
Dr. Multicast: Rx for Data Center Communication Scalability

Ymir Vigfusson ∗

IBM Research
Haifa, Israel

ymirv@il.ibm.com

Hussam Abu-Libdeh

Cornell University
Ithaca, NY

hussam@cs.cornell.edu

Mahesh Balakrishnan

Microsoft Research
Silicon Valley, CA

maheshba@microsoft.com

Ken Birman

Cornell University
Ithaca, NY

ken@cs.cornell.edu

Robert Burgess

Cornell University
Ithaca, NY

burgess@cs.cornell.edu

Gregory Chockler

IBM Research
Haifa, Israel

chockler@il.ibm.com

Haoyuan Li

Cornell University
Ithaca, NY

haoyuan@cs.cornell.edu

Yoav Tock

IBM Research
Haifa, Israel

tock@il.ibm.com

Abstract
IP Multicast (IPMC) in data centers becomes disruptive
when the technology is used by a large number of groups, a
capability desired by event notification systems. We trace
the problem to root causes, and introduce Dr. Multicast
(MCMD), a system that eliminates the issue by mapping
IPMC operations to a combination of point-to-point uni-
cast and traditional IPMC transmissions guaranteed to be
safe. MCMD optimizes the use of IPMC addresses within a
data center by merging similar multicast groups in a princi-
pled fashion, while simultaneously respecting hardware lim-
its expressed through administrator-controlled policies. The
system is fully transparent, making it backward-compatible
with commodity hardware and software found in modern
data centers. Experimental evaluation shows that MCMD
allows a large number of IPMC groups to be used without
disruption, restoring a powerful group communication prim-
itive to its traditional role.

Categories and Subject Descriptors C.2 [COMPUTER-
COMMUNICATION NETWORKS]: Distributed Systems-
Distributed Applications

General Terms Performance, Experimentation

Keywords IPMC, Multicast, Data centers

∗ Work done while the author was at Cornell University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

1. Introduction
As data center networks scale out, the software stack run-
ning on them is increasingly oriented towards one-to-many
(multicast) communication patterns. Services such as Face-
book and Twitter are supported by multicast-centric archi-
tectures. Publish-subscribe and other enterprise service bus
layers [24, 26] use multicast to push data to large numbers
of receivers simultaneously. This capability allows clustered
application servers to replicate state updates and heartbeats
between server instances [6, 16, 17], and to maintain coher-
ent caches by invalidating or updating cached information on
large numbers of nodes [15, 23]. IP Multicast (IPMC) [12]
permits each message to be sent using a single I/O operation,
reducing latency and load at end-hosts and in the network. It
is included by many of these products as a communication
option.

But modern data centers rarely enable IPMC communica-
tion because of problems with the technology. IPMC lacks
reliable packet dissemination [5, 14], security [19], flow con-
trol [31] and scalability in the number of groups [10, 18]. We
focus on the last point — preventing disruptions that may
arise when a large number of IPMC groups are in use. Our
goal is to mend IPMC group scalability in a manner that
complements solutions to the other problems seamlessly.
Additional goals are efficiency, transparency and robustness
of our solution under stress.

IPMC adoption on the wide-area Internet has been lim-
ited for a variety of reasons, including economic concerns
(how ISPs should charge for IPMC traffic) and security
issues (IPMC can be exploited for distributed denial-of-
service attacks) [13, 20]. Accordingly, although we believe
that MCMD can be extended for WAN settings, this paper
focuses only on data centers.

Our key insight is that IPMC addresses are scarce and
sensitive resources. When too many are used, network

349

routers and network interface cards (NICs) malfunction in
ways that trigger heavy packet loss. As a data center scales
up, the aggregated number of IPMC addresses used by the
varied applications can easily exceed these limits. One so-
lution is to just require that everything run over TCP. For
example, one can modify enterprise service bus and publish-
subscribe infrastructure components to create a TCP con-
nection between every source and each of its receivers, send-
ing each packet once per receiver. For situations with large
fanouts, some form of application layer overlay could be
deployed. Clearly, such an approach will be safe, but it will
be more complex and slower than IPMC, which sends just a
single packet.

MCMD solves this problem using a novel clustering al-
gorithm to efficiently allocate a limited number of IPMC ad-
dresses to selected groups (or sets of groups), with the num-
ber selected to reflect hardware capacity and local adminis-
trative policy. Groups that do not receive an IPMC address
use unicast communication.

MCMD is implemented as a layer that resides between
the application and the operating system network stack.
The system efficiently and transparently intercepts standard
IPMC system calls, translating each IPMC group address
used by the application into a combination of IPMC and
unicast addresses. The translation for a group spans two ex-
tremes:

• A true IPMC address is allocated to the group.
• Communication to the group is performed using point-

to-point unicast messages to individual receivers.

We also examined other options, such as mapping a sin-
gle application group to multiple IPMC addresses, but con-
cluded that the two cases listed above suffice.

MCMD makes it safe to use a standard, widely deployed
communication option that fell into disuse. Our hope is that
IPMC might now be revisited for a wide range of possible
uses.

The contributions of this paper are thus as follows:

• An approach to mitigate IPMC scalability problems
within data centers, which optimizes the allocation of
multicast addresses to application layer groups.
• A scalable and robust implementation that resides trans-

parently between the application and the network stack.
• An evaluation using real-world subscription patterns

based on a trace collected from a widely deployed com-
mercial application server.

Assumptions. We focus on an administratively homoge-
neous data center that runs trusted, non-malicious IPMC ap-
plications. Our solution will complement any mechanism for
IPMC reliability, total ordering or security by virtue of re-
siding in a layer below the IPMC interface. As such, minor
packet loss is acceptable. We further assume that the data
center network is primarily switched, with multiple levels of
switching hierarchy and a top-level gateway router. Finally,

we assume that the data center is strongly biased towards
commodity hardware and software, and hence would not ac-
cept non-transparent interventions that might require modi-
fying applications, or non-standard hardware solutions that
might endow NICs or routers with unusually high capacities
for IPMC addresses.

Road map. We start by looking closely at the limitations
of IPMC in data centers. The policy primitives and architec-
ture of MCMD are discussed in section 3. We formalize the
central MCMD optimization problem and provide a greedy
algorithm for solving it in section 4. Our evaluation is in two
parts, first we evaluate the algorithm on various data sets in
section 5, and then we evaluate a prototype of MCMD ex-
perimentally in section 6. The last two sections discuss re-
lated work and then offer some concluding thoughts.

2. IPMC Scalability Problems
In this section we touch upon the factors that combine to
limit IPMC group scalability in data centers.

2.1 Tragedy of the Commons

A tragedy of the commons is said to occur when an individu-
ally effective tactic (grazing one’s sheep on the commons, in
the original formulation) is widely adopted within a commu-
nity. The individual use is sustainable but not the collective
behavior: overgrazed, the commons are denuded.

In a data center, the communications network is a com-
mons: a shared space on which every application relies.
Our focus is on the limited IPMC state space on NICs and
switches on commodity hardware: filtering becomes ineffec-
tive when a large number of groups are used, and this can
burden end-host kernels with high rates of unwanted traffic,
overwhelming receivers who in turn begin dropping pack-
ets. IPMC will only work properly if the number of IPMC
groups, both in aggregate and for individual NICs, can be
controlled so that the hardware limits are not exceeded. This
creates a tension: to scale services up, one wants to mas-
sively replicate data, for which IPMC has obvious appeal.
Yet if no measures are taken to protect the network, an un-
bounded demand for IPMC resources could easily arise.

