Abstract
We present an analysis of Bose-Fermi mixtures in optical lattices for the case where the lattice potential of the fermions is tilted and the bosons (in the superfluid phase) are described by Bogoliubov phonons. It is shown that the Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark states; these transitions are accompanied by energy dissipation into the superfluid and result in a net atomic current along the lattice. We derive a general expression for the drift velocity of the fermions and find that the dependence of the atomic current on the lattice tilt exhibits negative differential conductance and phonon resonances. Numerical simulations of the full dynamics of the system based on the time-evolving block decimation algorithm reveal that the phonon resonances should be observable under the conditions of a realistic measuring procedure.
Original language | English |
---|---|
Article number | 043617 |
Journal | Physical Review A |
Volume | 82 |
Issue number | 4 |
DOIs | |
Publication status | Published - Oct 2010 |