ω−jkM−j,−k.

Therefore, by the observation at the start of this chapter, vjk = v∗
−j,−k.

In sections 6.2 and 6.3 we had one real compression coefficient for each

basis matrix. In this section we have seen that most of the compression coef-

ficients come in complex-conjugate pairs corresponding to two basis matrices

which are, up to a complex multiplicative factor, hermitian conjugates of each

other. Note that we still have the same number of free compression parameters

(since for each pair of conjugate basis matrices there are two free parameters in

the associated compression coefficients, namely the real and imaginary parts).

Furthermore, the compression space (although now complex) still has dimen-

sion D2 − 1 (recall that we suppress the dimension corresponding to v0 as it

is identically equal to 1).

Aside 9. As an aside, we find the exact structure of the compression space.

We use the relation M †
jk = ω−jkM−j,−k to see that Mjk = γM †

jk precisely when

j ≡ −j(modD) and k ≡ −k(modD).
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When D is odd the only solution is j = 0 and k = 0 ( i.e. Mjk = I). In this

case compression space consists of (D2 − 1)/2 complex planes.

When D is even there are four solutions, namely j, k ∈ {0, D/2}. In this

case, compression space consists of 3 real axes and (D2 − 4)/2 complex planes.

We now prove that, when working in the Heisenberg-Weyl basis, the set of

all compression vectors forms a simplex. We then find the extremal channels

whose compression vectors lie at the vertices of this simplex.

Theorem 10. When we work in the Heisenberg-Weyl basis, the set of all

compression vectors forms a simplex in compression space.

Proof. It is evident from equation (6.48) that the eigenvalues of J(Φv) are

linear in the compression coefficients and so λlm = 0 defines a hyperplane in

compression space.

Since Φv is completely positive if and only if all eigenvalues λlm are non-

negative, the hyperplanes λlm = 0 must enclose precisely the set of vectors

which induce completely positive depolarising channels Φv. In particular the

hyperplanes enclose a finite region of compression space and the shape of this

enclosed region must therefore be a simplex.

Theorem 11. The extremal channels are

Φ(jk)(ρ) := M †
jkρMjk j, k ∈ {0, . . . , D − 1} (6.49)

Proof. We fix j and k and prove that Φ(jk) is extremal. Using the identity

M †
jkMlmMjk = ωlk−mjMlm we see that

Φ(jk)(ρ) =
D−1∑

l,m=0

tr(Mlmρ)

D
ωlk−mjMlm (6.50)

and so Φ(jk)(ρ) = Φv(ρ) is a depolarising channel with compression coefficients

vlm = ωlk−mj.
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We now show that there exists p and q with λpq = D. We see that

λpq =
D−1∑

l,m=0

ωlk−mjωlq−mp

D
(6.51)

and so picking p = −j(modD) and q = −k(modD) ensures that λpq = D.

As before we make use of the fact that the sum of the eigenvalues of the

Choi-Jamiolkowski representation J(Φ(jk)) is equal to the system dimension

D: as Φ(jk) is completely positive the eigenvalues of J(Φ(jk)) are non-negative

and sum to D and so we may conclude that

λpq = D and λlm = 0 for all (l,m) 6= (p, q) (6.52)

Therefore the compression vector corresponding to the channel Φ(jk) lies on

all the hyperplanes except one and so it lies at a vertex of the simplex.

To finish, note that there are D2 vertices and D2 distinct extremal channels

so we have found them all.

As any compression vector in the simplex can be written as a convex linear

combination of the extremal compression vectors then theorem 11 allows us

to conclude that any depolarising channel can be written as a convex linear

combination of the extremal channels. Conversely any convex linear combi-

nation of the extremal channels is a depolarising channel. Note the similarity

here with the Pauli basis.

6.5 Other bases

In sections 6.2, 6.3 and 6.4 we worked in some of the most common bases, but

what happens if we wish to work in another basis? What can be said about the

set of all compression vectors? Does it form a simplex in compression space?

We answer these questions here, giving necessary and sufficient conditions that

an arbitrary trace-free and trace-orthogonal basis {Mα} must satisfy for the

compression vectors to form a simplex.
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We know that the set of all compression vectors forms a simplex when the

eigenvalues of J(Φv) are linear combinations of the compression coefficients vα

and we now find all trace-free, trace-orthogonal bases for which this happens.

