
ar
X

iv
:c

s/
03

08
00

9v
3 

 [
cs

.C
E

] 
 1

7 
M

ay
 2

00
8

The Generalized Riemann or Henstock Integral

Underpinning Multivariate Data Analysis:

Application to Faint Structure Finding in Price

Processes

Pat Muldowney (1) and Fionn Murtagh (2, *)
(1) School of International Business
University of Ulster, Magee College

Londonderry BT48 7JL, Northern Ireland
Email p.muldowney@ulster.ac.uk

(2) Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

Email fmurtagh at acm dot org
∗ Author for correspondence

May 17, 2008

Abstract

Practical data analysis involves many implicit or explicit assumptions

about the good behavior of the data, and excludes consideration of vari-

ous potentially pathological or limit cases. In this work, we present a new

general theory of data, and of data processing, to bypass some of these

assumptions. The new framework presented is focused on integration,

and has direct applicability to expectation, distance, correlation, and ag-

gregation. In a case study, we seek to reveal faint structure in financial

data. Our new foundation for data encoding and handling offers increased

justification for our conclusions.

Keywords: data coding, data encoding, data valuation, correspondence analy-
sis, hierarchical clustering, geometric Brownian motion, financial modeling, time
series prediction, data aggregation

1 Introduction

We develop a theory of data for contingency table data analysis, a priority area
of application of correspondence analysis. Much of the foundations of data
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theory that we discuss are quite general to data analysis, and independent of
the correspondence analysis. Motivation includes the following.

Correspondence analysis is carried out on a cloud of points (rows, columns)
through finding of principal directions of elongation, etc. What legitimizes our
assumption of a compact cloud of points? More generally, what legitimizes our
data analysis of a given data set, when we assume that the data set is a sampling
of facets or events (which are to be explained and interpreted through the data
analysis)? Should we instead allow for singularities or other pathologies or
irregularities in such a cloud of points? The data analyst, in a somewhat slipshod
approach to analyzing data, ignores such issues, and instead cavalierly takes
data as sometimes discrete and sometimes continuous. As an example of such
singularities, consider the preprocessing of data using normalization through
taking the logarithm (common in dealing with astronomical stellar magnitudes,
or financial ratios). Such normalization can potentially give rise to undefined
data values. Why do we consider that our input data sets do not also contain
undefined data values? In all generality, what justifies the ruling out of such
pathologies in our input data?

The number of attributes used to characterize our observations is possibly
infinite. Can our general foundations cope with this? A priori the answer is
clearly no. In this article, we describe a foundation for data analysis, based on
Henstock’s approach to integration, which allows us to bypass such pitfalls in a
rigorous manner.

We need a theory which begins with empirical distribution functions deduced
from empirical data (i) for which there is no analytical description, and (ii) that
are amenable to empirical computation.

We propose in this article a foundation for data analysis which is at the level
of the data, rather than at higher levels of model fitting, so that we are fully
compatible thereafter with all statistical modeling approaches. In passing we
will note how quantitative and qualititive data coding are encompassed within
our approach (in section 3). Neither can be considered as the more legitimate.
There is no one necessary a priori statistical model to be used because there
is no one necessary a priori morphology for a data cloud. (See section 8.)
Nor is there any one necessary level of resolution in data encoding (section 9).
Empirical distribution functions can be deduced from empirical data for which
there is no analytical description; and then the Riemann sums, with their finite
number of terms, are amenable to empirical computation.

In multivariate data analysis, the input data set is assumed to be represen-
tative and comprehensive. However the former cannot do justice to an unknown
(and perhaps unknowable) underlying (physical, social, etc.) reality. The latter
is approximated very crudely in practice. Can these goals of representativity
and comprehensiveness even hypothetically be well approximated in practice?
Only with the framework that we present in this article can pathologies be ex-
cluded (in regard to representativity), and (in regard to comprehensiveness) can
we be at ease with infinite dimensional spaces.

As is clear from this list of motivations, we are concerned with the well-
foundedness of numerical data, which will subsequently be subject to a statisti-
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cal data analysis. The supposition that (multivariate, time series, etc.) data can
be addressed as such has only been examined in terms of measurement theory
(ordinal, interval, qualitative, quantitative, etc.) or levels of measurement by
S.S. Stevens in the 1940s (see Velleman and Wilkinson, 1984). However sup-
positions regarding input data have not been examined before in terms of the
data set giving rise a well-behaved and exploitable processing input. We will do
so in this article by showing how the Henstock or generalized Riemann theory
of integration also provides a basis for asserting: a numerical data set can be

analyzed. The focus on integration, and the perspective introduced, is easily ex-
tended to expectation, scalar product, distance, correlation, data aggregation,
and so on.

A word on terminology used here: all statistical analysis of data starts with
(qualitative or quantitative) data in numeric form, presupposing a valuation
function mapping facets (or events) of the domain studied onto numerical values.
We speak of this as data valuation, or more usually in this context as data
encoding. The bigger picture of data encoding together with data normalization
or other preprocessing, or indeed processing in the data analysis pipeline, is
referred to in this article as data coding.

2 Integration Background

Probability theory, with foundations provided by Kolmogorov, is based on prob-
ability measures on algebras of events and based ultimately on the Lebesgue
integral. Lebesgue’s just happened to be the first of a number of such investiga-
tions into the nature of mathematical integration during the twentieth century.

Subsequent developments in integration, by Perron, Denjoy, Henstock and
Kurzweil, have similar properties and were devised to overcome shortcomings
in the Lebesgue theory. See Gordon (1994) for detailed comparison of modern
theories of integration. However, theorists of probability and random variation
have not yet really “noticed”, or taken account of, these developments in the
underlying concepts. There are many benefits to be reaped by bringing these
fundamental new insights in integration or averaging to the study of random
variation, and this article aims to demonstrate some of them in the context of
data coding.

It is possible to formulate a theory of random variation and probability,
linked to data coding, on the basis of a conceptually simpler Riemann-type
approach, and without reference to the more difficult theories of measure and
Lebesgue integration.

In particular it is possible to present a Riemann-type model of data encoding
in which a valuation (potentially a data value) is a limit of Riemann sums formed
by suitably partitioning the sample space Ω in which the process x takes its
values. See Muldowney (1999, 2000/2001).

To contrast (traditional) Legesgue and (more recent) Riemann integration,
consider determining a mean value. Suppose the sample space is the set of real
numbers, or a subset of them. If successive instances of the random variable
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Interval Random variable Relative frequency

I(1) f(x(1)) F (I(1))

I(2) f(x(2)) F (I(2))
...

...
...

I(n) f(x(n)) F (I(n))

Table 1: For each j, the number x(j) is a representative element selected from
I(j) or its closure. The resulting estimate of the mean value of the random
variable f(x) is

∑n
j=1 f(x(j))F (I(j)).

x f(x) P

A1 y1 = f(x(1)) P (A1)

A2 y2 = f(x(2)) P (A2)
...

