TY - JOUR
T1 - Application of artificial intelligence in cognitive load analysis using functional near-infrared spectroscopy
T2 - A systematic review
AU - Khan, Mehshan Ahmed
AU - Asadi, Houshyar
AU - Zhang, Li
AU - Qazani, Mohammad Reza Chalak
AU - Oladazimi, Sam
AU - Loo , Chu Kiong
AU - Lim, Chee Peng
AU - Nahavandi, Saeid
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Cognitive load theory suggests that overloading of working memory may negatively affect the performance of human in cognitively demanding tasks. Evaluation of cognitive load is a difficult task; it is often assessed through feedback and evaluation from experts. Cognitive load classification based on Functional Near-InfraRed Spectroscopy (fNIRS) is now one of the key research areas in recent years, due to its resistance of artefacts, cost-effectiveness, and portability. To make fNIRS more practical in various applications, it is necessary to develop robust algorithms that can automatically classify fNIRS signals and less reliant on trained signals. Many of the analytical tools used in cognitive sciences have used Deep Learning (DL) modalities to uncover relevant information for mental workload classification. This review investigates the research questions on the design and overall effectiveness of DL as well as its key characteristics. We have identified 45 studies published between 2011 and 2023, that specifically proposed Machine Learning (ML) models for classifying cognitive load using data obtained from fNIRS devices. Those studies were analyzed based on type of feature selection methods, input, and DL model architectures. Most of the existing cognitive load studies are based on ML algorithms, which follow signal filtration and hand-crafted features. It is observed that hybrid DL architectures that integrate convolution and LSTM operators performed significantly better in comparison with other models. However, DL models especially hybrid models have not been extensively investigated for the classification of cognitive load captured by fNIRS devices. The current trends and challenges are highlighted to provide directions for the development of DL models pertaining to fNIRS research.
AB - Cognitive load theory suggests that overloading of working memory may negatively affect the performance of human in cognitively demanding tasks. Evaluation of cognitive load is a difficult task; it is often assessed through feedback and evaluation from experts. Cognitive load classification based on Functional Near-InfraRed Spectroscopy (fNIRS) is now one of the key research areas in recent years, due to its resistance of artefacts, cost-effectiveness, and portability. To make fNIRS more practical in various applications, it is necessary to develop robust algorithms that can automatically classify fNIRS signals and less reliant on trained signals. Many of the analytical tools used in cognitive sciences have used Deep Learning (DL) modalities to uncover relevant information for mental workload classification. This review investigates the research questions on the design and overall effectiveness of DL as well as its key characteristics. We have identified 45 studies published between 2011 and 2023, that specifically proposed Machine Learning (ML) models for classifying cognitive load using data obtained from fNIRS devices. Those studies were analyzed based on type of feature selection methods, input, and DL model architectures. Most of the existing cognitive load studies are based on ML algorithms, which follow signal filtration and hand-crafted features. It is observed that hybrid DL architectures that integrate convolution and LSTM operators performed significantly better in comparison with other models. However, DL models especially hybrid models have not been extensively investigated for the classification of cognitive load captured by fNIRS devices. The current trends and challenges are highlighted to provide directions for the development of DL models pertaining to fNIRS research.
U2 - 10.1016/j.eswa.2024.123717
DO - 10.1016/j.eswa.2024.123717
M3 - Article
SN - 0957-4174
VL - 249
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - Part C
M1 - 123717
ER -