Theorem 12. Let {Mα} be a trace-free and trace-orthogonal basis. Then the

set of all compression vectors forms a simplex if and only if

[
Mα ⊗M∗

α,Mβ ⊗M∗
β

]
= 0 for all α, β ∈ {0, . . . , D2 − 1} (6.53)

Proof. The set of all compression vectors forms a simplex if and only if all the

eigenvalues of J(Φv) are linear in the compression coefficients (in which case

if λ is an eigenvalue of J(Φv) then λ = 0 defines a hyperplane, which forms

one of the facets of the simplex).

Let |λ〉 be an eigenvector of J(Φv) with eigenvalue λ. Then by equa-

tion (6.7) we see that that λ is a linear combination of the compression coef-

ficients vα if and only if |λ〉 is a simultaneous eigenvector of each Mα ⊗M∗
α;

this occurs if and only if all the Mα ⊗M∗
α are simultaneously diagonalisable,

which occurs if and only if [Mα ⊗M∗
α,Mβ ⊗M∗

β ] = 0 for all α and β.

Note that the condition of theorem 12 is weaker than [Mα,Mβ] = 0 for all α

and β. For example, MαMβ = eiθαβMβMα satisfies [Mα ⊗M∗
α,Mβ ⊗M∗

β ] = 0

but not [Mα,Mβ] = 0. Furthermore, it is not hard to show that MαMβ =

eiθαβMβMα is equivalent to [Mα ⊗M∗
α,Mβ ⊗M∗

β ] = 0.

We can now prove the outstanding result from section 6.3, which we present

as the following lemma.

Lemma 13. When D > 2 and we work in the Gell-Mann basis then the set of

all compression vectors has at least one curved side. Equivalently, at least one

of the eigenvalues of J(Φv) is non-linear in the compression coefficients vα.

Proof. It is a simple matter to check that

[X01 ⊗X∗
01, X02 ⊗X∗

02] 6= 0 (6.54)

Then apply theorem 12 above.
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For the remainder of this section we restrict ourselves to working in a basis

which is unitary: M−1
α = M †

α for all α. When we do this we are able to find

the extremal channels whose compression vectors lie at the vertices of the

simplex. Before proving this, in a slight change of notation from chapter 5,

we first define the maximally entangled states

|Ψ〉 =
D−1∑

j=0

|j, j〉 and |λα〉 = (Mα ⊗ I) |Ψ〉 (6.55)

We are now in a position to state and prove a small lemma which states that

these maximally entangled states are the eigenstates of the Choi-Jamiolkowski

representation of a map Φv.

Lemma 14. If MαMβ = eiθαβMβMα for all α and β and if Mα is unitary for

all α then the maximally entangled states |λα〉 are all the eigenstates of J(Φv).

Proof. The expansion Mα =
∑D−1

j,k=0 〈j|Mα |k〉 |j〉 〈k| allows us to write

|λα〉 =
D−1∑

j,k=0

〈j|Mα |k〉 |j, k〉 (6.56)

Noting that θαβ = −θβα allows us to calculate

Mβ ⊗M∗
β |λα〉 =

D−1∑

j,k=0

〈j|MβMαM
†
β |k〉 |j, k〉 = e−iθαβ |λα〉 (6.57)

from which it is easy to see that

J(Φv) |λα〉 =
D2−1∑

β=0

vβe
−iθαβ

tr(M †
βMβ)

|λα〉 =: λα |λα〉 (6.58)

So |λα〉 is indeed an eigenstate of J(Φv). Finally note that there are D2

eigenstates |λα〉 so we have found all the eigenstates of J(Φv).

Lemma 14 allows us to find the extremal channels of the simplex.

Theorem 15. If MαMβ = eiθαβMβMα for all α and β and if Mα is unitary

for all α then the extremal channels are

Φ(α)(ρ) ≡MαρM
†
α (6.59)
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Proof. First note that Φ(α)(ρ) is completely positive and trace-preserving, so

the eigenvalues of J(Φ(α)) are all positive and sum to D. We can expand

Φ(α)(ρ) =
D2−1∑

β=0

tr(M †
βρ)

tr(M †
βMβ)

eiθαβMβ (6.60)

which shows that Φ(α) is a depolarising channel with compression coefficients

vβ = eiθαβ . Now observe that

λα =
D2−1∑

β=0

eiθαβe−iθαβ

D
= D (6.61)

and so λβ = 0 for all β 6= α. Clearly then Φ(α) is an extremal channel as

its compression vector lies on all the hyperplanes λβ = 0 except λα = 0. To

finish, note that there are D2 vertices to the simplex and there are D2 extremal

channels Φ(α) so we have found them all.