Data centers that permit applications to use IPMC quickly
encounter this issue. To scale applications up, modern data
centers clone them, running many side-by-side instances. If
such a service uses k IPMC addresses, n clones will use nk
of them. Thus even given individually “safe” services, by
running a collection of them or cloning some to handle more
clients, one can generate a collective demand that exceeds
the finite capacity.

Membership churn. When a node joins or leaves an
IPMC group, the router receives an IGMP packet and must
update its forwarding tables. Normally, applications join or
leave groups infrequently and this cost will be negligible.
However, in poorly designed or malfunctioning applications,

350

Alcatel-Lucent OmniSwitch OS6850-48X 260
Cisco Catalyst 3750E-48PD-EF 1,000
D-Link DGS-3650 864
Dell PowerConnect 6248P 69
Extreme Summit X450a-48t 792
Foundry FastIron Edge X 448+2XG 511
HP ProCurve 3500yl 1,499

Table 1. Group capacity on switches. Maximum number of mul-
ticast groups supported by 10Gbps switches, according to a Net-
workWorld study [22].

high rates of join/leave events could arise, overloading the
router and degrading the entire data center network.

2.2 Group Capacity on Switches

We noted that the most fundamental problem is the lim-
ited capacity available on devices for storing membership
information. Network Ethernet switches vary in sophistica-
tion, ranging from layer 2 switches that broadcast all multi-
cast traffic to switches that operate at higher layers or per-
form IGMP snooping and track multicast group member-
ship in memory. The memory to store group membership
is bounded, so what happens when the capacity is reached?
Some IGMP-aware switches silently ignore membership in-
formation beyond a threshold number of groups [23]. Oth-
ers begin forwarding IPMC messages on all network seg-
ments; it will fall to the NICs to filter the unwanted traffic.
This behavior is also seen when a data center router is over-
loaded with too many IPMC addresses: routers employ filter-
ing mechanisms that can become inaccurate, causing IPMC
to behave like a broadcast.

A recent review of the performance of modern 10Gbps
network switches found that their IGMPv3 multicast group
capacity ranged between 70 and 1,500 [22], as shown in
Table 1. Less than half of the switches tested were able to
support 500 multicast groups under stress.

2.3 Filters on Network Interface Cards

Unfortunately, end-host NICs also have limited space to
store group membership. To filter incoming multicast pack-
ets, a typical end-host NIC uses a combination of a perfect
check against a small set of addresses, as well as an imper-
fect check against a hashed location within a table. The latter
check is effectively a single-hash Bloom filter.

Stevens et al. [25] cites one commercial NIC as having
a perfect matching set of 16 addresses and an imperfect
matching table of 512 bits, another NIC as having a perfect
matching set of 80 addresses with no imperfect matching
table, and older NICs as supporting only imperfect matching
with a 64-bit table. Even the best of these would accept
messages to random IPMC addresses with probability 1

2
once a node has joined 360 groups.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

P
ac

ke
t l

os
s

ra
te

 (
%

)

Number of IPMC groups joined by receiver

Figure 1. IPMC scalability issues. Packet loss rate at a receiver
as multicast traffic is divided among more IPMC groups.

2.4 Repercussions

These limitations add up to trouble. If these limits are ex-
ceeded, every IPMC packet sent to groups above the limit
will become a broadcast, forwarded to every node in the data
center, received by every NIC and in effect dumped onto the
operating system stack. An operating system can silently fil-
ter and discard unwanted traffic at low data rates, but high
rates of aggregated IPMC traffic of multiple groups is a dif-
ferent matter. The operating system will be overwhelmed
and drop incoming packets of all kinds: not just IPMC pack-
ets, but also unicast UDP and TCP. TCP will interpret the
loss as a signal to throttle back.

Packet loss. We conducted an experiment to try to pro-
voke packet loss. A multicast sender transmits on 2k multi-
cast groups, whereas the receiver listens to only k of those
multicast groups. The sender transmits 8,000 byte packets at
a constant rate of 15,000 packets/sec, and divides the traffic
among the 2k multicast groups in the system, so the receiver
expects to receive half of the traffic, or 7,500 packets/sec.
The extra groups simulate background multicast traffic that
is normally filtered out by the switch and NIC. The sender
and receiver both have 1Gbps NICs and are connected by an
IGMP-aware switch.

We varied the number of multicast groups k and mea-
sured the packet loss at the receiver. The results show that
the hardware can handle roughly 200 IPMC groups before
high CPU load and packet loss ensues. The resulting packet
loss rate as a function of k can be seen in Figure 1. Our find-
ings confirm the intuition given above.

Multicast storms. Even modest levels of IPMC packet
loss due to overload can dramatically impact higher layers in
the software stack, and will stress any IPMC reliability layer.
For example, with SRM [14], a slow receiver who has lost
packets will continuously multicast retransmission requests
to the group, potentially provoking a multicast storm of
retransmissions by other receivers that slows down the entire
group and causes further packet loss—further cascading to
disrupt the entire data center [6, 7].

351

Figure 2. Translation. Two under-the-hood mappings in MCMD,
point-to-point unicast mapping (top) and a direct IPMC mapping
(bottom).

3. Design and Implementation
The basic operation of MCMD is simple. It translates an
application-level multicast address used by an application
to a set of unicast addresses or a network-level multicast
address, as shown in Figure 2. The translation is governed
by an administrator specified policy for the data center, as
described in the following subsection.

MCMD consists of two primary components:

• A library module overloads the standard socket interface
and allows MCMD to be transparently loaded into appli-
cations.
• An agent daemon is responsible for implementing the

user-defined policy and the application-level multicast
mapping.

Each node in the system has a running agent, and one of
these agents is designated as a leader that periodically is-
sues multicast group mappings. The mapping information
is replicated across all the agents via a gossip layer, and an
additional urgent broadcast channel is used to quickly dis-
seminate urgent updates. Figure 3 highlights the different
components of MCMD. We will detail the design and im-
plementation of both components in this section.

Notice that when using MCMD, there is an impor-
tant difference between application-level IPMC groups and
network-level IPMC groups. With MCMD, the former be-
comes a purely logical abstraction seen by applications. The
latter are the physical addresses used by the hardware, but
multiple logical groups can share the same physical address,
and these addresses are under MCMD control.

3.1 Policy

MCMD allows administrators to mitigate IPMC group scal-
ability concerns using the following knobs:

• limit-IPMC-node(i, mi): Node i is allowed to join at
most mi network-level IPMC groups.
• limit-IPMC(m): A maximum of m IPMC groups can be

used within the data center.

Figure 3. The MCMD architecture.

The use of network-level IPMC can be disabled system-wide
or at an individual node i by respectively setting m = 0 or
mi = 0.

