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Abstract           

Cloud droplets in the atmosphere have an organic component which has been shown to form a 

monolayer film at the air-water interface of the cloud droplet and the atmosphere. The process 

by which a cloud droplet film will oxidise and the persistence or loss of an oxidised organic film 

from the air-liquid interface of a cloud droplet is not well quantified. To determine the surface 

properties of a cloud droplet film during atmospheric oxidation a measurement of a kinetic 

variable, the concentration of material comprising an organic film, during reaction with 

atmospheric radicals was required. The coupling of a Langmuir trough with a neutron 

reflectometer allows the measurement of the surface coverage of a monolayer in unison with 

measurement of the monolayer surface pressure. The technique of coupling a Langmuir trough 

with neutron reflectometry is used extensively for research into the properties of surfactants for 

industrial and medicinal use. This thesis builds on the work of King et al., (2009) and King et 

al., (2010), whom produced the first neutron reflectivity measurements of atmospheric proxy 

monolayers reacting with ozone. This is the first thesis detailing the neutron reflectometry 

measurement from an atmospheric perspective. Measurements were taken of representative fatty 

acid molecules which have atmospheric relevance (stearic acid, oleic acid and methyl oleate) as 

well as measurements of phospholipid molecules which are potential parent species for the fatty 

acids found in atmospheric waters (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The 

monolayers were reacted with aqueous phase OH radical and with gas-phase ozone to assess the 

kinetics of the oxidation of the monolayers at the air-water interface.
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The Oxidation of Cloud Droplet Films 

1.1 Outline and Aims of the Thesis 

The work in this thesis is concerned with understanding the chemistry which takes place at the 

air-water interface of a droplet in the troposphere. The interface between an aqueous droplet and 

the surrounding air has been shown to host a monolayer (one molecule thick) film which 

consists of surface active organic material (Tervahattu et al. 2002a, 2002b, 2005; Peterson and 

Tyler, 2002, 2003; Gilman et al. 2006; Peterson et al. 2006). The monolayer film lowers the 

surface tension of the droplet which under certain conditions of relative humidity facilitates the 

uptake of water vapour allowing the droplet to grow (Donaldson and Vaida, 2006; Andreae and 

Rosenfeld, 2008 ), such effects on the droplet are not well understood. The atmosphere is an 

oxidising medium where cloud droplets are surrounded by air containing reactive gases such as 

ozone, nitrogen dioxide, nitrogen pentoxide, hydroxyl radical, and halogens (Finlayson- Pitts 

and Pitts, 2000). An aqueous cloud droplet or aerosol particle also contains reactive species in 

the condensed phase such as hydroxyl radical and ozone (Bertram et al. 2001; Rudich, 2003; 

Elaison et al. 2004; Mochida et al. 2006). Such reactive species from the gas phase and from the 

condensed phase could oxidise the monolayer surrounding an atmospheric droplet (Moise and 

Rudich, 2001; Smoydzin and von Glasow, 2007; Aumann and Tabazadeh, 2008; King et al. 

2009, 2010). The aim of this thesis is to contribute to the understanding of the processes by 

which a cloud droplet thin film will chemically oxidise in the troposphere by creating proxy 

cloud droplet films in the laboratory and studying the behaviour of the proxy film under 

exposure to reactant species found in the troposphere. Much of the data produced in this thesis 

which is relevant to a cloud droplet is also relevant to organic aerosol particles and to inorganic 

particles with an aqueous phase which can also possess an organic film. 

The aims of this thesis are as follows: 

1. To study the oxidation of organic monolayers as proxies for cloud droplet organic films 

at the air-water interface. 

2. To measure the loss of the monolayer material in real time as the monolayer is exposed 

to atmospherically relevant oxidising species. 

3. To perform kinetic analysis of the experimental results in order to better understand the 

mechanism of such reactions at the air-water interface. 

The purpose of this introductory chapter is to give a brief introduction and review of the current 

literature on the formation of cloud droplets, evidence for organic film formation and the 

properties of such a droplet film, the potential oxidation of cloud droplet films will be explained 
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as well as the experimental techniques used in this thesis. The nucleation of a cloud droplet can 

occur upon atmospheric aerosol particles; the thesis focusses on cloud droplets formed on 

aerosol particles. Cloud droplets and aerosol particles are closely linked, in that an aerosol 

particle can grow into a cloud droplet so both morphologies and their climatic effects are 

addressed within the text. 

The introduction is structured in the following order: 

• A brief summary of the role of atmospheric aerosol in climate and cloud formation. 

• The nucleation of cloud droplets on atmospheric aerosol. 

• The modification of cloud droplets by an organic film. 

• The oxidation of cloud droplet films.  

 

1.2  The Role of Atmospheric Aerosol in Climate and Cloud Formation  

Atmospheric aerosol provides a site for cloud droplet nucleation in the atmosphere; such 

aerosols are referred to as cloud condensation nuclei (CCN). Atmospheric aerosols are the non-

gaseous components of the atmosphere, liquid or solid particles suspended in the gaseous 

atmosphere (Kommalapati and Valsaraj, 2009). The term aerosol is used for the size profile of 

10-2 to 10 µm, in contrast the size range of cloud droplets is from 10 to 102 µm the upper limit 

being the size of a rain droplet (Kommalapati and Valsaraj, 2009).  

The chemical composition of aerosol is initially determined by its origin, as the particle ages it 

can become chemically altered (Pöschl, 2005). Common sources of atmospheric aerosol are 

given in table 1.1, as adapted from the Intergovernmental Panel on Climate Change (IPCC), 

(2007) and Kommalapati and Valsaraj, (2009).  Some aerosol also forms in the atmosphere 

from condensed low volatility products of gas-phase chemical reactions, as secondary organic 

aerosol (Pandis et al. 1992).  The chemical composition of the aerosol determines its wettability; 

a hydrophobic aerosol is less likely to become a cloud condensation nucleus. 
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Table 1.1 Common Species of Atmospheric Aerosol  

Aerosol Species Aerosol Source Role in Climate Relating to 

Cloud Formation  

Sea salt Oceans: sea salt enters the 
atmosphere through wave 

action creating sea spray and 
bubbles at the surface of the 

oceans which burst, 
propelling organic material 

from the ocean which is 
concentrated at the air-water 
interface into the atmosphere. 

Primarily forms cloud 
condensation nuclei as most 
cloud formation occurs over 

the oceans. 
Sea salt aerosol is the most 

likely of the cloud 
condensation nuclei to have 

an organic film. 
 

Anthropogenic Aerosols 
 

Global: combustion of fossil 
fuels, biomass burning, waste 
incineration, manufacturing, 

mining, farming. 
 

Climatic effect varies with 
chemistry. Predominantly 
cooling by absorption and 

scattering of solar radiation. 
 

Carbonaceous Aerosols 
 

Terrestrial global: organic and 
black carbon mainly emitted 
from biomass and fossil fuel 
combustion and the oxidation 
of volatile organic compounds 

(VOC). 
 

Climatic effect varies with 
chemistry. Predominantly 
cooling by absorption and 

scattering of solar radiation. 
Black carbon is a poor CCN. 

Sulphate and nitrate aerosols 
 

Global: particulates can form 
as the product of chemical 
reactions in the atmosphere 
between gaseous species. 

 

Predominantly cooling by 
absorption and scattering of 

solar radiation. 
Sulphate aerosol is an 

effective CCN*. 
 

Volcanic aerosols 
 

Mineral material and gaseous 
sulphur emitted during 

volcanic eruptions and de-
gassing forms aerosol. 

 

Climatic effect varies with 
chemistry. Predominantly 
cooling by absorption and 

scattering of solar radiation. 

Eolian dust particles Terrestrial global: windblown 
clays and silt particles‡. 

Climatic effect varies with 
chemistry. Predominantly 
cooling by absorption and 

scattering of solar radiation. 
 

Bio-aerosol Global: emitted from 
organisms 

Climatic effect not yet 
quantified 

* O’Dowd et al., (1999), ‡ Johnson et al., (2004) 
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The size and radius of common aerosol particles are given in figure 1.1, the cloud condensation 

nuclei are predominantly coarse mode aerosol particles. 

Figure 1.1 The Size and Number Distribution of Common Atmospheric Aerosol Particles 

 

Atmospheric aerosol size ranges and common constituents as defined by Seinfeld and Pandis, 

(1998), and Finlayson-Pitts and Pitts, (2000). 

The size and composition of the aerosol has several climatic effects, these effects are split into 

two broad categories of direct effects which are those determined by the aerosol particles direct 

interaction with radiation (McFiggans et al. 2005, Haywood and Boucher, 2000), and indirect 

effects which are those related to the effects of the aerosol on clouds and precipitation (IPCC, 

2007).  

Broadly summarized the aerosol indirect climatic affects are due to the ability of aerosol to: 

• Absorb and convert solar energy to thermal energy throughout weather systems, a 

warming climatic effect. 

• Act as Cloud Condensation Nuclei (CCN) providing a site for the formation of cloud 

droplets, a cooling climatic effect. 
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The work in this thesis is concerned with the effects involving warm clouds and precipitation, 

ice nuclei are beyond the scope of this work therefore the thesis concentrates on warm clouds 

and not mixed phase or cold clouds which contain ice nuclei. 

The effects involving cloud droplets in warm clouds are summarized here after Haywood and 

Boucher (2000); Twomey (1974); Lohmann and Feichter (2005); IPCC (2007): 

• The cloud albedo or Twomey effect, known as the first aerosol indirect effect where 

for a defined water content, introducing a greater number of CCN type aerosol particles, 

leads to a greater number of smaller cloud droplets as there are more sites for droplet 

nucleation. A greater number of smaller cloud droplets scatter solar radiation differently 

to larger droplets and reflect more solar radiation, thus the albedo of the cloud is 

increased by the smaller droplet size distribution (Twomey, 1974; IPCC, 2007.)  

• The cloud lifetime effect, known as the secondary aerosol indirect effect where the 

smaller cloud droplets take longer to reach a sufficient mass to precipitate and the 

lifetime of the cloud in the atmosphere is increased (IPCC, 2007).  

• The semi direct effect where energy adsorption by aerosols increases the local 

atmospheric temperature, reducing relative humidity (Johnson et al. 2004), and could 

lead to evaporation of cloud droplets and a reduction in cloud cover (IPCC, 2007). 

Atmospheric aerosol is dominated by non-absorbing compounds; the dominant energy 

adsorbing components of the atmospheric aerosol are black carbon and Aeolian dust 

(Johnson et al. 2004).  

The indirect aerosol effects potentially influence the Earths albedo, hydrological cycle and 

weather systems. In 2007 the IPCC rated the scientific understanding of the indirect effects 

of atmospheric aerosol on climate as very low. The process of cloud droplet formation and 

the chemical composition and structure of cloud droplet are poorly understood due to the 

difficulty in sampling an in situ cloud droplet with its structure and chemistry unaltered and 

intact which is not possible with current field sampling techniques.  

Climate monitoring and weather forecasting rely on computer modelling of atmospheric 

circulation and processes (McFiggans, 2005.). Information on the detailed chemical 

processes which can influence cloud formation and the chemical lifetime of such species is 

required for greater accuracy of the modelling results. The data provided within this thesis 

may be of value to such climatic modelling. 
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1.3  The Nucleation of Cloud Droplets on Atmospheric Aerosol Particles  

The process of cloud droplet nucleation when water vapour condenses on an atmospheric 

aerosol particle becoming a warm cloud droplet nuclei (CCN) without the presence of ice, takes 

place in the troposphere (Beard and Ochs, 1992), the region of the atmosphere from sea level to 

an altitude of approximately 20 km above sea level (Finlayson-Pitts and Pitts, 2000). The 

chemical and physical composition of the troposphere in which warm cloud droplet nucleation 

takes place it is locally and seasonally variable. The moisture content of the troposphere is 

controlled by evaporation from the oceans and land, water can be present in the troposphere as 

ice, water droplets and water vapour simultaneously in the same air mass, the vapour phase is 

always dominant even within a cloud, (Warneck, 1988) and its quantity is measured by 

radiosonde and lidar instrumentation (Mattis et al. 2002) as the saturation vapour pressure or 

relative humidity.  

Figure 1.2 The Nucleation of Cloud Droplets on Aerosol 

 

Figure 1.2 was created using information from Seinfeld and Pandis (1998). 

 

 

 
 

 

 

As an air parcel rises adiabatic cooling occurs, the air expands and cools, as it cools the relative 

humidity increases and the saturation vapour pressure is exceeded giving supersaturated conditions in 

which droplet nucleation occurs at cloud base height, as water vapour condenses onto particulate 

matter. The height of the cloud base is dependent on the temperature and pressure of the air and is 

highly variable
 

0 m from 
cloud base 

  

30 m  

Particles compete for water  
vapour on the basis of the 

particle size and surface 
properties. 

The supersaturation of the air 

is reduced as droplet size and 

number increase.  
No new activations. 

  
 

Smaller droplets may 

evaporate. 

Updraft constant 

at 0.1 – 15 m s

-1
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The nucleation of a droplet on an aerosol particle is dependent on the composition of the 

aerosol. When the humidity (the quantity of water vapour) increases in a given parcel of air 

water vapour condenses onto hydrophilic aerosol particles which grow.  As the relative 

humidity (the percentage saturation of the air with water vapour) increases deliquescence of 

water vapour onto particulate matter occurs (Centre for Atmospheric Science, 2011). 

Deliquescence is the process by which the aerosol particle absorbs water and dissolves forming 

a droplet. At a relative humidity of 100% the air is saturated and nucleation occurs, beyond this 

the air is supersaturated and moisture readily condenses onto aerosol particles, the quantity of 

water vapour that an air parcel contains is dependent on temperature, at lower temperatures the 

air will reach supersaturation more rapidly. At the point of nucleation the droplets are in 

equilibrium with the surrounding air, with a further increase in relative humidity the droplets 

will grow as water vapour condenses from the air into the droplet. A point of critical 

supersaturation (the saturation ratio minus one), is reached at which the droplet will continue to 

grow until it reaches a critical size at which it can fall as rain. The average diameter of a cloud 

droplet is 10 to 20 µm, cloud droplets can range in size from several µm to 100 µm (Seinfeld 

and Pandis, 1998). The effect of an interfacial monolayer on the process of cloud droplet growth 

is shown in figure 1.3, it can be seen that the monolayer lowers the critical supersaturation 

required for droplet growth, however oxidation of a monolayer which resulted in removal of the 

film would increase the critical point of supersaturation to that modelled for a droplet without a 

film (King et al. 2009).  
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Figure 1.3 The Growth of a Cloud Droplet Along a Curve of Supersaturation of an Air 

Parcel with Water Vapour versus Particle Radius as Modelled by King et al., 

(2009) 

 

The data plotted in figure 1.3 was taken from King et al., (2009) who modelled the growth of a 

cloud condensation nuclei into a cloud droplet with and without the presence of an organic 

monolayer. 

The growth of the CCN into a cloud droplet of a sufficient mass to rain out of the cloud is 

dependent on many factors. A cloud droplet can grow, then shrink and evaporate if atmospheric 

conditions or the chemistry of the droplet changes. In turn the behaviour of the droplets 

determines the longevity of the cloud which they are a component of.  

The process of droplet growth is described by Köhler theory (Köhler, 1936) which describes 

two factors governing the droplet growth and curvature of a hygroscopically generated cloud 

droplet, the solubility of the particle nuclei and its surface tension as it grows into a droplet 

through uptake of water vapour. A modified form of an equation expressing Köhler theory used 

by Shulman et al., (1996) which incorporates the effects of an organic compound on droplet 

surface tension and solubility is given in equation 1.1.  
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Equation 1.1 describes the equilibrium vapour pressure of water (e′) over a curved droplet 

solution (of radius, r) in relation to the vapour pressure over a flat surface of water (eS). The 

equation has two terms; the first relating to the effect of the solution comprising the droplet on 

surface tension, the Kelvin effect where the vapour pressure is enhanced over a curved surface 

(figure 1.4), and the latter describing the effect of dissolved species in the droplet solution  in 

reducing the vapour pressure, the Raoult effect (Shulman et al. 1996) . The Kelvin effect is 

calculated from the solution surface tension (σ), the molecular weight of water (MW), the 

Boltzmann constant (k), the temperature (T), the solution density (ρ) and the radius (r) and the 

solution density (Φ). The Raoult effect is calculated from two terms. The first Raoult term uses 

the number of ions which the slightly soluble organic compound in solution disassociates into 

when it is dissolved (vdssc), a modelled function of the solubility of the organic compound and 

sulphate concentration which is dissolved in the droplet (Xdssc), which is a quantity that changes 

with the droplet radius and takes into account that not all of the organic material will be 

dissolved, the molecular weight of the organic compound (mssc), and the mass of the sulphate 

salt in the solution (Mssc). The second term of the Raoult effect takes into account the the sum of 

the number of ions which sulphate dissolves into (vsulf), the mass of sulphate salt (msulf) and the 

molecular weight of the sulphate salt in the droplet (Msulf) (Shulman et al. 1996). 

Köhler theory is used in modelling the climatic effects of cloud droplet composition by 

calculating a curve which shows whether a droplet will at a certain relative humidity, grow into 

a rain droplet, to the right of the critical supersaturation point in figure 1.3, or evaporate, to the 

left of the critical supersaturation point in figure 1.3 depending on atmospheric conditions such 

as the availability of water vapour and the air temperature as well as the droplet radius (figure 

1.4) and chemistry, thus the theory can be used in modelling cloud droplet and cloud lifetime.  
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Figure 1.4 The Effect of Droplet Curvature on the Equilibrium Vapour Pressure, the 

Kelvin Effect 

 

The circles represent water molecules at the interface of the droplet with the surrounding air. 

 

1.4 The Physical and Chemical Composition of Cloud Droplets 

The chemical composition of a cloud droplet is initially governed by the composition of the 

aerosol onto which water vapour condensed forming a droplet. Any water soluble component of 

the aerosol will be present in solution and will influence the aqueous chemistry of the cloud 

droplet (Gourdeau, 2012). The insoluble components of the core aerosol will remain as a solid 

phase within the droplet which may subsequently react as the particle chemically ages in the 

atmosphere.  Species from the gas phase surrounding the droplet can enter the aqueous droplet 

or condense onto the surface of a cloud droplet provided the Henry’s Law equilibrium is 

maintained (Gourdeau, 2012).  The Henry’s Law expression which determines the concentration 

of a gas phase species, [S(aq)] diffusing into a cloud droplet is given by equation 1.2 from 

Schwartz (2003). 

012-345 6 7898 6 78:89-�&       (E 1.2) 

HS is the Henry’s Law solubility for the gas phase species, ; is the molar mixing ratio of the gas 

phase species in air, patm is the atmospheric pressure and ps is the partial pressure of substance S 

outside the droplet. 
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The pH and salinity of cloud droplets is variable, a typical cloud water pH value of ~ 4 to 6 is 

used for modelling based on cloudwater sampled from aircraft (Hegg and Hobbs, 1981), values 

of pH ~ 2 have been measured from ground based sampling of rainwater (Weathers et al. 1988) 

as the droplets generally acidify as they age in the atmosphere. Droplet salinity varies depending 

on the nuclei on which the droplet was formed and the chemistry of the atmosphere where the 

droplet is sampled, Weathers et al., (1988) measured a Cl- content of 2 to 2257 µeq litres in 

cloudwater sampled in Puerto Rico, noting that the higher concentrations were found in stormy 

weather conditions where higher waves were generated increasing the flux of marine aerosol to 

the atmosphere (Weathers et al. 1988). Typical dissolved species found in solution in 

cloudwater include nitrates, magnesium, chloride and sodium salts, and sulfates (Weathers et al. 

1988). King at al., (2009) showed that salinity did not influence the oxidation of a monolayer of 

oleic acid at the air-water interface so the experiments within this thesis were conducted on a 

subphase of purewater representing the aqueous component of the cloud droplet.  

1.5 Cloud Droplet Organic Films 

In addition to dissolved aqueous organic and inorganic species and solid particulate matter 

within a cloud droplet, the presence of insoluble surface active organic material has also been 

confirmed (Descesari et al. 2003). Several models of the configuration of the organic content of 

atmospheric droplets have been proposed. These were summarised by Aumann and Tabazadeh 

(2008) as follows: 

1. The most simplistic model is of an external mixture where inorganic and organic 

aerosol are separated. 

2.  Complete miscibility where the organic and inorganic components of a droplet are 

totally mixed. 

3. A colloidal system where the organic component forms small micelles within the 

droplet. 

4. An organic coat or film of surface active organic material which surrounds the aqueous 

droplet, it is this model which the work in this thesis is based upon known as the core-

shell model.  

In addition Reid et al., (2011) proposed a partially coated model where a surface active organic 

component may exist as lenses at the surface of the droplet which are thicker than a monolayer 

and not evenly distributed around the droplet. This conclusion is based on a scenario of a water 

soluble organic compound mixed within the droplet that lowers the surface tension of the 

droplet so that film formation as a coating around the droplet is not thermodynamically 

favoured, thus lens formation by insoluble organic compounds occurs. 
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The formation of an organic coating on an aqueous droplet (the core-shell model) upon which 

this thesis focusses on, was demonstrated by Wyslouzil et al., (2006) using small angle neutron 

scattering (SANS) to measure the internal structure of multi component nanodroplets as a proxy 

for aerosol. An n-butanol shell was observed to form around and H2O/D2O core (Wyslouzil et 

al. 2006). Monolayers of amphiphiles were sprayed  at the surface of acoustically levitated 

aqueous droplets by Tuckermann et al., (2007) showing that phase changes in the monolayer 

were evident as the droplet evaporated or increased in size as controlled by the relative humidity 

in which the droplet was studied.  

The spreading of an organic at the air-water interface is described by thermodynamic equilibria. 

When considering a monolayer at the air-water interface of an atmospheric droplet the 

following physical phenomena apply to the spreading of the monolayer. 

In order to minimize the surface free energy molecules leave a droplet of an amphiphile at the 

air-droplet interface and diffuse around the droplet (figure 1.5).  

Figure 1.5 The Spreading of a Monolayer on an Atmospheric Droplet to Minimize the 

Surface Free Energy 

 

For the surface to be considered wettable in order for the monolayer to spread the contact angle, 

θ, between the droplet of an organic amphiphile and the aqueous droplet must be < 90° (figure 

1.6) (Barnes and Gentle, 2005).  
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Figure 1.6 The Organic Amphiphile-Aqueous Subphase Contact Angle 

 

 

Figure 1.6 is adapted from Barnes and Gentle (2005) 

When the contact angle between the organic and the aqueous droplet is low enough the 

spreading coefficient ,S, can be determined by equation 1.3. 

1 6 <=8 − <>8 − <=>        (E 1.3) 

1.5.1  Evidence for Coated Droplets 

There is evidence for the presence of film coated droplets in the atmosphere. Husar and Shu 

(1975) published electron microscopy images of continental aerosol from Los Angeles which 

had a shrivelled appearance at the surface. Husar and Shu (1975) interpreted the image as being 

the remains of an organic layer around an aqueous phase which had volatized during the 

imaging process (Husar and Shu, 1975; Aumann and Tabazadeh, 2008). Aumann and 

Tabazadeh, (2008) note that the particle imaged by Husar and Shu (1975) had been heated to 

250°C so was not a true reflection of an in-situ aerosol particle. Scanning Electron Microscope 

images of marine aerosol particles collected in Finland by Tervahattu et al., (2002a) showed an 

actively reacting surface which bubbled when water was evaporated from the sample 

(Tervahattu et al. 2002a; Aumann and Tabazadeh, 2008), the samples were from a polluted 

airmass and had a high content of dicarboxylic acids and fragmented aliphatic hydrocarbon 

material, the bubbling surface was found to be of an organic composition (Tervahattu et al. 

2002a).  

The presence of fatty acids at the air-water interface of aerosols was confirmed by Tervahattu et 

al., (2002b) and Tervahattu et al., (2005) by the analysis of marine aerosol samples and 
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continental sulphate and nitrate aerosol samples from Finland with analysis of aerosol samples 

collected on filters using time of flight secondary ion mass spectrometry (TOF-SIMS).  Palmitic 

acid was detected at the particle surface of the marine aerosol (Tervahattu et al. 2002b). 

Continental aerosol collected following forest fires showed a dominance of n-alkanoic acids 

(C14 to C30) with the highest proportion of C22, alkenoic acids were also detected and attributed 

to smoke from conifer tree combustion (Tervahattu et al. 2005). Tervahattu et al., (2005) note 

that the continental aerosol samples contained longer chain species than the marine aerosol in 

previous studies. 

Russell et al., (2002) used soft X-ray spectromicroscopy at atmospheric pressure to measure the 

distribution of organic groups on dry particles collected from impactors mounted on aircraft 

which flew through a marine airmass in the Caribbean. Russel et al., (2002) mapped organic 

coatings surrounding crystalline carbonaceous aerosol particles noting that the particle surfaces 

were enhanced in shorter chain carboxylic acids and more oxygenated groups suggesting 

oxidation had taken place. The interior of the coated particles contained ketones and inorganic 

ions. The surface coating composition was a complex mixture of surface active organic material 

enriched in carboxylic carbonyl groups (R(C=O)OH) (Russell et al. 2002).  

This thesis concentrates of the behaviour of polar organic molecules at the air-water interface, 

those with a hydrophilic head group and a hydrophobic portion which gives the overall 

behaviour of a surfactant which resides at the air-water interface. Such surface active organic 

compounds have been sampled in cloud waters, fog waters and in aerosol samples.  

Emissions of surface active organic material to the atmosphere which could be the origin of 

cloud droplet monolayers occur from both natural and anthropogenic sources. Plants emit a 

range of organic compounds to the atmosphere including C10 to C17 n-alkanes, esters, alkenes, 

aromatics, ketones, aldehydes, alcohols and terpenes (Winer et al. 1992). The combustion of 

biomass also releases such compounds (Simoneit, 2002). The contribution of anthropogenic 

activities to organic aerosol monolayers must also be considered. Rogge et al., (1991) examined 

the composition of aerosol from meat grilling which contained aromatic hydrocarbons, n 

alkanes, n-alkanoic acids, n-alkenoic acids, and dicarboxylic acids. Palmitic acid, stearic acid 

and oleic acid were major components of meat grilling aerosol (Rogge at al. 1991) that could be 

surface active in the atmosphere.  Combustion of fossil fuels also releases surface active organic 

compounds such as stearic and oleic acid to the atmosphere (Rogge et al. 1993). Increasingly 

traditional fuels are blended with biofuels which have a high organic content including surface 

active methyl esters (Knothe et al. 2006).  
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A natural source of surface active organic material such as lipids to the atmosphere is the sea 

surface microlayer (Simoneit et al. 2004). The oceans were identified as a likely source of 

surface active, monolayer film forming organic material to atmospheric droplets by Giddings 

and Baker (1977). The sea surface microlayer is of particular significance as the majority of 

warm cloud condensation nuclei originate in the marine atmosphere.  The sea surface 

microlayer is present at the air-water interface of the oceans and is of a variable thickness from 

1 to 1000 µm (Donaldson and Vaida, 2006), it is composed of algae, plankton, bacteria, and the 

chemical products of these organisms and the breakdown of detritus within the water column as 

well as anthropogenic pollution. Hardy (1982) suggested a structure of the sea surface 

microlayer as a monomolecular lipid film of a thickness of 10 to 20 Å with a sublayer of 

proteins and other biological material beneath it, such films are also found at the surface of 

lakes (Sodergren, 1987). The lipid content of the sea surface microlayer includes phospholipids 

and fatty acids (Marty et al. 1979). Marty et al., (1979) found that the organic content of marine 

aerosol correlated with the composition of the sea surface microlayer. C14 to C32 fatty acids were 

sampled in aerosol collected by Mochida et al., (2002) over the North Pacific Ocean. The C14 to 

C19 saturated acids correlated with the concentration of sea salt and the authors suggest this is a 

result of the particles originating from the ocean surface. A typical marine aerosol structure 

consists of a basic saline core, containing smaller soluble organic species dissolved as salts 

(Gilman et al. 2004). The core can acidify during atmospheric transport (Gilman et al. 2004) and 

subsequently the dissolved organics would partition to the air-droplet interface as protonated 

acids (Gilman et al. 2004).  Sea salt aerosol particles with an organic coating have been sampled 

from a ship sailing to the North of Iceland by Russel et al., (2010) which is considered to be a 

clean arctic marine region, the authors suggest the thin coatings are carbohydrates and dissolved 

organic carbon from seawater.  

There is a lack of data on the fluxes of such material to the atmosphere or identification of the 

most significant sources for coated particles as this will be geographically variable. For warm 

cloud droplets the sea surface microlayer is likely to be the primary source of coated particles 

due to the proximity of the marine aerosol to cloud formation, and the high marine aerosol 

content of warm cloud. In heavily polluted continental areas and over large forests the sources 

may be dominated by surface active material of a continental origin.  Levoglucosan, a tracer for 

biomass burning (Simoneit et al. 2002; Fu et al. 2009) has been found in aerosol samples from 

the Canadian High Arctic (Fu et al. 2009) at a great distance from any biomass burning source. 

High Arctic Aerosols showed a fatty acid content of predominantly even carbon numbered fatty 

acids, but also high quantities of C9 an oxidation product of oleic acid (Fu et al. 2009). Fu et al., 

(2009) attributed the organic content of aerosol sampled in the high arctic to six sources from 
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plant emissions, marine microbial lipids, biomass burning, fossil fuel combustion, soil re-

suspension and secondary oxidation products.  

 

1.5.2  Proposed Models of Coated Droplet Films 

A model of an ‘inverted micelle’ was depicted by Ellison et al., (1999) after Gill et al., (1983) in 

which an aqueous marine aerosol would be coated in an insoluble monolayer of surface active 

organic material (Ellison et al. 1999; Aumann and Tabazadeh, 2008). 

Aumann and Tabazadeh, (2008) proposed that droplets of lipid emitted for example from meat 

cooking, could coagulate onto an aqueous droplet and spread at the air-water interface. Droplets 

emitted from the surface of the oceans by wave action could have an organic film comprised of 

surface active lipid material from the sea surface microlayer, a concentrated layer of organic 

detritus at the surface of the oceans, which has been shown by Marty et al., (1979) to be 

reflected in the organic composition of marine aerosol samples. As deliquescence occurs and the 

aerosol is activated into a cloud droplet some of the lipid material would remain at the air-water 

interface. Such a coated droplet was illustrated as a core-shell morphology by Ellison et al., 

(1999) as depicted in figure 1.7. 

Figure 1.7 The Core-Shell Morphology of a Cloud Droplet with a Monolayer at the Air-

Water Interface  

 

An aqueous droplet with a 

monolayer at the air-water 

interface. 
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A monolayer system was studied rather than a multi-layer organic film as it was necessary to 

begin with a simple system from which to characterise the kinetics of film oxidation. The 

structure of the hydrophilic head groups of the monolayer forming molecules which could 

enable such a morphology at the air-water interface were listed by Gill et al., (1983) and is 

given in figure 1.8. An atmospheric monolayer would be composed of a mixture of many 

different surface active compounds with differing alkyl lengths. The portion of saturated 

organics are often sampled at higher levels than their unsaturated counterparts. This is due to 

aging as the unsaturated compounds are broken up faster by oxidants in the atmosphere 

(Zahardis and Petrucci, 2007). 

Figure 1.8 The Functional Head Groups of the Surface Active Components of Cloud 

Droplet Monolayers 

 

Monolayer formation occurs when the hydrophilic head group is polar or ionic or forms 

hydrogen bonds with the water within the droplet (Gill et al. 1983). The hydrophobic part of the 

molecule must be of a sufficient length (> 4 to 5 carbons) for the molecule to remain insoluble 

and persist at the interface (Gill et al. 1983).  

The behaviour of a reaction in the interfacial region of a heterogeneous system such as a 

monolayer differs from a reaction in the bulk and the chemical mechanism and kinetics of a 

reaction vary from those taking place exclusively in the gas phase or the liquid phase (Vieceli et 

al. 2004). The reasons for the differences in reaction rate and mechanism are attributed to the 

orientation of the molecules exposing more or less reactive parts of a molecule to the reactant, 

and the trapping of gas phase species in the structure of the interface (Vieceli et al. 2004).  
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1.5.3 Experiments on Atmospheric Films 

Traditional Köhler theory does not adequately describe the hygroscopic behaviour of organic 

CCN and atmospheric oxidation processes should also be considered when modelling the 

behaviour of CCN (Sun and Ariya, 2006). An organic monolayer at the air-water interface of a 

cloud droplet would be exposed to oxidation from atmospheric gases and from radical species 

dissolved in the aqueous phase of the cloud droplet or aerosol particle (Ellison et al. 1999). The 

primary oxidant species which could react with a cloud droplet organic film at the air-water 

interface are OH, NO, NO2, Cl, O3, and NO3 (Vaida et al. 2000). 

There are few experimental studies of the oxidation of monolayers at the air-water interface 

from an atmospheric perspective.  A brief overview of the current state of knowledge based on 

laboratory experiments on the oxidation organic monolayer films in an atmospheric context will 

be given in the respective thesis chapters which contain further discussion of the relevant 

experiments together with relevant experiments on thick films such as those conducted on flow 

tube apparatus.  

Oxidation of atmospheric monolayer forming materials has been investigated by several 

different laboratory methods. The degree of oxidation from the gas phase and from beneath an 

organic film at the air-water interface is poorly constrained. Graedel and Weschler (1981) and 

Gill et al., (1983) concluded that the organic monolayer would inhibit the uptake of oxidant 

gases into the droplet so solution oxidation within the droplet would be inhibited.  The 

monolayer could alternatively be a more soluble medium than the droplet into which gas-phase 

species may accumulate (Donaldson and Vaida, 2006). Ellison et al., (1999) concluded that the 

organic film would be reactive to atmospheric gases and radical species and thus the coating 

would be processed and product formation would occur. Ellison et al., (1999) hypothesised that 

OH radical would react with the monolayer through hydrogen abstraction initiating an oxidising 

chain reaction leading to the presence of an array of functional groups a producing a 

‘functionalised’ organic film.  

Laser trapping of an oleic acid droplet using Raman tweezers was used by King et al., (2004) to 

probe the reaction products at the air-droplet interface of the oxidation of oleic acid initiated by 

gas phase ozone. King et al., (2004) found that oxidation initiated by gas phase ozone at the 

surface of an oleic acid droplet yielded nonanoic acid and nonanal and that the droplet grew as a 

result of oxidation as the relative humidity at which droplet growth could occur was lowered by 

the particle becoming more hydrophilic. 
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Voss et al., (2006) spread a monolayer of oleic acid (unsaturated) with palmitic acid (saturated) 

with deuterated acyl chains on a petri dish with an aqueous subphase then exposed the 

monolayer to gas phase ozone and measured the difference in the spectra before and after 

ozonolysis using a surface specific, broad-bandwidth, sum frequency generation spectroscopy 

technique which uses an infrared light beam of variable frequency and a fixed frequency laser 

beam. The two beams have different energies and the beam frequencies are tuned to match the 

vibrational order of the sample (Voss et al. 2006). The sum energy of the reflected beam is 

detected with a charge coupled device before and after interaction with the sample at a defined 

output angle giving a spectra of intensity versus incident infrared containing peaks which are 

characteristic to the vibrational order of groups present in the monolayer forming molecules. 

Prior to ozonolysis the oleic acid replaced the palmitic acid at the air-water interface as palmitic 

acid is more soluble, after ozonolysis the palmitic acid signal returned showing that the oleic 

acid had been lost from the interface as a result of exposure to gas phase ozone (Voss et al. 

2006). The conclusion of this work was that it confirmed the theory of Tervahattu et al., (2002a,b 

, 2005) that a monolayer on an atmospheric droplet would be oxidised by ozone and there could 

still be an absence of oxidised species at the interface as the products can be volatile or soluble 

(Voss et al. 2006) and that the least soluble species within the droplet would replace any more 

soluble oxidation products at the air-water interface (Voss et al. 2006).  

The process by which photochemical oxidation by aqueous OH radical forms soluble 

dicarboxylic acids found in atmospheric waters was simulated by Tedetti et al., (2007) using 

irradiation of aqueous solutions of fatty acids with NO3
- to generate aqueous OH radical. The 

samples were derivatized and analysed with gas chromatography and flame ionization detection 

demonstrating that the photooxidation of fatty acids produced the smaller soluble dicarboxylic 

acids found in atmospheric waters (Tedetti et al. 2007). Oleic acid in solution was cleaved at the 

double carbon-carbon bond followed by secondary photooxidation of the reaction products 

producing low molecular weight dicarboxylic acids (Tedetti et al. 2007).  

It is a challenge to gain a high resolution measurement of an organic monolayer at the air-water 

interface of a droplet during oxidation. A flat air-water interface is commonly used as a simpler 

system for studying monolayers where the Kelvin effect of curvature does not affect the 

experiment as evaporation from a droplet will alter the packing of a monolayer which is difficult 

to constrain or characterize. The Langmuir trough, a shallow PTFE bath with PTFE barriers 

which run along the surface of the bath, allows the packing of a monolayer on an aqueous 

substrate to be controlled whilst providing a hydrophobic surface on which a monolayer can be 

studied with little interference from the containment apparatus; it is also relatively inexpensive 

in comparison to other techniques.  
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Figure 1.9 Image of a Langmuir Trough with a Wilhelmy Plate Balance 

 

 

When an amphiphile is dissolved in a volatile solvent such as chloroform, then is spread onto 

the surface of a polar liquid such as water, the solvent evaporates leaving the amphiphile 

molecules orientated with their heads bonded into the water and their hydrophobic chains 

orientated into the air. 

The Langmuir trough enables the monitoring of surface pressure, the change in surface tension 

due to molecular interactions at the air-water interface using a Wilhelmy plate balance. This 

consists of a plate suspended from a balance which when force is exerted on it turns a wire; the 

turn in the wire creates a current which is measured.  A liquid surface exerts a mechanical force 

on a solid with which it is in contact (Sprackling, 1985), the surface pressure sensor fitted to the 

Langmuir trough measures this force by the submergence of a chromatography paper plate, the 

Wilhelmy plate, which is attached to a balance. A current is applied to an electromagnet to keep 

the filter paper level. The change in current is measured as the plate moves due to the force of 

surface tension at the air-water interface. Buoyancy acts in an upwards direction on the plate 

and gravity and surface tension act in a downwards direction normal to the interface. The 

surface pressure measurement is a product of the plate perimeter. The plate perimeter is 

calculated according to equation 1.4, the geometry of the Wilhelmy plate is shown in figure 

1.10. 

9 6 ?@A�-��BA�-��C�        (E 1.4) 
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The surface pressure (Π) is calculated from equation 1.5 where p is the plate perimeter and ∆γ is 

the change in the surface tension force pulling on the plate. 

D 6 ∆<9         (E 1.5) 

 

Figure 1.10 The Wilhelmy Plate at the Air-Water Interface Showing the Perimeter and 

Contact Angles used to Calculate the Surface Pressure of a Monolayer  

 

 

 

 

The figure is adapted from the manufacturer, KSV NIMA’s website (KSV NIMA 2010) and the 

NIMA Langmuir Trough Manual 

The net downwards force on the Wilhelmy plate is calculated according to equation 1.6 (KSV 

NIMA, 2011), where ρplate, is the density of the plate, g is the gravitational constant (6.673 x 10-

11 m3 kg-1 s-2 ), ρliquid is the density of the subphase (for water 1000 kg / m-3) and h is the 

immersed depth of the plate. 

F 6 GA�-��HIA�-��@A�-��BA�-�� + 2<?BA�-��@A�-��C2KLMN4 − G��3/�OHBA�-��@A�-��P 
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Surface pressure (Π), is the difference between the surface tension of a clean liquid surface and 

the surface tension of a liquid surface with a surface active compound present. Surface pressure 

varies with the surface area per molecule. The calculation for the surface pressure of a 

monolayer on an aqueous subphase is shown in equation 1.7. 

D 6 <Q-��� − <���&        (E 1.7) 

An insoluble compound at the air-liquid interface will reduce the surface tension, thus increase 

the surface pressure. The higher the concentration (area per molecule), of the amphiphile, the 

greater the surface pressure. Insoluble monolayers were used to simplify the system for kinetic 

analysis of the oxidation process. Stearic acid and oleic acid form an insoluble monolayer and 

have been used as a standard model system for studying atmospheric organic film chemistry. 

The use of the Langmuir Trough to study the surface pressure exerted by a monolayer of 

organic acid at the air-water interface from an atmospheric perspective is an established 

technique, some examples are given here. Gilman et al., (2006) studied the longevity of mixed 

fatty acid and hydrocarbon monolayers formed and aged on a Langmuir trough then sampled on 

a glass slide and characterized using NMR (nuclear magnetic resonance) showing that a long 

chain hydrocarbon such as nonacosane (C29H60) when mixed with teracosanoic acid 

(CH3(CH2)22COOH) had a similar interfacial lifetime to a fatty acid at the air-water interface in 

ambient air.  Eliason et al., (2003) also used a Langmuir trough housed in a thin film chamber to 

collect and analyse the products of ozonolysis of 2-octenoic acid and 10-undecenoic acid which 

were oxidised, hydrophilic shorter chain carboxylic acids. The competition between a surface 

active flourotelomer alcohol and stearic acid was studied as a proxy for an atmospheric droplet 

film on a Langmuir trough by Rontu and Vaida, (2007) showing that the alcohol had a greater 

longevity at the air-water interface when mixed with a fatty acid.  

Voss et al., (2007) studied the aging of an oleic acid monolayer on a Langmuir trough housed in 

a reaction chamber in which the monolayer was exposed to gas phase ozone and the change in 

surface pressure over time was measured as the monolayer was oxidised. The same technique 

employed by Voss et al., (2007) is used in this thesis, the monitoring of the surface properties of 

the monolayer over time have been referred to as the measurement of a kinetic decay within my 

work to distinguish from compressional data referred to as an isotherm. Voss et al., (2007) 

found that the surface pressure of a monolayer of oleic acid at the air-water interface decayed to 

a value of zero m Nm-1 over a time period of ~ 24 minutes when the monolayer was lost from 

the interface. For the work in this thesis the monolayer was compressed by closure of the 

barriers taking the monolayer into the liquid phase of the pressure-area isotherm as this is the 

most realistic configuration for a cloud droplet monolayer. When the monolayer reached the 
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required surface pressure, the Langmuir trough barriers were held in a fixed position and the 

surface pressure and area per molecule were monitored over time during a reaction with an 

atmospheric radical species.  

King et al., (2009, 2010) were the first to observe the oxidation an atmospheric proxy 

monolayer film on a Langmuir Trough with neutron reflection showing a cleavage of the double 

bond in the tail of a monolayer comprised of the oleic acid molecule exposed to ozone (King et 

al. 2009) followed by the formation of surface active product molecules, and to NO2 (King et al. 

2010), which did not react with oleic acid other than isomerising the double bond from the cis 

configuration to trans. King et al., (2009, 2010), Thompson et al., (2010) and Voss et al., (2007) 

are the only studies of atmospheric monolayer oxidation to be performed in real time.  

 

1.5.4 The Climatic Effect of Cloud Droplet Film Oxidation 

The presence of an organic film at the air-water interface of a cloud droplet would increase the 

droplet lifetime by reducing the evaporation of water from the droplet (Gill et al. 1983). By 

lowering the surface tension of the droplet, the equilibrium size to which the droplet may grow 

is altered by the presence of a monolayer at the air-water interface (Seidl, 2000). The uptake of 

gaseous species to the droplet may also be inhibited (Decesari et al. 2003; Vicceli et al. 2004) 

thus the droplet chemistry will vary from an uncoated droplet. Oxidation which degrades the 

film would increase the surface tension taking its value closer to that of a pure aqueous droplet 

(King et al. 2009). The implications of the oxidation of the organic film are that:  

• The monolayer area per molecule will be increased as material is lost from the air-water 

interface. 

• Oxidation of a monolayer and loss of coverage at the air-water interface of an 

atmospheric aerosol particle would increase the equilibrium vapour pressure according 

to the Kelvin equation, requiring a higher supersaturation for droplet nucleation. 

• The monolayer could be replaced by the least soluble organic component of the 

organics within the droplet phase as demonstrated by Voss et al., (2006).  

• Oxygenated product species generated at the air-water interface by the reaction of 

insoluble organic monolayers could be better able to uptake water than the original 

monolayer (Cruz and Pandis, 1998; Elaison et al. 2004). A loss of the monolayer due to 

oxidation could lead to rapid evaporation of a droplet.  

•  King et al., (2009) showed that in terms of Köhler modelling, the growth curve of a 

CCN into a cloud droplet was more effected by the contribution of soluble reaction 
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products to the Raoult term than by the change in surface tension as a result of 

monolayer oxidation (the Kelvin term) (King et al. 2009), thus the reaction products 

regardless of their propensity for the interface will also have an effect on the growth of 

a CCN.  

• The presence of a monolayer delays the adsorption of water vapour reducing the 

number of new cloud droplets in an air-mass of a given saturation (Feingold and 

Chuang, 2002; Decesari et al. 2003). Oxidation of the monolayer would increase the 

adsorption of water vapour and thus increase the number of new cloud droplets which 

could lead to enhancement of the Twomey effect.  

The effect of the oxidation of a droplet monolayer on the chemistry at the air-water interface is 

poorly constrained, this thesis is an attempt to build on the work of King et al., (2009, 2010) by 

using the technique of neutron reflectometry to probe the effect of atmospheric oxidant species 

on the amount of labelled organic material residing at the air-water interface. Kinetic analysis of 

the persistence of surface active material at the interface will provide data on how long the 

reaction of an insoluble organic monolayer with a specific oxidant will take, when compared 

with the lifetime of an atmospheric droplet it can be seen which processes occur on a timescale 

that would affect the droplets’ hygroscopicity.  

1.6 Using the Neutron Reflectometry Technique to Study Atmospheric Monolayers   

Following the studies of King et al., (2009, 2010) and Thompson et al., (2010) the work in this 

thesis utilizes the same neutron reflectometry technique to collect surface coverage 

measurements of an organic monolayer at the air-water interface over time during an oxidation 

reaction, coupled with surface pressure measurements which were obtained simultaneously. The 

measurement technique, methods of neutron generation and the geometry of the reflectometer 

instruments are given in the relevant experimental chapters.  

The use of neutrons is complex and expensive when compared to other techniques in 

atmospheric science however several unique properties of the neutron facilitate measurements 

on a molecular level which can only be achieved with this technique.  

• Unlike light neutrons only interact with the nucleus of an atom and not the electron 

cloud (Squires, 1978). The neutron does not react with the sample being investigated, in 

this case the monolayer as the neutron is electronically neutral (Squires, 1978) allowing 

kinetic measurements to be taken without changing the chemical outcome of a reaction. 
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• The wavelength of a thermal neutron is of the order of 0.1 to 30 Ångstrom (Eastoe, 

2003). This wavelength is similar to the length of the spacing between atoms within a 

molecule (Squires, 1978).  

• Each atom has a scattering length for neutrons. The scattering length (b) for hydrogen is 

-3.74 fm and for deuterium is 6.68 fm, vastly different, allowing the manipulation of 

scattering to determine structural information as the contrast affects the time of flight of 

a neutron through a sample (Penfold and Thomas, 1990).  

In neutron reflectometry a beam of neutrons is directed at the sample. Neutrons within the beam 

will penetrate the atomic nuclei in the sample which scatter the incident neutrons. The scattering 

length of an organic molecule can be drastically changed by substituting deuterium for 

hydrogen. In the work in this thesis the experiments are designed so that the scattering of the 

neutrons is from the monolayer at the air-water interface within the Langmuir Trough giving a 

measurement from which the average amount of deuterated material at the air-water interface 

over reaction time (the surface coverage, Γ) can be constrained, providing a measurement 

suitable for kinetic analysis. 

Isotopic substitution is used in this work to ensure that the scattering of neutrons takes place 

predominantly from the monolayer, by creating a subphase beneath the monolayer which 

scatters neutrons to the same degree as air. The substitution of hydrogen atoms with deuterium 

atoms within a molecule as a label will increase the reflectivity from specific part of a molecule 

which can give structural information about a monolayer and its changing composition during a 

reaction, this technique was also used. 

The measurement of the monolayer surface coverage gives an advantage over measurement of 

the surface pressure alone as the surface coverage is a measurement of the amount of material 

present at the interface whereas the surface pressure is merely a product of the interaction 

between the molecules comprising the monolayer. A measure of quantity with time allows a 

kinetic analysis of the reaction of an atmospheric oxidant with a monolayer at the air-water 

interface which yields rate constants which can be used to model the effect of oxidation by a 

specific species on the lifetime of a cloud droplet or aqueous aerosol particle. 

By placing the Langmuir trough in a controlled environment provided by an aluminium reaction 

chamber, the concentration of an oxidant gas in the air above the Langmuir trough can be 

controlled to probe the kinetics of any oxidising reactions.  The reaction chamber was 

constructed from aluminium as aluminium does not activate and has a minimal effect on 

neutron scattering. Two reaction chambers were used for the majority of this work, each custom 

made to fit the neutron instruments sample areas and will be illustrated in the relevant 
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experimental chapters. A third reaction chamber was constructed in the laboratory at Royal 

Holloway University for running experiments in preparation for neutron measurements.  

The thesis chapters are devoted to neutron experiments exploring the oxidation of monolayer 

organic films by different reactive species. Decay mechanisms describing the reaction occurring 

at the air-water interface were fitted to the neutron reflectivity data in the format of surface 

coverage over time to obtain rate constants for the reaction of OH generated in the aqueous 

phase and gas phase O3 with various monolayers. 
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Hydroxyl Radical Oxidation of Stearic Acid Monolayers 

2.0 Abstract 

A monolayer of stearic acid, a naturally occurring insoluble organic amphiphile was oxidised 

with aqueous-phase hydroxyl radicals, generated by the photolysis of hydrogen peroxide. The 

rate of film oxidation at the air-water interface was monitored with neutron reflection on a 

Langmuir trough. The monolayer of deuterated stearic acid (C18D35O2H) serves as a proxy for 

the organic film at the air-droplet interface of a cloud droplet. The surface pressure of the 

monolayer was measured with a Wilhelmy plate and the surface coverage of the deuterated 

material was measured with neutron reflection. The surface pressure and surface coverage 

declined with photolysis time. The kinetic decay of the surface coverage may be fitted to a 

degradation mechanism (species: stearic acid → product A → product B) with two surface-

active products from the reaction between stearic acid and hydroxyl radical. We have shown 

that organic films at an air-water interface may initially resist aqueous-phase oxidation by 

hydroxyl radical; however continued oxidation will completely remove the film. The chemical 

lifetime of stearic acid and its product film from the reaction with aqueous hydroxyl radical 

exceeds 500 days and thus the chemical oxidation of stearic acid in aerosol and on cloud 

droplets in the atmosphere is unlikely. 

2.1 Introduction  

Atmospheric aerosol particles in the troposphere act as cloud condensation nuclei. The 

oxidation of atmospheric aerosols influences climate through cloud formation and precipitation 

effects, (Lohmann and Feichter, 2005; IPCC, 2007). Some cloud condensation nuclei have been 

shown to possess an organic film (Blanchard., 1964; Gill et al. 1983; Tervahattu et al. 2002a.b, 

2005). As a cloud droplet ages in the atmosphere it will be subject to oxidation by radical 

species from outside and within the droplet phase.  

To investigate the process of the reaction of an insoluble organic layer at the air-water interface 

oxidised by a radical species from within a cloud droplet, aqueous phase hydroxyl radical (OH) 

was reacted with a monolayer of stearic acid formed at the surface of a Langmuir trough. By 

monitoring the surface pressure of the monolayer on an aqueous subphase, it was demonstrated 

that a reaction may be taking place. To study the kinetics and atmospheric relevance of this 

reaction the surface coverage of molecules at the air-water interface was measured using 

neutron reflection. 

 The experiment described here assesses the behaviour of a monolayer of stearic acid at the air-

water interface as it reacts with OH.  
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2.2 Aims 

1. To monitor the properties of surface pressure and surface coverage of a monolayer of 

stearic acid at the air-water interface in real time as the monolayer was oxidised with 

aqueous phase OH.  

2. Kinetic analysis of the surface coverage of a monolayer of stearic acid over time to 

determine a rate constant for the reaction of stearic acid with aqueous phase OH. 

3. To elucidate the mechanism for stearic acid removal from the air-water interface. 

4. Calculation of the chemical lifetime of a stearic acid monolayer on a typical cloud 

droplet in the atmosphere in order to show the importance of the oxidation reaction of a 

monolayer of an insoluble amphiphile with aqueous phase hydroxyl radical in the 

atmosphere.  

 

2.3 Background 

The chemical oxidation of cloud droplet films has not been widely studied. The presence of a 

cloud droplet film will increase the surface pressure (Π), thus decreasing the surface tension at 

the air-water interface. Oxidation of the organic surfactants in a cloud droplet film may have an 

effect on the surface pressure of the monolayer and its surface coverage (Γ) at the air-water 

interface. Alteration of the surface properties of a film as it ages chemically in the atmosphere 

will alter the critical supersaturation value according to the Köhler theory of cloud droplet 

formation and growth as explained in chapter 1.  

The number and growth of cloud condensation nuclei (CCN) into cloud droplets has climatic 

implications. A chemical reaction at the air-water interface of atmospheric aerosol could 

activate a cloud condensation nuclei allowing hygrodynamic growth (the uptake of water), into 

a cloud droplet. A larger number of smaller cloud droplets in a defined parcel of air with a 

constant volume of water would scatter more radiation thus increasing the albedo of the cloud 

(Twomey, 1974). It should be noted that in reality the quantity of water vapour is not constant 

during cloud formation. 
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2.3.1 Stearic Acid and Cloud Droplet Films 

Stearic acid is a saturated insoluble fatty acid, (CH3(CH2)16COOH) with a straight chain of an 

even carbon number 18 which is present in the sea surface microlayer, a layer of organic 

material found at the surface of oceans formed from lipid membrane disintegration (Marty et al. 

1979; Tervahattu et al. 2002a,b).  

Figure 2.1  The Structure of Stearic Acid.  

 

The stearic acid molecule has a carboxylic acid head group with a saturated aliphatic 

hydrocarbon chain. The functional group is the (-COOH) carboxylic acid head which is 

hydrophilic. At the air-water interface the head group bonds to the hydrogen in the subphase 

and the chain is orientated into the air. 

The amphiphilic structure of fatty acid molecules means that given a sufficient chain length the 

molecules will form a monolayer at the air-water interface. Stearic acid has a hydrophobic 

hydrocarbon chain length of 18 carbon atoms and orientates at surface pressures above ~1 

mNm-1 with the hydrocarbon chain directed into the air whilst the carboxylic head group sits in 

the aqueous subphase of the droplet. Stearic acid provides an example of a saturated fatty acid 

which forms an insoluble monolayer at the air-water interface with which to explore the effect 

of OH oxidation as an example of an aqueous phase reaction that could produce secondary 

oxidation products. 

In urban areas the majority of organics are primary in nature and hydrophobic (Saxena et al. 

1995; Finlayson-Pitts and Pitts. 2000). Bi et al., (2008), sampled aerosol in the city of 

Guangzhou, South China detecting over 140 organic compounds many of which were secondary 

oxidation products, short chain dicarboxylic acids formed by the photo-oxidation of larger 

organic compounds. Photo-oxidation is an important process by which atmospheric aerosol is 

aged during transport.  

The enriched layer of biological debris at the ocean air-water interface, the sea-surface 

microlayer, contributes organics to the atmosphere that are surface active, (Gill et al. 1983; 

Ellison et al. 1999; Donaldson and Vaida, 2006). The annual flux of marine aerosol to the 

atmosphere is approximately 3,300 Tg / yr (Penner et al, 2001) based on the dry diameter of sea 

salt aerosol thus the amount of aerosol transmitted including wet organics would be higher than 

this figure . Stearic acid is a component of the sea-surface microlayer and its presence as a 
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constituent of marine aerosol (Tervahattu et al. 2002a,b) indicates that stearic acid is transported 

into the atmosphere on aerosol which potentially act as cloud condensation nuclei. Stearic acid 

is also found in surface slicks on freshwater lakes (Meyers and Kawka, 1982; Södergren, 1987). 

Rogge et al., (1991) estimated that meat cooking emissions accounted for up to 21% of the 

primary organic carbon particles in the area of Los Angeles and that stearic acid was emitted 

from grilling and frying of meat at a rate of 50.5 kg day-1 or 70.6 kg day-1 depending on the 

blends of processed meat being cooked. In the same study data from aerosol samples collected 

in 1982 was analysed and an ambient concentration of stearic acid of 106.2 ng m-3 was 

calculated for Western Los Angeles (Rogge et al. 1991). An increasing source of stearic acid in 

the troposphere is the combustion of biofuels (Khral et al. 2009).  

Stearic acid provides a good proxy for an insoluble organic layer at the air-water interface as it 

is found in aerosol samples so is a genuine candidate for a cloud droplet film forming 

compound. 

2.3.2 Oxidation of Cloud Droplet Films 

The atmosphere is an oxidising environment (Finlayson Pitts and Pitts, 2000), where sunlight 

provides energy for reactions and radical chemistry provides the catalyst for oxidation of 

particulate, aqueous and gas-phase compounds. The organic film at the air-water interface of a 

cloud droplet is exposed to oxidants dissolved in and generated within the droplet (e.g. Bertram 

et al. 2001; King et al. 2004; Tedetti et al. 2007; Voss et al. 2007; Aumann and Tabazadeh, 

2008), such as hydroxyl radical.  

An organic film on a cloud droplet may react by the process of: 

1. Gas-phase collisions of oxidant molecules with the surface of a cloud condensation 

nuclei or droplet. 

2. Gas-phase oxidants that have dissolved into the droplet liquid phase and reacted with 

the film.  

3. Oxidants generated in the droplet liquid phase which react with the film at the surface 

of the droplet. 

Thus the film may be expected to oxidise. The lifetime of an oxidation reaction would need to 

be shorter than the lifetime of the cloud droplet to be a significant process to consider in climate 

modelling. The lifetime of a cloud droplet is controlled by many factors, such as fog formation, 

precipitation, entrainment of warm or dry air into the cloud which causes evaporation, and rates 

of mixing and uplift within a cloud. Measurement of the specific age of a cloud droplet in situ is 
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not possible, estimations are made based on modelling of the period of time an air parcel has 

spent in a cloud together with satellite images of the horizontal extent of the cloud and wind 

speed measurements (Colvile et al. 1997). Colvile et al., (1997) estimated an average cloud 

droplet age for orographic cloud at Great Dun Fell, UK during April and May 1993 of 1 to 30 

minutes.   

The lifetime of a cloud droplet within a cloud could be altered by the presence of a surfactant 

monolayer as this would decrease the droplets surface tension which would allow the droplet to 

uptake more water vapour and grow, however if such a monolayer was oxidised away then the 

droplets surface tension would be increased and the droplet would be more likely to evaporate. 

The effect of a surfactant film on cloud droplet growth is small and brief. Once a cloud droplet 

starts to grow the surface tension is not important, however the activation of cloud droplet 

nuclei is a component of climate modelling so investigation of the chemistry of atmospheric 

monolayer films will provide data for atmospheric modelling. Within this chapter I investigate 

the oxidation of a saturated fatty acid monolayer film by generating oxidants in the droplet 

liquid phase which may react with a film at the air-water interface by generating liquid phase 

OH beneath a stearic acid monolayer. 

The experiments described in this chapter aim to assess the behaviour of a monolayer of stearic 

acid at the air-water interface as it reacts with hydroxyl radical. The following schemes show 

the two ways in which OH can react with an organic, film forming molecule.  

Figure 2.2 The Addition of OH to a Double Bond and the Abstraction of Hydrogen by OH 

  from a Single Hydrocarbon Bond 

1. OH can add to double bonds   

 
 

2. OH can abstract a hydrogen  

  

In the case of an unsaturated molecule such as oleic acid hydroxyl radical (OH) can complete 

process 1 and 2.  In stearic acid hydrogen abstraction of the hydrogen from the CH2 groups by 

OH as in process 2 / figure 2.2 is predicted to lead to a series of shorter chain products. OH 

radical is oxidising in the presence of oxygen, the radical participates in the first step in a radical 
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chain reaction the overall process of which is oxidation. The oxidation reaction results in the 

following general reaction (R 2.1). 

��������	 + �	 	→ 	�������       (R 2.1) 

2.3.3 Hydroxyl Radical Formation in the Cloud Droplets 

The OH radical in cloud water is generated by several different processes. Gas phase OH radical 

can partition into the droplet phase or aqueous phase OH can be generated by photolysis within 

the aqueous phase of a cloud droplet where in the presence of oxygen it acts as an oxidant.  

Photolysis of hydrogen peroxide is a prominent source of hydroxyl radical in atmospheric 

waters, (Zou and Hoigné, 1992, 1993; Faust et al. 1993; Anastasio et al. 1994; Arakaki and 

Faust, 1998; Yu and Barker, 2003). 

OH radical in the aqueous phase of a cloud droplet can be formed by the following mechanisms:  

1. Hydrogen peroxide photolysis and the Haber-Weiss cycle. 

2. Uptake into the cloud droplet of gas phase OH radical.  

3. Nitrate (NO3
-) photolysis.  

4. Photo-Fenton cycle. 

5. Photosensitization of natural organic molecules. 

These mechanisms are pictured schematically in figure 2.3. 
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Figure 2.3 Gas-Phase and Liquid-Phase Cycling of OH in the Atmosphere 

 

Figure 2.3 was adapted from Arakaki and Faust (1998).  