6.6 Changing basis

Why does the set of all compression vectors form a simplex in some bases

(such as the Heisenberg-Weyl basis) and not in others (such as the Gell-Mann

basis)? We answer this question here by investigating the effect of changing

basis and we give an explicit example to illustrate our point.

Let {Mα} and {Lα} be trace-free, trace-orthogonal bases. Then we may

write the relationship between the two bases as

Mα√
tr(M †

αMα)
=

D2−1∑

β=0

uαβ
Lβ√

tr(L†
βLβ)

whereuαβ ∈ C (6.62)

Trace-orthogonality of both bases ensures that the D2 ×D2 change-of-

basis matrix U =
∑D2−1

α,β=0 uαβ |α〉 〈β| is unitary; furthermore, if both bases are

hermitian then U is actually a real orthogonal matrix. If we define the vector

M̂ =


 M0√

tr(M †
0M0)

, . . . ,
MD2−1√

tr(M †
D2−1MD2−1)


 (6.63)
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and similarly define L̂, then we may write M̂ = UL̂.

We are now in a position to prove a special result for single qubits.

Theorem 16. The set of single qubit (D = 2) compression vectors forms a

simplex whenever we work in a hermitian, trace-free and trace-orthogonal basis.

Furthermore, the extremal channels are conjugations by the basis matrices.

Proof. We know that any single qubit basis which is hermitian, trace-free and

trace-orthogonal can be obtained from the Pauli basis by an orthogonal change

of basis. Let {Lα} be the Pauli basis and {Mα} be the new basis. Then the

change of basis matrix has the form

U =




1 0 0 0
0
0 O
0


 (6.64)

where O is a 3× 3 orthogonal matrix. Now, any such matrix O corresponds

to a rotation of the Bloch ball and is equivalent to a unitary conjugation

ρ 7→ V †ρV where V is a 2× 2 unitary matrix. Any such map is completely

positive and trace-preserving. Depolarisation with respect to the basis {Mα}
is the same as applying the reverse of the above rotation, followed by depolar-

isation in the Pauli basis, followed by the the above rotation. Since the set of

all compression vectors forms a simplex when we work in the Pauli basis, the

set of all compression vectors also forms a simplex when we work in the new

basis {Mα}.
We know that in the Pauli basis the extremal channels are Φ(α)(ρ) = L†

αρLα

So when we start in the new basis and rotate to the Pauli basis, the extremal

channels will be Φ(α)(V ρV †) = L†
αV ρV

†Lα; rotating back to the {Mα} ba-

sis (and noting that Mα = V †LαV ) we see that the extremal channels are

Φ(α)(ρ) = M †
αρMα.

In the single qubit case it is true that any unitary change of basis U cor-

responds to an orthogonal rotation of the polarisation vector a; in higher
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dimensions this is not so as the following example demonstrates.

Example 17. Let D = 4 and let

ρ =
I
4

+
k
√

3

4
σx ⊗ σx k ∈ R (6.65)

One can explicitly calculate the eigenvalues of ρ: they are λ = (1± k
√

3)/4

each with multiplicity two. Therefore ρ is a state when |k| ≤ 1/
√

3.

Let us now apply any change of basis which maps σx⊗σx

2
7→ Z3√

2
(that is, we

change basis from the hermitian Pauli basis to the hermitian Gell-Mann basis

with a unitary change-of-basis matrix U). Then

ρ 7→ ρ̃ =
I
4

+
k
√

6

4
Z3 (6.66)

which has eigenvalues λ = (1 + k)/4 (with multiplicity 3) and λ = (1− 3k)/4

(with multiplicity 1). But then if 1/
√

3 ≥ k > 1/3 then ρ is a quantum state

but ρ̃ is not (as it is not positive).

This example demonstrates that some changes of basis do not map the

Bloch “ball” on to itself. It is for this reason that the set of all compression

vectors forms a simplex in some bases but not in others.