Setting the policy. The policy can be dynamically changed
by updating a configuration file at any agent, and the changes
will propagate to other agents via gossip and the urgent
broadcast channel. In practice, we imagine a mixture of
hard policy limits calibrated to match router and NIC char-
acteristics, with soft policies: MCMD can be extended to
support fine-grained access-control policy primitives and
rate-limiting, enabling administrators to allow or deny spe-
cific applications from joining particular application-level
groups, or to allow operators to specify triggers for events
such as high rates of messages or packet loss. Changes take
effect quickly, permitting a level of security and offering
the administrator a means of blocking IPMC use by buggy
applications.

3.2 Library Module

The library module exports a standard IP Multicast interface
to applications [12]. By overloading the relevant socket op-
erations, MCMD intercepts join, leave and send operations.
For example:

• In the overloaded version of setsockopt(), invocations
with e.g. the IP ADD MEMBERSHIP parameter will be in-
tercepted by the library module. An IGMP join message
will only be sent if the application-level IPMC address is
mapped to a new network-level IPMC address.
• sendto() is overloaded so that a send to an application-

level IPMC group address is intercepted and converted to
multiple sends to a list of addresses.

Interaction with agent. The library module interacts
with the agent daemon via a UNIX socket, and periodically
pulls and caches the list of IPMC groups it is supposed to
join as well as translations for the application-level groups
it wants to send data to. The library module may receive
invalidation messages from the agent, causing the library
module to refresh its cached entries. Simultaneously, the li-
brary module pushes information and statistics about group-
ing and traffic patterns used by the application to the agent.

352

A traffic pattern is an exponential-average of the message
rate λg received in application-level group g.

3.3 The MCMD Agent

The agent is a background daemon process that runs on ev-
ery node in the system. Each agent instance acts as a map-
ping module, maintaining the following pieces of informa-
tion that are replicated on every agent in the system — col-
lectively referred to as the agent state:

• Membership sets: a map from each node to the application-
level groups within which it receives messages.
• Sender sets: a map from each node to the application-

level groups in which it sends messages.
• Group translations: a map from application-level groups

to a set of unicast addresses, a single network-level IPMC
address, or both.

Each agent in the system has read-access to a locally repli-
cated copy of the agent state. Write-access to the agent state,
however, is strictly controlled. Each node manages its own
membership set and its sender set. The group translations
may only be modified by the leader agent. When any agent,
leader or not, writes to its local copy of the agent state, the
change is propagated to other agents in the system via a gos-
sip layer, which guarantees eventual consistency of agent
state replicas. Since each item in the agent state has exactly
one writer, there are no conflicts over multiple concurrent
updates to the agent-state.

In large deployments of MCMD, replicating the entire
agent state on every node may be infeasible. To reduce the
network overhead needed for replication, the administrator
can opt to deploy agents on a subset of the nodes in the data
centers. However, this can increase the load on these agents
since more library modules will rely on each agent for re-
ceiving and sending updates. We discuss ways to accommo-
date very large scales in Section 4.2.

Group translations. The leader agent uses the group
membership and sender information to determine the best
set of translations from application-level groups to network-
level IPMC addresses. Once these translations are written
to the leader’s local state, the gossip layer disseminates the
updates to other agents in the system, which read the trans-
lations off their local replicated copy of the agent state and
direct their corresponding library modules to join and leave
the appropriate IGMP groups. If present, groups with no
receivers are mapped to empty lists, and groups with ex-
actly one receiver are mapped to unicast, while non-trivial
groups are subjected to our translation algorithm. Section 4
describes how the leader allocates network-level IPMC re-
sources to application-level multicast groups.

State replication. We use a gossip-based failure detector
[28] to replicate the agent state across all the agents. Each
node maintains its own version of a global table, mapping
every node in the system to a time-stamp or heartbeat value.
Every T milliseconds, a node updates its own heartbeat in

the map to its current local time, randomly selects another
node and reconciles maps with it. The reconciliation func-
tion is simple – for each entry, the new map contains the
highest time-stamp from the entries in the two old maps. As
a result, the heartbeat timestamps inserted by nodes into their
own local maps propagate through the system via gossip ex-
changes between pairs of nodes.

The comparison of maps between two gossiping nodes is
highly optimized. The initiating node sends its peer a set of
hash values for different portions of the map, where portions
are themselves determined by hashing entries into different
buckets. If the receiving node notices that the hash for a
portion differs, it sends back its own version of that portion.
This interchange is sufficient to ensure that all maps across
the system are kept loosely consistent with each other. An
optional step to the exchange involves the initiating node
transmitting its own version back to the receiving node if
it has entries in its map that are more recent than the latter’s.

Urgent broadcast channel. Gossip is a robust way to
replicate agent state data across multiple nodes, but can be
slow. We use an urgent notifications broadcast channel to
quickly disseminate important updates, and to ensure that
nodes are responsive to sudden changes in the state of the
system, in particular to membership and mapping informa-
tion. The channel is used for three types of events.

New receiver: When a new receiver joins a group, its
agent updates the local version of agent state via gossip
and simultaneously sends unicast notifications to every node
listed in the agent state as a sender to that group, as well
as the leader. As a result, senders can immediately include
the new receiver in their transmissions. In addition, the new
receiver’s agent contacts the leader agent for updates to the
sender set of that group; if the leader reports back with new
senders not yet reflected in the receiver’s local copy of the
agent state, the receiver’s agent sends them notifications as
well.

New sender: When a new sender starts transmitting to a
group, the agent running on it updates the sender set of the
group on its own local version of the global agent state, and
simultaneously sends a notification to the leader agent. The
leader agent responds with the latest version of the group
membership information for that particular group.

Translation map change: When the leader agent creates
or modifies a translation, it sends notification messages to
all the affected nodes — receivers who should join or leave
IPMC groups to conform to the new translation, and senders
who need to know the new translation to transmit data to the
group. These messages cause their recipients to “dial home”
and obtain the new translation from the leader.

Leadership. Our gossip protocol is also used to track
nodes in the system that are eligible to take on the leader
role, and also to detect leader failure [28]. The leader is de-
fined to be the eligible node with the lowest node identi-
fier. If by some fluke two leaders run concurrently in a non-

353

partitioned system, the situation will resolve itself: nodes
that see proposed mappings from both simply ignore the
IPMC mapping proposed by the one with the larger node
identifier. Moreover, two concurrent leaders running in the
same portion of the network would select nearly identical
mappings: our heuristic is stable and with similar data pro-
duces identical or nearly identical mappings. In the event
of a partitioning failure, our solution will result in multiple
leaders, one per partition. As soon as partitioning ends, one
of the two leaders will dominate the other.

Because we use an urgent broadcast channel when map-
pings change, backed up by gossip repair to disseminate
mappings, no node will be confused about who the leader is
for more than a few milliseconds. A leader election mech-
anism with stronger guarantees could be implemented if
needed, but the current scheme is simple and appears to be
adequate for our target setting.

Rate limits and churn control. In the large, well-
managed data centers of interest to us, node failures are not
common enough to represent a problematic source of over-
head, as we will see in section 6. The more likely sources
of membership changes are associated with startup or shut-
down of services that span groups of nodes and use IPMC.
For example, suppose a data center hosts services on be-
half of many corporate customers and handles flash loads
by launching extra copies. A “service” might well run on
many nodes, using IPMC internally. Back-end applications
send updates to these cloned front-end services, again using
IPMC. Thus dynamic expansion or reduction in the number
of cloned copies of such a service is likely to be an impor-
tant source of dynamicism. We evaluate such a scenario in
the experimental part of this paper.