1. Hydrogen Peroxide Photolysis and the Haber-Weiss Cycle 

Hydrogen peroxide photolysis occurs within the cloud droplet by the following reaction: 

	���	(��) + ℎ� 	→ 2�	(��)        (R 2.2) 

Hydrogen peroxide is scavenged from the atmosphere by cloud droplets, after being formed in 

the gas phase from combination of hydroperoxyl radicals (HO2), as shown in reaction 2.3 

(Warneck, 1988). H2O2 is very soluble with a Henry’s Law coefficient of 99000 M atm-1 at 

298.15 K based on data from Lind and Kok, (1986, 1994) as calculated by NIST (2012). The 

hydrogen peroxide then undergoes photolysis by sunlight producing two hydroxyl radicals 

within the aqueous phase (R 2.2). 

The Haber-Weiss cycle (R 2.3 to 2.5) also produces OH radical in the aqueous phase. Secondary 

radical chemistry in solution effects the concentration of OH radical formed. 

	��(�) +	��(�) 	→	���(�) +��(�)      (R 2.3) 
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	���(��) + �	·(��) 	→	��(��) + ���∙(��) +	(��)    (R 2.4) 

	���(��) + ���∙(��) 	→��(��) + �	�(��) + �	·(��)    (R 2.5) 

The third reaction in the Haber-Weiss cycle produces OH radicals (R 2.5). In the aqueous phase 

under experimental conditions there will be a high concentration of H2O2 and reaction 2.5 

should proceed. Later I demonstrate with bulk kinetic modelling the relative concentrations of 

H2O2, HO2, OH and O2.  

2. Uptake into the Cloud Droplet of Gas Phase OH Radical 

The primary source of gas-phase hydroxyl radical is the photolysis of ozone into excited atomic 

oxygen (R 2.6), (Bahm and Khalil, 2004) which then reacts with water vapour to produce OH 

radicals in the gas phase (R 2.7). The gas phase OH radical can then diffuse into the droplet 

aqueous phase. 

��(�) � !" ��(�) + �( �	� )(�)       (R 2.6) 

�( �	� )(�) +	��(�) 	→2�	(�)       (R 2.7) 

3. Nitrate (NO3
-) Photolysis 

The nitrate photochemical cycle generates droplet phase OH radical from nitrate photolysis. 

Nitric acid (HNO3) is scavenged from the atmosphere and nitrate (NO3
-) is photolysed releasing 

an oxygen radical anion.  The oxygen radical anion reacts with H2O to produce OH radical.  

#���	 + ℎ� 	→#���	 + �       (R 2.8) 

#��� + ℎ� 	→#�� + ��       (R 2.9) 

�� +	�� 	→�	 ∙ 	+�	�       (R 2.10) 

Nitrogen dioxide (NO2) photolysis produces nitric oxide (NO) and excited oxygen. The excited 

oxygen then reacts with water producing OH radical (R 2.11 and 2.12). Photolysis of nitrite 

anion (NO2
-) produces nitric oxide (NO) and oxygen radical anion. The excited oxygen radical 

anion reacts with water producing OH radical. 

#��� + ℎ� 	→#� + ��       (R 2.11) 

�� +	�� 	→�	 + �	�       (R 2.12) 
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4. The Photo-Fenton Cycle 

The photo-Fenton cycle of hydroxyl radical formation in solution catalysed by iron consists of 

two reactions progressing in unison and can occur within a cloud droplet. Iron is present in 

atmospheric particles such as fly ash and in clays within desert dust aerosols (Faust and Hoigné, 

1990) which can act as cloud condensation nuclei. The iron present within the nuclei dissolves 

into the nucleated droplet. Rainwater samples from Leeds, UK analysed by Clark and 

Radojevic, (1987) had a mean iron concentration of 5 µM, synthetic rainwater samples analysed 

by Weinstein-Lloyd and Schwartz, (1991) contained 0.02 to 0.3 µM. The presence of iron leads 

to OH production via the Fenton mechanism.  

The photo-Fenton reactions generate aqueous phase OH radical in two ways. Ferric oxide 

(Fe(III)) complexes with an organic molecule acting as a direct aqueous phase OH radical 

source. OH radicals are also formed indirectly by the re-oxidation of iron oxide (Fe(II)) to 

Fe(III) in the presence of hydrogen peroxide (HOOH), (Faust and Hoigné, 1990; Arakaki and 

Faust, 1998). 

Figure 2.4 The Photo-Fenton Cycle 

 

The chemistry in figure 2.4 is adapted from that detailed in Zepp, Faust and Hoigné (1992). 

DOM denotes dissolved organic matter within the cloud droplet. 

Arakaki and Faust (1998) proposed that OH was generated through photolysis in cloudwater 

samples from Whiteface Mountain, New York and identified two photo-Fenton reaction sources 

of OH dependent on the aqueous HOOH concentration and independent of HOOH. 
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concentration. The HOOH dependent sources (R 2.14) were dominant. In acidic cloudwaters 

Fe(III) is photo chemically reduced to Fe(II) in minutes (R 2.13) (Arakaki and Faust, 1998).  

$%(&&&) + ��' � !"$%(&&)       (R 2.13) 

	��	 + $%(&&) 	→$%(&&&) + �	 ∙ +�	�     (R 2.14) 

The iron species involved in the Fenton reactions within a cloud droplet are Fe(OH)2+ and 

Fe(OH)4+ as both species absorb strongly in the UV region of 290 to 400 nm (Faust and Hoigné, 

1990).  

5. Photosensitization of Natural Organic Molecules 

The photosensitization reaction of oxygen and dissolved organic matter in the aqueous phase of 

a cloud droplet produces hydroperoxyl radicals (HO2) (Arakaki et al. 1995; Arakaki et al. 2006). 

The hydroperoxyl radicals form hydrogen peroxide which then produces OH radical through 

photolysis.  

The basic process is described by reaction 2.15 (sourced from Wayne and Wayne, 1996) where 

the photosensitizer molecule for example dissolved organic matter in the cloud droplet in a 

triplet state (see Benzophenone in figure 2.5). The reaction results in the formation of 

superoxide oxygen radical which reacts with H2O2 producing the OH radical (R 2.3 to 2.5). 

(%)� + �� 	� !"(%)� +	��∗	�        (R 2.15) 

	��(�) +	��(�) 	→	���(�) +��(�)      (R 2.3) 

	���(��) + �	·(��) 	→	��(��) + ���∙(��) +	(��)    (R 2.4) 

	���(��) + ���∙(��) 	→��(��) + �	�(��) + �	·(��)    (R 2.5) 
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Figure 2.5 The Photosensitization Reaction Cycle Which Contributes to OH Production 

 

 

The OH radical present in the cloud droplet formed by the above five processes will then go on 

to react with other species in the droplet including any surfactant film as represented by the 

monolayer in the experiments within this chapter. 

The concentration of H2O2 in cloudwater is important as a source of OH radical in the aqueous 

phase. Concentrations of H2O2 in cloud water have been measured in many field campaigns as 

reviewed by Jackson and Hewitt (1999), and are commonly below 100 µM (Jackson and Hewitt, 

1999). The FEBUKO experiment (Valverde-Canossa et al. 2005) measured cloud-water H2O2 

concentrations at just under 2 µM during daylight hours in the Thuringian Forest, Germany. 

Sowka et al., (2001) measured aqueous H2O2 in cloud-water collected on Mount Szrenica, 
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Karkonosze mountains, Poland at an average concentration of 26.3µM. Weinstein-Lloyd and 

Schwartz (1991) measured H2O2 yield from rainwater samples collected at Brookhaven National 

Laboratory, 100km East of New York and in synthetic samples of rainwater when irradiated 

with Cobalt-60 at differing intensities, in the presence of common cloud water constituents, in 

varying amounts. The findings of this work were that the initial concentration of H2O2 in the 

natural sample was measured at 50µM, the yield was 40 - 65µM depending on the intensity of 

the Coblat-60 irradiation which produces OH radicals from the H2O2 present in the sample. The 

presence of iron had a profound effect on the H2O2 yield from superoxide radical (O2
-) and to 

accurately determine the yield it was vital to know the iron concentration (Weinstein-Lloyd and 

Schwartz, 1991).  

Sources of the iron found in cloud droplets are the clays found in windblown (Eolian) dust and 

fuel fly ash (Faust and Hoignè, 1990).  Iron concentrations from rainwater samples provide a 

concentration for cloud waters, Clarke and Radojevic (1987) measured Fe concentrations 

ranging from 0.3 to 23 µM in rainwater samples from Leeds at pH 3-5, that of an acidified air-

saturated cloud droplet (Faust and Hoignè, 1990). There is little data on the speciation of iron 

within cloud waters and it is thought to alter within the lifetime of a cloud droplet (Faust and 

Hoignè, 1990). Faust and Hoignè (1990) concluded that the dominant Fe(III)-hydroxy complex 

in cloud water was likely to be Fe(OH)+ which is a source of aqueous OH radical.   

2.3.4 The Reaction of OH and Stearic Acid 

OH radical is attributed as being the most reactive atmospheric radical species after ozone in the 

aqueous and gas-phase. It is the most reactive radical in atmospheric waters. Stearic acid is a 

proxy for an insoluble, surface active, film forming species. The stearic acid molecule is 

unsaturated and therefore will not react with ozone so if it was being oxidised then OH radical 

would be likely to be the radical responsible.  
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2.4 Experimental 

To study the reaction of OH radical with stearic acid the surface coverage (Γ) and the surface 

pressure (Π) of a stearic acid film at the surface of a Langmuir trough were measured to monitor 

the amount of material at the air-water interface over reaction time. OH radicals were generated 

in solution beneath the stearic acid film to simulate oxidation of a film from within a cloud 

droplet. 

A series of preliminary experiments were conducted to determine: 

• The surface pressure behaviour of a stearic acid monolayer at the air-water interface 

during oxidation. The surface pressure of the stearic acid monolayer was measured over 

reaction time with a Langmuir trough and a Wilhelmy plate balance. 

• Determination of the concentration of OH radical generated during a reaction through 

numerical modelling, the photolysis rate constant (J), for the numerical modelling was 

determined using titrations. 

• Quantification of the intensity of the lamps used to generate OH radical using chemical 

actinometry. 

Following the preliminary experiments, neutron reflectivity experiments were conducted to 

determine the kinetic behaviour of the reaction of aqueous OH radical with a stearic acid 

monolayer. There were three components to the neutron reflectivity experiments: 

• To monitor the surface coverage of the stearic acid monolayer as a kinetic variable with 

reaction time as the monolayer reacted with aqueous OH radical. The aqueous OH 

radical was generated by the photolysis of hydrogen peroxide in the Langmuir trough 

subphase beneath the monolayer. The surface coverage of the monolayer was measured 

simultaneously to the surface pressure which was measured with a Wilhelmy plate 

balance.  

• The concentration of H2O2 in the Langmuir trough subphase beneath the monolayer of 

stearic acid was varied to gauge the effect of varied OH radical production on the 

kinetic decay of the stearic acid monolayer. The monolayer surface coverage and 

surface pressure were monitored with neutron reflection and the Wilhelmy plate 

apparatus simultaneously. 

• Experiments were conducted with a single concentration of H2O2 but at different 

temperatures to monitor the effect of temperature on the kinetics of the reaction 

between OH radical and a monolayer of stearic acid. 
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To gain an understanding of the changes in the monolayer morphology during a reaction 

with aqueous OH radical a Brewster angle microscope was used to take images of the 

monolayer during an H2O2 photolysis reaction.  

The measurement techniques will be explained followed by the experimental methodology 

including the method of OH radical generation. 

2.4.1 Measurement Techniques  

The properties of surface pressure (Π) and surface coverage (Γ), were monitored versus reaction 

time to:  

• To gain an understanding of the effect of OH radical on a stearic acid film at the air-

water interface. 

• To take measurements of a kinetic variable in order to calculate the rate coefficient for 

the decrease of stearic acid at the interface with time, and to calculate the chemical 

lifetime of the stearic acid under attack by hydroxyl radical relative to a cloud droplet 

lifetime. 

• To observe any surface active products. 

 

2.4.2 Measuring Surface Pressure. The Wilhelmy Plate Balance and the Langmuir Trough 

The monolayer surface pressure gives a measurement of the closeness in the packing together of 

the molecules forming a monolayer at the air-water interface, the closer the molecules, the 

stronger the surface pressure at the interface becomes. This measurement is a useful indication 

of loss of material from the interface as a reduction in the number of molecules present at the 

air-water interface weakens the surface pressure exerted by the monolayer. The Langmuir 

trough and Wilhelmy plate balance provide a cost effective method for determining whether a 

chemical reaction is causing a loss of material from the air-water interface. The equipment used 

to monitor the monolayer surface pressure will be explained in the following paragraphs.  

 To measure the surface pressure (Π), exerted by a stearic acid monolayer at the air-water 

interface during a reaction with OH radical the monolayer must be held in an apparatus which 

allows the interface to be accessible for measurements to be made, yet preserves the structure of 

the monolayer at the interface. The Langmuir trough, a PTFE bath with a shallow depth and 

large surface area is ideal. PTFE is very hydrophobic, when the trough is filled with water (the 

subphase), the contact angle with the PTFE produces a high meniscus at the surface of the 

trough and there is little disturbance of the liquid surface from the walls. When mixed with a 
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rapidly evaporating, volatile solvent such as chloroform, an amphiphile such as stearic acid can 

be spread at the air-liquid interface drop by drop from a syringe forming a one molecule thick 

organic layer across the surface of the subphase known as a monolayer. The Langmuir trough 

has moving barriers which compress the monolayer to achieve a closer packing of the molecules 

within the film, increasing the surface pressure.  

The surface pressure of the monolayer is measured with a plate made of chromatography paper 

(the Wilhelmy plate), suspended through the monolayer into the subphase. The plate is 

suspended from a wire balance with an electronic current running through it to an 

electromagnet. The downward force of surface pressure exerted on the plate pulls on the balance 

increasing the current which counteracts the force maintaining the special position of the plate. 

The electrical current is related to the surface pressure. 

Figure 2.6 The Langmuir Trough 

 

Surface pressure at the air-liquid interface is the difference between the surface tension (γ) of a 

clean liquid surface (γ pure subphase) and the surface tension of a liquid surface with a monolayer 

present (γ subphase with film). The units for the measurement of surface pressure and surface tension 

are milli-Newton meters (mNm-1). 

+ = -./01	2/3.��21 − -2/3.��21	567�	869:     (E 2.1) 

The surface pressure is an indication of the change in forces which are dependent on the 

intermolecular distance of the monolayer forming molecules at the air-water interface during a 

reaction.  The surface pressure measurement does not give information on a kinetically variable 
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property such as the amount of monolayer material with reaction time as surface pressure is not 

proportional to surface coverage. The surface pressure data indicates the effect of the molecules 

and molecular packing on the surface tension of the air-water interface but not how the 

molecules themselves are altered during a chemical reaction. 

The use of the Langmuir Trough and Wilhelmy plate balance to study a monolayer of organic 

acid from an atmospheric perspective is an established technique and has been used on stearic 

acid by Gilman et al., (2006). Eliason et al., (2003) used a Langmuir trough housed in a thin 

film chamber to collect and analyse the products of ozonolysis of 2-octenoic acid and 10-

undecenoic acid which were oxidised, hydrophilic shorter chain carboxylic acids.  

The surface pressure-area isotherm of a monolayer of stearic acid at the air-water interface 

measured on a Langmuir trough is shown in figure 2.7. The isotherm measurement of surface 

pressure is achieved by compression of the monolayer by closure of the Langmuir trough 

barriers.           

Figure 2.7 The Surface Pressure-Area Isotherm of Stearic Acid at the Air-Water Interface 

as Measured on a Langmuir Trough 
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A 30 µL monolayer of 1mg / mL stearic acid in chloroform compressed at a rate of 20cm2 min-1 

to produce an isotherm performed at 20°C on the Royal Holloway Langmuir trough (30 × 10 

cm2 surface area) showing the phases of the monolayer as the molecules are packed closer 

together.  

2.4.3 Measuring the Monolayer Surface Coverage with Neutron Reflectometry 

The measurement of surface pressure alone does not provide a quantative surface concentration 

which can be used for kinetic analysis. To accurately measure the amount of surface active 

material present and its loss from the air-water interface a specular neutron reflectometry 

technique has been used. Neutron reflectometry determines, through the scattering of neutrons, 

how much material is present (the compositional profile) at the air-water interface over time. 

From this measurement a reaction scheme can be composed and fitted which gives a rate 

constant for the reaction of a stearic acid monolayer with aqueous OH radical. A chemical 

lifetime for the species of interest under conditions of oxidation can be calculated which will 

provide new data for climatic modelling.  

Neutron reflectometry experiments require the use of a neutron source which consists of large 

particle generating plant which generates neutrons through the collision of atoms or through the 

decay of atoms in a nuclear reactor. The theory behind the neutron reflectometry technique is 

extensive; the key principles will be explained with regard to this experimental work in the 

following section.  

2.4.3.1 Neutron Sub-Atomic Particles as a Tool for Measurement 

The use of neutron reflectometry is complex and expensive when compared to other techniques 

in atmospheric science; however several unique properties of the neutron facilitate 

measurements on a molecular level which can only be achieved with this technique.  

The neutron is a component of the nucleus of the atom held together with protons by the strong 

force. Experiments by Fermi showed that neutrons behaved as light when reflected from a flat 

surface (Fermi and Marshall, 1947). The manipulation of the scattering of neutrons from a 

surface to gain structural information normal to the interface, a technique known as neutron 

reflectometry has been practiced since the early 1990’s. Neutrons are unique in that they only 

interact with the nucleus of an atom and not with the electron cloud as light does (Squires, 

1978). Neutrons behave as a particle and as a wave according to quantum mechanics in much 

the same way as light does; therefore many optical phenomena used for measurements are also 

exhibited by neutrons (Penfold and Thomas, 1990). The neutron does not react with the sample 
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as the neutron is electronically neutral, allowing kinetic measurements to be taken without 

changing the chemical outcome of a reaction. 

The wavelength of a neutron is of the order of 1 Ångstrom or 0.1 nm. This wavelength is similar 

to the length of the spacing between atoms within a molecule (Squires, 1978). The technique of 

reflectometry is reliant on the interference in the wavelength of a neutron reflecting from an 

interface, the measurable interference effect is only achieved when the spacing of the atomic 

nuclei which scatter the neutrons are at a distance close to that of the neutron wavelength 

(Hughes, 2010).  

The neutron wavelength (λ) is dependent on the velocity of the neutron according to the de 

Broglie relation (equation 2.2) where h is Planck’s constant (6.636 × 10-34 J s) m is the neutron 

mass (1.675 × 10-27 kg) and v is the velocity of the particle. 

; = �
:           (E. 2.2)  

The dependence of neutron velocity on the neutron wavelength allows time of flight 

measurements to reveal information about a material as the neutrons velocity changes due to 

scattering. For a pulse of neutrons the particles spread out over the distance travelled so that the 

high energy, low wavelength neutrons arrive at the instruments detector first (Campbell, 2011). 

It is the interference patterns of the scattering events between the neutron and a material of 

interest which give information about the sample (Beddington, 2008).  

2.4.3.2 The Generation of Neutrons at ISIS, Rutherford Appleton Laboratory, UK 

The experimental work for this chapter was performed at ISIS Pulsed Neutron and Muon 

Source at the Rutherford Appleton Laboratory, Oxfordshire, UK. ISIS produces neutrons 

through the acceleration of protons in a synchrotron, which are then fired at a heavy metal target 

producing a pulse of neutrons with varying wavelengths. A simplified account of the generation 

of neutrons is given in the following section based on information from publicity material and 

the websites of the neutron institutions with literature references where available.  

The production of neutrons at ISIS is a several stage process of injection, acceleration, and 

spallation before the neutrons are channelled to the instruments. The process begins with H- ions 

sourced from an electric discharge plasma of hydrogen gas and caesium vapour (ISIS, 2009a). 

The H- ions are directed by a Radio Frequency Quadrupole accelerator that groups the ions into 

pulses before further acceleration down tanks filled with copper drift tube electrodes in the 

linear accelerator (ISIS, 2009a).  The H- ions then enter a ring of tubular magnets, the 

synchrotron. The function of the synchrotron is to remove the electrons creating a proton beam 
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and to accelerate the protons, which form two groups of protons due to electric fields. The 

electrons are removed by a thin aluminium oxide foil (ISIS, 2009b), and the protons are gathered 

until a sufficient number is reached then they are spun repeatedly (10,000 revolutions) before 

being exposed to radio frequency electric fields (ISIS, 2009b).  

When the 2 proton groups have separated kicker electro-magnets are activated which extract the 

protons and send them into the target stations. This cycle is repeated 50 times a second (ISIS, 

2010). Each proton incident of the target releases approximately 12 neutrons (Beddington, 

2008). 

There are two target stations which receive protons at ISIS. The work in this thesis has been 

conducted on the reflectometer ‘SURF’ in target station one. At the centre of the experimental 

hall there is a small block of tungsten into which the protons are accelerated, this is the target. 

Bombardment of the tungsten with the high energy proton beam releases neutrons from the 

tungsten atoms nuclei (ISIS, 2009b). Moderators slow down the neutrons to the desired 

wavelength giving a pulse of neutrons with a range of momentum transfer (Q) values which is 

directed to the reflectometer instrument SURF (Beddington, 2008).  

2.4.3.3     The Basic Principles of Neutron Reflectometry 

Neutron reflectometry is the measurement at a low incident angle of a beam of neutrons passing 

through and being scattered by atomic nuclei in a sample. The scattering is dependent on the 

effective neutron refractive index (Lu et al. 2000). For this work the neutrons are scattered by 

the organic monolayer held at the air-water interface of a Langmuir trough as it reacts with 

atmospheric oxidant species. The reflectometer is essentially a series of devices for 

measurement of the scattering of neutrons at a defined angle which are arranged to 

accommodate a sample from which the scattering is measured.  

In neutron reflectometry a beam of neutrons is directed through a material of interest to a 

detector. The elastic reflection of neutrons occurs when the neutron particles energy is preserved 

during this interaction. The nuclei in the sample scatter neutrons without losing energy thus the 

chemistry of the sample is un-altered making this technique ideal for investigating kinetics. The 

neutron reflectivity is related to the number and efficiency of the scattering nuclei.   

2.4.3.4    Neutron Scattering Theory 

Each atom has a scattering length for neutrons which are published in tabulated form (Sears, 

1992). The scattering length for a neutron from an atomic nucleus is a product of the shift in 

phase of the neutron wave as it is scattered from the nucleus compared to that of a free, un-
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scattered neutron wave. The scattering length of an atomic nucleus can be positive or negative 

depending on the phase shift the neutron experiences when scattered. The neutron scattering 

length (b) for hydrogen is -3.74 fm and for deuterium is 6.68 fm, vastly different, allowing the 

manipulation of scattering to determine structural information as the contrast affects the time of 

flight of a neutron through the sample (Penfold and Thomas, 1990).  

Large differences in scattering lengths of a molecule or a system of surfaces can be created by 

replacing hydrogen atoms with deuterium atoms. This manipulation of hydrogen isotopes is 

unique to neutron techniques and cannot be achieved with X-ray reflectivity as hydrogen does 

not scatter X-rays (Squires, 1978).  

Isotopic substitution is used in this work to ensure that the scattering of neutrons takes place 

predominantly from the monolayer at the air-water interface, by creating a subphase beneath the 

monolayer which scatters neutrons to the same degree as air. The substitution of hydrogen 

atoms with deuterium atoms within a molecule as a label will increase the reflectivity from 

specific part of a molecule which can give structural information about a monolayer and its 

changing composition during a reaction. 

Neutrons scatter elastically from atomic nuclei, different isotopes scatter neutrons at different 

efficiencies. The scattering efficiency is determined by a calculated scattering length (b).The 

scattering length of a substance is dependent on the refractive index. Refractive index (n) is the 

measure of the speed of a neutron in a material. At the interface of two media this is determined 

by the wave vectors (magnitude and direction of travel denoted k) of the neutron outside the 

material of interest, for this work in air (kair) and within the material of interest, for this work the 

monolayer (kfilm) according to equation 2.3, (Penfold and Thomas, 1990).   

) = <=>?<@>AB         (E. 2.3) 

It is more useful to consider the refractive index (n) in its relationship to the bound coherent 

scattering length of the monolayer material for neutrons (b) as in Equation 2.4 (Penfold and 

Thomas, 1990). 

) = 1 − D;� 	EF3	�GHI        (E. 2.4) 

λ neutron wavelength 

N  the atomic number density of the monolayer material 

b  the scattering length, that is the summation of the component scattering nuclei 
scattering lengths in the volume of one molecule, see equation 2.10. 
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To calculate the scattering length of stearic acid (b), the following calculations must be 

performed. The volume of a single molecule (VM) of the amphiphile is calculated from equation 

2.5 where Mr is the relative molecular mass calculated by the addition of the mass numbers of 

the constituent atoms, ρm is the mass density as calculated from equation 2.6 and NA is 

Avogadro’s number. 

JK = K?LBFM         (E 2.5) 

The molecular density of the deuterated molecule (ρm), is calculated by equation 2.6 where ρmH 

is the density of the hydrogenated molecule, RMMD is the relative molecular mass of the 

deuterated molecule and RMMH is the relative molecular mass of the hydrogenated molecule. 

The relative molecular mass is calculated in g mol-1 by addition of the molecular weights of the 

constituent atoms in the compound. 

N: = LBOPKKQPKKO          (E 2.6) 

The number of moles of a deuterated compound in a defined volume (Nmol) is calculated by 

dividing the relative molecular mass of the deuterated molecule (RMMD) by the density of the 

deuterated molecule (ρm). 

#:R9 = PKKQLB          (E 2.7) 

Calculation of the volume per mole of the deuterated molecule (VM) is by the division of the 

number of moles in a defined volume of cm3 mol-1 (Nmol), by Avogadro’s number (NA). 

JK = FBSAFM          (E 2.8) 

The scattering length density (ρ) is calculated by the scattering length of the deuterated 

molecule (b) divided by the molecular volume (VM). 

N = 3	TU          (E 2.9) 

The scattering length (b) is then calculated by dividing the scattering length density of the 

deuterated molecule (ρ), by the volume per mole (VM). 

V = L
TU          (E 2.10) 

The value of scattering length (b), converted from centimetres to femto meters is then used as a 

fixed parameter in the neutron data fitting which will be explained in section 2.4.3.7.  
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The neutron scattering length density (ρ) defines the scattering length (b) of the atomic nuclei 

within the volume of a stearic acid molecule in this experiment. D35 stearic acid (C18D35O2H) 

has an observed neutron scattering length density (ρ) of 7.19 × 10-2 fm2. 

A scattering event in an atomic nucleus can have three outcomes; the neutron will be reflected at 

the same angle of incidence or will scatter at an altered trajectory, or the neutron will be 

refracted and will not reach the instruments detector. In an experiment with a monolayer at the 

air-liquid interface the majority of the beam of neutrons is transmitted through the monolayer 

into the subphase, this is known as the transmitted beam and is not detected or measured. The 

neutrons reflected at the angle of incidence reach a detector and are counted. 

2.4.3.5  The SURF Reflectometer: Neutron Reflectometry at the Air-Water Interface 

The geometry of the reflection of neutrons by a monolayer at the air-water interface is shown in 

figure 2.8. A schematic diagram of the reflectometer SURF is shown in figure 2.9.  

Figure 2.8 The Reflection and Refraction of Neutrons at an Air-Monolayer-Liquid 

Interface 

 

 

The dashed line in figure 2.8 represents the geometry normal to the interface at which the 

surface coverage measurement is valid. To obtain neutron measurements of a monolayer at the 

air-water interface concurrently with surface pressure measurements during a reaction the 

Langmuir trough was fitted to the neutron reflectometer instrument SURF. The neutron 

instrument is essentially a frame into which a sample environment can be fitted to enable the 

passage of neutrons through a material of choice. By housing a Langmuir trough in an 

aluminium chamber which is transparent to neutrons and does not interfere with the signal, the 
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temperature and atmospheric composition around a monolayer at the air-water interface could 

be controlled whilst keeping the surface undisturbed and clean (figure 2.10).  

 

Figure 2.9 The Components of the Reflectometer SURF at ISIS  

 

 

 

The dashed line represents the path of the neutron beam. The grey areas are concrete shielding. 

Figure 2.9 was Adapted from Penfold et al., (1997).  

 For the SURF instrument the incident neutron beam from the ISIS target is collimated to an 

angle of 1.5° to the horizontal plane, (Penfold et al. 1997). When the beam hits the target a burst 

of fast neutrons and gamma rays are produced, the high energy neutrons are removed from the 

beam to the instrument by a chopper spinning at 50Hz (ISIS, 2011a). A double disc chopper 

selects the wavelength of 0.55 to 6.8 Å by altering the time frame / phase of the pulse of 

neutrons that is allowed to pass through, (Wilson, 1990; ISIS, 2011b) .The beam is defined after 

the choppers with further collimation to a height of 60mm x width 10mm (ISIS, 2010). The 

range of momentum transfer denoted as Q on SURF is 0.048 to 1.1 Å-1.   

There are slits beyond the collimation which further restrict the beam so that the sampling area / 

footprint of the beam on the surface of the Langmuir trough can be defined. The beam is 

focussed on the sample position at 1.5° using a super mirror. The frame overlap mirror removes 

the fast neutrons from the next pulse appearing at the end of the former pulse of neutrons 

(Hughes, 2011).  
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The distance from the sample to the detector was set to approximately 2 meters for this work. 

The humidity and temperature of the instrument enclosure are controlled throughout an 

experiment.   

The Langmuir Trough is positioned on a mobile platform which can be height adjusted to 

position the neutron beam in the centre of the trough using a guiding laser to check the beams 

incidence on the trough and that the positioning of the slits is adequate. The beam on SURF was 

adjusted to a footprint of 8 by 6 cm2 on the surface of the Langmuir trough. 

The reflectivity signal is the intensity of energy produced by neutrons hitting the detector and 

producing a current. SURF utilises a single 3He gas detector (Penfold et al. 1997). The detector 

is comprised of two metal plates with a cavity between them containing 3He. The ionization of 

He3 by incoming neutrons produces energy / electrons which produce an electrical current on a 

wire which acts as an anode. The detector measures the arrival time of the neutron and its spatial 

location. The signal is measured in the unit of KeV. This is then recorded as the number of 

counts (kHz / mm2) versus pulse height / energy. The neutron creates a charged particle in 

reaction 2.16 (ISIS, 2008). 

	% + )%����) 	→ 	 + 	 + 0.746	'%�	�	�	�      (R 2.16) 

The detector measures the count of neutrons over a specified time period as counts per milli 

second against the time of flight of the neutron. The time of flight is the neutron velocity 

measured as mm/ µ sec. A relaxed resolution leads to higher flux (Penfold et al. 2007), so taking 

a longer measurement increases the number of counts on the detector. A measurement time of 

10 to 15 minutes gives adequate signal to noise statistics for kinetic measurements on SURF. 

The background signal on SURF is approximately 1 × 10-5 R(Q), for a 20 minute measurement 

period.  
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Figure 2.10 SURF with the Langmuir Trough in Situ, as Set Up for an Experiment 

 

The neutron detector measures the specular reflection (R), of neutron particles which have 

passed through the monolayer and exited the atomic nuclei of the molecules in the monolayer at 

the same angular trajectory as the particles entered at. This angle is termed the angle of 

incidence and for the SURF reflectometer used in the experiments detailed in this chapter the 

angle of incidence (θ) was 1.5°.  

 

 

 

 

 

 

 

 

 

Position of the 

Langmuir trough 

housed in the reaction 

Flight path of neutrons 

from the trough to the 
detector 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 

2 

 

 

94 
 

Figure 2.11 The Reflectivity Profile of a Stearic Acid Monolayer at the Air-water Interface 

on a Subphase of 2.35 mol dm-3H2O2 

 

In the reflectivity profile displayed in figure 2.11 neutrons were counted for 90 seconds at a 

beam current of 43 µA. The value of surface coverage at this point was 5.18 × 1018 ± 9.41 × 

1017 molecule m2 without photolysis, 4.10 × 1018 ± 4.24 × 1017 molecule m2 with photolysis for 

1350 s-1 and 5.10 × 1018 ± 3.18 × 1016 molecule m2 with photolysis for 4050 s-1. It can be seen 

that the reflectivity signal decreases with reaction time for a D35 stearic acid monolayer. 

 

2.4.3.6  The Time of Flight Principle 

The time taken for a neutron to undergo specular reflection from an interface and reach a 

detector at a fixed angle (θ), on an atomic scale to be refracted, when compared to the time 

taken for reflectance from a surface giving total reflection with no refraction (liquid deuterium 

oxide, D2O) is related to the refractive index and scattering length density of the material 

through which the neutron travels. This is the neutrons time of flight. The time of flight 
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reflectivity measurement is in the format of R(Q), R being reflected beam intensity and Q being 

the momentum transfer in direction z, normal to the interface, Q is the scattering vector, 

perpendicular to the monolayer. 

The neutron beam is pulsed to achieve a measurable time gap which forms the time zero 

measurement which allows the change in distance over time vector (velocity/ momentum 

transfer Q) to be measured.  

To the instruments detector, all neutrons appear the same, the detector merely count neutrons 

over a prescribed period of time. It is the time of arrival of the neutron at the detector which 

gives the measurable property as the time of flight of a neutron to the detector is known in 

absence of a sample and the velocity of a neutron which has travelled through a sample is 

altered to a degree determined by the refractive index of that sample (Hughes, 2010). As the 

refractive index is altered as a molecule reacts the time of flight changes affecting the number of 

counts on the detector in a set measurement time which gives a lower signal of reflectivity (R). 

The compositional reflectivity profile of a monolayer of deuterated stearic acid is shown in 

figure 2.12 with the head group of the molecule sitting in the subphase and the tail group 

orientated normal to the interface. The reflectivity signal comes from the head group and the tail 

group for a fully deuterated (D35), stearic acid molecule. Fully deuterated molecules were used 

for this chapter as it was the persistence of the monolayer at the interface is being studied and 

not its structure. To perform a structural study different isotopologues of a molecule are used 

which are deuterated to different degrees as will be explained in subsequent chapters. 

For the experiments in this chapter the monolayer was deuterated so that it dominated the 

neutron reflectivity signal. The surrounding sample environment was positioned and designed 

so as to give the minimum possible contribution to reflectivity. By adding deuterium oxide 

(D2O), to the aqueous subphase of the Langmuir trough at a mole fraction of 0.088 mole D2O in 

H2O (Penfold and Thomas, 1990), the subphase was isotopically “tuned” to scatter neutrons to 

the same degree as air (with the same scattering length (n)) rendering the subphase invisible to 

neutrons with a scattering length of zero (Lu et al. 2000) this is known as null reflective water. 
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Figure 2.12 The Compositional Profile of a Monolayer of Stearic Acid Normal to the Air-

Water Interface 

 

The scattering by the monolayer determines the intensity at the detector (ID). The intensity of 

the neutron beam channelled to the neutron reflectometer instrument is measured, and the 

intensity of the beam after interaction with a sample is measured at a critical angle of incidence 

(θ). The reflected beam intensity (R), is equivalent to the beam intensity at the instruments 

detector (ID), divided by the beam intensity at the instruments monitor (IM), prior to reflection 

from the sample (equation 2.11). The reflected intensity is a function of the momentum transfer 

scattering vector (Q) (equation 2.12). For a monolayer at the air-water interface the scattering 

vector Q is the one dimensional change in the momentum of a neutron after it is reflected from 

the sample and is calculated according to equation 2.12 where n is the refractive index, λ is the 

wavelength and θ is the angle of incidence. Intensity is measured in units of counts per mm on 

the instruments detector so a signal is obtained from a period of counting which when taken in 

series produces a time resolved measurement of reflectivity. The detector measures the counts 

per millimetre. R is a measure of the intensity of the reflected beam and is dimensionless. Q is a 

measure of the momentum transfer (distance, time vector, equivalent to velocity) of the neutrons 

arriving at the detector (Jacrot, 1976, Penfold and Thomas, 1990).  

] = ^Q^U         (E 2.11) 

_ = `Ga
b �c)θ        (E 2.12) 
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Equation 2.12 is a form of Braggs law relating the ration of the reflected beam intensity to the 

intensity of the neutron beam, the term 4π is related to the shift in phase of the neutron when it 

is scattered (Hughes, 2010).   

From a surface of deuterium oxide (D2O) all the incident neutrons of varied wavelengths are 

reflected to the detector at a time of arrival at the detector (tD). Measurement of the reflectivity 

from a deuterium oxide subphase in the Langmuir trough gives the maximum intensity of the 

reflected beam. To ensure the detector is not saturated by rapidly counting the highest energy 

portion of the spectrum of neutron wavelengths comprising the neutron beam a region of an 

adequate wavelength to allow measurement of the sample is selected by adjusting the slits 

which determine the size of the sample area and the flux of the incident beam. Opening the slits 

allows shorter measurement times but can lead to saturation of the detector. The deuterium 

oxide calibration of the instrument is known as the scale factor. The scale factor is subtracted 

from the reflectivity data prior to analysis so that the scattering which is analysed is only that 

from the monolayer.  

](_):RaR9�e10 = ](_)fgh − ](_)1i.106:1a7     (E 2.13) 

The resulting reflectivity data can be seen in figure 2.13 for a monolayer of oleic acid reacting 

with gas phase ozone. Each colour represents measurements of R versus Q taken for a 

prescribed period of counting at the instruments detector which by the fitting process described 

in section 2.4.3.7 becomes a single surface coverage measurement.  
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Figure 2.13 Reflectivity versus Momentum Transfer of an Oleic Acid Monolayer Exposed to 

Gas Phase Ozone Measured on the Neutron Reflectometer FIGARO 

 

 

The positioning of the reaction chamber windows is checked by running a zero transmission, 

which is directing the neutron beam through the chamber without the Langmuir trough. It is 

necessary to correct the measurement of reflectivity for any neutron scattering from the sample 

environment. The loss in the intensity of reflectivity at the detector through scattering by the 

sample environment is quantified by running the beam through the chamber, with the Langmuir 

trough in situ but without a subphase present. This value is recorded as the background 

scattering and is input when fitting the reflectivity data to obtain a surface coverage 

measurement.   

2.4.3.7  Fitting of Reflectivity Data to Determine the Surface Coverage 

The reflectivity data (R versus Q) data in units of Å-1, can be fitted to, to obtain information on 

the surface coverage (Γ) that is the compositional profile of the organic monolayer film normal 

to the air-water interface, a kinetic variable equivalent to a surface concentration.  The surface 

coverage measurement is presented in units of deuterated molecules per square meter at the 

interface. The reflectivity can also give an indication of the thickness of the deuterated 

component of a monolayer and the interfacial roughness between the molecules and the aqueous 

subphase. The surface coverage is equal to the scattering length density (ρ) multiplied by the 
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thickness (τ) which is equal to the scattering length per unit area, which is divided by the 

scattering length per molecule (b) giving the number of molecules per unit area (E 2.14). The 

product of equation 2.14 is the same as one divided by the area per molecule (APM) which is a 

product of fitting the reflectivity data (E 2.15). 

j = Lk
3            (E 2.14) 

j = �
lmK         (E 2.15) 

The reflectivity data was fitted using the MONO program written by Adrian Rennie. MONO 

was chosen as it does not require an experimentally measured value of thickness to calculate the 

area per molecule, simply an accurate estimate, meaning that it was more suitable for the kinetic 

measurements which are not a structural measurement and are simply of the scattering from the 

deuterated portion of the molecule at a single angle. MONO uses the Abelès equivalent optical 

matrix method (Abelès, 1950) where the monolayer is divided into several parallel layers with 

parameters describing the scattering of neutrons. The parameters are varied until an energy 

function reaches a minimum (van der Lee et al. 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 

2 

 

 

100 
 

Table 2.1  The Parameters Used to Fit the Area per Molecule at the Air-Water Interface 

from the Neutron Reflectivity Data 

Parameter Symbol Unit Input Value 

Scattering length density 

of air 

 

ρair 10-6 Å-2 0 

Scattering length density 

of subphase 

 

ρsubphase 10-6 Å-2 0 

Experimental scale factor Fs no unit 0 as this has been 

subtracted prior to fitting 

 

Roughness between the 

monolayer and the air 

ξair Å 0 to 4, this is adjusted to 

improve the fit, it is 

usually 0 

 

Experimental background B no unit Approximately 0.1 × 10-6 

 

Thickness of the 

monolayer layer 

τ Å The length of the 

monolayer forming 

molecule (oleic acid was 

treated as purely cis 

bonded) 

 

Scattering length of the 

monolayer forming 

molecule 

b fm (10-15 m) The scattering length of 

the monolayer forming 

molecule. For D35 stearic 

acid 361 fm 

 

Roughness between the 

monolayer and the 

subphase 

 

ξsubphase Å 4 for an aqueous subphase 

Area per molecule at the 

interface 

APM Å2 Obtained from the fit, an 

initial guess is entered 

Table adapted from Rennie. 2011 

It is common experimental practice is to take measurements at several angles to reveal structural 

information about an interface, time not being a crucial element of the data. However to obtain 

kinetic information the timings are vital and the reflectivity technique is used with a single angle 

to obtain a thickness.  
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The surface coverage is an indication of the presence of a monolayer. If the there is no 

monolayer material remaining due to oxidation the reflectivity signal will decrease and a value 

of zero surface coverage would be obtained, conversely if the monolayer is not reacting the 

surface coverage will not decline. Incoherent scattering of neutrons contributes to a background 

signal that is subtracted from the data during fitting.  

2.4.3.8  Measuring the Error in Neutron Reflectivity Data 

The error in the R versus Q data is the product of counting statistics, the longer the period of 

counting the smaller the error in the counting. 

When neutrons are counted on the detector, some times of flight will occur more frequently than 

others. The average value best describes the sample. The final data point produced for a period 

of counting at the detector is an average of the counts collected (Hughes, 2011). The standard 

deviation of the counts on the detector is the square root of the mean number of recorded counts. 

��n)�n��	�%�cn�c�) = √p%n���%�	�nq�%     (E 2.16) 

If more neutrons are counted at the detector during a measurement the value of the standard 

deviation increases however when the standard deviation is expressed as a percentage of the 

total number of counts then the value of the error range decreases for the measurement of 

reflectivity. 

To minimise error in the measurement the smallest scale is used giving a small innate error 

which is equal to half of the smallest unit of measurement for example 0.5 Angstrom. 

pc)cp�p	%���� = 	 E 6aa�71	100R0
a/:310	R8	rR/a72H      (E 2.17) 

The minimum error is equal to the innate error in the unit that the detector counts in, divided by 

the count rate, the number of counts on the detector in specified counting time. The longer the 

counting time the smaller the minimum error becomes, (Monk, 2006). 

���)�	�n�% = a/:310	R8	rR/a72
76:1	rR/a71s        (E 2.18) 

The effect of re-defining the time bins in which the neutron count data is distributed for example 

by co-addition of two original measurement periods of for example ten minutes making a 

twenty minute measurement is to lower the error. This is a practice used when the reflectivity 

signal becomes weaker as the monolayer is lost from the interface. 
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The process of background subtraction of a measurement of off specular scattering from the 

experimental sample environment (sdbackground), from that of an experimental measurement 

(sdexperiment), requires the consideration of a range of possible errors (Sprawls, 2011). 

��n)�n��	�%�cn�c�) = √��3�r<�0R/as��1i.106:1a7    (E 2.19) 

When the error is expressed as a percentage the range increases when the difference is taken 

between two measurements for example by subtracting the background. Towards the end of an 

experiment as the signal is weaker then subtracting the background puts the measurement in the 

region of noise so adding measurements together decreases the size of the error bar making the 

measurement distinguishable from the noise. 

The reduced reflectivity data (that normalised for the scale factor) which is fitted for SURF is in 

a 3 column format (.asc) of R, error in R and Q. The error in reflectivity from the instrument is 

calculated as a counting statistic. The greater the number of neutrons counted, the smaller the 

error in the measurements.  

The error in the fit is given as the uncertainty in the fit, which is the percentage deviation 

between the measured data and the fit by the simple model to known parameters. A good fit 

minimises this difference to one standard deviation, twice this is the 95th percentile.  

The error in the fitted data is given as a relative error (equation 2.20), the absolute error in the 

area per molecule divided by the fitted value of area per molecule, as calculated from equation 

2.21.  

]%qn�c�%	%���� = 	tlmKlmK        (E 2.20) 

The program MONO calculates the percentage error in the area per molecule (Rennie., 2009) 

according to equation 2.41. 

%vwx' = 	lmKBSy�	lmKz=Az	lmKz=Az        (E 2.21) 

Where the modelled area per molecule (APMmod), is the value obtained by the fit and the 

calculated area per molecule (APMcalc) as calculated from the scattering data. To get the 

absolute error, the error in the modelled value obtained by the fit and the value calculated from 

the scattering data, the percentage error in area per molecule is divided by one hundred and 

multiplied by the value of area per molecule. 

vwx' = %tlmK
�{{ wx':Rs       (E 2.22) 
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The error in the calculated surface coverage (Γ), is 

vj = �
(lmK)g vwx'        (E 2.23) 

The experimental method employed in this thesis is based on the work of King et al. (2009), 

which was the first study to observe the oxidation of an oleic acid monolayer by gas-phase 

ozone on a Langmuir Trough with neutron reflection as a proxy for a cloud droplet system. 

King et al. (2009) showed a cleavage of the double bond in the tail of the oleic acid molecule 

generated surface active product formation. For the work in this chapter the same measurement 

technique was employed. For this chapter the neutron reflectivity measurements were fitted to 

obtain the surface coverage of deuterated material at the air-water interface during a reaction 

with aqueous phase OH radical.  

The production of OH radical during the neutron and Langmuir trough experiments is described 

in section 2.4.5. 

2.4.4 Brewster Angle Microscopy 

The Brewster angle microscope (BAM) can image a monolayer in-situ on a Langmuir trough by 

the manipulation the angle of 53° at which there is no reflectivity from a clean surface of pure 

water. The reflected light parallel to the plane of incidence is zero at 53°. When a monolayer is 

present at the air-water interface light is reflected. The intensity of the reflected light is 

dependent on the thickness of the monolayer, the interfacial roughness and the directional 

dependence of the monolayer at different values of surface area per molecule (Webster and 

Langridge, 1999). Brewster angle microscopy was useful only as a visual confirmation of the 

decay of the film as the data obtained was not quantitative, only a small area of the surface, 

approximately 1 mm2 is imaged.  
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Figure 2.14 The Brewster Angle Microscope with the Langmuir Trough Positioned for 
Imaging 

 

To capture images of a stearic acid monolayer during the reaction with OH aqueous radical the 

subphase was made up with H2O2 as explained in section 2.4.5. The 254 nm photolysis lamps 

were fitted at a 45° angle so that the light was incident of the surface of the Brewster 

microscopy Langmuir trough. A black silicon wedge shaped block was placed in the Langmuir 

trough prior to spreading the monolayer, to provide a dark background for the image as the 

Langmuir trough is white and reflects the laser light to too high a degree to get an image of the 

monolayer.  

2.4.5 Generating Aqueous Phase OH Radical During an Experiment 

To mimic the aqueous phase OH radical production in atmospheric droplets as shown in figure 

2.3, aqueous phase OH radicals were generated from photolysis of H2O2 in the subphase of the 

Langmuir trough. A lamp was fitted to the reaction chamber lid which contained two 254 nm 

UVC strip bulbs which extended above the full length of the trough to give an even distribution 

of light. Each bulb was labelled so that it could be identified when the bulbs were changed and 

calibrated accordingly. Hydroxyl radical was generated by reaction R.17. 

	��� + ℎ�(;~254)p) 	→ 2�	       (R 2.17) 
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The production and subsequent secondary chemistry of aqueous hydroxyl radicals in the 

subphase in this study, and the relevant rate constants after Yu and Barker (2003) are given 

below  

The reactions contributing to the OH radical concentration in the subphase were as follows:  

	��� + ℎ� <~�!" 2�	   k18 = to be determined by model  (R 2.18) 

	� + 	��� <~�!" 	�� +	��  k19 = (4.2 ± 0.2) × 107 dm3 mol-1 s-1 (R 2.19) 

	�� +	��� <g�!" 	�� + �� +�	 k20 = 0.5 dm3 mol-1 s-1   (R 2.20) 

�	 + �	 <g~!" 	���   k21 = 6.0 × 109 dm3 mol-1 s-1  (R 2.21) 

	�� +	�� <gg!" 	��� + ��  k22 = 9.8 × 105 dm3 mol-1 s-1  (R 2.22) 

�	 + 	�� <g�!" 	�� + ��  k23 = 1.0 × 1010 dm3 mol-1 s-1  (R 2.23) 

To quantify the concentration of OH radical generated in the Langmuir trough subphase several 

experiments were necessary: 

• Chemical actinometry of Fe(II) to determine the time taken for the lamp to give a stable 

output of photons was measured.  

• Titrations of H2O2 to determine the loss in the concentration of H2O2 in the subphase 

over time due to the production of OH through photolysis. The photolysis rate constant 

was calculated from the H2O2 decay and the H2O2 concentration was also used to 

kinetically model the OH concentration in the subphase. 

• Kinetic modelling of reaction 2.18 to 2.23 to determine the OH concentration in the 

subphase during the neutron experiments.  

 

2.4.5.1 Photolysis Lamp Calibration by Chemical Actinometry 

The photolysis lamp was calibrated using actinometry to quantify the photon flux, that is the 

number of photons per cm2 incident on the surface of the Langmuir trough. An actinometer is a 

substance with a known quantum yield as a function of wavelength (Pilling and Seakins, 1995) 

that behaves in a known and predictable manner. Using a potassium ferrioxalate solution 

containing Fe(III) as an actinometrical subphase, actinometry was carried out following the 

method of Hatchard and Parker (1956).   
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As the photons incident on the Langmuir trough react with a subphase of potassium ferrioxalate 

solution (Fe(III)),  a complex of iron in the 2+ oxidation state (Fe(II))  is generated according to 

reaction 2.24. 

2[$%(���`)�]�� + ℎ� 	→ 2$%(���`) + 3[���`]�� + 2���∙   (R 2.24) 

Each Fe2+ produced represents the interaction of one photon. The reaction of the Fe2+ with 

phanathroline added to the sample produces an orange colouration of the subphase potassium 

ferrioxalate solution which provides a measurable change in the adsorption of light by a sample 

of the subphase from which the concentration of Fe(II) can be measured on an ultra violet 

visible spectrometer and calculated using the Beer-Lambert law (E 2.24).  

w = ln ^�^� = −v[�]q        (E 2.24) 

According to Beer-Lambert law the absorption (A) of light by a sample is equivalent to the 

change in light intensity that is, the intensity of light that has passed through the sample as 

transmitted light (IT), divided by the intensity of light before interaction with a sample (I0). The 

change in the intensity of transmitted light (
^�^�) is dependent on the extinction coefficient (σ) the 

path length (l) and the concentration of Fe(II). The path length and the extinction coefficient are 

kept constant so the loss in the intensity of transmitted light is a result in a change in the Fe (II) 

concentration (E 2.25). 

[�] = ������t9          (E 2.25) 

The change in the concentration of Fe(II) over exposure time (te) gives the warm up time for the 

lamps to give a stable output of photons.  

The photon flux (qp) was calculated by dividing the measured quantum yield (y) of Fe(II) in the 

sample by the time that the sample was exposed to the photolysis lamp (E 2.26). The photon 

flux divided by the surface area of the Langmuir trough gives the intensity of the light (I0) 

falling on the surface of the Langmuir trough (E 2.27).  

�. = e
7�          (E 2.26) 

&{� �����	zBg         (E 2.27) 
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2.4.5.2  Actinometry Procedure 

The actinometry was performed under dark room conditions with only red light. The 

spectrometer measures the absorption of light at a single wavelength of 510 nm. A value of 

absorption for a solution containing no iron (I0) was measured initially.  

The Langmuir trough was set up as if for a neutron experiment within the aluminium reaction 

chamber with the photolysis lamp fitted to the lid. The trough was filled with the actinometer 

solution. 

Two 2.5 mL samples of the actinometer solution were taken with a pipette from the Langmuir 

trough under dark room conditions prior to any illumination. One sample was immediately 

stored in a dark cupboard, the second aliquot of sample was pipetted into a 50mL volumetric 

flask with 5 mL phenanthroline solution and 2.5mL of the buffer solution, then was made up to 

volume with H2O. A sample of this solution was then pipetted into a cuvette. The cuvette was 

stored in darkness for 30 minutes for a complex to form between the Fe(II) and the 

phenanthroline.  

The remaining actinometer solution in the Langmuir trough was irradiated  with the 254 nm 

photolysis lamp for set time intervals of 0, 5, 10, 30, 60, 120 and 300 seconds. After 

illumination a 2.5mL sample was taken from just beneath the surface of the subphase by pipette. 

This irradiated sample of actinometer solution was then transferred into a 50mL volumetric 

flask. 5 mL of phenanthroline solution and 2.5mL of buffer solution were added and the flask 

was filled to volume with H2O. The solution was placed in a dark cupboard for 30 minutes for a 

complex to form between the Fe(II) and the phenanthroline.  

Phenanthroline solution was added to the sample. Phenanthroline has a strong absorption cross 

section at 510 nm and can be used to quantify the Fe2+ production from photolysis of Fe(III).  

The Fe(II) forms a complex with phenanthroline which is bright orange in colour. Fe(III) does 

not complex with phenanthroline. The ratio of Fe(II) to Fe(III) determines the intensity of the 

orange colour formed. The absorbtion cross section of Fe(II), ϕ, is equivalent to the absorbance 

of light by the Fe(II) solution, φ, measured on the spectrometer divided by the path length , l. 

� = �
9           (E 2.28) 

After 30 minutes a 1 mL sample of each solution was pipetted into cuvettes. The absorbance 

was measured with the spectrometer at 510nm and corrected for the absorbance of the I0 
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solution with no iron present. The absorption cross section (Φ) for Fe(II) molecules to absorb a 

photon at 510 nm was 1.3 × 107 ±	8.0 × 105 cm2 mole-1. 

Figure 2.15 The Fe(II) Absorbance versus Fe(II) Concentration 

 

The time taken for the bulbs to produce a stable output of photons was determined by measuring 

the yield of Fe(II) which was produced by the photolysis of Fe(III). The lamp took 100 seconds 

to reach the maximum output of photons, the lamp intensity reached 7.7 × 1017 photons per 

second incident on the trough in <100 seconds. Ideally this experiment would have been 

repeated as the final point at 300 seconds is outlying. It was not possible to repeat this 

experiment as it required the beam line Langmuir trough which is in constant use. 
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Figure 2.16 The Intensity of the 254nm Photolysis Lamp over Time  

 

2.4.5.3  Actinometry Materials  

• Langmuir trough (the ISIS Langmuir trough as used for the neutron experiments) 

• 2L 1L, 250 mL and 50 mL volumetric flasks 

• UV visible single wavelength spectrometer with appropriate cuvettes 

• Automatic pipette and tips 

• Pasteur pipettes 

• Pure water wash bottle 

2.4.5.4  Actinometry Chemicals 

• Sulphuric acid (H2SO4) 

• Phenanthroline monohydrate solution (C12H8N2.H2O) 

• Sodium acetate (C2H5O2Na.3H2O) 

• Potassium oxalate (K2C2O4.H2O) 

• Ferroin Indicator Solution: Sigma Aldrich-Fluka, redox indicator 0.025 M 

[Fe(C12H8N2)3]SO4 , (1,10-Phenanthroline iron(II) sulfate complex), catalogue number: 

46270  
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2.4.5.5  Actinometry Solutions 

Seven ferrous sulphate solutions were made up at concentrations of 0, 1. 25, 2.5, 5, 7.5,10 and 

12.5 mL of solution F in 50 mL volumetric flasks with the addition of 12.5 mL of solution A, 5 

mL of solution B, and 12.5 mL of solution C, then made up to volume with H2O.  

A. Buffer solution 

Buffer solution composed of 0.6M sodium acetate (C2H5O2Na·3H2O) and 0.18M 

sulphuric acid (H2SO4). 20.41g of sodium acetate and 4.41g of sulphuric acid weighed 

into a 250 mL volumetric flask and made up to volume with water. The sodium acetate 

must be added first followed by a little water then the sulphuric acid followed by the 

remaining water. 

B. 5 × 10-3 M 1:10-phenanthroline monohydrate solution (C12H8N2·H2O)  

0.25g of 1:10-phenanthroline monohydrate weighed into a 250 mL volumetric flask 

made up to volume with H2O. 

C. 0.5 M Sulphuric acid solution (H2SO4) 

49.04g of sulphuric acid in a 1L volumetric flask made up to volume with H2O.  

D. 0.18 M Potassium oxalate solution (K2C2O4·H2O)  

8.29g of potassium oxalate in a 250 mL volumetric flask made up to volume with the 

0.5M sulphuric acid solution. 

E. 0.03 M Ferric(III) sulphate solution (Fe2(SO4)3) 

3g of ferric(III) sulphate weighed into a 250 mL volumetric flask made up to volume 

with 0.5M sulphuric acid solution. 

F. 4.0 × 10-4 M  Ferrous sulphate solution (FeSO4·2H2O) 

0.0188g of FeSO4·2H2O and 1.23g of H2SO4 weighed into a 250 mL volumetric flask 

made up to volume with H2O. 

A solution of 2.5 mL of the 0.5M sulphuric acid and 12.5 mL of the buffer solution was made 

up to 50 mL with pure water. This solution was used to determine the I0 value for the 

spectrometer. 
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A subphase solution to fill the Langmuir trough was made up under dark room conditions using 

red light only to illuminate the laboratory. The potassium ferrioxalate actinometer solution was 

made up in a 1L volumetric flask with 200 mL of each of solutions (C, D and E) and filled to 

capacity with H2O: 

The 1L potassium ferrioxalate actinometer solution was subsequently transferred into a 2L 

volumetric flask and filled to volume again with H2O.  

2.4.6 Determining the OH Radical Concentration in the Subphase with Titrations and 

Numerical Modelling  

To produce absolute rate constants for the decline of the monolayer surface coverage at the air-

water interface from the pseudo-first-order rate constants for the reaction of hydroxyl radical 

with stearic acid, the concentration of hydroxyl radicals in the Langmuir trough must be 

quantified. To determine the concentration of OH in the subphase over time an experiment was 

undertaken where a sample of the Langmuir trough subphase containing H2O2 was taken after a 

measured period of photolysis time. The sample was titrated with standardized potassium 

permanganate solution for hydrogen peroxide. The titration data of the decay in H2O2 with 

photolysis time was then fitted to obtain a concentration of hydrogen peroxide in the subphase 

during a photolysis experiment. 

The following equation describes the consumption of H2O2 during titration with potassium 

permanganate.  

2')�`� + 5	��� + 6	� 	→2')�� + 5�� +8	��     (E 2.29) 

2.4.6.1  Titration Procedure  

The Langmuir trough was set up as for a neutron experiment, within the aluminium reaction 

chamber. The trough was filled with 400 mL of 0.088 ± 0.002 mol dm-3 H2O2 in H2O subphase 

solution. Each 400 mL sample provided two samples without the depth of the solution affecting 

the OH production.  

A 50 mL burette was fixed to a clamp stand and filled with potassium permanganate solution. 

The reaction end point between H2O2 and the potassium permanganate solution was established 

by mixing in a 250 mL Erlenmeyer flask, 10 mL of the 4M sulphuric acid solution, and 50 mL 

pure water. 1 drop of potassium permanganate solution was added with a Pasteur pipette and the 

mixture was agitated in a circular direction until the mixture became a pale pink which was the 

end point colour to titrate the samples to. 
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A standardisation was performed to calculate the amount of sodium oxalate required to react 

with 30 mL of the potassium permanganate solution. The sodium oxalate solution (D, section 

2.4.6.4) was heated to 80°C on a hotplate. The hot solution was then placed beneath the 

potassium permanganate burette, the level of potassium permanganate solution in the burette 

was recorded and the tap of the burette was opened so that a slow trickle of potassium 

permanganate solution entered the sodium oxalate solution. The Erlenmeyer flask was agitated 

with a swirling motion continuously. When the solution of potassium oxalate reached the 

reaction end point colour the level of potassium permanganate remaining in the burette was 

recorded. 

The titration of H2O2 samples was conducted on a 25 mL sample of the subphase H2O2 solution 

after exposure to the photolysis lamp for a measured period of time. The 25 mL subphase 

sample was pipetted into a 250 mL Erlenmeyer flask and 10 mL of sulphuric acid solution was 

slowly added. The level of potassium permanganate solution in the burette was recorded and the 

Erlenmeyer flask was then held beneath the burette containing the potassium permanganate 

solution and the tap was opened to allow a slow trickle of potassium permanganate to enter the 

flask. The flask was continually agitated in a swirling motion until the end point colour was 

reached. The level of potassium permanganate in the burette was recorded at the end point and 

the sample calculation was performed. 

A 25 mL sample of the subphase was taken using a pipette prior to any photolysis. This sample 

was titrated with the potassium permanganate solution to determine the initial H2O2 

concentration to compare to the irradiated samples.  

The following set of equations (R 2.30 to 2.32) form the sample calculation used to determine 

the H2O2 concentration in the titrated samples. The number of moles of KMnO4 titrated to reach 

the reaction end point was calculated according to equation 2.30 where Vtitrated is the volume of 

KMnO4 titrated in micro litres, multiplied by the molarity of the KMnO4 solution used for 

titration. 