Theorem 18. When two trace-free, trace-orthogonal bases {Mα} and {Lα}
are related via

Mα = V †LαV (6.67)

for all α and some unitary matrix V (that is, the change-of-basis matrix U

maps the Bloch “ball” on to itself), then the set of compression vectors either

forms a simplex in both bases or does not form a simplex in either basis.

Furthermore, if the extremal channels are conjugations of basis matrices in

one basis then they are conjugations of basis matrices in the other basis too.

Proof. One may adapt the proof of theorem 16. (Note that the condition

Mα = V †LαV for all α guarantees that the Bloch “ball” is rotated onto itself

and we avoid the problems exhibited in example 17.)
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6.7 More general channels

Generalised depolarising channels compress the Bloch “ball” anisotropically

and we have now studied them in much detail. However, our method can be

extended to deal with a more general class of channels, namely those which

both compress the Bloch “ball” and then translate it. Let Φv,t be such a

channel defined by its action on the polarisation vector

Φv,t :




a0
...

aD2−1


 7→




v0a0
...

vD2−1aD2−1


+




t0
...

tD2−1


 (6.68)

We call the vector t = (t0, . . . , tD2−1) the translation vector and the tα the

translation coefficients. Note that t0 = 0 to ensure that Φv,t is trace-preserving.

So far we have only studied channels Φv := Φv,0, but we now extend to general

t. We may expand

Φv,t(ρ) =
1

D

(
I +

D2−1∑

α=1

√
D(D − 1)

tr(M †
αMα)

(vαaα + tα)Mα

)
(6.69)

If we now define the compression components of Φv,t to be

Vα(ρ) :=
tr(M †

αρ)

tr(M †
αMα)

Mα (6.70)

and the translation components to be

Tα(ρ) :=
tr(Iρ)Mα

D

√
D(D − 1)

tr(M †
αMα)

=
1

D

√
D(D − 1)

tr(M †
αMα)

Mα (6.71)

then we may rewrite Φv,t as a sum of the compression and translation compo-

nents

Φv,t(ρ) =
D2−1∑

α=0

vαVα(ρ) + tαTα(ρ) (6.72)

Recall that if a channel χ can be written as χ(ρ) = tr(X†ρ)Y then the Choi-

Jamiolkowski representation of χ is J(χ) = Y ⊗X∗. This allows us to find the
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Choi-Jamiolkowski representations of the compression and translation compo-

nents

J(Vα) =
Mα ⊗M∗

α

tr(M †
αMα)

J(Tα) =
1

D

√
D(D − 1)

tr(M †
αMα)

Mα ⊗ I (6.73)

which in turn enables us to find the Choi-Jamiolkowski representation of the

channel Φv,t

J(Φv,t) =
D2−1∑

α=0

Mα ⊗
(

vαM
∗
α

tr(M †
αMα)

+
tαI
D

√
D(D − 1)

tr(M †
αMα)

)
(6.74)

In order to find which parameters (v, t) induce completely positive channels

one has to find for which parameters all the eigenvalues of J(Φv,t) are non-

negative. (Recall that these channels are automatically trace-preserving if

v0 = 1 and t0 = 0.)

Example 19. Let us work in the Pauli basis and consider a single-qubit map

Φv,t. We fix the translation vector t = (0, 0, 0, tz) and find the set of all com-

pression vectors v which induce completely positive channels Φv,t. We can

write the Choi-Jamiolkowski representation of Φv,t as

J(Φv,t) =
I⊗ I

2
+ vx

σx ⊗ σx
2

+ vy
σy ⊗ σy

2
+ vz

σz ⊗ σz
2

+ tz
σz ⊗ I

2
(6.75)

It turns out that (for non-zero tz) the eigenvectors of J(Φv,t) are no longer

Bell-states, but rather linear combinations of them. Let

|λ0cd〉 = c |Ψ00〉+ d |Ψ01〉
|λ1cd〉 = c |Ψ10〉+ d |Ψ11〉 (6.76)

where c, d ∈ R are real numbers, c2 + d2 = 1 and |Ψmn〉 (with m,n ∈ {0, 1})
are the Bell-states defined in section 6.2. One can easily check that

