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ABSTRACT

Wireless ad hoc networks pose several significant challenges:
devices are unreliable; deployments are unpredictable; and
communication is erratic. One proposed solution is Vir-
tual Infrastructure, an abstraction in which unpredictable
and unreliable devices are used to emulate reliable and pre-
dictable infrastructure. In this paper, we present a new pro-
tocol for emulating virtual infrastructure in collision-prone
wireless networks. At the heart of our emulation is a con-
vergent history agreement protocol that tolerates lost mes-
sages and crash failures. It is designed specifically for ad
hoc deployments, for example, the set of participants is a
priori unknown. The convergent history agreement proto-
col is quite efficient, as each agreement instance completes
in a constant number of communication rounds, and the
size of the messages is constant, independent of the length
of the execution. Building on the convergent history agree-
ment protocol, our virtual infrastructure emulation intro-
duces only constant overhead per virtual round emulated.
We believe that the techniques developed in this paper help
to bring virtual infrastructure one step closer to a reality.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—wireless com-
munication; C.4 [Performance of Systems]: Fault Tol-
erance; D.1.3 [Programming Techniques]: Concurrent
Programming—distributed programming
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1. INTRODUCTION
There are several significant challenges associated with

developing algorithms for wireless ad hoc networks: wire-
less devices are often unreliable and crash-prone; wireless
devices are often mobile and move in an unpredictable man-
ner; and wireless communication is unreliable due to channel
contention, collisions, and other forms of interference. All
of these challenges can be lessened by the deployment of a
reliable, fixed infrastructure. For example, on most univer-
sity campuses, wireless 802.11 base-stations are deployed to
allow for reliable connectivity among oft-mobile devices. Un-
fortunately, it is often impractical due to logistical or cost-
related concerns to deploy such a fixed infrastructure.

Virtual infrastructure appears to be a promising alterna-
tive (see, e.g., [11–15,35]). The idea underlying a virtual in-
frastructure is to emulate a fixed infrastructure in an ad hoc
environment in which real hardware-based infrastructure is
unavailable. Implemented as middleware, for example, the
virtual infrastructure abstraction provides the programmer
with the illusion of a reliable, static infrastructure consist-
ing of virtual nodes deployed at regular locations throughout
the world. Virtual nodes are reliable, in that they remain
active as long as any mobile device is nearby, and they are
predictable, in that they are immobile.

As has been demonstrated elsewhere, virtual infrastruc-
ture is instrumental in implementing a wide variety of ap-
plications, such as reconfigurable atomic memory [13], rout-
ing [12,16], location / tracking services [11,16,34,36], mobile
robot coordination [4, 27], and air-traffic control [3]. On-
going projects include IP address allocation in ad hoc net-
works [47], overlay-based routing [40], IPv6 routing [17], and
highway traffic optimization [4]. In general, virtual infras-
tructure appears quite promising as a technique for simpli-
fying the development of algorithms for ad hoc networks.

The promise of virtual infrastructure is clear; in this pa-
per, we address the question of how to emulate virtual in-
frastructure with low overhead in unreliable, collision-prone
wireless networks. At the heart of our proposed virtual in-
frastructure emulation is a new building block which we call
convergent history agreement (CHA), an iterated agreement
protocol tailored to the complexities of wireless networks.
We present an efficient protocol for solving CHA in collision-

∗This work was supported in part by the following: MICS,
AFOSR A9550-04-1-0121 and A9550-08-1-0159, NSF CCF-
0726514 and CNS-0715397. The full version of this pa-
per [19] is available at:
http://groups.csail.mit.edu/tds/vi-project/biblio.html
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prone wireless networks, and discuss how to transform our
CHA protocol into a virtual infrastructure emulation.

1.1 Wireless Communication
In this section, we highlight some important aspects of the

communication model considered in this paper; a complete
description is provided in Section 2.

We assume that communication is synchronous (i.e., “slot-
ted”), and that in each round of communication, a node
may choose to broadcast or listen on the channel. Eventu-
ally, during intervals in which the network is well-behaved,
nearby nodes can communicate, as long as there is no con-
tention on the channel. During intervals when the network
is badly behaved, however, all messages may be lost.

Collision Detectors.
We assume that nodes have a limited collision detection

capability (without which consensus is impossible, see e.g.,
[7, 8]). The justification for collision detection comes from
recent work [10,37,46] which argues that collisions can often
be detected with reasonable precision by nodes listening on
the channel using carrier sensing and other techniques. We
capture collision detection guarantees using the approach
introduced in [8]. We assume that collision detectors are:

• complete (Property 1): There are no false negatives;
when a collision occurs, the detector reports a collision.

• eventually accurate (Property 2): There are eventually
no false positives; eventually, the collision detector re-
ports a collision only when a message has been lost.

Contention Management.
In a wireless network, one cause of message loss is high

channel contention. Typically, wireless ad hoc networks
make use of protocols such as exponential backoff to reduce
contention. Often “contention management” is integrated
into the underlying protocol, resulting in a complicated anal-
ysis and an intermingling of safety and liveness concerns.

In this paper, we separate the issue of contention manage-
ment from the problem of emulating virtual infrastructure.
The emulation algorithm described in this paper is compati-
ble with a wide class of contention managers. The contention
manager designates nodes as active (i.e., enabled to broad-
cast) or passive; it guarantees that eventually there is only
one active node (Property 3).

In practice, contention managers are typically implemented
using randomized back-off protocols. The problem of design-
ing efficient back-off protocols has been well studied (e.g., [18,
31,32,45]), and is not the focus of this paper; we believe even
a simple exponential back-off scheme to be sufficient.

1.2 Virtual Infrastructure
A virtual infrastructure consists of a set of deterministic

virtual nodes distributed throughout the network, each of
which resides at a fixed location. The virtual nodes interact
with clients1, and behave, from the clients’ perspective, just
like any other (real) wireless device.