MCMD limits the rate of membership change events at
any single node as a defense against buggy applications that
frantically join and leave groups at high speed. Under normal
(non-buggy) conditions, joins and leaves involve a single
unicast exchange with the leader, imposing load on it that
increases linearly with the rate of such events in the data
center as a whole. As mentioned above, the node that joined
or departed from the group then sends a multicast to update
the membership lists of other group members. Thus MCMD
handles services composed of nodes that tend to join groups
and then remain in them, but may face performance issues
with applications that create IPMC groups very dynamically.

The purpose of the rate limits is to keep multicast com-
munication within a customizable “safe zone”, preventing
buffers on network cards from filling up and potentially spi-
raling into a multicast storm. Alternatively, the rate checking
mechanism could notify data center operators if multicast
traffic rates exceed specified thresholds.

Robustness. When a node notices that the time-stamp
value for some other node in its map is older than Tfail

seconds, it flags that node as “dead”, where Tfail is picked
using the analysis in [28]. The entry is not immediately

deleted, but maintained in dead state for Tfail more seconds.
This prevents a dead node from being resurrected by some
node that has not yet sensed the failure. After 2Tfail seconds
have elapsed, the entry is deleted. In [28] this scheme is
shown to be quite robust. Our experiments suggest that Tfail

should be in the order of R log n, where R is the gossip rate
and n the system size.

The system is able to tolerate leader failure because all
nodes replicate the agent state. Once agents realize that the
leader is no longer responsive, the leader is marked as dead
and the failure detector disseminates that information to all
the nodes. A leader election protocol is started to appoint
a new leader agent, selecting the operational node with the
largest uptime value.

Memory requirements. The size of the replicated global
view is not prohibitive, because only 24 bytes are required
per membership. For example, we can store the agent state
for a 1,000-node cluster with a membership pattern based on
the WVE trace from section 5.2 within 1MB of memory.

4. Optimization Problem
At the heart of MCMD is the optimization problem of mak-
ing the best use of scarce IPMC resources. The MCMD
leader can assign a limited number of IPMC addresses to
application-level groups in the system to reduce redundant
network traffic. We observe that application-level groups
with similar membership could be assigned the same IPMC
address at the cost of forcing some receivers to filter out un-
wanted traffic. Traffic to those groups which are not assigned
a network-level IPMC address is sent using an alternative
multicast mechanism, currently point-to-point unicast. We
trade off the following objectives.

• Minimize the number of network-level IPMC addresses.
NICs, routers and switches scale poorly in the number of
IPMC addresses, as discussed earlier.
• Minimize redundant sender transmissions. When a sender

maps IPMC to unicast, that sender will send identical
packets to multiple destinations, incurring an associated
cost.
• Minimize receiver filtering. If a receiver must filter un-

wanted traffic it will incur significant costs [9]. If the
unwanted traffic load becomes too high, packet loss will
ensue: precisely the condition MCMD was created to ad-
dress.

The above goals spur a family of optimization questions,
some which have been previously addressed in the literature.
The channelization problem [1, 27, 32] is the following
formulation:

Allocate a fixed number of IPMC addresses to col-
lections of groups to minimize both sender transmis-
sion costs and receiver filtering costs such that sub-
scribers receive all messages they are interested in at
least once.

354

The channelization problem is NP -complete [1], and sev-
eral heuristics to solve it have been proposed and experi-
mentally evaluated in the past [1, 27].

In this section, we extend the channelization problem to
take into account alternative multicast mechanisms, specif-
ically point-to-point unicast, as well as the administrative
policy. We present a greedy algorithm to tackle the general-
ized translation problem, which remains NP -complete. Fi-
nally, we show the feasibility of the algorithm by evaluating
it on a wide range of inputs from real-world data sets and
synthetic models.

4.1 Model

Let U denote the set of n users (or nodes) in a system, and G
denote the set of k application-level groups. Define Ug ⊆ U
for g ∈ G as the set of users who subscribe to group g,
and Gu ⊆ G for u ∈ U as set of groups to which user u
subscribes, that is Gu = {g ∈ G : u ∈ Ug}. In the example
in figure 4, Ug5 = {u4, u6} and Gu1 = {g1, g2, g3}.

Recall from section 3.1 that the administrator policy per-
mits m network-level IPMC groups to be used in the data
center and that the limit of network-level IPMC groups for
node u ∈ U is mu. The goal is to find a set P of m pair-
wise disjoint meta-groups P = {P1, P2, . . . , Pm}, where
Pi ⊆ G for each i. The idea is that meta-groups should con-
tain “similar” groups in terms of membership. For example,
the partition P = {P1, P2, P3} in figure 4 covers all five
groups. The meta-group P1 = {g1, g2, g3} merges together
three application-level that have similar sets of receivers. We
can then assign each meta-group Pi in P to a network-level
IPMC addresses that is shared by all the groups in Pi and
use point-to-point unicast for groups that are not contained
in any meta-group.

Let Π =
⋃m

i=1 Pi be the set of groups covered by meta-
groups. In the example, Π = {g1, . . . , g5}. Let Ru = {Pi :
u ∈ Ug for some g ∈ Pi} denote the set of meta-groups that
cover every application-level group user u has joined, and
Πu =

⋃
Pi∈Ru

Pi be the set of groups that belong to the
same meta-groups as u. To illustrate, Ru4 = {P1, P2, P3}
and Πu4 = {g1, . . . , g5} in figure 4, whereas Ru2 = {P1}
and Πu2 = {g1, g2, g3} even though u3 does not belong to
g3.

Consider an arbitrary group g ∈ G. Assigning network-
level IPMC addresses to meta-groups effects senders and
receivers as follows:

• Senders: If g is contained in some meta-group Pi, then
a single message is sent to the IPMC address associated
with Pi. Otherwise, the message is sent individually to
each receiver in Ug.
• Receivers: If g belongs to some meta-group Pi, then a re-

ceiver may need to filter out messages to other groups in
Pi that it did not join. Otherwise, no filtering is necessary.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

u4 u5 u6u3u2u1

g1 g2 g3 g4 g5

P1 P2 P3

Figure 4. Notation. The users on top receive data from the
application-level groups on the bottom. The rectangles correspond
to the meta-groups in partition P .

Let us define these overheads formally as duplication and
filtering costs. Recall that λg denotes the average rate of
traffic received in group g per time unit.

Definition: Let β ≥ 0. Define the total cost of translation
P on a set of groups G as

cost(P, G) = costF (P, G) + βcostD(P, G),

where the filtering cost costF (P, G) is

costF (P, G) =
∑

u∈U

∑

g∈Πu−Gu

λg

and the duplication cost costD(P, G) is

costD(P, G) =
∑

g∈G−Π

λg (|Ug| − 1) .

