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Abstract

We study the notion of hierarchy in the context of visualizing textual
data and navigating text collections. A formal framework for “hierarchy”
is given by an ultrametric topology. This provides us with a theoretical
foundation for concept hierarchy creation. A major objective is scalable

annotation or labeling of concept maps. Serendipitously we pursue other
objectives such as deriving common word pair (and triplet) phrases, i.e.,
word 2- and 3-grams. We evaluate our approach using (i) a collection
of texts, (ii) a single text subdivided into successive parts (for which we
provide an interactive demonstrator), and (iii) a text subdivided at the
sentence or line level. While detailing a generic framework, a distinguish-
ing feature of our work is that we focus on locality of hierarchic structure
in order to extract semantic information.

Categories and Subject Descriptors: H.5 (Information interfaces and pre-
sentation), I.5.3 (Clustering), H.5.2 (User interfaces), I.7.2 (Document prepara-
tion), H.3 (Information storage and retrieval)
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1 Introduction

Since the mid-1990s we built visual interactive maps of bibliographic and database
information at Strasbourg Astronomical Observatory, and some of these, with
references, are available at Murtagh [2006d]. The automated annotation of such
maps is not easy. At the time of writing1 Zdnet and the BBC (British Broad-
casting Corporation) use interactive annotated maps to support information
navigation. In Zdnet’s case, some prominent terms are graphically presented
and can be used to carry out a local search; and in the BBC case, terms relating
to downloadable radio programs are displayed in moving sizes and locations.

In the work described in this article, we adopt a different approach: we
select the terms of interest in a manual or semi-automated way. This not only
represents expert user judgement but also allows for inclusion of rare or very
frequent terms. In one of our three case studies, we use an automated way to
select such terms. For selected terms, we use their inter-relationships to build
a hierarchy and use this as a central device for summarizing information and
supporting navigation.

“Ontologies are often equated with taxonomic hierarchies of classes ... but
ontologies need not be limited to such a form” [Gruber 2001]. Gruber is cited in
Gómez-Pérez et al. [2004] as characterizing an ontology as “an explicit specifi-
cation of a conceptualization”. In Wache et al. [2001], ontologies are motivated
by semantic heterogeneity of distributed data stores. This is also termed data
heterogeneity and is counterposed to structural or schematic heterogeneity. On-
tologies are motivated by Wache et al. [2001] “for the explication of implicit and
hidden knowledge”, as “a possible approach to overcome the problem of seman-
tic heterogeneity”. So, ontologies may help with integration of diverse, but
related, data; or they may help with clarifying or disambiguating distinctions
in the heterogeneous data. Ontologies are likely to be of immediate help in sup-
porting querying. For example, the query model may be based on the ontology
(or ontologies) used.

There is extensive activity on standards and software, relating more to the
above-mentioned schematic rather than semantic heterogeneity, and a useful
survey of this area is Denny [2004]. Denny takes an ontology in a broad-ranging
view as a knowledge-representation scheme.

1.1 Short Review of Methods Used

A short review of some recent approaches in this area follows. Ahmad and
Gillam [2005] develop a semi-automated approach using text with no markup.
Multiword expressions are determined, and frequency of occurrence information
is used to point to term or phrase importance. A stop list is used to avoid
irrelevant words. Part of speech analysis is not used. A semantic net is formed
to allow development of the ontology elements.

1Zdnet: http://news.zdnet.co.uk/itmanagement/0,1000000308,39284764,00.htm BBC:
http://www.bbc.co.uk/radio4/history/inourtime/inourtime.shtml
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Abou Assali and Zanghi [2006] use syntactic part of speech tagging to deter-
mine the nouns. These authors retain sufficiently frequent nouns. They apply
the notion of weak subsumption: if – for the most part – a word is in a text that
another is in, and not vice versa, then this leads to a hierarchical relationship.

Chuang and Chien [2005] assert that multiway trees are appropriate for
concept hierarchies, whereas binary trees are built using hierarchical clustering
algorithms. Hence they modify the latter to provide more appropriate output.
(A formal approach for mapping a binary hierarchical classification tree onto a
multiway hierarchy is described in Murtagh [2006b].)

A hierarchical clustering has often been used to represent an ontology. Note
that this is usually not a concept hierarchy. A concept hierarchy is based on
a subsumption relationship between terms, whereas a hierarchical clustering is
an embedded set of clusters of the term set. Later in this article (section 5), we
show a way to derive a concept hierarchy, involving subsumption of terms, from
a hierarchic clustering.

A hierarchic clustering is typically a binary, rooted, terminal labeled, ranked
tree, and a concept hierarchy is typically a multiway, rooted, terminal and non-
terminal labeled, ranked tree. By starting with the former (binary) tree repre-
sentation, we have an extensive theoretical and formal arsenal at our disposal,
to represent the main lines of what we need to do, and to help to avoid ad hoc,
user parameter-based, “engineering” approaches. As seen later in this work, we
start by laying the foundations of our perspective by basing this on binary trees,
and later proceed to the multiway tree. An alternative approach can be found
in Ganesan et al. [2003], where similarities or distances on trees are redefined
and re-axiomatized for the case of multiway trees.

An alternative representation for an ontology is a lattice, and Formal Con-
cept Analysis (FCA) is a methodology for the analysis of such lattices. If we
have a set of documents or texts, I, characterized by an index term set J ,
then as Janowitz [2005] shows, hierarchical clustering and FCA are loosely re-
lated. Hierarchical clustering is based on pairwise distances or dissimilarities,
d : I × I → R

+ (R+ is the set of non-negative reals). FCA is based on partially
ordered sets (posets) such that there is a dissimilarity d : I × I → 2J (2J is the
power set of the index terms, J).

Other approaches (rule-based; machine learning approaches, etc.; layered,
engineering, approaches with maintenance management – see Maedche [2006])
are also available. One difficulty with such “engineering” approaches is that
there is an ad hoc understanding of the problem area, and often there is de-
pendence on somewhat arbitrary threshold and selection criteria that do not
generalize well.

Our approach formalizes the problem area – the information space – in terms
of its local or global topology. Where we do have selection criteria, such user
interaction is at the application goal level.

