Abstract
We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the “half-select” problem of the addressed switch of memory elements.
Original language | English |
---|---|
Article number | 162601 |
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 111 |
Issue number | 16 |
Early online date | 20 Oct 2017 |
Publication status | Published - 2017 |