Abstract
Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional Hubbard model with plaquette dynamical mean-field theory to address these unusual features and relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The low-temperature transition between that phase and the correlated metal at higher doping is first-order. A series of crossovers emerge along the Widom line extension of that first-order transition in the supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field superconducting transition temperature Tdc, the maximum of the condensation energy as a function of doping, the correlation between maximum Tdc and normal-state scattering rate, the change from potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants of the normal state first-order transition and its associated crossovers that also act as an organizing principle for the superconducting state.
Original language | English |
---|---|
Article number | 22715 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
Publication status | Published - 11 Mar 2016 |
Keywords
- superconductivity
- Mott transition