Example. Looking at figure 4 again, costF (P, G) = λg1 +
λg2 + λg3 since user u4 must filter traffic from groups g1

and g2, and u2 must filter traffic from group g3. For the
duplication cost, not that it counts only redundant copies
of messages beyond the first one sent. All groups in the
example are covered by the partition P so the duplication
cost in the example is zero. If the partition was instead P ′ =
{P1}, then the duplication cost would be costD(P ′, G) =
λg4 + λg5 since messages sent to the uncovered groups g4

and g5 each need to be sent to two receivers.
Optimization problem. The generalized channelization

problem for the translation mechanism is the following:

Given a set of groups G, find the set P of m meta-
groups such that |Ru| ≤ mu for all u ∈ U with the
lowest cost(P, G).

By minimizing only filtering costs (β = 0) and mak-
ing the node-limits mu infinite, we obtain the original chan-
nelization problem from Adler et al. [1] as a special case.
Finding an optimum solution to our optimization question is
thus an NP -complete problem. In the next subsection, we
present an algorithm to find an approximate solution.

355

For simplicity, we will assume throughout that β = 1. In
other words, we assume that the cost of producing redundant
packets for the sender and the networking hardware roughly
equals the CPU cost for filtering out an unwanted packet.

4.2 Translation Algorithm

We give a simple heuristic method that constructs meta-
groups by traversing large groups with high traffic, then
repeatedly moving groups to these meta-groups in a greedy
fashion if doing so decreases the total cost.

Algorithm 1 TRANSLATION(G), where G is the set of groups.

m′ ← 0
for all g ∈ G in decreasing order by λg|Ug| do

i← arg max
i=1,...,m′

(C(i, ∅) − C(i, {g}))
if (i = 0 or C(i, ∅)− C(i, {g}) < 0) and m′ < m then

m′ ← m′ + 1 {Create a new meta-group}
Pm′ ← {g}

else
Pi ← Pi ∪ {g}

end if
G← G− {g}

end for

We assume that arg max over the empty set returns 0.
The function C(i, H) computes the solution cost after the
groups in H have been migrated to meta-group Pi. More
specifically, C(i, H) = cost(P̂ , G − H), where P̂ equals P
except Pi is replaced by Pi ∪ H .

For clarity, the algorithm does not address the node-
specific limits mu on the number of multicast a receiver
can join. This is amended by a provision to the loop to only
consider those groups g whose members are all below the
mu limit.

We also adapted other algorithms from the literature,
such as a variant of k-means, but found that the greedy
heuristic consistently outperformed those approaches. We
are currently exploring how well the algorithm approximates
the optimal one in worst-case scenarios.

Incremental version. Because the mapping module will
periodically update the translations, a desirable property is
that if group memberships do not change much, neither
should the translation computed by the algorithm. Once
the translation algorithm is rerun, we initialize the meta-
groups with the output of the previous run. If a new group
g has been created with value λg|Ug| higher than the value∑

g′∈Pi
λg′ |Ug′ | for some meta-group Pi, or if there are

fewer than m meta-groups in the system, then Pi is broken
up and g gets a meta-group of its own. Toggling the trans-
port mechanism from using network-level IPMC groups to
point-to-point unicast in this case only affects group g and
the groups in Pi. The for-loop is then executed as before.

It follows that the translation algorithm can be run incre-
mentally for each new event (e.g., a membership change)
without imposing high load on the leader agent.

Running time. The running time of the translation algo-
rithm is O(kmQ), where k is the number of groups, m is
the number of meta-groups, and Q is the size of the largest
group. Because the m and Q factors both depend on phys-
ical hardware, they can be assumed to be constant with re-
spect to the number of groups; hence the algorithm scales
linearly in the number of groups. The running time of the
algorithm to compute each data point in Figure 5 (described
later) was 1.13 seconds on average using a Python imple-
mentation. Note that running the translation algorithm from
scratch represents a worst-case use, more typically the algo-
rithm only needs to incrementally adjust a previously com-
puted solution.

Decentralization. In ongoing work, we are exploiting
properties of the cost function to create a decentralized
translation algorithm to accommodate very large networks.
Nodes would maintain information only about membership
of nodes in groups they subscribe to, together with statis-
tics about sizes and traffic rates of application-level groups.
Each node would run a portion of the computation based on
a portion of the overall group overlap graph, and probabilis-
tically report observed group traffic rates to a global group
via gossip.

5. Evaluation of the Translation Algorithm
Before we can discuss how to evaluate a group optimization
method, such as the translation algorithm, we must first ask
what kinds of groups and group structure should be expected
within data centers. Here the term group structure refers
to properties of individual groups as well as overlapping
membership between multiple groups.

The answer to the question is non-trivial, because the
definition of a “group” is fuzzy and depends on context.
Some groups abstract social human interactions, such as chat
rooms, newsgroups and blogs. Others arise in the course
of design of real systems, for instance the groups used to
replicate data within components of a distributed system
to allow load to be spread over multiple computing nodes
[29], or the groups that serve as communication channels for
multiple inventory systems while they process a web-query
from a customer.

We obtained data sets and models for both abstractions
(social groups and systems groups) in the form of bipartite
graphs between a set of users and groups. We will first de-
scribe the social data sets, then discuss an interesting sys-
tems data set and last evaluate the translation algorithm on
those inputs graphs.

5.1 Social Data Sets

We obtained a number of data sets for socially influenced
group structure, including one generated by a model. Each
data set consists of edges between groups and the users
belonging to those groups.

356

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 200 400 600 800 1000N
um

be
r

of
 d

up
lic

at
es

 +
 F

ilt
er

ed
 p

kt
s

Number of network-level IPMC addresses

Wikipedia
Amazon

Yahoo! Groups
LiveJournal
MIM-Model

 0

 250

 500

 750

 1000

 10 20 30

IBM WVE

 0

 250

 500

 750

 1000

 10 20 30

IBM WVE

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900N
um

be
r

of
 d

up
lic

at
es

 +
 F

ilt
er

ed
 p

kt
s

Number of network-level IPMC addresses

Wikipedia
Amazon

Yahoo! Groups
LiveJournal
MIM-Model

Figure 5. Translation algorithm. Number of duplicate packets sent plus packets that must be filtered out by receivers as we vary the number
of available IPMC groups after running the translation algorithm on 1,000 group samples from the social data sets and the full WVE trace
(embedded). Most of the cost is due to duplicate packets. Note the logarithmic scale on the y-axis on the right.

• LIVEJOURNAL: LiveJournal communities and users who
belong to them [4].
• AMAZON: Products reviewed by customers at Ama-

zon.com [21]. Each product corresponds to the group
of customers who reviewed the product.
• YAHOO-GROUPS: The users and topics of Yahoo! Groups,

an on-line community driven forum [33].
• WIKIPEDIA: Wikipedia articles ever edited by registered

authors [11]. Each article represents a group of those who
are interested in it.
• MIM-MODEL: A bipartite generalization of the prefer-

ential attachment model to produce power-law degree
distributions for users and groups [29].

These data sets may not directly correspond to a realistic
use of multicast; for instance, it is unlikely a multicast group
is assigned to every LiveJournal community or Wikipedia
article. Instead, they illuminate the similarity between hu-
man interests, which can indirectly benefit socially influ-
enced data-center applications, such as a publish-subscribe
layer for trading in the stock exchange [27] or updates sent
to newsfeed followers in real-time on Facebook or Twitter.