Clients and virtual nodes communicate using a virtual
broadcast service. As in the underlying system, virtual com-
munication is “wireless,” in that it remains collision prone,
1In order to distinguish between the real mobile nodes, on
which the emulator is executed, and the “abstract” mobile
nodes, which interact with virtual nodes and execute the
user’s program, we refer to the latter as “clients.”

and proceeds in rounds. Both the clients and the virtual
nodes are equipped with eventually accurate, complete col-
lision detectors and a contention manager.

We emphasize again that a system containing virtual nodes
appears, from a client’s perspective, equivalent to a system
in which each virtual node is replaced with a reliable, im-
mobile real device.

1.3 Key Ideas
The basic idea underlying our implementation of virtual

infrastructure is that unreliable mobile devices cooperate to
emulate reliable virtual nodes. Whenever a mobile device
enters a virtual node’s region, it joins the emulation of the
virtual node and becomes a replica. When a mobile de-
vice leaves a virtual node’s region, it ceases to participate in
the emulation. The key challenge, then, is maintaining the
consistency of the replicas as mobile nodes join and leave,
despite the possibility of unreliable communication.

Convergent History Agreement.
In order to maintain consistency, the replicas execute a

sequence of agreement instances, one per virtual round. We
refer to this problem of repeated agreement, which is closely
related to the replicated-state-machine paradigm, as conver-
gent history agreement.

Each instance of the agreement protocol is associated with
the emulation of one virtual round. The replicas try to agree
on a history of the virtual node up to (and including) the
virtual round associated with that instance. When an agree-
ment instance completes successfully, all the replicas agree
upon the same history, allowing for a consistent emulation.

When an agreement instance does not complete success-
fully, however, some disagreement may arise. In this sense,
convergent history agreement is subtly different from classi-
cal consensus in that it allows for a limited amount of dis-
agreement. Every (correct) node produces an output for
every instance; however, for some instances, some subset of
the nodes may output ⊥, indicating that no decision was
reached for that instance. Thus, after any given virtual
round, different nodes may disagree on which instances have
produced a decision and which instances have produced ⊥.
Any time that a node does successfully produce an output,
it must resolve all the prior undecided agreement instances
in a consistent fashion2. This limited disagreement is of key
importance for the efficiency of the emulation.

Indeed, one of the main technical challenges in this pa-
per is balancing the trade-off between the consistency of
the replicas and the efficiency of the emulation. In terms
of efficiency, we are particularly interested in the size of the
messages and the number of communication rounds required
by the emulation; together, these define the overhead intro-
duced by the virtual infrastructure emulation.

In Section 3, we formally define the problem of convergent
history agreement (CHA), specifying the precise consistency

2To illustrate, consider the following scenario: There are
two nodes pi and pj that are unable to communicate due to
interference. Node pi outputs a decision and fails. In this
case, pj is required to behave in a manner consistent with
this unknown decision! The natural solution would be for pi

to output a decision only after receiving an acknowledgment
from pj . However, pi cannot exchange messages with every
other node, since only one message can be sent on the chan-
nel at a time, and hence such communication would take
Θ(n) time, which would be inefficient.
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requirements. We then present a CHA protocol that uses
only a constant number of communication rounds for each
instance, and sends only constant-sized messages, indepen-
dent of the number of nodes or the length of the execution.

Emulation protocol.
While the problem of convergent history agreement is at

the heart of implementing a single virtual node, many fur-
ther issues arise in the emulation of a complete virtual in-
frastructure. There are two main problems that arise. First,
the protocol messages sent by emulators for nearby virtual
nodes may interfere with each other, causing unexpected col-
lisions. Second, the emulation protocol must support com-
munication between neighboring virtual nodes. This latter
scenario is difficult in that it involves carefully synchronizing
the agreement protocols to maintain the consistency of each
virtual node. In order to cope with these challenges, each
virtual round is simulated using two separate instances of the
CHA protocol, one for virtual nodes that are broadcasting,
and another for virtual nodes that are listening. The vir-
tual node emulations are carefully scheduled to ensure that
interference between neighboring instances does not overly
disrupt the emulation. In Section 4, we lay out the entire
emulation protocol and outline some of the issues that arise.

1.4 Summary of Contributions
1. Convergent History Agreement: We define the problem
of convergent history agreement, a variant of the replicated-
state-machine approach, which provides a sufficient level of
consistency for implementing virtual infrastructure, while
at the same time yielding an efficient implementation. We
present a new algorithm for solving convergent history agree-
ment, the first replicated-state-machine implementation that
is suited for a collision-prone wireless network.

It uses a novel strategy, inspired by three-phase com-
mit [41, 42], to ensure consistent outputs despite collisions,
lost messages, and crash failures. And it uses only a con-
stant number of rounds per instance of agreement, despite
the need to coordinate over a contention-prone channel with
up to n nodes. Every protocol message is constant sized,
independent of n and the length of the execution.

2. Virtual Infrastructure Emulation: We describe an algo-
rithm for emulating virtual infrastructure, based on the con-
vergent history agreement protocol presented in Section 3.
In addition to the issues associated with a single virtual
node, it also addresses the problem of coordinating nearby
virtual nodes in such a way as to reduce the interference and
enable communication between virtual nodes.

The emulation algorithm ensures consistency among the
replicas, tolerating collisions, lost messages, and crash fail-
ures. The resulting protocol copes with ad hoc deployments
in that it can tolerate a changing set of participants, and
does not require any knowledge of the number of partici-
pants; nor does it require that the participants have unique
identifiers. In addition, the contention management is de-
coupled from the main algorithm, allowing for a separation
of liveness and safety concerns.