...
...

An yn = f(x(n)) P (An)

Table 2: Here, x is again a representative member of a sample space Ω which
corresponds to the various potential occurrences or states in the “real world”
in which measurements or observations are taking place on a variable whose
values are unpredictable and which can only be estimated beforehand to within
a degree of likelihood. A probability measure P is posited on a sigma-algebra
of events A.

are obtained, we might partition the resulting data into an appropriate number
of classes; then select a representative value of the random variable from each
class; multiply each of the representatives by the relative frequency of the class
in which it occurs; and add up the products. The result is an estimate of the
mean value of the random variable. Table 1 illustrates this procedure. The
sample space is partitioned into intervals I(j) of the sample variable x, the
random variable is f(x), and the relative frequency of the class I(j) is F (I(j)).

The approach to random variation that we are concerned with in this article
consists of a formalization of this relatively simple Riemann sum technique
which puts at our disposal powerful results in analysis such as the Dominated
Convergence Theorem.

In contrast the Kolmogorov approach requires, as a preliminary, an excursion
into abstract measurable subsets Aj of the sample space, Ω (Table 2).

In practice, Ω is often identified with the real numbers or some proper subset
of them; or with a Cartesian product, finite or infinite, of such sets. In Table
2, numbers yj are chosen in the range of values of the random variable f(x),
and Aj is f−1([yj−1, yj [). The resulting

∑n
j=1 yjP (Aj) is an estimate of the
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expected value of the random variable f(x). But the P -measurable sets Aj are
mathematically abstruse, and they can place heavy demands on the understand-
ing and intuition of anyone who is not well-versed in mathematical analysis. For
instance, it can be difficult for a non-specialist to visualize a measurable set A
in terms of laboratory, industrial or financial measurements of some real-world
quantity.

In contrast, the data classes I(j) of elementary statistics in Table 1 are easily
understood as real intervals, of one or more dimensions; and these are the basis
of the Riemann approach to random variation.

To illustrate the Lebesgue-Kolmogorov approach, suppose X is a normally
distributed random variable in a sample space Ω. Then we can represent Ω
as IR, the set of real numbers; with X represented as the identity mapping
X : IR → IR, X(x) = x; and with distribution function FX defined on the family
IIR of intervals I of IR, FX : IIR → [0, 1]:

FX(I) =
1√
2π

∫

I

e−s2

ds. (1)

Then, in the Lebesgue-Kolmogorov approach, we generate, from the distribu-
tion function FX , a probability measure PX : AIR → [0, 1] on the family AIR

of Lebesgue measurable subsets of Ω = IR. So the expectation EP (f) of any
PX -measurable function f of x is the Lebesgue integral

∫

Ω
f(x)dPX . With

Ω identified as IR, this is just the Lebesgue-Stieltjes integral
∫

IR f(x)dFX , and,
since x is just the standard normal variable of (1), the latter integral reduces to
the Riemann-Stieltjes integral – with Cauchy or improper extensions, since the
domain of integration is the unbounded IR =] −∞,∞[.

In presenting this outline we have skipped over many steps, the principal ones
being the probability calculus and the construction of the probability measure
P . It is precisely these steps which cease to be necessary preliminaries if we take
a generalized Riemann approach, instead of the Lebesgue-Kolmogorov one, in
the study of random variation.

Because the generalized Riemann approach does not make use of an abstract
measurable space Ω as the sample space, from here onwards we will take as given
the identification of the sample space with IR or some subset of IR, or with a
Cartesian product of such sets, and take the symbol Ω as denoting such a space.
Accordingly we will drop the traditional notations X and f(X) for denoting
random variables. Instead a random variable will be denoted by the variable
(though unpredictable) element x of the (now Cartesian) sample space, or by
some function f(x) of x. The associated likelihoods or probabilities will be given
by a distribution function F (I) defined on intervals (which may be Cartesian
products of one-dimensional intervals) of Ω. Whenever it is necessary to relate
the distribution function F to its underlying random variable x, we may write
F as Fx.
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3 A Generalized Riemann Approach: From Dis-

tribution Functions Rather Than From Prob-

ability Measures

The standard approach starts with a probability measure P defined on a sigma-
algebra of measurable sets in an abstract sample space Ω; it then deduces prob-
ability density functions F . These distribution functions (and not some ab-
stract probability measure) are the practical starting point for the analysis of
many actual random variables – normal (as described above in (1)), exponential,
Brownian, geometric Brownian, and so on, i.e. practical data analysis.

In contrast, the generalized Riemann approach posits the probability distri-
bution function F as the starting point of the theory, and proceeds along the
lines of the simpler and more familiar (Table 1) instead of the more complicated
and less intuitive (Table 2).

To formalize the concepts, a random variable (or observable) is now taken
to be a function f(x) defined on a domain Ω = SB =

∏

{S : B} where S is IR or
some subset of IR and B is an indexing set which may be finite or infinite; the
elements of Ω being denoted by x; along with a likelihood function F defined
on the intervals of

∏

{S : B}.
In some basic examples such as throwing dice, S may be a set such as

{1, 2, 3, 4, 5, 6}, or, where there is repeated sampling, a Cartesian product of such
sets. Alternatively, S will be the set of positive numbers IR+. So quantitative
and qualitative data encoding are easily supported.

The Lebesgue-Kolmogorov approach develops probability density functions
F from probability measures P (A) of measurable sets A. Even though dis-
tribution functions are often the starting point in practice (as in (1) above),
Kolmogorov gives primacy to the probability measures P , and they are the
basis of the calculus of probabilities, including the crucial relation

P (∪∞
j=1Aj) =

∞
∑

j=1

P (Aj). (2)

Viewed as an axiom, relation (2) is a somewhat mysterious statement about
rather mysterious objects. But it is the lynch-pin of the Lebesgue-Kolmogorov
theory, and without it the twentieth century understanding of random variation
would have been impossible.

The generalized Riemann approach starts with probability density functions
Fx defined only on intervals I of the sample space Ω = SB . We can, as
shown below (12), deduce from this approach probability functions Px defined
on a broader class of “integrable” sets A, and a calculus of probabilities which
includes the relation (2)—but as a theorem rather than an axiom.

What, if any, is the relationship between these two approaches to random
variation? There is a theorem (Muldowney and Skvortsov, 2001/2002) which
states that every Lebesgue integrable function (in IRB) is also generalized Rie-
mann integrable. In effect, this guarantees that every result in the Lebesgue-
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Kolmogorov theory also holds in the generalized Riemann approach. So, in this
sense, the former is a special case of the latter.