Visualization is often an important way to elucidate semantic heterogeneity
for the user. Visual user interfaces for ontological elucidation are discussed in
Murtagh et al. [2003], with examples that include interactive, responsive infor-
mation maps based on the Kohonen self-organizing feature map; and semantic
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network graphs. A study is presented in Murtagh et al. [2003] of client-side
visualization of concept hierarchies relating to an economics information space.
The use of “semantic road maps” to support information retrieval goes back to
Doyle [1961]. Motivation, following Murtagh et al. [2003], includes the follow-
ing: (i) Visualization of the semantic structure and content of the data store
allows the user to have some idea before submitting a query as to what type of
outcome is possible. Hence visualization is used to summarize the contents of
the database or data collection (i.e., information space). (ii) The user’s infor-
mation requirements are often fuzzily and ambiguously defined at the outset of
the information search. Hence visualization is used to help the user in his/her
information navigation, by signaling the relationships between concepts. (iii)
Ontology visualization therefore helps the user before the user interacts with
the information space, and during this interaction. It is a natural enough pro-
gression that the visualization becomes the user interface.

1.2 Organisation of the Article

This article is organised as follows. To begin with, in section 2, we table the
issue of whether or not there is inherent hierarchical structure in a text, or a
collection of texts. In section 2.2 we show how we can rigorously determine the
extent of inherent hierarchical structure in a text. This quantifying of inherent
hierarchical structure is then used in subsections 4.1, 4.2, 5.2 and 5.4.

A text provides both global and linear semantics, and how we can process
these two different perspectives on a given text is discussed in section 3. A
central aspect of our approach is a new distance or metric, which we have
recently introduced and exemplified on another data analysis problem. This
new distance is described in subsection 3.3.

In section 4 we apply what we have described in earlier sections to the se-
lection of salient and characteristic pairs and triplets of terms, and also the
selection of pertinent terms. Our motivation is not just the traditional view of
phrase counting (even though we incorporate this view) but rather the charac-
terization of text content using its internal (local hierarchical) structure.

A natural approach to defining a concept hierarchy lies in use of a hierar-
chical clustering algorithm. However, the latter forms an embedded sequence
of clusters, so that a hierarchy of concepts must – somehow – be derived from
it. In section 5 we first of all show that “converting” any hierarchical clustering
into a hierarchy of concepts is relatively straightforward. However we do have to
face the problem of a unique, and beyond that best, solution. We show how we
can admirably address this need for a unique solution. Our innovative approach
is based on the foundations laid in sections 2 and 3 of this article.

We analyze three different data sets in this work: firstly a set of documents,
with some degree of heterogeneity, to illustrate our key goal; secondly a homo-
geneous text, partitioned into successive textual segments; and thirdly a small
homogeneous text, partitioned at the sentence level, proxied by lines of text.
We select terms, indeed nouns, in a partially automated way, since this crucial
aspect of ontology design may benefit from being user-driven, and may have
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scalability advantages.

2 Quantifying Hierarchical Structure

In later sections we address the issue of finding and presenting structure in text.
We link such structure with the textual content. Consequently a key, initial
question is to know whether or not there is structure present, and to what
extent.

2.1 Inherent Hierarchical Structure

A first problem to be addressed is whether or not the document has any hi-
erarchical structure to begin with. As input, we have possibly a fully tagged
document (based, e.g., on part-of-speech tagging, Schmid [1994]). However in
this work, we start with free text, because it is the most generally available
and applicable framework. Additional information provided by part-of-speech
tagging can be of use to us, as we will show later.

Next we consider the issue of whether or not a document has sufficient inher-
ent hierarchical structure to warrant further investigation. We could approach
this problem by fitting a hierarchy, and there are many algorithms for doing so
(such as any hierarchical clustering algorithm; de Soete [1986] describes a least
squares optimal fitting approach). However departure from inherent hierarchical
structure is not easily pinpointed. After all, we have an output induced struc-
ture, and we are told, let’s say, that the fit is 80% (defined as

∑
(δ − d)2/

∑
d2

where d is input dissimilarity, δ is tree or ultrametric distance read off the
output, and the sums are over all pairs), which is not very revealing nor useful.

An alternative “bottom-up” approach is pursued here, which allows easy
assessment of inherent structure, and also pinpointing where this occurs or does
not occur.

2.2 Local Ultrametricity and Quantifying Extent of Ul-

trametricity

A formal definition of hierarchical structure is provided by ultrametric topol-
ogy (in turn, related closely to p-adic number theory). The triangular in-
equality holds for a metric space: d(x, z) ≤ d(x, y) + d(y, z) for any triplet
of points x, y, z. In addition the properties of symmetry and positive definite-
ness are respected. The “strong triangular inequality” or ultrametric inequality
is: d(x, z) ≤ max {d(x, y), d(y, z)} for any triplet x, y, z. An ultrametric space
implies respect for a range of stringent properties. For example, the triangle
formed by any triplet is necessarily isosceles, with the two large sides equal; or
is equilateral. In an ultrametric space (i.e., a space endowed with an ultramet-
ric, or an ultrametric topology), one “lives”, so to speak, in a tree. All “moves”
between one location and another are as if one descended the tree to a common
tree node, and then reclimbed to the target point. Topologically, an ultrametric
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goes a lot further: all points in a circle or sphere are centers, for example; or
the radius of a sphere is identical to its diameter.

The triangle property respected by any triplet of points in an ultrametric
space affords a useful way to quantify extent of hierarchical structure. We will
describe our “extent of hierarchical structure”, on a scale of 0 (no respect for
ultrametricity) to 1 (everywhere, respect for the ultrametric or tree distance)
algorithmically. We examine triplets of points (exhaustively if possible, or oth-
erwise through sampling), and determine the three angles formed by the asso-
ciated triangle. We select the smallest angle formed by the triplet points. Then
we check if the other two remaining angles are approximately equal. If they are
equal then our triangle is isosceles with small base, or equilateral (when all tri-
angles are equal). The approximation to equality is given by 2 degrees (0.0349
radians). Our motivation for the approximate (“fuzzy”) equality is that it makes
our approach robust and independent of measurement precision. This approach
works very well in practice [Murtagh 2004; 2006a]. We may note our one as-
sumption for our data when we look at triangles in this way: scalar products
define angles so that by assuming our data are in a Hilbert space (a complete
normed vector space with a scalar product) we may proceed with this analysis.
This Hilbert space assumption is very straightforward in practice. When finite
(as is always the case for us, in practice), we are using a Euclidean space.

