Abstract
Current theories of superfluidity are based on the idea of a coherent quantum state with topologically protected quantized circulation. When this topological protection is absent, as in the case of 3He-A, the coherent quantum state no longer supports persistent superflow. Here, we argue that the loss of topological protection in a superconductor gives rise to an insulating ground state. We specifically introduce the concept of a Skyrme insulator to describe the coherent dielectric state that results from the topological failure of superflow carried by a complex-vector order parameter. We apply this idea to the case of SmB6, arguing that the observation of a diamagnetic Fermi surface within an insulating bulk can be understood as a realization of this state. Our theory enables us to understand the linear specific heat of SmB6 in terms of a neutral Majorana Fermi sea and leads us to predict that in low fields of order a Gauss, SmB6 will develop a Meissner effect.
Original language | English |
---|---|
Article number | 057603 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Physical Review Letters |
Volume | 119 |
Issue number | 5 |
DOIs | |
Publication status | Published - 4 Aug 2017 |