[�')�`]7670�71s = (J7670�71s)[�')�`]2R9/76Ra     (E 2.30) 

The number of moles of KMnO4 solution taken to reach the reaction end point multiplied by a 

factor of 2.5 gives the number of moles of H2O2 titrated ([	���]7670�71s). 

[	���]7670�71s = ([�')�`]7670�71s)	2.5	     (E 2.31) 

[	���]:R9	s:�� = [�ghg]�>�?=��yPKKOg�g        (E 2.32) 
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The concentration of H2O2 in the titrated sample was calculated using equation 2.32, the relative 

molecular mass of H2O2 (]''�ghg) is 34.1. 

The titration experiment was performed twice for different bulb configurations, to allow the 

calculation of an accurate photolysis rate constant when the bulbs had been changed.   

Figure 2.17 The Subphase H2O2 Concentration as Measured by Titration, for Lamp 

Configuration A and Lamp Configuration B 

 

2.4.6.2  Titration Materials  

• Pasteur pipettes 

• 20 mL glass graduated pipette for extracting the subphase from the Langmuir trough to 

be titrated. 

• 1 mL glass graduated pipette for measuring out the H2O2 to make up the H2O2 subphase 

solution. 

• 2 1L volumetric flasks, one for the H2O2 subphase, one for the potassium permanganate 

solution. 

• Erlenmeyer flasks (250 mL) to titrate into. 

• Hotplate (80°C) 

• Burette (50mL)  

• Clamp stand 

• Measuring cylinder (25 mL) for the potassium permanganate solution. 
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2.4.6.3  Titration Chemicals 

• Pure water purified by a Millipore machine to a conductivity of 18 ΏM. 

• H2O2: 30% NormaPur for trace analysis purchased from VWR, product code: 

23615.261. 

• Potassium permanganate (KMnO4) purchased from Sigma Aldrich in dry granular form. 

Catalogue number: 223468 

• Sulphuric Acid (H2SO4) purchased from Sigma Aldrich.  

• Sodium oxalate (Na2C2O4) purchased from Sigma Aldrich 

2.4.6.4  Titration Solutions 

A. 0.0882 mol dm-3 Hydrogen peroxide (H2O2) solution.  

The solution was made up by volume using 10 mL 30% H2O2 in 1L H2O. The solution 

concentration was 0.3 % H2O2. 

 

B. 4 M Sulphuric acid (H2SO4) solution 

98.08g in 250mL H2O. 

 

C. 0.025 M Potassium permanganate (KMnO4) solution 

3.95g KMnO4 in 1L H2O. 

 

D. Sodium oxalate (Na2C2O4) solution for standardisation  

0.345g of sodium oxalate powder was weighed out into a 250 mL Erlenmeyer flask. 60 

mL of pure water and 10 mL of the sulphuric acid solution were added to the sodium 

oxalate. The mixture was agitated until the sodium oxalate dissolved. 

A low concentration of H2O2 was used so that the reservoir concentration of H2O2 would decline 

allowing the modelling of the photolysis rate constant from the decay in H2O2 concentration. 

For the neutron experiments a high concentration of H2O2 was used in the subphase so that the 

OH concentration remained near constant during a reaction with stearic acid. 
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2.4.7 Kinetic Modelling of the Aqueous OH Radical Concentration 

The aqueous OH radical concentration in the subphase was determined through modelling based 

on the titration data which gave the decay in the concentration of H2O2 with photolysis time. 

The kinetic modelling of the OH concentration showed that: 

• OH diffused to the interface more rapidly than it was destroyed. 

• The concentration of H2O2 made little difference to the concentration of OH. The OH 

concentration was much more sensitive, to the number of photons incident on the 

surface of the Langmuir trough.  

• Secondary chemistry was not responsible for the radical reaction with the monolayer as 

OH diffused to the air-water interface rapidly and was the dominant reactive chemical 

species in the subphase. 

2.4.7.1 Modelling the Subphase OH Concentration during a Photolysis Reaction with Hydrogen 

Peroxide 

To calculate the concentration of OH radical in the subphase the photolysis rate constant (J) was 

calculated using a kinetic model which modelled reaction 18 to 23 within the subphase. The 

photolysis rate constant (J) governs the dissociation of H2O2 into OH radicals. The box model 

took into account the penetration depth of the UVC light into the subphase and the mixing with 

depth.  

In order to model the photolysis rate constant the subphase concentration of H2O2 with reaction 

time needed to be measured as the model calculated [OH] based on the decay of H2O2 as 

measured in the titration experiment. The kinetic model ran reaction 18 to 23 as a kinetic system 

of first-order differential equations which were solved using a Runge-Kutta solver to predict the 

concentration of H2O2 and OH radical in the subphase. The k18 value was varied to obtain an 

accurate fit to the temporal decay in the hydrogen peroxide concentration due to photolysis. The 

modelled OH concentrations are given in table 2.1. Yu and Barker (2003) measured the 

quantum yield of hydroxyl radicals from photolysis of aqueous hydrogen peroxide solutions and 

its secondary reactions (R 2.18 to 2.23), this was input into the model.  

J was modelled according to equation 2.33. 

� = �v� $�;         (E 2.33) 
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J is defined as the integral of the absorption cross section (σ) of H2O2 for light at a wavelength 

(λ) of 254 nm ~ 25 M-1 cm-1 multiplied by the quantum yield of OH production events per 

photon (ϕ), which is 1, multiplied by the photon flux (F) and the wavelength (dλ).  

The J rate for a 0.882 mol dm-3 H2O2 solution was (1.8 ± 0.2) × 10-4 s-1, for the lamp 

configuration A with older bulbs in the lamp, when one bulb was replaced (lamp configuration 

B) the J rate increased to (3.4 ± 0.4) × 10-4 s-1. The error in J is the upper and lower limit of J 

within which a fit of the H2O2 modelled concentration data to the titration H2O2 versus 

photolysis time experimental data is valid. 

The temporal decay of hydrogen peroxide due to the photolysis of 0.0882 mol dm-3 hydrogen 

peroxide solution in the absence of a stearic acid monolayer is shown in figure 2.18 together 

with the predicted kinetically modelled hydrogen peroxide and hydroxyl radical concentrations.  

Figure 2.18 The Modelled OH Concentration in a Subphase of 0.0882 mol dm-3 H2O2 

 

The modelling showed that the OH concentration in the top box of the model in the subphase 

region immediately beneath the monolayer, stays constant at approximately 8.4 to 8.7 × 10-12 

mol dm-3 throughout the timescale of a neutron experiment. When a new bulb was fitted to the 

lamp the OH concentration increased to 16 × 10-12 mol dm-3 showing that the intensity of light 

had more influence on the OH radical concentration than the starting concentration of H2O2. 
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Table 2.2 The Modelled OH Concentrations in the Langmuir Trough Subphase During a 

Photolysis Reaction According to Reactions 18 to 23 

H2O2 subphase concentration 

mol dm-3 

OH subphase concentration 

(10-12 mol dm-3) 

0.029 8.4 

0.294 8.6 

0.588 8.7 

1.176 8.7 

1.470 *16 

2.352 8.7 

 

*Note that the OH concentration of 16 mol dm-3is valid for the experiments in section 2.7.3 

where the subphase temperature was varied. The higher value was a result of a new bulb being 

used in the photolysis lamp. 

From table 2.2 it can be seen that a large change in the initial hydrogen peroxide concentration 

leads to a small change in the concentration of OH in the subphase.   

2.5 Kinetic Analysis Methodology 

The decay in the surface coverage measurements from the neutron reflectivity data for the 

reaction between OH radical and a stearic acid monolayer were fitted to a degradation 

mechanism. 

Blank experiments to check for the effect of the photolysis lamp on the monolayer surface 

coverage without OH radical production and with no photolysis to measure the decay in 

ambient air of the stearic acid monolayer were fitted to an exponential decay. The two decay 

mechanisms will be explained here. 

2.5.1 Exponential Decay 

The blank experiments with no photolysis, or with photolysis and no H2O2 were fit to an 

exponential decay where the rate of decrease at the surface is related to the amount at the 

surface at the start of the experiment. 
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The reaction scheme for the loss of stearic acid over time is: 

j271�06r7�{ <→ j271�06r7         (E 2.34) 

The rate expression for the decay in the surface coverage, Γ, of the stearic acid monolayer is: 

s[����=?>z]s7 =	−�271�06r[j271�06r]       (E 2.35) 

A simple exponential as shown below can be fitted to the surface coverage data giving the rate 

of decay of surface coverage therefore the loss of the stearic acid monolayer over time. 

A fitting regime was used which follows the form of equation 2.36 allowing time zero for the fit 

to be prescribed as the start of the reaction, the point in time where the lamp was engaged for 

the photolysis blank experiments. 

j7 = j/a01�r71s + j7�{%�(����  )       (E 2.36) 

 

2.5.2 Degradation Mechanism  

A sequential decay mechanism was fitted to the measured kinetic variation of surface coverage ( 

Гtotal), as recorded by neutron reflection.  The measured surface coverage is the sum of all the 

deuterated species at the air-water interface i.e. deuterated stearic acid and any deuterated 

products of the reaction between stearic acid and hydroxyl radical. The following scheme is 

suggested; 

��������	(2/08) + �	 	→x������	w(2/08)     (R 2.25)  

x������	w(2/08) + �	 	→x������	¡(2/08)     (R 2.26) 

x������	¡(2/08) + �	 	→x������	�(��)      (R 2.27) 

Where stearic acid, and its shorter chain length products A, and B, are surface active (surf), thus 

contribute to the surface coverage Гtotal at the air-water interface. Product C is denoted as (aq) 

and partitions into the bulk aqueous solution as it has no propensity to be found at the air-water 

interface. The neutron reflection technique as employed in these experiments measures the 

coverage of deuterium atoms at the surface and no distinction is made between stearic acid and 

products A and B (C is dissolved in the bulk therefore does not contribute to the reflection 

signal). The total surface coverage would depend on stearic acid, product A, and product B. It is 

assumed that the OH radical initiates a series of reactions removing four CD2 groups in each 
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reaction, 2.25, 2.26 and 2.27. There are likely to be more steps, and this is a simplified model. 

Thus the total surface coverage	Г7R7�9  depends on: 

Г7R7�9 = 35Г271�06r +#lГl	+	#¢Г¢      (E 2.37) 

Where Гstearic, Г A, Г B, are the surface coverage measurements of stearic acid, product A and 

product B respectively and NA and NB are the number of deuteriums found in  product A and B 

respectively. To account for the cleaving of four CD2 groups from the stearic acid chain in each 

reaction, (R2.23 to 2.25) arbitral values of 27 and 21 are assigned to NA and NB.  

Г7R7�9 = 35Г271�06r + 27Гl + 21Г¢      (E 2.38) 

Fitting the above scheme to the Γ data yielded the pseudo first order rate constants. 

The rate equations for reactions 2.25 to 2.27 are: 

sГ���=?>zs7 = −��£Г271�06r[�	]	       (E 2.39)  

sГMs7 = ��£Г271�06r[�	]	 − �`{Гl[�	]	      (E 2.40) 

sГ¤s7 = �`{	Гl[�	]	 − �`�Г¢[�	]	      (E 2.41)   

   

Assuming first-order conditions with [OH] constant as photolysis does not consume H2O2 

rapidly, and defining 2nd order rate constants: 

�271�06r = ��£[�	]        (E 2.42) 

				�l = �`{[�	]        (E 2.43) 

					�¢ = �`�[�	]        (E 2.44) 

 

 

 

 

 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 

2 

 

 

120 
 

By solving equations 2.39 to 2.41 (Laidler, 1995) and substituting the answers into equation 

2.38 the following equation is produced:   

Г7R7�9 = ¥35Γ¦§¨©ª«¬§�{ 				 +	27Г271�06r7�{ 		
	�271�06r(�l − �271�06r) + 21Г271�06r	<���=?>z7�{ �l(�l − �271�06r)(�¢ − �271�06r) %�<���=?>z7 

+D�®Г���=?>z�¯� <���=?>z(<M�<���=?>z)			 + ��Г���=?>z�¯� <���=?>z<M(<M�<���=?>z)(<¤�<���=?>z)I%�<M7       (E 2.45) 

+° 21Г271�06r7�{ �271�06r�¢(�l − �271�06r)(�¢ − �271�06r) +
21Г271�06r7�{ �271�06r�l(�l − �271�06r)(�¢ − �l)± %�<¤7 

Where Г7�h 	 is the surface coverage at time zero and Г7 is the surface coverage at a later time, t. 

Equation 2.45 describes the temporal behaviour of Гtotal  and can be fitted to the experimental 

data by varying the value of , kstearic, kA and kB . Rate constants for k39 k40 and k41 can be 

determined by knowledge of [OH].  

The reaction initiating the mechanism is hydrogen peroxide and hv producing 2 OH radicals. 

This mechanism fits the experimental observations and has been proposed on the basis of 

current literature. The proposed mechanism is a cyclic radical driven process that : 

(a) shortens the amphiphile at the air-water interface and  

(b) regenerates an amphiphile meaning that material stays at the surface. 

The rate constants obtained by fitting to equation 2.45 to the surface coverage data from each 

neutron experiment are set out in the results section. 

2.5.3 Rate Limitation 

The rate limiting process for the reaction of stearic acid as a cloud droplet film component in the 

atmosphere and aqueous OH radical would be the OH concentration. In the experiment the rate 

limiting step was the process of OH attacking the stearic acid molecules in the film, which is in 

turn governed by the J rate of the lamps which determines the OH production rate, see equation 

2.33. J was a constant value as the lamps were used when in a warmed up state only so it is not 

investigated further here.  
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2.6  The Methodology of a Typical Combined Surface Coverage and Surface Pressure 

 Measurement 

2.6.1 Sample Environment 

The Langmuir trough was housed in a custom made aluminium reaction chamber as shown in 

figure 2.19. 

Figure 2.19 The Aluminium Reaction Chamber Housing the Langmuir Trough 

 

The reaction chamber was fitted to the SURF reflectometer sample environment and the beam 

was adjusted using a laser as a trace so that the neutrons would reflect from the surface of the 

Langmuir trough.  

2.6.2 Cleaning the Langmuir Trough 

The Langmuir trough was cleaned with hydrochloric acid and then rinsed with pure water seven 

times. The trough was then wiped down with chloroform and rinsed a further seven times to 

remove any trace organics from the PTFE surface. The aluminium reaction chamber was also 

wiped down with chloroform and then wiped over seven times with pure water on a lint free 

tissue. The Langmuir trough was placed within the aluminium reaction chamber from which the 

surface pressure sensor can be connected and powered through a series of serial ports. The 

surface pressure sensor was calibrated using a weight at the beginning of the experiment. All 

glassware was washed with decontaminant (Decon 90) and rinsed seven times with pure water. 

The syringe was cleaned with chloroform seven times before use and immediately after use. 
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2.6.3 Controlling the Temperature of the Subphase 

The temperature of the Langmuir trough subphase was controlled using a circulating water bath 

which pumped glycol into a system of tubing integral to the base of the trough which cools 

through heat exchange. The temperature was set to two degrees above the desired subphase 

temperature, and at the point where the photolysis lamp was switched on, the temperature was 

dropped by two degrees to counteract the warming effect of the lamp. 

2.6.4  Experimental Methodology 

Figure 2.20 The Langmuir Trough within the Aluminium Reaction Chamber 

 

The Langmuir trough was filled with 400 mL of null reflective water containing H2O2. The 

organic film at the air-water interface was created by adding 100 µl of 1 mg mL-1 deuterated 

stearic acid (C18D35O2H), with a Hamilton syringe, drop by drop at the air-water interface on the 

Langmuir trough.  

The reaction chamber lid with the integral photolysis lamp was placed onto the chamber. Once 

the stearic acid monolayer was spread the Langmuir trough barriers were closed to compress the 

monolayer to a surface pressure (Π) of ~ 30 mNm-1 in the solid region of the stearic acid 

isotherm at a velocity of 40 cm2 min-1 and subsequently relaxed to 20 mNm-1 into the liquid 

region of the stearic acid isotherm to prevent phase change interference in the measurement. 

Upon reaching the desired surface pressure the trough barriers were stopped and the area was 

held constant, the surface pressure was monitored to record a kinetic decay as the photolysis 

lamps illuminated the trough. The neutron reflectivity measurements were initiated 

Wilhelmy plate 
balance 

for surface 

pressure 
measurement 

PTFE lined Langmuir 

trough 

PTFE barrier for film 

compression Photolysis 

lamp integral 
to the 

chamber lid 

Aluminium 

reaction chamber 

 Sample area 
containing the 

monolayer 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 

2 

 

 

123 
 

simultaneously. The photolysis lamp was also switched on to generate OH radical within the 

subphase.  

2.6.4.1  Methodology for Varied Subphase H2O2 Concentration Experiments 

The H2O2 concentration in the subphase was varied at values of 0.0294, 0.2940, 0.588, 1.470, 

1.176, and 2.352 mol dm-3, in order to vary the concentration of aqueous OH radical in order to 

observe whether a greater OH concentration would lead to a more rapid decay in the surface 

coverage of a stearic acid monolayer. 

All runs were maintained at a temperature of 17°C as this temperature was achievable rapidly to 

maximise measurement time and was within the standard temperature range of 15°C to 20°C 

commonly used in atmospheric experiments for relevance to the temperature of the lower 

Troposphere at cloud base. 

Neutron reflectivity data was collected over ~5 minute periods of measurement per surface 

coverage measurement data point.  

2.6.4.2  Methodology for Varied Subphase Temperature Experiments 

The subphase H2O2 concentration was kept constant at 0.588 mol dm-3 to determine if the 

subphase temperature (6.7 to 50°C), had an effect on the kinetic decay of the stearic acid 

monolayer. The trough was cleaned and re-filled with a new subphase and monolayer before 

each temperature experiment. The subphase temperature was altered by setting the circulating 

temperature controlling bath for cold runs at 5°C less than the desired temperature and for warm 

runs at 2°C more than the desired temperature. The subphase temperature within the Langmuir 

trough was observed by fitting a thermocouple to the Langmuir trough barrier with the tip 

immersed in the subphase behind the trough barrier to avoid interference with the monolayer.   

Neutron reflectivity data was collected in 5 minute and 30 second, periods of measurement.  

2.6.4.3  Equipment 

• Neutron Reflectometer, SURF at the ISIS Pulsed Neutron and Muon Facility, 

Rutherford Appleton Laboratory, Oxfordshire, UK. 

• Langmuir trough suitable for use on the neutron reflectometer SURF, with the 
Wilhelmy plate pressure sensor positioned on the barrier, out of the path of flight of the 
neutron beam. Measurements: 37.2cm x 32cm x 15cm custom model, Nima 
Technology. 

• Surface Pressure Sensor: model IU4, Nima Technology. 

• 50 µL Hamilton syringe 
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• Julabo Circulating temperature controlling bath model: FP50-MH with insulated tubing 

and connectors which will fit to the base of the Langmuir trough. 

• Pre-cut Wilhelmy plates made from Whatman chromatography paper for Wilhelmy 

plates: Whatman 1cm width reel, catalogue number: 3001604. 

• Gold wire for construction of oxidation resistant hooks to connect the Wilhelmy plate to 

the balance. Alpha Aesar, catalogue number 45084, 0.0138 inch diameter, 99.9% purity.  

• Steel plated tweezers for placing the Wilhelmy plates and hooks onto the balance. 

• Kimwipe lint free tissues. 

• Aluminium reaction chamber custom made to house the Langmuir trough, with quartz 

windows to allow laser alignment of the neutron beam path onto the surface of the 

Langmuir trough.  

• Germicidal (λmax ~254 nm) photolysis lamp. Photolysis Lamp: UVP XX_15BLB UV 

Bench Lamp. Photolysis lamp bulbs: Sylvania UVC (wavelength centred on 254nm)  

• 1L volumetric flask with glass stopper for storing subphase. 

• 10mL volumetric flask with glass stopper for making up the 1mg/mL spreading solution 

of D35 stearic acid. 

• Decon 90 detergent.  

2.6.4.4  Chemicals 

• H2O2:  30% NormaPur for trace analysis, VWR, product code: 23615.261 

• Deuterated Stearic Acid: d35, Sigma Aldrich Isotech, catalogue number: 448249 

• Non deuterated Stearic Acid: Sigma Aldrich-Fluka, puriss p.a. (standard for GC), 

catalogue number: 85679 used for test experiments. 

• Deuterium Oxide: Sigma Aldrich,  catalogue number: 661643 

• Pure water: Millipore conductivity of  >18ΩM  

• Chloroform: Sigma Aldrich, Chromasolv plus for HPLC 99.9% with ethanol stabilizer, 

catalogue number: 650471 
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2.7 Results 

The experimental results are presented in the following order. 

2.7.1) Preliminary surface pressure measurements 

2.7.2) Neutron surface coverage and surface pressure measurements of the decay of stearic 

acid monolayers on a subphase of varied OH radical concentration.  

2.7.3)  Neutron surface coverage and surface pressure measurements of the decay of stearic 

acid monolayers on a subphase of varied temperature. 

The results of the kinetic analysis and imaging of the monolayer will then be presented. 

2.7.4) The results of the kinetic analysis of the surface coverage data. 

2.7.5) Brewster angle microscopy images of stearic acid monolayers before and during 

oxidation. 

2.7.1 Preliminary Experiments 

2.7.1.1 Aims of the Preliminary Langmuir Trough Experiments 

Before time on the neutron reflectometer can be obtained evidence of the need to use the 

instrument must be submitted to the neutron facility. A Langmuir trough at Royal Holloway 

University was used to run test experiments to determine whether a reaction was taking place 

that required surface coverage data in addition to surface pressure data to establish the kinetic 

behaviour of the reaction. A brief description of this preliminary data is given here. 

The aims of the preliminary experiments were  

• To ensure the concentrations of reactants were sufficient to produce a reaction on a time 

order suitable to facilitate neutron reflectivity measurements of the monolayer surface 

coverage. 

• To ensure that the reaction was initiated by the aqueous chemistry and not by the 

ambient air.  

• The stearic acid monolayer was monitored with and without the photolysis lamps used 

to generate OH radical from aqueous H2O2 to ensure that the stearic acid monolayer was 

not photolysed (figure 2.20). 
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2.7.1.2  Results of the Preliminary Langmuir Trough Experiments 

On a subphase of H2O at 20°C the decay in the monolayer surface pressure was not greatly 

altered by photolysis as shown in figure 2.21. The phase transition at ~13 mN m-1, from liquid 

to liquid condensed like behaviour was less pronounced under photolysis conditions. The 

surface pressure decayed from 30mN m-1 to 10mN m-1 over 3000 seconds / 50 minutes.  

Figure 2.21 The Kinetic Decay in the Surface Pressure of a 30µL Monolayer of 1mg/ mL 

Stearic Acid on an H2O Subphase With and Without the Photolysis Lamp at 

20°C Conducted on the Royal Holloway Langmuir Trough 

 

The interference in the surface pressure data was caused by groundwork adjacent to the 

laboratory which was on-going throughout the project causing vibrations despite the use of a 

laser table to minimise interference. 

To ensure that the production of OH radical in the subphase had a measurable effect on the 

stearic acid monolayer the surface pressure of the monolayer on a high concentration of  H2O2 

(2.352 mol dm-3) subphase was monitored at 20°C with and without photolysis (figure 2.22).  

The effect of the OH radical on the kinetic decay of the monolayer surface pressure can be 

clearly seen with the surface pressure reaching zero within 2000 seconds. In the presence of 

H2O2 alone without photolysis the surface pressure decayed to just 18mN m-1 over 40000 

seconds/ >11 hours.  
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Figure 2.22 The Kinetic Decay of a 30µL Monolayer of 1mg/ mL Stearic Acid on an H2O2 

Subphase With and Without the Photolysis Lamp at 20°C Conducted on the 

Royal Holloway Langmuir Trough 

 

The lamp was initiated at time zero. 

To test whether changing the H2O2 concentration had an effect on the kinetic decay in the 

surface pressure of the stearic acid monolayer; the surface pressure was monitored at different 

H2O2 concentrations (figure 2.23).  The slope of the decay in surface pressure in the liquid 

region appeared steeper at a higher H2O2 concentration. The difference in the surface pressure 

decay over time on subphases of different H2O2 concentrations was the basis of the neutron 

experiment described in section 2.7.2.  
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Figure 2.23 A 30µL Monolayer of 1mg/ mL Stearic Acid on an H2O2 Subphase With 

Photolysis at 20°C Conducted on the Royal Holloway Langmuir Trough 

 

The photolysis lamp was initiated at 400 seconds. Firing the lamp made heat which produced a 

small rise in the surface pressure data. The surface pressure rise was eliminated by reducing 

the temperature by 2°C when the lamp was switched on.   

2.7.2 Neutron Surface Coverage and Surface Pressure Measurement of the Decay of 

Stearic Acid Monolayers on a Subphase of Varied OH Radical Concentration 

The kinetic decay in the surface coverage and surface pressure of a stearic acid monolayer due 

to a reaction with aqueous OH radical was measured simultaneously on the Langmuir trough 

and the SURF neutron reflectometer.  The H2O2 concentration and therefore the OH radical 

concentration was altered to investigate the effect of concentration on the reaction and to assess 

rate limitations on the reaction of the stearic acid monolayer with aqueous OH radical. 

The H2O2 concentrations and the corresponding OH concentrations deduced from the kinetic 

modelling are explained in section 2.4.7 are given in table 2.2 in section 2.4.7.1. 

The results of the OH reaction experiments are presented in order of increasing OH 

concentration. The kinetic decay in the surface coverage of a stearic acid monolayer on a 

subphase of  null reflective water with photolysis  showed that the stearic acid monolayer does 

not photolyse  (figure 2.28). The kinetic decay in the surface pressure and surface coverage of a 

stearic acid monolayer on a subphase of H2O2, without photolysis (figure 2.28) was measured to 

show the effect on the monolayer decay due to H2O2 for comparison to a photolysis experiment 
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in which OH reacts with the monolayer showing that the surface reaction with OH is 

distinguishable (figure 2.24). 

The graphs are presented with fits of the kinetic decay mechanism (equation 2.45) to the surface 

coverage data as explained in section 2.5.2, the results of which are given in section 2.7.5. 

At an OH concentration of 8.6 × 1012 mol dm-3 the surface coverage decayed to 0.5 × 1018 

molecule m-2 over 21000 seconds (figure 2.24). The surface pressure decayed to 2.5 mN m-1 

over 7500 seconds. The decay in the surface coverage did not follow the decay in the surface 

pressure thus if kinetic calculations were based on the decay in the surface pressure the rate 

constant would not be valid for the amount of material at the air-water interface. 

Figure 2.24 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 0.294 mol dm-3H2O2 / 8.6 ×1012 mol dm-3 OH with 

a Kinetic Degradation Fit of Equation 2.45 to the Surface Coverage Data.  

 

The subphase temperature was 20°C. 

At an OH concentration of 8.7 × 1012 mol dm-3 the surface coverage decayed to 2.1 molecule m-

2 over 16000 seconds (figure 2.24). The surface pressure decayed to the lowest value of 1 mN 

m-1 over 9000 seconds. 
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Figure 2.25 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

  Monolayer on a Subphase of 0.588 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH with 

  a Kinetic Degradation Fit of Equation 2.45 to the Surface Coverage Data  

 

The subphase temperature was 6°C.  

At a modelled OH concentration of 8.7 × 1012 mol dm-3, but a higher H2O2 concentration of 

1.176 mol dm-3 (figure 2.25), the surface coverage decayed to zero over 9600 seconds. The 

surface pressure decayed to zero over 9000 seconds. A rise in the surface pressure and a 

subsequent decay can be seen from 3100 onwards. The feature in the surface pressure data can 

also be seen as a change in the slope of the surface coverage data at 5200 seconds / 2.5 × 1018 

molecule m-2. 
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Figure 2.26 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH with 

a Kinetic Degradation Fit of Equation 2.45 to the Surface Coverage Data. The 

subphase temperature was 20°C 

 

The subphase temperature was 20°C. 

At a modelled OH concentration of 8.7 × 1012 mol dm-3 and an initial H2O2 concentration of 

2.352 mol dm-3 the surface coverage decayed to zero over 9600 seconds, and the surface 

pressure decayed to zero over 8000 seconds (figure 2.27). As in figure 2.26 a pronounced rise in 

the surface pressure can be seen at 3000 seconds / 3mN m-1 onwards, with a subsequent decay 

to zero. A change in the decay slope of the surface coverage can also be seen from 2500 seconds 

at a surface coverage of 4 × 1018 molecule m-2. 

 

 

 

 

 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 
2 

 

132 
 

Figure 2.27 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 2.352 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH with 

a Kinetic Degradation Fit of Equation 2.45 to the Surface Coverage Data  

 

The subphase temperature was 20°C. 

The surface coverage was constant at ~ 5.1 × 1018 molecule m-2 within error over 23000 seconds 

on a subphase of 2.352 mol dm-3 H2O2 with no photolysis or production of OH radical (figure 

2.28). The surface pressure decayed from 23mN m-1 to 14mN m-1 over 23000 seconds at a 

slower rate than in the presence of aqueous OH radical. 
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Figure 2.28 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 2.352 mol dm-3H2O2 Without Photolysis with an 

Exponential Fit to the Surface Coverage Data 

 

The subphase temperature was 20°C. 

To ensure that the decay in the surface coverage and surface pressure of the stearic acid 

monolayer was not caused by photolysis of the stearic acid measurements were taken in the 

absence of H2O2 on a subphase of null reflective water. The surface coverage remained constant 

at ~ 5 × 1018 molecule m-2 within error over 21000 seconds. The surface pressure rapidly 

decayed from 20mN m-1 to zero over 8000 seconds. 
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Figure 2.29 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of Null Reflective Water with photolysis, and an 

Exponential Fit to the Surface Coverage Data 

 

The photolysis lamp was initiated at time zero. The subphase temperature was 20°C. 

The difference in the slope of the decay in surface coverage with increasing H2O2 concentration 

can be seen in figure 2.30. There was not enough data collected to quantify the effect and this 

experiment would need repeating to do so. The neutron beam was lost for a total of half the 

experimental time granted on SURF due to a mechanical failure at ISIS, therefore the data set is 

not ideal however some kinetic information can be gained from this work. The experiment at 

6°C showed a more shallow decay in surface coverage which was investigated further in the 

following neutron reflectivity experiment described in section 2.7.3. 
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Figure 2.30 A Comparison of the Kinetic Decay in the Surface Pressure of A Stearic Acid 

Monolayer Exposed to Varied Concentrations of Aqueous H2O2 / OH Radical 

 

 

2.7.3  Neutron Surface Coverage and Surface Pressure Measurement of the Decay of Stearic 

Acid Monolayers on a Subphase of Varied Temperature 

Measurements of the surface pressure and surface coverage of a stearic acid monolayer at the 

air-water interface were taken at a single H2O2 / OH concentration at different temperatures. The 

subphase temperature was varied to show whether the rate constant would decrease with at 

higher temperatures. Measuring a range of temperatures allowed the creation of an Arrhenius 

plot to show if there was a relationship between temperature and reaction rate. The results are 

presented in order of temperature from 6.7°C to 50°C. 

At 6.7°C (figure 2.31) the surface pressure measurement repeated the behaviour seen in figure 

2.25 and 2.26 where the surface pressure decayed then rises before decaying again. The neutron 

beam was lost during this experiment after 3000 seconds / 50 minutes, thus there is only surface 

coverage data for the decay from 5.5 to 4 × 1018 molecule m-2.  
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Figure 2.31 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

temperature of 6.7°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

The photolysis lamp was initiated at reaction time zero for all the varied temperature 

experiments. 

At 8°C (figure 2.32) the surface pressure data was distorted by a bubble forming in the subphase 

beneath the Wilhelmy plate. The surface coverage decayed from 5.9 to 3.8 × 1018 molecule m-2 

over 4500 seconds after which the neutron beam was lost and the measurements of surface 

coverage were stopped.  
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Figure 2.32  The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 8°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

At 19.4°C the surface pressure decayed from 20mN m-1 to zero over 3600 seconds. The surface 

pressure can be seen to rise from a value of 6mN m-1 at 1300 seconds reaching a value of 8mN 

m-1 at 1600 seconds then falling again as was observed in previous experiments.  The surface 

coverage decayed to zero over 2900 seconds. The feature seen as a rise in surface pressure was 

not reflected in the decay of surface coverage but the neutron beam was of a poor flux initially 

in this experiment so the period of counting per point was long and the feature may not have 

been seen on this time order.  
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Figure 2.33 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 19.4°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

At a temperature of 27°C the surface pressure data suffered interference from a bubble beneath 

the Wilhelmy plate. The surface coverage declined from 3 × 1018 molecule m-2 to 0.2 × 1018 

molecule m-2 over 6800 seconds. 
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Figure 2.34 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 27°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

At a temperature of 31.5°C the surface pressure decayed from 20 to 2.7mN m-1 without rising 

again. The starting value of surface coverage was low at 2.5 × 1018 molecule m-2, the variance in 

the starting surface coverage in each experiment is due to two factors, when the beam had been 

lost prior to starting the photolysis lamps the film was recompressed to 20 mN m-1 when the 

beam was recovered and the experiment was started, a small loss in the amount of material at 

the air-water interface occurs with time whilst the film sits in the Langmuir trough, also the 

monolayer was spread at the interface by different members of the experimental team, a 

technique was agreed to make this as uniform as possible however the surface coverage values 

at the start are different. The surface coverage decayed to zero over 3200 seconds.  
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Figure 2.35 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 31.5°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

At a temperature of 40.5°C the surface pressure decayed from 20mN m-1 to 0.1mN m-1 over 

3010 seconds. A rise in surface pressure from 14 to 15.1mN m-1 occurred after 1100 seconds. 

The surface coverage decayed from 2.5 × 1018 molecule m-2 to 2 × 1018 molecule m-2 over 2600 

seconds. 
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Figure 2.36 The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 40.5°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data 

 

At a temperature of 50°C the monolayer surface coverage declined from 19mN m-1 to 0.1mN m-

1 over 2350 seconds. A rise in the surface pressure by 2mN m-1 occurred after 0.7 seconds. The 

surface coverage decayed from 5.1 to 1.2 × 1018 molecule m-2 over 1850 seconds. Due to a low 

flux neutron beam the data points for the surface coverage measurement were once again far 

apart and the time resolution of the measurement was poor so it could not be said whether the 

surface pressure rise was reflected in the neutron data.  
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Figure 2.37  The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 / 8.7 ×1012 mol dm-3 OH at a 

Temperature of 50°C with a Kinetic Degradation Fit of Equation 2.45 to the 

Surface Coverage Data. 

 

On a subphase of H2O2 without photolysis the surface coverage decayed < 1× 1018 molecule m-2 

within error over 14000 seconds. The surface pressure decayed from 19mN m-1 to 0.4mN m-1 

over 14000 seconds. 

 

 

 

 

 

 

 

 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 
2 

 

143 
 

Figure 2.38  The Surface Coverage and Surface Pressure Kinetic Decay of a Stearic Acid 

Monolayer on a Subphase of 1.176 mol dm-3H2O2 Without Photolysis at a 

Temperature of 20°C with an Exponential Fit to the Surface Coverage Data 

 

When the surface coverage measurements at different temperatures were plotted together (figure 

2.39) the decay slope appeared to increase with temperature, the 19.4°C data being an exception 

to that observation.  
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Figure 2.39 The Decay in the Surface Coverage of a Monolayer of Stearic Acid at Different 

Temperatures 

 

2.7.4 Summary of the Experimental Results 

• The decay in surface pressure does not follow the decay in surface coverage.  

• There is a repeatable feature of a surface pressure rise of ~2mN m-1 at a range of surface 

coverage values from 0.3 × 1018 molecule m-2 to 3.5 × 1018 molecule m-2. The surface 

pressure rise appears at a range of surface pressures from 2 to 14mN m-1 suggesting that 

the feature is related to the chemistry and not to the structure of the monolayer such as a 

phase transition or the molecules lying at a lower angle than 90° to the interface. 

• The surface coverage decays to zero or to a low value with reaction time for each 

experiment. 

• Varying the concentration of aqueous OH radical did not appear to be affecting the 

reaction kinetics.  

• Varying the subphase temperature did appear to affect the reaction kinetics; this will be 

investigated in section 2.7.5. 
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2.7.5 The Kinetic Analysis of the Surface Coverage Data 

Based on the degredated chain mechanism described in section 2.5.2, the reaction of hydrogen 

peroxide and UV radiation creates two OH radicals which then react with the stearic acid 

monolayer. The kinetic decay mechanism (equation 2.45) was fitted to the surface coverage data 

to obtain three rate constants which describe the abstraction of hydrogen from the stearic acid 

molecule (species A) tail and the formation of a shorter chain surface active product (species B) 

followed by the formation of a shorter chain product molecule (species C) which is soluble and 

would dissolve into the Langmuir trough subphase.  

The rise in surface pressure and the corresponding change in the slope of the surface coverage 

measurements are hypothesised to be a result of the mixing of stearic acid and surface active 

product B at the air-water interface.  

Figure 2.40 Modelled Surface Coverage Data Showing the Build Up of Product A and 

Product B in Relation to the Experimental Surface Coverage Data Obtained 

from the Reaction of a Stearic Acid Monolayer with Aqueous OH Radical at an 

H2O2 Concentration of 1.176 mol dm-3 

 

Figure 2.40 shows how the observed surface coverage could be contributed to by the decay 

build-up of stearic acid and its reaction products formed as OH radical shortens the molecule. 

The decay is modelled as three exponentials. It can be seen that product kA builds up at the air-

water interface, followed by product kB as the reaction proceeds, product kB is more soluble.  
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It is inferred that the radical driven reaction shortens the amphiphile at the air-water interface 

and regenerates an amphiphile meaning that material persists at the air-water interface. A 

proposed chemical mechanism for the oxidation of a stearic acid monolayer initiated by OH 

radical is described in detail in section 2.8.4. 

The rate constants from the fitting of equation 2.45 are set out in the following tables. 

• Table 2.3 Pseudo 1st Order Rate Constants for Stearic Acid Reacting with OH 

  Radical for Varied Concentrations of H2O2  

• Table 2.4  Pseudo 1st Order Rate Constants for Stearic Acid Reacting with OH 

  Radical at Different Temperatures 

• Table 2.5  The Second Order Rate Constants for the Decay of a Stearic Acid 

  Monolayer Exposed to Varied H2O2 / OH Concentrations 

• Table 2.6  The Second Order Rate Constants for the Decay of a Stearic Acid 

  Monolayer as Oxidised by OH Radical at Varied Temperatures 

The tables are followed by an Arrhenius plot showing the temperature dependence of the 

reaction between OH radical and stearic acid.  
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Figure 2.41 Arrhenius Plot of the Rate Constants kA , kB and kC at Varied Temperatures with 

a Line Fit to kA.  

 

Figure 2.41 shows that the reaction of stearic acid and OH radical has some temperature 

dependence. The error bars in figure 2.41 were statistical and describe how well the model fitted 

the data, the data fitted well visually but statistically the model predicts that there are better 

outcomes and produces a large error bar. In figures 2.30,  2.31, 2.33 and 2.36 the model was not 

constrained well enough for a perfect fit for error calculation.  The straight line fit shows a 

single rate limited thermally activated process. To determine the activation energy the Arrhenius 

equation is applied. 

� = ���� �− 	
��
�� �        (E 2.46) 

ln � = ln� − 	�
��        (E 2.47) 

The slope of the rate constant k versus temperature is equavalent to the activation energy (EA) 

divided by the gas constant multiplied by the absolute temperature (RT).  The activation energy 

was 22.0 ± 13.3 k J mol-1. 
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2.7.6 Brewster Angle Microscopy Images of Stearic Acid Monolayers Before and During 

Oxidation 

Brewster angle microscopy images show the tilt of the molecular chains at the air-subphase 

interface on the Langmuir trough. When the tilt is normal there is little reflection and the surface 

appears grey and featureless, the same is true when the molecules are lying flat. When the 

molecules are tilted from the normal plane then features can be seen as a function of the 

azimuthal tilt orientation of the molecules comprising domains at the air-water interface 

(Katholy et al., 2000).   

The following pages contain plots of the kinetic decay in the monolayer surface pressure with 

images taken at regular intervals shown along the plot to give an indication of the morphology 

of the monolayer.  

The Brewster angle microscopy image plots are given in the following order: 

• The pressure-area isotherm of a stearic acid monolayer on a subphase of 2.352 

mol dm-3 H2O2 in H2O without photolysis. The Brewster angle microscopy 

images were taken during the compression of the monolayer. (Figure 2.43). 

 

• The kinetic decay of a monolayer of stearic acid on a subphase of 2.352 mol 

dm-3 H2O2 in H2O: 

1. With photolysis from the beginning of the decay (Figure 2.44). 

2. Without photolysis (Figure 2.45).  

 

• The kinetic decay of a monolayer of stearic acid temperature controlled at 20°C 

on a subphase of H2O: 

1. Without photolysis (Figure 2.47). 

2. With photolysis (Figure 2.48). 

Figure 2.47 shows a stearic acid monolayer spread onto a subphase of 2.352 mol dm-3 H2O2 in a 

gas like configuration before closure of the Langmuir trough barriers to compress the film. 

There are several phases visible. The lighter coloured blobs are patches of one phase of liquid 

stearic acid and in the background another phase is visible with tilted domains which appear as 

angular ‘plates’. The surface pressure was 0 mN m-1 at this point prior to compression.  
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Figure 2.42 A Brewster Angle Microscopy Image of a Stearic Acid Monolayer in the Gas 

Like Configuration Prior to Compression 

 

 

As the stearic acid monolayer was compressed at 10 cm2 / minute the round domains seen in 

figure 2.43 appear as angular plate like domains as the monolayer enters the liquid expanded 

region of the isotherm. In the liquid condensed phase the plates appear more rounded and of a 

smaller area per domain at 15 mN m-1, at 19 mN m-1 it became difficult to distinguish one phase 

from another, in the solid phase of the isotherm the monolayer becomes featureless indicating 

the tilt of the molecules is normal to the air-water interface. 
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Figure 2.43 The Surface Pressure versus Area per Molecule Isotherm of a Stearic Acid 

Monolayer on a Subphase of 2.352 mol dm-3 H2O2 

 

Figure 2.44 overleaf shows Brewster angle microscopy images plotted onto a kinetic decay 

measurement of surface pressure with photolysis to produce OH radical in the Langmuir trough 

subphase beneath the stearic acid monolayer as it was imaged. The aim was to take images 

where there was a rise in the surface pressure to see if there was evidence of the presence of 

reaction products or mixing at the air-water interface. Brewster angle microscopy cannot 

confirm the chemical composition of material at the air-water interface but it did show at a 

surface pressure of 18 mN m-1 that there were two distinct domain formations, one which 
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resembled the stearic acid images shown in figure 2.43 as angular plate like domains, the other 

had a fibrous like appearance composed of tiny circles which broke up into islands during 

exposure to OH. Both domain formations disappeared from the interface and the background 

grey image dominated with reaction time.  
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Figure 2.45 shows images taken during a surface pressure kinetic decay of a stearic acid 

monolayer on a subphase containing hydrogen peroxide without photolysis, so that OH radical 

was not produced. The image taken at a surface pressure of 18 mN m-1 was very different to that 

shown in figure 2.44 at the same surface pressure in the presence of OH radical. Large plate like 

domains can be seen with what are inferred by the author to be small lathe shaped crystals 

which were more concentrated at the edges of the plate like domains; these features could be 

stearic acid crystals. As the surface pressure decreased the plate like domains softened at the 

edges and appeared to elongate and appeared as a swirl shaped pattern of domains, the number 

of the crystalline features increased with reaction time.  
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Figure 2.46 A Compression of the Stearic Acid Monolayer from Figure 2.44 Measured at a 

Compression Rate of 10 cm2 / min Taken After the Surface Pressure Had 

Declined to Zero 

 

The surface pressure decay of a stearic acid monolayer with time was measured and imaged on 

a subphase of 2.352 mol dm-3 H2O2 in H2O without photolysis to show any differences in the 

monolayer morphology due to temperature (figure 2.45). After the surface pressure had decayed 

to zero the trough barriers were closed to recompress any material left at the surface of the 

Langmuir trough, this produced an isotherm (figure 2.46) which was very similar to stearic acid 

showing that without photolysis the monolayer is not greatly reacted and is still composed of a 

majority of stearic acid molecules. 

To show differences in the monolayer appearance on varied compositions of subphase images 

were taken of a stearic acid monolayer on an H2O subphase (figure 2.46). The plate like 

domains appear larger but the morphology was similar to the stearic acid monolayer decaying 

on a subphase of H2O2 supporting the notion that the surface reaction is predominantly caused 

by OH radical and not H2O2. The crystalline features can also be seen on the H2O subphase. 
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To study the effect of the photolysis lamp on a stearic acid monolayer without H2O2 or OH 

images were taken during the surface pressure kinetic decay of a stearic acid monolayer on a 

subphase of H2O with the photolysis lamp on (figure 2.48).  At a surface pressure of 20.9 mN 

m-1 the angular plate like domains were observed which were also seen without photolysis in 

figure 2.42. At 30 mN m-1 to 22 mN m-1 domains consisting of a coagulation of tiny circles were 

seen, these were mobile and floated around rapidly then broke apart. With decreasing surface 

pressure the crystalline features appeared at the air-water interface which were observed on a 

subphase of H2O without photolysis and on a subphase of H2O2 without photolysis. The images 

of the decay of the stearic acid monolayer with photolysis on a subphase of H2O were different 

to those observed without photolysis but not as significantly so as the images taken in the 

presence of OH radical. 
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2.7.7 Summary of Experimental Results 

In summary the results of this experimental work are that; 

• The reaction of a stearic acid monolayer and aqueous OH radical occurs at the 

air-water interface. The reaction can be measured with neutron reflectometry in 

order to perform a kinetic analysis.   

• The reaction reduces the surface pressure until a point of what is hypothesised 

to be the mixing of surface active reaction products creating a brief rise in the 

surface pressure followed by a subsequent continuation in the decay of the 

surface pressure of the monolayer as the products react. 

• The mixing feature is reflected in the surface coverage data where the slope of 

the decay in surface coverage shallows.  

• A degredated chain mechanism can be fit to the temporal decay in the 

monolayer surface coverage measurement.  

2.8 Discussion 

The neutron reflectivity measurements give new insight into the reaction of stearic acid with 

hydroxyl radical at the air-water interface as this is the first study of the kinetics of the reaction 

of stearic acid with aqueous hydroxyl radical to be conducted using neutron reflectometry. The 

neutron reflectometry technique has been successful in producing kinetic data for a reaction 

with an aqueous radical in this work and for the reaction of an oleic acid monolayer with gas 

phase ozone as studied by King et al., (2009) and the reaction of of oleic acid and NO2 as 

studied by King et al., (2010).  

The discussion will focus on literature related to the reaction of stearic acid with OH radical and 

the atmospheric implications of the reaction. There have been several structural neutron 

reflectometry studies of stearic acid monolayers at the air-water interface however these studies 

did not measure the kinetics of the decay of the monolayer over time so are not included in the 

discussion. 

The discussion will be ordered as follows; 

• Discussion of the experimental surface pressure and surface coverage results. 

• Discussion of the kinetic results. 

• Discussion of the chemical mechanism of the reaction between aqueous OH 

radical and a stearic acid monolayer. 
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• Presentation of a hypothesised chemical mechanism for the oxidation of a 

stearic acid monolayer by OH radical. 

• Presentation of a calculated atmospheric lifetime for a stearic acid cloud droplet 

film at the air-water interface based on the kinetic results of this study. 

• Discussion of the atmospheric implications of the reaction and the atmospheric 

lifetime of a stearic acid monolayer. 

2.8.1 Discussion of the Experimental Surface Pressure and Surface Coverage Results 

The experimental results show that the saturated stearic acid monolayer clearly reacts with 

aqueous OH radical. The reaction of stearic acid with gas phase OH radical at the air-water 

interface has been investigated by Bertram et al., (2001). Bertram et al., (2001) conducted 

coated wall flow tube experiments exposing a thick film of a stearic-palmitic acid mixture to gas 

phase OH radical carried in a helium gas flow through the flow tube reactor. Stearic acid and 

palmitic acid are both saturated molecules, palmitic acid has a shorter hydrocarbon chain 

(C16H32O2). The OH was detected with a chemical ionization mass spectrometer. The stearic-

palmitic acid mixture was melted and the pyrex flow tube was dipped into the melted solution, 

the film was then crystallised by dipping it in liquid nitrogen. The measured OH signal 

decreased with reaction time showing that the OH was reacting with the saturated film in 

agreement with the results presented in this chapter.  The author could not find comparable 

surface pressure measurements of the decay of a stearic acid monolayer exposed to OH radical. 

The surface pressure measurement did not reflect the amount of material at the interface which 

may have implications for future kinetic studies utilizing Langmuir troughs. 

 

2.8.2 Discussion of the Kinetic Results 

The surface coverage measurements for the dark reaction of a stearic acid monolayer on a 

subphase of H2O2 gave a first order loss rate constant, k, of (1.44 ± 0.45) × 10-6 s-1. Under 

conditions of photolysis on a subphase which did not contain H2O2 the first order loss rate 

constant, k, was (6.35 ± 0.69) × 10-6 s-1. Under conditions of photolysis on an H2O subphase the 

decay in the monolayer surface coverage was more rapid than on a subphase of H2O2 without 

photolysis however it is still two orders of magnitude slower than the first order loss owing to 

the reaction of stearic acid with aqueous OH radical (table 2.3). The average first order loss rate 

constant, kstearic, for the reaction of aqueous OH radical with a stearic acid monolayer at 17°C is 

4.71 × 10-4 s-1. There are no other kinetic studies of this reaction in the aqueous phase. Vlasenko 

et al., (2008) measured the yield of volatile organic compounds from the oxidation of condensed 
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phase organic films by gas-phase OH radical measuring a yield of 0.34 ±	0.14 relative to OH 

loss. The change in size of palmitic acid particles exposed to gas phase OH radical in a flow 

tube was monitored with a particle size analyser and a chemical ionization mass spectrometer by 

McNeill et al., (2008). An average pseudo first order rate constant k, for the loss of palmitic acid 

(C16H32O2) of 0.45 s-1 was modelled to be diffusion limited. The value obtained by McNeill et 

al., (2008) was much larger than the average pseudo first order rate constant measured in this 

chapter for the decay in the surface concentration of stearic acid exposed to aqueous phase OH 

radical. 

George et al., (2007) measured an average rate constant for the reaction of 150 nm particles 

comprised of saturated Bis(2-ethylhexyl)sebacate molecules (C26H50O4,BES), reacted with gas 

phase OH radical in a flow tube. The average rate constant for the decay in Bis(2-ethylhexyl) 

sebacate with OH exposure was (7.6±1.6) × 107 atm-1 s-1.  

The degradation sequential decay kinetic mechanism presented for the reaction of stearic acid 

and OH radical is proposed for the reaction of aqueous phase OH radical at the air-water 

interface. The reaction would occur through the Langmuir-Hinshelwood mechanism whereby 

the OH radical is absorbed and then reacts with the species at the air-water interface (George 

and Abbatt, 2010).  The reacto-diffusive length of OH radical in the gas-phase of a nano meter 

scale is such that it does not penetrate the bulk before reaction in studies using pure substances 

making reactions at the air-water interface favourable (George and Abbatt, 2010), in this chapter 

the OH radical is diffusing from the bulk aqueous phase into the monolayer and reacting 

suggesting that in a multicomponent system the interface is accessible to radical reactants from 

the bulk of a droplet.  

George and Abbatt, (2010) commented on the difference in the reaction mechanisms observed 

between gas-phase OH radical reacting with liquid particles and those obtained from reaction 

with solid particles and well-ordered monolayers which show enhanced volatization of 

products, observing that with the current state of knowledge organic molecules in liquid 

particles would endure less functionalization due to the faster diffusion time for OH radical to 

the C-H bonds closer to the air-water interface in a well ordered monolayer which would be 

functionalised as opposed to a disordered liquid where the OH radical would encounter 

collisions with C-H bonds at a variety of positions along the chain leaving fewer volatile 

product molecules than in the well-ordered system. The results showed a build-up of product 

molecules from the reaction of OH with a liquid phase monolayer at the air-water interface, 

showing that OH from the aqueous phase could travel up the chain and react leaving some 

molecules with sufficient chain length to remain surface active. 
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The Arrhenius plot analysis gave an activation energy of 22 ± 13.3 k J mol-1 and a value of the 

activation energy divided by the gas constant (EA/R) of 2647 ± 5.39 K. Monod et al, (2005) 

measured lower values of EA/R which are listed in table 2.7 for oxygenated organic compounds 

reacting with gas-phase OH radical. The higher activation energy for a stearic acid monolayer 

reacting with aqueous OH radical at the air-water interface could result from the OH radical 

having to penetrate the film before reacting with the stearic acid molecular chain, a process 

which would require more energy than a gas phase OH radical reacting would.  

Table 2.7 Values of EA/R from Monod et al, (2005) for Oxygenated Organic Compounds 

Reacting with Gas-phase OH Radical 

Compound ��
�  

 / K 

Ethyl ter-butyl ether 580 ± 560 

n-butyl acetate  1000 ± 200 

acetone 1400 ± 500 

Methyl ethyl ketone 1200 ± 200 

methylglyoxyl 1100 ± 300 

Methyl iso-butyl ketone 1200 ± 300 

 The data in the table is taken from Monod et al., (2005).  

 

2.8.3 Discussion of the Possible Chemical Mechanism for the Reaction between Aqueous OH 

Radical and a Stearic Acid Monolayer 

The kinetics and mechanisms by which atmospheric OH radical oxidises alkanes was reviewed 

by Atkinson (1986), Atkinson (1986), stated that for gas phase OH radical reacting with an 

alkane hydrogen abstraction was occurring from the C-H bonds, for molecules with 

hydrocarbon chains longer than C3 multiple alkyl radicals were formed.  

Bertram et al., (2001) attribute the loss of OH to hydrogen abstraction from the stearic-palmitic 

film and subsequent formation of H2O and an alkyl radical at the interface. O2 addition would 

then form a peroxy radical. Bertram et al., (2001) hypothesised that given the proposed 

mechanism the film would become more hydrophilic, this was tested by exposing a methyl 

terminated monolayer of octadecyltrichlorosilane (CH3(CH2)17SiCl3), to gas phase OH and 

observing the contact angle of water droplets at the air-water interface which was greatly 

reduced post OH exposure showing an increased wettability as a result of OH radical reaction 
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with a monolayer. The sequential decay mechanism fitted to the surface coverage data in this 

study is based upon the same decay mechanism as that described by Bertram et al., (2001), the 

findings of this experimental work support the hypothesis of Bertram et al., (2001).  A detailed 

suggested mechanism for the oxidation of a stearic acid monolayer by aqueous OH radical is 

given in section 2.8.4. 

Tedetti et al., (2007) produced low molecular weight dicarboxylic acids from OH radical 

reacting with oleic acid in solution. The oleic acid molecule differs from stearic acid in that it 

has a cis form double bond in its chain however as OH is a highly reactive indiscriminate 

radical it reacts along the chain as well as at the double bond site producing multiple product 

species. It could be expected that low molecular weight dicarboxylic acids could be an eventual 

product of the reaction of OH with stearic acid.   

The OH radical initiated oxidation of 2-butoxyethanol (C4H9OCH2CH2OH) in aqueous solution 

studied by Stemmler and von Gunten., (2000a) produced esters, ketones, aldehydes and 

hydroperoxides. Stemmler and von Gunten., (2000a) note that the initial step in the reaction of 

aqueous OH radical with a saturated oxygenated compound is the abstraction of a hydrogen 

atom forming a carbon centred radical. The radical subsequently reacts with oxygen to form 

peroxyl radical (Neta et al., 1990; Stemmler and von Gunten., 2000a). Stemmler and von 

Gunten., (2000a) assess that in atmospheric waters the product formation would be determined 

by decomposition of peroxyl radicals, H abstraction reactions occurring as intermolecular 

reactions, addition of peroxy radicals to double bonds on other organic molecules and the 

reduction of peroxy radicals within the aqueous phase. Stemmler and von Gunten., 2000a 

conclude that the stable reaction products were predominantly carbonyl derivatives and 

carbonyl compounds which were fragments of the parent organic molecule with a minor organic 

hydroperoxide product fraction which is increased in the presence of iron and copper ions 

(Stemmler and von Gunten., 2000b).  

 

2.8.4 The Proposed Chemical Mechanism for the Oxidation of a Stearic Acid Monolayer by OH 

Radical. 

A reaction scheme for the degradation mechanism responsible for the decay of a stearic acid 

monolayer as it reacts with aqueous OH radical is given based on the work by Alfassi et al., 

(1997). Figure 2.49 is a summary of the process followed by the individual steps which are 

detailed in figure 2.50 to 2.54. 
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Figure 2.49 The Cyclic Degredation Mechanism Proposed for Stearic Acid and Aqueous 
OH Radical 

 

 

The first step of oxidation is the initiation reaction between OH and stearic acid. We start with a 

stable stearic acid molecule. The OH radical abstracts a hydrogen atom leaving an alkyl radical 

(figure 2.50). The abstracted hydrogen forms water. 
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Figure 2.50 Step 1 – Hydrogen Abstraction 

 

 

In the presence of oxygen, which is abundant in the cloud droplet system and in the 

experimental system, an oxygen molecule bonds to radical A.  A peroxy radical, radical B is 

formed (figure 2.51). 

Figure 2.51 Step 2 – Propagation 

 

 

 

Steps 1 and step 2 are widely reported in literature (Von Sonntag and Schuchmann, 1997; 

Frankel, 1998). Step 3 is more complex and is not always clearly elucidated in the literature.  

There are two different potential pathways for the peroxy radical. 

i) Termination where the peroxy radical reacts with another radical. 

ii)  Reaction with HO2 giving: 

• Stable surface active products with the same chain length. The head group may 

be considered larger but this will not increase the deuterium signal at the 

interface. 

• Alkoxy radicals (radical D)  

Process i is unlikely as lots of RO2 is required to self-react and terminate making this a slow 

process unless there is an abundance of RO2 which there is not in this system. 

It is proposed that the RO2 peroxy radical becomes an alkoxy radical (D) through H abstraction. 
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Figure 2.52 Step 3- The Fate of Peroxy Radical B 

 

 

The alkoxy radical could then have another hydrogen abstracted by OH or O2 , adjacent to the 

singlet oxygen and form a stable product molecule with a bigger head group (product C).   

The fate of the alkoxy radical could be that C-C scission occurs forming a stable oxygenated 

carbonyl acid and an alkyl radical (i) or step 2 (ii) could be repeated. 

i) C – C scission producing a stable oxygenated carbonyl acid which is soluble and 

enters the bulk subphase and an alkyl radical. 

ii)  H abstraction by OH or O2 and subsequent oxygen bonding as per step 2 forming a 

stable carbonyl (figure 2.49). 

Process ii is more likely where H abstraction occurs as there is an abundance of HO2 in the 

experimental system meaning this process could happen quickly or the alkoxy radical could 

undergo further C – C scission forming either a shorter stable molecule which enters the bulk 

subphase or the scission could produce an alkyl radical which is shorter and undergoes further 

chain degradation. 
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Figure 2.53 The Fate of the Alkoxy Radical (i) 

 

 

 

    

 

Figure 2.54 The Fate of the Alkoxy Radical (ii) 
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The persistence of the reaction products at the air-water interface would be dependent on the 

length of the molecules hydrocarbon chain.  

 

2.8.5 Atmospheric Implications: Chemical lifetime 

The atmospheric lifetime of the stearic acid film at the air-water interface reacting with 

hydroxyl radical from within the subphase/droplet can be calculated from the bimolecular rate 

constants for the reaction between OH and stearic acid (equation 2.48). 

������� = !
"	[$%]         (E. 2.48) 

Where k is the bimolecular rate constant for the reaction between [OH] and stearic acid, 5.5 × 

107 dm3 mol-1 s-1. By rearranging equation 2.45, assuming that: 

'(
)*+,
'(
)*+,-. = !

�         (E 2.49) 

When calculated with the rate constants at one temperature for an [OH] concentration of 3.80 × 

10-16 mol dm-3 as measured in aqueous extracts of sea salt aerosol (1.6-15 µm), under photolysis 

(Anastasio and Newburg, 2007), the first order loss of stearic acid corresponds to an 

atmospheric lifetime of 553 days. The lifetime of an aerosol in the atmosphere is dependent on 

the particle type. The modelled lifetime for a sea salt aerosol is half a day, sulphate and dust 

particles 3 days and particulate and organic matter 6 to 7 days (Textor et al. 2006). George and 

Abbatt, (2010) modelled the lifetime of saturated surfactant organic molecules at the surface of 

a 100 nm aerosol as less than a day under oxidation by the global mean gas phase OH 

concentration of 106 molecules cm-3.  The atmospheric lifetime of 553 days for the reaction of 

aqueous phase OH radical with stearic acid was surprising given how rapidly gas-phase OH 

radical could remove an atmospheric film. The lifetime of the multi-component film comprised 

of stearic acid and the products of oxidation would be longer than that calculated for the stearic 

acid component alone, suggesting that aqueous phase oxidation of the organic film on aerosol 

particles and on cloud droplets is not important at the air water interface in the atmosphere as it 

is not removed by the process studied here during the atmospheric lifetime of the aerosol.   