5.2 Systems Data Set

We also obtained a trace of multicast patterns from a real-
world system. IBM WebSphere Virtual Enterprise (WVE)
is a widely deployed commercial distributed system for run-
ning and managing web applications [16]. Each WVE cell
consists of some (possibly large) number of servers, on top
of which application clusters are deployed. Larger data cen-
ter deployments clone these cells, partitioning clients among
them to balance load. Internal management of each cell, such
as workload balancing, dynamic configuration, inter-cluster
messaging and performance measurements, uses a built-in
bulletin board component. The bulletin board (BB) exports
an interface resembling publish/subscribe which is imple-
mented as an overlay [8]. Note that when more than one cell
is active, each cell uses its own private BB service.

IBM created the trace by deploying 127 WVE nodes con-
stituting 30 application clusters for a period of 52 minutes,
and recording the messages sent to each group along with
the sender and receivers. An average node posted to 280
groups and received from 474 groups. There were 1,364
application-level groups with both senders and receivers that
were used to disseminate messages during the trace.

The group patterns in the trace are highly structured.
There are four prevalent communication patterns for pub-
lishers and subscribers: few-to-few, few-to-many, many-to-
few, and many-to-many. Here, few means no more than 10
nodes, and many implies all 127 nodes except at most 10.
Interestingly, every group in the trace fits one of the four cat-
egories. Some communication patterns directly result from
the design of particular WVE components — a subset of the
many-to-few groups, for instance, were used for gathering
statistical reports. Other behavior is harder to characterize,
supporting our case for automatically compressing subscrip-
tion patterns instead of changing existing code to manually
optimize group membership.

5.3 Translation Algorithm on Data Sets

We evaluated the translation algorithm on each of the data
sets, using a sample of 1,000 groups from each, assigning
a network-level IPMC address to each meta-group produced
by the algorithm. Figure 5 shows how the total cost decreases
as the number of available IPMC addresses increases. Note
that if 1,000 IPMC addresses are available, each group in
the data set can use IPMC as transport and the cost due to
filtering and duplicates becomes zero.

The cost decrease is close to exponential, as seen in Fig-
ure 5, implying that major cost savings arise even when a
modest number of IPMC addresses are enabled in the net-
work. For every data set and model we tried, the translation
algorithm endowed with only 100 IPMC addresses — 10%
of the total number of groups — saves more than 50% of the
cost that is incurred when IPMC is disabled. Using 4 IPMC
addresses in the WVE data set, the cost of filtering and du-

357

0k

2000k

4000k

6000k

8000k

10000k

 0 500 1000 1500 2000

N
um

be
r

of
 d

up
lic

at
e

pa
ck

et
s

Number of WVE cells (127 nodes each)

MCMD: 0 IPMC
MCMD: 1000 IPMC

Per-group IPMC

0k

200k

400k

600k

800k

1000k

 0 500 1000 1500 2000

N
um

be
r

of
 p

ac
ke

ts
 fi

lte
re

d

Number of WVE cells (127 nodes each)

MCMD: 0 IPMC
MCMD: 1000 IPMC

Per-group IPMC

Figure 6. Traffic simulation. Total number of duplicate sends (left) and packets filtered (right) assuming an application that sends 1
packet/group per unit time as we vary the number of concurrent WVE cells, each consisting of 127 nodes and 1,364 groups. The MCMD
translation algorithm is endowed with 1,000 network-level IPMC addresses. MCMD has optimal duplication cost until about 250 WVE cells
consisting of 30,000 nodes and 340,000 groups, while filtering costs are modest. Note the different scales on the y-axes: filtering costs are
substantially lower than duplication costs.

plicates using our algorithm is almost negligible, and with
10 IPMC addresses it goes down to zero as the embedded
plot in Figure 5 shows. In other words, the translation algo-
rithm was able to assign a meta-group to every distinct group
pattern encountered in the data set. We conclude that our al-
gorithm makes effective use of a scarce number of IPMC
addresses.

Traffic rates. In the experiment above, we assumed a uni-
form rate of traffic on all the groups even though this as-
sumption may be unreasonable. For instance, 80% of the
traffic in the WVE trace was carried in just 18% of the
groups. By adopting a more realistic model of traffic rates,
specifically by letting λg follow a power-law distribution un-
correlated with the group size, we observed even more dra-
matic cost savings than with uniform traffic rates for every
single data set. The need for brevity makes it impossible to
include the associated figures in this paper.

5.4 Simulation

Thus far, we have demonstrated that our greedy translation
algorithm is able to make efficient use of a limited num-
ber of network-level IPMC groups without incurring high
costs of filtering or duplication. We now vary the number
of application-level groups while keeping the number of
network-level IPMC addresses constant to understand how
our translation algorithm works at scale.

In the previous subsection, we treated the WVE trace
as a form of ground truth giving fine-grained information
about group membership and communication patterns in a
real, widely used platform. Here we use the trace as a tool
for generating substantially larger data center scenarios by
cloning parallel instances of the membership patterns. We
simulate k side-by-side cells of WVE running on distinct
sets of 127 nodes each, while running a single instance of
MCMD that spans the entire data center.

We compare the number of send operations for a sender
who transmits one packet per group in the cloned WVE trace
scenario for three different transports:

• MCMD: 0 IPMC. Unicast transmissions to each receiver.
• MCMD: 1000 IPMC. Using the MCMD translation

algorithm with 1, 000 network-level IPMC addresses.
• Per-group IPMC. Each group has a network-level IPMC

address.

We assume a traffic rate of one message per group, per time
unit. In the multicast case, this results in a single network
message. When a group is mapped to unicast, the number
of network messages will be determined by the number of
group members.

The simulation shows that the cost for the sender using
MCMD with the translation algorithm is between the two
extremes. In Figure 6(a), we see that until 250 WVE cells
— a scenario constituting 31,750 nodes and 341,000 groups
— MCMD uses the optimal number of sends with zero
duplicates. The filtering costs in Figure 6(b) are also modest
during that period. This confirms our earlier observation
that 4 IPMC addresses suffice with negligible cost for a
single WVE instance. With more than 250 concurrently
active WVE instances, trade-offs between duplication and
filtering costs arise. Up to 500 instances, the algorithm saves
duplication cost by merging less similar groups, increasing
filtering costs. As we add even more WVE cells, MCMD
prioritizes large groups for mapping to IPMC and still saves
cost compared to individual unicast even though it has fewer
than 4 IPMC addresses available per WVE instance. Beyond
1,000 concurrent WVE instances — 127,000 nodes and
1,364,000 groups — MCMD has fully exhausted the 1,000
network-level IPMC groups it was provided and must resort
to using individual unicast to further groups.

Although we lack WVE traces for cells containing larger
numbers of nodes, we believe that MCMD would do just

358

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000A
vg

. t
ra

ffi
c

re
ce

iv
ed

 p
er

 n
od

e
(K

B
/s

ec
)

Time (sec)

Figure 7. Robustness. Average traffic received per MCMD agent
in a 91-node deployment over time. At time 600, half of the nodes
are killed and come back to life at time 800. Error bars represent
sample standard deviation over 24 trials.

as well when confronted with scaled scenarios in this di-
mension. We say this because MCMD exploits correlation
in group interests; to defeat the translation algorithm a sys-
tem would need to exhibit highly uncorrelated group mem-
bership patterns. In real-world uses of multicast, we believe
such unstructured membership to be more of an exception,
and that correlated structure like in the IBM WVE system
is closer to the rule. Group membership correlations are dis-
cussed further in [29].

