@article{c8f960befd0c43bba0ea58dad60f03ff,
title = "Boson Sampling on a Photonic Chip",
abstract = "Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.",
author = "Spring, {Justin B.} and Metcalf, {Benjamin J.} and Humphreys, {Peter C.} and Kolthammer, {W. Steven} and Xian-Min Jin and Marco Barbieri and Animesh Datta and Nicholas Thomas-Peter and Langford, {Nathan K.} and Dmytro Kundys and Gates, {James C.} and Smith, {Brian J.} and Smith, {Peter G. R.} and Walmsley, {Ian A.}",
year = "2013",
month = feb,
day = "15",
doi = "10.1126/science.1231692",
language = "English",
volume = "339",
pages = "798--801",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "6121",
}