 

 

 



Hydroxyl Radical Oxidation of Stearic Acid Monolayers Chapter 

2 

 

 

173 

 

2.8.6 Discussion of the Atmospheric Implications of the Reaction and the Atmospheric Lifetime 

 of a Stearic Acid Monolayer Exposed to Aqueous OH Radical 

The effect of a stearic acid monolayer on the evaporation of an aqueous droplet was investigated 

by Tuckermann et al., (2007). Tuckermann et al., (2007), generated acoustically levitated water 

droplets (1.5 to 2 mm radius) with a stearic acid / hexane solution spread as a monolayer at the 

air-water interface by the evaporation of the hexane from the solution which was sprayed onto 

the water droplet as a burst of microdroplets. As the water droplet evaporates the molecules in 

the monolayer are packed closer together. The surface area of the coated droplet reduced with 

time by 3 mm2 over 1300 seconds when levitated in ambient air. The relative permeation 

resistance of the surface layer which is a measure of the difference in the evaporation rate of the 

aqueous droplet with and without the monolayer was 100 ± 20 s / m. 

Bertram et al., (2001) observed that the reaction of gas phase OH radical with saturated films at 

the air-water interface of modelled atmospheric aerosol was not a significant tropospheric loss 

mechanism for OH as the gas phase reaction of OH with NO2 would dominate loss in the 

troposphere under high NO2 conditions. Bertram et al., (2001) modelled the oxidation of 

atmospheric aerosol particles by gas phase OH radical at an average atmospheric gas phase 

concentration of 1 × 106 molecule cm-3 (Prinn et al. 1992; Bertram et al. 2001) showing that to 

oxidise 90% of a non-aqueous organic aerosol surface would take under 7 days. Bertram et al 

conclude that it can be expected that most atmospheric aerosol which is chemically aged will 

have an oxidised hydrophilic surface and that in a liquid aerosol the oxidation could be more 

extensive than just at the surface of the droplet. The results of the work in this thesis chapter 

shows that the oxidation from within the droplet by aqueous OH radical is not as efficient and 

takes place over a longer timescale than the gas phase reaction at the air-water interface. 

The formation of water soluble product molecules from the oxidation of stearic acid by aqueous 

OH radical would result in the addition of water soluble organic compounds to the aqueous 

phase of a cloud droplet which would increase the hygroscopicity of the droplet as the surface 

tension would be lowered allowing a greater uptake of water to the cloud droplet however at 

atmospheric OH concentrations the aqueous OH radical would not be a significant source of 

such material over a relevant timescale. 
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2.9 Conclusions 

The reaction of aqueous hydroxyl radical with stearic acid at the air-water interface follows a 

sequential decay mechanism with ~C4H8 being removed as a result of each interaction. Surface 

active product molecules are produced which decay with similar decay kinetics to stearic acid.  

A monolayer of stearic acid at the air-water interface of a cloud droplet could have considerable 

longevity as it is resistant to gas phase ozone and although stearic acid reacts with aqueous OH 

radical, at atmospheric concentrations this reaction would not be significant in removing a 

monolayer from the surface of a cloud droplet.  Gas phase OH radical would dominate the 

oxidation of a stearic acid cloud droplet monolayer as oxidation by gas phase OH has been 

shown by Bertram et al., (2001) to be on a timescale which is relevant to the lifetime of a cloud 

droplet. This work shows that there would be oxidation from within the droplet to a lesser 

degree. 

Of the products of the reaction between stearic acid and OH radical some are surface active and 

some are soluble so the reaction would have an effect on both the Raoult term and the Kelvin 

term of the Kӧhler equation for predicting cloud droplet activation and growth.   
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The Oxidation of Oleic Acid Monolayers with Gas Phase Ozone 

3.0 Abstract 

A monolayer of oleic acid, a naturally occurring insoluble organic amphiphile was oxidised 

with gas-phase ozone, generated by the photolysis of oxygen. The rate of film oxidation at the 

air-water interface was monitored with neutron reflection on a Langmuir trough. The monolayer 

of deuterated oleic acid (C18D33O2H) serves as a proxy for the organic film at the air-droplet 

interface of a cloud droplet. The surface pressure of the monolayer was measured with a 

Wilhelmy plate and the surface coverage of the deuterated material was measured with neutron 

reflection. The surface pressure and surface coverage declined with reaction time. The kinetic 

decay of the surface coverage was complex. Continued oxidation completely removed the film 

showing inconsistence with the present work on this system.  

3.1 Introduction 

Atmospheric aerosol particles in the troposphere act as cloud condensation nuclei. The 

oxidation of atmospheric aerosols influences climate through cloud formation and precipitation 

effects, (Lohmann and Feichter, 2005; IPPC, 2007). Some cloud condensation nuclei have been 

shown to possess an organic film (Blanchard, 1964; Gill et al. 1983; Tervahattu et al. 

2002a,b;2005). As a cloud droplet/aerosol ages in the atmosphere it will be subject to oxidation 

by radical species from outside and within the droplet phase. One of the primary oxidant species 

in the troposphere is ozone and it is a precursor to the formation of OH radical in the gas phase 

(Finlayson-Pitts and Pitts. 1997). Ozone readily reacts with the double carbon-carbon bond in 

unsaturated organic molecules in the atmosphere, contributing to the aging process of 

atmospheric aerosols and cloud droplet organic films (Zahardis and Petrucci, 2007; Rudich et al. 

2007 and references therein).  

To investigate the process of the reaction by a gas phase oxidant species from outside a cloud 

droplet, and an insoluble organic layer at the air-liquid interface, gas-phase ozone (O3) was 

reacted with a monolayer of oleic acid formed at the surface of a Langmuir trough. Oleic acid 

was chosen because: 

• The reaction of oleic acid with ozone has been studied with a range of spectroscopic 

techniques giving information on product composition but not about the surface 

physical and chemical characteristics on a molecular level. 

• Oleic acid is one of the most commonly sampled fatty acids in aerosol field samples and 

there have been other studies of oleic acid monolayers at the air-water interface. 

• Oleic acid serves as a model system for an unsaturated aerosol surface film.  



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

183 

 

By monitoring the surface pressure (Π) of the monolayer on an aqueous subphase, it was 

demonstrated that a reaction was taking place. To study the kinetics and atmospheric relevance 

of this reaction the surface coverage (Γ) of molecules at the air-water interface was measured 

using neutron reflection. 

The experiment described here attempts to assess the behaviour of a monolayer of oleic acid at 

the air-water interface as it reacts with gas phase ozone. The heterogeneous oleic acid-ozone 

reaction system has been reviewed by Zahardis and Petrucci (2007) as a proxy for the 

heterogeneous oxidation of unsaturated organics, the review highlighted the need to gain more 

detailed chemical descriptions of the ozonolysis process and secondary reactions in order to 

better understand the climatic effect of ozonolysis of atmospheric organic films. The 

experimental work in this chapter contributes to a better understanding of ozonolysis as it is the 

second study of oleic acid ozonolysis of an oleic acid organic film and the results highlighted a 

flaw in the first study by King et al., (2009). 

3.2 Aims 

1. To monitor the properties of surface pressure and surface coverage of a monolayer of 

oleic acid (C18H33COOH), at the air-water interface in real time as the monolayer was 

oxidised with gas-phase ozone.  

2. To conduct a kinetic analysis of the surface coverage of a monolayer of oleic acid over 

time to determine a rate constant for the reaction of oleic acid with gas-phase ozone. 

3. To elucidate the presence of a mechanism for oleic acid removal from the air-water 

interface. 

4. To calculate a chemical lifetime for a monolayer of oleic acid reacting with ozone in the 

atmosphere. 

3.3 Background  

The chemical oxidation of cloud droplet films has not been widely studied. Oleic acid is a 

constituent of the sea-surface microlayer (Kattner and Brockmann, 1978) and has been sampled 

as a component of atmospheric marine aerosol (Tervahattu et al, 2002b) so is a candidate 

molecule for cloud droplet film formation. The presence of a cloud droplet film will increase the 

surface pressure (Π), thus decreasing the surface tension at the air-water interface however 

oxidation of the film would increase the surface tension of a host droplet closer to that of its 

core composition (Voss et al., 2007). Tropospheric ozone (O3), is an oxidant gas, the 

concentration of which can be 50 ppb in unregulated urban environments (Finlayson-Pitts and 
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Pitts, 2000), the annual mean background concentration of tropospheric ozone is from 23 to 45 

ppb in the Northern Hemisphere (Vingarzan, 2004).  

Alteration of the surface properties of a film as it reacts with atmospheric oxidants and is 

degraded; a process known as oxidative aging, in the atmosphere will alter the critical 

supersaturation value according to the Köhler theory of cloud droplet formation and growth as 

explained in chapter 1. To assess the impact of oxidation by gas phase ozone on an unsaturated 

cloud droplet film, an oleic acid monolayer was exposed to gas-phase ozone and the surface 

pressure and surface coverage were be monitored in order to determine the kinetic behaviour of 

the reaction between an unsaturated film at the air-water interface and gas-phase ozone. 

The growth of cloud condensation nuclei (CCN) into cloud droplets, and the number density of 

such droplets in a cloud have climatic implications. A larger number of smaller cloud droplets 

in a defined parcel of air with a constant volume of water would scatter less incoming solar 

radiation in the forward direction relative to larger cloud droplets according to the theory of Mie 

scattering, thus increasing the albedo of the cloud (Twomey, 1974).  

3.4 Oleic Acid and Cloud Droplets 

There are many sources of oleic acid to the atmosphere, the most significant are; 

• Aerosol emissions from the sea surface microlayer (Simoneit et al. 2004). 

• Grilling and other methods of meat cooking (Rogge et al. 1991). 

• Land plant emissions, combustion of land plants and use of plant oils and waxes (Rogge 

et al. 1993a). 

• Exhaust emissions from vehicles possessing a catalytic converter (Rogge et al. 1993b) 

which increases the oleic acid emission per petrol car from 1.2 µg/km to 5 µg/km 

(Rogge et al. 1993b). 

The fatty acid, oleic acid is emitted to the atmosphere from both natural and anthropogenic 

sources (Limbeck and Puxbaum, 1999; Cheng et al. 2004; Zahardis and Petrucci, 2007). Oleic 

acid has been found on marine aerosol (Fang et al. 2002) and as a component of the sea surface 

microlayer (Larsson et al. 1974). The sea surface microlayer is a film of organic chemicals 

found at the surface of oceans; it forms from polar organic molecules released by the 

photosynthesis, death and decomposition of vegetation and sea creatures such as phytoplankton, 

the detritus collects at the surface enriching the content of organic immiscible chemicals (fatty 

acids, n-alkanes, and hydrocarbons) by a factor of 2 to 5 (Marty et al. 1979), at the surface of 

the water (Marty, et al. 1979; Zahrdis and Petrucci, 2007). The oceans are rich in phospholipids 
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such as phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine produced by 

plankton (Popendorf et al. 2011) which decompose to form fatty acids. Aerosol is created by sea 

spray, bubbles bursting at the surface when waves break and from the wind blowing over the 

surface of the ocean (Blanchard, 1963, 1964; Barger and Garret, 1970, 1976; Bezdek and 

Carlucci, 1974; Tseng et al. 1992; Zahardis and Petrucci, 2007), the marine aerosol can have a 

coating of organic chemicals from the sea surface microlayer (Tervahattu et al. 2002a,b) as 

surfactant material concentrates at the air-water interface of bursting bubbles and of sea spray 

produced by waves (O’Dowd et al.,2007).  Marine aerosol sampled from onboard ships have a 

lower concentration of unsaturated fatty acids than saturated fatty acids such as stearic acid, the 

coating organic films contain a mixture of both saturated and unsaturated compounds (Zahardis 

and Petrucci, 2007; Mochida et al. 2002; Fang et al. 2002; Kawamura and Gagosian, 1987), it is 

suggested that the unsaturated fatty acids are more readily oxidised in the atmosphere than 

saturated fatty acids accounting for the lower concentrations in aerosol samples, photolysis of 

unsaturated compounds can also occur, (Mochida et al. 2002; Kawamura and Gagosian, 1987). 

The mixture of saturated and unsaturated fatty acids will be explored in chapter 5. The same 

process of microlayer formation takes place at the surface of lakes (Södergren, 1987).  

In terrestrial environments plants emit biogenic fatty acids, vascular plants, those which have a 

vascular structure for transporting water and nutrients and have multiple chromosome sets per 

cell are responsible for emitting a range of saturated and unsaturated fatty acids (Zahardis and 

Petrucci, 2007; Cheng et al. 2004; Pio et al. 2001; Simoneit et al. 1988, 1991; Simoneit and 

Mazurek, 1982).  In urban terrestrial locations traffic emissions of fatty acids are higher from 

vehicles with catalytic converters installed, 53.4% of the identifiable organic mass, in vehicles 

lacking a catalytic converter the predominant organic component of the emissions are 

polyaromatic hydrocarbons (Zahardis and Petrucci, 2007; Rogge et al. 1993b).  

Mochida et al., (2002) measured the fatty acid content of marine aerosols collected quarterly 

from the Northern Pacific region from autumn 1996 to summer 1997. The saline aerosol 

correlated with higher fatty acid content suggesting a marine source of the fatty acids. The fatty 

acid concentrations were greater in the spring and summer when the Pacific experiences a 

period of high biological productivity indicating a marine biological source for fatty acids which 

are then transmitted to the atmosphere (Mochida et al. 2002).  Average C18 fatty acid 

concentrations were highest in April 1997 at 1400 pg m-3 and lowest in October 1996 at 450 pg 

m-3. 

 

 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

186 

 

Figure 3.1 The Structure of an Oleic Acid Molecule 

 

The oleic acid molecule has a carboxylic acid head group with an unsaturated aliphatic 

hydrocarbon chain. The functional group is the (-COOH) carboxylic acid head which is 

hydrophilic. At the air-water interface the head group forms a hydrogen bond with the water 

molecules in the subphase (the droplet phase or in the experiment the liquid in the Langmuir 

trough beneath the surface film), and the hydrocarbon chain is orientated into the air. The chain 

is kinked at the double bond affecting its orientation; this structure reduces the density at which 

a monolayer film of unsaturated molecules can be packed to at the air-liquid interface. A typical 

value of area per molecule for an oleic acid monolayer in the liquid phase is 42 to 47 Å2 per 

molecule-1 (Gaines, 1966) compared to that of stearic acid which is the same carbon number but 

does not possess a double bond which has an area per molecule of 27 to 21 Å2 per molecule-1 in 

the liquid phase (Gilman et al. 2004). 

As with stearic acid, oleic acid does not dissolve in water; it is insoluble and forms a monolayer 

at the air-liquid interface with the molecules’ hydrophilic, acidic, head group in the liquid cloud 

droplet and the hydrocarbon chain orientated into the air. The kink created by the double bond 

in the oleic acid molecule affects the surface pressure area isotherm as shown in figure 3.2. 
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Figure 3.2 The Surface Pressure Versus Surface Area per Molecule Isotherm for an Oleic 

Acid Monolayer at the Air-water Interface  

 

The isotherm in figure 3.2 was adapted from Voss et al., (2007) as measured at 23°C and 

compressed at 5mm / min-1.   

The packing of the film is affected by the double bond in oleic acid which alters the orientation 

of the hydrocarbon chain. Stearic acid with its straight chain will pack in a monolayer very 

closely with other straight chain molecules into a condensed monolayer. The oleic acid film will 

not pack as closely as the stearic acid film; the oleic acid monolayer is in the expanded phase 

(Gaines, 1966) and does not exhibit the distinct phase changes seen in a saturated monolayer.  

Oleic acid is liquid at room temperature whereas its saturated equivalent in carbon number, 

stearic acid is crystalline. It was suggested by Adam, (1968) that an oleic acid monolayer would 

not be in a condensed state until it reached a temperature of -30°C, so in a cloud/ aerosol setting 

it is unlikely to be condensed. The surface pressure isotherm of an unsaturated monolayer is less 

affected by temperature than that of a saturated compound (Adam and Jessop, 1926; Gaines, 

1966). 
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3.5 Formation of Gas-Phase Ozone in the Troposphere 

The majority of ozone in the troposphere is a secondary product of photochemical reactions 

occurring during daylight hours (Finlayson Pitts and Pitts, 2000). Major sources of tropospheric 

gas-phase ozone in urban environments are primary pollutants such as the NOX and VOC 

compounds from vehicle emissions which are photolysed producing O3 (Finlayson Pitts and 

Pitts, 2000). Ozone production from traffic emissions is often lower during the morning when 

there is a higher NO concentration, the O3 concentration increases in the afternoon and into the 

evening. Production of O3 is dependent on sunlight thus its formation ceases after dark but its 

lifetime means it can be transported as a component of an airmass (Finlayson Pitts and Pitts, 

2000). The lifetime for ozone in the troposphere is hours to days (Blasing, 2011).  

Figure 3.3 A Simplified Diagram of the Creation and Destruction of Ozone in the 

Troposphere 

 

 

Figure 3.3 was adapted from the United Kingdom Photochemical Oxidants Review Group, 

1997, figure 2.4.   

3.5.1 Photochemical Formation of Ozone from Oxides of Nitrogen 

The NOX chemistry directly producing or removing ozone involves the photo-dissociation of 

nitrogen dioxide (NO2), in air producing nitric oxide (NO) and atomic oxygen (O), (reaction 3.1 

to 3.3). The molecular oxygen then combines with oxygen (O2), in the presence of a third body 

forming ozone (O3). The levels of the NOx species determine the lifetime of ozone, as nitric 

oxide (NO), rapidly destroys ozone producing nitrogen dioxide (NO2) and oxygen (O2), 

(reaction 3.3). In high nitric oxide conditions ozone levels do not build up. 
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R
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��� + ℎ�
	→�� + �              (R 3.1) 

� + ��
	→�
.             (R 3.2) 

�� + �

	→��� + ��              (R 3.3) 

A saturated hydrocarbon (alkene), RH can react with oxygen generating ozone (R 3.4). 

� + 4��
	→���� + �� + 2�
      (R 3.4) 

Gas phase NO2 levels are influenced by reaction 3.5 where alkyl peroxy radical (RO2) and nitric 

oxide (NO) react producing alkoxy radical (RO) and nitrogen dioxide (NO2). 

��� +��
	→�� + ���       (R 3.5) 

Alkyl peroxy radical (RO2) is formed from (R) in the presence of oxygen in the presence of a 

third body molecule. 

� + ��(+�)
	→���(+�)       (R 3.6) 

In addition to the processes described here the influence of particle phase reactions involving 

precursor species to ozone on the reaction rates and yields is not well quantified (United 

Kingdom Photochemical Oxidants Review Group., 1997).  

3.5.2 Ozone Concentrations in the Troposphere 

The concentration of gas-phase O3 is highly variable by geographical location due the varied 

emission of precursor species (Finlayson Pitts and Pitts, 2000), in the remote marine regions 

there are lower concentrations of precursor species (Lelieveld and Crutzen, 1994). However 

concentrations of tropospheric ozone are naturally higher at certain oceanic locations, Chandra 

et al., (2004) suggest this is due to a higher downward flux of ozone from the stratosphere into 

the troposphere over the Atlantic and Pacific oceans at Northerly latitudes.  

Tropospheric ozone concentrations are measured by balloon sounding, aircraft instrumentation 

and surface measurements and are reported as a mixing ratio typically as parts per billion 

volume which is 1 molecule of ozone in 109 molecules of air or 1 ppb (Warneck, 1988). 

Lelieveld and Crutzen, 1990 give the following values for the mixing ration of O3 in summer 

and winter at 45°S, 45°N and at the equator. The equatorial mixing ratio of O3 was 30 ppb at an 

altitude of 1.5 to 5 km. At 45° South, the summer mixing ratio was 15 ppb at an altitude of 1.5 

to 3 km and the winter value was 25 ppb O3 at an altitude of 1.5 to 3 km. At 45°N the summer 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

190 

 

mixing ratio was 30 ppb and the winter mixing ratio of O3 was 40 ppb at an altitude of 1.5 to 3 

km.  

Finlayson-Pitts and Pitts, (1997) give figures for different land use types, giving a peak O3 

concentration calculated from data collected in rural to suburban areas of 80 to 150 ppb and in 

remote locations such as the Baltic Sea island Arkona concentrations are 30-40ppb (Finlayson-

Pitts and Pitts 1997). The highest O3 concentrations are found in urban locations with no 

emissions regulation where levels can reach 500 ppb (Finlayson-Pitts and Pitts, 2000). Over the 

Atlantic Ocean ozone concentrations from 30 to 35 ppb were measured in May 2007 from 

aircraft at altitudes of 500 to 2,250 m (Read et al., 2008). Remote location measurements of the 

background level of ozone at Antarctica at the South Pole at an elevation of 2835 m and at 

Arrival Heights at sea level gave annual means of 26 to 30 ppb (1992 to 2001) and 23 to 26 ppb 

(1997 to 1999), (CMDL, 2004; Vingarzan, 2004). The background concentration of ozone in the 

troposphere is 30 to 40 ppb. 

The effect of cloud formation on tropospheric ozone levels has been noted. Monod and Carlier 

(1999) used a box model approach to study the multiphase photochemistry taking place in 

clouds with the presence of soluble organic compounds. The aqueous phase photochemistry 

taking place in cloud droplets effects the gas phase concentration of ozone (Jacob, 2000; Jacob 

et al. 1989; Lelieveld and Crutzen, 1990; Walcek et al. 1997; Monod and Carlier, 1999). The 

effect of cloud droplets on the gas phase ozone concentration when compared to clear sky 

conditions is to reduce the net production of ozone (Monod and Carlier, 1999). The reduction 

occurs because the highly soluble peroxy radical (HO2) enters the aqueous phase decreasing the 

gaseous phase HO2 available for ozone formation (Monod and Carlier, 1999). Monod and 

Carlier predict a reduction in the formation of ozone of up to 50% in cloudy conditions.  More 

directly ozone is scavenged by cloud droplets as NO and NO2 have low solubility so do not 

contribute to ozone production within the droplet and ozone which dissolves from the gas phase 

into the droplet is consumed by reactions with oxygen radicals (O2
-) at a more rapid rate than 

the ozone can diffuse (Monod and Carlier, 1999). 

�
(��) +���
	→ �
� + ��

	↔�
 + �� + ��
	→� + 2�� + ��  (R 3.7) 

The potential products of the oxidation of an insoluble monolayer can be soluble organic 

compounds. The work of Monod and Carlier (1999), where methanol was modelled as a soluble 

organic compound in cloud water showed that ozone production was reduced in cloudy 

conditions in the presence of soluble organic compounds. 
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3.5.3 The Effect of Aerosol and Clouds on Ozone Concentrations in the Troposphere 

Tropospheric ozone measurements are taken with aircraft based spectrometers, ozonesondes, 

ground based lidar, airborne lidar and satellite observations. At present the lidar and ozonesonde 

techniques work only for cirrus/ice clouds, the resolution of these techniques in cloud is poor 

due to scattering effects, therefore there are few in cloud ozone measurements. It is standard 

practice to use ambient ozone concentrations in atmospheric modelling for in cloud systems in 

the troposphere. Warneck, (1988) stated a calculated in-cloud liquid phase dissolved O3 

concentration of 6.4 × 10-10 mol/kg based on a gas phase mixing ratio of 4 × 10-8 (40 ppb) which 

is the accepted background level for gas phase ozone in the troposphere. 

There are indications that aerosol can act as a sink for ozone in the troposphere through 

scavenging. Modelling and field studies show a reduction in tropospheric ozone levels in the 

presence of dust aerosol, which is rich in minerals originating from soils and desert sands (Reus 

et al. 2000) and is of a large particle size as demonstrated by continental dust storms which 

contain visible aerosol particles. Rues et al., (2000) took airborne measurements of ozone 

mixing ratios during ascent from Tenerife, the Canary Islands showing at 2km and ozone 

mixing ratio of 45 ppbv, 2.5 to 5.8 km a steady mixing ratio of 30 ppbv and at 6 to 11.8 km a 

fluctuating concentration of between 50 and 70 ppb. The steady, lower mixing ratio for ozone 

from 2.5 to 5.8 km was found to coincide with high levels of accumulation mode particles 

(diameter 0.11 to 3.5 µm), these are large aerosol particles. In the region containing the dust 

aerosol the relative humidity increased from 4% to 35%. If the relative humidity reached 60 to 

80 % this aerosol could form droplets, if they contained dissolved species which react with 

ozone, then the droplets could scavenge ozone leading to the lower concentration of ozone 

measured in the dust layer, however in this case the air was drier and Rues et al., (2000) suggest 

that the ozone is reacting with trace metals (manganese, iron) or oxidising organic material from 

the dust aerosol. 

The ozone concentrations around a warm aqueous cloud droplet are those in the lower 

troposphere at that given location. The experiments in this thesis are concerned with warm 

aqueous clouds such as orographic clouds, maritime cumuli and continental cumuli (Squires, 

1958) in the lower atmosphere within the atmospheric boundary layer at altitudes of up to 6km 

(Warneck, 1988). Vertical mixing, a process in which clouds play a role by venting, can lead to 

layers enriched in O3 when compared to the surface concentration at sea level (Finlayson Pitts 

and Pitts, 2000).  Cloud venting is the process by which gaseous matter and aerosol are 

transported from the lower troposphere into mid to upper troposphere cloud layer where the 

transported matter is scavenged by the surface of cloud droplets (Cotton et al. 1995). The effect 
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of cloud on ambient ozone concentrations is poorly constrained, particularly the role of the 

particles and droplets in ozone processing through oxidation. There will also be oxidation by 

ozone dissolved within cloud droplets. 

3.6 Previous Atmospheric Studies of Oleic Acid and Ozone 

Here the current literature regarding oleic acid and ozone by atmospheric chemists is reviewed 

in brief. There is a large body of experimental work on oleic acid films on laboratory synthetic 

aerosol particles and thick oleic acid films yet there are few studies of oleic acid monolayers, 

there are two oleic acid monolayer studies utilising neutron reflectometry by King et al., (2009), 

and King et al., (2010) which were conducted with a custom synthesised fully deuterated oleic 

acid molecule as deuterated oleic acid was not commercially available until late 2010.  

3.6.1 Laboratory Studies of Oleic Acid Aerosol and Droplets Reacting with Ozone 

Zahardis and Petrucci, (2007) reviewed the experimental data on the ozonolysis of oleic acid 

from an atmospheric perspective. The current state of knowledge is based upon particle phase 

studies of aqueous and mixed phase aerosol and studies of oleic acid films reacting with ozone 

at the air-water interface. 

3.6.1.1  Particle Phase Experiments 

Ziemann, (2005) used a thermal desorption particle beam mass spectrometer (TDPBMS) to 

analyse the composition of the reaction products from the ozonolysis of pure oleic acid 

particles, liquid particles of oleic acid mixed with dioctyl sebacate and oleic acid as a 

component of a solid liquid mixtures with hexadecanoic acid and heptadecanoic acid. High 

performance liquid chromatography (HPLC) coupled with selected ion monitoring (SIM) or 

mass spectral analysis (MS) was also used to characterize the reaction products which were 

primarily volatile. The loss of oleic acid due to reaction initiated by ozone was faster in the 

liquid mixed particles than in the liquid-solid mixed particles (Ziemann, 2005). 

King et al., (2004) used laser tweezers to hold a droplet of synthetic seawater and oleic acid and 

subjected it to Raman spectroscopy to monitor the size of the droplet and the signal given by the 

composition of the droplet. The oleic acid was inferred to be present at the surface of the 

droplet, with a saline liquid core. The droplet was oxidised with gas phase ozone. As the droplet 

reacted it grew from 6.5 to 8 µm owing to hygroscopic growth, nonanal and nonanoic acid were 

detected in the droplet. The loss of the Ramen signal for oleic acid from the droplet over 900 

seconds was attributed to the reaction of oleic acid and ozone and the subsequent break down of 

oleic acid allowing the ozone to penetrate to the saline core of the droplet which reacted with  



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

193 

 

Br – initiating the formation of radical species which would rapidly remove the organic 

component from the droplet phase (King et al. 2004). King et al., (2004) concluded that the 

oxidation of a coating of oleic acid on a droplet by ozone lowered the critical supersaturation 

required for droplet growth in the atmosphere and that as the oleic acid was oxidised the droplet 

became more hydrophilic so a previously inert droplet or particle could become an active cloud 

condensation nuclei. 

Katrib et al., (2004) studied the reaction products of oleic acid films coatings on polystyrene 

latex spheres. The film was formed by condensation of vaporised oleic acid. The coated films 

ranged in thickness from 2 to 30 nm (Katrib et al. 2004). It was observed that a 20 nm film was 

reduced to 15 nm following oxidation and that the products of the reaction of oleic acid with 

ozone were volatile. There is broad agreement in the literature that the reaction of oleic acid 

with ozone proceeds by the scission of the double bond followed by the formation of Criegee 

intermediates leading to decomposition into shorter chain organic acids and secondary ozonides. 

The mechanism of the reaction of oleic acid with ozone will be presented in section 3.7.6. 

Kinetic measurements of the loss of sodium oleate due to reaction with gas-phase ozone were 

taken by McNeill et al., (2007) who conducted aerosol flow tube experiments where submicron 

aqueous aerosols composed of a mixture of sodium oleate and water were atomized and flowed 

in a nitrogen at a controlled relative humidity of 62-67 % to a flow tube or photochemical 

reactor containing 4 ppm ozone. The aerosols were sampled with a differential mobility analyser 

(DMA) and an ultrafine condensation particle counter (CPC). Kinetic measurements were 

achieved by varying the flow rate of the reactant gas. The oleate was detected as oleic acid using 

a chemical ionization mass spectrometer (CIMS).  The reaction time was proportional to the 

position along the flow tube where the aerosol was injected. The sodium oleate particles were 

oxidised at the surface and the reaction kinetics followed Langmuir Hinshelwood behaviour 

where adsorption occurs at surface sites. McNeill et al., (2007) calculated a reactive uptake 

coefficient for ozone of ~ × 10-5 to 6 × 10-5 concluding that the lifetime of a thin film of 

unsaturated organic molecules on a liquid aerosol would be ~10 minutes due to oxidation by 

atmospheric ozone at 50 ppb. McNeill et al., (2007) also note that the effect of the substrate 

mineralogical composition of the solid fraction of an aerosol particle could lengthen the lifetime 

from minutes to days.  
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3.6.1.2 Surface Pressure and Surface Tension Measurements of Oleic Acid Monolayers 

Reacting with Ozone 

The reaction of an oleic acid monolayer with gas phase ozone was studied from a health 

perspective by Srisankar and Patterson, (1979) using a Langmuir trough and Wilhelmy plate 

balance housed in a reaction chamber. Srisankar and Patterson, (1979) observed the film 

contracting; to maintain a given surface pressure of 7 mN m-1 the barriers on the Langmuir 

trough reduced the surface area by compression. The observation was made that there was a 

decay of the monolayer in air which was not as pronounced in an oxygen only atmosphere in 

which the surface pressure could be maintained for 90 minutes without compression of the 

monolayer, the decay in air was attributed to the presence of trace quantities of ozone.  

González-Labrada et al., (2007) studied the change in the surface pressure of pendant aqueous 

drops covered with an oleic acid monolayer spread by syringe within a solution of chloroform 

which evaporates. Pendant drop apparatus are an alternative way of measuring surface pressure 

and surface tension to the use of a Wilhelmy plate apparatus and a Langmuir trough. The 

surface pressure was measured as a function of reaction time. The surface area per molecule can 

be monitored by changing the volume of the droplet, decreasing the volume is the equivalent of 

compressing or releasing a monolayer on a Langmuir trough. The change in surface tension was 

monitored with a tensiometer. The ozone exposure took place in a reaction chamber. González-

Labrada et al., (2007) also measured droplets of the reaction products nonanal and nonanoic 

acid but no increase in surface pressure with compression was observed using the droplet 

apparatus or a Langmuir trough so it can be inferred that these species are not present at the 

interface. The kinetic results obtained by González-Labrada et al., (2007) will be discussed in 

section 3.9.2. 

The kinetics of the reaction of a monolayer of the unsaturated phospholipid 1-oleoyl-2-

palmitoyl-sn-glycero-3-phosphocholine, (OPPC) with gas phase ozone was conducted by Wadia 

et al., (2000) by monitoring the gas-phase reaction products. OPPC has one saturated and one 

unsaturated chain.  The OPPC monolayer was held on a Langmuir trough housed in a reaction 

chamber from which the air was directed into an atmospheric pressure ionization mass 

spectrometer (API-MS) which measured the gas phase products of the reaction at the air-liquid 

interface, the condensed phase kinetics were not determined. Nonanal was detected in the air 

above the monolayer after reaction with 0.25 to 1ppm O3. The area per molecule did not affect 

the yield of nonanal in a predictable manner which Wadia et al., (2000) collate with the packing 

of the monolayer not greatly affecting the availability of the double bond to ozone. The rate 

constant for the reaction of the monolayer with ozone was faster than that of a supposed gas 
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phase reaction of ozone with OPPC (Wadia et al. 2000). Wadia et al., (2000) propose that the 

monolayer is porous and that the ozone molecules are trapped in the region of the hydrocarbon 

chains of the monolayer, these trapped molecules react more rapidly with the OPPC than gas 

phase ozone molecules colliding with a flat, impenetrable surface (Wadia et al. 2000). Wadia et 

al., (2000) also note that the reaction product nonanal is soluble in water so the experiment only 

detects nonanal that enters the gas phase and not that which is dissolved into the subphase, the 

net yield for the production of nonanal was 54 ± 11%.  

King et al., (2009) oxidised a monolayer of deuterated oleic acid on a Langmuir trough housed 

in a teflon bag for some early experiments and an aluminium reaction chamber for later 

experiments, with a flow of gas-phase ozone. Simultaneous neutron reflectivity measurements 

of the surface coverage of the monolayer were taken together with surface pressure 

measurements. The sub-phase beneath the film was varied from pure water to a salinity of 33g 

L-1 NaCl. King et al., (2009) showed that after 250 minutes exposure to 4.2 × 1012 molecule cm-

3 of ozone, on a sub-phase of 33g L-1 NaCl, a monolayer with a surface pressure of 14 mN m-1 

and a surface coverage of 1.1 × 1018 molecule m-2 remained at the air-liquid interface. A value 

of the rate constant for the reaction of ozone and oleic acid was taken from fitting the surface 

coverage to a scheme with two reaction pathways, one yielding one soluble or volatile product 

and one surface active product, another pathway giving only soluble or volatile products. The 

kinetic analysis showed that the kinetics for the production of products from the reaction of 

oleic acid with ozone, was not affected by the composition of the subphase. It is for this reason 

that the experiments in this thesis are conducted on pure water subphase and not saline. The 

values of the rate constants from the work of King et al., (2009) will be re-visited in the 

discussion section 4.14. King et al., (2009) conclude that the remaining material at the interface 

after sustained exposure to ozone was likely to be nonanoic acid; this is the least soluble of the 

known products from the reaction of oleic acid thin films with ozone which is surface active 

(McNeill et al. 2007).  

Voss et al., (2007) compressed a monolayer of oleic acid on a Langmuir trough from starting 

area per molecule of 83 Å2. A phase transition was observed at 51 Å2 per molecule and prior to 

collapse at 28 Å2 per molecule. Voss et al., (2007) took broad-bandwidth sum frequency 

generation spectroscopy (BBSFG) spectra of the intensity of the output beam of infrared 

radiation versus incident infrared radiation for the monolayer. Broad-bandwidth sum frequency 

generation (BBSFG) spectroscopy is a vibrational spectroscopy technique. The signal is 

dependent on the number density and orientation of the molecules at the interface. Its limitations 

are that it does not give a measure of the amount of a material present so cannot yield kinetic 

information. It was used in-situ with the Langmuir trough for studying the compression of an 
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oleic acid monolayer however it was not coupled with the Langmuir trough during oxidation; 

instead the monolayers were prepared in petri dishes. Measurements at 83, 51 and 28 Å2 per 

molecule showed that at 83 Å2 per molecule, at 0 mNm-1 surface pressure, the spectra was 

relatively flat and featureless. The BBSFG spectra shows peaks for the CH groups within the 

monolayer which for oleic acid on an aqueous substrate occur at 2846 cm-1 (CH2 symmetric 

stretch), 2876 cm-1(CH3 symmetric stretch), from 2923 (CH2 Fermi resonance) to 2941(CH3 

Fermi resonance) and at 3014 (CH olefinic stretch/ double bond). At 51 Å2 per molecule and the 

monolayer undergoes a phase transition from a liquid-gas state to the liquid phase, this is 

evident as a series of peaks at 2850 cm-1, 2880 cm-1 and a broader peak at 2945 cm-1 on the 

spectra which are characteristic of oleic acid, the spectra of oleic acid appeared as the surface 

pressure exceeded 0 mNm-1. At 28 Å2 per molecule at a surface pressure of 28 mN m-1 the 

spectra shows a higher intensity peak at 2880 cm-1 and a broader peak at 2945 cm-1 than was 

observed at 51 Å2 per molecule. The disordered structure of the monolayer at 83 Å2 was shown 

by the absence of peaks characteristic of the C-H bonds as the sparse configuration of molecules 

in a gas phase monolayer is below the detection limit of the technique.  Compressing the 

monolayer, packing the molecules into a more ordered state intensified the C-H peaks in the 

spectra, for a well ordered film the CH3 peak at 2876 cm-1 is the largest (Voss et al. 2007).   

For oxidation experiments the monolayer was spread to 32 Å2 (the equilibrium spreading 

pressure, 30 mNm-1) in a petri dish contained in a closed cell and exposed to a flow of 20ppm 

ozone. After 1 minute of exposure to ozone the CH3 peak at 2876 cm-1 observed optically 

decreased in intensity (Voss et al. 2007). As the exposure time is increased the peaks in the 

spectra reduced until after an exposure time of 30 minutes there was no signal from the 

monolayer which had been oxidised and completely lost from the interface (Voss et al. 2007). 

Voss et al., (2007) used a complimentary technique of infrared reflection absorption 

spectroscopy (IRRAS), to show that the commonly observed reaction products from the 

oxidation of oleic acid by ozone were not present at the interface after the oxidation of oleic 

acid. In addition to the spectroscopy, Voss et al., (2007) observed the decline referred to in this 

thesis as a kinetic decay in surface pressure as the oleic acid monolayer on the Langmuir trough 

was oxidised. In contrast to the work of King et al., (2009) the surface pressure of the oleic acid 

monolayer declined to zero mN m-1 under sustained exposure to 190 ±80 ppm ozone for 23 

minutes. No information is given in Voss et al., (2007) as to how the Langmuir trough was 

enclosed for oxidation surface pressure experiments or of the ozone concentration at the 

interface. 

Monolayers of oleic acid oxidation products, nonanoic acid, azalaic acid and nonanal were 

prepared in petri dishes by Voss et al., (2007) to see if a measurement could be obtained or if 
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the product had dissolved into the subphase or evaporated. BBSFG spectra could only be 

produced from nonanal when a quantity equivalent to three monolayers was spread at the air-

water interface; this signal was not comparable to that of a partially oxidised oleic acid film 

(Voss et al. 2007). Voss et al., (2007) conclude that there was no organic material remaining at 

the air-water interface after the oxidation of an oleic acid monolayer with ozone, and that the 

changes in the BBSFG spectra during oxidation are comparable to the changes observed when 

the monolayer was compressed so are a product of the films packing and not caused by the 

production of surface active product molecules. Wadia et al, (2000) observed gas-phase nonanal 

above the Langmuir trough suggesting that this product would not be present at the air-water 

interface post reaction. Voss et al., (2007) saw complete removal of the oleic acid film under 

ozonolysis, King et al., (2009) did not. 

3.6.2 Issues Identified in the Current Literature to be Investigated in This Work 

The experiment described in this chapter may contribute further understanding of the following 

issues cited in the current literature.  

• The conflicting results of Voss et al., (2007) and King et al., (2009) as to the presence 

of a monolayer following the exposure of oleic acid to ozone. King et al., (2009) 

concluded there was a significant surface coverage of material remaining at the air-

water interface post reaction, Voss et al., (2007) concluded there was no monolayer 

remaining.  

• The structural change in the orientation of the molecules at the air-liquid interface as the 

monolayer of oleic acid is oxidised. 

• In chapter 2 it was demonstrated that the surface pressure and surface coverage were 

giving different information about the material at the interface. The amount of material 

present was not reflected in the surface pressure measurement, when the two 

measurements are correlated there is less need to use the expensive neutron 

reflectometry technique. 
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3.7 Experimental Methodology 

It should be noted that the author was not present for the experiments detailed in this chapter. 

The methodology is based on the notes taken by the experimental team (Martin King, Adrian 

Rennie, Amelia Marks, Christian Pfrang and Richard Campbell). The author processed the data, 

conducted the analysis and drew conclusions following the data processing. The experimental 

section is presented in the following order: 

• Experimental aims (3.7.1).   

• A description of the oleic acid samples used for the neutron reflectometry experiments 

(3.7.2). 

• A description of the FIGARO reflectometer at the Institut Laue Langevin, Grenoble, 

France used for the experimental work (3.7.3). A description is given of the surface 

measurement techniques (3.7.3.1) with an explanation of the effect of partial deuteration 

on the neutron reflectivity measurement (3.7.3.2) and the method of structural neutron 

reflectometry measurements (3.7.3.3).  

• The generation of gas-phase ozone (3.7.4) and the modelling of the ozone reactant 

concentration in the gas-phase and in the monolayer (3.7.4.1).  

• The methodology of a typical neutron reflectivity measurement of a kinetic decay in 

surface pressure of a monolayer reacting with a gas-phase reactant is given (3.7.5) and 

the materials used to conduct the experimental work are listed (3.7.5). 

• An explanation of the kinetic fitting regime which was applied to the surface coverage 

data is given (3.7.6).  

 

3.7.1 Experimental Objectives 

The experiment was designed to monitor the properties of the surface pressure and the surface 

coverage of a monolayer of oleic acid (C18H33COOH), at the air-water interface in real time as 

the monolayer was oxidised with varied concentrations of gas-phase ozone. 

The objectives of the experiment conducted on FIGARO were; 

1. To measure the decay in the surface coverage and the surface pressure of an oleic acid 

monolayer at the air-water interface simultaneously during a reaction with gas-phase 

ozone. 

2. To ascertain whether an oleic acid monolayer persist at the air-water interface under 

sustained exposure to gas-phase ozone.  
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3. To measure the decay of a monolayer comprised of oleic acid molecules which were 

deuterated from the double bond to the terminal CH3 group (in this case CD3), to show 

if the deuterated tail group remained at the air-water interface after ozone has reacted 

with the double bond in the oleic acid molecule.  

4. To subsequently conduct a kinetic analysis of the surface coverage of a monolayer of 

oleic acid over time to determine a rate constant for the reaction of oleic acid with gas-

phase ozone. 

5. To model the lifetime of an oleic acid monolayer at the air-water interface of a cloud 

droplet under atmospheric conditions. 

The aims were based on the hypothesis by King et al., (2009) that the cleavage of oleic acid at 

the double bond would leave a surface active monolayer comprised of shorter chain length 

product molecules which would be persistent to further reaction with ozone. This mechanism is 

illustrated in figure 3.4. 

Figure 3.4 The Decay of Oleic Acid Reacting with Gas-phase Ozone as Proposed by King 

et al. (2009) 
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3.7.2 Oleic Acid Samples 

In order to achieve the second experimental aim there were three oleic acid chemical samples 

used for this experiment. Deuterated oleic acid was not commercially available until 2010. 

Previous experiments on fully deuterated oleic acid (King et al. 2009;2010), used fully 

deuterated oleic acid (C8D17CD=CDC7D14CO2H), synthesised by the Isotope Facility at Oxford 

University (named D33 fully deuterated oleic acida for simplicity). When deuterated oleic acid 

became commercially available from Sigma Aldrich a fully deuterated D33 sample was 

purchased for comparison to the King et al., (2009) sample, upon which to conduct further 

experiments. The Oxford University Isotope Facility synthesised a sample of partially 

deuterated (C8D17CD=CHC7H14CO2H) oleic acid, (named D18 for simplicity), the sample 

provided the opportunity to see which half of the molecule persisted at the air-liquid interface 

during ozonolysis, and to show if the ozone attacked the double bond as expected. Each sample 

was made up to a concentration of 1 mg/mL-1 in chloroform as a spreading solution. 

• D33 oleic acid, fully deuterated: custom synthesised by Robert Thomas at the Isotope 

Facility at Oxford University. The structure is shown in figure 3.4. 

• D33 oleic acid, fully deuterated: Sigma Aldrich, product number 683582, lot number 

EW0201. The structure is shown in figure 3.5. 

• D18 oleic acid, partially deuterated; custom synthesised by the Isotope Facility at Oxford 

University. The structure is shown in figure 3.6. 

Figure 3.5  Structure of a D33 Oleic Acid Molecule  

 

 

 

 

DC
CD

CD2

CD2
CD2

CD2
CD2

CD2
CD2

O

OH

CD2
D2C

CD2
D2C

CD2
D2C

CD2
 CD3



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

201 

 

Figure 3.6 Structure of a D18 Oleic Acid Molecule 

 

 

3.7.3 Surface Measurement Techniques 

Both surface measurements of surface pressure and of surface coverage at the air-water 

interface were undertaken on a Langmuir trough simultaneously as explained in chapter 2. The 

neutron reflectivity measurement of reflectivity which is fitted to give a value of surface 

coverage (Γ) was required as the work of King et al., (2009) showed that when modelling the 

effects of surface tension and that of dissolved solutes in a cloud droplet according to Köhler 

theory, the dissolved product material from a reaction at the surface of the droplet has a greater 

effect on the critical supersaturation at which the droplet will grow than the surface tension 

effect on this process. Neutron reflectivity is the only technique by which a measure can be 

made of the hydrogen/deuterium composition of a monolayer at the air-liquid interface over 

time. By substituting hydrogen atoms with deuterium atoms one can highlight a portion of a 

molecule to see where the molecule breaks in a reaction, and whether that material persists at 

the air-liquid interface. The operation, calibration and cleaning of the Langmuir trough were as 

explained in chapter 2. The reaction chamber housing the Langmuir trough was custom made by 

the University of Reading to fit the neutron reflectometer FIGARO and is shown in figure 3.7. 

The chamber was designed as a prism trapezoid shape to reduce the chamber volume, therefore 

reducing the mixing time of reactant gases. 
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Figure 3.7 The FIGARO Aluminium Reaction Chamber which Houses the Langmuir 

  Trough on the Neutron Reflectometer Beamline Depicted Without the Chamber 

  Lid  

  

 

 

3.7.3.1  The Neutron Reflectometer FIGARO 

The surface coverage measurement of the deuterated oleic acid monolayer was determined from 

reflectivity measurements from the neutron reflectometer, FIGARO (Fluid Interfaces Grazing 

Angle ReflectOmeter) at the Institut Laue-Langevin (ILL), in Grenoble, France. The FIGARO 

reflectometer differs from the SURF reflectometer as SURF at ISIS uses a pulsed beam of 

neutrons produced by spallation as explained in chapter 2. At the Institut Laue-Langevin a beam 

of neutrons of a steady flux is produced from a nuclear reactor by nuclear fission of uranium-

235. The data is comparable from both instruments as the measurement of reflectivity is a 

product of the momentum transfer (Q) of a pulse of neutrons of varying wavelengths. Both 

instruments measure the time of flight of a pulse, at ISIS this comes from the target as a pulse, 

at the ILL the pulse is created from the beam of neutrons by choppers which produce a gap in 

the beam. The reflectivity is measured on FIGARO as the change in intensity as on SURF; once 

the raw measurement is converted to R versus Q the measurements are comparable.  

The flux of the transmitted neutron beam and its wavelength distribution are tuned to the 

experiment by the adjustment of two frame overlap mirrors which remove neutrons with a 

wavelength above 20 or 30 Å and four disc choppers which control the wavelength resolution 

(Campbell et al. 2011) creating a pulse of neutrons for time of flight measurements. The beam 

then travels through two deflector mirrors which determine the transmitted beam angle, between 

0.62° and 3.8°, for this work an angle of 0.62° was used for measuring the kinetic decay in the 

surface coverage of the monolayer during a reaction. For structural measurements 2 angles were 

used (0.62° and 3.8°). A collimation guide removes off specular scattering of neutrons caused 

by the mirrors which are set to give the beam an orientation close to horizontal to the sample, in 
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this case the surface of the Langmuir trough. Before reaching the sample, the beam travels 

through a monitor which measures the intensity of the transmitted beam.  The reflected beam 

intensity is then measured on a 2D 3He aluminium mono-block multi tube detector which is 

positioned depending on the angle of incidence of the beam (Hall, 2010). The neutrons position 

along the tube is measured by charge division which causes the emission of a photon from the 

electrons (charge) produced reacting with the He3 gas. The distance from the sample to the 

detector is 3 m (Campbell, 2010); a vacuum tube reduces interference over this distance as 

shown in figure 3.8. 

The measurement of reflectivity versus momentum transfer is achieved by the time of flight 

method which is made possible by the choppers which make a gap in the beam so that time of 

arrival at the detector can be measured. The range in time of arrival of neutrons travelling at 

different speeds at the detector is converted into a range of momentum transfer statistics (Q). 

The momentum transfer data is plotted against reflectivity (R) data obtained from the change in 

intensity of the beam due to reflection from the sample. The data was then fitted to obtain a 

value of surface coverage (г) as explained in chapter 2. 

The measurement of the surface coverage of the monolayer was as described in chapter 2. The 

technical set up of the instrument for example the settings of the beam choppers is different for 

each instrument but the experiment as conducted by the users of the instrument is essentially the 

same for both SURF and FIGARO for this work. 
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Figure 3.8 The FIGARO Reflectometer  

 

 

Figure 3.8 was used with the permission of Richard Campbell (Dec 2010) from http://www.ill.eu/instruments-

support/instruments-groups/instruments/figaro/. The figure has been modified to describe the set-up of the instrument 

for a Langmuir trough experiment. The labels were adapted from a similar figure from a Neutron News article by 

Harrison and Martinez (2009).  

A brief comparison of the neutron reflectometers FIGARO and SURF is given in table 3.1 

overleaf. 
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Table 3.1 A Comparison of the Neutron Reflectometer SURF and FIGARO 

Specification SURF FIGARO 
 

Angle of the incident beam 
(θ) 

1.5° 0.62 and 3.8° * 

Beam size at sample 60 x 10mm2 40 x 10mm2 
   

Incoming beam wavelength 0.55 – 6.8 Å 2 -30 Å 
 

Detector He3 scintillation detector He3 tubular aluminium 
monoblock 

 
Distance detector to sample 2m 1 to 2.85 m 

 
Q range 0.048 to 1.1 Å-1 0.005 to 0.3 Å-1 

Volume of aluminium 
reaction chamber available to 

gas 

 
45 L 

26 L or 13.3 L with 
aluminium volume reducing 

inserts 

Information in the table was taken from ISIS (2011b), Campbell (2010), Campbell et al., (2011). 

*FIGARO was operated at an incident beam angle θ of 0.62° for the kinetic measurements. 

Where structural measurements were taken for chapter 4 the 3.8° angle was also used. Both 

angles are used to determine the scale factor from the D2O reflectivity measurement where a 

range of θ values are used. 

The main difference in obtaining the kinetic decay of surface coverage measurements over time 

on FIGARO is that each measurement requires a shorter counting time of 60 to 300 seconds 

than on SURF where neutrons were counted for 300 up to 1200 seconds. 

The background signal on FIGARO is approximately 1 × 10-6 R(Q). Having the instruments 

collimation slits opened wider allowed a faster measurement period but increased the 

background signal from incoherent scattering. The treatment of the reflectivity data to obtain a 

value of surface coverage was as described in chapter 2 using the same Abelès fitting regime 

(Abelès, 1950). 
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3.7.3.2 The Effect of Partial Deuteration of a Monolayer on Neutron Reflectivity 

Measurements 

A partially deuterated molecule produces less positive scattering of neutrons as it contains fewer  

deuterium atoms and more negative scattering as it contains more hydrogen atoms contributing 

to a lower reflectivity signal than the fully deuterated molecule as shown in figure 3.9. 

The partially deuterated oleic acid molecule which is shown in figure 3.6 was used to show 

whether the molecule cleaving at the double bond would be visible to neutrons and if so how 

long the deuterated tail persisted at the air-liquid interface. 

Figure 3.9 Reflectivity Versus Momentum Transfer (Q) for an Un-reacted Fully 

Deuterated Oleic Acid and Partially Deuterated Oleic Acid Monolayer in an O2 

Atmosphere 
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3.7.3.3  Obtaining Structural Neutron Reflectometry Measurements 

To determine the effect of ozone exposure on the thickness of an oleic acid monolayer, 

reflectivity measurements were taken and the reflectivity data was fitted to a model describing 

the head group region and the hydrocarbon chain or tail region of the oleic acid molecule.  

The incident angle of the neutron beam to the sample (θ), or the neutron wavelength determines 

the range of momentum transfer (Q). In order to measure a larger range of momentum transfer 

the incident angle of the beam to the horizontal sample is increased which gives a range of 

higher momentum transfer neutrons reaching the detector allowing measurement at lower 

reflectivity. For a spallation source such as ISIS the pulse of neutrons contains particles with 

different values of momentum transfer (Q).  At the ILL the neutron beam is continuous so 

rotating discs with a gap; called choppers are used to create a time zero, gap in the beam for 

time of flight measurements. Both instruments operate in time of flight mode measuring a 

reflectivity spectrum of the energy of the neutrons reaching the detector versus the momentum 

transfer, r(Qz), of the neutrons.  

When obtaining structural measurements a D2O subphase is used as opposed to null reflective 

water in order to increase the reflectivity signal as D2O acts like a mirror and reflects all the 

incident neutrons giving a larger number of counts on the detector. This optimises the scattering 

from the partially deuterated monolayer, using a D2O subphase and measuring at a higher 

incident angle gives the reflectivity at higher values of momentum transfer which allows a more 

accurate structural fit to be obtained as the scattering length density of the deuterated sample 

can be better constrained. Measurements were taken at an incident angle (θ) of 0.62° and 3.8°. 

The structural neutron reflectivity data was fitted in the program ‘Lipid’ that allows the head 

and tails of the molecule to be treated separately when inputting fitting parameters to the model 

which can fit several data sets simultaneously. Specifically the scattering length density for the 

head and tail can be fit individually taking into account mixing with the solvent / subphase 

(Rennie, 2011). The fully deuterated (D33) oleic acid sample was measured on a subphase of 

null reflective water; the D18 sample was measured on a subphase of deuterium oxide (D2O) to 

obtain a higher signal as this molecule contained fewer deuterium atoms therefore scatters 

neutrons less efficiently.  
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Figure 3.10 The Four Layer Model Which the Lipid Fitting Regime Fits the Reflectivity to 

for Both Contrasts of a D2O Subphase and a Null Reflecting Water Subphase 

Air Air 

Deuterated layer  

(hydrocarbon chain above the 

double bond) 

Deuterated layer 

(hydrocarbon chain above the 

double bond) 

Hydrogenated layer  

(head group and chain below the 

double bond) 

Hydrogenated layer  

(head group and chain below the 

double bond) 

D2O subphase Null Reflecting Water subphase 

 

For structural measurements reflectivity data was collected at a constant surface pressure of 19 

mNm-1 and temperature of 24°C showing a comparison of the reflectivity of the Oxford Isotope 

Facility fully deuterated oleic acid and the partially deuterated sample synthesised at the same 

laboratory. The reflectivity data were fitted globally (all data sets fit simultaneously) using the 

physical properties of the molecule shown in table 3.2 to gain information on the thickness of 

the film (head and tail combined), the variation in the fit was in the parameter: scattering length 

density (head). The resulting fits to the reflectivity data are shown in figures 3.38 and 3.39 in 

the results section (3.8). 
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3.7.4 Generating Gas-phase Ozone 

The chloroform used for the spreading solutions and cleaning of the Langmuir trough was 

Sigma Aldrich, Chromasolv plus for HPLC 99.9% with ethanol stabilizer, catalogue number: 

650471. 

The Langmuir trough liquid subphase was made up from deuterium oxide which is recovered 

from the nuclear reactor at the ILL and from Millipore 18MΩ cm resistivity pure water to form 

null reflecting water (NRW) which has mole ratio of 0.088 mole D2O in H2O (Penfold and 

Thomas, 1990).This solution produces no specular reflection (Lu et al. 2000), so does not 

contribute to the change in signal produced by the deuterated monolayer during a reaction. Null 

reflecting water has a scattering length of zero to neutrons. 

Bottled oxygen manufactured by Air Products of 99.5% purity was flowed rate of 5 L/min-1 as 

monitored with a ball and valve flow meter, through Teflon tubing and stainless steel Swagelok 

connectors to an ozoniser creating a dilute flow of O3 in O2. The ozone / oxygen mixture flowed 

into the reaction chamber housing the Langmuir trough.  

A UVP mercury pen ray discharge light source ozone generator, model 97-0067-02 was used to 

generate ozone. The ozoniser functions by emitting short wave 185nm radiation which 

photolyses the oxygen flowing past the lamp generating ozone, by reaction 3.8 and 3.9. The 

concentration of ozone was varied by shielding sections of the lamp reducing the intensity of 

radiation that the flow of oxygen was exposed to. The ozoniser and flow meter were calibrated 

by Christian Pfrang of the Department of Chemistry at the University of Reading. The ozoniser 

was calibrated by measuring the absorbance at 254 nm on a U.V. visible spectrometer, of the 

ozone produced at different levels of shielding in a cell. Royal Holloway University did not 

possess a U.V. visible spectrometer of adequate sensitivity to calibrate the ozoniser for these 

low concentrations of ozone. 

�� + ℎ�
	→� + �         (R 3.8) 

� + �� +�
	→�
 +�        (R 3.9) 
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3.7.4.1 Determining the Concentration of Ozone      

The concentration of ozone in the reaction chamber was determined by calculating the flux of 

ozone into and out of the reaction chamber allowing calculation of the concentration within the 

chamber. The concentration of gas phase ozone in the chamber was then used to calculate a 

mixing time for ozone in the reaction chamber.  

Calculating the volume of the reaction chamber available to the gas phase ozone requires the 

subtraction of the volume of the Langmuir Trough and its fittings. For the FIGARO beam line 

Langmuir trough the volume of the trough was estimated to be 20 L and the volume of the 

chamber available to the gas phase ozone was 26.2 L.  The flow of gas within the chamber 

could not be assumed to be plug flow where the concentration would build up across the 

chamber from the entry point, instead the flow was considered to be a well-mixed reactor where 

the flow out of the chamber produces a well-mixed scenario where there is no significant 

concentration gradient within the chamber. The chemical reaction between the ozone and the 

monolayer consumes very little ozone so was not included in estimating the gas phase ozone 

concentration. The first order differential equations for calculating the ozone concentration 

within the reaction chamber are included in the appendix; item 1, solving these equations results 

in equation 3.1. 

It was assumed that the gas phase ozone reacts with the monolayer rather than dissolved ozone 

which has entered the subphase. The air-water exchange of a gas is slow without agitation 

which was not present in this system. When the ozoniser is not engaged the reaction observed in 

the surface pressure data ceases in less than one minute suggesting that any dissolved ozone in 

the subphase is not contributing to the decay of the monolayer.  To calculate the concentration 

of O3 in the reaction chamber the following equation was used from Smith et al, (2002): 

��
�������� = ��
�!"!#$"�� %1 − (�
)*
+ ,      (E 3.1) 

Where F is the flow rate of O3 into and out of the chamber (5 L min-1). F was kept constant for 

each experiment. [O3] ozonizer is the concentration of ozone in the flow F taken from the ozonizer 

calibration, which was varied for different experiments. V is the volume of the reaction chamber 

minus the volume of the Langmuir trough and fittings (26.2 L). 

The time taken for the concentration of O3 in the chamber to reach 38%, the characteristic 

mixing time (tmix) was determined by dividing the volume of the chamber (less the volume of 

the Langmuir trough) of 26.2 L divided by the flow rate which was 5 L min-1 (equation 3.2). 

The characteristic mixing time was 314 seconds. This value is important for the kinetics as fits 
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should be taken after the characteristic mixing time. 314 seconds is a long mixing time 

suggesting that for future work it would be best to aid the mixing process, for the work detailed 

in chapter 5 the volume of the chamber was reduced using hollow aluminium boxes which fitted 

around the Langmuir trough, reducing the characteristic mixing time. 

-�$. = /
012*3          (E 3.2) 

For the kinetic analysis the concentration of ozone within the film region was calculated by 

equation 4.11.  

�
4$5� = 6�
�������784$5�       (E 3.3) 

The ozone concentration in the film region O3 film is equal to the gas phase ozone concentration 

in the chamber (O3 chamber) multiplied by H, the Henrys law constant for ozone (11.75 molecule 

cm-3
 (molecule cm-3)-1), multiplied by the thickness of the monolayer (δfilm), 15 Å. The ozone 

concentrations in the film region are listed in table 3.3  

Table 3.3 The Ozone Concentration in the Monolayer Tail Region as Calculated From 

Equation 3.3, and the Calibration of the Ozoniser.  