The key point in developing a rigorous theory of random variation (which
supports data valuation and hence data analysis) by means of generalized Rie-
mann integration is, following the scheme of Table 1, to partition the domain
or sample space Ω = SB, in an appropriate way, as we shall proceed to show.
(Whereas in the Lebesgue-Kolmogorov-Itô approach we step back from Table 1,
and instead use Table 2 supported by (2). The two approaches part company
at the Tables 1 and 2 stage.)

In the generalized Riemann approach we focus on the classification of the
sample data into mutually exclusive classes or intervals I. I.e., through data
encoding we undertake partitioning of the sample space Ω = SB into mutually
exclusive intervals I.

In pursuing a rigorous theory of random variation along these lines this
basic idea of partitioning the sample space is the key. Instead of retreating to
the abstract (Kolmogorov measures on subsets) machinery of Table 2, we find a
different way ahead by carefully selecting the intervals I(j) which partition the
sample space Ω = IRB.

4 Riemann Sums

An idea of what is involved in this can be obtained by recalling the role of
Riemann sums in basic integration theory. Suppose for simplicity that the
sample space Ω is the interval [a, b[⊂ IR and the random variable f(x) is given
by f : Ω → IR; and suppose F : I → [0, 1] where I is the family of subintervals
I ⊆ Ω = [a, b[.

We can interpret F as the probability distribution function of the underlying
random variable x, so F (I) is the likelihood that x ∈ I. As a distribution
function, F is finitely additive on I.

The simplest intuition of likelihood – as something intermediate between cer-
tainty of non-occurrence and certainty of occurrence – implies that likelihoods
must be representable as numbers between 0 and 1. It follows that distribu-
tion functions are finitely additive on I. This immediately lifts the burden of
credulity that (2) imposes on our naive or “natural” sense of what probability
or likelihood is.

With f a deterministic function of the random variable x, the random vari-
ation of f(x) is our object of investigation. In the first instance we wish to
establish E(f), the expected value of f(x), as, in some sense, the integral of f
with respect to F , which is often estimated as in Table 1.

Following broadly the scheme of Table 1, we first select an arbitrary number
δ > 0. Then we choose a finite number of disjoint intervals I1, . . . , In; Ij =
[uj−1, uj [, a = u0 < u1 < · · · < un = b, with each interval Ij satisfying

|Ij | := uj − uj−1 < δ. (3)

We then select a representative xj , uj−1 ≤ xj ≤ uj, 1 ≤ j ≤ n.
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(For simplicity we are using superscript j instead of (j) — for labelling, not
exponentiation. The reason for not using subscript j is to keep such subscripts
available to denote dimensions in multi-dimensional variables.)

Then the Riemann (or Riemann-Stieltjes) integral of f with respect to F

exists, with
∫ b

a
f(x)dF = α, if, given any ǫ > 0, there exists a number δ > 0 so

that
∣

∣

∣

∣

∣

∣

n
∑

j=1

f(xj)F (Ij) − α

∣

∣

∣

∣

∣

∣

< ε (4)

for every such choice of xj , Ij satisfying (3), 1 ≤ j ≤ n.
If we could succeed in creating a theory of random variation along these lines

then we could reasonably declare that the expectation EF (f) of the random

variable f(x), relative to the distribution function F (I), is
∫ b

a
f(x)dF whenever

the latter exists in the sense of (4). (In fact this statement is true, but a
justification of it takes us deep into the Kolmogorov theory of probability and
random variation. A different justification is given in this article.)

But (3) and (4) on their own do not yield an adequate theory of random
variation. For one thing, it is well known that not every Lebesgue integrable
function is Riemann integrable. So in this sense at least, Table 2 goes further
than Table 1 and relation (4).

More importantly, any theory of random variation must contain results such
as Central Limit Theorems and Laws of Large Numbers, which are the core of
our understanding of random variation, and the proofs of such results require
theorems like the Dominated Convergence Theorem, which are available for
Table 2 and Lebesgue integrals, but which are not available for the ordinary
Riemann integrals of Table 1 and (4).

However, before we take further steps towards the generalization of the Rie-
mann integral (4) which will give us what we need, let us pause to give further
consideration to data encoding.

Though the classes Ij used in (4) above are not required to be of equal
length, it is certainly consistent with (4) to partition the sample data into equal
classes. To see this, choose n so that (b − a)/n < δ, and then choose each uj

so that uj − uj−1 = (b − a)/n. Then Ij = [uj−1, uj[ (1 ≤ j ≤ n) gives us a
partition of Ω = [a, b[ in which each Ij has the same length (b − a)/n.

We could also, in principle, obtain quantile classification of the data by
this method of δ-partitioning. Suppose we want decile classification; that is,
[a, b[= I1 ∪ · · · ∪ In with F (Ij) = 0.1, 1 ≤ j ≤ n. This is possible, since the
function F (u) := F ([a, u[) is monotone increasing and continuous for almost
all u ∈]a, b[, and hence there exist uj such that F (uj) = j/10 for 1 ≤ j ≤ 10.
So if δ happens to be greater than max{uj − uj−1 : 1 ≤ j ≤ 10}, then the
decile classification satisfies |Ij | = uj − uj−1 < δ for 1 ≤ j ≤ 10. (This
argument merely establishes the existence of such a classification. Actually
determining quantile points for a particular distribution function requires ad

hoc consideration of the distribution function in question.)
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In fact, this focus on the system of data encoding is the avenue to a rigorous
theory of random variation within a Riemann framework, as we shall now see.

5 The Generalized Riemann Integral

In the previous section we took the sample space Ω to be [a, b[. As our attention
from here on is going to be (below in the application study) increasingly focussed
on counts or frequencies, which are non-negative, we will take the sample space
to be IR+ =]0,∞[, or a multiple Cartesian product of IR+ by itself.

Figure 1 shows a partition of an unbounded finite-dimensional domain such
as IR+ × IR+. In this illustration,

I1 = [u1
1, u

3
1[×[u2

2, u
3
2[

I2 = [u2
1, u

4
1[×[u3

2, u
4
2[

I3 = [u3
1, u

5
1[×[u1

2, u
3
2[

I4 = [u3
1,∞[×]0, u1

2[
I5 = [u5

1,∞[×[u1
2, u

3
2[

I6 = [u4
1,∞[×[u3

2,∞[
I7 = [u2

1, u
4
1[×[u4

2,∞[
I8 = ]0, u2

1[×[u3
2,∞[

I9 = ]0, u1
1[×[u2

2, u
3
2[

I10 = ]0, u3
1[×]0, u2

2[.

(5)

For each elementary occurrence x ∈ Ω = IRn (n a positive integer), let δ(x)
be a positive number. Then an admissible classification of the sample space,
called a δ-fine division of Ω, is a finite collection

Eδ := {(xj , Ij)}n
j=1 (6)

so that xj is in Ij . The Ij are disjoint with union Ω, and the lengths of the
edges (or sides) of each Ij are bounded by δ(xj).

So, referring back to Table 1 of elementary statistics, what we are doing here
is selecting the data classification intervals Ij along with a representative value
xj from Ij .