Finally, the emulation protocol is efficient in the sense that
it requires only a fixed number of rounds to implement a sin-
gle virtual round of the virtual infrastructure, independent
of the number of replicas and the length of the execution.
(It depends only on the density of the virtual node deploy-

ment.) Moreover, the protocol messages are all of constant
size when the system is stable.
The full, detailed presentation of our model, algorithms, and
proofs can be found in [19]; due to space limitations, we
provide in this paper only an extended abstract.

1.5 Other Related Work
There is a close connection between the problem of con-

vergent history agreement and the replicated-state-machine
paradigm (e.g., [24,25,39]). Replicated-state machines have
been implemented under a variety of failure models and en-
vironments (e.g., [6, 23, 26]). These implementations do not
address the unique challenges posed by the wireless ad hoc
networks such as channel contention, unpredictable message
loss, and unknown participants. For example, most such
protocols require at least a majority of the nodes to send
messages; in a wireless network this creates unacceptable
channel contention and long delays.

Convergent history agreement is also similar to another in-
teresting line of research on continuous consensus, in which
each node maintains an up-to-date core of information about
the past in such away that all the cores are identical. See, for
example, [28–30]. As in the case of replicated-state-machine
protocols, the continuous consensus protocols tend to in-
volve significant amounts of all-to-all communication, which
is infeasible in the context of wireless networks.

There is also a connection between our new CHA proto-
col and classic three-phase commit (3PC) protocols [41, 42].
The 3PC protocols, however, take a somewhat different ap-
proach to recovering from network misbehavior. There are
also some similarities to the “Enhanced Three Phase Com-
mit” protocol of [22]. Another interesting connection is to
query-abortable objects [1] which also capture the notion
that some agreement instances may fail.

Of late, there has been much work on high-level pro-
gramming languages and region-based abstractions for ad
hoc networks, particularly sensor networks, e.g., [33,43,44].
Much of this work is complementary to the work on vir-
tual infrastructure: better programming languages are es-
sential to simplifying the task of developing software for ad
hoc networks; providing reliable virtual infrastructure with
strong consistency guarantees can simplify the programming
paradigm, regardless of the language employed.

2. THE SYSTEM MODEL
In this section, we present the underlying system model.

The model in this paper is derived from [8,9].
We consider in this paper a wireless network that consists

of a fixed, but a priori unknown, collection of mobile nodes
P = {p1, p2, . . . , pn}. At any given time, a node resides at
a location in the plane, and its velocity is bounded by vmax .
Each node receives periodic updates as to its location from
a GPS, or some other variety of location service (e.g., [38]).
The number of nodes is unknown, and nodes do not have
unique identifiers. Nodes can fail by crashing at any point
during the execution of the algorithm.

Communication is synchronous (“slotted”), based on a
variant of the quasi-unit-disk model of communication: two
nodes within broadcast radius R1 of each other are able to
communicate; two nodes within interference radius R2 in-
terfere with each other. (The virtual broadcast service that
operates in the virtual infrastructure abstraction has its own
virtual broadcast radius and virtual interference radius.)
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Communication is prone to collisions, which can occur for
arbitrary and unpredictable reasons. As a result of a colli-
sion, each node can fail to received an arbitrary subset of
messages that were broadcast in a round. Moreover, col-
lisions may affect nodes in a non-uniform way: a message
may be received by some nodes, but not others.

We assume that, eventually, arbitrary collisions cease and
all collisions are caused by contention on the channel. That
is, there exists a round rcf such that in every round r ≥
rcf : if some source pi broadcasts a message m in round r,
and (i) some non-failed receiver pj is within distance R1 of
pi, and (ii) no node within distance R2 of pj broadcasts in
round r, then pj receives the message m.

We assume that every node pi ∈ P is augmented with a
collision detector that delivers a collision notification ± to
pi when it fails to receive a message. We assume that the
collision detectors are in the class 3A-C , as defined in [8],
meaning they satisfy the following properties:

Property 1 (Completeness). For every round r,
if pi does not receive some message that was broadcast in
round r by a node within distance R1 of pi, then pi detects
a collision in round r.

Property 2 (Eventual Accuracy). For every exe-
cution, there exists a round racc such that for every round r ≥
racc, and every node pi ∈ P : if pi detects a collision in
round r, then at least one message that is not received by pi

was broadcast by a node within distance R2 of pi.

In order to model random backoff protocols, we assume
the existence of a set of contention managers, one for each
virtual node being implemented. In each round, each mo-
bile node can contend for one of the contention managers,
requesting access to the broadcast channel in that region.
The contention manager then provides advice to each node
as to whether it should be active—that is, broadcast—in a
round. The goal is to capture the guarantees provided by a
simple back-off protocol, such as exponential back-off. Thus,
a contention manager can be implemented using standard
techniques (see, e.g., [18,31,32,45]).

Each contention manager is associated with a specific lo-
cation ℓ, the location of some virtual node. It reduces con-
tention among contending nodes that are close to ℓ, while
ensuring that at least one contending node is allowed to
broadcast. For the purpose of Section 3, when we refer to
nodes that are “close to ℓ,” we mean within distance R1/2,
as this ensures that all contending nodes can communicate
with each other. For the purpose of Section 4, by contrast,
we mean within distance R1/4 of ℓ; this turns out to be
the size of the region in which we implement virtual nodes.
In both cases, the fact that the contention-management re-
gion is smaller than the broadcast radius should simplify the
contention manager’s implementation.

For the problem of “convergent history agreement,” dis-
cussed in Section 3, a relatively simple leader election con-
tention manager is sufficient:

Property 3 (Leader Election). If only nodes within
distance R1/2 of ℓ contend for contention manager Cℓ, then:

1. Eventually, at most one node is advised by Cℓ to be
active in every round.

2. If any correct node contends in every round, then even-
tually, some correct node pj ∈ P is advised to be active
in every round.