6. Evaluation of Prototype
Thus far, we have shown that the algorithm used by MCMD
can effectively map application-level groups to a small set of
IPMC addresses. We now evaluate a prototype implementa-
tion of MCMD to answer the following questions:

• Robustness. How do node failures affect MCMD?
• Overhead. How much overhead does the system impose

on applications and on the network?
• Scalability. Does MCMD scale in the number of IPMC

groups without experiencing disruption?

Our results suggest that MCMD provides group scalability
to IP Multicast applications with negligible overhead, while
remaining robust to failures.

Experimental set-up. We have implemented MCMD
in C/C++ and deployed it on 91 nodes in the DETERlab
testbed and 17 nodes in the CUNET Emulab test bed. The
nodes in DETERlab are equipped with Intel Xeon 64-bit
3.0GHz processors, 2GB of RAM and Intel Pro1000 1Gbps
NICs. They connect to a Cisco Catalyst 6500 series high-
end switch. The CUNET Emulab nodes are connected by
1Gbps Broadcom Tigon3 NICs to a single Nortel Baystack
BS5510-48T IGMP-aware switch.

Every node runs a single MCMD agent and one of the
following two simple IPMC applications:

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180

10 20 30 40 50 60 70 80 90

N
et

w
or

k
tr

af
fic

 r
at

e
(K

B
/s

ec
)

Time (sec)

Number of nodes

Figure 8. Network overhead. The total network traffic overhead
in a 90-node deployment where 10 MCMD agent nodes enter the
system every 20 seconds. Each agent has an application whose
group membership is selected randomly from the WVE trace. The
network load scales linearly in the number of agents. Error bars
represent sample standard deviation over 20 trials.

• A sender application continuously transmits packets at a
fixed rate to k IPMC groups in a round-robin fashion.
• A receiver application joins the same k IPMC groups,

and retrieves incoming packets in a loop.

Agents gossip once per second.

6.1 Robustness and Network Overhead

MCMD must be robust if it is to be deployed in data centers;
with this in mind, we chose to implement a gossip-layer and
to replicate agent state on all nodes. A secondary benefit for
using gossip is to maintain a balanced load on the network.

We subjected the 91-node MCMD deployment to a major
correlated failure: half of the nodes in the data center died
simultaneously at time 600 in Figure 7. Nevertheless, the
MCMD system continued running. The dead nodes were
resurrected at time 800 without any problems.

To evaluate network overhead, we measured the rate of
gossip and urgent broadcasts in MCMD on 90 nodes in the
DETERlab test bed. We gradually introduce nodes into the
system with 10 nodes entering every 20 seconds. Every node
runs an MCMD agent and a receiver application that picks
a random node from the WVE trace and joins application-
level groups accordingly. The random roles are fixed over
20 measurement trials. The total traffic overhead from run-
ning MCMD in this setting is shown in Figure 8. When
90 nodes are in the system the total traffic imposed is less
than 500KB/sec, or 5.6 KB/sec on average per-node. The in-
crease in network overhead is roughly linear in the number
of nodes.

One can extrapolate the overhead from Figures 7 and
8 to predict larger scale behavior. The per-node overheads
of MCMD seen in Figure 7 are quite low and the current
implementation could scale to large configurations without
obvious problems. The network-wide load imposed by the
system, however, might be prohibitive: with 100,000 nodes,

359

100k

200k

300k

400k

1 2 5 10 50 100

S
en

ds
/s

ec

Number of application-level IPMC groups

Per-group IPMC
MCMD - 1 address

MCMD - 5 addresses
MCMD - 10 addresses

Figure 9. Application overhead. Experiment on a single IPMC
sender measuring the number of send operations sustained with and
without MCMD library module loaded for direct IPMC mapping
and using MCMD with 5 or 10 addresses per group. Error bars
over 10 trials were too small to be visible.

the network would bear approximately 1GB of overhead per
second.

As discussed in Section 4.2 (decentralization), a large
scale system could subdivide execution of the optimization
heuristic, rather than having a single leader run it for the
whole system. For example, a scaled-up WVE system with
k cells might result in k connected components, plus perhaps
an additional component consisting of management groups
that span most or all nodes. We then divide the budget of
IPMC addresses up, allowing each component to run its own
version of MCMD.

6.2 Application Overhead

We next measure the overhead of using the MCMD library
layer on a simple IPMC application. The application is a
copy of the sender application but with rate-limiting disabled
so that it sends IPMC packets to k groups as rapidly as
possible. We measure the maximum sending rate possible
with and without MCMD. We also vary k to see the effect
of the data structures used by MCMD.

First, assume MCMD maps each application-level group
to a single network-level IPMC address. We saw an aver-
age increase of 10% CPU utilization for the application, irre-
spective of the number of groups. We observe that the num-
ber of operations per second falls by 10-15% in the applica-
tion by running MCMD, as the tall bars in Figure 9 show.
Collisions in hash-maps account for the slight drop in per-
formance as k increases.

Next, consider the case where each group resolves to
both an IPMC address and a list of unicast addresses. The
shorter bars in Figure 9 show the effect when each sendto()
operation resolves to one IPMC address along with either 4
or 9 unicast addresses, resulting in a total of 5 and 10 send
operations, respectively. The performance of point-to-point
unicast met our expectations, realizing a little less than 1/r
of the maximum number of operations per second when each
application-level group is mapped to r physical addresses.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

P
ac

ke
ts

 lo
ss

 r
at

e
(%

)

Number of IPMC groups joined by receiver

Per-group IPMC
MCMD: 1000 IPMC

Figure 10. Scalability in the number of IPMC groups. Experi-
ment showing that per-group IPMC can sustain heavy packet loss
while MCMD with 1,000 IPMC addresses prevents ill-effects. Er-
ror bars represent sample standard deviation over 10 trials.

6.3 Scalability in the Number of IPMC Groups

The primary goal of MCMD is to prevent disruption when
the number of multicast groups scales up. We conducted
an experiment on the CUNET Emulab test bed akin to the
one in section 2.4 to evaluate the amount of packet loss
incurred by MCMD with a large number of groups. Nine
senders in the Emulab test bed transmit 8 KB packets in a
round-robin fashion to 2k IPMC groups. A receiver joins
k of these groups and measures the number of packets re-
ceived. The message rate per sender is 10,000 messages/sec,
divided equally between the groups the receiver joined and
the remaining ones.

In this set-up, the MCMD translation algorithm would
simply merge the 2k groups to a single meta-group and use
unicast as transport. To produce a more non-trivial group
structure for MCMD, the senders also join a random subset
of the k groups the receiver joined in a way that creates a mix
of small and large groups. The limit of network-level IPMC
groups used by the translation algorithm is set to 1, 000,
including the per-node limit.

Our experiment revealed that the capacity for the hard-
ware to handle IPMC groups appears to be around k =
1, 000 when 2,000 groups are in the system, as seen in Figure
10. The receiver application incurred at most 5.2% packet
loss by MCMD, well within the bounds of what IPMC re-
liability layers can handle [5]. Without MCMD, the appli-
cation consistently experienced over 55% packet loss when
over 4, 500 multicast groups were in the system.