It is convenient (though not a requirement of the theory) that the represen-
tative value xj should be a vertex of Ij , and that is how we shall proceed.

In the case of the ordinary Riemann integral in a compact domain (cf. (4)),
the positive function δ is simply a positive constant, and the bound in question
is simply the condition that each edge of each interval has length less than δ. Or-
dinary Riemann integration over unbounded domains, or domains which contain
singularity points of the integrand, is obtained by means of the improper Rie-

mann integral (for details of which, see Rudin (1970) for instance). In contrast,
the generalized Riemann integral handles all of these situations in essentially
the same way, removing the need for improper extension. In the illustration in
Figure 1 above, some of the edges are infinitely long. The precise sense in which
each edge (finite or infinite) of Ij is bounded by δ(xj) is explained at the end
of this section.
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u1
1 u2

1 u3
1 u4

1 u5
1

u1
2

u2
2

u3
2

u4
2

I10 I4

I9 I1

I3

I8
I2

I6

I7

I5

Figure 1: Unbounded two-dimensional domain with partition used for data
encoding.
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The Riemann sum corresponding to (6) is

(Eδ)
∑

f(x)F (I) :=
n

∑

j=1

f(xj)F (Ij) (7)

i.e. it is simply the sum over the terms in equation (6). We say that f is
generalized Riemann integrable with respect to F , with

∫

Ω
f(x)F (I) = α, if, for

each ε > 0, there exists a function δ : Ω → IR+ so that, for every Eδ,

∣

∣

∣
(Eδ)

∑

f(x)F (I) − α
∣

∣

∣
< ε. (8)

With this step we overcome the two previously mentioned objections to the use
of Riemann-type integration in a theory of random variation. Firstly, every
function f which is Lebesgue-Stieltjes integrable in Ω with respect to F is also
generalized Riemann integrable, in the sense of (8). See Gordon (1994) for a
proof of this. Secondly, we have theorems such as the Dominated Convergence
Theorem (see, for example, Gordon, 1994) which enable us to prove Laws of
Large Numbers, Central Limit Theorems and other results which are needed for
a theory of random variation.

So we can legitimately use the usual language and notation of probability
theory. Thus, the expectation of the random variable f(x) with respect to the
probability distribution function F (I) is

EF (f(x)) =

∫

Ω

f(x)F (I).

To recapitulate, elementary statistics involves calculations of the form (1), often
with classes I of equal size or equal likelihood. We refine this method by carefully
selecting the data classification intervals I. In fact our Riemann sum estimates
involve choosing a finite number of occurrences {x(1), . . . , x(n)} from Ω (actually,
from the closure of Ω), and then selecting associated classes {I(1), . . . , I(n)},
disjoint with union Ω, with x(j) in I(j) (or with each x(j) a vertex of I(j), in the
version of the theory that we are presenting here), such that for each 1 ≤ j ≤ n,
I(j) is δ-fine. The meaning of this is as follows.

Let IR+ = IR+ ∪ {0,∞} be IR+ with the points 0 and ∞ adjoined. (In the
following paragraph, x = 0 and x = ∞ are given special treatment. Many
functions are undefined for x = ∞; and x = 0 is a singularity for the function
lnx which may be of use in data normalization – for instance when dealing with
astronomy stellar magnitudes or financial ratios.)

Let I be an interval in IR+, of the form

]0, v[, [u, v[, or [u,∞[, (9)

and let δ : IR+ →]0,∞[ be a positive function defined for x ∈ IR+. The function
δ is called a gauge in IR+. We say that I is attached to x (or associated with x)
if

x = 0, x = u or v, x = ∞ (10)
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respectively. If I is attached to x we say that (x, I) is δ-fine (or simply that I
is δ-fine) if

v < δ(x), v − u < δ(x), u >
1

δ(x)
(11)

respectively.
That is what we mean by δ-fineness in one dimension. What about higher

dimensions?
Suppose I = I1 × I2 × · · · × In is an interval of IRn

+ = IR+ × IR+ × · · · IR+, each
Ij being a one-dimensional interval of form (9). A point x = (x1, x2, . . . , xn) of

IR
n

+ is attached to I in IRn
+ if each xj is attached to Ij in IR+, 1 ≤ j ≤ n. Given

a function δ : IR
n

+ →]0,∞[, an associated pair (x, I) is δ-fine in IRn
+ if each Ij

satisfies the relevant condition in (11) with the new δ(x). A finite collection
of associated (x, I) is a δ-fine division of IRn

+ if the intervals I are disjoint with
union IRn

+, and if each of the (x, I) is δ-fine. A proof of the existence of such a
δ-fine division is given in Henstock (1988), Theorem 4.1.

A glance at Diagram (1) above will show that many of points x involved
in a division of IRn

+ (vertices of the partitioning intervals), which correspond to

the representative occurrences x(j) of the data encoding in Table 1, will belong
to IR

n

+ \ IRn
+; in other words x may have some components xj equal to 0 or

∞. The special arrangements we have made for such points, in (11) above,
are in anticipation of the singularities that are present at such points in the
expressions that arise in our data encoding problem. These arrangements, which
are characteristic of generalized Riemann integration, forestall any need for the
kind of improper extensions which are needed in other integration theories.

6 But Where Is The Calculus of Probabilities?

There are certain familiar landmarks in the study of probability theory and its
offshoots such as the calculus of probabilities, which has not entered into the
discussion thus far. The key point in this calculus is the relationship

P (∪∞
j=1Aj) =

∞
∑

j=1

P (Aj).

In fact the set-functions P and their calculus are not used as the basis of the gen-
eralized Riemann approach to the study of random variation. Instead, the basis
is the simpler set-functions F , defined only on intervals, and finitely additive on
them.

But, as mentioned earlier, an outcome of the generalized Riemann approach
is that we can recover set-functions defined on sets (including the measurable
sets of the Kolmogorov theory) which are more general than intervals, and we
can recover the probability calculus which is associated with them.

To see this, suppose A ⊆ Ω is such that
∫

Ω 1A(x)F (I) exists in the sense of
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(8). Then define

PF (A) =

∫

Ω

1A(x)F (I), (12)

and we can easily deduce from the Dominated Convergence Theorem for gener-
alized Riemann integrals, that for disjoint Aj for which PF (Aj) exists,

PF (∪∞
j=1Aj) =

∞
∑

j=1

PF (Aj).

Other familiar properties of the calculus of probabilities are easily deduced from
(12).

Since every Lebesgue integrable function is also generalized Riemann inte-
grable (Gordon, 1994), every result obtained by Lebesgue integration is also
valid for generalized Riemann integration. So in this sense, the generalized Rie-
mann theory of random variation is an extension or generalization of the theory
developed by Kolmogorov, Levy, Itô and others.