Ozone 

Concentration 

from the Ozoniser  

�9:�;<;=><?@  
/ ppb 

Gas Phase Ozone 

Concentration 

�9:�ABCDE?@ 
/ ppb 

Gas Phase Ozone 

Concentration 

 �9:�ABCDE?@ 
/ (1012 molecules cm-3) 

Ozone Concentration in 

the Monolayer Region 

 �9:�F>GD  

/ (108 molecules cm-2) 

26.6 ± 5.04 4.62 ± 0.88 11.6 ± 2.20 0.204 ± 0.039 

37 ± 9.03 6.43 ± 1.57 16.1 ± 3.94 0.284 ± 0.069 

51.9 ± 14.75 9.02 ± 2.56 22.6 ± 6.43 0.399 ± 0.113 

67.4 ± 22.86 11.7 ± 3.97 29.4 ± 9.97 0.518 ± 0.176 

119.9 ± 5.19 20.83 ± 0.90 52.3 ± 2.26 0.921 ± 0.040 

154.1 ± 19.61 26.77 ± 3.41 67.2 ± 8.55 1.18 ± 0.151 

225.5 ± 43.22 39.18 ± 7.51 98.3 ± 18.8 1.73 ± 0.332 

298.5 ± 8.92 51.86 ± 1.55 130 ± 3.89 2.29 ± 0.069 

384.8 ± 83.91 66.85 ± 14.6 168 ± 36.6 2.96 ± 0.645 

680.3 ± 73.22 118.19 ± 12.7 297 ± 31.9 5.23 ± 0.563 

The gas-phase ozone concentrations in parts per billion are provided for comparison to atmospheric ozone concentrations. 
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3.7.5 The Experimental Methodology of a Typical Neutron Reflectivity Experiment with 

a Gas-phase Reactant 

As explained in chapter 2 the neutron surface coverage and Wilhelmy plate surface pressure 

measurements were collected simultaneously using a Langmuir trough housed in an aluminium  

reaction chamber which was fitted to the neutron beamline. The Langmuir trough used for the 

experiments was the FIGARO beamline Langmuir trough, which is a custom model 

manufactured by Nima Technology. Its dimensions were: depth 0.5 cm, width 20 cm, length 50 

cm. The aluminium reaction chamber is shown in figure 3.7, its dimensions were: maximum 

height 18.5 cm, width 39 cm, length 64 cm.  

The Langmuir trough was cleaned and calibrated according to the procedures explained in 

chapter 2. The Langmuir trough was filled with 600 mL of null reflective water and a 40 µL 

monolayer of deuterated oleic acid was spread at the air-water interface using a 50µL capacity 

Hamilton syringe. The film was spread drop by drop at different points across the surface by 

placing the needle very close to the surface but not touching it and allowing the drop (at the end 

of the needle) to make contact with the surface, the initial surface pressure reading was 12 

mNm-1.  The area per molecule was 43.7 Å2 prior to compression for a monolayer of 40 µL of 

fully deuterated oleic acid. 

The subphase temperature was maintained at 24-25°C using a temperature controlled circulating 

water bath which was attached to an integrated cooling system in the base of the Langmuir 

trough. pH papers were used to monitor the pH of the null reflective water (pH 5.5). Oxygen 

was flowed at 5L min-1 from a bottle through Teflon tubing via the UVP pen-ray ozoniser which 

at this point had its lamp fully shielded so was not producing ozone. The oxygen flowed from 

the ozonizer into the reaction chamber through tubing with Swagelok connectors. The flow 

entered the chamber through a tube which was positioned above the Langmuir trough facing 

away from the monolayer.   

The monolayer was spread and then compressed to a surface pressure of 25 mN m-1. When the 

monolayer was at the desired surface pressure the barriers were held, the chamber lid was fixed 

on to provide a gas tight seal and the neutron instrument was started ready to take measurements 

of surface coverage. There is a short delay between the start of the surface pressure 

measurement and the time when the first neutrons reach the sample to accrue a surface coverage 

measurement whilst the radiation shielding interlock is engaged prior to the neutron beam 

reaching the sample. 
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Once the initial surface coverage had been recorded for a monolayer the ozone supply was 

activated by reducing the shielding covering the lamp. The ozone was flowed through the same 

tubing as the oxygen at the same rate, into the reaction chamber to react with the oleic acid 

monolayer.  

3.7.6 Kinetics of the Reaction of an Oleic Acid Monolayer with Gas Phase Ozone 

3.7.6.1  The Decay Mechanism 

The decay in the surface coverage of a monolayer of deuterated oleic acid at the air-water 

interface follows exponential behaviour whereby the decay curve shallows exponentially as 

observed by King et al., (2009). 

The rate expression for the reaction of a deuterated oleic acid monolayer with gaseous phase O3 

is;   

IJKL

�� + �

	→ MNOPQR-S       (E 3.4) 

�T�UVWXYYZ[��
T\ = ]�IJKL

���^��
�_      (E 3.5) 

Where ̀  and a are exponents which are determined experimentally, the sum of which 

determines the order of the reaction. The reaction was pseudo first order. The same expression 

is appropriate to the partially deuterated molecule as the kinetics were not affected by the 

deuteration. The change in the surface concentration (surface coverage) of oleic acid is 

described by equations 3.6 to 3.8: 

T�!5�$�	��$T�
T\ = Tг

T\         (E 3.6) 

Tг
T\ = ]�c���
�         (E 3.7) 

Tг
T\ = ]c��
�           (E 3.8) 

It is assumed that the concentration of ozone is constant during the reaction. Solving equation 

3.9 gives the rate of change in the surface coverage with time. 

]d = ]��
�         (E 3.9) 

Tг
T\ = ]dг         (E 3.10) 

г\	 = г4$#�5 + гe(�fg(\�\h)       (E 3.11) 
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3.7.6.2  The Method of Kinetic Analysis 

The surface coverage data was fitted to an exponential decay mechanism which allows the start 

point of the reaction to be defined after the mixing time for ozone in the reaction chamber had 

been reached. The kinetic decay data of the surface coverage of the deuterated monolayer 

material with reaction time was fitted to equation 3.11. 

г\	 = г4$#�5 + гe(�fg(\�\h)       (E 3.11) 

Where г\ was the surface coverage at the air-liquid interface at time t, 	г4$#�5 was the surface 

coverage at the air-liquid interface at the end of the reaction, гe was the surface coverage at the 

air-liquid interface before the reaction and k′ was the first order rate constant for the decay in the 

surface coverage of the deuterated material at the air-liquid interface. In chapter 5 for the 

reaction between a methyl oleate monolayer and gas phase ozone an alternative kinetic regime 

was used which incorporated an estimation of the mixing time for ozone in the reaction 

chamber. The reasoning for using a different fitting regime for the data in this chapter to that 

used for the experiments in chapter 5 is given in appendix item 3.  

From the results of the neutron reflectivity experiments it was decided that the behaviour of the 

system was pseudo first order where oleic acid reacted with ozone producing reaction products 

which were soluble or volatile and did not persist at the air-liquid interface so an exponential 

decay could be fit to the data. This was in contrast to the kinetic analysis of King et al., (2009) 

where there was material remaining at the air-liquid interface after the reaction of ozone with 

the monolayer.  

A simple exponential was fitted to the decay in the surface coverage of d-oleic acid at the air-

liquid interface, these fits fall into three categories. 

1. A simple exponential fit to the decay curve of deuterated oleic acid with time as 

deuterated oleic acid is lost from the interface. 

2. At low ozone concentrations a shallowing of the decay curve occurred mid decay which 

is referred to as an inflection feature herein. An exponential fit was made to the first 

part of the decay curve prior to the inflection feature in the surface coverage data. A 

subsequent exponential was fitted to the decay curve after the region of inflection. 

3. The oleic acid monolayer was allowed to decay in the presence of ozone and was 

subsequently recompressed to show whether the inflection feature was related to a 

chemical change or a structural phenomenon. An initial exponential fit was taken of the 

first decay curve, and then after recompression as the surface coverage decayed again 
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an exponential fit was taken before and after the region of inflection in the surface 

coverage data.  

The exponential kinetic fitting to the surface coverage data is plotted over the surface coverage 

data in the results section (3.8). 

 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

217 

 

3.8 Experimental Results  

The experiments were conducted at a range of gas-phase ozone concentrations to facilitate the 

calculation of a bimolecular rate constant from the surface coverage measurements. The decay 

in the surface coverage and surface pressure of fully deuterated and partially deuterated oleic 

acid samples were monitored in order to determine whether the decay kinetics were 

significantly different enough to show whether the oleic acid molecule was broken at the double 

bond leaving a product film that was persistent at the air-water interface as hypothesised by 

King et al., (2009). 

Surface coverage data was collected for fully and partially deuterated monolayers on a pH 

altered subphase to show whether OH radical forming as a result of ozone dissolving into the 

subphase was causing the observed loss of oleic acid. Structural neutron reflectivity 

measurements were also taken of each oleic acid sample for comparison between samples and to 

measure the monolayer thickness. 

The simultaneous neutron surface coverage (Γ) and monolayer surface pressure measurements 

(Π), will be presented in the following order with kinetic fits of the surface coverage 

measurements to equation 3.11 shown with the relevant neutron reflectometry data.  

The surface pressure and surface coverage data is presented together in the following order: 

• Fully deuterated (D33) and partially deuterated (D18) oleic acid monolayers with high 

gas-phase ozone concentrations of (130 ± 3.89) × 1012 molecules cm-3 to (297 ± 31.9) × 

1012 molecules cm-3 representative of a polluted urban air mass (3.8.1). 

• Fully deuterated and partially deuterated oleic acid monolayers with low gas-phase 

ozone concentrations of (11.6 ± 2.20) × 1012 molecules cm-3 to (98.3 ± 18.8) × 1012 

molecules cm-3 representative of a marine or rural environment (3.8.2). 

• The decay of fully and partially deuterated oleic acid monolayers in oxygen (3.8.3). 

• The surface pressure and surface coverage of fully and partially deuterated oleic acid 

monolayers on a pH adjusted subphase exposed to gas-phase ozone (3.8.4). 

• A summary of the surface coverage and surface pressure measurement results (3.8.5). 

• The results of structural neutron reflectivity measurements of fully deuterated and 

partially deuterated oleic acid monolayers at the air-water interface (3.8.6). 

• Kinetic analysis and results (3.8.7). 
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3.8.1 The Surface Pressure and Surface Coverage of Fully Deuterated Oleic Acid Monolayers 

Exposed to High Concentrations of Gas-phase Ozone 

Three experiments were conducted on fully deuterated oleic acid monolayers at high gas phase 

ozone concentrations in order to measure the decay in the surface pressure and surface coverage 

of the monolayer. The surface coverage and surface pressure data for these experiments are 

shown in figures 3.11 to 3.14. The corresponding gas phase ozone concentration and the 

concentration of ozone in the tail region of the monolayer are listed in table 3.4. 

Table 3.4 The Concentrations of Gas-Phase and Monolayer Region Ozone Used in the 

High Ozone Experiments  

Gas Phase Ozone 

Concentration / 1012 

molecule cm-3 

Ozone Concentration in the 

Monolayer / 108 molecule 

cm-2 

130 ± 3.89 2.29 ± 0.069 

297 ± 31.9 5.23 ± 0.563 

 

The kinetic fits to the surface coverage data are given in figures 3.15 to 3.17. 
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Figure 3.11 A Comparison of the Surface Coverage Data from the High Ozone 

Concentration Experiments 

 

At high ozone concentrations the decay of the D33 (Sigma Aldrich) monolayer exposed to 297 ± 

31.8 × 1012 molecules cm-3 decayed to a surface coverage of 0.5 × 1018 molecule m-2 

approximately 110 seconds faster than the D33 monolayer exposed to the slightly lower ozone 

concentration of 130 ± 3.89 × 1012 molecules cm-3.   

The D18 oleic acid (Oxford Isotope Facility) monolayer exposed to a gas phase ozone 

concentration of 130 ± 3.89 × 1012 molecules cm-3 decayed in an identical fashion to the D33 

monolayer until the surface coverage reached 0.4 × 1018 molecule m-2 at which the D33 

monolayer decayed slightly further to a lower residual surface coverage of 0.3 × 1018 molecule 

m-2. The deuterated products of the reaction may vary causing the decay curve from 500 

seconds onwards differ where the partially deuterated oleic acid has decayed but there is still a 

signal above zero, so there is still deuterated material present at the air-liquid interface. 
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Figure 3.12 The Surface Coverage and Surface Pressure Data for a D18 Oleic Acid 

Monolayer Reacting with (297 ± 31.8) × 1012 molecules cm-3 Gas-Phase Ozone  

 

The most rapid decay in the surface pressure and surface coverage of an oleic acid monolayer 

was measured at the highest ozone concentration shown in figure 3.12. The partially deuterated 

oleic acid monolayer left a residual surface coverage of ~0.4 × 1018 molecule m-2 even when 

reacting with a very high concentration of ozone. 
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Figure 3.13 The Surface Coverage and Surface Pressure Data for a D18 Oleic Acid 

Monolayer Reacting with (130 ± 3.89) × 1012 molecule cm-3 Gas-Phase Ozone 

at 24°C 

 

At an ozone concentration of (130 ± 3.89) × 1012 molecules cm-3 the surface pressure data 

appeared to follow the decay in surface coverage. The slope in the decay of surface pressure and 

surface coverage is very similar at this concentration for both isotopologues of oleic acid. Both 

the fully deuterated and partially deuterated monolayer leave a residual surface coverage of 

deuterated material at the air-water interface which is not reflected in the surface pressure data.    
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Figure 3.14 The Surface Coverage and Surface Pressure Data for a D34 Oleic Acid 

Monolayer Reacting with (130 ± 3.89) × 1012 molecule cm-3 Gas-Phase Ozone 

at 24°C 

 

In both the surface pressure and the surface coverage data it can be seen that a steeper decay 

occurred at the highest ozone concentration. Recompressing the Langmuir trough barriers after 

a reaction did not produce a rise in the surface pressure which remained at zero. 

It was concluded that the ozone concentration used here was not ideal for kinetic analysis as 

there were few points to fit to before the reaction of ozone with the oleic acid monolayer was 

over. Kinetic fits of equation 3.11 to the surface coverage data are shown in the following plots. 

As shown in figure 3.15 to 3.17 the kinetic fit could only be achieved for part of the decay curve 

which consisted of few measurements as the reaction proceeded too rapidly at high ozone 

concentrations to achieve a good kinetic fit.  
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Figure 3.15 A Kinetic Fit of Equation 3.11 to the Kinetic Decay in the Monolayer Surface 

Coverage of D18 Oleic Acid Exposed to  (297 ± 31.9) × 1012 molecule cm3 

Ozone in the Gas-Phase and a Concentration of (5.23 ± 0.56) ×108 molecule 

cm-2 Ozone in the Monolayer Tail Region 
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Figure 3.16 A Kinetic Fit of Equation 3.11 to the Kinetic Decay in the Monolayer Surface 

Coverage of D18 Oleic Acid Exposed to  (130 ± 3.89) × 1012 molecule cm3 

Ozone in the Gas-Phase and a Concentration of (2.29 ± 0.07) × 108 molecule 

cm-2 Ozone in the Monolayer Tail Region 
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Figure 3.17 A Kinetic Fit of Equation 3.11 to the Kinetic Decay in the Monolayer Surface 

Coverage of D33 Oleic Acid Exposed to  (130 ± 3.89) × 1012 molecule cm3 

Ozone in the Gas-Phase and a Concentration of (2.29 ± 0.07) × 108 molecule 

cm-2 Ozone in the Monolayer Tail Region 

 

 

3.8.2 The Surface Pressure and Surface Coverage of Fully and Partially Deuterated Oleic Acid 

Monolayers Exposed to Low Concentrations of Gas-phase Ozone 

The lower experimental ozone concentrations used for experiments of fully deuterated and 

partially deuterated oleic acid are given in table 3.5. In total for both D33 and D18 oleic acid 

monolayers seven experiments were undertaken at low gas phase concentrations of ozone. The 

surface coverage and surface pressure data is shown in figure 3.18. 

Table 3.5 The Gas-Phase and Monolayer Region Concentrations of Ozone Used in the Low 

Ozone Experiments 

Gas Phase Ozone 

Concentration / 1012 

molecule cm-3 

Ozone Concentration in the 

Monolayer Region / 108 

molecule cm-2 

11.6 ± 2.20 0.204 ± 0.039 

16.1 ± 3.94 0.284 ± 0.069 

29.4 ± 9.97 0.518 ± 0.176 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

226 

 

The decay of the fully deuterated monolayer appears to be faster with increasing gas phase 

ozone concentration.  In figure 3.18 the surface coverage data for both the partially and fully 

deuterated oleic acid monolayer are shown together for comparison.  The rate of the kinetic 

decay is explained and discussed in section 3.8.7. 

Figure 3.18 The Kinetic Decay in the Surface Coverage of D33 and D18 Oleic Acid 

Monolayers Exposed to Low Concentrations of Gas-Phase Ozone 

 

Figure 3.18 shows at a surface coverage of ~2 × 1018 molecule m-2 a shallowing of the kinetic 

decay in the monolayer surface coverage for a short period followed a subsequent continuation 

of the decay of the monolayer. The feature is most pronounced at the lowest ozone 

concentration and is referred to as an inflection feature in the analysis of these results. It can be 

seen in figure 3.18 that the inflection feature was repeatable at low ozone concentrations. The 

individual experiments are shown over the following pages with kinetic fitting of equation 3.11 

to the surface coverage data. 
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Figure 3.19 The Kinetic Decay of Fully Deuterated Oleic Acid in an Atmosphere of (67.2 ± 

8.55) × 1012 molecule cm3 O3 
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Figure 3.20 The Kinetic Decay in the Surface Coverage of a D33 Oleic Acid Monolayer 

Exposed to (29.4 ±	9.97) × 1012 molecule cm-3 Ozone in the Gas-Phase 

 

At a gas -phase ozone concentration of 29.4 ±  9.97 × 1012 molecule cm-3 a kinetic fit of 

equation 3.11 could only be achieved for the region of the decay curve beneath the inflection 

feature.  

 

 

 

 

 

 

 

 

 

 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

229 

 

Figure 3.21 The Kinetic Decay in the Surface Coverage of a D33 Oleic Acid Monolayer 

Exposed to (16.1 ±	3.94) × 1012 molecule cm-3 Ozone in the Gas-Phase 

 

 

Figure 3.22 The Kinetic Decay in the Surface Coverage of a D33 Oleic Acid Monolayer 

Exposed to (16.1 ±	3.94) × 1012 molecule cm-3 Ozone in the Gas-Phase 
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Figure 3.23 The Kinetic Decay in the Surface Coverage of a D33 Oleic Acid Monolayer 

Exposed to (11.6 ±	2.20) × 1012 molecule cm-3 Ozone in the Gas-Phase 

 

 

Figure 3.24 The Kinetic Decay in the Surface Coverage of a D18 Oleic Acid Monolayer 

Exposed to (16.1 ±	3.94) × 1012 molecule cm-3 Ozone in the Gas-Phase 
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Figure 3.25 The Kinetic Decay in the Surface Coverage of a D18 Oleic Acid Monolayer 

Exposed to (16.1 ±	3.94) × 1012 molecule cm-3 Ozone in the Gas-Phase 

 

With decreasing ozone levels the behaviour of the surface pressure was very different to that of 

the surface coverage, the surface pressure showed a more rapid, smooth featureless decay than 

the surface coverage. At (11.6 ± 2.20) × 1012 molecule cm-3 ozone the surface coverage showed 

a longer inflection feature appearing later in the kinetic decay from 2000 to 3700 seconds, than 

at (16.1 ± 3.94) × 1012 molecule cm-3 ozone where the plateau appeared at 1100 seconds to 1600 

and 1800 seconds. The repeat measurement of a fully deuterated oleic acid monolayer exposed 

to  (16.1 ± 3.94) × 1012 molecule cm-3 ozone showed more variability in the length of the 

inflection than the partially deuterated monolayer which repeatedly lasted for 800 seconds. It 

would be desirable to obtain further repeats of this measurement but this was not possible in the 

time allocated on the FIGARO instrument.  

The fully deuterated monolayer was recompressed to see whether the inflection of the kinetic 

decay as seen at an ozone concentration of (16.1 ± 3.94) × 1012 molecule cm-3 was a feature of 

the oleic acid molecule breaking up or whether the molecules were lying horizontally at the 

surface producing the change in the rate of decay of the surface coverage in the middle of the 

experiments. By recompressing by closing the Langmuir trough barriers, the molecules in the 

monolayer are re-orientated with the chain into the air as an ordered monolayer. If the chain had 

been broken by ozone oxidation then the decay post recompression could be expected to be 

different in shape to that of the initial decay of the oleic acid monolayer. The decay of the 
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recompressed oleic acid monolayer was similar to that prior to recompression and the pattern in 

the surface coverage of two distinct slopes in the kinetic decay was repeated as shown in figure 

3.26. 

Figure 3.26 The Recompression of Fully Deuterated Oleic Acid Monolayers with Exposure 

to Ozone 

 

The recompression was started when the surface pressure reached 0 mNm-1and the monolayer 

was recompressed up to18 mNm-1 at a speed of 50 cm2 a minute. The first five surface coverage 

measurements were taken with an O2 gas flow in to the chamber. From the sixth point onwards 

the monolayer was exposed to (16.1 ± 3.94) × 1012 molecule cm-3 O3. 
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Figure 3.27 The Kinetic Decay of a Monolayer of Fully Deuterated Oleic Acid (Oxford 

Isotope Facility sample) in an Atmosphere of (16.1 ± 3.94) × 1012 molecule  

cm3 O3 

 

The fully deuterated Oxford Isotope facility sample was exposed to (16.1 ± 3.94) × 1012 

molecule cm-3 ozone in the gas phase, which was a concentration of (0.284 ± 0.069) × 108 

molecule cm-3 in the tail region of the monolayer. As in the work of King et al., (2009) the 

surface coverage did not decay to zero.  The ozone concentration was increased to (297 ± 31.9) 

× 1012 molecule cm-3 in the gas phase above the monolayer and (5.23 ± 0.563) × 108 molecule 

cm-3 in the tail region of the monolayer, the surface coverage did not decrease indicating that the 

remaining molecule was not oxidised by ozone therefore would be a saturated molecule. The 

kinetic exponential fit was taken to the decay at the lower ozone concentration. 
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Figure 3.28 The Kinetic Decay of a Monolayer of Fully Deuterated Oleic Acid with an 

Exponential Fit of Equation 3.11 to the Decay Curve Showing the Effect of 

Recompressing the Monolayer Exposed to an Ozone Concentration of (16.1 ± 

3.89) × 1012molecule cm-3in the Gas Phase and (0.284 ± 0.069) × 108molecule 

cm-2in the Tail Region of the Monolayer 
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Figure 3.29 The Kinetic Decay of a Monolayer of Fully Deuterated Oleic Acid with 

Exponential Fits of Equation 3.11 to the Decay Curve Showing the Effect of 

Recompressing the Monolayer Exposed to an Ozone Concentration of (16.1 ± 

3.89) × 1012molecule cm-3in the Gas-Phase and (0.284 ± 0.069) × 108 molecule 

cm-2in the Tail Region of the Monolayer 

 

A repeat of the recompression shown in figure 3.29 shows a rise in surface coverage between 

two slopes in the decay post recompression. From this behaviour it was concluded that the 

inflection feature seen in the low ozone concentration kinetic decays was a result of the packing 

of the molecules in the monolayer and not the result of a chemical effect of product molecules 

building up at the air-liquid interface. 
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3.8.3 The Surface Pressure and Surface Coverage of Fully and Partially Deuterated Oleic Acid 

Monolayers in Oxygen 

Figure 3.30 The Kinetic Decay of Partially and Fully Deuterated Oleic Acid in Oxygen 

 

The fully deuterated oleic acid monolayer appeared to react with oxygen. This was in contrast to 

the results of King et al., (2009). This result led to the conclusion that there was a problem with 

the sample used by King et al., (2009) and the possibility of contamination was investigated by 

the comparison of the three samples used for this experimental work as shown in section 3.9.1. 

The decay of the oleic acid monolayer in oxygen was slower than when the monolayer was 

exposed to the lowest concentration of ozone (figure 3.23) showing that ozone was also 

oxidising the monolayer and in a different way to oxygen. Following the decay measurement 

the Langmuir trough barriers were closed to see if there was any material left on the surface. 

After the decay of fully deuterated oleic acid in oxygen a surface pressure rise was from 0 to 0.5 

mN m-1 when the barriers were closed to the minimum surface area of 336.31 cm2 was 

observed. 

Unsaturated compounds can undergo autoxidation by oxygen in the air as the spread monolayer 

is vulnerable to this (Gaines, 1966) this explains the rapid initial loss in surface pressure of 

approximately 3 mN m-1 when the oleic acid is spread at the air-water interface in air. It was the 

experience of the author that this initial loss stabilized and was distinct from the decay in 

surface pressure caused by the reactant ozone.  
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Figure 3.31 The Kinetic Decay of a Monolayer of Fully Deuterated Oleic Acid in an O2 

Atmosphere Fitted to an Exponential Decay Function 

 

The kinetic fits were made to as much of the curve as possible whilst maintaining a reasonable 

margin of error for the fit. The data in figure 3.31 and 3.32 was fit to the exponential decay 

mechanism.  

The decay is visibly different between fully deuterated oleic acid in O2 where there is an 

inflection at 4100 seconds and for partially deuterated oleic acid where there is no inflection 

during a decay of 12400 seconds.  This implies that the oxygen reaction involves the head group 

or the hydrocarbon chain up to the double bond and that is why the inflection can only be seen 

for the fully deuterated molecule.  
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Figure 3.32 Partially Deuterated Oleic acid in an O2 Atmosphere Fitted to an Exponential 

Decay Function 
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3.8.4 The Surface Pressure and Surface Coverage of Fully and Partially Deuterated Oleic Acid 

Monolayers on a pH Adjusted Subphase exposed to Gas-phase Ozone 

The pH of the null reflecting water subphase was 5.5, this was measured using pH papers as the 

wet bulb pH meters give a slightly elevated reading when deuterium oxide is present. The pH 

was lowered to 2 by the addition of phosphoric acid (H3PO4) and for a further experiment it was 

altered with hydrochloric acid (HCl), also to a pH value of 2. The purpose of altering the pH 

was to eliminate the formation of hydroxyl radical (OH) in the subphase which could if present 

be responsible for the decay of the oleic acid monolayer. If the monolayer decayed despite the 

pH being highly acidic then this would show that it was ozone which was oxidising the oleic 

acid monolayer. 

Figure 3.33 The Pressure-Area Isotherm of D33 and D18 Oleic Acid on a Subphase of pH 2 

 

The pressure-area isotherm of the Sigma Aldrich fully deuterated oleic acid oleic acid had a 

slightly larger area per molecule on a pH 1.5 to 2 subphase than on a pH 5.5 subphase. The 

pressure area isotherm of the partially deuterated oleic acid sample from the Oxford Isotope 

Facility on a subphase of pH 2 was near identical to that on a pH 5.5 subphase.  
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Figure 3.34 The Kinetic Decay of Fully and Partially Deuterated Oleic Acid Monolayers on 

a Subphase of pH 1.5- 2 in Comparison with a Kinetic Decay at pH 5.5. The 

Monolayers Were Exposed to a Gas-phase Ozone Concentration of (16.1 ± 

3.94) × 1012molecule cm-3 

 

It can be seen in figure 3.34  that the kinetic decay of fully deuterated oleic acid was not altered 

significantly by the elimination of OH radical at pH 1.5 to 2, thus it can be assumed that the 

reaction observed is primarily the result of the oleic acid monolayer reacting with gas phase 

ozone molecules.  The kinetic decay in the surface coverage of the partially deuterated molecule 

was also not significantly different on a subphase of pH 1.5 to 2 compared to a subphase of pH 

5.5.  
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Figure 3.35 The Kinetic Decay of a Monolayer of a Fully Deuterated Oleic acid in an 

Atmosphere of (16.1. ± 3.89) × 1012 molecule cm-3O3 in the Gas-Phase and 

(2.29 ± 0.069) × 108 molecule cm-2 O3 in the Monolayer as Fitted to Equation 

3.11. The Subphase pH was Adjusted to 1.5 with HCl. 
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Figure 3.36 The Kinetic Decay of a Monolayer of a Fully Deuterated Oleic Acid in an 

Atmosphere of (16.1. ± 3.89) × 1012 molecule cm-3 in the Gas-Phase and (2.29 

± 0.069) × 108 molecule cm-2 O3 in the Monolayer with a Kinetic Fit to 

Equation 3.11. The Subphase pH was Adjusted to 1.5 with H3PO4. 
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Figure 3.37 The Kinetic Decay of a Monolayer of a Partially Deuterated Oleic Acid in an 

Atmosphere of (16.1. ± 3.89) × 1012 molecule cm-3 in the Gas-Phase Above the 

Monolayer and (2.29 ± 0.069) × 108 molecule cm-2 O3 in the Tail Region of the 

Monolayer as Fitted to Equation 3.11. The Subphase pH was Adjusted to 2 with 

H3PO4. 

 

 

The decay of an oleic acid monolayer on a pH 2 subphase was not measured without ozone due 
to time constraints as the kinetic measurements of the different deuterations of oleic acid were 
the priority within the limited neutron time available. 
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3.8.5 Summary of the Surface Coverage and Surface Pressure Measurement Results 

At higher ozone concentrations the surface pressure data followed the surface coverage data 

however at lower ozone concentrations an inflection feature was observed which was not 

reflected in the surface pressure measurement. This was unknown before as the deuterated oleic 

acid has only recently become commercially available so there are few neutron reflectometry 

studies of its behaviour.    

In summary the experimental results are; 

• Both deuterations of oleic acid show the same decay behaviour. The oleic acid film is 

lost from the interface almost completely when exposed to ozone and the double bond is 

known to be reacting and breaking first on the time order measured in this experiment. 

The ozone is selective and reacts at the double bond site. 

• The decay in surface coverage and surface pressure due to ozone reacting is visibly 

faster than the decay of an oleic acid monolayer in an atmosphere of oxygen, however 

the oleic acid monolayer is not stable at the interface in an oxygen atmosphere so there 

is a reaction taking place between oleic acid and oxygen. 

• At a concentration of 16.1 ± 3.89 × 1012 molecule cm-3 ozone in the gas-phase a 

flattening of the surface coverage value or area of inflection can be seen mid decay, 

behaviour which when the film is recompressed, is repeated suggesting that this is a 

structural phenomenon.  

• Area per head group increases as a result of the reaction with ozone. 

• The surface coverage versus time decay for ozone and oleic acid is dependent on the 

ozone concentration with a change in the surface coverage related to the packing of the 

monolayer at the air-liquid interface. 

• Altering the pH of the subphase did not alter the kinetic behaviour of the decay in 

surface coverage showing that OH radical production was not influencing the kinetic 

decay. 

• As expected from the literature the oleic acid monolayer was removed from the air-

liquid interface during the reaction with ozone. This result is in contrast to the results of 

King et al., (2009). 

The implications of these results will be discussed in section 3.9 
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3.8.6 Structural Neutron Reflectivity Measurements of Fully Deuterated and Partially 

Deuterated Oleic Acid Monolayers at the Air-Water Interface 

Structural reflectivity measurements were taken by the method explained in section 3.7.3.3. The 

thickness of the monolayer is equal to the monolayer surface coverage per molecule (г) 

multiplied by the total scattering length of the molecule (b), divided by the molecules scattering 

length density (ρ) (equation 3.12). 

� =
г�

�
          (E 3.12) 

From the global fit to the neutron reflectivity data conducted by Adrian Rennie the monolayer 

thickness was calculated as 15 Å. 

To elucidate whether the fully deuterated oleic acid sample from the Oxford Isotope Facility 

was contaminated, neutron reflectivity data at constant surface pressure at 25°C, was fitted 

using the ‘lipid’ fitting program which is a more detailed model than the program ‘mono’ and 

allows the head and tail group scattering to be treated separately and for modelling of mixing 

between the defined layers in the model. The reflectivity curves are shown in figure 3.38 and 

figure 3.39. 

Three structural reflectivity measurements were undertaken: 

1. Fully deuterated oleic acid (Oxford Isotope Facility) on a subphase of null reflecting 

water at 19 mNm-1 at an incident beam angle of 0.62°. 

2. Fully deuterated oleic acid (Sigma Aldrich) on a subphase of null reflecting water at a 

surface pressure of 19 mNm-1 and at an incident beam angle of 0.62°. 

3. Measurements of the reflectivity of a monolayer of partially deuterated oleic acid 

(Oxford Isotope Facility) on a subphase of D2O at 19 mNm-1 at an incident beam angle 

of 0.6° and at 3.8° in comparison to a contrasting measurement of the same sample on a 

subphase of null reflecting water at 0.62° and 3.8°. 

Adrian Rennie ran two global fits, the first incorporating the partially deuterated monolayer data 

on two different contrasts of subphase (D2O and NRW) with no ozone. This fit gave a 

monolayer thickness of 12 to 13 Å. The second fit incorporated the D18 partially deuterated data 

from the two contrasts as well as the D33 fully deuterated monolayer data from the Oxford 

Isotope Facility sample, when fitting the three data set simultaneously the thickness of the 

monolayer was 15 Å with a slightly lower scattering length density showing a difference in the 

properties of the molecules comprising the monolayer. The fitting parameters are shown in table 

3.3. 



The Oxidation of Oleic Acid Monolayers with Gas-Phase Ozone Chapter 

3 

 

 

246 

 

Figure 3.38 The Reflectivity Curve for Deuterated Oleic Acid at a Surface Pressure of 19 

mNm-1at 24°C as Fitted to the Scattering Length of the Relevant Deuteration of 

Oleic Acid 

 

 

× denotes the partially deuterated Oxford Isotope Facility sample on a subphase of null 

reflective water measured at two incident beam angles (0.62 and 3.8°). 

° denotes the fully deuterated Oxford Isotope Facility sample measured on a subphase of null 

reflective water measured at one incident beam angle (0.62°).   

+ denotes the partially deuterated Oxford Isotope Facility sample on a subphase of D2O 

measured at two incident beam angles (0.62 and 3.8°). 

The green line in figure 3.38 is where the reflectivity of a monolayer fully deuterated oleic acid 

should plot according to the reflectivity values predicted by the lipid program model. In figure 

3.39 it can be seen that the reflectivity of the fully deuterated oleic acid sample purchased from 

Sigma Aldrich did plot on this line. This result shows that the fully deuterated Oxford Isotope 

Facility sample is not oleic acid and given the results of King et al., (2009) where a residual film 

was left after the reaction with ozone and the same sample, the sample may contain a saturated 

deuterated molecule which was not as reactive to ozone.  
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Figure 3.39 The Reflectivity Curve for Deuterated Oleic Acid at a Surface Pressure of 19 

mNm-1at 24°C as Fitted to the Scattering Length of the Relevant Deuteration of 

Oleic Acid   

 

 

+ denotes the reflectivity of the Oxford Isotope Facility partially deuterated oleic acid sample 

on a subphase of D2O at an incident beam angle of 0.62 and 3.8°.  

° denotes the Sigma Aldrich fully deuterated oleic acid sample on a subphase of null reflective 

water at an incident beam angle of 0.62°. 

× denotes the Oxford Isotope Facility partially deuterated oleic acid sample on a subphase of 

null reflective water at an incident beam angle of 0.62 and 3.8°.  

When the reflectivity curve at a surface pressure of 19 mN m-1 is contrasted between the three 

structural reflectivity measurements it can be seen that the fully deuterated Oxford Isotope 

Facility sample reflectivity sits close to that of the partially deuterated monolayer.  The 

reflectivity of a fully deuterated oleic acid sample should produce a higher curve on the same 

subphase as a partially deuterated oleic acid molecule due to the higher deuterium content. 
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3.8.7 Kinetic Analysis and Results for the Decay in the Surface Coverage of Oleic Acid 

Monolayers Reacting with Gas-Phase Ozone 

The pseudo first order rate constants (k) determined by fitting equation 3.11 to the surface 

coverage data as displayed on the plots in the experimental results section, and the resulting 

bimolecular rate constants (k′) from the division of k by the ozone concentration in the 

monolayer are given in table 3.6a-c.  

From table 3.6 it can be seen that the blank experiment on partially deuterated oleic acid with a 

5 L min-1 flow of oxygen into the chamber produced rate constants of 1 to 2 orders of magnitude 

slower than the experiments conducted with exposure to the lowest O3 concentration.  Where 

the decay in the monolayer surface coverage was slower at low ozone concentrations the kinetic 

fits are labelled upper and lower or upper, middle and lower depending on the regime. 

The surface coverage of the fully deuterated (Sigma Aldrich), oleic acid film declined faster 

with higher concentrations of ozone. The surface coverage of the partially deuterated oleic acid 

film declined at similar rates for different ozone concentrations, the fastest decay of 0.0255 s-1 

was achieved through doubling the ozone concentration. An extreme change in the ozone 

concentration was necessary to alter the decay rate significantly. 

When comparing the rate of decay in the surface coverage of D18 and D33 oleic acid monolayers 

exposed to ozone it can be seen in figure 3.34 that the rate of loss of deuterated material from 

the air-water interface is roughly the same for both deuterations of oleic acid. When reacting 

with ozone the whole molecule is lost from the interface, if a deuterated reaction product had 

remained at the interface then the rate of decay of the D18 oleic acid monolayer would be 

different to that of the D33 oleic acid monolayer. The rate was the same thus it can be confirmed 

that the reaction product(s) produced by ozone reacting with oleic acid are not surface active 

and are lost from the air-water interface.  
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To assess whether there was a relationship between the concentration of ozone reacting with the 

monolayer and the rate of the reaction between ozone and oleic acid as shown by the decay in 

surface coverage, the pseudo first order rate constants were plotted against the concentration of 

ozone in the monolayer tail region and a line was fitted to the plot (figure 4.41). The gradient of 

the line is the rate of change in the surface coverage k´ during the reaction of a monolayer of 

oleic acid with ozone over a range of ozone concentrations. 

A second order plot of the rate constant k′ for the first order loss of the surface coverage of 

deuterated material versus the ozone concentration in the monolayer was produced to find k 

from k′=k[O3] . As shown in figure 3.40 the value of k´ fitted to the entire decay at high ozone 

concentrations and to the initial region of decay prior to the inflection feature at low ozone 

concentrations was (4.5295 ± 0.676) × 10 -11 cm2  molecule s-1. The rate constants measured 

from the Oxford Isotope Facility D33 sample were not included in the plots as the structural 

reflectivity measurements showed the sample behaved differently to the D33 oleic acid sample 

from Sigma Aldrich and the D18 oleic acid sample. 

Figure 3.40  The Second Order Plot of the Pseudo First Order Rate Constants with  

 Increasing Ozone Concentration  

 

The errors on the points are the statistical error from the fitting of equation 3.11 to the surface 

coverage decay  experimental data. The restricted range of concentrations was a result of the 

limited amount of time available on the neutron reflectometer.  
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A further second order plot of k´ fitted to the post inflection decay in surface coverage at lower 

ozone concentrations is shown in figure 3.41.  

Figure 3.41 The Second Order Plot of the Pseudo First Order Rate Constants for the Lower 

Decay after the Inflection Feature, for Oleic Acid at Low Ozone Concentrations 

 

The bimolecular rate constant for the surface reaction of the oleic acid monolayer with gas-

phase ozone, k is defined as k′ divided by the concentration of ozone in the monolayer, [O3](film ) 

(equation 3.13).  

�	 =
��

[��](����)
        (E 3.13) 

The bimolecular rate constant k was obtained from fitting a line to the second order plot (figure 

3.40) and taking the gradient of the line to give bimolecular k, the rate of decay of surface 

coverage. Bimolecular k was 4.53 ± 0.68 × 10-11 cm2 molecule-1 s-1. Fitting to the low ozone 

concentration rate constants gives a value of bimolecular k of 4.33 ± 1.07 ×10–11 cm2 molecule-1 

s-1as shown in figure 3.41. Fitting to the lower decay which occurs after the inflection feature in 

the low ozone experiments was not possible as the data was collected at only two ozone 

concentrations of 1.18 × 108 molecule cm2 O3 and 0.284 × 108 molecule cm2 O3, taking an 

average of the rate constant pseudo first order k gave bimolecular k for the decay in the surface 

coverage of the film post inflection as 5.27 ± 2.50 × 10-11 cm2 molecule-1 s-1 which within error 

is that same as that obtained from the decay prior to the inflection feature. In the discussion, 
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section 3.9.2, a comparison of this value will be made to those obtained in other studies of oleic 

acid reacting with ozone. 

The reaction of an oleic acid monolayer with oxygen gave a reaction rate constant of (0.0035 ± 

0.00072) × 10-2 s-1 which was two orders of magnitude slower than that of the lowest ozone 

concentration reacting with an oleic acid monolayer. 

In summary the results of the kinetic analysis are that: 

• The decay rate constants (k′) for an oleic acid monolayer reacting with gas-phase ozone 

observed at higher ozone concentrations were the same as those observed under low 

ozone conditions within error.  

• At lower ozone concentrations the decay featured two distinct regions of decay with an 

inflection region between them. It was concluded that this was a structural feature; the 

rate constant k′ for the decay post recompression of the monolayer was very slightly 

slower than the decay prior to recompression. The rate constant for the decay after the 

inflection was within error, the same as the rate constant prior to the inflection however 

the rate constant for the post inflection decay was based on only two ozone 

concentrations so further work would be required to confirm this. 

To consider if the surface coverage measurements are for the reaction of ozone with oleic acid 

or if transport of ozone is contributing to the kinetics the time taken for ozone to diffuse to the 

monolayer and to reach a stable concentration (for mixing to complete) was calculated. The 

characteristic time for the diffusion of ozone (τdiffusion) in the gas phase was calculated from 

equation 3.14 (Seinfeld and Pandis, 2006; King et al. 2009) where d is the thickness of the 

monolayer, (15 Å) also known as the characteristic distance, Dg is the gas phase diffusion 

constant for ozone (1.80 × 10-5 m2 s-1) (Seinfeld and Pandis, 2006; King et al. 2009).  

������ �!" =
�#

$%&
         (E 3.14) 

The characteristic diffusion time for ozone to diffuse to the monolayer was 3.13 × 10-14 s. 

The characteristic time taken for the accommodation of ozone at the interface or interfacial 

equilibrium was calculated according to equation 3.15 where Dl denotes the diffusion constant 

for ozone in an organic liquid (1 × 10-9 m2 s-1) (Seinfeld and Pandis, 2006; King et al. 2009).  

��"'()�*+�*, =
�#

-#%�
         (E. 3.15) 

The accommodation time was 2.28 × 10-10 s. 
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The characteristic time taken for the reaction of ozone with oleic acid, τreaction was determined by 

the following equation 3.16, where k is the bimolecular surface reaction rate constant between 

oleic acid and ozone, the value k was taken as 4.5 × 10-11 cm2 molecule-1 s-1. The surface 

concentration of oleic acid (surface coverage) Γoleic of 3 × 1018 molecules m-2 was taken from the 

experimental data. 

�)(*+'�!" =
.

�	/0�1�2
         (E 3.16) 

As equation 3.16 is dependent on the starting value of Γ which was not consistent it has been 

calculated for a surface coverage of oleic acid (Γoleic) of 2 × 1018 molecules m-2 and for 3 × 1018 

molecules m-2 giving results of 1 × 10-4 s and 6.8 × 10-5 s respectively. 

The uptake coefficient (γ) for ozone on a cloud droplet or aerosol particle possessing a 

monolayer of oleic acid can be estimated using equation 3.17 from Hearn et al., (2005). Where 

H is the Henry’s law constant of 480 mol m-3 atm-1, R is the gas constant of 8.204 × 10-5 atm m3 

mol-1 K-1, T is the temperature, c̅ is the average molecular speed of gas phase ozone (360 m s-1), 

δ is the thickness of the film (15 × 10-10 m). For this equation k is taken in units of concentration 

over time at a value of  2.7 × 109 mol-1 s-1 (4.5 × 10-11 cm2 molecule-1 s-1). 

4 =
$567

+̅
��	8!,(�+          (E 3.17) 

The uptake coefficients, γ, are given in table 3.7  

Table 3.7 The Uptake Coefficients for Ozone to an Oleic Acid Monolayer Coated Droplet 

Γ × 1018 

molecule m-2 

Γ × 10-6 mol-

1 m-2 

δ / Å 4444 at T = 293 

K (~ 20°C)  

/ × 10-6 

4444 at T = 278 

K (~ 5°C) 

/ × 10-6 

4444 at T = 293 

K (~ 0°C) 

/ × 10-6 

2 3.32 15 1.7 1.6 1.6 

2 3.32 20 2.3 2.2 2.2 

3 4.98 15 2.6 2.5 2.4 

3 4.98 20 3.5 3.3 3.2 

 

What this analysis shows is that the characteristic lifetime of the reaction of an oleic acid 

monolayer with gas-phase ozone is much slower than the diffusion of ozone to the air-water 

interface and the interfacial accommodation of ozone therefore the measured results of surface 

coverage are valid for the reaction between the monolayer and ozone and are not measuring the 

process of diffusion or accommodation rather than the reaction of the ozone with the monolayer. 
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3.9 Discussion 

The discussion will focus on the following aspects of my work; 

• The experimental surface coverage and surface pressure results for an oleic acid 

monolayer reacting with gas-phase ozone at the air-water interface compared to other 

studies. 

• The contamination of the fully deuterated oleic acid sample used by King et al., (2009). 

• Discussion of the kinetic results. 

• Discussion of the ozone uptake coefficient. 

• Discussion of the reaction mechanism for an oleic acid monolayer reacting with gas-

phase ozone. 

The plateau and slight surface coverage rise seen in an atmosphere of 16.1 ± 2.20 molecule cm-3 

O3 was interpreted as a structural phenomenon where the molecules comprising the film would 

be in a more ‘gas-like’ configuration, potentially lying down thus increasing their area at the 

interface and the film thickness which leads to a greater value of Γ. To test this theory the film 

was recompressed to a higher surface pressure in order to observe whether the decay of the film 

from a liquid compression state would repeat the same behaviour. The behaviour was repeated.  

From the results of this work the following conclusions were inferred; 

1. The presence of ozone causes the oleic acid molecules comprising the film to change 

orientation leading to the appearance of a surface coverage rise as effectively in laying 

horizontally the molecule has increased what we refer to as its area per head group, 

which is used to calculate the surface coverage measurement. This was shown not to 

affect the kinetics as when the monolayer was recompressed following this feature the 

subsequent decay in the surface coverage was not significantly different. 

2. Sustained ozone exposure causes the oleic acid monolayer at the air-liquid interface to 

nearly all decay away, reaching surface coverage values of approximately 0.5 × 1018 

molecules per m2. Recompression does not produce a surface pressure reading. At a 

surface coverage of 0.5 ×1018 molecules per m2 the monolayer is unlikely to be intact. 

The second result is in contrast to the findings of King et al., (2009) whom using the Oxford 

Isotope Facility fully deuterated sample showed that the surface coverage of D33 oleic acid 

almost halved, decaying to a surface coverage of 1 × 1018 molecule per m2 under sustained 

ozone exposure, a coverage at which it was inferred that there was an intact product monolayer. 

The work of King et al., (2009) also stated that the oleic acid monolayer did not react with 
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oxygen in contrast to the findings presented here using the Sigma Aldrich sample.  The rate 

constants however are in agreement within two standard deviations in this study (4.5 ± 0.7 × 10-

11 cm2 molecule-1 s-1), and the King et al., (2009) study which reported a bimolecular rate 

constant of 7.3 ± 0.9 × 10-11
 cm2 molecule-1 s-1.  

The difference in the two sets of experimental results from the experiment shown here and the 

experiment detailed in King et al., (2009) showed that one of the samples was contaminated, a 

deuterated impurity was found in the sample synthesised for the King et al., (2009) work. The 

genuine result for the reaction of oleic acid with gaseous phase ozone is that detailed in this 

work, where the monolayer rapidly decays to a very low value of surface coverage or entirely 

away when exposed to gas phase ozone.  

The atmospheric implications of the results of this work with the Sigma Aldrich deuterated oleic 

acid are that a thin organic film of an unsaturated amphiphile on a cloud droplet would be 

oxidised away by ozone from the air surrounding the droplet. The products from this reaction 

must be volatile or soluble as they are not observed at the air-liquid interface (Voss et al. 2007; 

Wadia et al. 2000); the signal from the deuterated molecule is lost from the interface in this 

work.  

3.9.1 The Contamination of the Oxford Isotope Facility Fully Deuterated Oleic Acid 

Sample 

The D33 fully deuterated oleic acid was found to be contaminated with a deuterated impurity 

present from its synthesis. The surface pressure versus area isotherm for the three samples of 

oleic acid used in this work is shown in figure 3.4. Although the surface pressure-area isotherm 

is featureless in that the phase transitions are not visible in the surface pressure data, a contrast 

can be seen between the area per molecule of the fully deuterated (D33) monolayer synthesised 

by the Oxford Isotope Facility and that purchased from Sigma Aldrich. The partially deuterated 

(D18) oleic acid sample synthesised by the Oxford Isotope Facility was in agreement with the 

fully deuterated Sigma Aldrich sample.  
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Figure 3.42 The Pressure-Area Isotherms of the Oleic Acid Samples used in this work. O.I.F 

  stands for Oxford Isotope Facility and S.A. for Sigma Aldrich 

 

 

From figure 3.42 it can be observed that the fully deuterated sample obtained from the Oxford 

Isotope Facility did not follow the isotherm for oleic acid whereas the partially deuterated 

sample from the same facility and the Sigma Aldrich sample were in agreement. When 

compressed from the same starting pressure as the partially deuterated sample, at the same 

barrier speed of 25 cm2 / min the slope of the isotherm was shallower indicating that the 

molecules were not packing in the same way. The Oxford Isotope Facility D33 sample had 

previously been used by King et al., (2009) to monitor the kinetic decay in the surface coverage 

of oleic acid monolayers at the air-water interface when exposed to gas-phase ozone. When 

conducting isotherms King et al., (2009) had not noticed the isotherm to be different to that of 

non-deuterated oleic acid (King, 2012) so it is thought that the sample had deteriorated between 

the their experimental work and this. Further differences were observed in the neutron 

reflectivity data. The effect of this impurity can be seen in figure 3.18 where that surface 

coverage does not decay to zero during a reaction with ozone.  

To further investigate the Oxford Isotope Facility, fully deuterated sample composition an NMR 

profile and GC-MS spectra was taken by Chu Chaun Dong  at the Oxford Isotope Facility of the 

fully deuterated oleic acid sample produced there. It was found to have a surface active 

deuterated impurity that was inert to ozone as it did not contain a double bond.  
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3.9.2 Comparison to Previous Studies of Oleic Acid at the Air-Liquid Interface: Discussion of 

the Kinetic Results    

The oxidation of oleic acid at the air-water interface has been studied by several authors (Voss 

et al. 2007, González-Labrada et al. 2006;2007, King et al. 2009). The findings of King et al., 

(2009) with regard to the persistence of a monolayer after the reaction of oleic acid with ozone 

were juxtaposed to the work of Voss et al.,(2007), however the conclusions of King et al., 

(2009) were based on a contaminated sample so have now been discounted.  

In this chapter a bimolecular rate constant of 4.5 ± 0.7 × 10-11 cm2 molecule-1 s-1 was taken from 

the change in surface coverage during the reaction of an oleic acid monolayer at the air-liquid 

interface with gas phase ozone. González-Labrada et al., (2006) studied the reaction of a 

monolayer of oleic acid with gas phase ozone obtaining a bimolecular rate constant of 4.9 × 10-

11 cm2 molecule-1 s-1; this figure is in agreement with that obtained from the experiments in this 

chapter. In the work of González-Labrada et al., (2006) the oleic acid monolayer was spread on 

a pendant droplet of water and the change in surface pressure, surface area of the droplet and the 

droplet volume were monitored; the surface pressure was converted to a surface concentration 

of oleic acid.  The monolayer was exposed to 7 to 615 × 1012 molecule cm-3 gas phase ozone. 

From the experimental results it can be seen that there appears to be a reaction with oxygen 

occurring (figures 3.31 and 3.32). Although the decay is faster in the presence of O3, the oleic 

acid monolayer is not stable in the presence of a flow of oxygen under dark conditions. The 

decay in oxygen gave a rate constant k of (0.0035 ± 0.00072) × 10-2 s-1 compared to (0.2 ± 

0.06) × 10-2 s-1 with the lowest concentration of ozone ((0.204 ± 0.039) ×108 molecule cm-3 in 

the monolayer) reacting with the fully deuterated oleic acid film. As the value of k for the 

reaction of the oleic acid monolayer with ozone was two orders of magnitude larger the oxygen 

decay was ignored for the purpose of kinetic analysis and was not modelled as part of the 

monolayer atmospheric lifetime calculation given in section 3.10. 
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3.9.3 The Mechanism of Ozonolysis of an Oleic Acid Monolayer 

A chemical mechanism for the ozonolysis of an oleic acid monolayer at the air-water interface 

is given which is based on this work and the findings of other studies (Ziemann, 2005, Zahardis 

and Petrucci, 2007) of oleic acid reacting with ozone at the air-liquid interface.  

The proposed reaction would take place in several steps. 

1. Ozone adds oxygen to the double bond of the oleic acid molecule forming an unstable 

primary ozonide.  

Figure 3.43 Formation of a Primary Ozonide from Oleic Acid and Ozone 
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2. The primary ozonide decomposes cleaving the molecule at the site of the double bond 

in the original oleic acid molecule forming an excited Criegee intermediate and a 

carbonyl as depicted in figure 3.44. 

Figure 3.44 The Decomposition of the Primary Ozonide Adapted from Vollhardt and Shore, 

2003 
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3. Depending on where the molozonide structure in the primary ozonide is cleaved there 

are two subsequent reaction pathways denoted as pathway A and pathway B. 

Figure 3.45 Pathway A. The Cleavage of the Primary Ozonide Produces a Criegee 

Intermediate (I) and 9-oxononanoic Acid 
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Figure 3.46 Pathway B. The Cleavage of the Primary Ozonide Produces a Criegee 

Intermediate (II) and Nonanal 
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The Criegee intermediates I and II are in a thermally excited state. The Criegee intermediates 

can be stabilized from collisions with the subphase solvent giving a stabilized product molecule 

which can then react with other product molecules or the subphase solvent, isomerised (change 

structural configuration) or decompose.  

The combination of a stable carbonyl molecule and a stabilized Criegee intermediate forms a 

secondary ozonide molecule as depicted in figure 3.47. The diperoxide then decomposes 

forming two carbonyl molecules and oxygen as depicted in figure 3.48 and figure 3.53. The 

combination of stabilized Criegee intermediates could form oligomers (Zahardis et al., 2006) 

but the oligomer would be present as islands rather than a monolayer so would not be seen in 

the reflectivity data collected for this work. 
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Figure 3.47 The Formation of Secondary Ozonides from Criegee Intermediates and a Stable 

Molecule 
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Figure 3.48 The Formation of Diperoxide from Two Stabilized Criegee Intermediate (II) 

Molecules. The Diperoxide Decomposes into 9-oxononanoic Acid and Oxygen 

 

 

 

Figure 3.49 The Formation of Diperoxide from Two Stabilized Criegee Intermediate (I) 

Molecules. The Diperoxide Decomposes into Two Nonanal Molecules 
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If a stabilized Criegee intermediate reacts with an aldehyde a secondary Criegee intermediate II 

is formed. The secondary Criegee intermediate undergoes decomposition to form a diperoxide. 

The diperoxide decomposes forming two 9-oxononanoic acid molecules which are volatile. 

Following stabilization of isomerisation the resulting potential products would be nonanal, 

azelaic acid, nonanoic acid, α-acyloxyalkyl hydroperoxides, or oligomers. 

 

3.9.4 The Fate of the Potential Reaction Products 

After considering the reaction mechanisms the stable reaction products will be highlighted and 

an explanation given for why there is no material remaining at the air-water interface after the 

reaction of an oleic acid monolayer with gas-phase ozone.    

Figure 3.50 Nonanoic Acid (C9) [CH3(CH2)7CO2H] 

 

Nonanoic acid has a vapour pressure of 6.2 × 10-4 Torr at 20°C (Gilman et al. 2004 after Yaws 

1994, Lide, 2004) and a solubility of 2.8 × 10-1 g L-1 at 20°C (Voss et al. 2007; Yalkowsky and 

He. 2003). Gilman et al., (2004) found that in the presence of a longer chained saturated 

molecule such as stearic acid (vapour pressure 1 × 10-6 Torr, solubility 0.00029 g L-1 at 20°C 

(Gilman et al. 2004 after Yaws 1994, Lide, 2004)), more volatile species could have a 

prolonged residence time at the air-liquid interface. Voss et al., (2007) concluded that nonanoic 

acid was soluble in an aqueous subphase. Nonanoic acid would not be expected to reside at the 

air-water interface. 

Figure 3.51 9-oxononanoic Acid [OCH(CH2)7CO2H] 

 

9-oxononanoic acid has a solubility of 19 g L-1 at 20°C (Voss et al. 2007; King, 1938). Voss et 

al., 2007 concluded that 9-oxononanoic acid would be soluble in an aqueous subphase of water 

and saline water due to its solubility, however did not test the theory with 9-oxononanoic acid. 

There is little data available on this chemical at the air-water interface but from its structure it 

would not be expected to reside at the air-water interface.  
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Figure 3.52 Nonanal [CH3(CH2)7CHO] 

 

Nonanal has a solubility of 9.6 × 10-2 g L-1 at 25°C (Voss et al. 2007; Yalkowsky and He. 2003). 

Voss et al., (2007) report that nonanal would evaporate and not persisit at the air-water 

interface. Wadia et al., (2000) measured nonanal in the gas phase after reacting ozone with the 

lipid OPPC which has a cis configuration tail which is composed of oleic acid, on a Langmuir 

trough.  Our observation is that if it was a product in the neutron experiments it did not persist at 

the air-water interface thus this study is in agreement with Voss et al., (2007) and Wadia et al., 

(2000). 

Figure 3.53 Azelaic Acid [HO2C(CH2)7CO2H] 

 

Azelaic acid has a solubility of 2.4 g L-1 at 20°C (Voss et al. 2007; Yalkowsky and He. 2003). It 

is very soluble and would not persist at the air-liquid interface; it would dissolve into the 

subphase of the Langmuir trough if formed. 

The stable reaction products, based upon their physical data would be either soluble or volatile 

thus are lost from the air-water interface. 

3.9.5 Discussion of the Mechanism        

King et al., (2004) studied the loss of an oleic acid film from a water droplet using Raman 

spectroscopy. The results of the work presented in this chapter are in agreement with the 

findings of King et al., (2004) in that the monolayer of oleic acid in the experiment explained in 

this chapter was lost from the air-liquid interface, as the oleic acid was lost from the Raman 

spectra in the King et al., (2004) experiments, also that the products of the reaction of O3 and 

oleic acid were either volatile or soluble. The fully deuterated oleic acid monolayer was lost 

from the air-liquid interface of the Langmuir trough in approximately 3000 to 4000 seconds. 

The ozone concentration was given as sub-picomolar in the King et al., (2004) study so was 

much lower than in this experiment. The oleic acid film would have been much thicker than a 

monolayer yet the signal declined more rapidly. The King et al., (2004) study gives evidence for 

the product nonanal being initially soluble as it gave spectra from the droplet phase. 
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Voss et al., (2007) observed no significant variation in the results of oxidation of an oleic acid 

monolayer on a water subphase or that of a 0.6 M sodium chloride solution using sum frequency 

generation vibrational spectroscopy to observe the reaction products and a Langmuir trough to 

study surface pressure at the air-water interface. In the Langmuir trough experiments an ozone 

concentration of 477 ± 201 × 1012 molecule cm-3 was reacted with the film. The Voss et al., 

(2007) kinetic decay of oleic acid on a subphase of water took 1500 seconds to reach a surface 

pressure of zero when reacted with ozone. The monolayer used for the neutron experiments 

presented here was exposed to far lower O3 concentrations and took 2000 to 3000 seconds for 

the surface pressure to decay to zero. Voss et al., (2007) found no oleic acid remained at the air-

water interface following exposure of the monolayer to ozone a result which our work is in 

agreement with. Voss et al., (2007) observed a change in the spectra from that of oleic acid after 

a few seconds of ozone exposure. The change in signal was found to be a result of a change in 

the order of the monolayer and was not due to products of the reaction residing at the air-liquid 

interface, this finding is in agreement with the inflection feature observed in the experiments 

detailed in this chapter. Voss et al., (2007) point out an implication of the reaction causing 

disorder in a cloud droplet film as this would allow the underlying aqueous subphase of a 

droplet to evaporate or separate into smaller droplets. Morris et al., (2002), noted that smaller 

droplets have a larger uptake coefficient, so clouds which have a smaller droplet size 

distribution may have a more rapid kinetic regime for the reaction of an organic film with gas 

phase ozone. This could be one of the pathways by which a cloud scavenges ozone in the 

troposphere. 

Voss et al., (2006) studied the reaction of gas-phase ozone with a deuterated oleic acid 

monolayer spread in a petri dish observing the reaction with sum frequency generation 

spectroscopy where overlapping laser pulses of a broad wavelength are used to produce a 

spectrum of signal intensity versus incident infrared signal which shows peaks of C-D groups 

and C-H groups, the peak is sensitive to the molecular orientation and the number density of 

molecules at the interface. This study found that the products formed from the reaction of oleic 

acid and ozone were soluble or volatile and did not persist at the air liquid interface. A further 

study by Voss et al., (2007) found that when oleic acid was oxidised at the air-water interface 

and the air-saltwater interface that loss of oleic acid and its products occurred from the interface 

to the gaseous phase or the bulk liquid phase. The work presented in this chapter supports these 

findings as we also observed the loss of oleic acid from the air-water interface concluding that 

any products formed must be volatile or soluble. Voss et al., (2007) did not observe nonanoic 

acid or azelaic (nonanedioic) acid as they are highly soluble and are expected to dissolve into 

the aqueous subphase.  
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Zahardis et al., (2006) measured the high molecular weight products from the reaction of 

particle phase oleic acid with gas phase ozone by photoelectron resonance capture ionization 

spectrometry (PERCI-MS). The PERCI-MS measures the composition of the particle surface. 