Often in practice, for arbitrary Euclidean data, there is very little ultra-
metricity as quantified by the proportion of triangles satisfying the ultrametric
requirement. But recoding the data can be of great help in dramatically increas-
ing the proportion of such ultrametricity-respecting triangles [Murtagh 2004;
2005a]. If we recode our data such that each pairwise distance or dissimilarity
is mapped onto one element of the set {0, 1, 2}, then as seen in subsection 3.3
below the triangular inequality becomes particularly easy to assess for existence
of, or non-existence of, a locally ultrametric relationship.

3 Global and Linear Structures of a Text

3.1 Euclidean Embedding

In our use of free text, we have already noted how a mapping into a Euclidean
space gives us the capability to define distance in a simple and versatile way.
In correspondence analysis [Murtagh 2005b], the texts we are using provide
the rows, and the set of terms used comprise the column set. In the output,
Euclidean factor coordinate space, each text is located as a weighted average of
the set of terms; and each term is located as a weighted average of the set of
texts. (This simultaneous display is sometimes termed a biplot.) So texts and
terms are both mapped into the same, output coordinate space. This can be of
use in understanding a text through its closest terms, or vice versa.

A commonly used methodology for studying a set of texts, or a set of parts
of a text (which is what we will describe below), is to characterize each text with
numbers of terms appearing in the text, for a set of terms. The χ2 distance is
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an appropriate weighted Euclidean distance for use with such data [Benzécri
1979; Murtagh 2005b]. Consider texts i and i′ crossed by words j. Let kij be
the number of occurrences of word j in text i. Then, omitting a constant, the
χ2 distance between texts i and i′ is given by

∑
j 1/kj(kij/ki − ki′j/ki′)

2. The
weighting term is 1/kj. The weighted Euclidean distance is between the profile
of text i, viz. kij/ki for all j, and the analogous profile of text i′. (Our discussion
is to within a constant because we actually work on frequencies defined from
the numbers of occurrences.)

Correspondence analysis allows us to project the space of documents (we
could equally well explore the terms in the same projected space) into a Eu-
clidean space. It maps the all-pairs χ2 distance into the corresponding Euclidean
distance.

For a term, we use the (full rank) projections on factors resulting from
correspondence analysis. As noted, this factor space is endowed with the (un-
weighted) Euclidean distance.

3.2 Linearity: Textual Time Series

We will also take into consideration the strongest “given” in regard to any
classical text: its linearity (or total) order. A text is read from start to finish,
and consequently is linearly ordered.

A text endowed with this linear order is analogous to a time series. If we
use the correspondence analysis (full dimensionality) factor coordinates for each
term, then the textual time series we are dealing with is seen to be a multivariate
time series.

3.3 Recoding Distances

Just as the way we code our input data plays a crucial role in the resulting
analysis, so also the recoding of pairwise distances can influence the analysis
greatly. In Murtagh [2005a] we introduced a new distance, which we will term
the “change versus no change”, CvNC, metric, and showed its benefits on a wide
range of (financial, biomedical, meteorological, telecoms, chaotic, and random)
time series. Motivation for using this new metric is that it greatly increases the
ultrametricity of the data.

The CvNC metric is defined in the following way. Take the Euclidean dis-
tance squared, djj′ = (xjr − xj′r)

2 for all 1 ≤ j, j′ ≤ m, where we have terms
j, j′ in the factor space with coordinates 1, 2, . . . , r, . . . ν. It will be noted below
in this section how this assumption of Euclidean distance squared has worked
well but is not in itself important: in principle any dissimilarity can be used.

We enforce sparseness on our given squared distance values, {djj′}. We do
this by approximating each value djj′ , in the range maxjj′djj′ − minjj′djj′ , by
an integer in 1, 2, . . . p. The value of p must be specified. In our work we set
p = 2. The recoding of distance squared is with reference to the mean distance
squared: values less than or equal to this will be mapped to 1; and values greater
than this threshold will be mapped to 2. Thus far, the recoded value, d′jj′ is not
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necessarily a distance. With the extra requirement that d′jj′ −→ 0 whenever
j = j′ it can be shown that d′jj′ is a metric [Murtagh 2005a]:

Theorem: The recoded pairwise measure, d′, defined as described above
from any dissimilarity, is a distance, satisfying the properties of: symmetry,
positive definiteness, and triangular inequality.

To summarize, in our coding, a small pairwise dissimilarity is mapped onto
a value of 1; and a large pairwise dissimilarity is mapped onto a value of 2.
Identical values are unchanged: they are mapped onto 0.

This coding can be considered as encoding pairwise relationships as “change”,
i.e. 2, versus “no change”, i.e. 1, relationships. Then, based on these new dis-
tances, we use the ultrametric triangle properties to assess conformity to ultra-
metricity. The proportion of ultrametric triangles allows us to fingerprint our
data.

For any given triplet (of terms, with pairwise CvNC distances), if the triplet
is to be compatible with the ultrametric inequality, each set of three recoded
distances is necessarily of one of the following patterns:

Trivial: At least one (recoded) distance is 0, in which case we do not consider
it.

Ultrametric – equilateral: Recoded distances in the triplet are 1,1,1 or 2,2,2,
defining an equilateral triangle.

Ultrametric – isosceles: Recoded distances in the triplet are 1,2,2 in any
order, defining an isosceles triangle with small base.

Non-ultrametric: Recoded distances in the triplet are 1,1,2 in any order.

