Abstract
In this paper we study long-term evolution of a finite system of locally interacting birth-and-death processes labelled by vertices of a finite connected graph. A detailed description of the asymptotic behaviour is obtained in the case of both constant vertex degree graphs and star graphs. The model is motivated by modelling interactions between populations, adsorption-desorption processes and is related to interacting particle systems, Gibbs models with unbounded spins, as well as urn models with interaction.
Original language | English |
---|---|
Pages (from-to) | 132-157 |
Number of pages | 26 |
Journal | Journal of Statistical Physics |
Volume | 158 |
Issue number | 1 |
Early online date | 26 Sept 2014 |
DOIs | |
Publication status | Published - Jan 2015 |