The reaction products measured were secondary ozonides, and diperoxides, polymer formation 

at the particle surface was also observed. Zahardis et al., (2006) propose that the polymer 

formation occurs when a Criegee intermediate combines with oleic acid forming α-acyloxyalkyl 

hydroperoxide which then receives further additions of Criegee intermediates resulting in the 

formation of a polyanhydride when the intermediate molecule dehydrates. The addition of four 

Criegee intermediates to an oleic acid molecule was observed by Zahardis et al., (2006) which 

increases the polarity of the molecule, so it could potentially persist at the surface of the oleic 

acid particle in contrast to the findings of this work and that of King et al., (2009) with an oleic 

acid monolayer on an aqueous subphase. 

Tedetti et al., (2007) investigated the atmospheric phenomenon of sensitized photooxidation of 

unsaturated hydrocarbons and fatty acids where ozone produced by photochemistry with 

volatile organic carbon and nitrogen oxides, initiates the oxidation process, then aqueous phase 

OH radical continues the oxidation of the products produced by oleic acid reacting with ozone. 

The secondary products where dicarboxylic acids which Tedetti et al., (2007) measured with gas 

chromatography and flame ionization spectroscopy. The dominant secondary product was a 

stable C9 dicarboxylic acid, the secondary products ranged from C2 to C9. Tedetti et al., (2007) 

note that there was no bromide present and that this would inhibit the aqueous OH production in 

a saline droplet or aerosol but the chemistry shown is relevant to fresh water droplets such as 

rain droplets. In this work oxidation by OH radical was not observed in the experiments where 

the pH was altered which would inhibit OH radical production the decay of the monolayer and 

the pseudo first order rate constant was not markedly different from that where OH radical 

production would occur.  

The change in the uptake of water in the presence of an oleic acid thin film subjected to gas 

phase ozone was investigated by Asad et al., (2004). The uptake of water by a thin film of oleic 

acid deposited on a gold coated quartz crystal surface was measured using a quartz 

microbalance which measured mass at the crystal face. The crystal was held in a chamber within 

a controlled atmosphere where the relative humidity could be increased so that the particle mass 

increased as water uptake took place, the crystal with film was then exposed to a flow of ozone 

in a separate chamber. After ozone exposure the particle became more hydrophilic, uptaking 

more water suggesting that the chain length of the molecule had decreased. With increasing 

exposure times to ozone a rapid uptake of water was observed followed by a plateau, after an 

exposure time of 1016 seconds to a concentration of 1014 to 1016 molecules cm-3 ozone Asad et 
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al., (2004) concluded that all the oleic acid would have reacted and increasing the exposure time 

did not lead to an increase in the water uptake. The products measured in the work of Asad et 

al., (2004) were consistent with cleavage of the double bond of the oleic acid molecule 

producing volatile nonanal with lower vapour pressure products which would remain in the 

condensed phase and that these product react more slowly with ozone producing the plateau 

behaviour. Asad et al. measured an infrared spectrum which indicated that azelaic acid was not 

a dominant condensed phase product and that the condensed phase product(s) were more 

oxidised suggesting that 9-oxononanoic acid (Katrib et al. 2004, Asad et al. 2004) was the 

dominant condensed phase product from the reaction of ozone and oleic acid. 

The lipid OPPC (1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine) has one d-33 unsaturated 

chain which in isolation has the structure of oleic acid. The other chain has a saturated structure 

which does not react with ozone. Wadia et al., (2000) used a Langmuir trough to measure the 

surface pressure and an atmospheric pressure ionization mass spectrometer (API-MS) to analyse 

the gas phase products of the reaction of ozone with OPPC at the air-water interface. In the 

Wadia et al., (2000) study the monolayer was not exposed to ozone until 5 to 30 minutes from 

spreading as the equipment set-up dictated. The reaction product nonanal was measured in the 

gas phase from the decomposition of the unsaturated chain of OPPC, a peak consistent with 

hydroxyhydroperoxide was also observed, gas phase OH was not observed. Flow tube 

measurements of the reaction of oleic acid with ozone by Broekhuizen et al., (2004) showed a 

loss in volume of the aerosol droplet consistent with the evaporation of nonanal.  

Wadia at al., (2000) suggest a more rapid reaction of ozone with OPPC, at high ozone 

concentrations of 1880 × 1012 molecule cm-3 to 2510 × 1012 molecule cm-3 ozone the reaction is 

over in 5 minutes. Wadia et al., (2000) suggest that the production of products from the 

monolayer, in comparison to studies in the gas phase could be a result of the penetration and 

retention of ozone in the monolayer structure which could make reaction with the double bond 

more favourable. No trend in the data was observed with altered area per molecule / packing of 

the film, at an ozone concentration of 627 × 1012 molecule cm-3 the reaction time was slower at 

11 minutes. In the experiments comprising this chapter the packing, which changed as the oleic 

acid film reacted, did affect the kinetics as at lower ozone concentrations that reaction was 

slower, however further experiments would be required to reliably establish this behaviour. It is 

probable that a lipid monolayer would react differently to a monolayer of a fatty acid as the 

head group of the lipid is more hydrophilic and the film would pack differently at the air-water 

interface. 
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In my work the inflection feature which was likely due to the orientation of the molecules which 

could be lying at a more horizontal angle to the air-liquid interface as the chain is shortened, 

appeared only at lower ozone concentrations. This may be because at a higher concentration of 

ozone the inflection is not measured as it would be more rapid and may be missed in the neutron 

measurement of surface coverage on the time order at which FIGARO had been set up to 

sample at. Alternatively it could have been that the higher ozone concentration was causing a 

different chemical mechanism to be followed however the similar bimolecular rate constants 

before and after the inflection does not support this. It would be possible to test this hypothesis 

in a future experiment.  

3.9.6 Discussion of the Ozone Uptake Coefficient 

In the experiments presented in this chapter an uptake coefficient was calculated by the method 

of Hearn et al., (2005), for the reactive uptake of ozone in a layer and that dissolved into the 

bulk which then reacts with a layer, this analysis as shown in equation 3.18 was used by 

González-Labrada et al., (2007) and by King et al., (2009) for the reaction of gas phase ozone 

with an oleic acid monolayer. The uptake coefficient for ozone reacting with a monolayer of 

oleic acid was 1.72 × 10-6 in the experiment detailed in this chapter. King et al., (2009) 

calculated an uptake coefficient of 4 × 10-6 for gas phase ozone reacting with a monolayer of 

oleic acid which was higher than that observed in this work. The difference in the finding of 

King et al., (2009) and this subsequent work may be a result of the saturated impurity in the 

molecule used by King et al., (2009) which would have a straighter tail potentially allowing 

faster penetration of the tail region of the monolayer to ozone molecules prior to ozone reacting 

with the unsaturated molecules in the monolayer. The concentration of ozone delivered to the 

reaction chamber was lower (4.2 to 16 × 1012 molecule cm-3) and the starting values of the 

monolayer surface coverage were also lower (0.896 ± 0.125 to 2.06 ± 0.227 × 1018 molecule cm-

2), and the measured thickness of the layer was 19 ~ 20 Å in the King et al., (2009) study 

compared to 15 Å in this work. The King et al., (2009) study was conducted in a Teflon bag 

rather than an aluminium reaction chamber. It is possible that there would be different flow 

conditions within a bag that would be more difficult to model so the ozone concentration in the 

monolayer region could be inaccurate. A larger uptake coefficient implies a more reactive 

system, it would be expected that a monolayer with more saturated molecules would be less 

reactive, this will be investigated in chapter 4 with mixed monolayer’s of stearic and oleic acid. 

The study of a monolayer of oleic acid on an aqueous pendant drop by González-Labrada et al., 

(2007) gave an uptake coefficient of 2.6 × 10-6 which is in agreement with the results of the 

work in this chapter and with that of King et al., (2009).  
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The study of submicron aerosol droplets of oleic acid reacting with ozone was measured with 

aerosol flow mass spectroscopy by Morris et al., (2002).  The mass spectrometry techniques 

measure the loss of the organic substrate (Zahardis and Petrucci, 2007) from which an uptake 

coefficient can be calculated. Moise and Rudich, (2002) calculated an uptake coefficient of 8.3 

± 0.2 × 10-4 for ozone reacting with liquid oleic acid coating on the walls of a flow reactor/tube, 

a similar experiment by Thornberry and Abbatt, (2004) produced an uptake coefficient of 8.0 ± 

1.0 × 10-4 for ozone reacting with an oleic acid coating, both these studies related the magnitude 

of the reactive uptake coefficient to the presence of unsaturated bonds (Zahardis and Petrucci, 

2007). Morris et al., (2002) calculated the reactive uptake probability for ozone on oleic acid of 

1.6 ± 0.2 × 10-3 based on the measurement of the consumption of oleic acid from particles of 

size 200, 400 and 600 nm. Morris et al., (2002) showed that oleic acid was consumed more 

rapidly by ozone in a population of smaller particles and that the consumption of oleic acid is 

slower when the aerosol is of a larger size. The study notes that it is difficult for oleic acid to 

replenish at the surface of a droplet if there are also saturated molecules present such as in an 

atmospheric droplet setting so the atmospheric validity of the uptake coefficient is limited, there 

was no water present in the Morris et al., (2002) study. The work presented here in chapter 3 

will show the effect of the presence of saturated molecules on the uptake coefficient.  

The effect of ozone oxidation on droplets of 2-propanol and oleic acid droplets in an aerosol 

flow tube coupled with single particle mass spectrometry was measured by Smith et al., (2002). 

The particle size decreased through reaction with gas phase ozone. Smith et al., (2002) 

concluded that the rate of oleic acid diffusion did not limit the reaction rate. Smith et al., (2002) 

used a size range of particles (2.45µm to 680 nm) which was similar to that in the Morris et al., 

(2002) study. Smith et al., (2002) obtained uptake coefficients for individual particles of 0.99 ± 

0.09 × 10-3 to 7.3 ± 1.5 × 10-3.  

The uptake coefficients obtained from particle based experiments are larger than those obtained 

from monolayer experiments. Zahardis and Petrucci, (2007) note that particle based methods 

that do not account for secondary chemistry and produce an artificially large uptake coefficient. 

The monolayer neutron surface coverage method does not take into account the secondary 

chemistry of species that would react with oleic acid which may explain the difference in the 

uptake coefficient value when compared with aerosol particle studies which do giving a larger 

figure as the potential for reaction is greater in the presence of a secondary reactant species such 

as a Criegee intermediate. It may also be that the curved aerosol particle/droplet surface allows 

an orientation of molecules in the film which makes the double bond more accessible to the gas 

phase ozone molecules allowing more rapid reaction, as the films in the particle studies are not a 

monolayer there would also be rapid replacement of oleic acid at the air-droplet interface. Any 
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replacement of oleic acid molecules at the air-water interface is unlikely to be as efficient in an 

atmospheric droplet as it would be expected that the majority of amphiphiles would already 

reside at the air-water interface and the presence of saturated amphiphiles would potentially 

lower the uptake coefficient although this was not seen in the work of King et al., (2009) where 

a saturated impurity was present, it may be that the impurity was a small mole fraction, in the 

atmosphere it is likely that the saturated component of a monolayer would be more abundant 

depending on the abundance of OH radical which reacts with the saturated molecules. Moise 

and Rudich, (2000) studied the reactive uptake of ozone with self-assembled monolayers and 

with organic liquids showing that the uptake coefficient for ozone reacting with an alkene per 

reactive site was 9 × 10-19 cm2 molecule-1. 

Atmospherically aged aerosol has a higher saturated component but oleic acid has been 

observed in aerosol that is a few days old. Smoydzin and von Glasow, (2007) state that only a 

small fraction of the organic surfactants found in marine aerosol react with ozone and that the 

majority reacts with hydroxyl radical and nitrate based on the modelling of organic surfactant 

films on marine aerosol. The same work states that an issue to be resolved to accurately model 

organic films on atmospheric aerosol is to study how closely packed the molecules are to 

influence the mass exchange of material into the droplet phase. Without this being quantified 

the uptake behaviour cannot be accurately modelled so knowing the density of the film is 

essential to model the mass exchange which indirectly governs the rate of loss of gas phase 

oxidant species reacting with the organic film (Smoydzin and von Glasow. 2007). A Langmuir 

trough and neutron reflectometry study of the effect of monolayer packing on reactive uptake 

could provide this information although the results of my work showed that once the monolayer 

was re-orientated by compression of the barriers the subsequent decay kinetics were not 

significantly affected. 

It should also be noted that the time scale of measurements is important as the reactive uptake 

coefficient will decrease with time as the reactive sites are depleted and as water adsorbs 

competitively at the air-liquid interface (Smoydzin and von Glasow, 2007).  This work and that 

King et al., (2009) has a measurement period of minutes whereas the particle studies using mass 

spectrometry takes measurements on a time scale of seconds. The measurement of surface 

pressure by González-Labrada et al., (2007) would be on a similar time scale to that of the mass 

spectrometry yet this study had a result that was in agreement with the work in this chapter and 

that of King et al., (2009). 
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3.10 The Atmospheric Monolayer Lifetime 

The lifetime of a cloud droplet film is an important component in atmospheric modelling. A 

calculation of the lifetime of an oleic acid monolayer when exposed to a concentration of 40 ppb 

gas phase ozone, the background level in the troposphere which translates to 1.76 × 108 

molecule cm-2 ozone in the monolayer, was made according to equation 3.18.  

�!,(�+ =
.

�	[��]����
         (E. 3.18) 

The bimolecular rate constant for the loss of oleic acid is k. When calculated with the 

tropospheric ozone concentration in the film a lifetime for an oleic acid monolayer on a cloud 

droplet exposed to gas phase ozone from outside the droplet is 3.54 hours based on the kinetic 

data obtained in this chapter at an ozone concentration of 40 ppb.  

For comparison, using the value of the bimolecular rate constants from King et al., (2009) in 

equation 4.26 yields a lifetime of ~ 1.3 hours for an atmospheric ozone concentration of 50 ppb. 

The data in King et al., (2009) was taken from the decay of an oleic acid sample which 

contained a saturated impurity and which was calculated to have been exposed to a higher ozone 

concentration in the monolayer tail region. The molecule was calculated as being 20 Å in length 

in the King et al., (2009) study, for the data in this chapter the molecular length was taken as 15 

Å from a structural neutron measurement. Should the King et al., (2009) data have been 

calculated for a molecular length of 15 Å the film lifetime value would be closer to that 

achieved in this study. The King et al., (2009) study also used a higher ozone concentration in 

the film region.  

Oleic acid has been found in aged atmospheric aerosol in meat cooking emissions by Rogge et 

al., (1991) days after emission. The results of this experiment show that oleic acid is rapidly 

removed from the air-liquid interface meaning that the longer lifetimes reported for particles of 

atmospheric aerosol must be the result of partitioning to the bulk of the aerosol where the oleic 

acid is protected from oxidation or due to the presence of more resistant saturated film 

components. This work has shown that the rate of decay of oleic acid as a monolayer leads to an 

atmospheric lifetime of hours and that in consistency with the work of Wadia et al., (2000) that 

the decay of a monolayer is more rapid than that observed in particle phase experiments.   

 Morris et al., (2002) attribute the longer lifetimes found in atmospheric samples to the mixture 

of oleic acid with saturated fatty acids such as stearic and palmitic acid after the findings of 

Schauer et al., (1999) that ozone reacts rapidly and diffuses at a length of <10 nm and the 

diffusion of oleic acid to the surface of a particle is slow (Morris et al., 2002). Ozone reacts with 
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the molecules at the interface meaning those that are further into the particle or tightly packed 

with saturated molecules could be less vulnerable to oxidation by ozone (Morris et al., 2002) 

and could replenish the film at the interface. Oleic acid and stearic acid are emitted from many 

of the same sources so it is feasible that the two compounds will be found together. This theory 

was tested in chapter 4 where ozonolysis of a mixed stearic acid and oleic acid film was 

undertaken. 

3.11 Conclusions 

The oxidation of an oleic acid monolayer on an aqueous subphase by gas phase ozone resulted 

in the removal of the monolayer from the air-water interface. The kinetic decay of the oleic acid 

monolayer was exponential with a repeatable inflection feature at lower ozone concentrations. 

The inflection feature in the decay of the oleic acid monolayer was related to the packing of the 

film at the interface as the feature could be repeated by recompressing the monolayer. In an 

atmospheric setting the lifetime of a cloud droplet film composed of oleic acid would be 

approximately 2 minutes based on this experiment, which is shorter than that calculated from 

particle phase studies.  

3.12 Suggestions for Further Work 

To further investigate whether the inflection region observed in the decay of fully deuterated 

oleic acid at 16.1 ± 2.20 molecule cm-3 O3 was a structural phenomenon caused by the 

orientation of the molecules of oleic acid at the air-liquid interface or a chemical phenomenon 

caused by the shortening of the chain of the oleic acid molecule, a series of structural neutron 

measurements with a wide range of momentum transfer values could be taken before and after 

exposure to O3. These measurements would show the effect of ozone on the thickness of the 

film. Studies of the reactive uptake coefficient for ozone with the monolayer of oleic acid taken 

with neutron reflectometry at different surface pressures to investigate the effect of the 

molecular packing on the uptake coefficient would provide useful data for aerosol modelling. 
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4  The Oxidation of Mixed Composition Monolayers 

4.0 Abstract 

Thin films on atmospheric aerosol are likely to be composed of a mixture of insoluble surface 

active molecules. In the chapter presented here the oxidation of oleic is studied in the presence 

of other insoluble surface active molecules. The surface coverage and surface pressure of mixed 

composition monolayers composed of stearic acid and oleic acid, one molecule deuterated and 

one non-deuterated, were monitored at the air-water interface of a Langmuir trough as the 

monolayer was exposed to gas-phase ozone. The deuterated stearic acid, mixed with non-

deuterated oleic acid, monolayer did not decay when exposed to gas-phase ozone, a finding 

which contrasted with a very similar study of reactions occurring within the tail region of the 

POPC molecule. An atmospheric monolayer of a mixed composition of both saturated and 

unsaturated molecules could be resistant to ozone initiated oxidation, but OH radical as shown 

in chapter 2 will remove such a film.  

 

4.1 Introduction 

A monolayer on an atmospheric cloud droplet monolayer would have a mixed composition of 

surface active organics at the air-water interface due to the highly varied composition of such 

compounds in the troposphere.  Experiments were conducted with mixed stearic acid and oleic 

acid monolayers of varying mole fractions of each organic acid. The mixed monolayer oxidation 

experiments enable a better understanding of the way in which a cloud droplet monolayer would 

be oxidised by ozone initiated processes when both saturated and un-saturated molecules were 

present at the air-water interface and to study the kinetics of this process.  

 

4.2  Aims  

The aims of this experimental work were: 

• To monitor how the reaction between ozone and a mixed film composed of saturated 

and unsaturated fatty acids proceeded at the air-water interface. 

• To measure the surface pressure and surface coverage of the monolayer in real time to 

enable kinetic analysis.  
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4.3 Background 

The model of a cloud droplet film as defined by many authors (e.g. Ellison et al. 1999; Vaida et 

al. 2000; Elaison et al. 2003; Gilman et al. 2004,2006; Donaldson and Vaida 2006;  Tervahattu 

et al. 2002a,b, 2005) is always comprised of a mixed composition film of surface active 

compounds found in the atmosphere. To study the ozone initiated oxidation of a mixed 

composition monolayer as a proxy for a cloud droplet film, stearic and oleic acid monolayers 

were studied with neutron reflectometry under exposure to gas-phase ozone. Stearic acid 

CH3(CH2)16COOH was chosen as a saturated molecule and oleic acid (cis-9-octadecanoic acid) 

CH3(CH2)7CH=CH(CH2)7COOH  was chosen as representative of an unsaturated molecule film 

component as both fatty acids have been sampled from the troposphere and they occur in the 

same location and had been independently studied at the air-water interface in chapter 2 and 3. 

Zahardis and Petrucci, (2007) stated that the study of internally mixed particles and coatings in 

the field of aerosol science represents ‘the next stage in the progression towards more realistic 

proxies of tropospheric organic aerosols’. The two molecules are simple, well characterised 

molecules that are miscible in a monolayer, thus the experiment is not excessively complex as 

to complicate the analysis beyond the capabilities of the project. 

Oleic acid is created in animal cells and it is a constituent of animal and plant fats, (Daintith, 

2008) and is found in many cooking oils (Rogge et al. 1991; Frankel, 1998). Tervahattu et al., 

(2002a, b, 2005) found oleic acid to be the dominant unsaturated acid found in marine aerosol 

organic films. Oleic acid in a cloud droplet setting is subject to oxidation from OH and NO3 as 

well as O3 (Zahardis and Petrucci, 2007). The saturated stearic acid molecule, which was the 

subject of chapter 2, is unreactive with ozone. It is reasonable to assume that stearic and oleic 

acid can be emitted to the atmosphere from the same source. One of the primary sources of such 

compounds in urban areas is the combustion of cooking oils (Rogge et al. 1991). To illustrate 

how cooking is a combined source of stearic and oleic acid to the atmosphere, table 4.1 adapted 

from Frankel, (1998) shows the relative weight percentages of stearic acid and oleic acid in 

common cooking oils and fats. Both stearic acid and oleic acid are also emitted to the 

atmosphere from land plant emissions (Rogge et al. 1993a), vehicle exhaust (Rogge et al. 1993b) 

and from the sea surface microlayer (Marty et al. 1979) which is the dominant source of surface 

active organic material to warm marine cloud. 
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Table 4.1 The Weight Percentage of the Stearic Acid and Oleic Acid Components of 

Common Cooking Fats and Oils 

Source Stearic acid (weight %) Oleic acid (weight %) 

Corn 3 31 

Peanut / Groundnut 3 38 

Olive 2 78 

Palm 4 40 

Rapeseed / Canola 2 56 

Sunflower 5 20 

Lard 11 44 

Beef Tallow 7 48 

 

The solubility of oleic acid in water is 1.15 × 10-5 gL-1 (Howard and Meylan, 1997; Voss et al. 

2006), the solubility of stearic acid in water is 0.0029 gL-1 (Weast, 1977), thus although stearic 

acid is more soluble in water than oleic acid, both acids form insoluble monolayers. In a mixed 

monolayer at room temperature and pressure, both molecules are miscible and would both be 

present at the air-water interface.  

The monolayer formed by spreading oleic and stearic acid together from the same spreading 

solution will form a mixed monolayer of stearic acid and oleic acid molecules present at the air-

water interface. The surface pressure measurement of a mixed film will be the average (but 

equal in sum) surface pressure of both molecules comprising the monolayer (equation 4.1). 

���������	 = �����	� + �����       (E 4.1) 

The oleic acid molecule occupies a larger area than its saturated counterpart due to the cis form 

double bond in the hydrocarbon chain (Harkins and Florence, 1938). The bent shape of the oleic 

acid molecule increases the intermolecular distance in the monolayer thus oleic acid has a lower 

binding energy to the surrounding molecules than a saturated fatty acid (Harkins and Florence, 

1938).  
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Figure 4.1 The Surface Pressure versus Surface Area per Molecule Isotherms of Oleic and 

Stearic Acid Mixed Monolayers  

 

The data in figure 4.1 was sourced from Feher et al., (1977). 

In a mixed stearic and oleic acid monolayer under compression the oleic acid is squeezed out of 

the monolayer at high surface pressures of  25-30 mN m-1 (Harkins and Florence, 1938) and 29-

30 mN m-1 (Feher et al. 1977). With an increasing mole fraction of oleic acid the isotherm of a 

mixed stearic and oleic acid monolayer is shifted to a higher area per molecule and has a 

smoother appearance without defined phase changes in the slope of surface pressure versus area 

per molecule as shown in figure 4.1 (Feher et al. 1977). 
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4.4 Previous Studies of Mixed Composition Saturated with Unsaturated Molecular 

Constituent Monolayers Reacting with Ozone 

Thompson et al., (2010) used neutron reflectometry to monitor the surface coverage of a POPC 

phospholipid monolayer at the air-water interface of a Langmuir trough as the monolayer was 

exposed to gas phase ozone. The POPC molecule shown in figure 4.2 has one saturated and one 

unsaturated tail. Isotopologues of POPC were used with the tails only deuterated, the head 

group only deuterated and the saturated tail individually as the only deuterated component. The 

surface coverage was measured over reaction time to show where the molecule was degrading 

due to reaction with ozone. Although the decay of the unsaturated tail only was not studied, it 

was concluded from the decay of the saturated tail (which was deuterated individually) that the 

gas-phase ozone attacked the double bond in the unsaturated tail group then the saturated tail 

group was subsequently broken down by a product of the reaction of ozone and the CH2 double 

bond which produced OH radical which reacted with the saturated tail group in an 

intramolecular reaction. 

Figure 4.2 The POPC Molecule Used in the Work of Thompson et al., (2010) 

 

It is hypothesised that for a mixed monolayer of stearic and oleic acid exposed to gas-phase 

ozone the same decay mechanism may occur within the monolayer, this will be tested in this 
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chapter. Further studies involving mixed composition particles and thick films will be discussed 

in section 4.7.2. 

The reaction which produces the OH radical which reacts with the saturated tail of the lipid at 

the air-water interface is shown in reaction 4.1. 

�� + ������
	→�������	������������ 	→�      (R 4.1) 

Subsequently the OH radical can react with the CH2 groups. 

� + ! − � #� #� �
	→! − � ∙� # � � + #�     (R 4.2) 

 

4.5 Experimental Methodology 

The experimental section will be presented in the following order: 

• Experimental objectives (4.5.1). 

• A description of the oleic acid and stearic acid samples used for the neutron 

reflectometry experiments (4.5.2). 

• The methodology of the neutron reflectometry measurement of a kinetic decay in the 

surface coverage measured simultaneously with the kinetic decay in the monolayer 

surface pressure (4.5.3).  

• The generation of gas phase ozone (4.5.4) and the modelling of the ozone concentration 

in the reaction chamber (4.5.4.1). 

4.5.1 Experimental Objectives 

The experiments to monitor the surface coverage and surface pressure of the mixed composition 

monolayers were conducted using the Langmuir trough coupled with neutron reflectometry as 

has been described in the proceeding chapters. The experiments were undertaken to investigate 

the following: 

• To measure how oxidation of a mixed composition film would affect the surface 

coverage of each compound at the air-water interface.  

• To investigate whether the oxidation of oleic acid would initialize a radical chain 

reaction with a saturated surfactant in the same film that does not react with ozone. 
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4.5.2 The Oleic Acid and Stearic Acid Samples 

Fully deuterated stearic acid was purchased from Sigma Aldrich. The oleic acid sample used for 

this experimental work was the first fully deuterated oleic acid sample synthesised by the 

Oxford Isotope Facility. It should be noted that at the time of this experiment the fully 

deuterated oleic acid now available from Sigma Aldrich was not commercially available. The 

spreading solutions were made up with one component fatty acid deuterated and the other fatty 

acid component non-deuterated in chloroform so that the oxidation over time of the individual 

species reacting in the mixed composition monolayer could be observed. The mixed solutions 

consisted of a saturated and un-saturated fatty acid. The deuterated component had a strong 

scattering length density (ρ = 6.57 × 10-6 Å-2 for fully deuterated oleic acid) which is in contrast 

with the non-deuterated component which had a smaller scattering length density (ρ = -6.71× 

10-8 Å-2 for non-deuterated stearic acid) thus the surface coverage measurement is valid for the 

deuterated molecule in the presence of the non-deuterated compound as the majority of the 

neutron reflectivity signal is due to the deuterated component. The approximation is made that 

all neutron reflection is due to the deuterated component of the monolayer and thus the 

calculated surface coverage is that of the deuterated component. 

The undiluted compounds were kept in a freezer at -18°C in the original containers under dark 

conditions as oleic acid degrades in light and air. The oleic acid was liquid at room temperature 

and pressure, the stearic acid was a powder at room temperature and pressure, each spreading 

solution was made up as a separate stock solution at a concentration of 10 mg mL-1 and mixed 

together in chloroform using a syringe to titrate out the correct quantity. The syringe was 

cleaned 6 times with chloroform between solutions. No plastic laboratory equipment was used 

with the chloroform, flasks with glass lids and glass Pasteur pipettes were used at all times. The 

spreading solutions were made up to a concentration of 1mg mL-1 of organic acid in 10 mL 

chloroform and were stored in amber glassware and refrigerated to minimize degradation. The 

spreading solution concentrations are listed in table 4.2 with the respective mole fractions. 
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Table 4.2 The Mole Fractions of Oleic and Stearic Acid in the Spreading Solutions 

Deuterated 

compound 

Non-

deuterated 

compound 

Concentration 

mg mL-1 in 

chloroform 

Mole 

fraction 

Stearic acid  

Oleic acid 

0.591 

0.291 

0.64 

0.35 

Stearic acid - 0.977 1 

Oleic acid - 1.022 1 

Oleic acid  

Stearic acid 

0.816 

0.226 

0.76 

0.24 

Oleic acid  

Stearic acid 

0.206 

0.721 

0.20 

0.80 

Oleic acid  

Stearic acid 

0.555 

0.466 

0.52 

0.48 

Oleic acid  

Stearic acid 

0.580 

0.490 

0.52 

0.48 

Stearic Acid  

Oleic acid 

1.278 

1.118 

0.50 

0.50 

 

The oleic acid sample used for this experimental work was also used for later experimental 

work in chapter 3 during which it was discovered that there was a saturated, deuterated impurity 

present from the synthesis of the sample. When the experimental work in this chapter took place 

the impurity had not been discovered and it had been assumed that the sample was oleic acid. 

The implications for the experiment are discussed in section 4.6.4. 
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4.5.3 Experimental Method 

The experimental method was as described in chapter 2 for a neutron reflectometry experiment 

on the instrument SURF with a Langmuir trough. A monolayer was created by adding 30µL of a 

spreading solution containing a deuterated fatty acid and a different non-deuterated fatty acid, to 

the surface of the Langmuir trough drop wise. The film was compressed to a surface pressure, 

Π, of 20 mN m-1. The Langmuir trough temperature was controlled at 20 °C. The kinetic decay 

of the surface pressure versus time was a measurement of the contribution of both the deuterated 

and non-deuterated components of the monolayer; measured simultaneously to the neutron 

reflectivity measurements. The neutron reflectivity surface coverage, Γ, measurement was 

dominated by the deuterated component of the monolayer and was thus a sensitive measurement 

of just one component of the mixed composition film. 

The neutron reflectivity versus momentum transfer data was fit to the scattering length of the 

deuterated component of the monolayer and a value of the area per head group from the 

Langmuir trough data, to obtain a value of surface coverage which was valid for the mixture. 

Using an area per head group valid for the mixture improved the fit from that made to a value of 

area per head group calculated for the deuterated component of the monolayer only. The 

scattering length values to which the reflectivity versus momentum transfer data was fitted, 

using an Abelès optical matrix methodology are given in table 4.3. 

Table 4.3 The Scattering Lengths to which the Neutron Reflectivity versus Momentum 

Transfer Data was Fitted 

Compound Scattering length 

density for 

neutrons (ρ)  

 Å-2 

Scattering length 

for neutrons (b) 

fm 

Non-deuterated 

oleic acid 

7.77 × 10-8 4.11 

Fully deuterated 

oleic acid 

6.57 × 10-6 348  

Non deuterated 

stearic acid 

-6.71 × 10-8 -3.37 

Fully deuterated 

stearic acid 

7.19 × 10-6 361 
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For the short range of Q used in these studies (~0.005 to 0.055 Å-1) the Abelès data fitting 

method allows one to sensitively fit the product of the scattering length density, ρ, and the 

thickness of the organic layer, δ. Measuring R over a a larger range of Q (at 2 angles of 

incidence of the neutron beam) would give a structural variation of  R with Q which would 

allow ρ and δo be fitted independently with confidence. The Abelès regime fits equation 4.2 to 

the reflectivity versus momentum transfer data. In order to obtain a rapid measurement time for 

studying the kinetics of a reacting system, δ cannot be individually fitted. The surface coverage 

measurement is sensitive to ρδ but not to each term individually. With care it was possible to 

resolve ρ and δ in the fitting process, but there is a large uncertainty on any thickness 

measurement performed at a small range of Q.  A plot of the thickness data which did have 

reasonable errors is included within the results section for interest although the majority of the 

thickness data was not used as the error in the fit was too great for the data to be valid.  

% = &'
()

          (E 4.2) 

* = ()+
&          (E 4.3) 

The surface coverage is determined by equation 4.2, re-arranging this in terms of thickness 

gives equation 4.3. 

In the results it can be seen that the errors in the calculated thickness are very large. The 

bimolecular rate constants, are calculated using the ozone concentration within the monolayer, 

monolayer thickness is a term in the calculation of the ozone concentration within the 

monolayer as explained in chapter 3. As the thickness data errors were so large, a thickness of 

15 Å was used in the calculation of the ozone concentration within the monolayer; this thickness 

was obtained from the structural measurements of an oleic acid monolayer in chapter 3 and 

allows comparison of the rate constants between chapter 3 and 4. 

4.5.4 Ozone Generation 

The method of gas-phase ozone generation was as described in chapter 3 however the 

experiment was conducted on the SURF reflectometer, using the reaction chamber described in 

chapter 2. A brief description of the generation process is given here. 

The ozone was generated by a mercury pen-ray lamp ozonizer manufactured by UVP (model 

97-0067-01 (02)) and therefore a plain glass lid was fitted to the reaction chamber containing 

the Langmuir trough, without the integral photolysis lamp. The lid was sealed so as to be 

impervious to gas. The reaction chamber had a Swagelok inlet and outlet fitted at the top of the 
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aluminium reaction chamber. All fittings were stainless steel and all tubing was PTFE. The 

ozonizer was calibrated by Christian Pfrang by measuring the absorption spectrum of the ozone 

over a path length of 10cm, from 200 to 450 nm. The Beer-Lambert law was then applied to 

calculate the concentration of ozone. 

Technical grade oxygen was circulated from a cylinder through a flow meter set to 1L min-1 at a 

backing pressure of 1 bar. The oxygen flowed along ¼ inch diameter Teflon tubing into the 

ozonizer where the oxygen was exposed to the mercury discharge lamp which utilizes 

shortwave (185nm) UV radiation to photolyse the molecular oxygen to produce a continuous 

flow of ozone in oxygen into the reaction chamber.  The ozoniser power source was wired into 

the SURF instrument control panel so that the ozone supply could be triggered from the SURF 

command line automatically as part of the instruments procedure file. 

4.5.4.1  Calculating the Concentration of Gas-phase Ozone 

The ozone concentration within the reaction chamber and within the monolayer was calculated 

according to the method described in chapter 3, section 3.7.4.1. The gas-phase ozone 

concentration was (2.4	± 0.6) × 1012 molecules cm-3 and the concentration of ozone in the 

monolayer was (4.3 ± 1.1) × 106 molecules cm-2. 

The characteristic mixing time, tmix, for ozone within the SURF reaction chamber was calculated 

according to equation 3.2 in chapter 3, section 3.7.4.1 as 2250 seconds.  

 

4.5.5 The Method of Kinetic Analysis 

The experiments which were conducted with a deuterated oleic acid monolayer or with a 

deuterated oleic acid component and a non-deuterated stearic acid component monolayer were 

fitted to the decay mechanism described in chapter 3, section 3.7.6.1. The surface coverage data 

was fitted to equation 4.4 (from chapter 3, section 3.7.6.2 equation 3.11). The kinetic fitting of 

equation 4.4 to the surface coverage data was started after 2250 seconds into the reaction after 

the characteristic mixing time.  

г�.г/��� + г0�12
3(�1�5)       (E 4.4) 

Where г� was the surface coverage at the air-liquid interface at time t, 	г/��� was the surface 

coverage at the air-liquid interface at the end of the reaction, t0 was the start time of the reaction 

which corresponds to the time that,	г0, the initial surface coverage at the air-liquid interface was 
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performed.  k′ was the pseudo first-order rate constant for the decay in the surface coverage of 

the deuterated material at the air-liquid interface. 

The exponential kinetic fitting to the surface coverage data is plotted over the surface coverage 

data in the results section (4.6). 

It was not possible to fit a kinetic decay mechanism to the experiments with deuterated stearic 

acid and non-deuterated oleic acid as no decay was noted as shall be shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Oxidation of Mixed Composition Monolayers Chapter 

4 

 

 

297 

 

4.6 Results 

The results will be presented in the following order: 

• Deuterated stearic acid only (4.6.1). 

• Deuterated oleic acid only (4.6.2). 

• Deuterated stearic acid and non-deuterated oleic acid monolayers from high to low 

ozone concentrations (4.6.3). 

• Deuterated oleic acid and non-deuterated stearic acid monolayers from high to low 

ozone concentrations (4.6.4). 

4.6.1 A Deuterated Stearic Acid Monolayer Decaying in the Presence of Gas-phase Ozone 

Stearic acid showed no reaction with gas-phase ozone as shown by figure 4.3. The fully 

deuterated stearic acid monolayer was exposed to a concentration of (2.4± 0.6) ×1012 molecule 

cm-3 gas-phase ozone for over 6 hours during which time the loss in the surface coverage of 

stearic acid from the air-water interface was less than (1	±	1 ) × 1018 molecule m-2. For all 

experiments the ozone supply was switched on at the beginning of the counting for the second 

data point (~200 seconds into the decay when the neutron beam was stable). The surface 

pressure also remained at ~ 20 mN m-1 over the same period. 

Figure 4.3 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated 

Stearic Acid in an Atmosphere of (2.4± 0.6) ×1012 molecule cm-3 O3 in the Gas-

Phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 
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The reflectivity data can be fitted to constrain the thickness of the monolayer once the surface 

coverage has been constrained. The monolayer thickness data is plotted in figure 4.4. The error 

bars are large on the thickness data obtained in this way and it is not of comparable quality to 

that which can be obtained by taking multi-angle reflectivity measurements. In figure 4.4 the 

thickness does remain generally flat and uniform during the measurement period. The gap in the 

reflectivity surface coverage and thickness data at 15000 seconds was due to a loss of the 

neutron beam at ISIS during the experiment. 

Figure 4.4 The Monolayer Thickness at the Air-water Interface of a Monolayer of 

Deuterated Stearic Acid Exposed to (2.4± 0.6) ×1012 molecule cm-3 O3 in the 

Gas-Phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

 

4.6.2 A Deuterated Oleic Acid Monolayer Decaying in the Presence of Gas-phase Ozone 

Ozone reacts with oleic acid. Over a time period of 2.2 hours the oleic acid monolayer decayed 

from a surface coverage of 1.4 × 1018 molecule m-2 to 0.9 × 1018 molecule m-2 in the absence of 

stearic acid (figure 4.5). The surface pressure decayed from 19 to 2 mN m-1 during the reaction 

with ozone. Equation 4.6 was fitted to the surface coverage data to give a rate constant for the 

decay in the monolayer surface coverage during the reaction with ozone. The ozone supply was 

switched on at the beginning of the surface pressure measurement. 
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Figure 4.5 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated Oleic 

Acid in an Atmosphere of (2.4± 0.6) ×1012 molecule cm-3 O3 in the Gas-Phase 

((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

 

4.6.3 Monolayers of Deuterated Stearic Acid Mixed with Non-deuterated Oleic Acid 

For mixed monolayers of deuterated stearic acid and non-deuterated oleic acid the surface 

coverage did not decay. When exposed to (2.4 ± 0.6) × 1012 molecule cm-3 gas-phase ozone the 

surface coverage measurement increased slightly in value for a monolayer of deuterated stearic 

acid and non-deuterated oleic acid. The surface coverage rise is small and will be explained in 

section 4.7. What is clear is that the monolayer persists at the air-water interface over a period 

of over >20000 seconds (5.5 hours). The monolayer surface pressure decayed to 0 mN m-1 over 

~6000 seconds as the oleic acid is being oxidised away but this cannot be seen in the surface 

coverage measurement as this measurement is valid just for the stearic acid. The oxidation of 

oleic acid had no effect on the deuterated stearic acid.  
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Figure 4.6 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated 

Stearic Acid and Non-deuterated Oleic Acid, Mole Fraction 0.5:0.5 in an 

Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-Phase  ((4.3 ± 

1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

To confirm that the surface coverage rise was genuine the same experiment was repeated (figure 

4.7 and 4.8). The surface coverage measurement did not repeat in the same way, the initial 

surface coverage was not consistent so it was difficult to judge whether the surface coverage 

rise due to increased reflectivity of the monolayer was structural or not as a lower surface 

coverage at the beginning of the experiment suggests the monolayers could have been packed 

differently. The surface coverage still increased towards the end of the experiment in figure 4.7.  
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Figure 4.7 A Repeat Measurement of the Kinetic Decay in the Surface Coverage of a 

Monolayer of Deuterated Stearic Acid and Non-deuterated Oleic Acid, Mole 

Fraction 0.5:0.5 in an Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the 

Gas-Phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 
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Figure 4.8 A Further Repeat of the Kinetic Decay in the Surface Coverage of a Monolayer 

of Deuterated Stearic Acid and Non-deuterated Oleic Acid, Mole Fraction 

0.5:0.5 in an Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-

Phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

The rise in the surface coverage of a monolayer of deuterated stearic acid and non-deuterated 

oleic acid was repeated. The surface coverage rise is the result of a change in the scattering 

length density of the monolayer for example by the addition of oxygen to the film as a result of 

the reaction of ozone with the double bond in the oleic acid molecule.  
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Figure 4.9 The Kinetic Decay in the Surface Coverage and the Thickness of a Monolayer 

of Deuterated Stearic Acid and Non-deuterated Oleic Acid, Mole Fraction 

0.5:0.5 in an Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-

phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

The monolayer thickness for the data in figure 4.8 is shown in figure 4.9, the thickness of the 

monolayer did not change during the reaction. 
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4.6.4 Monolayers of Deuterated Oleic Acid Mixed with Non-deuterated Stearic Acid 

The reaction of ozone with a monolayer of deuterated oleic acid and non-deuterated stearic acid 

produced a decay in the surface coverage at the air-water interface. Figure 4.10 shows the 

kinetic decay for a monolayer composed of approximately three quarter deuterated oleic acid 

and one quarter non-deuterated stearic acid. It can be seen that the decay is very different to the 

rise in surface coverage seen in the majority deuterated stearic acid with non-deuterated oleic 

acid monolayers. 

Figure 4.10 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated Oleic 

Acid and Non-deuterated Stearic Acid, Mole Fraction 0.76:0.24 in an 

Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-phase ((4.3 ± 

1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

At the greatest mole fraction of deuterated oleic acid to non-deuterated stearic acid the surface 

coverage decayed by 0.8 × 1018 molecule m-2 over 20000 seconds. The surface coverage data 

has large error bars in places where the neutron beam fluctuated and there was little signal thus 

the counting statistics were poor. The surface pressure data shows a phase change at 12 mN m-1 

which was seen at higher surface pressures (~18 mN m-1) in the kinetic decay of oleic acid alone 

in chapter 3. It should be noted that the oleic acid sample used for the experiments in this 

chapter had a saturated deuterated impurity as discussed in chapter 3 so the surface pressure and 

surface coverage behaviour in figure 4.10 to 4.13 may be influenced by the impurity. The 

residual surface coverage seen at the end of the experiments with deuterated oleic acid and non-
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deuterated stearic acid monolayers could be the result of the impurity in the deuterated oleic 

acid sample which was shown in chapter 3 to leave a non-reacted, surface active, deuterated 

component at the air-water interface after exposure to gas-phase ozone. 

Figure 4.11 A Repeat of the Kinetic Decay in the Surface Coverage of a Monolayer of 

  Deuterated Oleic Acid and Non-deuterated Stearic Acid, Mole Fraction  

  0.76:0.24 in an Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-

  Phase ((4.3 ± 1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

A failure in the delivery of the proton beam to the neutron producing target occurred at~10,000 

seconds during the repeat experiment shown in figure 4.11 so the data given is for the decay up 

to that point. The surface pressure and surface coverage values were similar to those shown in 

figure 4.10 for the same spreading solution.  
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Figure 4.12 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated Oleic 

Acid and Non-deuterated Stearic Acid, Mole Fraction 0.52:0.48 in an 

Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-Phase ((4.3 ± 

1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

In figure 4.13 the surface coverage fluctuates, rising slightly then decaying repeatedly, with an 

overall decay of 0.4 × 1018 molecule m-2. It was not possible to fit equation 4.6 to the surface 

coverage data in figure 4.12. The surface pressure data did not reflect the fluctuating surface 

coverage. The concentration of stearic acid was higher at ~ 50% in this experiment than that 

shown in figures 4.10 and 4.11 however in figure 4.13 where the concentration of stearic acid 

was highest the surface coverage did not increase dramatically as it had in figure 4.12. 
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Figure 4.13 The Kinetic Decay in the Surface Coverage of a Monolayer of Deuterated Oleic 

Acid and Non-deuterated Stearic Acid, Mole Fraction 0.20:0.80 in an 

Atmosphere of (2.4	± 0.6) × 1012 molecule cm-3 O3 in the Gas-Phase ((4.3 ± 

1.1) ×106 molecule cm-2 O3 in the Monolayer) 

 

When the non-deuterated stearic acid content of the monolayer was higher than the 

concentration of deuterated oleic acid the surface coverage of the deuterated oleic acid still 

decayed as it reacted with ozone. The surface coverage did not reach a value of zero in any of 

the experiments with mixed monolayers of stearic and oleic acid exposed to gas-phase ozone.  
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4.6.5 Summary of the Experimental Results 

• Deuterated stearic acid did not decay in the presence of oleic acid; therefore the Criegee 

intermediate produced by ozone reacting with oleic acid did not attack the stearic acid 

molecules in the monolayer. 

• It can clearly be seen that the behaviour of the mixed stearic acid and oleic acid film is 

different to that of stearic acid alone.  

• The effect of the inclusion of non-deuterated oleic acid in a monolayer with deuterated 

stearic acid is that as the oleic acid undergoes oxidation, the surface coverage remains 

of a significant value after prolonged exposure to ozone and does not reach the low 

values of ~ 0.2 × 1018 molecule m-2 in contrast to the oleic acid only monolayers shown 

in chapter 3.  

• The surface coverage rise mid-experiment for deuterated stearic acid and non-

deuterated oleic acid occurs in one instance only of oxidation of the same composition 

spreading solution suggesting that different products may be found depending on which 

molecular path the reaction takes.  
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4.6.6 Kinetic Results   

The kinetic fits of equation 4.4 to the surface coverage versus reaction time data yielded the 

reaction rate constants for the mixed monolayers of deuterated oleic acid and non-deuterated 

stearic acid given in table 4.4. 

Table 4.4 The Reaction Rate Constants for the Reaction of Deuterated Oleic Acid and 

Deuterated Oleic Acid with Non-deuterated Stearic Acid with Gas-Phase Ozone  

Monolayer Mole 

Fraction of Oleic and 

Stearic Acid 

[O3]film 

/10-6 molecule 

cm-2 

k′ / s-1 

/ 10-4 s-1 

k 

/ (10-10) 

cm2 molecule-1 

s-1 

This study    

D-oleic χ 1  2.47 ± 0.34 3 ± 0.1 1.21 ± 0.56 

D-oleic χ 0.76:  

H-stearic χ  0.24  

2.47 ± 0.34 

 

2 ± 0.2 

3	± 0.2 

0.89 ± 0.19 

1.14 ± 0.07 

D-oleic χ 0.20:  

H-stearic χ  0.80  

2.47 ± 0.34 5 ± 0.1 2 ± 0.74 

King et al., (2009)   0.73 ± 0.09 

Gonzalez-Labrada et al., 

(2007) 

  0.49 

Chapter 3 24 ± 3.9 20 ± 6 0.36 ± 0.1 

 

The bimolecular rate constants for the reaction of the mixed oleic acid and stearic acid 

monolayers are comparable to those obtained for oleic acid in other studies and in chapter 3 of 

this thesis.  The rate constant for the majority non-deuterated stearic mixed monolayer (D-oleic 

8 0.20: H-stearic 8 0.80) is not in agreement with the work of King et al., (2009). Further 

experiments would be required to understand any correlation between the saturated component 

and the bimolecular rate constant.  
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4.7 Discussion 

The following discussion will concentrate on:  

• The effect of a non-deuterated component of a mixed monolayer on the measurement of 

surface coverage at the air-water interface (4.7.1) 

• The experimental results in the context of other work on mixed films (4.7.2). 

4.7.1 Discussion of the Contribution of Hydrogen Scattering of Neutrons to the Surface 

Coverage Measurements 

The surface coverage and thickness did not change much during the reaction of a mixed 

monolayer of deuterated stearic acid and non-deuterated oleic acid showing that the reaction of 

oleic acid with ozone did not cause a subsequent decay of the stearic acid component of the 

film. The surface coverage increased a little, as shown in figure 4.7 to 4.9 where a mixed 

monolayer of deuterated stearic acid and non-deuterated oleic acid was reacting with ozone, 

could be explained by the loss of hydrogen atoms from the oleic acid component as the 

oxidation reaction proceeds. Hydrogen has a scattering length of -3.74 fm and its removal from 

the interface produces a lower reflectivity versus momentum transfer signal as hydrogen has a 

negative scattering length meaning that the non-deuterated component of a mixed film will still 

influence the reflectivity signal depending on its constituent atoms and their scattering length, as 

hydrogen is lost from the interface the reflectivity would increase raising the value of the 

derived surface coverage. The neutron reflectivity versus momentum transfer data was fitted 

assuming all the specular reflection was from the deuterated component of the monolayer, 

however the hydrogen (1H) has a small negative effect on the scattering of neutrons and the 

deuterated fatty acid component of the monolayer has a large dominating contribution to the 

reflectance of neutrons in the monolayer.  

The influence of the loss of hydrogen on the scattering from the monolayer can be estimated for 

a mole fraction of 0.5:0.5 deuterated stearic acid: non-deuterated oleic acid monolayer by: 

The scattering length density, ρ, of a single component in the monolayer is defined as: 

9 = ∑�;(;
<;

         (E 4.5) 

The neutron scattering length (bm) of deuterated stearic acid (C18D35O2H) is 3.61 × 10-13 m, the 

scattering length density (ρ) is 7.19 × 10-6 Å-2. The neutron scattering length (bm) of non-

deuterated oleic acid (C18H34O2) is 4.11× 10-15 m , the scattering length density (ρ) is 7.77 × 10-8 
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Å-2.The calculation of scattering length is dependent on the volume per molecule which is 

greater for non-deuterated oleic acid than for deuterated stearic acid. 

The scattering length density (ρ) for a mixed monolayer is defined as: 

9�=�>	��������	 = ?@ A∑�;(;<;
B + ?# A∑�;(;<;

B     (E 4.6) 

Where in this instance the mole fraction of deuterated stearic acid (χ1) is 0.5 and the mole 

fraction of non-deuterated oleic acid (χ2) is 0.5. 

9�=�>	��������	 = 0.5?	7.19 × 101I + 0.5?	7.77 × 101J Å-2   (E 4.7) 

9�=�>	��������	 = 3.63 × 101I Å-2 

To explain why there is a rise in the monolayer surface coverage during the reaction of a mixed 

monolayer of deuterated stearic acid and non-deuterated oleic acid the effect of the addition of 

ozone to the double bond in the oleic acid monolayer on the scattering length density of the 

monolayer can be calculated by the addition of three oxygen atoms (b for oxygen is 1.8×10-16 

m) which have a positive scattering effect to the non-deuterated oleic acid scattering term in 

equation 4.8. 

9�=�>	��������	 = 0.5?	7.19	 × 101I + 0.5?	34.8 × 101J Å-2   (E 4.8) 

9�=�>	��������	 = 3.77 × 101I Å-2 

The increase in scattering from the addition of ozone to the double bond is ~ 3.7 %. The 

increase in surface coverage during the reaction in figure 4.7 to 4.9 was greater than the increase 

which could be caused by ozone addition to the double bond. The addition of ozone does not 

explain the increased surface coverage, the cause of the increase was not resolved. When fitting 

a curve to the reflectivity data to determine the monolayer surface coverage (the product of ρ × 

δ) the thickness is assumed to be constant.  A more accurate thickness could be obtained to fit to 

and obtain a better surface coverage measurement with multi angle reflectivity versus 

momentum transfer data. 

When a monolayer of deuterated stearic acid and non-deuterated oleic acid was exposed to gas-

phase ozone a rise in surface coverage was observed then the value of surface coverage returned 

to the initial level suggesting that the scattering length density of the monolayer had increased 

then subsequently decreased again during the reaction of non-deuterated oleic acid with ozone 

(as stearic acid is inert to ozone). The analysis reflects the increased scattering length density as 

an increase in surface coverage (Γ) at the air-water interface in equation 4.2.  
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% = &'
()

         (E 4.2) 

bm = total scattering length 

ρ = scattering length density 

δ = thickness (i.e. 15 Å or 1.5 nm) 

The scattering from the deuterated stearic acid should not change as stearic acid is unreactive in 

the presence of ozone. If the signal owing to the specular reflection of neutrons changes that is 

an indication of an intra-molecular reaction where the ozone reacting with the oleic acid 

component of a mixed monolayer produces a reaction product which then affects the scattering 

by the deuterated stearic acid. As the surface coverage of the monolayer of deuterated stearic 

acid and non-deuterated oleic acid does not decay with time the deuterated stearic acid is not 

reacting with an oleic acid plus ozone reaction product, such as a Criegee intermediate formed 

from the reaction of oleic acid with ozone (the reader is referred to chapter 3 for this 

mechanism). The reactive products from oleic acid reacting with ozone must be consumed 

rapidly as it is not diffusing away from the reaction centre to react with stearic acid. This result 

is in contrast to that of Thompson et al., (2010) whom showed that a POPC molecule tail 

performs an intermolecular reaction on the same molecule where the saturated tail of the POPC 

molecule is consumed by a reactive intermediate formed from the reaction of ozone with the 

unsaturated tail.  

The increase in surface coverage of the 0.5 mole fraction deuterated stearic acid, 0.5 mole 

fraction non-deuterated oleic acid could be investigated by obtaining thickness measurements of 

the mixed monolayer as it reacts with ozone. On the SURF reflectometer such measurements 

would take approximately 20 minutes per data point as it is necessary to count for longer for 

lower values of momentum transfer at the second angle and the detector must be moved. A 

twenty minute time resolution may miss the feature of the surface coverage rise, a higher time 

resolution would be desirable such as that achievable on the FIGARO reflectometer.  
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Figure 4.14 The χ 0.52:0.48 D-Oleic Acid: Stearic Acid Monolayer and the χ 0.50:0.50 D-

Stearic Acid: Oleic Acid Monolayer Relative Surface Coverage Plotted with the 

D-Stearic Acid Only and the D-Oleic Acid Only Monolayer Relative Surface 

Coverage 

 

Figure 4.14 shows the relative change in surface coverage at the air-water interface for different 

monolayer compositions. The mixture of non-deuterated stearic acid with deuterated oleic acid 

appears to slow down the decay of the monolayer. It can be very clearly seen that there is little 

loss from deuterated stearic acid alone exposed to ozone. When deuterated stearic acid was 

mixed with oleic acid the surface coverage increased due to what is hypothesised to be a 

reaction product forming at the interface. The mechanism for ozone reacting with a monolayer 

containing stearic acid and oleic acid is expected to be the same as that of ozone reacting with 

oleic acid as the stearic acid is inert to ozone on the timescale studied. 

 

4.7.2 Discussion of the Results in the Context of Other Studies 

The work of King et al., (2009) showed that a monolayer of deuterated oleic acid held at the air-

water interface of a Langmuir Trough over 14,000 seconds when exposed to a flow of oxygen 

was stable and did not decay and therefore was not oxidised. King et al., (2009) showed a 

halving of the surface coverage of deuterated oleic acid when exposed to a flow of ozone. 



The Oxidation of Mixed Composition Monolayers Chapter 

4 

 

 

314 

 

Ozone reacted with the oleic acid carbon-carbon double bonds generating primary ozonides and 

subsequent Criegee biradical intermediates (King et al. 2009) as explained in chapter 3.  The 

addition of stearic acid to the monolayer in the experiments for this chapter where the surface 

coverage of the deuterated oleic acid within the monolayer was measured gave the same result. 

The rate constant k for the loss of deuterated oleic acid in a mixed monolayer was the same 

within error for a majority oleic acid mixed monolayer, when deuterated oleic acid was the 

minor component k′ was slightly larger than that measured by King et al., (2009) for an oleic 

acid monolayer however more data would be required to conclusively confirm this finding. It 

may be that the contrast in chain length between the reaction product of oleic acid and the 

stearic acid changes the thickness of the monolayer. 

Voss et al., (2006) studied the reaction of ozone with a deuterated oleic acid monolayer spread 

in a petri dish monitoring the composition at the air-water interface with sum-frequency 

generation (SFG) spectroscopy where overlapping laser pulses of a broad wavelength are used 

to produce a spectrum of signal intensity versus incident infrared signal which shows peaks of 

C-D groups and C-H groups, the peak is sensitive to the molecular orientation and the number 

density of molecules at the interface. Voss et al., (2006) found that the products formed from the 

reaction of oleic acid and ozone were soluble or volatile and did not persist at the air liquid 

interface. Experiments on mixed monolayers were undertaken with the saturated deuterated 

palmitic acid molecule (C15H31COOH) which was spread at the air-water interface with an oleic 

acid monolayer already in situ, the monolayer was spread to an area per molecule of 20Å2. The 

palmitic acid signal was measured at the surface as the oleic acid monolayer was oxidised with 

ozone, showing palmitic acid replacing the oleic acid at the interface as the oleic acid reacted 

with ozone. The least soluble species was observed at the surface, as the oleic acid reacted its 

reaction products were soluble or volatile and it was lost from the interface and replaced by the 

palmitic acid. The solubility of oleic acid in water is 1.15 ×10-5 g L-1 at 25°C, the solubility of 

palmitic acid is higher (8.21 × 10-4 g L-1 at 25°C) due to the shorter chain length (Howard and 

Meylan, 1997; Voss et al. 2006). Voss et al., (2006) state that unoxidised species from the 

subphase would replace oxidation products at the surface followed by oxidised species if the 

reservoir of unoxidised species is exhausted and that following oxidation the core of the aerosol 

droplet would be more likely to degrade. In the experiment described in this chapter there was 

no reservoir of surface active material to replace molecules at the air-water interface but the 

experiments on deuterated stearic acid with oleic acid did potentially show reaction product 

formation of oxidised species at the interface as the surface coverage increased during the 

reaction with ozone. 
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Self-assembled monolayers (SAMs) of alkenes and alkanes reacting with gas-phase ozone were 

used as atmospheric proxies by Moise and Rudich, (2000) as reviewed by Rudich (2003), 

infrared adsorption spectroscopy was used to characterize the double bonds and the alkyl chains 

present in the monolayer.  Ozone reacted with the double bond causing the surface layer of 

alkenes allyltrichlorosilane (C3) and octenyltrichlorosilane (C8) to become disordered. A C8 

alkane monolayer did not react with ozone. Following ozonolysis the alkene monolayer coated 

surface became more hydrophilic with a more varied thickness described by Rudich (2003) as 

corrugated. Using total reflection infrared spectroscopy carbonyls and carboxylic acids were 

detected at the surface following the reaction of alkene self-assembled monolayers with gas-

phase ozone. It is likely that a mixed composition oleic and stearic acid monolayer at the air-

water interface would also through ozonolysis contain similar reaction products and would 

change in thickness as a result of the reaction with ozone.   

The results of the current monolayer studies show that stearic acid will not react with gas-phase 

ozone at the air-water interface. Ozone readily dissolves in an organic liquid according to  

Henry’s Law where the Henry’s Law constant is high, for this reason there is likely to be a 

concentration of ozone within the monolayer. A lipid monolayer of mixed composition can 

show enhanced kinetics as the ozone is trapped in the tail region of the monolayer making 

interaction with the double bond more favourable compared to gas-phase collisions, (Wadia at 

al. 2000), and intramolecular reactions can take place (Thompson et al. 2010), this behaviour 

was not evident in the experiments presented here in this chapter with fatty acids which have 

greater spacing between the chains as the chains are positioned on separate molecules whereas 

the lipids have multiple chains on the same molecule.  

The mixed composition particle phase studies show the formation of crystals of the saturated 

component of the droplet which could occur in a monolayer but would not have been detected 

in the work presented here.  

