Mask R-CNN Transfer Learning Variants for Multi-Organ Medical Image Segmentation

Hongjian Lem, Li Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

127 Downloads (Pure)

Abstract

Medical abdomen image segmentation is a challenging task owing to discernible characteristics of the tumour against other organs. As an effective image segmenter, Mask R-CNN has been employed in many medical imaging applications, e.g. for segmenting nucleus from cytoplasm for leukaemia diagnosis and skin lesion segmentation. Motivated by such existing studies, this research takes advantage of the strengths of Mask R-CNN in leveraging on pre-trained CNN architectures such as ResNet and proposes three variants of Mask R-CNN for multi-organ medical image segmentation. Specifically, we propose three variants of the Mask R-CNN transfer learning model successively, each with a set of configurations modified from the one preceding. To be specific, the three variants are (1) the traditional transfer learning with customized loss functions with comparatively more weightage on the segmentation performance, (2) transfer learning based on Mask R-CNN with deepened re-trained layers instead of only the last two/three layers as in traditional transfer learning, and (3) the fine-tuning of Mask R-CNN with expansion of the Region of Interest pooling sizes. Evaluating using Beyond-the-Cranial-Vault (BTCV) abdominal dataset, a well-established benchmark for multi-organ medical image segmentation, the three proposed variants of Mask R-CNN obtain promising performances. In particular, the empirical results indicate the effectiveness of the proposed adapted loss functions, the deepened transfer learning process, as well as the expansion of the RoI pooling sizes. Such variations account for the great efficiency of the proposed transfer learning variant schemes for undertaking multi-organ image segmentation tasks.
Original languageEnglish
Title of host publicationIEEE International Conference on Systems, Man, and Cybernetics
Place of PublicationUSA
Pages1209-1216
Number of pages8
DOIs
Publication statusPublished - 29 Jan 2024

Cite this