The non-ultrametric case here is seen to be an isosceles triangle with large
base. We could “intervene” and change one of the values to make it ultra-
metric. If we change the 2-value to a 1-value, this will produce an equilateral
triangle, which is ultrametric. In this case, we are approximating our three
values optimally from below, and the resulting ultrametric is termed the sub-
dominant, or maximally inferior, ultrametric. The associated stepwise algorithm
for constructing a hierarchy is known as the single link hierarchical clustering
algorithm. On the other hand, we could change one of the 1-values to a 2. This
is not unique, since we could change either of the 1-values. The resulting hi-
erarchy is termed the minimally superior ultrametric. The associated stepwise
algorithm for constructing a hierarchy is known as the complete link hierarchical
clustering algorithm. All of this is very clear from the case considered here.

The recoding into the CvNC metric is a particular example of symbolic
coding. See Murtagh [2006c].

In the next section, we will show the usefulness of this CvNC metric for
quantifying inherent hierarchical structure.
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File Theme No. No. No.
words nouns uniq. nouns

ArtInt Artificial Intelligence 1624 405 231
ArtLife Artificial Life 2095 448 275
ArtNN Artificial Neural Network 4698 1262 389
Captcha Captcha 1479 318 169
CompLin Computational Linguistics 648 168 80
CompVis Computer Vision 2396 737 311
EvolCom Evolutionary Computation 156 58 43
FuzzLog Fuzzy Logic 1663 399 204
GenAlg Genetic Algorithms 2775 715 306
MaTrans Machine Translation 1643 411 172
MAgent Multi-agent System 493 104 67
SemNet Semantic Network 475 96 74
Turing Turing Test 2432 459 225
VirtW Virtual World 583 144 79

All files 5724 1165

Table 1: Properties of texts used.

4 Application to Pair and Triplet Phrase Find-

ing, and to Selecting Pertinent Terms

In this section we first describe the data set used. Next, based on the foundation
of the previous section, we quantify inherent hierarchical structure in our data.
This justifies going further, to harness and exploit this structure.

4.1 Data Used

We use 14 texts taken from Wikipedia (mid-2006), and coverted to straight text
from HTML. Table 1 shows the numbers of words in each.

We derived 4048 unique terms (all parts of speech, including nouns) from
the collection of 14 texts listed in Table 1. As noted before, we do not apply
stemming. The 14 × 4048 frequency of occurrence matrix was analyzed using
correspondence analysis, which furnished an embedding of both texts and terms
in a 13-dimensional (i.e., necessarily at most one less than the minimum of input
row and column dimensions, viz. 14 and 4048) factor space.

Although the presence in the analysis of minor words can be important
(see discussion in Murtagh [2005b]), for the concept hierarchy relationships we
are primarily interested in nouns. We used therefore a part of speech tagger
[Schmid 1994] to locate the nouns. The number of nouns found in the Artifi-
cial Intelligence text was 231. For each we have a 13-dimensional factor space
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representation, and the latter has been defined globally, using all texts in the
collection studied.

For all pairs of the these 231 terms, using their 13-dimensional Euclidean
characterization, we carried out the mapping into the CvNC metric.

For the Artificial Intelligence text, 36% of the triplets were equilateral; 50%
of the triplets were isosceles with small base; hence 86% of the triplets respected
the ultrametric inequality. Finally, 14% of the triplets were non-ultrametric.

A summary of the “fingerprinting” procedure in regard to the text’s ultra-
metricity, or inherent local hierarchical structure, is as follows.

1. Define each of the relevant terms – nouns – in a Euclidean factor space.

2. Take each triplet of terms in turn.

3. Define the squared Euclidean distance between each successive pair of
terms.

4. Use the pairwise average of these squared distances as a threshold.

5. If the pair of terms is of squared distance less than the threshold, then
define their relationship as “no change”.

6. If the pair of terms is of squared distance greater than or equal to the
threshold, then define their relationship as “change (either up or down)”.

7. With “no change” coded as 1, “change” coded as 2, and self-distances
coded as 0, Murtagh [2005a] shows that the resulting mapping of the
Cartesian product of terms × terms onto the set d′ ∈ {0, 1, 2} defines a
metric. For all terms i, j, k, we therefore have d′ij ≤ d′ik + d′kj .

8. For the given triplet we check if this metric is an ultrametric: For terms
i, j, k, we therefore seek whether d′ij ≤ max{d′ik, d′kj}.

9. If the triplet i, j, k respects the ultrametric relation, then there are two
possible cases. Firstly, the triangle formed by these terms is equilateral,
which is implied whenever d′ij = d′ik = d′kj . Secondly, the triangle is
isosceles with small base, which is implied by two d′s being equal, and
greater in value to the third.

10. No other triangle configurations are consistent with the ultrametric rela-
tionship.

11. Over all triplets considered, the ultrametricity index of the document is
the proportion of ultrametricity-respectiving triplets.

Table 2 shows the results obtained for (i) global relationships given by all
triangles (triangles were read off using the loops i = 1 . . . n−2, j = i+1 . . . n−1,
k = j + 1 . . . n); and (ii) linear relationships, using only triangles defined from
successives triplets of terms in the text. Nouns were used: cf. Table 1. What
we see very clearly from Table 2 is that, whether global or linear, our texts
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show very dominant ultrametric or hierarchical structure. Furthermore, this is,
in the great majority of cases, dominated by the isosceles with small base case,
relative to the “trivial” equilateral case.

These results justify going further now, in order to make use of the inherent
hierarchical structure that is in our data.

4.2 Application to Concept Hierarchy Relationships

To the extent that our data satisfies, globally and throughout, the ultrametric
inequality, we can adopt any of the widely used hierarchical clustering algo-
rithms (single, complete, average linkage; minimum variance, median, centroid)
to induce an identical, unique hierarchy. But when we find our data to be,
say, 86% ultrametric, as is not untypically the case in practice, then we must
consider carefully what our aim is. If we wished to look at each and every
isosceles triangle, then in the case of the Artificial Intelligence text this means,
out of a total of 2,027,795 triplets (i.e., (231 ·230 ·229)/(2 ·3)) we must consider
1,007,597.

What we will do instead is return to taking our text as a time series. We
have 231 unique nouns in the Artificial Intelligence text. In the text, these
nouns are used, in total, on 405 occasions. So our text is a time series of 405
values. For successive nouns in this textual time series, the CvNC metric has
an evident meaning: we are noting semantic change versus lack of change as
we read through the text.

