Abstract
We study the problem of finding the largest matching in a random bipartite graph after an adversary deleted some edges. The bipartite graph consists of a partition class A of size n and a partition class B of size (1+ε)n. Each vertex in A chooses d neighbours in B uniformly and independently at random, and an adversary then deletes, for each vertex v in A, at most r edges incident to v, for some fixed r≥ 1. We show that forsufficiently large (but fixed) d and sufficiently large n, if ε>εrd:=((r+1)/r (\log d)/binom{d}{r+1})1/r,then asymptotically almost surely an adversary who deletes r edges incident to each vertex in A cannot destroy all matchings ofsize n. On the other hand if ε<εrd,then asymptotically almost surely such an adversary can destroy all matchings of size n.
Original language | English |
---|---|
Pages (from-to) | 79-92 |
Number of pages | 14 |
Journal | Journal of Combinatorics |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2 Dec 2016 |