3. Cℓ advises a node pi to be active in round r only if pi

contends for round r.

For emulating virtual infrastructure, and in general, for tol-
erating a more dynamic environment, a somewhat more in-
volved contention manager is needed, since there may be no
correct node that remains in the region forever. We briefly
discuss the properties of this contention manager in Sec-
tion 4.2, where we describe the conditions under which a
virtual node makes progress.

A note on eventual properties.
Both Properties 2 and 3, include properties that hold from

some point onwards. This is simply a formal convention
meaning that the property holds for long enough. In reality,
there may be alternating periods of stability and instability.
For the purpose of this paper, these properties need only
hold for a fixed small number of rounds; the progress guar-
antees hold during these good intervals. (Safety guarantees
hold regardless, throughout the execution.) While it is un-
realistic to assume stability forever, it is quite realistic to
assume that there are short stable intervals.

3. CONVERGENT HISTORY AGREEMENT
At the heart of the virtual infrastructure emulation is

a new agreement protocol for wireless networks that are
prone to collisions and lost messages. This protocol is, to
the best of our knowledge, the first instantiation of the
replicated-state-machine paradigm for collision-prone wire-
less networks.

3.1 Overview
We begin with some motivation for the problem of con-

vergent history agreement. In the context of implementing
virtual infrastructure, we replicate each virtual node at a set
of nearby mobile nodes, thus ensuring fault tolerance. Typ-
ically, when replicating a service, the participating replicas
execute a consensus protocol each time the state of the ser-
vice is modified, agreeing on the new state of the service.
In this case, the participating replicas need to agree on the
result of each virtual round, thus determining a consistent
behavior for the virtual node in that round. (In particular,
the replicas need to agree on the set of messages that the
virtual node receives in each round.) This general strategy
describes the replicated-state-machine approach for imple-
menting a virtual node, and is the basis for prior virtual
infrastructure constructions (e.g., [11–14]).

Unfortunately, as was shown in [8], it is impossible in the
presence of ongoing collisions to solve consensus efficiently,
i.e., in a constant number of communication rounds. It is
only after the system stabilizes that efficient consensus is
feasible. To overcome this fact, we allow some disagreement
among the replicas, particularly during periods when the
network is unstable. A key observation is as follows: unlike
in the typical replicated-state-machine approach, the repli-
cas do not need to agree in each round, as the internal state
is not externally visible; it is only necessary that the repli-
cas agree during a virtual round in which messages sent by
the virtual node are delivered to another node. We capture
this slightly weaker notion of agreement in the problem of
convergent history agreement.

A key feature of convergent history agreement is that,
instead of outputting a value for each agreement instance,
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each node outputs a history. In this way, we can capture the
notion that:

1. In any given round, there may be some (limited) dis-
agreement. That is some nodes may output a history,
while others may output ⊥.

2. But, the outputs must converge to a single history that
is consistent with all prior outputs.

3.2 Problem Definition
In this section, we define the problem of convergent his-

tory agreement (CHA). In order to focus on the agreement
problem at the heart of implementing virtual infrastructure,
we restrict our attention to a simpler, more static environ-
ment. For the remainder of Section 3, we assume that all
n nodes remain always within distance R1/2 of some fixed
location ℓ, and that at least one is correct. We assume that
there is a leader-election contention manager Cℓ located at
location ℓ. We postpone discussing the issues that arise in
a more dynamic setting to Section 4.

Let V be a totally-ordered domain of values (exclusive
of the special symbol ⊥) that serve as inputs to the CHA
protocol. A history h : N→ V ∪ {⊥} is a function mapping
each non-negative integer to either a value, or the special
symbol ⊥. Denote by H(V ) the set of histories over V .

An execution of CHA consists of a (possibly infinite) se-
quence of instances 〈k1, k2, . . .〉. For each instance k, each
non-failed node pj ∈ P proposes an input value vj,k ∈ V .
After each non-failed node has proposed an input for in-
stance k, then each pj ∈ P produces an output hj,k ∈
H(V ) ∪ {⊥}; that is, instance k outputs either a history,
or the special symbol ⊥ (indicating that no history is avail-
able). Notice that for a given instance, some nodes may
output a history, while others output ⊥. For a given set of
instances 〈k1, k2, . . .〉, outputs h∗,∗ must satisfy the following
requirements:

1. Validity: For every instance k, for every output h∗,k 6=
⊥, for every k′ ≤ k: if h(k′)∗,k 6= ⊥, then for some
node pj ∈ P , the proposal vj,k′ = h(k′)∗,k. That is,
for every history output, every value included in the
history was proposed for the corresponding instance.

2. Agreement: For every pair of instances k1 ≤ k2, for
every pair of nodes pi, pj ∈ P : if output hi,k1

6= ⊥ and
if output hj,k2

6= ⊥, then for every k ≤ k1, h(k)i,k1
=

h(k)j,k2
. That is, every pair of histories agree on a

common prefix of the history.

3. Liveness: There exists an instance kst such that for
every instance k ≥ kst, for every non-failed node pj ∈
P : (1) hj,k 6= ⊥, and (2) for every k′ ∈ [kst, k], output
h(k′)j,k 6= ⊥.

We say that history h includes instance k if h(k) 6= ⊥. No-
tice that agreement does not require that every two nodes
produce the same output in every instance; it requires only
that if a node outputs a history, instead of ⊥, then it agrees
with all other histories.

3.3 CHA and Virtual Nodes
Notice that CHA captures the problem of agreement that

lies at the heart of implementing a virtual node. Aside from
the issues associated with joining and leaving, an algorithm

for CHA can be used to instantiate a virtual node. Each
mobile node executes two components: the program of the
client that wants to interact with the virtual node, and the
CHA algorithm that emulates the virtual node in a repli-
cated manner.