We examine successive triplets in the textual time series. For the Artificial
Intelligence text, we find 45% of the triplets to be equilateral; 37% of the triplets
are isosceles; and 18% of the triplets are non-ultrametric.

The isosceles triplets point to a dominance or subsumption relationship that
will be of use for us in a concept hierarchy. Say we have a triplet x, y, z. Say,
further, that the CvNC distance between x and y is 1, so therefore there is no
change in progressing from use of term x to use of term y. However both x
and y are at CvNC distance 2 to term z, and this betokens a semantic change.
So the relationship is simply represented as ((x, y)z). The term z dominates or
subsumes x and y.

The following results hold.
Firstly, say that a successive triplet of values, in any order, is found as

x, y, z, and later in the text, again, this triplet is found in any order. Then the
relationship between the three recoded distances in both cases will be identical.
For a given triplet, in any order within the triplet, the relationship is unique.

Secondly, consider any other term, w, such that some or all of the terms
x, y, z are found to have a relationship with w. As an example, we meet with
y, z, x at one point in the text, and later we meet with x, w, y. Then there is
no influence by w on the relationship ensuing from the x, w, y triplet, vis-à-
vis the relationship ensuing from the earlier y, z, x triplet. We have locality of
the relationship in any given triplet, from successive terms. The relationship is
strictly local to the given triplet.
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Text Total no. No. isosc. No. equil. Non-UM
triangles triangles triangles triangles

Artificial Intelligence 2027795 50 36 14
336 37 45 18

Artificial Life 3428425 52 36 12
342 34 41 26

Artificial Neural Network 9735114 46 42 12
914 39 49 11

Captcha 790244 54 33 12
225 41 33 25

Computational Linguistics 82160 46 39 15
132 47 41 12

Computer Vision 4965115 50 38 13
578 36 40 24

Evolutionary Computation 12341 37 48 15
52 33 54 13

Fuzzy Logic 1394204 52 33 14
299 45 30 25

Genetic Algorithms 4728720 43 46 10
581 37 51 12

Machine Translation 833340 49 36 15
331 40 33 27

Multi-agent System 47905 49 42 9
87 37 49 14

Semantic Network 64824 59 35 6
77 35 57 8

Turing Test 1873200 50 37 13
365 45 33 23

Virtual World 79079 58 29 13
88 42 28 30

Table 2: Texts, and their properties as quantified, as percentages, by relative
numbers of triangles. Note the percentages in columns 3, 4 and 5 sum to 100, but
may deviate from this by a unit due to the rounding to the nearest integer. For
each text, we show results for the global and the linear cases (see accompanying
discussion for details).
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Among the isosceles triangles in the Artificial Intelligence text, we find the
following relationships.

( computer science ) branch

( home computer ) world

( analysis systems ) formalism

( analysis systems ) reasoning

( expert system ) conclusion

( expert system ) amounts

( example networks ) reasoning

( networks learning ) reasoning

( pattern recognition ) capabilities

( control systems ) computation

( consciousness systems ) logic

( medicine computer ) commentators

( computer technology ) commentators

( application feature ) os

( application feature ) languages

( libraries systems ) specialist

( libraries systems ) programmers

( software engineering ) development

( software engineering ) practices

( programs example ) logic

( example type ) logic

13



( projects publications ) life

( publications bayesian ) life

( bayesian networks ) life

( cybernetics systems ) agents

( systems control ) agents

( wiki web ) website

( wiki web ) category

( algorithm implementations ) projects

( algorithm implementations ) demonstrations

( implementations research ) demonstrations

( research group ) demonstrations

However there are other isosceles triplets that are less self-evident. For this
reason therefore we take all texts. For the 14 texts, we have 6439 nouns, and
1470 unique nouns. With our CvNC metric on all pairs of nouns, the complete
link hierarchical clustering method gives 21 clusters in all.

While one application of the foregoing is to deriving common pairs and
triplets of terms, in practice it would be better to combine all relationships into
a “bigger picture”. We will address this below in section 5.

4.3 Selecting the Most Pertinent Terms

Presenting a result with around 1500 terms does not lend itself to convenient
display. We ask therefore what the most useful – perhaps the most discriminat-
ing terms – are. In correspondence analysis both texts and their characterizing
terms are projected into the same factor space. See Figure 1. So, from the
factor coordinates, we can easily find the closest term(s) to a given text. We do
this for each of the 14 texts, and find the closest terms, respectively, as follows:

bayesian automaton brain captcha

psychologists image maps logic

topologies databases agents representation

14
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Figure 1: Correspondence analysis principal factor plane of projections of 14

texts, and 4048 terms (each represented with a dot).

game games

A hierarchical clustering of these is shown in Figure 2. The Ward minimum
variance method is used, as being appropriate for structuring data well (see
Murtagh [1984b]) and also having an agglomerative criterion that is appropriate
for the prior Euclidean embedding (viz., inertia-based in both cases). The data
clustered are exactly those illustrated in the best planar projection of Figure
1: these are 14 texts in a 4048-dimensional term space. Due to centering in
the dual spaces, the inherent dimensionality of both text and term spaces are:
min(14 − 1, 4048− 1) = 13. Based on the dual spaces, we carry out the eigen-
reduction in the space of smaller original dimensionality (viz., the space of the
terms, which are in a 14-dimensional space), and then subsequently project into
the 4048-dimensional space.

Proceeding further, the 5 closest terms to any given text, based on the full
inherent dimensionality of this data (viz., smaller of dimensionality of texts, and
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games
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Height

Figure 2: Dendrogram on the 14 noun-set, selected as the set of closest terms

to each of the 14 texts used. The hierarchical clustering is based on a full

dimensionality correspondence analysis factor embedding. Ward’s minimum

variance clustering is used.
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dimensionality of terms), are as follows.

