Abstract
The Additive-Multiplicative Matrix Channel (AMMC) was introduced by Silva, Kschischang and Kötter in 2010 to model data transmission using random linear network coding. The input and output of the channel are $n\times m$ matrices over a finite field $\mathbb{F}_q$. When the matrix $X$ is input, the channel outputs $Y=A(X+W)$ where $A$ is a uniformly chosen $n\times n$ invertible matrix over $\mathbb{F}_q$ and where $W$ is a uniformly chosen $n\times m$ matrix over $\mathbb{F}_q$ of rank $t$.
Silva et al. considered the case when $2n\leq m$. They determined the asymptotic capacity of the AMMC when $t$, $n$ and $m$ are fixed and $q\rightarrow\infty$. They also determined the leading term of the capacity when $q$ is fixed, and $t$, $n$ and $m$ grow linearly. We generalise these results, showing that the condition $2n\geq m$ can be removed. (Our formula for the capacity falls into two cases, one of which generalises the $2n\geq m$ case.) We also improve the error term in the case when $q$ is fixed.
Silva et al. considered the case when $2n\leq m$. They determined the asymptotic capacity of the AMMC when $t$, $n$ and $m$ are fixed and $q\rightarrow\infty$. They also determined the leading term of the capacity when $q$ is fixed, and $t$, $n$ and $m$ grow linearly. We generalise these results, showing that the condition $2n\geq m$ can be removed. (Our formula for the capacity falls into two cases, one of which generalises the $2n\geq m$ case.) We also improve the error term in the case when $q$ is fixed.
Original language | English |
---|---|
Journal | IEEE Transactions on Information Theory |
Publication status | Accepted/In press - 18 Jan 2025 |