Each instance k of CHA is associated with virtual round
k. A virtual round begins when the clients broadcast their
messages for that virtual round. The associated CHA in-
stance then attempts to agree on which messages the virtual
node should receive. That is, for virtual round k, a node pj

includes in its proposal the set of messages that pj believes
should be delivered to the virtual node in that virtual round.

When a CHA instance outputs a history at node pj , then
pj can calculate the state of the virtual node. For an in-
stance k′ that is included in the history, pj simulates the
virtual node receiving the messages included in the proposal;
for an instance k′ that is not included in the history (i.e., for
which the history includes a ⊥), replica pj simulates the vir-
tual node detecting a collision. By the Agreement Property
of CHA, we can conclude that whenever a CHA instance
outputs a history, it calculates a state consistent with every
other replica. The Validity Property of CHA ensures that
the virtual node history is consistent with the proposals, i.e.,
the real messages that the clients sent.

When a CHA instance does not output a history, i.e.,
when it outputs ⊥, the replica instructs its co-located client
to simulate detecting a collision. Thus, in this case, the
client cannot determine whether or not the virtual node sent
a message, and hence the virtual node performs no exter-
nally visible action.

Eventually, by the Liveness Property, every instance out-
puts a history, and every instance is included in every his-
tory. This ensures both that eventually the virtual node
makes progress, and also that the collision detectors are both
complete and eventually accurate.

In Section 4 we discuss further the issues that arise when
using CHA to implement a full virtual infrastructure.

3.4 The CHA Protocol
We now describe in detail the CHAP protocol in Figure 1

that solves CHA. It executes each agreement instance using
only a constant number of rounds, and uses only constant-
sized messages, independent of the length of the execution.
(By contrast, a näıve solution might include the entire his-
tory in every message.) Note also that the algorithm toler-
ates crash failures. In Section 3.5, we discuss the issue of
reducing local space usage via garbage collection.

Colors.
For each node pj , the statusj array stores the color that pj

assigns to each instance. There are four possible colors: red
< orange < yellow < green. The color reflects each node’s
local knowledge about the other nodes’ knowledge regarding
the status of the instance. The key property guaranteed by
the algorithm is as follows:

Property 4. For every instance k, no two nodes choose
colors for instance k that differ by more than one shade (see
Lemma 5).

Thus, if some node designates an instance as green, then
every node designates it as either green or yellow; if some
node designates an instance as red, then every node desig-
nates it as either red or orange.
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Figure 1: Convergent History Agreement Protocol (CHAP)

1 Interface:
2 Input propose(k)j , returns proposal v ∈ V for instance k from pj

3 Input cm-wakeup()j , returns contention manager advice for pj

4 Output output(h)j , returns output h ∈ H(V ) ∪ {⊥}

5 Data Structures:
6 k, prev-instance ← 0
7 status[ ] ← 〈green, green, . . . , green〉
8 ballot[ ], an array of:
9 prev-instance, initially 0

10 v ∈ V ∪ {⊥}, initially ⊥
11 phase ∈ 〈ballot, veto-1, veto-2〉, initially ballot

12 bcast()i

13 case phase = ballot:
14 k ← k + 1
15 v ← propose(k)j

16 b ← 〈v, prev-instance〉
17 if cm-wakeup()j then

18 return b

19 else return ⊥
20 case phase = veto-1:
21 if status[k ] = red then

22 return 〈veto〉
23 else return ⊥
24 case phase = veto-2:
25 if status[k ] = red or orange then

26 return 〈veto〉
27 else return ⊥

28 recv(M)i

29 case phase = ballot:
30 if (M = ∅) or (± ∈ M) then

31 status [i ] ← red

32 else ballot [i ] ← min(M)
33 case phase = veto-1:
34 if (veto ∈ M) or (± ∈ M) then

35 status [i ] ← min(orange, status [i ])
36 case phase = veto-2:
37 if (veto ∈ M) or (± ∈ M) then

38 status [i ] ← min(yellow, status [i ])
39 if (status [i ] /∈ {red,orange} then

40 prev-instance ← k

41 history ← calculate-history(k, prev-instance, ballot)
42 if (status[k ] = green) then

43 output(history[k ])j

44 else

45 output(⊥)

46 function calculate-history(instance, prev, ballot)
47 ∀ k ≥ 1 do: history[k ] ← ⊥
48 for k = instance downto 1 do

49 if (k = prev) then

50 history[k ] ← ballot-array[k ].v
51 prev ← ballot [k ].prev-instance

52 else

53 history[k ] ← ⊥
54 return h

If a node designates an instance as either green or yellow,
we say that it considers the instance to be good. Throughout,
the prev-instancej variable maintains the most recent good
instance, i.e., the most recent instance that pj has designated
as either yellow or green.

Ballots.
For each node pj ∈ P , the ballotj array stores the ballot

selected by pj for each instance k. Node pj can use the
stored ballots to calculate possible histories; at any given
time, there may be multiple possible histories that can be
legally computed by pj .

Each entry of the ballot array contains two fields: a value
v ∈ V ∪ {⊥}, and a pointer prev-instance that identifies
an earlier instance. A particular history can be computed
by following the prev-instance pointers backward through
the ballot array, adopting the value in each case and then
assigning all other instances to ⊥. For example, consider
beginning at some instance k9. We can then calculate:

k8 = ballot [k9].prev-instance,

k7 = ballot [k8].prev-instance,

and so on, until a sequence of instances 〈k1, k2, . . . , k9〉 has
been determined. At this point, a history h can be defined
as follows:

h(k)←


ballot [k].v if k ∈ {k1, . . . , k9}
⊥ if k /∈ {k1, . . . , k9}

This is, in fact, precisely the calculation being performed
by the calculate-history function (lines 46–54). It takes three
inputs:

• instance, which identifies the “current” instance. In
our example above, this is some ballot k10 > k9. This
instance may or may not be good.