7. Related Work
Jokela et al. recently proposed LIPSIN [18], a protocol that
achieves multicast scalability by encoding forwarding state
in packet headers with Bloom filters, minimizing forward-
ing state at intermediate routers and switches. In contrast,
MCMD is a “dirty-slate” approach to the same problem,
requiring no modification to routers and switches. Earlier,

360

Wong and Katz [32] explored the problem of multicast state
minimization in inter-domain settings.

Akella et al. have pointed out the prevalence of packet-
level redundancy in network traffic [2, 3]. Measurements
show that in a trace of a data center link, 45% of packet con-
tents were redundant [3]. We believe that a significant frac-
tion of this observed redundancy results from point-to-point
unicast transmissions used by applications to carry out mul-
ticast operations. While the de-duplication techniques used
by Akella et al. eliminate this redundancy in the network,
they still require end-hosts to perform multiple send opera-
tions where single IPMC sends might have sufficed. In addi-
tion, the proposed techniques require additional processing
and storage on routers.

In an earlier version of our work [30], the optimization
goal was the NP -complete problem of finding multicast
groups with zero filtering costs while also minimizing the
number of multicast groups and duplicate packets. Although
solutions with zero filtering costs are desirable, later work
shows that group overlaps needed for zero filtering solutions
to save costs rarely arise [29].

8. Conclusion
IP Multicast can be a powerful communication option in data
centers; however, scaling barriers imposed by hardware lim-
its in routers, switches and end-host NICs have prevented
its usage. MCMD multiplexes limited numbers of network-
level IPMC addresses across large numbers of application-
level multicast groups. The effect is to enable safe and scal-
able use of multicast. MCMD is completely transparent to
applications, which continue to use standard IP Multicast in-
terfaces, and does not require any modification to the net-
work. Our evaluation shows that MCMD is scalable and ro-
bust to node failures.

Acknowledgments
We thank Tudor Marian for valuable help with producing the pa-
per, Jure Leskovec for data and advice, Mike Spreitzer for produc-
ing the WVE trace, and Alexey Roytman, Robbert van Renesse,
Hakim Weatherspoon and Hitesh Ballani for useful discussion and
assistance. We are also grateful to the anonymous reviewers and
our shepherd Fernando Pedone for constructive comments and sug-
gestions to improve the paper. This work was supported in part by
grants from AFOSR, AFRL, NSF, Intel Corporation and Yahoo!.

References
[1] M. Adler, Z. Ge, J. F. Kurose, D. F. Towsley, and S. Zabele.

Channelization problem in large scale data dissemination. In
ICNP, 2001.

[2] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker.
Packet caches on routers: the implications of universal redun-
dant traffic elimination. In SIGCOMM ’08. ACM, 2008.

[3] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee.
Redundancy in network traffic: findings and implications. In
SIGMETRICS ’09, New York, NY, USA, 2009. ACM.

[4] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks: member-
ship, growth, and evolution. In KDD, pages 44–54. ACM,
2006.

[5] M. Balakrishnan, K. P. Birman, A. Phanishayee, and
S. Pleisch. Ricochet: Lateral error correction for time-critical
multicast. In NSDI. USENIX, 2007.

[6] BEA. WebLogic Server 10.3 Documentation. http://

e-docs.bea.com/wls/docs103/pdf/cluster.pdf.

[7] K. Birman, G. Chockler, and R. van Renesse. Toward a
cloud computing research agenda. SIGACT News, 40(2):68–
80, 2009.

[8] V. Bortnikov, G. Chockler, A. Roytman, and M. Spreitzer.
Bulletin board: A scalable and robust eventually consistent
shared memory over a peer-to-peer overlay. In ACM SIGOPS
LADIS ’09, October 2009.

[9] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman, H. Nelken,
J. Satran, and P. Vortman. High throughput reliable message
dissemination. In SAC. ACM, 2004.

[10] Cisco. IP Multicast Best Practices for Enterprise Customers.
http://www.cisco.com/en/US/prod/collateral/

iosswrel/ps6537/ps6552/ps6592/whitepaper_

c11-474791.pdf, September 2008.

[11] D. J. Crandall, D. Cosley, D. P. Huttenlocher, J. M. Kleinberg,
and S. Suri. Feedback effects between similarity and social
influence in online communities. In KDD, pages 160–168.
ACM, 2008.

[12] S. E. Deering and D. R. Cheriton. Multicast routing in data-
gram internetworks and extended LANs. ACM Trans. Com-
put. Syst., 8(2):85–110, 1990.

[13] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balen-
siefen. Deployment issues for the IP multicast service and
architecture. Network, IEEE, 14(1):78–88, 2000.

[14] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing. IEEE/ACM Transactions on Net-
working, 5(6):784–803, 1997.

[15] GEMSTONE. GemFire. http://www.gemstone.com/

products/gemfire/enterprise.php.

[16] IBM. WebSphere. http://www-01.ibm.com/software/

webservers/appserv/was/.

[17] JBoss. Application Server. http://www.jboss.org/.

[18] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander. LIPSIN: line speed publish/subscribe inter-
networking. In SIGCOMM ’09, pages 195–206, New York,
NY, USA, 2009. ACM.

[19] P. Judge and M. Ammar. Security issues and solutions in mul-
ticast content distribution: A survey. IEEE Network, 17:30–
36, 2003.

[20] I. Lazar. The challenge of implementing IP multicast. Com-
puter Technology Review, August 1999.

361

[21] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynam-
ics of viral marketing. In ACM EC ’06, pages 228–237, New
York, NY, USA, 2006. ACM.

[22] D. Newman. 10 Gig access switches: Not just packet-pushers
anymore. Network World, 25(12), March 2008.

[23] Oracle. Coherence 3.4 User Guide. http://coherence.

oracle.com/display/COH34UG/Coherence+User+

Guide+(Full) (accessed in July 2009).

[24] RTI. Real Time Innovations Data Distribution Service. http:
//www.rti.com/products/data_distribution/.

[25] W. Stevens, B. Fenner, and A. Rudoff. UNIX Network Pro-
gramming: The Sockets Networking API. Addison-Wesley,
2004.

[26] TIBCO. Rendezvous. http://www.tibco.com/software/
messaging/rendezvous/default.jsp.

[27] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky. Hierar-
chical clustering of message flows in a multicast data dissem-
ination system. In IASTED PDCS, 2005.

[28] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-based
failure detection service. In Middleware, September 1998.

[29] Y. Vigfusson. Affinity in Distributed Systems. PhD thesis,
Cornell University, 2009.

[30] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,
and Y. Tock. Dr. Multicast: Rx for Datacenter Communication
Scalability. In 7th ACM Symposion on Hot Topics in Networks
(HotNets VII), October 2008.

[31] J. Widmer and M. Handley. Extending equation-based con-
gestion control to multicast applications. In SIGCOMM, pages
275–285, 2001.

[32] T. Wong and R. Katz. An analysis of multicast forwarding
state scalability. In ICNP, 2000.

[33] Yahoo! Research. Webscope groups dataset v1.0.
http://research.yahoo.com/, 2008.

362

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

