TY - JOUR
T1 - EnVision
T2 - understanding why our most Earth-like neighbour is so different
AU - Ghail, Richard
AU - Wilson, Colin
AU - Widemann, Thomas
AU - Bruzzone, Lorenzo
AU - Dumoulin, Caroline
AU - Helbert, Jörn
AU - Herrick, Robbie
AU - Marcq, Emmanuel
AU - Mason, Philippa
AU - Rosenblatt, Pascal
AU - Vandaele, Ann Carine
AU - Burtz, Louis-Jerome
N1 - ES M5 mission proposal
PY - 2016/10/5
Y1 - 2016/10/5
N2 - This document is the EnVision Venus orbiter proposal, submitted in October 2016 in response to ESA's M5 call for Medium-size missions for its Science Programme, for launch in 2029. Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. Its original atmosphere was probably similar to that of early Earth, with abundant water that would have been liquid under the young sun's fainter output. Even today, with its global cloud cover, the surface of Venus receives less solar energy than does Earth, so why did a moderate climate ensue here but a catastrophic runaway greenhouse on Venus? How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? Following the primarily atmospheric focus of Venus Express, we propose a new Venus orbiter named EnVision, to focus on Venus' geology and geochemical cycles, seeking evidence for present and past activity. The payload comprises a state-of-the-art S-band radar which will be able to return imagery at spatial resolutions of 1 - 30 m, and capable of measuring cm-scale deformation; this is complemented by subsurface radar, IR and UV spectrometers to map volcanic gases, and by geodetic investigations.
AB - This document is the EnVision Venus orbiter proposal, submitted in October 2016 in response to ESA's M5 call for Medium-size missions for its Science Programme, for launch in 2029. Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. Its original atmosphere was probably similar to that of early Earth, with abundant water that would have been liquid under the young sun's fainter output. Even today, with its global cloud cover, the surface of Venus receives less solar energy than does Earth, so why did a moderate climate ensue here but a catastrophic runaway greenhouse on Venus? How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? Following the primarily atmospheric focus of Venus Express, we propose a new Venus orbiter named EnVision, to focus on Venus' geology and geochemical cycles, seeking evidence for present and past activity. The payload comprises a state-of-the-art S-band radar which will be able to return imagery at spatial resolutions of 1 - 30 m, and capable of measuring cm-scale deformation; this is complemented by subsurface radar, IR and UV spectrometers to map volcanic gases, and by geodetic investigations.
KW - astro-ph.EP
M3 - Article
JO - ESA Call for Medium-Size Mission Opportunity
JF - ESA Call for Medium-Size Mission Opportunity
ER -