• prev , which identifies the largest known good instance.
In our example above, this is k9. Notice that the prev
pointer cannot be calculated using the instance input,
as there is no guarantee that instance is a good in-
stance.

• ballot , which contains a copy of the ballot array.

The calculation proceeds to decrement k from instance down
to 1 (lines 48–53). Whenever k = prev , we reset prev to
ballot [k].prev-instance (line 51). Notice that in the pro-
cess, we are computing exactly the set {k1, k2, . . . , k9} of
instances found in the example above by following the point-
ers backwards. Whenever we find a k ∈ {k1, . . . , k9}, we set
the history [k] = ballot [k] (line 50). Otherwise, we set the
history [k] = ⊥ (line 53).

Intuitively, any history that is produced by beginning at a
good instance and following the prev-instance pointers back-
ward forms a possible history. Moreover, if two nodes begin
calculating their history in the same good instance, then we
can show that both nodes calculate the same history. By
Property 4, we know that if some instance k is green, then
every node designates instance k as good, and hence updates
their prev-instance pointer; from this we can conclude that,
in this case, they all calculate the same history.

Phases.
For each instance, the main algorithm consists of three

rounds of communication, known as phases. During these
three phases, each node makes two important decisions: it
selects a ballot and it selects a color. Moreover, it must
ensure that the choice of colors satisfies Property 4. Each
instance begins with a ballot phase, and then continues with
two veto phases. See Figure 2 for a summary of how colors
are assigned. Throughout, every (correct) node contends for
the contention manager Cℓ located at location ℓ.
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ballot veto-1 veto-2 Replica Color Output?√ √ √
Green History√ √

X Yellow ⊥√
X X Orange ⊥

X X X Red ⊥

Figure 2: Table indicating how a node responds to
collisions in the different phases of the algorithm:
ballot/veto-1/veto-2. A check (

√
) indicates that the

node receives a message in that round, and no col-
lisions or veto indications are received. An X indi-
cates that the node does not correctly receive the
message in that round.

The nodes begin with the ballot phase, in which each
node first updates its instance counter k (line 14), and re-
trieves the proposal (line 15). It then assembles a ballot b,
which consists of the proposal for instance k, along with the
prev-instance pointer (line 16). The node then checks with
the contention manager (line 17) and returns the ballot or
⊥ based on its advice.

Each node pj then receives its messages M for the ballot

phase (lines 29–32). If pj does not receive a ballot, or if
a collision is detected, then the instance is designated as
red. Otherwise, the node selects a ballot from the set M
deterministically (say, ordering the ballots lexicographically)
(line 32).

The nodes then proceed to the veto phases. In each veto
phase, a node broadcasts a veto if the instance is no longer
green (line 21, line 25). If a collision is detected: (a) in the
veto-1 phase, the status is downgraded to orange (line 35);
(b) in the veto-2 phase, the status is downgraded to yellow
(line 38).

In any instance that is designated as green or yellow, i.e.,
if the instance is good, then the prev-instance pointer is
updated to k, the current instance (line 40).

The history is calculated via the calculate-history function
(line 41) and an output is produced: if the instance is green,
the output is a history; otherwise, the output is ⊥ (lines 43–
45). We will argue that if the instance is designated green,
then we can be sure that every node calculates the same his-
tory, and thus these outputs satisfy agreement. We argue in
Section 3.6 that the outputs satisfy the CHA requirements.

3.5 Space usage
As currently specified, the local storage (and hence the

local computation) is unbounded. While this does not affect
the message size, it may still be undesirable. It is possible
to modify the algorithm so as to garbage collect portions of
the data structure that are no longer needed.

In order to achieve this, we could consider an alternative
version of CHA agreement known as “checkpoint-CHA” in
which each node outputs a checkpoint, along with the suffix
of the history including every instance after the checkpoint
(instead of producing the entire history as an output).

In this case, a node pj can “garbage-collect” whenever a
round is designated as green, keeping only (1) a pointer to
the most recent green round, (2) the checkpoint up to and
including that round, and (3) ballot/status entries that have
occurred since that green round. Notice that in rounds that
are not designated as green, the node cannot perform such
garbage-collection, as there are multiple possible executions.

3.6 Proof Sketch
In this section, we argue that CHAP is correct. A key

invariant is that no two nodes differ in their color designation
by more than one shade. Stated in a slightly different way:

Lemma 5. Let pj , pr be two nodes, and k an instance. If
pj designates k as green, then pr designates k as green or
yellow. If pj designates k as red, then pr designates k as red
or orange.

Proof (sketch):. Assume pj designates k as green and
pr designates k as orange or red; then pr broadcasts in the
veto-2 phase, ensuring that pj does not designate k as green,
which is a contradiction. On the other hand, if pj designates
k as red, then it broadcasts a veto in the veto-1 phase, en-
suring that every node designates it as orange or red.

Next, we conclude from Lemma 5 and calculate-history that if
some history includes instance k, then no node pj designates
instance k as red. This is important, as such a node pj might
not be able to reconstruct the history including instance k.

Lemma 6. Let h be a history output by pr that includes
instance k. Then no node designates k as red.

From this we observe that if two histories include some in-
stance k, then neither designates it as red, and thus both
have identical values for ballot k.

Lemma 7. Let h, h′ be two histories output by pj and pr

(respectively) that both include instance k. Then ballot [k]j =
ballot [k]r and h(k) = h′(k).

Thus, we approach convergence: if two histories include in-
stance k, then they agree on all prior instances.

Lemma 8. Let h, h′ be two histories output by pj and pr

(respectively) that both include instance k. Then for every
k′ ≤ k, h(k′) = h′(k′).

