TY - JOUR
T1 - Titanium Kirschner Wires Resist Biofilms Better Than Stainless Steel and Hydroxyapatite-coated Wires
T2 - An In Vitro Study
AU - McEvoy, James
AU - Martin, Philip
AU - Khaleel, Arshad
AU - Dissanayeke, Shobana
PY - 2019
Y1 - 2019
N2 - Aim: External fixation surgery is frequently complicated by percutaneous pin site infection focused on the surface of the fixator pin. The primary aim of this study was to compare biofilm growth of clinically isolated pin site bacteria on Kirschner wires of different materials. Materials and methods: Two commonly infecting species, Staphylococcus epidermidis and Proteus mirabilis, were isolated from patients’ pin sites. A stirred batch bioreactor was used to grow these bacteria as single culture and co-cultured biofilms on Kirschner wires made of three different materials: stainless steel, hydroxyapatite-coated steel and titanium alloy. Results: We found that the surface density of viable cells within these biofilms was 3x higher on stainless steel and 4.5x higher on hydroxyapatitecoated wires than on the titanium wires. Conclusion: Our results suggest that the lower rates of clinical pin site infection seen with titanium Kirschner wires are due to, at least in part, titanium’s better bacterial biofilm resistance. Clinical significance: Our results are consistent with clinical studies which have found that pin site infection rates are reduced by the use of titanium relative to stainless steel or hydroxyapatite-coated pins.
AB - Aim: External fixation surgery is frequently complicated by percutaneous pin site infection focused on the surface of the fixator pin. The primary aim of this study was to compare biofilm growth of clinically isolated pin site bacteria on Kirschner wires of different materials. Materials and methods: Two commonly infecting species, Staphylococcus epidermidis and Proteus mirabilis, were isolated from patients’ pin sites. A stirred batch bioreactor was used to grow these bacteria as single culture and co-cultured biofilms on Kirschner wires made of three different materials: stainless steel, hydroxyapatite-coated steel and titanium alloy. Results: We found that the surface density of viable cells within these biofilms was 3x higher on stainless steel and 4.5x higher on hydroxyapatitecoated wires than on the titanium wires. Conclusion: Our results suggest that the lower rates of clinical pin site infection seen with titanium Kirschner wires are due to, at least in part, titanium’s better bacterial biofilm resistance. Clinical significance: Our results are consistent with clinical studies which have found that pin site infection rates are reduced by the use of titanium relative to stainless steel or hydroxyapatite-coated pins.
U2 - 10.5005/jp-journals-10080-1426
DO - 10.5005/jp-journals-10080-1426
M3 - Article
SN - 1828-8936
VL - 14
SP - 57
EP - 64
JO - Strategies in Trauma and Limb Reconstruction
JF - Strategies in Trauma and Limb Reconstruction
IS - 2
ER -