However the kind of argument which is natural for Lebesgue integration
is different from that which would naturally be used in generalized Riemann
integration, so it is more productive in the latter case to develop the theory of
random variation from first principles on Riemann lines. Some pointers to such
a development are given in (Muldowney, 1999).

Many of the standard distributions (normal, exponential and others) are
mathematically elementary, and the expected or average values of random vari-
ables, with respect to these distributions—whether computed by means of the
generalized Riemann or Lebesgue methods—often reduce to Riemann or Riemann-
Stieltjes integrals. Many aspects of these distributions can be discovered with
ordinary Riemann integration. But it is their existence as generalized Riemann
integrals, possessing properties such as the Dominated Convergence Theorem
and Fubini’s Theorem, that gives us access to a full-blown theory of random
variation.

7 Marginal Distributions and Statistical Inde-

pendence

When random variables {xt}t∈B are being considered jointly, their marginal

behavior is a primary consideration. This means examining the joint behavior
of any finite subset of the variables, the remaining ones (whether finitely or
infinitely many) being arbitrary or left out of consideration. Thus we are led to
families

{xt : t ∈ N}N⊆B

where the sets N belong to the family F of finite subsets of B, the set B being
itself finite or infinite. (When B is infinite the family (xt)t∈B is often called
a process or stochastic process, especially when the variable t represents time.
We will write the random variable xt as x(t) depending on the context; likewise
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xtj
= x(tj) = xj .) In the following discussion we will suppose, for illustrative

purposes, that for each t the domain of values of xt is the set IR+ of positive
numbers. This would apply if, for instance, (xt) is price history, t ∈ B.

The marginal behavior of a process is specified by marginal distribution
functions. The marginal distribution function of the random variable or process
xB = (xt)t∈B, for any finite subset N = {t1, t2, . . . , tn} ⊆ B, is the function

F(x1,x2,...,xn)(I1 × I2 × · · · × In) (13)

defined on the intervals I1 × · · · × In of IRn
+, which we interpret as the likelihood

that the random variable xj takes a value in the one-dimensional interval Ij

for each j, 1 ≤ j ≤ n; with the remaining random variables xt arbitrary for
t ∈ B \ N .

One of the uses to which the marginal behavior is put is to determine the
presence or absence of independence. The family of random variables (xt)t∈B is
independent if the marginal distribution functions satisfy

F(x1,x2,...,xn)(I1 × I2 × · · · × In) = Fx1
(I1) × Fx2

(I2) × · · ·Fxn
(In)

for every finite subset N = {t1, . . . , tn} ⊆ B. That is, the likelihood that the
random variables xt1 , xt2 , . . ., xtn

jointly take values in I1, I2 . . ., In (with xt

arbitrary for t ∈ B \ N) is the product over j = 1, 2, . . . , n of the likelihoods of
xtj

belonging to Ij (with xt arbitrary for t 6= tj , j = 1, 2, . . . , n) for every choice
of such intervals, and for every choice of finite subset N of B.

Of course, if B is itself finite, it is sufficient to consider only N = B in order
to establish whether or not the random variables are independent.

8 Cylindrical Intervals to Support Infinite Di-

mensional Spaces

When B is infinite (so the random variable x = (x(t))t∈B is a stochastic process),
it is usual to define the distribution of x as the family of distribution functions

{

F(x(t1),x(t2),...,x(tn))(I1 × I2 × · · · × In) : {t1, t2, . . . , tn} ⊂ B
}

(14)

This is somewhat awkward, since up to this point the distribution of a ran-
dom variable has been given as a single function defined on intervals of the
sample space, and not as a family of functions. However we can tidy up this
awkwardness as follows.

Firstly, the sample space Ω is now the Cartesian product
∏

B IR+ = IRB
+. Let

F denote the family of finite subsets N = {t1, t2, . . . , tn} of B. Then for any
N ∈ F , the set

I[N ] := It1 × It2 × · · · × Itn
×

∏

{IR+ : B \ N}

is called a cylindrical interval. Taking all choices of N ∈ F and all choices of
one-dimensional intervals Ij (tj ∈ N), denote the resulting class of cylindrical
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intervals by I. These cylindrical intervals are the subsets of the sample space
that we need to define the distribution function F of x in IRB

+ :

F (I[N ]) := F(x(t1),x(t2),...,x(tn))(It1 × It2 × · · · × Itn
) (15)

for every N ∈ F and every I[N ] ∈ I.
By thus defining the distribution function F (of the underlying random vari-

able x ∈ IRB
+) on the family of subsets I (the cylindrical intervals) of IRB

+, we
are in conformity with the system used for describing distribution functions in
finite-dimensional sample spaces.

As in the elementary situation of Table 1, it naturally follows, if we want
to estimate the expected value of some deterministic function of the random
variable (or process) (x(t))t∈B , that the joint sample space Ω = IRB

+ of the
individual random variables x(t) should be partitioned by means of cylindrical
intervals I[N ].

To demonstrate such a partition, we suppose B is the time interval ]τ, T ], so

the sample space Ω is IRB
+ =

∏

t∈]τ,T ] IR+ = IR
]τ,T ]
+ . Suppose

τ = t0 < t1 < t2 < · · · < tn = T,

and, with N denoting {t1, t2, . . . , tn}, suppose

I[N ] = I1 × I2 × · · · × In × IR
B\N
+

is one of the cylindrical intervals forming a partition of IRB
+.

In Figure 2, we can show only three dimensions. As in Figure 1, the fact
that the sample space is unbounded in each of its separate dimensions means
that many of the partitioning intervals have associated points with one or more
components equal to 0 or ∞. We have terms ln xj in the integrand which are
undefined for xj = 0, just as ln∞ is undefined. In generalized Riemann inte-
gration, any intervals involving a singularity must have the point of singularity
as the attached or associated point. By arranging things in this way, gener-
alized Riemann integration avoids having to resort to the improper or Cauchy
extensions when the integrand involves a point of singularity.

In contrast to Figure 1, the partitioning intervals may have different re-
stricted dimensions. For instance, in Figure 2, the cylindrical interval I11 is
restricted only in the vertical direction t2; and is unrestricted in the horizontal
direction t1 and in each of the infinitely many other directions t ∈ B\{t1, t2} (of
which only one of the directions perpendicular to both t1 and t2 is shown in the
diagram). This is a particular feature of partitioning infinite-dimensional do-
mains by means of infinite-dimensional cylindrical intervals, which we must take
account of when we construct Riemann sums of integrands over such partitions.

In this illustration (Figure 2) the cylindrical intervals mostly correspond to
the finite-dimensional intervals of (5), but an extra one, I11, has been included
to demonstrate that the restricted dimensions of the cylindrical intervals do not
all have to be the same in a partition of an infinite-dimensional space. (Of course
this is also true for finite dimensional spaces. We could have included an interval
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corresponding to I11 in (5), but in partitioning for Riemann sum estimates in
the finite-dimensional case, these kind of intervals can be avoided and nothing is
gained by admitting them. But in partitioning infinite-dimensional spaces they
cannot be avoided.)

