Errors in quantum tomography: diagnosing systematic versus statistical errors

Nathan K. Langford

Research output: Contribution to journalArticlepeer-review

Abstract

A prime goal of quantum tomography is to provide quantitatively rigorous characterization of quantum systems, be they states, processes or measurements, particularly for the purposes of trouble-shooting and benchmarking experiments in quantum information science. A range of techniques exist to enable the calculation of errors, such as Monte-Carlo simulations, but their quantitative value is arguably fundamentally flawed without an equally rigorous way of authenticating the quality of a reconstruction to ensure it provides a reasonable representation of the data, given the known noise sources. A key motivation for developing such a tool is to enable experimentalists to rigorously diagnose the presence of technical noise in their tomographic data. In this work, I explore the performance of the chi-squared goodness-of-fit test statistic as a measure of reconstruction quality. I show that its behaviour deviates noticeably from expectations for states lying near the boundaries of physical state space, severely undermining its usefulness as a quantitative tool precisely in the region which is of most interest in quantum information processing tasks. I suggest a simple, heuristic approach to compensate for these effects and present numerical simulations showing that this approach provides substantially improved performance.
Original languageEnglish
Article number035003
Number of pages24
JournalNew Journal of Physics
Volume15
DOIs
Publication statusPublished - 1 Mar 2013

Cite this