Late Pliocene marine pCO2 reconstructions from the Subarctic Pacific Ocean

George Swann, Christopher Kendrick, Alexander Dickson, Savannah Worne

Research output: Contribution to journalArticlepeer-review

54 Downloads (Pure)

Abstract

The development of large ice-sheets across the Northern Hemisphere during the late Pliocene and the emergence of the glacial-interglacial cycles that punctuate the Quaternary mark a significant threshold in Earth's climate history. Although a number of different mechanisms have been proposed to initiate this cooling and the onset of major Northern Hemisphere glaciation, reductions in atmospheric concentrations of CO2 likely played a key role. The emergence of a stratified (halocline) water column in the subarctic north-west Pacific Ocean at 2.73 Ma has often been interpreted as an event which would have limited oceanic ventilation of CO2 to the atmosphere, thereby helping to cool the global climate system. Here, diatom carbon isotopes (δ13Cdiatom) are used to reconstruct changes in regional carbon dynamics through this interval. Results show that the development of a salinity stratification did not fundamental alter the net oceanic/atmospheric flux of CO2 in the subarctic north-west Pacific Ocean through the late Pliocene/early Quaternary. These results provide further insights into the long-term controls on global carbon cycling and the role of the subarctic Pacific Ocean in instigating global climatic changes.
Original languageEnglish
Pages (from-to)457-469
Number of pages13
JournalPaleoceanography
Volume33
Issue number5
Early online date27 Apr 2018
DOIs
Publication statusPublished - May 2018

Cite this