Evaluating the use of seaweed extracts against root knot nematodes: a meta-analytic approach

Tamsin Williams, Steve Edgington, Andy Owen, Alan Gange

Research output: Contribution to journalArticlepeer-review


Plant parasitic nematode (PPN ) control has historically relied on the use of synthetic chemical nematicides, however many are toxic to both human health and the environment. The withdrawal of the more harmful nematicides coupled with increases in soil temperatures and increased occurrence of pests and diseases associated with climate change, may enable PPN to increase in numbers and spread globally. The need for sustainable and environmentally friendly management options is necessary while facing future food security scares in order to feed the ever-growing population. Seaweed extracts have been used for decades in agriculture and horticulture as soil biostimulants, however there is a growing body of evidence to suggest that they could be used to reduce the occurrence of damaging PPN infections. Using meta-analysis, we investigated whether seaweed extracts applied to soil could reduce root knot nematode (RKN) abundance and whether there could be confounding factors that influence their efficacy. We found that seaweed extracts reduce RKN performance and that various factors affected the efficacy of seaweed, including the seaweed species itself and the crop the seaweed was applied to. Ascophyllum nodosum extracts were found to be the most effective. Particular RKN species were more sensitive than others to seaweed species used and, in some cases, specific seaweed species only affected particular RKN species. Different life cycle stages were also differentially susceptible to seaweed application, where both egg hatching and population abundance could be reduced via seaweed use. This research indicates that seaweed extracts could potentially be used to help reduce RKN attack on plants.
Original languageEnglish
Article number104170
JournalApplied Soil Ecology
Early online date30 Jul 2021
Publication statusPublished - Dec 2021


  • seaweed
  • Meloidogyne
  • effect size
  • IPM
  • nematode abundance

Cite this