Text and set of 5 closest characterizing terms:

Artificial Intelligence

bayesian intelligence consciousness brains chatterbots

Artificial Life

automaton automata biology chemical allelomimesis

Artificial Neural Networks

brain prediction forecasting aircraft epitomes

Captcha

captcha captchas robot intelligence chemistry

Computational Linguistics

psychologists logics morphology pragmatics logicians

Computer Vision

image images diagnosis dimensionality dimensions

Evolutionary Computation

maps intelligence robot biology chemistry

17



Fuzzy Logic

logic mapping animals brakes armies

Genetic Algorithms

topologies communications music finance representations

Machine Translation

databases chemistry database memory robot

Multi-agent System

agents agent robotics cybernetics robot

Semantic Network

representation database map namespaces robot

Turing Test

game chatterbot consciousness memory intelligence

Virtual World

games gameplay topography communication representations
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5 From Hierarchical Clustering to a Hierarchy

of Concepts

5.1 A Formal Approach: Displaying a Hierarchical Clus-

tering as an Oriented Tree

We have noted in the Introduction how a hierarchical clustering may be the
starting point for creating a concept hierarchy, but the two representations
differ. In this section we show how we can move from an embedded set of
clusters, to an oriented tree. Orientation in the latter case aims at expressing
subsumption.

Consider the dendrogram shown in Figure 3, which represents an embedded
set of clusters relating to the 8 terms. We will consider first such a strictly 2-way
hierarchy, where we assume that no two agglomerations take place at precisely
the same level. In the later case study, in subsection 5.4, we will consider the
practical case where agglomerations take place at the same level.

Rather than the 14 texts used in section 4, to clarify the presentation in this
section we will take just one text.

We took Aristotle’s Categories, which consisted of 14,483 individual words.
We broke the text into 24 files, in order to base the textual analysis on the
sequential properties of the argument developed. In these 24 files there were
1269 unique words. We selected 66 nouns of particular interest. A sample
(with frequencies of occurrence): man (104), contrary (72), same (71), subject
(60), substance (58), ... No stemming or other preprocessing was applied. For
the hierarchical clustering, we further restricted the set of nouns to just 8.
(These will be seen in the figures to be discussed below.) The data array was
doubled [Murtagh 2005b] to produce an 8 × 48 array, which with removing 0-
valued text segments (since, in one text segment, none of our selected 8 nouns
appeared) gave an 8 × 46 array, thereby enforcing equal weighting of (equal
masses for) the nouns used. The spaces of the 8 nouns, and of the 23 text
segments (together with the complements of the 23 text segments, on account of
the data doubling) are characterized at the start of the correspondence analysis
in terms of their frequencies of occurrence, on which the χ2 metric is used. The
correspondence analysis then “euclideanizes” both nouns and text segments.
We used a 7-dimensional (corresponding to the number of non-zero eigenvalues
found) Euclidean embedding, furnished by the projections onto the factors.
A hierarchical clustering of the 8 nouns, characterized by their 7-dimensional
(Euclidean) factor projections, was carried out: Figure 3. The Ward minimum
variance agglomerative criterion was used, with equal weighting of the 8 nouns.

Figure 4 shows a canonical representation of the dendrogram in Figure 3.
Both trees are isomorphic to one another. Figure 4 is shown such that the
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Figure 3: Hierarchical clustering of 8 terms. Data on which this was based:

frequencies of occurrence of 66 nouns in 24 successive, non-overlapping segments

of Aristotle’s Categories.
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sequence of agglomerations is portrayed from left to right (and of course from
bottom to top). We say that Figure 4 is a canonical representation of the
dendrogram, implying that Figure 3 is not in canonical form. In Figure 5, the
canonical representation has its non-terminal nodes labeled.

Next, Figure 6 shows a superimposed oriented binary rooted tree, on n − 1
nodes, which is isomorphic to the dendrogram on n terminal nodes. This ori-
ented binary tree is an inorder traversal of the dendrogram. Sibson’s [1973]
“packed representation” of a dendrogram uses just such an oriented binary
rooted tree, in order to define a permutation representation of the dendrogram.
From our example, the packed representation permutation can be read off as:
(13625748): for any terminal node indexed by i, with the exception of the right-
most which will always be n, define p(i) as the rank at which the terminal node
is first united with some terminal node to its right. Discussion of combinato-
rial properties of dendrograms, as related to such oriented binary rooted trees,
and associated down-up and up-down permutations, can be found in Murtagh
[1984a].

Finally, in Figure 7, we “promote” terminal node labels to the nodes of
the oriented tree. We will use exactly the procedure used above for defining a
permutation representation of the oriented tree. First the left terminal label is
promoted to its non-terminal node. Next, the right terminal label is promoted
as far up the tree as is necessary in order to find an unlabeled non-terminal
node. This procedure is carried out for all non-terminal labels, working in
sequence from left to right (i.e., consistent with our canonical representation
of the dendrogram). The rightmost label is not shown: it is at an arbitrary
location in the upper right hand side, with a tree arc oriented towards the top
non-terminal node of the dendrogram, now labeled as “motion”.

In this section, we have specified a consistent procedure for labeling the nodes
of an oriented tree, starting from the labels associated with the terminal nodes
of a dendrogram. We start therefore with embedded clusters, and end up with
terms and directed links between these terms. There is some non-uniqueness:
any two labels associated with terminal nodes that are left and right child nodes
of one non-terminal node can be interchanged. This clearly leads to a different
label promotion outcome.

Our promotion procedure was motivated by the permutation representation
of an oriented binary tree, as described above. Here too we do not claim unique-
ness of permutation representation. But we do claim optimality in the sense of
parsimony, and well-definedness.

