Projects per year
Abstract
The study of superconductor/ferromagnet interfaces has generated a great interest in the last decades, leading to the observation of long-range spin triplet supercurrent and 0 − π transitions in Josephson junctions where two superconductors are separated by an itinerant ferromagnet. Recently, spin-filter Josephson junctions with ferromagnetic barriers have shown unique transport properties, when compared to standard metallic ferromagnetic junctions, due to the intrinsically non-dissipative nature of the tunneling process. Here we present the first extensive characterization of spin polarized Josephson junctions down to 0.3 K, and the first evidence of an incomplete 0−π transition in highly spin polarized tunnel ferromagnetic junctions. Experimental data are consistent with a progressive enhancement of the magnetic activity with the increase of the barrier thickness, as neatly captured by the simplest theoretical approach including a non uniform exchange field. For very long junctions, unconventional magnetic activity of the barrier points to the presence of spin-triplet correlations.
Original language | English |
---|---|
Article number | 047002 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Physical Review Letters |
Volume | 122 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Feb 2019 |
Projects
- 1 Finished
-
Superconducting spintronics
Eschrig, M. (PI)
Eng & Phys Sci Res Council EPSRC
1/01/16 → 31/12/20
Project: Research