It would be advantageous to repeat this experiment with a very high time resolution on the 

FIGARO reflectometer using the Sigma Aldrich deuterated oleic acid which subsequently to the 

experiment detailed in this chapter became commercially available and was used for the 

experiments in chapter 3. Taking structural reflectometry measurements at a greater Q range at 

points along a kinetic decay where the surface coverage was increasing would also give a better 

understanding of the mechanism by which the monolayer is oxidised.  
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4.8 Conclusions 

The surface coverage of deuterated stearic acid monolayers did not decay in the presence of the 

oxidation of oleic acid, this was in contrast to the POPC lipid molecule with one saturated and 

one unsaturated chain used in the study by Thompson et al., (2010) in which the POPC stearic 

acid configured lipid tail did react with what was hypothesised to be a Criegee radical produced 

by the reaction of the oleic acid configured tail with gas-phase ozone,  in an intra-molecular 

reaction where the reaction was taking place on the same molecule. As the stearic acid in this 

experiment did not decay there would still be an atmospheric film if the double bond in an 

unsaturated molecule was broken as a component of a mixed fatty acid composition cloud 

droplet film, it is OH radical that would remove saturated compounds from the air-water 

interface of a cloud droplet.  
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   The Oxidation of Methyl Oleate Monolayers by Ozone  

5.0 Abstract 

A monolayer of methyl oleate, an insoluble amphiphile with a methyl ester head group as 

opposed to a fatty acid with a carboxylic acid head group, was oxidised at the air-water interface 

with gas-phase ozone generated by the photolysis of oxygen. The rate of the oxidation of the 

monolayer was monitored with neutron reflection on a Langmuir trough. The monolayer of 

deuterated methyl oleate (C19D36O2), serves as a proxy for an organic film at the air-water 

interface of a cloud droplet in the atmosphere. The surface pressure of the monolayer was 

measured with a Wilhelmy plate and the surface coverage of the deuterated material at the air-

water interface was measured with neutron reflection. The surface pressure and surface 

coverage of the deuterated monolayer declined with reaction time. A second-order rate constant 

for the reaction at the interface was calculated and used to determine an atmospheric lifetime for 

a methyl oleate monolayer at the air-water interface of a cloud droplet.  

5.1 Introduction 

Atmospheric cloud droplet films are likely to contain organic esters as they contain the fatty 

acids from which esters are derived and organic esters have been sampled in fog waters (Raja et 

al. 2009).  Methyl oleate, a derivative of oleic acid is found in biodiesel and in cooking oil 

emissions; it is also naturally emitted to the atmosphere from vegetation (Flath et al. 1973; 

Ikeda et al. 1994; Knothe et al. 2006). The oxidation of the methyl oleate molecule by gas-phase 

ozone provides a proxy for the kinetics of the reaction of an unsaturated methyl ester component 

of a cloud droplet film. As the methyl oleate molecule is of a similar size and chain length to the 

oleic acid molecule an assessment of the effect of the head group on the reaction can be made 

by studying both systems.  

5.2 Aims 

1. To measure the effect on the monolayer lifetime of gas-phase ozone on an organic ester 

monolayer of methyl oleate and to simulate the ozonolysis of the ester component of a 

cloud droplet monolayer at the air-liquid interface. 

2. To provide an insight into the kinetics and the potential reaction products of a methyl 

oleate monolayer reacting with gas-phase ozone.  

3. To assess the differences in the rate of the reaction of gas-phase ozone with a 

monolayer possessing an ester head group and a monolayer with an acidic head group. 
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3. To calculate the atmospheric lifetime of a methyl oleate monolayer on a cloud droplet 

and compare the lifetime to a typical aerosol lifetime of 3 days to show whether the oxidation 

process is important in changing the lifetime of an aerosol particle to < 3 days. 

5.3 Background 

Methyl oleate is an organic ester of oleic acid where the head group has the configuration 

RC(O)OR as opposed to RC(O)OH for the oleic acid molecule. The methyl oleate molecule has 

a long alkyl chain which gives the molecule the properties of a wax where multiple molecules of 

methyl oleate can form a hydrophobic coating (Vollhardt and Schore, 2002). Emissions of 

methyl oleate to the troposphere are increasing due to the use of biofuels as increasingly fuels 

are blended to contain a proportion of renewable biofuel (Knothe et al. 1997), it can be 

predicted that these emissions will increase from current levels.   

Studying methyl oleate provides a means of further understanding the ozonolysis of a 

monolayer than the study of oleic acid alone as the methyl oleate molecule, in contrast to the 

oleic acid molecule does not have a free carboxylic acid group, (Mochida et al. 2006).  

The reader is referred to chapter 3 for information on the formation and concentration of gas-

phase ozone in the troposphere.  

Figure 5.1 The Structure of the Methyl Oleate Molecule 
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Figure 5.2 A Comparison of the Surface Pressure Versus Surface Area per Molecule 

Isotherm for a Methyl Oleate Monolayer at the Air-water Interface 

 

The surface pressure versus surface area isotherm for methyl oleate shown in figure 5.2 was 

measured with non-deuterated methyl oleate purchased from Sigma-Aldrich. A concentration of 

1 mg methyl oleate in chloroform was spread on a sub-phase of pure water (18 MΩ resistivity), 

the subphase temperature was maintained at 20°C. The methyl oleate monolayer collapsed at a 

surface pressure of 14.5 mN m-1. Starting the neutron reflectivity measurements at a comparably 

low surface pressure of ~ 8 mN m-1 compared to the other chapters ensured that the collapse of 

the monolayer was avoided when collecting kinetic data. 

 

5.4 Methyl Oleate and Cloud Droplets 

Methyl oleate has not been directly sampled in the troposphere or in rain or fog waters however 

other esters have been reported in fog waters samples from the US Gulf Coast by Raja et al., 

(2009). Recovery of methyl esters from atmospheric samples for analysis is poor for the 

commonly used techniques such as GCMS as methyl esters are readily lost from the sample 

during evaporative extraction (Pinxteren and Herrmann, 2007) or are deliberately created from 

fatty acids to aid their detection and measurement thus the original composition of the organic 

ester in a sample is lost.  
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5.5 Previous Atmospheric Studies of Methyl Oleate Reacting with Ozone 

There are few studies of gas-phase ozone reacting with methyl oleate. Mochida et al., (2006) 

exposed mixed particles composed of methyl oleate, dioctyl adipate and myristic acid to gas-

phase ozone within a flow tube. The flow tube was coupled with an Aerodyne quadrupole mass 

spectrometer to characterize the reaction products.   Mochida et al., (2006) note that the reaction 

pathway for methyl oleate would be expected to be simpler than that of oleic acid ozonolysis as 

methyl oleate does not have a free carboxylic acid group (-C(O)OH) which can promote 

polymerization.  Hearn et al., (2005) measured the loss of condensed phase methyl oleate from 

liquid particles exposed to gas-phase ozone, with chemical ionization mass spectrometry. Hearn 

et al., (2005) noted some differences between the reaction of methyl oleate and that of oleic acid 

with ozone. Methyl oleate reacted with ozone in the bulk of the particle in contrast to oleic acid 

particles which reacted with ozone at the surface of the particle (Hearn et al. 2005), and that 

methyl oleate does not react with the Criegee intermediates produced when the primary ozonide 

formed by ozone reacting with the double bond in the molecule decomposes as efficiently as 

oleic acid reacts with the Criegee intermediate (Hearn et al. 2005). Hearn et al., (2005) 

concluded that the reaction of methyl oleate with ozone was limited by diffusion of ozone 

within the particle.  

The surface pressure behaviour of methyl oleate at the air-water interface was investigated by 

Clark and Robinson, (1940) and Gaines (1966).  The isotherm is as that of oleic acid with 

indistinct phases of a liquid character until a surface pressure of ~ 15 mN m-1 where collapse 

occurs. The head group of the methyl oleate is relatively large and not particularly soluble 

compared to that of its parent fatty acid. For a monolayer of methyl oleate reacting with ozone it 

can be inferred that as is the case with oleic acid monolayers that methyl oleate would be photo-

sensitive, and that the surface pressure would gradually decay in oxygen due to its unsaturated 

structure. 

The kinetics of the ozonolysis of a methyl oleate monolayer at the air-water interface has not 

been previously determined. Previous atmospheric studies by Mochida et al., (2006) and Hearn 

et al., (2005) have used bulk liquid particles of methyl oleate. In this chapter new data will be 

presented which can be incorporated into future modelling of aerosol and cloud droplet film 

behaviour and reactivity.  
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5.6 Experimental Methodology 

The experimental section is presented in the following order: 

• Experimental objectives (5.6.1). 

• A description of the methyl oleate sample used to acquire neutron reflectivity 

experiments (5.6.2). 

• The generation of gas-phase ozone and the calculation of the ozone concentration in the 

chamber and within the monolayer (5.6.3).  

• The methodology of a typical neutron reflectivity surface coverage measurement and 

simultaneous surface pressure measurement of methyl oleate reacting with ozone at the 

air-water interface (5.6.4). 

• The kinetic fitting regime used to ascertain rate constants for the decay in the methyl 

oleate monolayer surface coverage as a result of ozone initiated oxidation (5.6.5). 

The experiments were conducted on the FIGARO reflectometer with the corresponding reaction 

chamber as shown in chapter 3.  

5.6.1 Experimental Objectives  

In this experiment, the objectives were: 

1. To ascertain whether the methyl oleate monolayer is lost from the air-liquid interface 

when oxidised by ozone. It is expected that ozone will react at the site of the cis double 

bond in the hydrocarbon chain of the molecule as it did in the case of an oleic acid 

monolayer. 

2. To determine whether the decay of methyl oleate from the air-water interface as it reacts 

with ozone has a bimolecular rate constant similar to that for ozone reacting with oleic 

acid at the air-liquid interface. 

 

5.6.2 The Deuterated Methyl Oleate Sample 

A single, fully deuterated methyl oleate (C19D36O2), sample was custom synthesised at the 

Oxford University Isotope Facility for this work.  The deuterated methyl oleate sample was 

made up with chloroform into a spreading solution at a concentration of 1 mg mL-1 methyl 

oleate in chloroform. The chloroform used for the spreading solution and for cleaning the 

Langmuir trough was Chromosolv plus for HPLC 99.9% with ethanol stabilizer which will 

evaporate or go into solution and is not surface active, as manufactured by Sigma Aldrich, 

catalogue number: 650471.  
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Figure 5.3 The Structure of the D36 Methyl Oleate Molecule 

 

 

5.6.3 Generating and Determining the Concentration of Gas-phase Ozone 

The production of gas-phase ozone and its delivery to the reaction chamber was as described in 

chapter 3. The bottled oxygen was manufactured by Air Products and was of a purity of 99.5%. 

The flow of oxygen was controlled with a ball and valve flow meter with a capacity of 5 L-1 

min-1, manufactured by Cole Palmer. All tubing was Teflon with Swagelok stainless steel 

connectors. The oxygen was flowed through a pen ray ozoniser: model 97-0067-02 

manufactured by UVP. The ozone was then flowed into the aluminium reaction chamber 

surrounding the Langmuir trough. The ozoniser generates ozone through reaction 5.1 and 5.2. 

�� + ℎ� 	→ � + �        (R 5.1) 

� + �� +� 	→�	 +�        (R 5.2) 

The gas-phase concentration of ozone in the reaction chamber differed from that in the oleic 

acid ozonolysis experiment described in chapter 3 as the volume of the reaction chamber was 

reduced to an available volume of 13.3 L-1 using hollow aluminium boxes which were inserted 

into the chamber around the Langmuir trough; these were fitted so as not to impede the neutron 

beam or the surface pressure measurement apparatus. The function of the inserts was to reduce 

the mixing time taken for ozone entering the chamber to become well mixed and gradient free.  

As described in chapter 3, the gas-phase ozone concentration was modelled as a well-mixed 

reactor. The gas-phase ozone concentration was determined using equation 5.1. 
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The efficiency of the ozoniser was calibrated by our collaborator Christian Pfrang at the 

Department of Chemistry, University of Reading, by measuring the absorbance at a wavelength 

of 254 nm of the ozone produced by the ozonizer in a cell with a UV visible spectrometer. 

The concentration of ozone in the reaction chamber was determined by calculating the flux of 

ozone into and out of the reaction chamber allowing calculation of the concentration within the 

chamber according to equation 5.1.  

To calculate the concentration of ozone in the reaction chamber, [O3]chamber, the following 

equation is used where Frate is the flow rate of ozone from the ozonizer (5 L min-1). The value 

Frate was kept constant for each experiment. [O3]ozonizer is the concentration of ozone in the flow 

(F), taken from the ozoniser calibration, which was varied for different experiments. V, is the 

volume of the reaction chamber minus the volume of the Langmuir trough and fittings (V =13.3 

L-1). The concentration of ozone within the reaction chamber during the experiments is given in 

table 5.1. 

[�	]������ = �[�	]��������(1 − ���� !"!# )       (E 5.1) 

The gas-phase ozone concentrations for the methyl oleate neutron experiment are detailed in 

table 5.1. Based on the work of Smith et al., (2002) it is presumed that the gas-phase ozone 

dissolves into the monolayer and subsequently reacts. The concentration of ozone in the 

monolayer region ([O3] film), was calculated using Henry’s law in the form of equation 5.2, taken 

from Smith et al., (2002). 

[�	]%�&� = '([�	]������()       (E 5.2) 

The values input to equation 5.2 were as follows: 

' = film thickness in cm, a value of ~1.5 nm 

( = 11.75 M atm-1, the Henrys law solubility coefficient for ozone in oleic acid (a figure for 

methyl oleate was not available however it would be expected to be similar to that for 

oleic acid) 

[�	]������ = the concentration of ozone in the gas-phase of the reaction chamber in 

 molecules cm-3 as listed in table 5.1. 

 

 



The Oxidation of  Methyl Oleate Monolayers by Ozone Chapter 

5 

 

 

327 
 

Table 5.1 The Gas-Phase Ozone Concentration in the Reaction Chamber and the 

Corresponding Ozone Concentration in the Monolayer Region 

Intervals set 

on ozoniser 

Concentration of O3 

from ozoniser 

[O3]ozonizer / 1012 

molecule cm-3 

Concentration of O3 in 

chamber [O3]chamber / 

1012 molecule cm-3 

Concentration of O3 in 

film [O 3] film   / 108 

molecule cm-2 

1 53.2 ± 7.4 16.7 ± 2.3 0.39 ± 0.05 

1.5 92.8 ± 22.7 29.1 ± 7.1 0.67 ± 0.16 

1.7 130 ± 37 40.8 ± 11.6 0.94 ± 0.27 

2 169 ± 57.4 53 ± 18 1.23 ± 0.42 

2.5 301 ± 13 94.3 ± 4.1 2.18 ± 0.09 

3 387 ± 49.2 121 ± 15.4 2.80 ± 0.36 

4 566 ± 108 177 ± 34 4.10 ± 0.41 

5 749 ± 22.4 235 ± 7 5.32 ± 0.16 

 

 

5.6.4 The Experimental Methodology of a Typical Neutron Reflectivity Experiment to Measure 

the Surface Coverage and Surface Pressure of a Methyl Oleate Monolayer Reacting with 

Gas-phase Ozone 

The neutron reflectivity measurements of the monolayer surface coverage were taken on the 

neutron reflectometer FIGARO at the Institute Laue Langevin, ESRF, Grenoble, France. The 

FIGARO beamline Langmuir trough, described in chapter 3 was used for all measurements. The 

Langmuir trough accessories used in this experiment were: 

• Surface Pressure Sensor: model IU4, manufactured by Nima Technology. 

• Chromatography paper for Wilhelmy plates: 1cm width reel, manufactured by 

Whatman, catalogue number: 3001604. The paper thickness was 0.18 mm. The paper 

was cut to form a Wilhelmy plate of a length of 20mm. 

The aluminium reaction chamber housing the Langmuir trough was as described in chapter 3 

but with the addition of aluminium box inserts fitted around the Langmuir trough which reduced 

the volume of the chamber by to 13.3 L-1. 

Both surface measurements of surface pressure (Π), and of surface coverage (Γ), the amount of 

deuterated material at the air-liquid interface were undertaken on a Langmuir trough 

simultaneously. Measurement of the surface pressure (Π), was conducted with a Wilhelmy plate 
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suspended from a balance as explained in the preceding chapters. The surface coverage data was 

obtained using the neutron reflectometer FIGARO to collect time of flight measurements of 

neutron reflectivity versus momentum transfer, as explained in chapter 3. The 0.6° angle of 

incidence was used for all the measurements in this chapter. The counting period for the accrual 

of neutrons on the FIGARO detector was shorter at ~10 seconds per point in this experiment. 

Widening of the instrument slits and adjustment of the choppers allowed a very high flux of 

neutrons to the instrument enabled a short measurement time.   

The cleaning and calibration of the Langmuir trough was as described in chapters 2 and 3. 

When the sub-phase was clean and no rise in surface pressure was seen upon the closing of the 

barriers the monolayer was applied to the surface. With the Langmuir trough barriers open the 

film was applied drop wise to the surface of the Langmuir trough sub-phase. A micro-litre 

syringe was used to spread 50 µL of the deuterated methyl oleate spreading solution to the 

interface, the initial surface pressure reading was ~7 mNm-1. The area per molecule was ~70 Å2 

prior to compression. The temperature of the Langmuir trough sub-phase was maintained at 

~20°C using a temperature controlled, circulating water bath. The Langmuir trough was housed 

in an aluminium reaction chamber, custom made by the University of Reading and based on the 

design of the SURF reaction chamber described in chapter 2. The chamber dimensions were: 

height 18.5 cm maximum, width 39 cm, length 64 cm. As described in chapter 4 the Langmuir 

trough sub-phase was made up to a mole ratio of 0.088 mole D2O in H2O to produce null 

reflecting water with a scattering length of zero to neutrons.  

The treatment of the reflectivity data to obtain a value of surface coverage was as described in 

chapter 2 and the data format was as described for the FIGARO reflectometer in section 3.7.3.1 

of chapter 3. The scattering length of D36 methyl oleate used to calculate the surface coverage 

was 380 fm. A plot of the reflectivity of the D36 methyl oleate monolayer at a surface pressure 

of 7 mNm-1 without ozone is shown in figure 5.4. 
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Figure 5.4 The Reflectivity Profile for an Un-reacted Monolayer of Fully Deuterated 

Methyl Oleate in an O2 Atmosphere at a Surface Pressure of 7 mNm-1  

 

The error bars in figure 5.4 represent the error in the measurement of reflectivity (R), based 

upon the statistical error in the counting of neutrons at the detector as explained in chapter 2. 

The size of the error bars decreases with higher momentum transfer / Q as at a low range of Q 

there are fewer counts on the detector so there is a smaller population to measure producing a 

higher variance. 

5.6.5 The Reaction Kinetics of a Methyl Oleate Monolayer Reacting with Gas-phase Ozone 

5.6.5.1 The Decay Mechanism 

The shape of the decay in the surface coverage of a monolayer of methyl oleate at the air-water 

interface exposed to gas-phase ozone was similar to that observed with deuterated oleic acid in 

chapter 3 where the surface coverage of the monolayer decayed exponentially. 

The rate expression for the reaction of a deuterated methyl oleate monolayer with gas-phase 

ozone is: 

)*+,	-�� + �	 	→ ./012345       (R 5.3) 

�6[789:;<=>]
6? = @[)*+,	-��]	[�	]	      (E 5.3) 
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The reaction was pseudo first-order. In chapter 3 the kinetic fitting was initiated after a 

calculated mixing time, for methyl oleate an equation was fit to which incorporated the mixing 

time for ozone in the chamber as a variable in the fit to the surface coverage data.  

The change in the surface coverage of methyl oleate is described by equations 5.4 to 5.10 which 

also incorporate the ozone mixing time in equation 5.9 onwards. 

�6[��?A&	�&��?�]
6? = 6BCD

6?         (E 5.4) 

�6BCD
6? = @EF�	(������)G       (E 5.5) 

H is the Henrys law coefficient for ozone in oleic acid (11.75), the value for oleic acid has been 

used as there was not a published value for methyl oleate, and δ is the monolayer thickness, 

these terms are incorporated into equation 5.5 giving equation 5.6. The monolayer thickness 

was not measured for methyl oleate; it is expected to be approximately 15 to 20Å (~15 nm) 

similar to that of oleic acid.  

�6BCD
6? = @('EF�	(������)G       (E 5.6) 

The ozone concentration in the chamber is related to the ozone concentration produced by the 

ozonizer as calculated in equation 5.7. 

[�		]������ = [�	]�������� H1 − �I!#J      (E 5.7) 

Incorporating the ozone concentration into equation 5.6 gives equation 5.8. 

�6[BCD]
6? = @('EK=[�	]�������� H1 − �I!#J     (E 5.8) 

Equation 5.8 was solved analytically (the steps taken in solving equation 5.8 to produce 

equation 5.9 are given in the appendix, item 4). The surface coverage data was fit to equation 

5.9 to obtain the rate of change in the surface coverage with reaction time. 

− ln [BCD]![BCD]!NO = @[�	]��������(' P4 − Q
I R1 − ��

�
#!ST    (E 5.9) 

Equation 5.9 is fitted to the surface coverage versus time data in the following format: 

U = V(W − *
X Y1 − ��XZ[)       (E 5.10) 



The Oxidation of  Methyl Oleate Monolayers by Ozone Chapter 

5 

 

 

331 
 

Where the result of the fit V is equal to @[�	]��������(', the bimolecular rate of the reaction, k, 

multiplied by the gas concentration of gas-phase ozone produced by the ozonizer, [O3]ozonizer, the 

Henry’s law constant for ozone in oleic acid (Smith et al., 2002), H, and the monolayer 

thickness, δ (1.5 nm).  

Equation 5.9 contained a term which modelled the ozone concentration in the monolayer tail 

region β which was equivalent to the reciprocal of the mixing time for ozone in the reaction 

chamber (
*

\]^_). Equation 5.10 was fitted to the surface coverage data with a parameter of the fit 

being the characteristic mixing time of the gas-phase ozone within the reaction chamber which 

was held constant. The equations describing the ozone concentration are included in the 

appendix, item 5.1. The results of the fit of equation 5.10 to the surface coverage versus reaction 

time data and the resulting bimolecular rate constant calculated from the fit are given in section 

5.7.6. 

The characteristic mixing time was calculated according to equation 5.11, in the same manner as 

used in chapter 3. This calculation gave a mixing time of 160 seconds for the ozone 

concentration in the chamber to reach 37%. Fitting equation 5.10 using the independently 

calculated mixing time of 160 seconds as a fixed parameter produced a poor fit to the surface 

coverage data. 

4��Z = Q
I� !"          (E 5.11) 

To obtain a better fit to the surface coverage data the kinetic fitting was subsequently processed 

with 3 mixing times of 240, 1200 and 37968 seconds. A mixing time of 240 seconds was in 

closer agreement with the modelling of the mixing time for ozone within the reaction chamber 

but did not produce an adequate fit to the decay. The best fits were produced using a mixing 

time of 37968 seconds but this was an unrealistic mixing time given the size of the chamber and 

duration of the kinetic decay. The mixing time used to calculate k was 1200 seconds as this was 

more realistic to the experiment and still gave a good fit to the surface coverage data.  

Figure 5.5 shows the example of a surface coverage measurement of a methyl oleate monolayer 

over time under exposure a concentration of (16.7 ± 2.3) × 1012 molecule cm-3 gas-phase ozone, 

the surface coverage data is shown with the ozone concentration over time for three different 

mixing times.  
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Figure 5.5 The Decay in Surface Coverage of a Monolayer of Methyl Oleate Exposed to 

(16.7± 2.3) × 1012 molecule cm-3 Gas-Phase O3 Versus the Modelled O3 

Concentration from Equation 5.10 
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5.7 Experimental Results  

The surface pressure data was obtained from Wilhelmy plate measurements as described in 

chapter 2. The surface pressure measurements were taken simultaneously with the surface 

coverage measurements. The surface coverage measurement was the priority as it had been 

shown in chapter 2 that the surface pressure data did not reliably define the kinetics at the 

interface. Due to the set-up of the gas-phase reactant, with a flow of 5 L min-1 into a smaller 

volume chamber than in chapter 3 and 4, the surface pressure data was noisier than would be 

desirable for a publication because of gas turbulence in the cell.  

Nine successful experiments were undertaken in the beam time designated on the neutron 

reflectometer FIGARO for study of the methyl oleate monolayer and gas-phase ozone system. 

The ozone concentration ranged from (0.39 ± 0.05) × 108 molecule cm-3 to (5.32 ± 0.16) × 108 

molecule cm-2. 

The results are presented in the following order: 

• The surface coverage and surface pressure of a methyl oleate monolayers reacting with 

gas-phase ozone (5.7.1). 

• The surface coverage and surface pressure of a methyl oleate monolayer in an oxygen 

only atmosphere (5.7.2). 

• A summary of the experimental surface coverage and surface pressure measurement 

results (5.7.3). 

• Kinetic analysis and results (5.7.4).  

All experiments were conducted on a sub-phase of null reflective water. The kinetic fits of the 

surface coverage data to equation 5.10 are included on the plots in the results section of this 

chapter and will be discussed after the presentation of the results in section 5.7.4.  

Time zero is shown as reaction time zero when the ozoniser was switched on. The monolayer 

surface pressure of deuterated methyl oleate decayed from 15 mN m-1 giving a starting pressure 

of ~ 7 mN m-1, the decrease in surface pressure took place whilst the neutron instrument 

interlock was taking effect, the interlock is a safety feature that restricts delivery of the neutron 

beam to the instrument until the sample area is clear of personnel.  
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5.7.1 The Surface Coverage and Surface Pressure of Methyl Oleate Monolayers Exposed Gas-

phase Ozone 

The ozone concentration for the ozone experiments was from (235 ± 7.0) × 1012 to (16.7 ± 2.3) 

× 1012  molecule cm-3. The results are presented in descending order of ozone concentration. 

Reaction time zero in the plots is the point at which the ozoniser was switched on.  

Figure 5.6 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (235 ± 7) × 1012 molecule cm-3 

 

The surface coverage decayed rapidly to a residual surface coverage of ~ 0.2 × 1018 molecule m-

2. The error in the surface coverage data was within point for many of the measurements and 

rapid kinetic measurements were achieved with 300 second neutron counting period per 

individual reflectivity measurement, the errors are small as the efficiency of the set-up of the 

instrument by the instrument scientist was optimal so the error the reflectivity measurement was 

small and the data fitting was good so the corresponding error in the surface coverage is small. 

The surface pressure did not decay to zero in figure 5.6, however the measurement of surface 

pressure did reach a value of zero in the following experiments.  
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Figure 5.7 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (177 ± 34) × 1012 molecule cm-3 

 

At an ozone concentration of (177 ± 34) × 1012 molecule cm-3 as shown in figure 5.7 the 

monolayer surface pressure decayed to zero over a duration of 500 seconds O3 exposure, and the 

surface coverage decayed to a residual value of ~ 1.5 × 1018 molecule m-2. The highest ozone 

concentration experiment was conducted at  (235 ± 7) × 1012 molecule cm-3, the monolayer 

decayed by 2 × 1018 molecule m-2 over 650 seconds, here within error the decay in surface 

coverage was slower than at the slightly higher O3 concentration of at  (235 ± 7) × 1012 

molecule cm-3. 

There were two experiments undertaken at an ozone concentration of (121 ± 15.4) × 1012 

molecule cm-3. As shown in figure 5.8 and 5.9 in both cases the monolayer decayed away by 2 × 

1018 molecule m-2 over 800 seconds to a residual value of ~ 1.5 × 1018 molecule m-2. 
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Figure 5.8 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (121 ± 15.4) × 1012 molecule cm-3 
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Figure 5.9 A Repeat of the Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a 

Gas-Phase Ozone Concentration of (121 ± 15.4) × 1012 molecule cm-3 

 

The repeat surface coverage measurement was conducted over a longer time period to show 

whether the monolayer surface coverage would reach a value of zero under sustained exposure 

to ozone. There remained a steady residual surface coverage of ~1.5 × 1018 molecule m-2 for 

2500 seconds (41 minutes). 
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Figure 5.10 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (94.3 ± 4.1) × 1012 molecule cm-3 

 

When exposed to an ozone concentration of (94.3 ± 4.1) × 1012  molecule cm-3 the methyl oleate 

monolayer decayed by 2 × 1018 molecule m-2 over 1050 seconds.  
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Figure 5.11 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (53 ± 18) × 1012 molecule cm-3 

 

The kinetic decay in the monolayer at a gas-phase ozone concentration of (53 ± 18) × 1012 

molecule cm-3 in the monolayer tail region produced a loss of 2 × 1018 molecule m-2 over 2000 

seconds, the time taken for the film to decay to a surface coverage of zero decreased with 

increasing ozone concentration.  
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Figure 5.12 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (40.8 ± 11.6) × 1012 molecule cm-3 

 

When exposed to a gas-phase ozone concentration of (40.8 ± 11.6)  × 1012 molecule cm-3 the 

surface coverage of the monolayer declined by 2 × 1018 molecule m-2 over a period of 1700 

seconds. 
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Figure 5.13 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (29.1 ± 7.1) × 1012 molecule cm-3 

  

In figure 5.13 the data points from 1000 seconds onwards have larger spacing as the reflectivity 

data was co-added into larger time bins to produce a higher signal to fit to with better signal to 

noise statistics in the reflectivity measurement. At an ozone concentration of  (29.1 ± 7.1) × 1012 

molecule cm-3 the surface coverage decayed by approximately 2 × 1018 molecules m-2 over 3000 

seconds. 
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Figure 5.14 The Kinetic Decay of a D36 Methyl Oleate Monolayer Exposed to a Gas-Phase 

Ozone Concentration of (16.7 ± 2.3) × 1012 molecule cm-3 

 

At the lowest gas-phase ozone concentration the methyl oleate monolayer decay became 

shallower in gradient at 6000 seconds as the residual concentration of ~ 1.5 × 1018 molecule m-2 

was reached at 8000 seconds (>2 hours). 
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5.7.2 The Surface Coverage and Surface Pressure of Methyl Oleate Monolayers in an Oxygen 

Atmosphere 

Methyl oleate monolayers were found to decay in a pure oxygen atmosphere. The rate of decay 

in oxygen was slower than the reaction in an ozone atmosphere as shown in figure 5.15. The 

decay in surface coverage recorded in an oxygen only atmosphere was fitted to equation 5.12.  

E = Ea��b?         (E 5.12) 

Figure 5.15 The Decay in the Surface Pressure (Π) and the Surface Coverage (Γ) of a D36 

Methyl Oleate Monolayer at the Air–liquid Interface over Time in an Oxygen 

Atmosphere with an Exponential Fit to the Surface Coverage Data Plotted with 

a Low Ozone Concentration Experiment 

 

A monolayer of D36 methyl oleate on a sub-phase of null reflective water, without exposure to 

ozone took approximately 17000 seconds to decay to zero surface pressure, at which point any 

remaining molecules at the air-liquid interface were too far apart to exert a measurable surface 

pressure above that of the sub-phase. The surface coverage decayed to 1.1 × 1018 molecule m-2 

over 19000 seconds (~5.2 hours), a loss of 0.9 × 1018 molecule m-2. Figure 5.15 shows the 

difference in the decay in the methyl oleate monolayer surface coverage when exposed to 

oxygen and to a low concentration of ozone. The decay in an ozone atmosphere is more rapid, 

over 8000 seconds the surface coverage decays to a value of ~ 0.1 × 1018 molecule m-2. In 

contrast to the decay of methyl oleate in oxygen where 0.5 × 1018 molecule m-2 of deuterated 

methyl oleate was lost from the air-water interface over 8000 seconds (figure 5.15) the lowest 



The Oxidation of  Methyl Oleate Monolayers by Ozone Chapter 

5 

 

 

344 
 

O3 concentration of (16.7 ± 2.3) × 1012 molecule cm-3 shown in figure 5.14 gave a loss of 2 × 

1018 molecule m-2 from the air-water interface over 8000 seconds, the film was not entirely 

removed by exposure to ozone or loss of molecules at the surface going into solution or beneath 

the barriers on the Langmuir trough.  

  

5.7.3 A Summary of the Surface Pressure and Surface Coverage Results 

Figure 5.16 The Decay in the Surface Pressure (Π) of a D36 Methyl Oleate Monolayer at the 

Air–Water Interface over Time in an Atmosphere of Varied Concentrations of 

Gas-Phase Ozone 

Time zero is the time at which the ozoniser was activated. 

 

As demonstrated in figure 5.16 the surface pressure data broadly shows a steeper decay in 

surface pressure with increasing ozone concentration. The highest ozone concentration of (235 

± 7) × 1012 molecules cm-3 caused the monolayer to decay to a surface pressure of zero within 

620 seconds. At the lowest ozone concentration of  (16.7 ± 2.3) × 1012  molecules cm-3 the 

surface pressure exerted by the methyl oleate monolayer reduced to a low surface pressure of 

0.4 mNm-1 zero in 4100 seconds, the measurement did not reach zero for this concentration, 
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however recompression of the Langmuir trough barriers did not produce a reading thus it was 

inferred that the measurement had drifted during the duration of the experiment for example due 

to evaporation changing the height of the meniscus and that this reading was effectively zero.  

The surface pressure decayed to a zero value more rapidly than the surface coverage at the air-

water interface. 

Figure 5.17  The Kinetic Decay in the Surface Coverage of Methyl Oleate Monolayers 

Exposed to Varied Concentrations of Gas-phase Ozone 

 

Figure 5.17 shows the decay in surface coverage (Γ) over time for methyl oleate monolayers 

exposed to various concentrations of gaseous ozone. It can be seen that the higher the ozone 

concentration the more rapid the decay in the surface coverage and that the reaction with 

oxygen produced a shallower decay in the surface coverage of deuterated material at the air-

water interface. It can be seen in figure 5.17 that in an oxygen only atmosphere the decay in 

surface coverage was of a much slower rate than when the methyl oleate monolayer reacted 

with ozone. The change in the rate of decay when the monolayers of oleic acid in chapter 3 were 

exposed to low concentrations of gas-phase ozone (~11 to ~ 100 × 1012 molecule cm3) was not 

seen for methyl oleate although the experiments were started at a lower surface pressure so if 

the change in decay rate was a feature of the packing of the film then it may have been missed 
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in this experiment. The surface coverage did not decay to a zero value over the timescales and 

range of ozone concentrations studied, a small residual surface concentration was observed of  ~ 

(0.1 ± 0.025) × 1018 molecule m-2 at the end of some of the experiments. Figure 5.18 shows that 

the R(Q) versus Q signal is zero at this point,  the measurement is in the instrumental noise at 

this low value of surface coverage so it cannot be stated whether there is any deuterated material 

remaining at the interface or not, if there was it would be a very small amount, the 

corresponding surface coverage measurements are given in figure 5.14.  

Figure 5.18 Reflectivity versus Momentum Transfer for a Methyl Oleate Monolayer at the 

Air-water Interface Exposed to a Gas-phase Ozone Concentration of (16.7 ± 

2.3) × 1012 molecule cm-3 

 

In summary the experimental results for monitoring the surface coverage at the air-water 

interface and the monolayer surface pressure of methyl oleate monolayers during exposure to 

gas-phase ozone which was subsequently absorbed into the organic film, were that: 

• The surface pressure of methyl oleate does decay exponentially under exposure to 

ozone in the same manner as the surface coverage data but the surface pressure decays 

more rapidly so would not yield a useful rate constant for determining the presence of 

an intact film at the air-liquid interface accurately. 

• The decay in the monolayer surface coverage with time was faster with exposure to 

increasing ozone concentrations. 
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5.7.4 Kinetic Results 

The fitting of equation 5.10 to the surface coverage data gave a value of k[O3]ozoniserHδ, the 

values of the surface coverage at the start of the reaction and the mixing time were kept constant 

during the fitting process, k[O3]ozoniserHδ was plotted against the concentration of ozone 

produced by the ozoniser, [O3]ozoniserHδ, as shown in figure 5.19  and a line was fit to obtain the 

slope of k[O3]ozoniserHδ with increasing [O3]ozoniser, the slope gives the bimolecular rate constant, 

k. The results of the fitting of equation 5.10 are summarised in table 5.2. The values of 

k[O3]ozoniserHδ are valid for a null reflective water sub-phase of pH 5.5 at a temperature of 20 °C. 
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Figure 5.19 The 2nd Order Kinetic Plot for the Decay in the Surface Coverage of a 

Monolayer of D36 Methyl Oleate Under Conditions of Ozonolysis 

 

Figure 5.19 shows a straight line fit to the experimentally obtained values of k[O3]ozoniserHδ for 

methyl oleate ozonolysis with varied concentrations of ozone. The intercept of the line has a 

very low value consistent with a value of zero as the error is bigger than the value. A value for 

bimolecular rate constant ,k, of (2.72  ± 0.44) × 10- 11 cm2 molecule-1 s-1 was achieved for the 

reaction of a methyl oleate monolayer with gas-phase ozone which had dissolved into the 

organic film then reacted with the methyl oleate.  This value is in agreement with that for oleic 

acid monolayer reacting with gas-phase ozone. The bimolecular rate constant for gas-phase 

ozone reacting with an oleic acid monolayer was (4.5±0.7) × 10-11 s-1 (see chapter 4); a value of 

(7.3 ± 0.9) × 10-11 s-1 was obtained by King et al., (2009).  

To consider if the surface coverage measurements are valid for the reaction of ozone with 

methyl oleate or if transport of ozone is contributing to the kinetics, the following mechanisms 

must be constrained: 

• Diffusion of gas phase ozone from the bulk into the surface region near to the 

monolayer (m6�%%no���). 

• Accommodation of the gas-phase ozone into the organic film (m��?��%����&). 
• The reaction of the methyl oleate monolayer film with the ozone accommodated within 

the monolayer (m����?���).  
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The time taken for ozone to diffuse to the monolayer and to reach a stable concentration (for 

mixing to complete) was calculated. The characteristic time for the diffusion of ozone (τdiffusion) 

in the gas-phase was calculated from equation 5.13 (Seinfeld and Pandis, (2006); King et al, 

(2009)) where d is the thickness of the monolayer, (~15 Å) also known as the characteristic 

distance, Dg is the gas-phase diffusion constant for ozone (1.80 × 10-5 m2 s-1) (Seinfeld and 

Pandis, 2006; King et al. 2009).  

m6�%%no��� = 6>
p:q         (E 5.13) 

The characteristic diffusion time for ozone to diffuse to the monolayer was 5.56 × 10-14 s for a 

20 Å thickness monolayer and 3.13 × 10-14 s for a monolayer thickness of 15 Å. 

The characteristic time taken for the accommodation of ozone at the interface or interfacial 

equilibrium was calculated according to equation 5.14 where Dl denotes the diffusion constant 

for ozone in an organic liquid (1 × 10-9 m2 s-1) (Seinfeld and Pandis. 2006; King et al. 2009).  

m��?��%����& = 6>
r>:s         (E. 5.14) 

The accommodation time was 2.28 × 10-10 s for a monolayer thickness of 15Å and 4.05 × 1010 s 

for a thickness of 20Å. 

The characteristic time taken for the reaction of ozone with methyl oleate, τreaction was 

determined by the following equation 5.15, where k is the bimolecular surface reaction rate 

constant between methyl oleate and ozone, the value k (2.7 × 10-11 cm2 molecule-1 s-1) was 

converted to units of m mol s-1 (1.6 × 109 m mol s-1). The surface concentration of methyl oleate 

(surface coverage) Γmethyl oleate  of 2 × 1018 molecules m-2 was taken from the experimental data 

and converted to units of mol  (3.3 × 10-6 mol). 

m����?��� = *
b	B]"!tus	vs" !"        (E. 5.15) 

As equation 5.15 is dependent on the starting value of Γ which was not consistent it has been 

calculated for a surface coverage of methyl oleate(Γmethyl oleate) of 2 × 1018 molecules m-2 and for 

3 × 1018 molecules m-2 giving results of 1.8 × 10-4 s and 1.2 × 10-4 s respectively. 

What this analysis shows is that as with oleic acid in chapter 3, the characteristic lifetime of the 

reaction of an methyl oleate monolayer with gas-phase ozone is much slower than the diffusion 

of ozone to the air-water interface and the interfacial accommodation of ozone therefore the 

measured results of surface coverage are valid for the reaction between the monolayer and 
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ozone and are not measuring the process of diffusion or accommodation rather than the reaction 

of the ozone with the monolayer.  

The uptake coefficient (γ) for ozone on a cloud droplet or aerosol particle possessing a 

monolayer of methyl oleate can be estimated using equation 5.16 from Hearn et al., (2005). 

Where H is the Henry’s law constant of 480 mol m-3 atm-1, R is the gas constant of 8.204 × 10-5 

atm m3 mol-1 K-1, T is the temperature at cloud base height in the troposphere, c̅ is the average 

molecular speed of gas-phase ozone (360 m s-1), δ is the thickness of the film (20 × 10-10 m).  

V = pxyz
�̅ '@	E��?A&	�&��?�         (E 5.16) 

The uptake coefficient γ calculated for different temperatures are given in table 5.3. The uptake 

coefficient was calculated at a temperature of 293 K for comparison with other studies (Hearn et 

al. 2005; King et al. 2009) and at 273 K and 278 K as temperatures representative of the cloud 

base temperature for a warm marine cloud (Snider, 1999).  To enable comparison to the uptake 

coefficient calculated in chapter 3 the uptake coefficient was also modelled for a monolayer 

thickness of 15Å.  

The uptake coefficients calculated for different temperatures are given in table 5.3. 

Table 5.3 Uptake Coefficients for Ozone into a Cloud Droplet/ Aerosol with a Methyl 

Oleate Monolayer at the Air-water Interface  

Γ / 1018 

molecule m-2 

Methyl 

Oleate Film 

Γ / 10-6 

mole m-2 

δ / Å 

Methyl 

Oleate Film 

γ at T = 293 

K 

(~20°C) 

 / × 10-6 

γ at T=278 K 

(~5°C) 

 / × 10-6 

γ at T=273 K 

(~0°C)  

/ × 10-6 

2 3.32 15 1.1 0.99 0.97 

2 3.32 20 1.4 1.3 1.3 

3 4.98 15 1.6 1.5 1.5 

3 4.98 20 2.1 2 1.9 
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5.8 Discussion 

The discussion will focus on the following aspects of this work; 

• The surface coverage and surface pressure measurements and the kinetic results of the 

decay of methyl oleate monolayers over time during the reaction with gas-phase ozone 

will be compared to other studies. 

• Discussion of the reaction mechanism for a methyl oleate monolayer reacting with gas-

phase ozone at the air-water interface. 

5.8.1 Discussion of the Surface Coverage and Surface Pressure Results 

The decay in the surface coverage of methyl oleate at the air-water interface during a reaction 

with ozone did not feature the plateau seen at a surface coverage of ~ 2 × 1018 molecule m-2 in 

the decay in the surface coverage of oleic acid monolayers reacting with ozone. The plateau in 

the decay in the surface coverage of oleic acid at the air-water interface was probably the result 

of the reorganization of the packing of the monolayer at a surface coverage of ~ 2 × 1018 

molecule m-2. The methyl oleate experiments were started at a lower surface coverage than the 

oleic acid ozonolysis experiments so the packing of the monolayer during the reaction may have 

meant that the plateau was not seen.  The difference in the surface pressure at the beginning of 

the experiments between the oleic acid monolayer (~ 20 to 22 mN m-1) and the methyl oleate 

monolayer (~ 7 to 10 mN m-1) was due to the rapid decay of methyl oleate at the start of the 

experiment.  

The final surface coverage of deuterated material remaining at the air-water interface after 

sustained ozone exposure was within the region of measurement noise for the neutron 

reflectivity measurements of the methyl oleate monolayers. In the work of Mochida et al., 

(2006) methyl oleate was also observed to almost completely oxidise away from particles 

monitored with quadrapole aerosol mass spectrometry, under sustained ozone exposure. The 

surface pressure of the methyl oleate monolayer decreased rapidly from the initiation of the 

ozone supply to the chamber and reached a value of zero in advance of the surface coverage.  

A monolayer of methyl oleate at the air-water interface of a cloud droplet would be oxidised 

away by ozone from the air surrounding the droplet. The reaction products, as demonstrated in 

chapter 3 for the ozonolysis of oleic acid, did not remain at the air-water interface thus must be 

volatile or soluble.  
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5.8.2 Discussion of the Kinetic Results 

For comparison the values relating to the mixing of ozone and its uptake to the monolayer are 

given in table 5.4 for the King et al., (2009) oleic acid ozonolysis study and for the oleic acid 

experiment in chapter 3 together with the values from this chapter. The decay of an oleic acid 

monolayer as it reacts with ozone would be expected to be similar to that of methyl oleate as 

methyl oleate is the methyl ester of oleic acid, thus the structure of the molecule beyond the 

head group is very similar and ozone is expected to initially react with the double bond in the 

tail of the methyl oleate molecule so the initial step of the reaction would be the same as for 

oleic acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Oxidation of  Methyl Oleate Monolayers by Ozone Chapter 

5 

 

 

354 
 

 

 

From table 5.4 it can be seen that is a discrepancy in the value of τreaction as published by King et 

al., (2009) and that which I have calculated. This is due to a mistake in the published paper 

where the τreaction was calculated with a first order rate constant of k = 10-3 s-1 instead of using 

bimolecular k. Repeating the calculation of τreaction with bimolecular k from the King et al., 

(2009) paper gives a value of 6.8 × 10-5 s. The values of the bimolecular rate constant and for 

the time taken for ozone to diffuse to the film, be accommodated in the organic film and react 

for methyl oleate are in good agreement with those for oleic acid monolayers reacting with gas-
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phase ozone at the air-water interface. The agreement is a pleasing result as the measurements in 

the work of King et al., (2009) were taken on a different reflectometer to the work in this thesis 

and the reaction chamber volume was reduced for the methyl oleate ozonolysis experiments 

from the volume of the chamber in chapter 3 yet the results are in good agreement showing that 

the experimental method produces reliable results. The uptake coefficients are slightly smaller 

for ozone to a methyl oleate film than for ozone to a film of oleic acid.  

 

5.8.3  A Proposed Mechanism for the Reaction of Ozone with a Methyl Oleate Monolayer 

The following pages give a possible mechanism for the ozonolysis of methyl oleate at the air-

liquid interface based on literature. The work of Ziemann (2005) and the work of Zahardis and 

Petrucci, (2007) on the ozonolysis of oleic acid form the basis of the chemical mechanism of 

decay detailed here, together with the work Mochida et al., (2006).The reaction of methyl oleate 

with ozone takes several steps which are detailed here as individual steps in figure 5.20 to 5.27. 

Zahardis and Petrucci, (2007) and give an overview of the process of unsaturated alkene 

ozonolysis as follows; 

• A primary ozonide is formed by addition of O3 to the double bond. 

• Cleavage produces aldehydes (ketones) and carbonyl oxides (Criegee intermediates). 

• The carbonyl oxide/ Criegee intermediate and the aldehyde / ketone recombine forming 

secondary ozonides. 

• The secondary ozonides gradually decompose to lower molecular weight products such 

as nonanal, 9-oxo-methyl nonanonate, nonanoic acid and the azelaic acid methyl ester 

(Shilling et al. 2007). 

• The Criegee intermediates can attack other stable species. 
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1. Ozone adds to the double bond of the oleic acid molecule in a 1,3 cycloaddition forming 

a primary ozonide. The primary ozonide is unstable and would not be formed in a large 

enough concentration to contribute to the reflectivity signal in the measurements taken 

for this work. 

 

Figure 5.20 Formation of a Primary Ozonide from Methyl Oleate and O3 
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2. The primary ozonide decomposes cleaving the molecule at the site of the double bond 

in the original methyl oleate molecule forming an excited Criegee intermediate and a 

stable carbonyl. This results in 2 sets of different reaction products which follow 

different pathways detailed here as pathway A and B. 

 

Figure 5.21 The Decomposition of the Primary Ozonide Adapted from Vollhardt 

and Shore, (2003) 
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3.  Depending on where the molozonide structure in the primary ozonide is cleaved there 

are two subsequent reaction pathways denoted as pathway A and pathway B. 

Pathway A 

The primary ozonide is cleaved between the oxygen atoms in the molozonide structure and at 

the carbon-carbon bond site.  

The Criegee intermediate (I) is an unstable, excited intermediate which would not be observed 

with neutron reflectometry due to its very short lifetime under the conditions of the experiment. 

The Criegee intermediate can stabilize fulfilling the charge on the oxygen atom forming stable 

Criegee intermediate (I). Alternatively the excited Criegee intermediate (I) can isomerize 

forming nonanoic acid. 
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Figure 5.22 The Cleavage of the Primary Ozonide Produces a Criegee Intermediate (I) and 

9-oxo-methyl Nonanonate. The Criegee Intermediate (I) then Stabilizes or 

Isomerises 
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The reaction of stabilized Criegee intermediate I and methyl oleate can produce Methyl-9-

oxostearate, methyl-10-oxostearate, nonanal or 9-oxo-nonanoic acid. Figure 5.23 shows methyl-

9-oxostearate as an example. 

Figure 5.23 The Formation of Methyl-9-oxostearate and Nonanal from Criegee 

Intermediate (I) and Methyl Oleate 
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Pathway B 

The Criegee intermediate (II) is an unstable, excited intermediate which would not be observed 

with neutron reflectometry due to its very short lifetime under the conditions of the experiment. 

The Criegee intermediate can stabilize by fulfilment of the charge on the oxygen atom forming 

stable Criegee intermediate (II). Alternatively the excited Criegee intermediate (II) can 

isomerize where forming the methyl ester of azelaic acid.  

Figure 5.24 Pathway B. The Cleavage of the Primary Ozonide Produces a Criegee 

Intermediate (II) and Nonanal. The Excited Criegee Intermediate (II) can 

Stabilize or Isomerise to the Methyl Ester of Azelaic Acid 
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(nonanal) producing secondary ozonides (figure 5.24) which subsequently decompose to lower 

molecular weight species such as nonanal, 9-oxo-methyl nonanonate, nonanoic acid and the 

azelaic acid methyl ester (Shilling et al. 2007). Alternatively the combination of two stabilized 

Criegee intermediates can form a diperoxide which decomposes to 9-oxo-methyl nonanonate 

(figure 5.26) or nonanal (figure 5.27).  
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Figure 5.25 The Formation of Secondary Ozonides from Criegee Intermediates and a Stable 

Molecule 
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The stabilized Criegee intermediates could also react producing diperoxide molecules which 

decompose into 9-oxo-methyl nonanonate (figure 5.25) or nonanal (figure 5.26). 

Figure 5.26 The Formation of Diperoxide from Two Stabilized Criegee Intermediate (II) 

Molecules. The Diperoxide Decomposes into Two 9-oxo-methyl Nonanonate 

Molecules and Oxygen 

 

 

 

 

 

 

 

 

 

 

 

 

+

+ + O O
O

H

O

OCH3

O
H

O

OCH3

O
+

O
-

H

O

 OCH3

O

H

O

O
H

O

O O

CH3CH3

O
+

O
-

H

O

 OCH3

Stable Criegee intermediate (II ) Stable Criegee intermediate (II ) 

Diperoxide Decomposition 

9-oxo-methyl nonanonate 9-oxo-methyl nonanonate 



The Oxidation of  Methyl Oleate Monolayers by Ozone Chapter 

5 

 

 

365 
 

Figure 5.27 The Formation of Diperoxide from Two Stabilized Criegee Intermediate 

Molecules (I). The Diperoxide Decomposes into Two Nonanal Molecules 
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Gilman et al., (2004) found that in the presence of a longer chained saturated molecule such as 

stearic acid (C18, vapour pressure 1 × 10-6, solubility 0.00029, Gilman et al. 2004 after Yaws 

1994, and Lide, 2004), more volatile species such as nonanoic acid could have a prolonged 

residence time at the air-liquid interface. However Voss et al, 2007 concluded that nonanoic 

acid was soluble in an aqueous sub-phase. 

Voss et al. 2007 report that nonanal would evaporate and not persist at the air-water interface. 

Wadia et al, 2000 measured nonanal in the gas-phase after reacting ozone with the lipid OPPC, 

(which has a cis configuration tail which is composed of oleic acid), on a Langmuir trough.  Our 

observation is that if it was a product in the neutron experiments it did not persist at the air-

water interface thus this study is in agreement with Voss et al., 2007 and Wadia et al., 2000. 

If Criegee intermediate (I) and methyl oleate react nonanal and methyl-9-oxo-stearate or 

methyl-10-oxo-stearate are produced. Methyl-9-oxo-stearate and methyl-10-oxo-stearate are not 

volatile, nor soluble so could be present at the air-liquid interface, if a large number of these 

molecules were present then oligomer formation could occur however it would be unlikely to 

show in this study as it would be present as patches, should these form a pattern then it could 

potentially be seen with off specular neutron reflectivity measurements (Rennie, 2009).  There 

is very little experimental data relating to these compounds and none specifically related to their 

behaviour at the air-water interface at present.  

Mochida et al., (2006) studied the gas-phase formation of high molecular weight organic 

peroxides from the reaction of methyl oleate with ozone via the formation of stabilized Criegee 

intermediates in the context of organic aerosol particles. Measurements were taken of particle 

composition after exposure to ozone using an aerosol flow tube with a quadrupole aerosol mass 

spectrometer. The methyl oleate was mixed in dioctyl adipate and myristic acid at different 

mole fractions. Pure methyl oleate particles and those with 0.04 mole fraction methyl oleate in 

the dioctyl adipate which is inert but does vary the concentration of double bonds when 

subjected to ozonolysis gave two secondary ozonides as major products. A mixture of methyl 

oleate and myristic acid gave α-acyloxyalkyl alkyl peroxides resulting from the attack of 

myristic acid by the secondary Criegee intermediates.  The secondary Criegee intermediates and 

aldehydes react to produce secondary ozonides but when the mole fraction of myristic acid was 

higher the reaction of the secondary Criegee intermediate with the carboxylic group competes 

with this process changing the product chemistry and more high molecular weight organic 

peroxides are produced. The same study states that the methyl oleate and ozone reaction is less 

likely to produce polymers than the oleic acid and ozone system as the methyl oleate does not 

have the free carboxylic acid head group which enables polymerisation as oleic acid does. The 
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reaction pathway for methyl oleate with ozone is very similar to that of oleic acid (Ziemann, 

2005, Hung et al. 2005, Mochida et al. 2006). Mochida et al.,(2006) showed that for the reaction 

of methyl oleate with ozone the stabilization of Criegee intermediates is favoured over their 

isomerization, which would form nonanoic acid and the azelaic acid monomethyl ester.  The 

mixture of myristic acid which possesses the carboxylic acid group and methyl oleate which 

does not, shows that α-acyloxyalkyl peroxides were the dominant high molecular weight 

reaction product from ozonolysis of a particle of mixed fatty acid and methyl ester composition 

which could lead to the reaction of saturated molecules by hydrogen abstraction in an 

atmospheric particle (Mochida et al. 2006). Mochida et al., (2006) also note that in the presence 

of water which was minimal in their work, then low molecular weight products would be more 

favourable formed by the reaction of the secondary Criegee intermediate with water. Thus we 

conclude that oligomerization is not prevalent in our system. 

 

5.9 The Atmospheric Monolayer Lifetime 

As with the oleic acid work in the same manner as in chapter 3, an atmospheric lifetime for a 

methyl oleate monolayer at the air-water interface when exposed to gas-phase ozone from 

outside the cloud droplet was calculated for an atmospheric ozone concentration of 40 ppb 

which translates to a concentration of 1.73 × 106 molecule cm-2 in the tail region of the 

monolayer. The lifetime, τmethyl oleate was calculated from equation 5.17. 

m��?A&	�&��?�	{	 8
|	[D;]

        (E.5.17) 

The calculated lifetime for a methyl oleate monolayer at the air-water interface exposed to a 

background concentration of ozone of 40 ppb is ~5 hours and 53 minutes. The length of the 

molecule was modelled as 20 Å. The methyl ester, methyl oleate in monolayer form has a 

slightly longer lifetime than that of oleic acid which was ~3.54 hours when exposed to a 

background concentration of ozone of 40 ppb as calculated in chapter 3.  

5.10 Suggested Further Research 

The Mochida et al., study of the ozonolysis of particles of methyl oleate with myristic acid 

(C14H28O2) which has a free –COOH group, could be adapted if myristic acid could be used as a 

component of a mixed monolayer with methyl oleate, making an interesting kinetic study for 

comparison with the Mochida et al., (2006) work on the ozonolysis mechanism for unsaturated 

compounds in an atmospheric droplet or aerosol setting and a valuable contribution to the 
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understanding of the reactions in mixed particles as it would provide an alternative model 

system to the mixed oleic and stearic acid films studied in chapter 4. 

Xiao and Bertram, (2011) estimated that a methyl oleate particle under exposure to gas-phase 

NO3 which reacts with the double bond as ozone does; at the surface of the liquid particle had a 

lifetime a lifetime of 8 to 28.5 minutes which was calculated, based on data for methyl oleate 

mixed with squalane, diethyl sebacate and dioctyl sebacate. The uptake coefficient for NO3 onto 

methyl oleate was (1.4 ± 8.6/-0.5) × 10-1. Thus it would appear that NO3 would oxidise methyl 

oleate more rapidly than ozone, this could be tested for the air-water interface by repeating the 

experiment in this chapter with NO3 as the reactant in place of ozone, the author took part in an 

experiment which attempted to do this as a collaboration with Christian Pfrang (University of 

Reading) but the data was not available for this thesis and had not been analysed to the point of 

calculating an atmospheric lifetime when this thesis was completed. Diurnal concentrations of 

reactive gasses could make one reactant more important than another during hours of darkness 

as the concentration of ozone is dependent on photochemistry. 

 

5.11 Conclusions 

The second order rate constant is in good agreement with that of oleic acid obtained in chapter 4 

and by King et al., (2009) suggesting that it is the double bond in the hydrocarbon chain of the 

film species which is determining the reaction rate and that the interaction of dissolved ozone in 

the sub-phase which may occur in this system and any reaction with the head group of the 

amphiphile is not determining the rate of the reaction.  
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The Oxidation of Phospholipid Monolayers 

6.0 Abstract 

The surface coverage and surface pressure of a monolayer of the phospholipid 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC) reacting with aqueous hydroxyl radical was studied using 

three deuterated isotopologues of DPPC,  fully deuterated (d75) DPPC, head group deuterated 

(d13) DPPC and tail group deuterated (d62) DPPC. The use of three different deuterations of 

DPPC allowed neutron reflectivity measurements to be taken showing the surface coverage of 

different parts of the molecule with reaction time to show where material was being lost from 

the air-water interface. The surface coverage of the head group deuterated monolayer declined 

most rapidly in the presence of OH, but OH generated in the subphase beneath the monolayer 

also penetrated the tail group of the DPPC molecule and reacted with the CH2 groups within the 

saturated tail group. The loss in the surface coverage of the tail deuterated DPPC proceeded at a 

slower rate than the head group and the surface coverage of a fully deuterated DPPC monolayer 

reacting with OH declined at a rate which between the deuterated head group DPPC and the 

deuterated tail group DPPC as the decay of the fully deuterated DPPC monolayer surface 

coverage was the combination of the head and tail group reacting.  

 

6.1 Introduction 

In chapter 2 it was shown that aqueous OH radical initiated the oxidation of a stearic acid 

monolayer at the air-water interface. It was not clear where on the stearic acid molecule the OH 

radical reacted in the initial step of the reaction with stearic acid. To better understand the 

mechanism by which aqueous OH radical reacts with a monolayer at the air-water interface the 

experiment in this chapter was designed to show if OH would penetrate the lipid tails of the 

DPPC molecule or just attack the head group.  

A neutron reflectometry experiment was conducted to monitor the oxidation of a DPPC (1,2-

dipalmitoyl-sn-glycero-3-phosphocholine) phospholipid monolayer at the air-water interface by 

aqueous-phase OH radical to mimic the breakdown of a surface active phospholipid as a 

component of a cloud droplet or aerosol film. DPPC was selected for study as it is commercially 

available as three different isotopologues with the whole molecule deuterated, deuterated tails 

only and deuterated head only. The DPPC isotopologues were used to demonstrate where the 

lipid molecule was attacked by aqueous OH radical in its initial step; neutron reflectometry was 

used to selectively follow the loss of deuterium in specific parts of the molecule. It was 

hypothesised that if the OH radical penetrated the monolayer tail region the monolayer would 
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persist for longer at the air-water interface than if the OH radical attacked the head group of the 

lipid as loss of the phosphocholine head group would greatly increase the aqueous solubility of 

the lipid. 

 

6.2 Aims 

The aims of studying the oxidation of a DPPC monolayer by aqueous OH radical were: 

1. To show how the phospholipid molecule is lost from the air-water interface during a 

reaction with aqueous OH radical using isotopologues of DPPC in fully deuterated and 

partially deuterated form (heads deuterated and tails deuterated).  

 

2. To measure the site specific kinetics of the initial reaction step as aqueous OH radical 

attacks a saturated phospholipid monolayer. 

 

6.3 Background 

6.3.1 Phospholipids and the Atmosphere 

When waves break and collide, jets of small droplets become airborne, these droplets contain 

components of the sea surface microlayer, the top 1 to 1000 µm of the water column which is 

enriched in organic substances such as the lipid DOPC (dioleoyl phosphatidylcholine) 

(Gašparović et al. 2008), the fatty acid content of the sea surface microlayer comes from the 

degradation of planktonic lipid material (Marty et al. 1979).  Lipids break down through 

oxidation to smaller molecules such as fatty acids, methyl esters and dicarboxylic acids which 

are routinely sampled in atmospheric waters, Marty et al., (1979) compared the composition of 

the sea surface microlayer to marine aerosol samples finding that the pattern of fatty acid lipids 

in marine aerosol samples reflected the distribution of planktonic fatty acid lipids in the sea 

surface microlayer but that the aerosol contained a higher fraction of low molecular weight fatty 

acids (< C12) than the sea surface microlayer (Marty et al. 1979).  

Oxidation of the DPPC lipid molecule will be discussed in this chapter.  The DPPC molecule 

studied here and the POPC molecule used in the work of Thompson et al., (2010) form part of 

the mammalian lung surfactant (Rooney et al. 1994). The POPC (1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine) molecule is a natural unsaturated lipid, the DPPC (1,2-dipalmitoyl-
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sn-glycero-3-phosphocholine) molecule is a lipid possessing two saturated palmitic acid tails, 

the POPC lipid has two unsaturated tails.  