In the case of a multiway tree with very few distinct levels, the promotion
procedure becomes very simple, but continues to be non-unique.
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Figure 4: Dendrogram on 8 terms, isomorphic to the previous figure, Figure 3,

but now with successively later agglomerations always represented by right child

node. Apart from the labels of the initial pairwise agglomerations, this is oth-

erwise a unique representation of the dendrogram (hence: “existence” and “ob-

ject” can be interchanged; so can “disposition” and “fact”; and finally “name”

and “disposition”). In the discussion we refer to this representation, with later

agglomerations always parked to the right, as our canonical representation of

the dendrogram.
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Figure 5: Dendrogram on 8 terms, as previous figure, Figure 5, with non-

terminal nodes numbered in sequence. These will form the nodes of the ori-

ented binary tree. We may consider one further node for completeness, 8 or ∞,

located at an arbitrary location in the upper right.
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Figure 6: Oriented binary tree is superimposed on the dendrogram. The node

at the arbitrary upper right location is not shown. The oriented binary tree

defines an inorder or depth-first tree traversal.
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5.2 A New Approach to Deriving a Concept Hierarchy

from a Dendrogram

In the previous subsection, we discussed an algorithm which takes a hierarchical
clustering, and hence a dendrogram, into an inorder tree traversal, and hence
a permutation of the set of terms used. The formal procedure discussed in
the previous subsection suffers from non-uniqueness: alternative permutations
could be defined. This leads us to question the relationship of subsumption (or
direction in the oriented tree). In this section we will develop another approach
which is even more closely associated with the data that we are analyzing.

We have already seen that triangle properties between triplets of points, or
data objects, are fundamental to ultrametricity and hence to tree representation.
A dendrogram, representing a hierarchical clustering, allows us to read off, for all
triplets of points, either (i) isosceles triangles, with small base, or (ii) equilateral
triangles, and (iii) no other triangle configuration. The reason for the last
condition is simply that non-isosceles, or isosceles with large base, triangles are
incompatible with the ultrametric, or tree, metric.

We will leave aside for the present the equilateral triangle case. Firstly, it
implies that all 3 points are ex aequo in the same cluster. Secondly, therefore
we will treat them altogether as a concept cluster. Thirdly, the equilateral case
does not arise in the example we will now explore.

In Figure 8, cluster number 3 indicates the following isosceles triangle with
small base: ((existence, object) position). Our notation is: ((x, y) z), such
that triplet x, y, z has small base x, y, and the side lengths x, z and y, z are
equal. This is necessarily implied by relationships represented in Figure 8. So,
motivated by this triangle view of the cluster number 3 part of the dendrogram
we will promote “position” to the cluster number 3 node.

Similarly we will promote “motion” to the cluster number 5 node.
Note the consistency of our perspective on the cluster number 3 and 5 nodes

relative to how the associated terms here form an isosceles triangle with small
base.

We will straight away generalize this definition. In any case of a node in
the form of nodes 3 or 5, where we have a 2-term left subtree, and a 1-term
right subtree, where left and right are necessarily labeled in this way given the
canonical representation of the dendrogram, then: the left subtree is dominated
by the right subtree.

We will next look at cluster number 6 (remaining with Figure 8). As always
for such trees, the node corresponding to this cluster has two subtrees, one
to the left (here: 3) and one to the right (here: 5). Since our dendrogram
is in canonical form, any such node has a subtree with smallest non-terminal
node level to the left; and the subtree which was more recently formed in the
sequence of agglomerations to the right. Based on either or both of these criteria
which serve to define what are the left and right subtrees we define the ordering
relationship: the left subtree is dominated by the right subtree.

Figure 9 summarizes the concept relations that we can derive in a similar
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Figure 8: Dendrogram as shown in Figures 4 and 5, with clusters indicated by

ellipses. Shown here are ellipses covering the clusters at nodes 7, 6, 5, and 3.

FIGURE NOT AVAILABLE: SEE PDF VERSION OF PAPER AT

www.cs.rhul.ac.uk/home/fionn/papers/auto onto.pdf

Figure 9: Concept relationships, ordered by dominance, derived from the den-

drogram in Figure 8.
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way from any dendrogram.

5.3 Demonstrator

Figure 10 indicates how the concept relations, shown in Figure 9, are to be used.
Firstly the term set is summarized, using our selection of terms. Scaling to

large data sets is addressed in this way.
Secondly, in our interactive implementation (web address:

thames.cs.rhul.ac.uk/∼dimitri/textmap), we allow the terms shown to contin-
ually move in a limited way, to get around the occlusion problem, and we also
allow magnification of the display area for this same reason.

Thirdly, terms other than those shown are highlighted when a cursor is
passed over them.

Next, double clicking on any term gives a ranked list of text segment names,
ordered by frequency of occurrence by this term. Clicking on the text segment
gives the actual text at the bottom of the display area.

5.4 Application with Ex Aequo Terms and Clusters

We proceed now to a third case study of this work, where we have a multiway
hieararchy (and not a binary hierarchy) from the start. We require a frequency
of occurrence matrix which crosses the terms of interest with parts of a free text
document. For the latter we could well take documentary segments like para-
graphs. O’Neill [2006] is a 660-word discussion of ubiquitous computing from
the perspective of human computing interaction. With this short document we
used individual lines (as proxies for the sequence of sentences) as the component
parts of the document. There were 65 lines. This facilitates retrieval of a small
segment of such a single document. We chose this text to work with because it
is a very small text (a single text compared to the data used in section 4, and
a far smaller text compared to that used in section 5).

Based on a list of nouns and substantives furnished by the part-of-speech
tagger (Schmid, 1994), we focused on the following 30 nouns:

support = { “agents”, “algorithms”, “aspects”, “attempts”, “behaviours”,
“concepts”, “criteria”, “disciplines”, “engineers”, “factors”, “goals”, “interac-
tions”, “kinds”, “meanings”, “methods”, “models”, “notions”, “others”, “parts”,
“people”, “perceptions”, “perspectives”, “principles”, “systems”, “techniques”,
“terms”, “theories”, “tools”, “trusts”, “users” }.

This set of 30 terms was used to characterize through presence/absence the
65 successive lines of text, leading to correspondence analysis of the 65 × 30
presence/absence matrix. This yielded then the definition of the 30 terms in a
factor space. In principle the rank of this space (taking account of the trivial
first factor in correspondence analysis, relating to the centering of the cloud of
points) is min( 65− 1, 30− 1). However, given the existence of zero-valued rows
and/or columns, the actual rank was 25. Therefore the full rank projection of
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Figure 10: The relationships displayed in Figure 9 are shown in decreasing size

(and in rainbow colors, from red), with other terms (in all, 66) displayed with a

dash, and all text segments (in all, 24) represented by an asterisk. The principal

factor plane of a correspondence analysis (based on the 24 text segments × 66

terms frequencies of occurence) output is used.
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the terms into the factor space gave rise to 25-dimensional vectors for each term,
and these vectors are endowed with the Euclidean metric.