J(Φv,t) |λ0cd〉 = λ0 |λ0cd〉
J(Φv,t) |λ1cd〉 = λ1 |λ1cd〉 (6.77)

where the eigenvalues satisfy the following relations

λ0c = c
2
(1 + vx + vy + vz) + d

2
tz

λ0d = d
2
(1− vx − vy + vz) + c

2
tz

λ1c = c
2
(1 + vx − vy − vz) + d

2
tz

λ1d = d
2
(1− vx + vy − vz) + c

2
tz

(6.78)
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We can solve this set of simultaneous equations to find the eigenvalues

λ±
0 = 1

2
(1 + vz)±

√
(vx + vy)2 + t2z

λ±
1 = 1

2
(1− vz)±

√
(vx − vy)2 + t2z

(6.79)

Note that there are two possible values for λ0 and λ1: one for d =
√

1− c2 and

one for d = −
√

1− c2; we have therefore found all four eigenvalues of J(Φv,t).

Clearly for tz 6= 0 the surfaces λ±
0 = 0 and λ±

1 = 0 are curved. This reproduces

the results of [69] which shows that the set of all compression vectors forms an

“asymmetrically rounded tetrahedron”.

We could have worked through the above example with tx or ty non-zero

but then the generic form of the eigenvectors of J(Φv,t) is more complicated

and takes on the form |λ〉 = c |Ψ00〉+ d |Ψ01〉+ e |Ψ10〉+ f |Ψ11〉 with the coef-

ficients c, d, e, f ∈ R satisfying c2 + d2 + e2 + f 2 = 1.

Based on the above example we note that even when we work in a basis

where the set of all compression vectors forms a simplex for t = 0, a tiny

perturbation to t 6= 0 destroys this simplex: the set of compression vectors v

forms a set with a curved boundary. In this situation there are infinitely many

extremal channels.

6.8 Mixed unitary channels

In this section we briefly review the definitions of unital, doubly stochastic

and mixed unitary quantum channels before quoting a theorem which says

that averaging any doubly stochastic quantum channel with the completely

depolarising channel results in a mixed unitary channel. Finally we conjecture

a generalised version of this theorem involving arbitrary generalised depolar-

ising channels.

A unital quantum channel acting on a D-dimensional quantum system

maps the completely mixed state to itself Φ
( I
D

)
= I

D
. A doubly stochastic

quantum channel is a completely-positive, trace-preserving, unital channel.

Note that all generalised depolarising channels are doubly stochastic.
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A quantum channel Φ is said to be mixed unitary if there exist unitary ma-

trices U1, . . . , Uk and a probability distribution p1, . . . , pk (that is, 0 ≤ pj ≤ 1

and
∑

j pj = 1) such that Φ is a convex sum of the unitary conjugation chan-

nels

Φ(ρ) =
k∑

j=1

pjUjρU
†
j (6.80)

It is known that all doubly stochastic single qubit channels are mixed

unitary, but that in higher dimensions (D > 2) there are doubly stochastic

channels which are not mixed unitary. (These channels can however be ex-

pressed as an affine sum of unitary channels
∑k

j=1 λjUjρU
†
j where λ1, . . . , λk

are affine parameters: λj ∈ R and
∑

j λj = 1.)

However, the following theorem by Watrous [110] tells us that all doubly

stochastic channels (and in particular those which are not mixed unitary) be-

come mixed unitary when appropriately averaged with the isotropic completely

depolarising channel Ω := Φ0.

Theorem 20. Let χ be any doubly-stochastic quantum channel acting on D-

dimensional quantum systems. Then for any 0 ≤ p ≤ 1/(D2 − 1) the channel

pχ+ (1− p)Ω (6.81)

is mixed unitary.

Proof. See [110].

It is tempting to think that Ω is not the only channel with which one can

average to obtain a mixed unitary channel and we make this suggestion precise

in the following conjecture.

Conjecture 21. Let χ be any doubly-stochastic quantum channel acting on

D-dimensional quantum systems and let Φ be any depolarising channel whose

compression vector lies within a simplex whose vertices are the compression
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vectors of unitary conjugation depolarising channels (so that Φ is mixed uni-

tary). Then there exists a constant δ(Φ) > 0 such that for 0 ≤ p ≤ δ the fol-

lowing channel is mixed unitary

pχ+ (1− p)Φ (6.82)

6.9 Summary

To summarise this chapter, we have made a detailed study of generalised de-

polarising channels defined with respect to trace-free, trace-orthogonal bases.