Figure 6.1  Structure of the DPPC Molecule (C40H80NO8P) 

 

The surface pressure verses area per molecule isotherm of a monolayer of DPPC under 

compression at a rate of 20 cm2 / minute is given in figure 6.2. The monolayer collapses at a 

surface pressure of ~ 50 to 60 mN m-1 depending on the subphase temperature. The monolayer 

phases are labelled. The experiments in this chapter were conducted at a starting surface 

pressure of <37 mN m-1 at a temperature of 18°C within the liquid condensed phase of the 

isotherm away from regions of phase transition. The DPPC monolayer phase transitions are 

highly temperature dependent as demonstrated in figure 6.3. 

Figure 6.2 The Surface Pressure versus Surface Area Isotherm of DPPC at the Air Water 

Interface at 22°C on a Subphase of Pure Water 

 

The isotherm in figure 6.2 was adapted from Can et al., (2008). 
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Figure 6.3 The Surface Pressure versus Surface Area Isotherm of DPPC at the Air Water 

Interface at Varied Temperatures on a Subphase of Pure Water 

 

The isotherms in figure 6.3 were adapted from Yang et al., (1994), Crane et al., (1999) and Ma 

and Allen, (2006). 

 

6.3.2 Lipid Oxidation 

The oxidation of surface-active lipids has both a potential physical effect on cloud droplet 

monolayers as well as toxicological effects on the human body presenting an illustration of the 

impact of atmospheric chemistry on health. In many countries the ozone levels are subject to 

statutory regulation through limits on the levels of precursor species due to evidence of ill 

effects on health (Finlayson-Pitts and Pitts, 2000). The health effects of ozone on the lung have 

been intensively studied and the health implications of exposure to air pollution are summarised 

by Kampa and Castanas, (2008). The lining of alveoli in the mammal lung contains a monolayer 

of lipids which lower the surface tension at the air-liquid interface within the lung allowing the 

alveoli to expand and contract when an organism breathes (Wadia et al. 2000; Hawgood and 

Clements, 1990; Goerke, 1998). The pulmonary surfactant which is composed of ~80% 

phosphatidylcholines (Veldhuizen et al. 1998,) starts as tightly packed multiple layers which are 

secreted into the alveoli where they are hydrated and then expand into tubular myelin which is a 

lattice like structure. The lung surfactant spreads from the tubular myelin forming an interfacial 
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monolayer (Hawgood and Clements, 1990). The phosphocholines which form the interfacial 

monolayer in the lung have fatty acid components in the tail region, such as OPPC (1-oleoyl-2-

palmitoyl-sn-glycero-3-phosphocholine) which has an oleic acid and a palmitic acid strand in 

the tail region of the molecule. The unsaturated oleic acid strand can be broken down by ozone 

producing products which inflame the lung (Wadia et al. 2000). 

Reaction of saturated phospholipids with aqueous hydroxyl radical can be expected based on the 

findings in chapter 2 where a monolayer of the saturated fatty acid, stearic acid was oxidised 

and lost from the air-water interface conforming to a degredated chain mechanism where lower 

molecular weight surface active product molecules formed and were subsequently reacted away 

from the air-water interface. The reaction of lipids with hydroxyl radical is associated with 

damage to cells (Mello Filho et al. 1984). The saturated DPPC molecule is the dominant 

phospholipid in red blood cells (Lockwood and Lee, 1984; Vance and Vance, 1985; Can et al. 

2008). Hydroxyl radical is inhaled into the lung in air as well as being produced within the lung 

lining as the result of an immune response to thermal injury (Till et al. 1985). OH radical can be 

formed in the lung by the following process in the presence of transition metals (Valleyathan 

and Shi, 1997). 
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The OH radical can initiate oxidative damage such as the breakdown of cell walls by lipid 

peroxidation (molecular breakdown in a chain reaction), a process which can cause cell death 

(Valleyathan and Shi, 1997). OH radical can also cause strand breakage in DNA, damage 

proteins rendering them inactive and unable to catalyse processes within the body, and disrupt 

the activity of the mitochondria which fuel cell growth (Valleyathan and Shi, 1997).  

OH can be produced from ozone reacted with alkenes such as oleic acid or the unsaturated tail 

group of certain phospholipids by the following reaction confirmed by Atkinson and Aschmann 

(1993): 

� + ��!��
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There are multiple mechanisms by which the generation of OH could occur as a result of the 

reaction of ozone with an alkene, the mechanisms are summarised by Finlayson-Pitts and Pitts 

(2000). 

During collaborative work the reaction of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine) monolayers with gas-phase ozone was investigated using neutron 

reflectometry, this work has been published by Thompson et al., (2010). The POPC molecule 

possesses two tail strands, one of which is saturated, the other unsaturated. Thompson et al., 

(2010) showed that gas-phase ozone reacts with the unsaturated strand attacking the double 

bonds in the unsaturated tails of the molecule (Lai et al. 1994; Pryor et al. 1996; Thompson et 

al. 2010) and a subsequent reaction occurs which oxidises the saturated tail strand. The 

secondary intramolecular reaction was attributed to the formation of OH radical. These findings 

provided the basis for an experiment where a deuterated DPPC monolayer was exposed to 

aqueous-phase OH radical and the surface coverage of the monolayer was monitored with 

reaction time. Reactions 6.6 to 6.8 give a mechanism by which ozone could initiate the 

production of OH which could subsequently react with saturated alkanes within a monolayer so 

studying the mechanism of OH oxidation of phospholipid monolayers will provide additional 

data to support the findings of Thompson et al., (2010). The experiment in this chapter will 

confirm whether aqueous OH radical can penetrate a phospholipid monolayer and oxidise the 

saturated tail strands of the DPPC molecule.  

 

6.4 Experimental 

The experimental section is presented in the following order: 

• Experimental objectives (6.4.1). 

• A description of the DPPC samples used for the neutron reflectivity experiments 

(6.4.2). 

• The generation and concentrations of aqueous-phase hydroxyl radical used in the 

neutron reflectivity experiments (6.4.3). 

• The methodology of the neutron reflectivity experiments (6.4.4). 

• The neutron reflectivity data fitting (6.4.5). 
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6.4.1 Experimental Objectives 

The experiment was designed to monitor the properties of surface pressure, Π, and surface 

coverage, Γ, of a monolayer of the phospholipid DPPC at the air-water interface in real time as 

the monolayer was oxidised with aqueous hydroxyl radical. 

The objectives of the experiment conducted on the SURF reflectometer were; 

1. To measure the decay in the surface pressure and the surface coverage of a DPPC 

monolayer at the air-water interface simultaneously whilst the monolayer reacted with 

aqueous-phase hydroxyl radical. 

2. To ascertain whether a DPPC monolayer would persist at the air-water interface under 

sustained exposure to aqueous-phase hydroxyl radical. 

3. To measure the decay of a monolayer of DPPC molecules which were fully deuterated, 

had deuterated head groups only and which had deuterated tail groups only in order to 

study where the hydroxyl radical was reacting with the DPPC molecule and how far it 

was penetrating the monolayer.  
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6.4.2 DPPC Samples 

Three deuterated DPPC samples were used in this work, each had a different degree of 

deuteration which provided a label which when the results were compiled would show where 

the hydroxyl radical was breaking apart the DPPC molecule.  

Figure 6.4 The Fully Deuterated (d75) DPPC Molecule (C40H5NO8PD75) 

 

 

Figure 6.5 The Head Group Deuterated (d13) DPPC Molecule (C40H67NO8PD13) 

 

 

Figure 6.6 The Tail Group Deuterated (d62) DPPC Molecule (C40H18NO8PD62) 

 

The deuterated DPPC samples were purchased from Avanti Polar Lipids. Partial deuteration of 

the DPPC molecule allows a measurement of the surface coverage of the deuterated part of the 

molecule giving a label with which to measure of the persistence of a particular part of the 

DPPC molecule at the air-water interface during a reaction. In this case partial deuteration was 
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used to see where the aqueous OH radical would attack the DPPC monolayer. There are two 

scenarios for where the OH radical could react which are shown in figure 6.7 and figure 6.8 as 

an example using the head group deuterated DPPC molecule. 

Figure 6.7 Reaction Scenario I: Aqueous OH Radical Reacting with the Head Group. The 

Head Group Reflectivity Signal is Rapidly Lost from the Air-water Interface 

 

The OH radical can abstract any hydrogen in the head group, the DPPC head group would 

subsequently decompose in the subphase. The remaining products would potentially remain at 

the air-water interface. The surface coverage of deuterated material at the air-water interface 

would decline rapidly for the head only deuterated DPPC isotopologue once the head group had 

reacted and decomposed.  
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Figure 6.8 Reaction Scenario II: Aqueous OH Radical Reacting with the Tail Group. The 

Head group Reflectivity Signal Persists at the Air-water Interface 

 

In scenario I the surface coverage signal from the deuterated head group would rapidly be lost 

from the air-water interface with reaction time as the OH would abstract the hydrogen in the 

head group leaving soluble product molecules that would not persist at the interface. The same 

rapid loss in surface coverage would be observed for the tail group deuterated DPPC molecule 

and the fully deuterated DPPC molecule. 

In scenario II the OH would diffuse into the gas-phase tail region of the monolayer and abstract 

hydrogen from the CH2 groups comprising the DPPC molecules tail. Where the tail of the 

molecule is deuterated the surface coverage signal would remain at the air-water interface for 

longer than in scenario I but at a different rate of loss to the head group deuterated molecule as  

some of the deuterated product of OH reacting with the tail would remain surface active with an 

intact head group. 

 

6.4.3 The Generation of Aqueous-phase Hydroxyl Radical  

Aqueous-phase hydroxyl radical was generated within the Langmuir trough subphase by 

photolysis of H2O2 using the method described in chapter 2, section 2.4.5 using a 254 nm 

wavelength ultra violet lamp integral to the lid of the reaction chamber which housed the 

Langmuir trough during the reflectometry experiments. The calibration of the lamp is described 

in chapter 2, the lamp was calibrated to find the photolysis rate constant, J using chemical 

O

O

O

H

PO
-

O

D2C

CD2
N

+

CD3
D3C

D3C

O

 

O

 

O

OH

O

O

O

H

PO
-

O

D2C

CD2
N

+

CD3
D3C

D3C

O

O

 

O

O OH

 CH3

OH



The Oxidation of Phospholipid Monolayers  Chapter 

6 

 

 

383 
 

actinometry, and titrations of H2O2 were performed to determine the concentration of H2O2 

consumed during the photolysis reaction as described in chapter 2. The lamps were configured 

with the same two bulbs as photolysis lamp configuration B in figure 2.16, chapter 2 so the 

same calibration is valid for this experiment. The subphase contained 0.32 mol dm-3 H2O2. The 

OH concentration during the photolysis experiments was estimated based on the temporal decay 

of hydrogen peroxide due to photolysis as 15.8 × 1012 mol dm-3 (see chapter 2 section 2.4.7.1 for 

a description of the model used to determine the concentration of aqueous OH). 

 

6.4.4 The Neutron Reflectivity Experimental Method 

The monolayer surface pressure (Π) and surface coverage (Γ) measurements were taken on the 

SURF reflectometer coupled with the ISIS Langmuir trough following the procedure and 

techniques described in chapter 2. The set-up of the reaction chamber surrounding the Langmuir 

trough was as described in chapter 2 for an aqueous-phase ozone oxidation experiment, using 

the reaction chamber shown in chapter 2 as this was made to fit to the SURF reflectometer. The 

lid of the reaction chamber contained the photolysis lamp used to generate OH radical from 

H2O2 in the subphase beneath the monolayer.  

The spreading solutions for the Langmuir trough were made up to a concentration of 1 mg / mL 

DPPC in chloroform. In a typical experiment 100 µL of the spreading solution was spread at the 

surface of the Langmuir trough on a subphase of null reflective water containing 0.32 mol dm-3 

H2O2 and the monolayer was compressed by closure of the Langmuir trough barriers to a surface 

pressure of 38 mN m-1. The pH of the subphase was 5.2, the subphase temperature was 

maintained at 18 °C using a circulating water bath attached to a cooling system in the base of 

the Langmuir trough, it was important to control the temperature to ensure that the 

measurements were repeatable as the DPPC surface pressure isotherm is greatly altered by 

changes in temperature as shown in figure 6.3. Once the DPPC monolayer had been compressed 

to a surface pressure of 38 mN m-1 the Langmuir trough barriers were held still, and the 

Langmuir trough Wilhelmy plate balance was set to record the surface pressure of the DPPC 

monolayer at the air-water interface over time (the kinetic decay in surface pressure). The 

neutron beam to the SURF reflectometer was started simultaneously with the recording of the 

surface pressure kinetic decay measurement. 

The SURF reflectometer was set to count neutrons at intervals of 300 seconds per reflectivity 

(R) versus momentum transfer (Q) data point after counting to an initial current of 50µA to 

accrue the first bin of reflectivity versus momentum transfer measurements which is fitted to 
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equation 6.6 (page 386) to form the initial surface coverage data point. The photolysis lamp was 

switched on, beginning the generation of OH radical when the measured current at the SURF 

reflectometer detector reached a value of 50µA just before the counting of neutrons for the 

second data point was initiated in each experiment. The reaction lasted >3 hours. Figure 6.9 

shows R versus Q plots for monolayers of the three isotopologues of DPPC on an H2O2 

subphase prior to the photolysis lamp being switched on to generate OH radical. It can be seen 

that the head group deuterated DPPC gives the lowest reflectivity as there is less deuterated 

material to measure at the air-water interface. 

Figure 6.9 Reflectivity versus Momentum Transfer Measurement of a DPPC Monolayers 

on a Subphase of Null Reflective Water Containing 0.32 mol dm-3 H2O2 Prior to 

Exposure to OH 

 

Six experiments, two for each isotopologue of DPPC, were achieved in the neutron time 

available. The neutron beam was unreliable during this work; it has been noted in the results 

section where this affected the data acquisition. Blank measurements of the reflectivity versus 

momentum transfer of neutrons from a monolayer of d72 DPPC over time on a subphase of null 

reflective water with H2O2, without photolysis and of a d72 DPPC monolayer on a subphase of 

null reflective water with photolysis (no H2O2), were taken to show the difference in the loss of 

material due to photolysis and due to any reaction of DPPC with H2O2 compared with the loss 

in deuterated material as a result of the reaction of OH radical with DPPC. The experiments 

were conducted at a single OH concentration of 15.8 × 1012 mol dm-3 in the subphase. The OH 
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concentration was controlled by the lamp intensity (photolysis rate constant J) and this was not 

altered. The initial surface coverage at the beginning of the experiments varied as the 

monolayers were spread by different members of the experimental team and some material was 

lost from the interface during this process. 

 

6.4.4.1 Stability of the Neutron Beam 

The neutron beam at ISIS was not very stable during the time awarded on the SURF instrument 

to perform the experiments in this chapter. When the neutron beam was functioning the number 

of neutrons being received at the instrument was low and the current of the beam was variable. 

The variability in the neutron beam resulted in time gaps in the surface coverage measurements 

in some of the experiments where there were no neutrons to measure with. At times when the 

beam current was low points have been co-added together by the instrument scientist Arwel 

Hughes so that a 300 second count to produce a single surface coverage measurement became a 

600 second count to produce a single surface coverage data point and the middle time of the two 

periods of counting provides the time at which the measurement is plotted.  

 

6.4.5 The Neutron Reflectivity Data Fitting 

The DPPC reflectivity versus momentum transfer data was fitted to equation 6.6 using a 

conceptual model of three layers constrained by their scattering length to neutrons (the air above 

an interfacial monolayer, the monolayer and the subphase beneath the monolayer), the scattering 

of neutrons within the model is solved using an Abelès equivalent optical matrix method 

(Abelès  1950) optical matrix methodology. The model treats the monolayer as the area of 

interest as in these experiments the subphase of null reflective water and the air above the 

trough do not contribute to the measurement.  The data fitting method is described in detail in 

chapter 2. The thickness of the monolayer (τ) was varied and the scattering length densisty (ρ) 

was varied to obtain a value of area per head group (Å2), the scattering length of the monolayer 

(b) was a constant in the model.  

The scattering lengths for the different isotopologues of DPPC which were spread at the air-

water interface are given in table 6.1. The reflectivity data was fitted to the relevant scattering 

length (a constant) from table 6.1 and a thickness of ~20 Å (which is varied to fit the model) to 

obtain a value of the monolayer surface coverage according to equation 6.6. 
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Table 6.1 The Scattering Length of the Different Isotopologues of DPPC used in the 

Neutron Reflectivity Experiments 

Molecule Scattering Length 

b / Å 

Scattering 

Length Density 

ρ /Å-2 

Fully deuterated 

d75 DPPC 

808 × 10-5 6.56 × 10-6 

Head group 

deuterated d13 

DPPC 

163 × 10-5 1.32 × 10-6 

Tail group 

deuterated d62 

DPPC 

673 × 10-5 5.46 × 10-6 

 

As explained in chapter 2 the surface coverage is equal to the scattering length density (ρ) 

multiplied by the thickness (τ) divided by the scattering length (b) (E 6.6) which is the same as 

one divided by the area per molecule (APM) (E 6.7). 

9 =
;<

)
           (E 6.6) 

9 =
=

>?@
         (E 6.7) 
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6.5 Results 

The aim of the experiment was to look for site specific kinetics so a change in OH concentration 

was not necessary to monitor this. The decay in the surface coverage and the surface pressure of 

fully deuterated and partially deuterated DPPC monolayers was monitored over reaction time in 

order to determine whether the aqueous-phase OH was attacking the head group first or the tail 

group of the DPPC molecule by comparing the decay in surface coverage and surface pressure 

of the partially deuterated molecules to the fully deuterated molecule.  

The simultaneous neutron surface coverage (Γ) and monolayer surface pressure (Π) 

measurements will be presented in the following order: 

• Fully deuterated DPPC monolayers exposed to aqueous OH radical (6.5.1). 

• Head deuterated DPPC monolayers exposed to aqueous OH radical (6.5.2). 

• Tail deuterated DPPC monolayers exposed to aqueous OH radical (6.5.3). 

• The photolysis only decay of a fully deuterated DPPC monolayer on a subphase of null 

reflective water (6.5.4). 

• The decay of a fully deuterated DPPC monolayer on a subphase of H2O2 without 

photolysis (6.5.5). 

• A summary of the results (6.5.6). 

 

6.5.1 The Decay of the Fully Deuterated DPPC Monolayers Reacting with Aqueous OH Radical 

Two experiments were conducted to measure the decay in the surface coverage of fully 

deuterated DPPC monolayers as they reacted with aqueous OH radical are shown in figure 6.8. 

The photolysis lamp was switched on when a neutron count of 50µA was reached at the detector 

of the SURF instrument, for all the OH radical experiments the second surface coverage point 

onwards was measured under conditions of OH generation. After a loss of approximately 1 × 

1018 molecule m-2 the slope of the decay in surface coverage changes to a slightly shallower 

gradient. The monolayer surface pressure decays to ~ 0.5 mN m-1 then a slight rise occurs 

before the surface pressure reaches zero, this behaviour is similar to that exhibited by stearic 

acid reacting with aqueous OH radical in chapter 2. 

The gap in the surface coverage measurement frequency at 2500 to 5000 seconds is the result of 

a low current of protons to the target which produces the neutron beam at the ISIS facility. The 

beam did not fail completely but was not of a sufficient strength to accrue a rapid measurement 

thus the surface coverage point at  ~3600 seconds was obtained from the low reflectivity versus 
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momentum transfer signal over 2000 seconds, it can be seen that the error bar on this point is 

large. The reflectivity versus momentum transfer data was fitted to equation 6.6 as individual 

points to avoid the conceptual model taking iterations based on the previous measurement so 

that this point did not influence the subsequent surface coverage measurements in the 

experiment.  

Figure 6.10 The Decay in the Surface Coverage of Fully Deuterated DPPC Monolayers 

Exposed to Aqueous-phase OH Radical 

 

The surface coverage data in figure 6.10 and in subsequent figures is shown in the figure key 

with the corresponding surface pressure data to distinguish between repeat experiments. 

Figure 6.11 shows the reflectivity versus momentum transfer of neutrons which have been 

reflected by the fully deuterated DPPC monolayer at the air-water interface at the beginning 

(first point) and the end of the experiment (last point) for which the surface coverage versus 

time measurement is shown in figure 6.10 as open circles. It can be seen that there was a signal 

of reflectivity above the instrumental noise at the end of the experiment indicating that at the 

point where the experiment ended there was still a small amount of deuterated material 

remaining. 
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Figure 6.11 The Neutron Reflectivity versus Momentum Transfer Measurement of a 

Monolayer of Fully Deuterated DPPC at the Air-water Interface  

 

 

6.5.2 The Decay of the Head Group Deuterated DPPC Monolayers Reacting with Aqueous OH 

Radical 

Two measurements of d13 DPPC monolayers composed of molecules with the head group 

deuterated are shown in figure 6.12.  The gaps in the surface coverage data sets are where the 

neutron beam was lost temporarily during the experiment. The surface pressure at the air-water 

interface decayed to a value of ~ 3 mN m-1before rising by 1 mN m-1 and subsequently decaying 

to zero. The surface coverage signal from the deuterated head group decayed to zero in the 

presence of OH in < 7000 seconds.  Figure 6.13 shows the R versus Q data for a head deuterated 

DPPC monolayer at the air-water interface prior to reaction, which formed the first surface 

coverage value plotted in figure 6.12 as a filled in circle, and the final surface coverage point of 

the same data set once the monolayer had reacted with OH. It can be seen that there are gaps in 

the final R versus Q data set where the neutron beam was fluctuating and that the data is noisy 

as there was little deuterated material remaining to measure.  
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Figure 6.12 The Decay in the Surface Coverage of Head Group Deuterated DPPC 

Monolayers Exposed to Aqueous-phase OH Radical 

 

Figure 6.13 The Neutron Reflectivity versus Momentum Transfer Measurement of a 

Monolayer of Head Group Deuterated DPPC at the Air-water Interface  
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6.5.3 The Decay of the Tail Group Deuterated DPPC Monolayers Reacting with Aqueous OH 

Radical 

Figure 6.14 shows the decay in surface coverage of a monolayer of d62-DPPC with the tail 

group deuterated when exposed to aqueous OH radical. OH radical did react with the tail as a 

gradual decay can be seen. The measurement repeated well, the repeat measurement was taken 

for a longer time period as the neutron beam was lost at the end of the initial experiment. In the 

repeat at low values of surface coverage < 0.5 × 1018 molecule m-2 the surface coverage 

appeared to rise again. It can be seen from figure 6.15 which shows the R versus Q data 

collected for the last surface coverage point as filled in squares that there are gaps in the 

reflectivity signal and that the errors were larger on this data thus the apparent rise in surface 

coverage of the last point in figure 6.14 is not genuine. 

 The surface pressure decayed to a value of ~ 0.2 mN m-1 then increased slightly before 

decaying as in previous experiments. The surface pressure did not decay to zero at the end of the 

experiment due to the formation of bubbles beneath the Wilhelmy plate.  

If the temporal profile (Γ versus time) of d62-DPPC and d13-DPPC matches then it shows that 

OH was reacting indiscriminately with hydrogen at any point along the molecule regardless of 

distance from the subphase where the OH was generated. If the decay of the d62-DPPC and 

d13-DPPC are different then the experiments show that the OH radical preferentially abstracts 

hydrogen from a specific position on the DPPC molecule. It can be seen by comparing figure 

6.12 and figure 6.14 that the surface coverage of the d13-DPPC decays more rapidly than the 

surface coverage of d62-DPPC in the presence of OH. 
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Figure 6.14 The Decay in the Surface Coverage of Tail Group Deuterated DPPC 

Monolayers Exposed to Aqueous-phase OH Radical 

 

Figure 6.15  The Neutron Reflectivity versus Momentum Transfer Measurement of a 

Monolayer of Tail Group Deuterated DPPC at the Air-water Interface  
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6.5.4 The Photolysis Only Decay of a Fully Deuterated DPPC Monolayer on a Subphase of Null 

Reflective Water 

The DPPC sample did not appear to photolyse. There was little loss in the surface coverage of 

the DPPC monolayer over >25000 seconds when exposed to the photolysis lamp without H2O2. 

The monolayer surface pressure decayed to a value of 0 mN m-1 over 15000 seconds, for the 

fully deuterated and head deuterated DPPC monolayers in the presence of OH the surface 

pressure decayed to zero in < 8000 seconds, the measurement of the decay in the surface 

pressure of the tail deuterated DPPC was affected by bubble formation beneath the Wilhelmy 

plate. The decay in the surface pressure versus time features a slight rise at low surface 

pressures before decaying to zero.  

The surface coverage data was fitted to an exponential decay (equation 6.8) 

9 = 9A�
�B%         (E 6.8) 

Figure 6.16 The Decay of a Fully Deuterated DPPC Monolayer with Photolysis on a 

Subphase of Null Reflective Water with an Exponential Decay Fitted to the 

Surface Coverage over Time 

 

The pseudo first order rate of decay for the photolysis of a fully deuterated DPPC monolayer (k) 

was (9.7 ± 2.3) ×10-5 s-1. The photolysis of a stearic acid monolayer in chapter 2 gave a value of 

k of (6.35 ± 0.69) × 10-6 s-1. 
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The average value of k[OH] at 17°C for OH reacting with a stearic acid monolayer was 4.71 × 

10-4 s-1.  It was not possible to fit kinetics to the decay of DPPC as a result of reaction with 

aqueous OH given that the purpose of the experiment was to measure the site specific loss due 

rather than the overall decay of fully deuterated DPPC. Thus for comparison it can be seen that 

the  rate constant for the loss of DPPC due to photolysis of (9.7 ± 2.3) × 10-5 s-1 was slower than 

the reaction rate constant for stearic acid reacting with aqueous OH of 4.71 ×10-4 s-1. 

6.5.5 The Decay of a Fully Deuterated DPPC Monolayer on a Subphase of H2O2 without 

Photolysis 

The effect of any dark reaction between H2O2 and DPPC is shown in figure 6.17; the surface 

coverage remained constant within 0.2 × 1018 molecule m-2 for > 20,000 seconds indicating that 

there was no dark reaction taking place between the DPPC monolayer and the H2O2 in the 

subphase beneath the monolayer on the timescale of the measurements taken in this work. The 

surface pressure decayed by 23 mN m-1 over > 20,000 seconds. Equation 6.8 was fitted to the 

kinetic decay of surface coverage versus time. 

Figure 6.17 The Decay of a Fully Deuterated DPPC Monolayer with No Photolysis on a 

Subphase of H2O2 

 

The pseudo first order rate of decay for the dark reaction of a fully deuterated DPPC monolayer 

with a subphase containing 0.32 mol dm-3  mol dm H2O2 (k) was (8.8 ± 2.6) ×10-5 s-1 which was 

slightly faster than the photolysis only experiment (figure 6.16).  The dark reaction of stearic 

acid and 2.352 mol dm-3 H2O2 in chapter 2 gave a value of k of (1.44 ± 0.45) × 10-6 s-1. 
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6.5.6 Summary of Experimental Results 

The kinetic decay in the surface coverage versus time of the three different deuterations of 

DPPC monitored during the reaction with aqueous OH radical at the air-water interface are 

given together in figure 6.18 showing the surface coverage divided by the initial surface 

coverage before the photolysis lamp was switched on to make OH, which gives the relative loss 

due to the reaction of DPPC with OH plotted against reaction time.  

The surface coverage of the deuterated head group is lost from the interface most rapidly thus 

the head group is being preferentially attacked by OH radical from the subphase. The rate of 

decay in the surface coverage of the fully deuterated DPPC monolayer lies between the rate of 

decay of the head and the tail deuterated DPPC. 

Figure 6.18 A Comparison of the Kinetic Decay in the Relative Surface Coverage of DPPC 

Isotopologue Monolayers at the Air-water Interface Exposed to 15.8 × 1012  

mol dm-3 Aqueous OH Radical  
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Figure 6.19 A Comparison of the Kinetic Decay in the Relative Surface Coverage of DPPC 

Isotopologue Monolayers at the Air-water Interface Exposed to 15.8 × 1012  

mol dm-3 Aqueous OH Radical with an Interrupted Experiment Highlighted 

 

The following figure shows two reaction scenarios in cartoon form of how the decay over time 

of the surface coverage of deuterated material at the air-water interface would look. Scenario 

one is that OH is not diffusing into the organic layer of DPPC and is preferentially reacting with 

the head group of the molecule and the lower tail. Scenario two is that OH is diffusing into the 

tail of the DPPC molecules in the organic layer at the air-water interface and reacting with the 

tail and head group at the same rate.   
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Figure 6.20 Reaction Scenario One. OH Preferentially Reacting with the DPPC Head 

Group 

Deuterated Head Group DPPC 

 

 

Deuterated Tail Group DPPC 

 

 

Fully Deuterated DPPC 
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Figure 6.21 Reaction Scenario Two. OH Diffusing into the DPPC Tails and Reacting and 

also Reacting with the Head Group 

Deuterated Head Group DPPC 
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It can be seen that the surface coverage measurements from this experimental work reflect 

reaction scenario one. 

In summary the experimental results were as follows: 

• The surface coverage of all three isotopologues of DPPC decayed in the presence to a 

low value consistent with loss of the monolayer. The surface coverage decay showed 

degradation kinetics as seen for stearic acid monolayers reacting with OH in chapter 2. 

• The surface pressure measurement of the three isotopologues of DPPC decayed to a 

value of zero in the presence of aqueous OH radical. 

• The tail group persisted for longer than the head group of the DPPC molecule at the air-

water interface, the head and tail group react at different rates. The head group is 

attacked preferentially. 

• There was no dark reaction between aqueous H2O2 and DPPC at the air-water interface. 

• The DPPC monolayer did not appear to photolyse on a subphase of null reflective water 

based on the surface coverage measurements. The surface pressure of the DPPC 

monolayer was affected by photolysis although the decay was slower than in the 

presence of OH.  

6.6  Discussion of the Atmospheric Implications of the Oxidation of Phospholipids at 

 the Air-water Interface 

A brief discussion of the experimental results is given with comparison to other studies of the 

oxidation of phospholipid monolayers at the air water interface.  

In chapter 2 the kinetics of the decay in surface coverage of a stearic acid monolayer as it was 

oxidised by aqueous OH radical generated in the subphase were investigated. The decay of the 

surface coverage versus time and the surface pressure versus time of stearic acid was of a 

similar shape to that of DPPC exposed to OH seen in this chapter suggesting that degradation 

kinetics may be appropriate to both systems. As with stearic acid the surface pressure 

measurement did not reflect the amount of material residing at the air-water interface when 

compared to the surface coverage measurements.  

The experimental results show that aqueous OH radical generated within the subphase beneath a 

monolayer of the DPPC phospholipid can diffuse into the tail region of the monolayer and react 

with the CH2 groups comprising the hydrocarbon tail. Aqueous OH radical in the core of a 

cloud droplet could by the same mechanism enter the tail region of a cloud droplet film and 

contribute to the oxidation of monolayers in an atmospheric setting. Phospholipid oxidation can 
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produce shorter surface active product molecules which are present in aged samples of 

atmospheric aerosol. The oxidation of a lipid coating (1-oleoy1-2-palmitoyl-sn-phosphocholine, 

OPPC) on a solid substrate NaNO2/NaCl by OH from the substrate, referred to as bottom up 

oxidation was reported by Karagulian et al., (2008) as monitored with diffuse reflection infrared 

Fourier transform spectrometry. The OH travelled into the tail region of the lipid and reacted 

with the double bond in the OPPC tail group. The work reported here confirms this behaviour of 

OH initiated oxidation from within a droplet or particle of a monolayer at the air-water interface 

and in addition this work shows that that the phospholipid head group is preferentially attacked 

and is lost from the interface before the tail group. 

In a monolayer POPC (a phospholipid with one saturated and one unsaturated tail), gas-phase 

ozone reacted with the double bond in the tail region of the POPC molecule starting an 

intramolecular reaction where the saturated palmitoyl tail strand of the POPC molecule was 

subsequently oxidised (Thompson et al. 2010), this oxidation was attributed to OH radical 

formation in the monolayer tail region by the decomposition of an excited Criegee intermediate 

in the presence of water. The experiments in this chapter show that OH radical formed in the 

subphase can also penetrate the tail of a phospholipid molecule and react. Thompson et al., 

(2010) showed that ozonolysis of an unsaturated strand could initiate reaction of the saturated 

tail strand on the same molecule; it has not been resolved as to whether the same reaction would 

occur on a neighbouring fully saturated molecule within a monolayer.  The experiments in this 

chapter show that a DPPC monolayer will react with OH radical, which is a reaction product of 

the ozonolysis of an alkene, which could oxidise a cloud droplet or aerosol droplet film 

comprised of saturated phospholipids, a mixed film of saturated and unsaturated phospholipids 

would also be oxidised based on this work, and that of Wadia et al., (2000) and Thompson et al., 

(2010) on ozone reacting with OPPC and POPC.  

It is likely that following the cleavage of a DPPC molecule after hydrogen abstraction that the 

reaction products may contain a saturated fatty acid component. From chapter 2 where a 

monolayer of saturated stearic acid was oxidised by OH radical it can be hypothesised that such 

a product molecule at the air-water interface would break down into shorter chain products 

which could still initially have a surface active component.  The decay of the tail deuterated 

DPPC in this chapter showed that the tail was present at the air-water interface for longer than 

the head group of the molecule. The decay in surface coverage over time for the tail deuterated 

DPPC reacting with aqueous OH radical appears to have some small features in the surface 

coverage decay and to give the surface pressure rise as was seen in some of the stearic acid 

oxidation experiments, the kinetics of the oxidation of the DPPC tail strands could be 

investigated further with a higher time resolution neutron experiment on the FIGARO 
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reflectometer to see if the reaction has degradation kinetics as exhibited by the OH-stearic acid 

monolayer system. 

With regards to future work it would be advantageous to repeat the photolysis reaction of the 

DPPC monolayer on a subphase of null reflective water to confirm the result and to take further 

repeated measurements of each experiment in order to perform a kinetic analysis. Expansion of 

the experiment to include mixed phospholipid monolayers and mixed phospholipid with shorter 

chain fatty acid molecules would provide a better proxy for a cloud droplet film once a kinetic 

study of the phospholipid has been completed.  Using the neutron reflectometry technique with 

time resolution which allows kinetic analysis of the reaction at the air-water interface as 

demonstrated in this thesis and the work of King et al., (2009, 2010) and Thompson et al., 

(2010) to study the interaction of ozonolysis products of lung surfactant molecules (including 

hydroxyl radical generated by ozone reacting with alkenes) with the original phospholipid 

monolayer for example with mixtures of different concentrations of each molecule forming a 

monolayer could provide valuable multidisciplinary data of relevance to both an atmospheric 

setting and to understanding the effect of ozone on lung surfactant.  
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Synthesis of the Experimental Results 

The purpose of this chapter is to provide an executive summary of the results of the 

experimental work in this thesis in an atmospheric context and to suggest how the work could 

be improved upon and further developed. I shall begin with a summary of the main results for 

each system studied followed by a summary of the atmospheric implications of these results. 

The advantages and disadvantages of the techniques employed and the work which could have 

been carried out with further time will then be noted.  

7.1 A Summary of the Key Results 

7.1.1 The Oxidation of Stearic Acid Monolayers by Aqueous Phase OH Radical 

The investigation of the oxidation of stearic acid monolayers by aqueous OH radical generated 

by photolysis within the subphase, served as a proxy for the oxidation of a saturated monolayer 

at the air-water interface of an atmospheric droplet from a radical species generated within the 

droplet.  

A monolayer of stearic acid at the air-water interface was degraded by aqueous hydroxyl 

radical. The monolayer was removed under sustained exposure to aqueous hydroxyl radical.  

The measurement of surface pressure and the surface coverage of the stearic acid monolayer 

decayed with reaction time, however the surface pressure measurement did not reflect the 

surface coverage of material at the interface; this showed that the neutron reflectometry 

technique gives more accurate information on the persistence of an amphiphile at the air-water 

interface from which measurements of the reaction kinetics can be performed. The surface 

pressure measurement decayed then increased in value during oxidation by aqueous OH radical 

and subsequently decayed again. The surface coverage measurement did reflect this behaviour 

showing a subtle change in the decay slope. It would be advantageous to repeat this work at a 

higher time resolution on the FIGARO reflectometer to further investigate the region in the 

decay of the monolayer where the surface pressure rise occurred.  The region where the surface 

pressure increased was inferred to be where a surface active product of the cleavage of the 

stearic acid molecule was building up at the air-water interface. The decay in the surface 

coverage over reaction time was fitted to a sequential decay mechanism which incorporated the 

decay of stearic acid which was cleaved by hydroxyl radical, then the build-up of surface active 

reaction products at the air-water interface which were subsequently cleaved by hydroxyl 

radical forming soluble products which lack the length of hydrocarbon chain required to persist 

at the interface. There was no increase in the rate of the reaction between the stearic acid 

monolayer and hydroxyl radical when the hydrogen peroxide concentration was increased, 
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increasing the hydrogen peroxide concentration had only a slight effect of the hydroxyl radical 

concentration but a higher hydroxyl radical concentration did not alter the rate constant 

significantly. The effect of temperature on the reaction between hydroxyl radical and stearic 

acid was investigated and no direct correlation between the temperature and the rate constant 

was found. It would be advantageous to repeat the experiment as much of the data could not be 

used due to failure of the neutron beam which left large time gaps in the surface coverage 

measurements.  

The experiment’s primary aim was to investigate the oxidation of a saturated fatty acid 

monolayer of stearic acid at the air-water interface by aqueous hydroxyl radical as a proxy for a 

cloud droplet monolayer being oxidised by species from the droplet phase. When modelled for a 

concentration of hydroxyl radical found in atmospheric waters, such a reaction takes place on a 

time scale of ~550 days which is longer than the lifetime of a cloud droplet or aerosol particle (~ 

< 14 days) thus the reaction will not be of importance in an atmospheric setting. However the 

experiment shows that a saturated fatty acid monolayer will break down when exposed to 

hydroxyl radical and such a reaction is likely to take place in the gas-phase, this has not been 

investigated here but would be expected to be a rapid process (Textor et al., 2006). The rate 

constants and modelled atmospheric lifetimes from the experiments are summarised in section 

7.2. 

7.1.2 The Oxidation of Oleic Acid Monolayers Initiated by Gas-phase Ozone 

The investigation of the oxidation of oleic acid monolayers initiated by gas-phase ozone served 

as a proxy for the oxidation of an unsaturated monolayer at the air-water interface of an 

atmospheric droplet by a gas-phase reactive species.  

A monolayer of fully deuterated oleic acid at the air-water interface was degraded by gas-phase 

ozone. The surface pressure of the monolayer and the surface coverage of deuterated material at 

the air-water interface both decayed exponentially however the time order of the surface 

pressure and surface coverage decay were different showing the need for neutron reflectivity 

measurements to accurately determine how much material persisted at the air-water interface. 

The monolayer was removed under sustained exposure to gas-phase ozone, the monolayer was 

also unstable in an oxygen atmosphere but decayed much more rapidly in the presence of ozone 

than oxygen alone. Ozone is known to react with oleic acid at the site of the carbon-carbon 

double bond in the tail of the molecule.  To better understand the mechanism of decay of the 

oleic acid monolayer, a monolayer of partially deuterated oleic acid which was deuterated 

beyond the double bond in the tail of the molecule was also studied as it reacted with gas-phase 

ozone. Based on the earlier work of King et al., (2009), it was thought that a surface active 
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reaction product produced by ozone reacting with the double bond in the oleic acid molecule 

would remain at the interface however the two deuterations of oleic acid decayed with the same 

behaviour, the rate constants for the decay of the deuterated portion of the tail were of a similar 

rate. The concentration of ozone above the organic film was varied and at lower concentrations 

of (16.1 ± 3.89) ×1012 molecule cm-3, the decay in the surface coverage changed and two 

distinct regions of decay could be seen during the reaction with a region of inflection between 

them.  Upon recompression of the monolayer by closing the Langmuir trough barriers the 

inflection was repeated suggesting that this was a structural feature of the packing of the 

monolayer at the air-water interface and the orientation of the oleic acid molecules as the area 

per head group increases when neighbouring molecules are reacted away from the air-water 

interface . By slowing the reaction down using a low ozone concentration the inflection feature 

was visible; it is likely that at the higher ozone concentrations the time resolution of the surface 

coverage measurement misses the inflection. To test whether the formation of hydroxyl radical 

formation in the aqueous subphase beneath the monolayer was a factor in determining the decay 

of the oleic acid monolayer initiated by gas-phase ozone, the pH of the subphase was altered to 

dis-favour hydroxyl radical formation, no change in the decay of the monolayer was observed 

indicating that hydroxyl radical was not influencing the decay of the oleic acid monolayer.   

The atmospheric implication of the decay of an oleic acid monolayer film at the air-water 

interface due to a reaction with gas-phase ozone is that an oleic acid monolayer as a proxy for 

unsaturated organic molecules is that a cloud droplet or aerosol organic film would decay away 

forming products which were not surface active. The lifetime of an oleic acid monolayer in the 

atmosphere exposed to an ozone concentration of 40 ppb would be ~ 3.5 hours thus the reaction 

of gas-phase ozone with oleic acid will be significant in the removal of cloud droplet and 

aerosol organic films in the atmosphere.  

 

7.1.3 The Oxidation of Mixed Oleic and Stearic Acid Monolayers Initiated by Gas-phase Ozone 

To demonstrate the decay kinetics of a more complex and atmospherically realistic organic film 

under oxidation by gas-phase atmospheric oxidants, a mixed monolayer of oleic and stearic acid 

was created and exposed to gas-phase ozone. The surface pressure of the mixed film decayed 

exponentially from the point of exposure to gas-phase ozone.  It was found that in the presence 

of oleic acid the stearic acid component of the monolayer did not decay when exposed to gas 

phase ozone at a concentration of (2.4	±	0.6) × 1012 molecules cm-3. It was concluded that the 

Criegee intermediate produced by the reaction of ozone with oleic acid was not performing an 

inter-molecular reaction and attacking the stearic acid molecules in the film. The oleic acid 
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component of the monolayer decayed away as it reacted with the gas-phase ozone leaving the 

stearic acid component behind as was evident from the residual surface coverage which was still 

seen after prolonged reaction times.  With further data collection it would be possible to 

estimate an atmospheric lifetime for a mixed composition monolayer at the air-water interface 

of a cloud or aerosol droplet however a judgement can be made that ozone would remove the 

unsaturated component of such a film leaving the saturated species which would be oxidised by 

hydroxyl radical.  

7.1.4 The Oxidation of Methyl Oleate Monolayers Initiated by Gas-phase Ozone 

To demonstrate the decay kinetics of a further organic molecule category found in cloud waters 

a monolayer of the methyl ester of oleic acid, methyl oleate was exposed to gas-phase ozone. 

The surface pressure of the monolayer and the surface coverage of deuterated material at the air-

water interface both decayed exponentially however the time order of the surface pressure and 

surface coverage decay were different. The monolayer decayed to a very low surface coverage 

at which it would not be intact when exposed to gas-phase ozone. The rate of the decay in the 

surface coverage of deuterated material at the air-water interface increased with exposure to 

increasing concentrations of gas-phase ozone. The atmospheric lifetime for a methyl oleate 

monolayer exposed to a gas-phase ozone concentration of 40 ppb would be ~ 2.4 hours which is 

shorter than the lifetime of a cloud or aerosol droplet thus the reaction could be a significant 

pathway in the removal of a cloud droplet film.  

 

7.1.5 The Oxidation of Phospholipid Monolayers Initiated by Aqueous Phase OH Radical 

To demonstrate the decay kinetics of a further organic molecule category found in cloud waters 

and the sea-surface microlayer a monolayer of the phospholipid, DPPC which has two saturated 

tails, was exposed to hydroxyl radical. Three deuterations of DPPC were used, a fully 

deuterated DPPC molecule, a head group only deuterated DPPC molecule and a tail group 

deuterated DPPC molecule. The decay in the monolayer surface pressure of DPPC exposed to 

aqueous hydroxyl radical was more rapid than the decay in the surface coverage of the 

deuterated material at the air-water interface. Under sustained exposure to hydroxyl radical the 

surface coverage of the DPPC monolayer decayed to a very low value at which the monolayer 

would not be intact. The tail group persisted at the air-water interface for longer than the head 

group showing that the head group is attacked preferentially. The decay of the surface coverage 

of the tail deuterated molecule shows that the hydroxyl radical can penetrate the tail region of 

the monolayer. The atmospheric implication of these results is that a phospholipid monolayer 
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could be removed by oxidation by aqueous phase species however it the head group is lost at a 

faster rate. The work of Thompson et al., (2010) showed that the POPC phospholipid molecule 

which has one saturated and one unsaturated tail was broken down by gas-phase ozone, which 

initiated an intra-molecular reaction which broke down the saturated tail, thus in the atmosphere 

a phospholipid monolayer can be broken down by both aqueous hydroxyl radical and gas-phase 

ozone. This is an important result as saturated phospholipids are one of the largest and most 

resistant candidate compounds for an atmospheric monolayer film.  

7.2 A Summary of the Kinetic Results 

The reaction rate constants for the reaction of monolayers with aqueous OH radical and with 

gas-phase ozone absorbed to the monolayer, with the corresponding uptake coefficients are 

given in table 7.1and 7.2 together with the calculated lifetime for oxidised monolayers based on 

the bimolecular rate constants obtained in this work. 

Table 7.1 A Summary of the Reaction Rate Constants and Monolayer Atmospheric 

Lifetimes Resulting from the Experimental Work in this Thesis 

 

Reaction system Average k  

/ s-1 

Bimolecular k Monolayer 

atmospheric  lifetime 

Aqueous OH + 

stearic acid 

monolayer 

4.71 × 10-4  
5.5 × 107 dm3 

mol-1 s-1 
~553 days 

Gas-phase O3 + oleic 

acid monolayer 
0.66 × 10-2  

(4.5 ± 0.68)× 

10-11 cm2 

molecule-1 s-1 

~3 hours 32 minutes 

Gas-phase O3 + 

methyl oleate 

monolayer 

0.014 

(2.72 ± 0.44) × 

10-11 cm2 

molecule-1 s-1 

~5 hours 53 minutes 
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Table 7.2 Uptake Coefficients for Ozone by a Monolayer of Oleic Acid and a Monolayer 

of Methyl Oleate 

Reaction system Γ  

× 1018 

molecule m-2 

Uptake 

coefficient for 

ozone at 20°C 

× 10-6 

Uptake 

coefficient for 

ozone at 5°C 

× 10-6 

Uptake 

coefficient for 

ozone at 0°C 

× 10-6 

Gas-phase O3 + 

oleic acid 

monolayer 

δ 15 Å 

2 1.7 1.6 1.6 

3 2.6 2.5 2.4 

Gas-phase O3 + 

oleic acid 

monolayer 

δ 20 Å 

2 2.3 2.2 2.2 

3 3.5 3.3 3.2 

Gas-phase O3 + 

methyl oleate 

monolayer 

δ 15 Å 

2 1.1 0.99 0.97 

3 1.6 1.5 1.5 

Gas- phase O3 + 

methyl oleate 

monolayer 

δ 20 Å 

2 1.4 1.3 1.3 

3 2.1 2 1.9 

 

The saturated species stearic acid has a long lifetime at the air-water interface when exposed to 

aqueous phase OH radical indicating that this oxidation mechanism does not have a significant 

role in the removal of cloud droplet and aerosol particle monolayers. The un-saturated species, 

oleic acid and methyl oleate had a much shorter lifetime at the air-water interface than stearic 

acid. The ozone initiated oxidation of the un-saturated species in a cloud droplet or aerosol 

particle monolayer at the air-water interface is significant in the removal of cloud droplet 

monolayers and the aging of atmospheric aerosol as the oxidation process removes the 

monolayer within the lifetime of an atmospheric droplet. 

 

7.3 Atmospheric Implications of the Findings of this Work 

The work in this thesis has shown that fatty acids, methyl esters and phospholipids are subject to 

oxidation by common atmospheric radical species. The removal of a cloud or aerosol droplet 

monolayer by oxidation in situ in the atmosphere is highly likely given these results. The effects 
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of the removal of an interfacial monolayer at the air-water interface of a cloud droplet or aerosol 

particle on cloud droplet nucleation and growth are as follows: 

The presence of an organic monolayer at the air-droplet interface of a cloud droplet increases 

the ability of a nucleating droplet growing to a sufficient size to become a rain droplet according 

to the modified form of Köhler theory (Shulman et al., 1996; Sorjamaa et al., 2004) as the 

monolayer will decrease the surface tension of the droplet in comparison to pure water, making 

uptake of water vapour to the droplet more favourable and thus lowering critical supersaturation 

of water vapour in air at which an aerosol particle (cloud condensation nuclei) can grow into a 

cloud droplet (King et al., 2009a). The presence of a monolayer also limits evaporation from an 

atmospheric droplet and prolongs its lifetime in the atmosphere (Gill et al., 1983). The oxidation 

and removal of a monolayer at the air-droplet interface of a cloud or aerosol droplet increases 

the surface tension reducing the uptake of water vapour to a droplet at a given relative humidity 

and potentially increases the likelihood of evaporation from the droplet as the surface coverage 

of the monolayer is reduced.  

Any soluble reaction products which enter the bulk droplet aqueous phase from the reaction of 

an organic monolayer at the air-droplet interface will contribute to the Raoult term of Köhler 

theory. The effect of a soluble reaction product from the reaction of ozone with a monolayer of 

oleic acid was modelled by King et al., (2009a), showing that it was the contribution of soluble 

reaction products to the Raoult term which had a greater effect on the growth of a cloud droplet 

than any effects on surface tension, thus oxidation of the monolayer lowered the critical 

supersaturation required for droplet growth. King et al., (2009b) showed that an oleic acid 

coated particle in an optical trap grew when exposed to gas-phase ozone. Oxidation of an 

interfacial monolayer makes the interface more chemically hydrophilic but with a higher surface 

tension than in the presence of a monolayer. The effect of monolayer oxidation on a cloud 

droplet will depend on many factors including the relative humidity of the air in which the 

droplet resides and the size of the droplet, what is clear is that a droplet with a monolayer 

behaves differently upon oxidation of the monolayer. This work has shown that during a 

reaction with atmospheric radical species a monolayer breaks down forming products some of 

which are potentially soluble and may enter the bulk of an atmospheric droplet contributing to 

chemical aging and alteration in the evolution of the droplet. 

The atmospheric lifetimes calculated for the monolayers studied as they react with given species 

(table 7.1) show that the saturated stearic acid monolayer is more resistant to oxidation than the 

unsaturated species which readily react with gas-phase ozone. The reaction of gas-phase ozone 

with an unsaturated monolayer appears to proceed by the diffusion of ozone into the tail region 
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of the monolayer and subsequent reaction with the double bond which occurs rapidly, and the 

monolayer is subsequently lost from the air-water interface. Gas-phase ozone reacts with an 

unsaturated methyl ester at a similar rate and via a similar mechanism to a reaction with the 

corresponding fatty acid showing it is the destruction of the tail group of the amphiphile which 

dominates the kinetics.  

The phospholipid DPPC was shown to be lost from the air-water interface during a reaction 

with aqueous phase OH radical. It is likely that phospholipid material, as a component of the sea 

surface microlayer, will be found in atmospheric aerosol and that such lipid content could 

potentially form cloud and aerosol droplet films which would subsequently react with aqueous 

hydroxyl radical to produce lower molecular weight surface active products which would react 

and subsequently lost from the air-water interface.  

 

7.4  Ideas for Further Development of This Work 

In reality a monolayer present on an atmospheric droplet will be composed of a multitude of 

different species. Here I have investigated simple systems in order to understand some of the 

kinetic processes that would take place in such a setting. The ultimate goal of such work given 

unlimited time and resources would be to gradually build up the proxy system to a level of 

complexity which was more realistic to the chemistry a genuine atmospheric droplet having 

investigated the reactions involved individually by the same technique thus having directly 

comparable measurements to compare to a complex mixed system. The subphase beneath the 

monolayer could be altered to reflect the chemistry of different atmospheric aerosol species. It 

would be beneficial to repeat some of the experiments at different pH and temperature in order 

to better quantify the reaction rate constants which are valid in certain atmospheric conditions. 

The project could be further developed by the identification of the reaction products from 

oxidation of the monolayers, which would allow the effect of monolayer oxidation on cloud 

droplet growth to be better quantified as modelling of the behaviour of an oxidised coated 

droplet using Köhler theory could be completed. It was hoped in the scope of this work to 

conduct sampling of the reacted and unreacted monolayer using the Langmuir Blodgett 

technique where a treated slide is dipped through the monolayer and the monolayer is deposited 

onto the slide providing a substrate on which further chemical techniques such as atomic force 

microscopy could be conducted. There are several different substrates which could be used 

which mimic the chemistry of an aerosol particle. This experiment was not achieved as it was 
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felt that the reactants involved such as ozone and OH radical may damage expensive equipment 

which did not belong to the university.  

Ellipsometry may provide an inexpensive method of determining the surface coverage of the 

monolayer rather than neutron reflectometry, an initial attempt at this was unsuccessful but with 

more time this should be possible however it would require the construction of a custom built 

reaction chamber to fit onto an ellipsometer if the measurements were to be taken in real time to 

use for kinetic analysis and again there is the concern that oxidant species may damage 

equipment so the chamber would require extensive testing before this work could go ahead.  

 

7.5 Conclusions 

The reaction rate constants and uptake coefficients measured in this work provide new data to 

the atmospheric science community for reactions of monolayers at the air-water interface that 

were not previously available. The mechanism for the reaction of a stearic acid monolayer with 

aqueous OH radical reacting in a degradated chain mechanism shows a route by which shorter 

chain saturated surface active molecules can be generated at the air-water interface of 

atmospheric droplets. The experimental work has shown that the neutron reflectometry 

technique provides a measurement of the average surface concentration of a one molecule thick 

organic film during a reaction in real time, which is suitable for kinetic analysis and that the 

technique of selective deuterations to highlight different parts of a molecule can also be used at 

a single angle with rapid real time neutron reflectivity measurements to successfully follow the 

structural breakdown of an organic film.  
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The equation and figure numbers are a continuation of those in the relevant chapter. 

Appendices to Chapter 3 

Item 1 The Differential Equations Used to Calculate the Concentration of Gas-phase 

Ozone in the Reaction Chamber during an Experiment 

The following variables were included in the calculation of the concentration of gas phase ozone 

in the reaction chamber, ��������	
�	: 
Flux into the reaction chamber from the ozoniser  (the number of molecules per second),  

����������
� 
Flux out of the reaction chamber via the exhaust (the number of moles per second), 

��������	
� 
The volume of the reaction chamber, 

�����	
� 
 

������������
�� = ����� ! "#!��

$������� − ������������
$�������      (E 3.19) 

������������
�� = �

$������� �����������
� − ��������	
��    (E 3.20) 

������������
�� = �

$������� &����������
� − ��������	
�'    (E 3.21) 

������������
�� = �

$������� (       (E 3.22) 

) = ����������
� − ��������	
�      (E 3.23) 

�*
�� = 0 − ������������

��         (E 3.24) 

�*
�� = �

$������� 	)         (E 3.25) 

�*
�� = �

$������� )	
	⇒ - �*

* = .�
$������� -/0      (E 3.26) 

ln 3 ** 4 = .�
$������� 0        (E 3.27) 

)� = ����������
� − 0        (E 3.28) 
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ln 3���� ! "#!��.��������������� ! "#!�� 4 = �
$������� 0      (E 3.29) 

ln 31 − ��������������� ! "#!��4 − �
$������� 0       (E 3.30) 

1 − ��������������� ! "#!�� = 6.78�        (E 3.31) 

��������������� ! "#!�� = 1 − 6.78�        (E 3.32) 

The final equation for calculating the gas phase ozone concentration in the reaction chamber is: 

��������	
� = ����������
� 91 − 6.7:8 ;      (E 3.1) 

The terms represent the following parameters.  

��������	
� = The concentration of gas phase ozone in the chamber 

����������
� = The concentration of ozone being delivered to the chamber from the ozonizer 

	= The flow rate 

� = The volume of the chamber 

0 =	Time 

  

Item 2 An Explanation of the Choice of Kinetic Fitting Regime for Oleic Acid 

Monolayers Reacting with Gas-Phase Ozone Absorbed to the Monolayer 

Region 

The surface coverage data in this chapter was fitted to equation 3.11. The initial point for the fit 

was chosen to be after the mixing time as calculated by the equations in appendix item 3.0. In a 

later chapter (5) for the reaction of gas-phase ozone with methyl oleate a different fitting 

equation was used which estimated the mixing time as part of the fit, this equation is given 

below. 

− ln < =�#�:< =�#�:>? = @����ABC D0 − $
� 91 − 6 7

8:;E     (E 3.33) 

Where k and k′ are related by:	
@F = @���������G
�BC 
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Item 3 The Application of Mixing Time to the Decay of Oleic Acid Monolayers 

Exposed to Gas Phase Ozone 

The following figure shows why the equation with the mixing time term (E 3.33) was not used 

for the oleic acid monolayer reacting with gas-phase ozone. The shape of the kinetic decay in 

surface coverage is different for methyl oleate and for oleic acid reacting with ozone. For the 

oleic acid the mixing integral equation did not calculate k′ effectively. The figures show that by 

increasing the value of the mixing term as a parameter in the fit that k′ also grew, the two terms 

behaved in a linked manor when fitting to the oleic acid surface coverage data; this was not the 

case for the methyl oleate experiments.  

For the reaction of oleic acid with gas-phase ozone the fit was controlled by the mixing time for 

the majority of the decay curve with the lower portion being controlled by k. For methyl oleate 

the majority of the fit was controlled by k. 
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Figure 3.56  Kinetic Fitting of Equation 5.12 With Various Mixing Times For Ozone In the 

  Reaction Chamber 
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Appendices to Chapter 5 

Item 4 The Derivation of the Rate Expression for a Methyl Oleate Monolayer Reacting with 

Gas-phase Ozone 

The reaction of a methyl oleate monolayer, MO, with gas-phase ozone, O3, produces product 

molecules which are not surface active. 

H� +�� 	→ KLMNOM6	PQ/	RLMP0SM6	TUL/NV0K     (R 5.4) 

The following kinetic equation is formed with the kinetic variable being the surface 

concentration (measured surface coverage) of methyl oleate. 

.��<WX�
�� = @�YZ����������	
�       (E 5.18) 

The gas-phase ozone diffuses, accommodates and dissolves into the thin organic film readily at 

a much faster rate than the reaction with the methyl oleate so the equation is adapted to 

incorporate the modelled concentration of ozone in the monolayer, [O3] film , rather than the gas-

phase. The ozone concentration in the monolayer is calculated assuming a Henry’s Law 

relationship with a general organic. 

B = ���������������[#=�\          (E 5.19) 

Where H is the Henry’s law coefficient for ozone and δ is the thickness of the monolayer, the 

monolayer thickness was not directly measured in the experiment. It is expected to be 

approximately 20 Å. 

The incorporation of [O3] film results in the following kinetic equation. 

.��<WX�
�� = @BC�YZ������]�^�       (E 5.20) 

The kinetic fitting to the surface coverage of methyl oleate versus reaction time will need to take 

into account the mixing time for the concentration of ozone within the reaction chamber to 

equilibrate. To do this another term is added to the rate equation above. The additional term is 

as explained in chapter 4 for the modelling of the concentration of gas-phase ozone in the 

monolayer region which took into account the mixing time in the reaction chamber.  

����]�^� = ��������	
�BC       (E 5.21) 

��������	
� = ����������
� 31 − 6� :84      (E 5.7) 
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or 

����]�^� = 31 − 6�:84        (E 5.22) 

.��<WX�
�� = @BC�YZ������������
� 31 − 6� :84     (E 5.8) 

The above equation was analytically solved by Martin King to produce a kinetic equation which 

could be fit to the neutron reflectivity surface coverage data in one step rather than separately 

modelling the ozone concentration as shown in chapter 4. The steps for solving the rate equation 

are given here. 

The format of the rate expression was altered to the following for ease of tablature.  

.�_
�` = abc1 − 6.d`e        (E 5.23) 

a = @����������
�BC 

f = 
� 

g = 0 
b = �YZ�� 
To solve the rate expression analytically the following steps were taken. The expression was 

substituted in terms of functions of х and y. 

.�_
�` = h&g'h&b'        (E 5.24) 

The above terms were integrated.  

−- �_
]&_' = -h&g'/g        (E 5.25)

    

−- �_
_

_�
_A = - ac1 − 6.d`e/g�

A        (E 5.26) 

−- �_
_

_�
_A = a- /g − a- 6.d`�

A
�
A /g      (E 5.27) 

−�ln b�_A_� = a�g�A� − i
d j6d`kA�        (E 5.28) 

− ln 3_:_?4 = a0 + i
d &6d� − 1'       (E 5.29) 
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− ln 3_:_?4 = a0 + i
d c1 − 6d�e       (E 5.30) 

− ln <WX:<WX:>? = @����������
�BC0 − .l���� ! "#!��m\$
� 91 − 6.7:8 ;   (E 5.31) 

The surface coverage data was fitted to the following equation. 

b = n&g − o
d c1 − 6.d`e'       (E 5.32) 

Where n = @����������
�BC and f = �
$ = o

p�#q. β was held constant during the fitting of 

equation 5.32 to the decay in the monolayer surface coverage versus reaction time.  

 

 

 

 

 

 

 

 