The intervals in Figure 2 are:

I1 = [u1
1, u

3
1[×[u2

2, u
3
2[×

∏

{IR+ : t ∈ B \ {t1, t2}},
I2 = [u2

1, u
4
1[×[u4

2, u
5
2[×

∏{IR+ : t ∈ B \ {t1, t2}},
I3 = [u3

1, u
5
1[×[u1

2, u
3
2[×

∏{IR+ : t ∈ B \ {t1, t2}},
I4 = [u3

1,∞[×]0, u1
2[×

∏

{IR+ : t ∈ B \ {t1, t2}},
I5 = [u5

1,∞[×[u1
2, u

3
2[×{∏ IR+ : t ∈ B \ {t1, t2}},

I6 = [u4
1,∞[×[u4

2,∞[×{∏ IR+ : t ∈ B \ {t1, t2}},
I7 = [u2

1, u
4
1[×[u5

2,∞[×{
∏

IR+ : t ∈ B \ {t1, t2}},
I8 = ]0, u2

1[×[u4
2,∞[×{∏ IR+ : t ∈ B \ {t1, t2}},

I9 = ]0, u1
1[×[u2

2, u
3
2[×{

∏

IR+ : t ∈ B \ {t1, t2}},
I10 = ]0, u3

1[×]0, u2
2[×{∏ IR+ : t ∈ B \ {t1, t2}},

I11 = ]u3
2, u

4
2[×

∏{IR+ : t ∈ B, t 6= t2}.

(16)

Criteria (8), (17) place no a priori conditions on the functions f and F in the
integrand when we test it for integrability. There are no required or preferred
kinds of function. It is true that we have required F to be finitely additive, but
this is related to our secondary purpose of constructing an alternative to the
Kolmogorov theory of probability and random variation. Of course, in meeting
the criteria (8), (17), any good properties possessed by f and F may come
into play in order to give us a good encoding. The foregoing remarks may be
translated into language that is more appropriate for statistical data analysis:
there is no necessary a priori morphology for the data cloud to be analyzed; or
there is no necessary a priori model or distribution for the data.

9 A Theory of Joint Variation of Infinitely Many

Random Variables

As discussed earlier, the Riemann sum approach can be adapted so that it yields
a theory of random variation which meets the theoretical and practical needs of
analysis.

The adaptation that is needed when only a finite number of random variables
is involved has been explained already.

But how can it be adapted to the situation when there are infinitely many
random variables to be considered jointly? What kind of Riemann sums are
appropriate in a rigorous theory of joint variation of infinitely many variables?

In other words, what kind of partitions are permitted in forming the Riemann
sum approximation to the expected value of a random variable which depends
on infinitely many underlying random variables?

In ordinary Riemann integration we form Riemann sums by choosing par-
titions whose finite-dimensional intervals have edges (sides) which are bounded
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Figure 2: As for Figure 1, unbounded two dimensional domain with partition
used for data encoding, illustrating the use of different restricted dimensions.
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by a positive constant δ. Then we make δ successively smaller. Likewise for
generalized Riemann integration, where the constant δ is replaced by a positive
function δ(x). In any case, we are choosing successive partitions in which the
component intervals successively “shrink” in some sense.

For the infinite-dimensional situation, we seek likewise to “shrink” the cylin-
drical intervals I[N ] of which successive partitions are composed. In Figure 3
we show different ways in which a cylindrical interval can be a subset of a larger
cylindrical interval, and hence seek to establish effective rules by which intervals
of successive partitions can be made successively smaller.

Let the horizontal direction in Figure 3 be denoted t1, denote the vertical
direction by t2, and denote the direction perpendicular to both by t3. Let
B denote the set of all the dimensions, or mutually perpendicular directions,
of the domain IRB

+. Then I1 is [u1
2, u

4
2[×

∏

{IR+ : t ∈ B, t 6= t2}. The interval
I2 = [u2

2, u
3
2[×

∏{IR+ : t ∈ B, t 6= t2} is a subinterval of I1, in which the side
corresponding to restricted dimension t2 is shorter than the corresponding side
of I1. This kind of “shrinking” is familiar from finite-dimensional Riemann
integration. We get it by imposing a condition that the sides of the intervals be
less than some positive function δ, and then taking δ successively smaller.

Now consider I3 = [u1
1, u

2
1[×[u2

2, u
3
2[×

∏{IR+ : t ∈ B \ {t1, t2}}, which is a
subset of I2, in which the length of the restricted sides is the same as the length of
the restricted side of I2; but in which there is an additional restricted dimension
t1. Here we obtain shrinking, without changing δ, but by requiring the interval
to have additional restricted dimensions. We can do this by specifying some
minimal finite set of dimensions in which the interval must be restricted. (We
may allow the interval to be restricted in additional dimensions outside of this
minimal set; just as the sides can be as small as we like provided their length
is bounded by δ.) Then we can obtain shrinking of the intervals by increasing
without limit the number of elements in this minimal finite set, just as we can
obtain shrinking by decreasing towards zero the size of the δ which bounds the
lengths of the restricted sides.

If we compare I4 with I2 we see both factors at work simultaneously –
increased restricted dimensions and reduced length of sides.

This provides us with the intuition we need to construct appropriate rules
for forming partitions for Riemann sums in infinite-dimensional spaces.

As before, suppose B is a set with a possibly infinite number of elements.
Let F denote the family of finite subsets N of B. Let a typical N ∈ F be
denoted {t1, t2, . . . , tn}. Suppose the sample space is Ω = IRB

+. For N ∈ F , let

IRN
+ denote the projection of Ω into the finite set N . Suppose Ij is an interval

of type (9) in IR
{tj}
+ . Then I1 × I2 × · · · × In × IR

B\N
+ is a cylindrical interval,

denoted I[N ]. As before, let I denote the class of cylindrical intervals obtained
through all choices of N ∈ F , and all choices of intervals Ij of type (9), for each

tj ∈ N . A point x ∈ IR
B

+ is associated with a cylindrical interval I[N ] if, for each
tj ∈ N , the component xj = x(tj) is associated with Ij in the sense of (10). A

finite collection E of associated pairs (x, I[N ]) is a division of IRB
+ if the finite

number of the cylindrical intervals I[N ] form a partition of IRB
+; that is, if they
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Figure 3: Illustration of different ways in which a cylandrical interval can be
a subset of a larger cylandrical interval; and hence how data encoding level
resolution is supported.
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are disjoint with union IRB
+.