Define this set of 30 terms as the support of the document. Based on their
occurrences in the document, we generated the following reduced version of the
document, defined on this support, which consists of the following ordered set
of 52 terms:

Reduced document= “goals” “techniques” “goals” “disciplines” “meanings”
“terms” “others” “systems” “attempts” “parts” “trusts” “trusts” “people” “con-
cepts” “agents” “notions” “systems” “people” “kinds” “behaviours” “people”
“factors” “behaviours” “perspectives” “goals” “perspectives” “principles” “as-
pects” “engineers” “tools” “goals” “perspectives” “methods” “techniques” “cri-
teria” “criteria” “perspectives” “methods” “techniques” “principles” “concepts”
“models” “theories” “goals” “tools” “techniques” “systems” “interactions” “in-
teractions” “users” “perceptions” “algorithms”

This reduced document is just the “time series” of the nouns of interest to
us, as they are used in traversing the document from start to finish. Each noun
in the sequence of 52 nouns is represented by its 25-dimensional factor space
vector.

Out of 43 unique triplets, with self-distances removed, we found 31 to re-
spect the ultrametric inequality, i.e. 72%. Our measure of ultrametricity of this
document, based on the support used, was thus 0.72.

For a concept hierarchy we need an overall fit to the data. Using the Eu-
clidean space perspective on the data, furnished by correspondence analysis,
we can easily define a terms × terms distance matrix; and then hierarchically
cluster that. Consistent with our analysis we recode all these distances, using
the CvNC mapping onto {1, 2} for unique pairs of terms.

Now approximating a global ultrametric from below, achieved by the single
linkage agglomerative hierarchical clustering method (and this best fit from
below, termed the subdominant or maximal inferior ultrametric, is optimal), and
an approximation from above, achieved by the complete linkage agglomerative
hierarchical clustering method (and this best fit from above, termed a minimal
superior ultrametric, is non-unique and hence is one of a number of best fits
from above), will be identical if the data is fully ultrametric-embeddable. If we
had an ultrametricity coefficient equal to 1 – we found it to be 0.72 for this data
– then it would not matter what agglomerative hierarchical clustering algorithm
(among the usual Lance-Williams methods) that we select.

In fact, we found, with an ultrametricity coefficient equal to 0.72, that the
single and complete linkage methods gave an identical result. This result is
shown in Figure 11.

A convenient label promotion procedure to apply here is first to re-represent
the terminal labels from left to right as: { “users”, “trusts”, . . ., “agents”,
“algorithms” }; { “goals”, “perspectives” }; { “tools” }; { “techniques” }; and {
“methods” }. This is the canonical form, with ordering of left and right subtrees
now extended to all subtrees.

Next, we must in fairness take the nodes at level 2 as being ex aequo, { “tools”
}; { “techniques” }; and { “methods” }. Similarly at level 1, we also have two
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Figure 11: Single (or identically, complete) linkage hierarchy of 30 terms, com-

prising the support of the document, based on (i) “no change/change”, or CvNC,

metric recoded (ii) 25-dimensional Euclidean representation.
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FIGURE NOT AVAILABLE: SEE PDF VERSION OF PAPER AT

www.cs.rhul.ac.uk/home/fionn/papers/auto onto.pdf

Figure 12: Concept hierarchy derived, using our methodology, from Figure 11.

See accompanying discussion for details.

clusters that are ex aequo: { “users”, “trusts”, . . ., “agents”, “algorithms” };
and { “goals”, “perspectives” }.

Figure 12 shows our resulting scheme where level 1 clusters dominate level
2 clusters.

This provides our ontology. The granularity of this one document is, as
mentioned above, line-based, and there are 65 lines in all. Hence retrieval of
one or more of these document snippets is supported, and the ontology is based
on a 30-noun document support.

6 Conclusions

Having first appraised text collections in terms of their local hierarchical struc-
ture, we then proceeded in this work to show how this new methodology could
be employed for a wide range of tasks that include:

• finding salient pairs and triplets of terms, which are not necessarily in
sequence;

• permitting us to consider any given text as a whole with all pairwise rela-
tionships between terms, or alternatively as a time series with relationships
restricted to terms that are successive in sequence;

• passing seamlessly from the exploration of local hierarchical structure to
global hierarchical structure;

• especially when global hierarchical structure is manifest, being able to use
any of a wide range of agglomerative clustering criteria to furnish the same
resultant hierarchy;

• determining a hierarchy of concepts from the embedded, partially ordered
subsets provided by a hierarchical clustering;

• obtaining unique results when given a 2-way hierarchical clustering tree,
and then readily generalizing this to the practical case of multiway trees;

• exemplifying an efficient and an effective textual data processing pipeline;
and
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• through the measurement of local hierarchical structure, having available
an approach to validating the appropriateness of any data for this data
analysis pipeline.

By analysis of text through local hierarchical relationships between terms
we determine extensive internal textual structure, without being stifled by the
more traditional approach of fitting some global structure, such as a hierarchy,
to the text. A (local) hierarchical structure is a powerful one: it includes peer
as well as subsumption types of relationships.

We stress that we can find very pronounced hierarchical structures of this
sort if we encode the text is novel ways. An example is to start with a Euclidean
spatial embedding of the terms and documents (or segments of a document),
which is quite traditional; and then look at interrelationships between terms us-
ing “relatively close/similar” versus “relatively distant/new” (and this alone can
be shown to have metric properties). Another example of an encoding-related
strategy is not to take into consideration all interrelationships between terms,
but only between successive terms, and thereby view the text as a particular
type of time series. User interactivity with the system is to select the terms of
interest (people’s personal names, industrial product names, location or venue
names, etc.). The interrelationships between these terms are then explored
through their local hierarchical links.

Our general application targeted is, as stated in Murtagh et al. [2003], to
have readily available a self-description of data, as a basis for visually-based
interactive and responsive querying of, retrieval from, and navigation of data
collections.
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