Proof (sketch):. Notice that if instance k1 is included
in h and h′, and k2 = ballot [k1].prev-instancej , then for

every k′ : k2 ≤ k′ ≤ k1, h(k′) = h′(k′) by the operation
of calculate-history. The lemma then follows by backward
induction.

In order to show agreement, it remains only to show that
histories will eventually include the same instance. Specif-
ically, we show that if an instance is designated as green,
then every history includes that instance.

Lemma 9. Assume that pj designates instance k as green.
Then ∀k′ ≥ k, history h∗,k′ includes instance k.

Finally, combining Lemma 8 and Lemma 9, we conclude that
the algorithm satisfies agreement:

Theorem 10 (Agreement). Given histories h∗,k1
6=

⊥, h∗,k2
6= ⊥, k1 ≤ k2: for all k ≤ k1, h(k)∗,k1

= h(k)∗,k2
.

Proof (sketch):. Since history h is output for instance
k1, we can conclude that instance k is designated as green
by some node. Thus we conclude by Lemma 9 that both
history h∗,k1

and h∗,k2
include instance k1, and thus the

result follows by Lemma 8.

We now proceed to show that the protocol satisfies the live-
ness property.
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Lemma 11. Eventually every instance is designated green
by every node.

From this it follows immediately that the liveness condition
is met:

Theorem 12 (Liveness). There exists kst : ∀k ≥ kst,
∀pj: (1) hj,k 6= ±, (2) ∀k′ ∈ [kst, k], h(k′)j,k 6= ⊥.

Proof (sketch):. By Lemma 11, every node eventually
designates every instance as green, and thus for some kst

outputs a history for every instance > k. Fix some k′ > kst,
and assume history h is output for instance k′. Fix some
k′′ : k′ ≥ k′′ > k. It is easy to see that for every history h′

output at the end of k′′ includes instance k′′, since instance
k′′ is designated as green. By Theorem 10, then, we conclude
that history h includes instance k′′.

The validity condition is trivially seen to be true as all values
in ballots originate as proposals:

Theorem 13 (Validity). For every h∗,k, ∀k′ ≤ k: if
h(k′)∗,k 6= ±, then vj,k = h(k′)∗,k for some node pj.

Finally, notice that the CHA protocol introduces only con-
stant overhead3:

Theorem 14 (Overhead). Every instance of CHA is
instantiated using a constant number of rounds, and every
message is constant size.

4. VIRTUAL INFRASTRUCTURE

EMULATION
In this section we present an overview of the complete

algorithm for emulating virtual infrastructure. As already
described, in order to emulate a virtual node v at location
ℓv, we replicate the virtual node at every device within dis-
tance R1/4 of location ℓv. As mobile nodes join and leave,
and as they enter and leave the relevant region near to
ℓv, they participate—and cease participating—in the em-
ulation. Thus, the basic goal of the emulation algorithm is
to ensure the consistency of the replicas, and this is accom-
plished via the CHA protocol described in Section 3. There
are, however, a series of issues not addressed by the CHA
protocol.

The first problem relates to virtual nodes communicat-
ing with each other. At the end of an instance, the CHA
protocol outputs a history that can be used to compute the
message broadcast by the virtual node. This suffices for a
system with one virtual node that communicates only with
clients. A full-scale virtual infrastructure, however, may
consist of many virtual nodes, and these virtual nodes may
communicate with each other. This leads to the following
problem. Imagine that virtual node v1 sends a message to
virtual node v2, and that these two virtual nodes execute
their CHA instances simultaneously. Node v1 cannot calcu-
late the message that it wants to broadcast until the CHA
instance completes and a history is determined; yet, for v2

to receive the message, it must receive the message from v1

prior to beginning its CHA instance, so that the message
from v1 can be included in its proposal. In order to avoid
this problem, our emulation protocol includes two instances
of CHA for each virtual round; a virtual node chooses which

3Note that we consider an array index to be of constant size.

instance to participate in depending on whether it is sending
a message or listening.

The second problem relates to channel contention among
emulation instances. The agreement instances of nearby vir-
tual nodes may interfere with each other, resulting in colli-
sions. Moreover, since each contention manager is designed
to reduce contention only within a local region, it is not im-
mediate that the situation stabilizes. As for the previous
problem, some care is needed in scheduling the agreement
instances of the virtual nodes.

The third problem is related to the dynamic participation
of mobile nodes. In Section 3, we allowed nodes to fail by
crashing; we did not, however, address the case where new
nodes arrive. Thus, in the case of virtual infrastructure, a
join protocol is required. In addition, when a virtual node
fails, a new node may revive it. Thus, we also introduce a
reset protocol that reinitializes the virtual node in its ini-
tial state. This dynamic behavior leads to several subtleties
associated with the contention manager.

In this section, we attempt to give a brief overview of
how to generalize the CHA protocol for implementing virtual
infrastructure. The complete details can be found in [19].

4.1 Scheduling the Virtual Nodes
We first define a schedule that can be used to avoid con-

tention among distinct virtual nodes that may want to com-
municate. One of the advantages provided by virtual in-
frastructure is that virtual nodes are static, and hence more
predictable than real nodes; this makes it easy to calculate
a good schedule in advance using a centralized algorithm.
The length of the schedule is constant, depending only on
the density of the virtual node locations.

Let schedule[0..s − 1] be an array in which each entry is
a subset of the virtual nodes, and assume that virtual node
v is located at location ℓv. We say that a virtual node v
is scheduled in some virtual round r if v ∈ schedule[r]; oth-
erwise, we say that it is unscheduled. The schedule is non-
conflicting if no two “neighboring” virtual nodes are sched-
uled to broadcast at the same time: ∀i ∈ [0, s− 1], ∀v, v′, if
v, v′ ∈ schedule[i], then |ℓv − ℓv′ | > R1 + 2R2. We say that
the schedule is complete if every virtual node is scheduled
for exactly one round r ∈ [0, s − 1]. Finding a complete,
non-conflicting schedule is straightforward, based, say, on a
coloring of the neighbor graph.