Now define functions δN and L as follows. Let L : IR
B

+ 7→ F , and for each

N ∈ F let δN : IR
N

+ 7→]0,∞[. The mapping L is defined on the set of associated
points of the cylindrical intervals I[N ] ∈ I; and, for each N ∈ F , the mapping
δN is a function defined on the set of associated points of intervals I1 × · · · × In

in IRN
+ .
The sets L(x) and the numbers δN(x1, . . . , xn) determine the kinds of cylin-

drical intervals, partitioning the sample space, which we permit in forming Rie-
mann sums.

A set L(x) ∈ F determines a minimal set of restricted dimensions which
must be possessed by any cylindrical interval I[N ] associated with x. In other
words, we require that N ⊇ L(x). The numbers δN (x1, . . . , xn) form the bounds
on the lengths of the restricted faces of the cylindrical intervals I[N ] associated
with x. Formally, the role of L and δN is as follows.

For any choice of L and any choice of the family {δN}N∈F , let γ denote
(L, {δN}N∈F). We call γ a gauge in IRB

+. The class of all gauges is obtained by
varying the choices of the mappings L and δN .

Given a gauge γ, an associated pair (x, I[N ]) is γ-fine provided N ⊇ L(x),
and provided, for each tj ∈ N , (xj , Ij) is δN -fine, satisfying the relevant condi-
tion in (11) with δN(x1, x2, . . . xn) in place of δ(x).

Given a random variable, or function f of x, with a probability distribu-
tion function F defined on the cylindrical intervals I[N ] of I, the integrand
f(x)F (I[N ]) is integrable in IRB

+, with
∫

IRB
+

f(x)F (I[N ]) = α, if, given ε > 0,

there exists a gauge γ so that, for every γ-fine division Eγ of IRB
+ , the corre-

sponding Riemann sum satisfies

∣

∣

∣
(Eγ)

∑

f(x)F (I[N ]) − α
∣

∣

∣
< ε. (17)

If B is finite, this definition reduces to definition (8), because, as each L(x)
increases, in this case it is not “without limit”; as eventually L(x) = B for all x,
and then (17) is equivalent to (8). Also (17) yields results such as Fubini’s The-
orem and the Dominated Convergence Theorem (see Muldowney, 1988) which
are needed for the theory of joint variation of infinitely many random variables.

10 Application to Financial Data Analysis

In a number of papers, Muldowney (2000/2001, 2002, 2005) has explored ex-
pectation and, more generally, integral properties of the Black-Scholes model
of derivative asset pricing. In the application studied in this article, we will
consider the finding of structure in empirical financial data. For this we will use
correspondence analysis, because it provides an integrated tool set for assessing
departure from standard behavior in the data.

Correspondence analysis is a data analysis approach based on low-dimensional
spatial projection. Unlike other such approaches, it particularly well caters for
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qualitative or categorical input data, including counts. Hence it is an ideal ex-
ample of our view that generalized Riemann integration offers a solid theoretical
framework on which to base such an analysis.

Our objectives in this analysis are to take data recoding as proposed in
Ross (2003) and study it as a type of coding commonly used in correspondence
analysis. Ross (2003) uses input data recoding to find faint patterns in otherwise
apparently structureless data. The implications of doing this are important: we
wish to know if such data recoding can be applied in general to apparently
structureless financial or other data streams.

More particularly our objectives are to assess the following:

1. Using categorical or qualitative coding may allow structure, impercepti-
ble with quantitative data, to be discovered. Quantile-based categorical
coding (i.e., the uniform prior case) has beneficial properties, as will be
demonstrated. But the issue of appropriate coding granularity, or scale of
problem representation, remains, and we will address this issue below.

2. In the case of a time-varying data signal (which also holds for spatial
data, mutatis mutandis) non-respect of stationarity should be checked for:
the consistency of our results will inform us about stationarity present in
our data. More generally, structures (or models or associations or rela-
tionships) found in our data are validated through consistency of results
obtained using subsets of the population studied.

3. Departure from average behavior is made easy in the analysis framework
adopted. This amounts to fingerprinting the data, i.e. determining pat-
terns in the data that are characteristic of it.

11 Searching for Structure in Price Processes

11.1 Data Transformation and Coding

Using crude oil data, Ross (2003) shows how structure can be found in appar-
ently geometric Brownian motion, through data recoding. Considering monthly
oil price values, P (i), and then L(i) = log(P (i)), and finally D(i) = L(i)−L(i−
1), a histogram of D(i) for all i should approximate a Gaussian. The following
recoding, though, gives rise to a somewhat different picture: response categories
or states 1, 2, 3, 4 are used for values of D(i) less than or equal to −0.01, be-
tween the latter and 0, from 0 to 0.01, and greater than the latter. Then a
cross-tabulation of states 1 through 4 for yt+1, against states 1 through 4 for yt,
is determined. The cross-tabulation can be expressed as a percentage. Under
geometric Brownian motion, one would expect constant percentages. This is
not what is found. Instead there is appreciable structure in the contingency
table.

Ross (2003) pursues exploration of a geometric Brownian motion justification
for Black-Scholes option cost. States-based pricing leads to greater precision
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compared to a one-state alternative. The number of states is left open with
both a 4-state and a 6-state analysis discussed (Ross, 2003, chap. 12). A χ2

test of independence of the contingency table from a product of marginals is
used with degrees of freedom associated with contingency table row and column
dimensions: this provides a measure of how much structure we have, but not
between alternative contingency tables. The latter is very fittingly addressed
with the χ2 metric (see Murtagh, 2005) used in correspondence analysis: we can
say that correspondence analysis is the transformation of pairwise χ2 distances
into Euclidean distances, and that the latter greatly facilitates visualization
(e.g., low-dimensional projection) and interpretation. The total inertia or trace
of the data table grows with contingency table dimensionality, so that is of no
direct help to us. For the futures data used below, and contingency tables of
size 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 10 × 10, we find traces of value: 0.0118,
0.0268, 0.0275, 0.0493, and 0.0681, respectively. Barring the presence of low-
dimensional patterns arising in such a sequence of contingency tables, we will
always find that greater dimensionality implies greater complexity (quantified,
e.g., by trace) and therefore structure.

To address the issue of number of coding states to use, in order to search
for latent structure in such data, one approach that seems very reasonable is to
explore the dependencies and associations based on fine-grained structure; and
include in this exploration the possible aggregation of the fine-grained states.
(Aggregation of states in correspondence analysis is catered for through the
property of distributional equivalence: see Murtagh, 2005, for discussion.)

11.2 Granularity of Coding

We take sets of 2500 values from the time series. Tables 3 shows data to be
analyzed derived from time series values 1 to 2500 (identifier i). Further, we
use similar cross-tabulations for values 3001 to 5500 (identifier k), 2001 to 4500
(identifier m), and values 3600 to 6100 (identifier n).

Figure 4 shows the projections of the profiles in the plane of factors 1 and 2,
using all four data tables – one of which is shown in Table 3. The result is very
consistent: cf. how {i1, k1, m1, n1} are tightly grouped, as are {i2, k2, m2, n2},
reasonably so {i10, k10, m10, n10}, and so on. The full space of all factors has
to be used to verify the clustering seen in this planar (least squares optimal)
projection.

