Abstract
This thesis is concentrated on investigating the effect of the boundary conditions on pwave superconductivity/superfluidity. The first part of the thesis discusses a possibility of creating a Josephson effect as a result of the geometry of the sample. The second part continues work on a theoretical investigation of 3He in a confined geometry. To approach these problems
theoretically a GinzburgLandau theory of second order transitions was used, while for the second part a quasiclassical approach was established. For the first problem gap profiles for various opening angles were obtained allowing to build a final plot with Josephson current magnitude dependence on the configuration of the gap on the two sides of Josephson junction. For the second problem, selfconsistent order parameter profiles and local densities of states
were obtained for various spinmixing angles. A value of the parameter that nullifies the confinement effect on 3He was found, allowing for Bphase to be stable in a slab. Also presented a discussion of other possible outcomes of magnetic scattering at the boundaries on spectral densities of states, such as stabilization of the polar phase and the extension of the zero energy states area of existence across the Fermi surface up to the equator of the sphere(p_z = 0).
theoretically a GinzburgLandau theory of second order transitions was used, while for the second part a quasiclassical approach was established. For the first problem gap profiles for various opening angles were obtained allowing to build a final plot with Josephson current magnitude dependence on the configuration of the gap on the two sides of Josephson junction. For the second problem, selfconsistent order parameter profiles and local densities of states
were obtained for various spinmixing angles. A value of the parameter that nullifies the confinement effect on 3He was found, allowing for Bphase to be stable in a slab. Also presented a discussion of other possible outcomes of magnetic scattering at the boundaries on spectral densities of states, such as stabilization of the polar phase and the extension of the zero energy states area of existence across the Fermi surface up to the equator of the sphere(p_z = 0).
Original language  English 

Qualification  Ph.D. 
Awarding Institution 

Supervisors/Advisors 

Thesis sponsors  
Award date  1 Jun 2018 
Publication status  Unpublished  2018 
Keywords
 Topological superfluid
 unconventional superconductivity
 confined He3
 Josephson effect
 Ricatti equation
 Quasiclassical approximation