Each depolarising channel has an associated compression vector lying in com-

pression space, which is a vector space of dimension D2 − 1 (we suppress the

other dimension as the trace-preserving condition ensures that the first com-

ponent of the compression vector is always equal to unity).

We have shown that the set of all compression vectors forms a simplex when

we work in either the Pauli basis or the Heisenberg-Weyl basis, but that it does

not form a simplex when we work in the Gell-Mann basis. Furthermore, for

the Pauli and Heisenberg-Weyl bases we found the extremal channels whose

compression vectors lie at the vertices of the corresponding simplex. Working

in an arbitrary trace-free and trace-orthogonal basis, we found that the set of

all compression vectors forms a simplex if and only if the basis matrices satisfy

a certain condition. Furthermore, when the basis matrices were also unitary

we were able to find the extremal channels.

We discussed the effects of changing basis and indicated why the set of

compression vectors forms a simplex in some bases but not in others. Finally

we generalised our methods to deal with a class of more general quantum

channels and conjectured that one can average any doubly stochastic quantum

channel with any mixed unitary generalised depolarising channel to obtain a

mixed unitary channel.
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Chapter 7

Conclusions

This chapter briefly summarises the main results of this thesis. We begin by

summarising the effects of on-site disorder on the propagation of information

through noisy quantum spin chains (§ 7.1) and finish by summarising the

results about generalised depolarising channels (§ 7.2).

7.1 Noisy quantum spin chains

7.1.1 Summary of results

We have studied three fundamentally different models of noisy spin chains:

1. Nearest-neighbour XX-model spin chains of finite length experiencing

static on-site disorder. The disordered field strengths are drawn from a

probability distribution which has bounded probability density function.

2. Nearest-neighbour XX-model spin chains of infinite length (or spin rings

of finite size) experiencing on-site disorder which is fixed in direction but

fluctuates in strength independently on each site.

3. Finite length spin chains with arbitrary nearest-neighbour interactions

experiencing on-site disorder which fluctuates in both strength and di-

rection independently on each site.
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These three noise models are all fundamentally different and result in pro-

foundly different effects on the propagation of information:

1. Static disorder leads to Anderson localisation and consequently to ex-

ponential localisation of correlation functions, which in turn allows us

to derive a new Lieb-Robinson bound which is much tighter than the

original Lieb-Robinson bound. This new bound gives rise to a light cone

whose radius grows logarithmically with time (in contrast with the orig-

inal Lieb-Robinson bound which gives rise to a light cone whose radius

grows linearly with time).

2. Fluctuating disorder which is fixed in direction results in a finite-strength

quantum Zeno effect. This leads to extremely localised averaged dynam-

ics where information can, on average, propagate by at most a constant

number of sites before it is exponentially suppressed by the noise. De-

spite these averaged dynamics we find that individual realisations of

the disorder permit less localised dynamics: information may propagate

within a light cone whose radius grows in proportion to the square root

of the time elapsed. (Note the similarity with a classical random walk.)

3. Disorder which fluctuates in strength and direction gives rise to a poten-

tial noise-threshold, below which information could potentially propa-

gate ballistically (in accordance with the original Lieb-Robinson bound)

and above which information is on average extremely localised, travelling

by at most a constant number of sites before it is lost in the noise.

These results explain the phenomena observed in various numerical simu-

lations of these noise models [81, 111]. The different light cones which result

from the different noise regimes are illustrated schematically in figure 7.1.
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Figure 7.1: Schematic illustration of the different light cones which result
from the different noise regimes: the linear (outer) light cone corresponding
to the noise-free scenario; the square-root (middle) light cone resulting from
fluctuating disorder whose direction is fixed; and the logarithmic (inner) light
cone resulting from static disorder.

7.1.2 Comparison of the models

We have seen that the different models of on-site disorder have dramatically

different effects upon the propagation of information through the spin chains.

This is because there are fundamental differences between the models which

we elaborate on below.

Whilst the first two models both preserve the number of excitations in

the system they nevertheless produce dramatically different dynamics. In

the case of static disorder the noise causes the correlation functions to be

exponentially localised, a phenomenon known as Anderson localisation [74].