An analysis of clusters found is listed in Table 4. (Contributions to, and
correlations with, the principal factors are used: see Murtagh, 2005, for a dis-
cussion of where these may differ from projections onto the factors. Projections,
e.g. as shown in Figure 4, are descriptive: “what is?”, but correlations and con-
tributions point to influence: “what causes?”. Correlations and contributions
are used therefore, in preference to projections.)

In cluster 65, coding category 9 is predominant. In cluster 68, coding cate-
gories 2 and 3 are predominant. Cluster 69 is mixed. Cluster 70 is dominated
by coding category 10. In cluster 71, coding category 8 is predominant. Cluster
72 is defined by coding category 1. Finally, cluster 73 is dominated by coding
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Table 3: Cross-tabulation of log-differenced futures data using quantile coding
with 10 current and next step price movements. Values 1 to 2500 in the time
series are used. Cross-tabulation results are expressed as percentage (by row).

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

i1 23.29 7.23 8.84 6.02 14.86 1.20 10.44 8.84 8.43 10.84

i2 11.60 11.60 11.20 8.80 13.20 5.20 11.60 8.80 8.80 9.20

i3 10.00 13.20 10.80 12.80 14.40 2.00 12.80 5.60 10.80 7.60

i4 8.00 9.20 9.20 12.00 15.60 4.80 12.00 10.40 9.60 9.20

i5 7.50 9.50 9.75 11.00 22.25 5.25 7.50 10.25 9.00 8.00

i6 5.05 8.08 9.09 10.10 20.20 6.06 9.09 16.16 4.04 12.12

i7 4.80 9.60 12.40 11.60 21.60 2.40 10.40 9.20 10.40 7.60

i8 8.40 7.20 8.40 12.40 13.20 7.20 8.40 10.80 11.60 12.40

i9 8.40 12.00 8.40 6.80 15.60 2.00 10.00 13.60 9.60 13.60

i10 11.20 11.60 11.60 8.00 8.00 4.00 8.80 10.00 14.80 12.00

category 5.
From the clustering, we provisionally retain coding categories 1; 2 and 3

together; 5; 8; 9; and 10. We flag response categories 4, 6, and 7 as being
unclear and best avoided when our aim is prediction of the futures data.

To check the coding relative to stationarity, we check that the global code
boundaries are close to the time series sub-interval code boundaries. (See
Murtagh, 2005, for more discussion on this, including confirmation of station-
arity.) In broad terms, what we are checking here is the consistency of the
representative elements, found in different subsets of the data, as illustrated
above, right at the start of our presentation in this article, in Table 1.

12 Fingerprinting the Price Movements

Typical movements can be read off in percentage terms in a table such as Table
3. More atypical movements serve to define the strong patterns in our data.

We consider the clusters of current time-step code categories numbered 65,
68, 69, 70, 71, 72, 73 from Table 4, and we ask what are the likely movements, for
one time step. Alternatively expressed the current code categories are defined
at time step t, and the one-step-ahead code categories are defined at time step
t + 1.

We find the following predominant movements in Table 4 (using a thresh-
olded contribution value – not shown here; we recall that “contribution” is used
in the correspondence analysis sense, meaning mass times projection squared):

Cluster 65, i.e. code category 9: −→ weakly 8 and more weakly 9.
Cluster 68, i.e. code categories 2 and 3: −→ 7.
Cluster 69, i.e. mixed code categories: −→ 6.
Cluster 70, i.e. code category 10: −→ 10.
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Table 4: Table crossing clusters (on I) and coordinates (J), giving correlations
and contributions (as thousandths). Clusters are labeled: 65, 68, 69, 70, 71, 72,
73.

Clusters Quantile coding category

Cluster 65: k9 n9 k7 n7 i4 m9 Predominant: 9

Cluster 68: i3 k3 m3 m4 i2 m2 k2 n2 Predominant: 2, 3

Cluster 69: n6 i8 m7 Predominant: none

Cluster 70: i10 m10 i9 k10 n10 Predominant: 10

Cluster 71: i6 k4 n4 m8 k8 n8 Predominant: 8

Cluster 72: i1 m1 k1 n1 Predominant: 1

Cluster 73: i5 m5 n3 k5 n5 k6 i7 m6 Predominant: 5

Cluster 71, i.e. code category 8: −→ weakly 8.
Cluster 72, i.e. code category 1: −→ 1.
Cluster 73, i.e. code category 5: −→ 5

Consider the situation of using these results in an operational setting. From
informative structure, we have found that code category 1 (values less than the
10th percentile, i.e. very low) has a tendency, departing from typical tendencies,
to be prior to code category 1 (again very low). From any or all of tables such
as Table 3 we can see how often we are likely to have this situation in practice:
19.04% (= average of 23.29% from Table 3, and 17.67%, 16.4%, and 18.8%, from
the other analogous tables not shown here), given that we have code category
1.

Applying a similar fingerprinting analysis to Ross’s (2003) oil data, 749 val-
ues, we found that clustering the initial code categories did not make much
sense: we retained therefore the trivial partition with all 10 code categories.
For the output or one-step-ahead future code categories, we agglomerated 6
and 7, and denoted this cluster as 11. We find the following, generally weak,
associations derived from the contributions.

Input code category 6 −→ output code categories 1, 10 (weak).
Input code category 3 −→ output code category 2.
Input code category 4 −→ output code category 4.
Input code categories 9, 2 −→ output code category 5 (weak).
Input code category 10 −→ output code category 8.
Not surprisingly, we find very different patterns in the two data sets of

different natures used, the futures and the oil price signals.
We have shown that structure can be discovered in data where such structure

is not otherwise apparent. Furthermore we have used correspondence analysis,
availing of its spatial projection and clustering aspects, as a convenient analysis
environment. Validating the conclusions drawn is always most important, and
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this is facilitated by (i) semi-interactive data analysis, and (ii) consistency of
results across subsets of the domain under investigation, Ω.

13 Conclusions

Our new framework for data, and the handling of data (including our defining
of a normed vector space), could be considered in a sense as “only” formalizing
standard data analysis practice. But in the exploration and analysis of complex
phenomena (cf. the search for local structure and patterns in price movements)
we need to be sure of our belief in how our data express the underlying phe-
nomena. The traditional Kolmogorov approach based on Lebesgue integration
and sigma algebras of probability-measurable sets is unnecessarily abstract and
therefore largely ignored by the “engineering” or pragmatic common sense of
the data analyst.

In this article we have shown how the generalized Riemann integral lends
itself to a more transparent definition of probability, in line with empirical data
analysis practice. As a foundation for our data analysis tasks, it achieves a far
better cohesiveness between data, and data analyses, vis à vis the underlying
phenomena.
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