4.2 Contention Management
Each virtual node has its own “regional” contention man-

ager. That is, virtual node vℓ location at location ℓ relies on
contention manager Cℓ to reduce contention in the nearby
area. The conditions under which a virtual node remains
alive and makes progress are closely tied to the guarantees
of the contention manager. Recall that in the CHA protocol,
progress is guaranteed only when (eventually) some leader is
elected. Analogously, for emulating virtual infrastructure, a
round emulation is successful in the sense of making progress
only when there is a leader among the virtual node replicas.

Thus, the goal of a regional contention manager is to elect
“temporary”leaders, i.e., leaders that remain within distance
R1/4 of ℓ for sufficiently long, i.e., 2(s+10) rounds. This can
be reasonably accomplished when there are correct nodes
that reside close to location ℓ; even if the are moving away
from ℓ at maximum velocity, they will remain sufficiently
close for sufficiently long.
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Given such a contention manager, our virtual infrastruc-
ture emulation can guarantee that each virtual node remains
alive as long as there are a sufficient number of correct nodes
that reside sufficiently close to ℓ; the virtual node makes
progress whenever a temporary leader is successfully chosen
by the contention manager.

4.3 Outline of the Emulation Protocol
The virtual infrastructure emulation consists of four parts

with a total of eleven phases: (1) the message sub-protocol,
in which clients and virtual nodes broadcast their messages;
(2) the scheduled agreement instance, in which CHAP is exe-
cuted for scheduled virtual nodes; (3) the unscheduled agree-
ment instance, in which CHAP is executed for unscheduled
virtual nodes; and (4) the join/reset sub-protocol.
The Message Sub-Protocol. The message sub-protocol
consists of two phases: the client and the vn phases. In
the client phase, each client broadcasts its message for the
virtual round, or remains silent if it has no message for the
virtual round.

In the vn phase, one (or more) replicas broadcast on behalf
of the virtual node. Each replica decides whether v should
broadcast a message by calling the calculate-history function
from CHAP. A replica also examines two other factors: (1)
Is the virtual node scheduled in the current virtual round?
If the virtual node is not scheduled, then the replica always
broadcasts the virtual node’s message. This counterintuitive
rule captures the idea that if the virtual node itself chooses
to ignore its schedule, then the replica should ignore the
schedule as well. (2) If the virtual node is scheduled, then is
the emulator itself advised by the regional contention man-
ager to be active? If the replica is advised to be active, it
proceeds to broadcast the virtual node’s message.
The Agreement Instances. The emulation protocol con-
tains two instances of the CHA protocol. The emulator for
v participates in the scheduled agreement instance for vir-
tual round r if v is scheduled in r and in the unscheduled
agreement instance otherwise. In both cases, the goal is to
agree on which messages v should receive.

In the case of the scheduled agreement instance, an addi-
tional outcome is a decision as to whether or not the virtual
node should broadcast a message. Emulators for unsched-
uled nodes listen passively during the scheduled instance
to determine whether the scheduled virtual nodes chose to
broadcast a message.

In the scheduled instance, it is easy to see that there is
no interference between emulations as the schedule ensures
that no two nearby virtual nodes are scheduled in the same
virtual round. In the unscheduled instance, however, more
care is needed.

Specifically, in the ballot phase of the unscheduled in-
stance, nearby nodes may interfere with each other, thus
preventing any ballots from ever being received. Thus, the
ballot phase is instantiated using s + 2 rounds (instead of 1
round, as is the case for every other phase). An emulator
for virtual node v broadcasts during a particular slot in the
ballot phase if it is selected by the schedule. This prevents
contention in the ballot phase. The two veto phases pro-
ceed as in the CHA protocol (and are potentially subject to
interference from neighboring virtual nodes).
The Join and Reset Sub-Protocol. The last three phases
are dedicated to the join/join-ack/reset phases. In the join

phase, a new emulator broadcasts a request to join, if the

virtual node it is trying to join is scheduled for that vir-
tual round. In the join-ack phase, a node pj sends a join
response including the entire current state (or some digest
thereof) under the following conditions: (1) pj has already
completed the join protocol; (2) pj detects a join request or
a collision in the preceding join phase; (3) pj is activated by
the regional contention manager, and (4) the virtual node is
scheduled for the current virtual round.

If a node pj attempts to join and does not receive a re-
sponse, it may reset the virtual node. The protocol first
checks that the virtual node has in fact failed; otherwise,
a reset could lead to inconsistency (and unnecessarily state
loss). Thus, if a new node pi detects no response to its join
request, it continues listens in the reset phase. Each active
emulator pj broadcasts in the reset phase if it has either
received a join request or detected a collision in the join or
join-ack phases. If the new node pi does not receive any mes-
sages or collisions in the reset phase, then it can safely reset
the virtual node, re-initializing its local state and beginning
the emulation anew.

5. OPEN QUESTIONS
Interesting open questions include: (1) developing CHA

protocols that tolerate weaker collision detectors and con-
tention managers; (2) further reducing message size and
overhead; (3) reducing the cost of state transfer, particu-
larly during joining; (4) reducing dependence on a schedule,
and the length of virtual rounds; and (5) tolerating mali-
cious disruption. Ongoing implementation projects include:
(1) providing suitable time synchronization, collision detec-
tion, and contention management; (2) developing virtual in-
frastructure for TinyOS motes and handheld PDAs; and (3)
using virtual infrastructure for routing, robot coordination,
and other applications.
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