In contrast, in the model where the on-site disorder is fixed in direction but

fluctuates in time, the noise essentially performs continuous finite-strength

non-selective measurements on each site and this results in a finite-strength

quantum Zeno effect. The root cause of the localisation in each of these two

models is different, which explains the differing localisation properties.
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The final noise model whose on-site disorder fluctuates in both strength

and direction does not preserve the number of excitations in the spin chain:

whenever the on-site disorder is oriented in any direction which is not the

z-direction it induces bit-flip errors (that is, it creates or destroys excitations).

It is unsurprising that this results in quite different localisation properties to

those observed in the excitation-preserving models.

7.1.3 Open problems

In chapter 4 where we studied the model with on-site disorder which fluctuates

in both strength and direction, we saw that the averaged dynamics are very

localised: information can on average propagate by at most a constant number

of sites. It would be interesting to determine the amount by which actual

dynamics deviate from the averaged dynamics calculated here. It is not clear

how one would go about this, but further work is nevertheless warranted.

It would also be interesting to discover if the noise threshold we identified

for this model is a real physical phenomenon or merely a function of the way

in which we calculated the bound. Numerical simulations should reveal the

answer to this question, but either way there is further work to be done. If

the threshold is real, why is it present and what causes it? If the threshold is

not real, can our bound be extended to cover the low noise regimes too?

7.2 Generalised depolarising channels

We have seen that any quantum channel (in particular a quantum spin chain —

whether noisy or noise-free) can be used as a generalised depolarising channel.

For each depolarising channel there is a unique compression vector lying in

compression space and we have shown that the set of all compression vectors

forms a simplex when we work in either the Pauli basis or the Heisenberg-

Weyl basis, but not when we work in the Gell-Mann basis. For arbitrary
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trace-free, trace-orthogonal bases we found a necessary and sufficient condition

prescribing when the set of all compression vectors forms a simplex. In some

bases we were able to find the extremal channels whose compression vectors lie

at the vertices of the simplex. We also discussed the effects of changing basis

(explaining why the set of compression vectors forms a simplex in some bases

but not in others) and generalised our methods to deal with a more general

class of quantum channels.

Further work is required to either prove or disprove our conjecture that one

can average any doubly stochastic quantum channel with any mixed unitary

generalised depolarising channel to obtain a mixed unitary channel.
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Addendum

This addendum briefly describes how equation 2.13 of this thesis is obtained from
equation 6.27 of theorem 6.5 in [75].

Equation 6.27 of theorem 6.5 in [75] tells us that if Hω is a standard ergodic random
operator with IAD (independence at a distance) and both the SGEE (strong generalised
eigenfunction expansion) and EDI (eigenfunction decay inequality) properties in an open
interval I, then for any 0 < ζ < 1, there is a finite constant Cζ such that

E

{
sup

|||f |||≤1

‖χxf(Hω)Eω(I)χ0‖2
2

}
≤ Cξ e−|x|ζ

for all x ∈ Zd, the supremum being taken over all Borel functions f of a real variable,
with |||f ||| = supt∈R |f(t)|.

Note that in [75] the proof of theorem 6.5 is given for systems of infinite size; however
the proof technique used can be adapted in a straight-forward manner to systems of finite
size [112]: for large enough systems the proof of theorem 3.8 in [113] can be adapted to
non-periodic boundary conditions by making small corrections for the boundaries. Note
that the introduction section of [113] (below equation 1.5) also justifies the assumptions
made here (and in theroem 6.5 of [75]).

Having justified that the above equation applies to the model studied in chapter 2 of
this thesis, we now show how to use this to derive equation 2.13 of this thesis.

First note that, for convenience, equation 6.27 in [75] uses lattice sites x and 0; but
as Hω is ergodic and probabilities are therefore translation invariant, one could just as
easily take any two sites j and k as we do here. E simply represents an expectation over
all possible realisations of the disorder and Eω(I) is the spectral projection of an interval;
in our case this reduces to the identity. χx denotes the characteristic function of the cube
of side 1 centered at x ∈ Zd; in the one-dimensional case studied here, this reduces to a
simple projector |x〉 〈x|.

Noting that e−itH is a Borel function and employing Markov’s inequality therefore
allows us to use equation 6.27 of theorem 6.5 in [75] to conclude that with finite probability

∥∥|j〉 〈j| eitH |k〉 〈k|
∥∥2

2
≤ const × e−const×|j−k|ζ for all time t

Note that by carefully examining the proof of theorem 6.5 in [75] we can precisely quantify
this probability — see equation 2.13 and the associated text in this thesis.
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